AC'SPARK PLUG DIVISION General Motors Corporation Milwaukee, Wisconsin		XDE 34-T-38 Revision B ENGINEERING		
ADOLLO	GEE GYRO CAGING PANEL BLOCK II AND	DESIGN INFORMATION EXHIBIT		
	ISTEN DESIGN CRITERIA	By W. Nowak	Dete Sept. 2, 1965	
1.	SCOPE			
1.1	This document establishes the system : Gyro Caging Panel.	requirements for th	e Apollo GSE	
2	APPLICABLE DOCUMENTS			
1	ND 1002213 - General Specification	for Apollo Ground a	upport Equipment	
	2900200 - Diagram, Mechanization	Gyro Caging Panel (Block II and LEM)	
3.	REQUIREMENTS			
3.1	General - The function of the Gyro Ca. Analyzer (OIA) is to perform a plus of to torque the gyro in the proper dire received from the GSE Computer Simula also perform a caging function when of configuration. If a gyro error signa Inertial Measurement Unit (IMU) excee 1000 V/Radians) the Gyro Caging Panel selection by determining if the error respect to the 3200 pps reference signal gyro is torqued until the error signal	r minus gyro select ction when gyro tor tor. The Gyro Cagi perated in the Iner l received from ds 100 arc seconds performs a plus or signal is 0 or \mathcal{N} p mal. After this se	ion in order que pulses are ng Panel must tial Subsystem the Airborne (assuming minus gyro hase with	
	arc seconds. This caging function will accuracy of 100 arc seconds or less.		ess than 100	
3.2	are seconds. This caging function wi		ess than 100	
3.2	are seconds. This caging function will accuracy of 100 are seconds or less.	ll maintain the gyr	ess than 100 To float positional	
3.2	arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag functions are as follows: a. Interrogator Circuit	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	
3.2	 arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cagifunctions are as follows: a. Interrogator Circuit b. A Preferred State Flip-Flop Circuit 	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	
3.2	arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag functions are as follows: a. Interrogator Circuit	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	
3.2	 arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag functions are as follows: a. Interrogator Circuit b. A Preferred State Flip-Flop Circuit c. Selector Driver Circuit d. Phase A, B and C Flip-Flop Circuit e. Torque Enable Circuit 	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	
3.2	 arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag. functions are as follows: a. Interrogator Circuit b. A Preferred State Flip-Flop Circuit c. Selector Driver Circuit d. Phase A, B and C Flip-Flop Circuit 	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	
3.2	 arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag functions are as follows: a. Interrogator Circuit b. A Preferred State Flip-Flop Circuit c. Selector Driver Circuit d. Phase A, B and C Flip-Flop Circuit e. Torque Enable Circuit 	ll maintain the gyr ing Panel to perfor	ess than 100 The float positional	
3.2	 arc seconds. This caging function will accuracy of 100 arc seconds or less. CIRCUITS The circuits required in the Gyro Cag functions are as follows: a. Interrogator Circuit b. A Preferred State Flip-Flop Circuit c. Selector Driver Circuit d. Phase A, B and C Flip-Flop Circuit e. Torque Enable Circuit 	ll maintain the gyr ing Panel to perfor	ess than 100 To float positional	

THIS INFORMATION IS FOR PRODUC	T ENGINEERING USE	ONLY; FOR	I USE IN PRODUC	TION, THE CONT	ENTS SHOULD BE RELEASED
ON APPLICABLE DRAWINGS AND/OR	SPECIFICATIONS;	FOR USE BY	DESIGN SUBCON	TRACTORS, CONT	ENTS SHOULD BE RELEASED
SY XCR (MIL 1101).					

•

1	REY.				Page	1 of 7	XDE	
1			•	994 A. T.		• •		

AC SPARK PLUG DIVISION General Motors Corporation	XDE 34- T -38	Revision B	
APOLLO GSE GYRO CAGING PANEL BLOCK II AND	ENGINEERING DESIGN INFORMATION EXHIBIT		
LEM SYSTEM DESIGN CRITERIA	By W. Nowak	Date Sept. 2, 1965	

3.2.1 INTERROGATOR CIRCUIT

This circuit shall receive a sinusoidal 3200 CPS Gyro Error signal which is either 0 or \mathcal{P} phase. In addition a 3200 pps PIPA Switch pulse which lags the error signal by 135° is an input to the Interrogator circuit. These signals are processed in a phase splitter and the output is a (+T) or (T), plus or minus Torque. The circuit shall have a (+T⁻) output for \mathcal{P} phase error signal and a (-T) output for a 0 phase error signal.

3.2.2 PREFERRED STATE FLIP-FLOP CIRCUIT

The preferred state flip-flop shall operate in a normal set or reset mode with the addition of preferring the set mode of operation. This means that should a set and reset pulse occur simultaneously the flipflop will prefer the set state of operation.

3.2.3 SELECTOR DRIVER CIRCUIT

This circuit contains logic which will determine a plus or minus gyro torquing coil selection. This signal will occur for only 80 milliseconds duration and be off for 160 milliseconds, and only one selection can be made at one time. This circuit also controls torque "ON" and "OFF" commands that are timed with the plus and minus selection signals which allow only one gyro to be torqued at a time.

3.2.4 PHASE A, B AND C FLIP-FLOP CIRCUIT

This circuit controls the sequence of operation of the caging function. Three flip-flop circuits are operated with X, Y or Z gyro select phase A B or C respectively. Logic incorporated into this circuit will set one flip-flop and reset another flip-flop simultaneously. This means that each flip-flop will be set for 80 milliseconds and reset for 160 milliseconds sequentially. This phase failure logic insures that only one gyro can be caged during any one 80 millisecond period in the event of a circuit failure.

3.2.5 TORQUE ENABLE CIRCUIT

The Torque Enable Circuit will contain a 2 millisecond time delay which will delay the Torque On pulse to insure that gyro plus or minus torquing selection has been made before a torque on condition occurs. This circuit also contains logic which will provide an output only if the phase sequence is proper; if the sequence is not correct an output will provide a torque off command.

THIS INFORMATION IS FOR PRODUCT ENGINEERING USE ONLY; FOR USE IN PRODUCTION, THE CONTENTS SHOULD BE RELEASED ON APPLICABLE DRAWINGS AND/OR SPECIFICATIONS; FOR USE BY DESIGN SUBCONTRACTORS, CONTENTS SHOULD BE RELEASED BY XCR (MIL 1101).

xDE 34-T-38	
REV. Page 2of 2	

AC SPARK PLUG	EXPERIMENTAL DESIGN EXHIBIT	XDE	34- T -38		B
General Motors C Milwaukee, Wis	BY W. Nowak	Sept.	2, 1965	TOTAL PAGES	PAGE 3

3.2.6 TORQUE ON AND TORQUE OFF CIRCUIT

Torque On and Torque Off circuit will provide the Torque On and Torque Off commands through isolation transformers to the Airborne IMU. This circuit also contains a buffered output to the Forward Backward Counter in the OIA. The counter will count the Torque On pulses.

3.3 PERFORMANCE REQUIREMENTS

The circuits of paragraph 3.2 shall provide torquing and caging functions for controlling the gyros of the IMU in the ISS Configuration. This shall be accomplished by the following input and output signals

3.3.1 INPUT SIGNALS

The input signals shall be received from the following components: Airborne IMU, GSE Computer Simulator, Test Control Panel, Electronic Power Supply and the Monitor Panel. The GSE components are located in the OIA. The input signals shall have the following characteristics.

3.3.1.1 X; Y; Z GYRO ERROR SIGNAL

The Gyro Error Signal originating in the gyro is received by the Gyro Caging Panel (GCP) from a buffer amplifier in the GSE Distribution Box. The signal is sinusoidal 3200 CPS, 0 or \hat{n} phase and amplitude from 0 to 10 volts. The buffer amplifier shall have an output impedance of less than 75 ohms.

3.3.1.2 X, Y, Z GYRO CAGE COMMAND

This signal from the Test Control Panel is the 27 volt DC High of Relay Lamp Power and is used to command Caging function.

3.3.1.3 PLUS AND MINUS X, Y AND Z IRIG SET SIGNALS

These signals are received from the Computer Simulator to torque the gyros at a specific rate. The signal is 3200 PPS and when terminated into a 200 \pm 10% ohm load shall have an amplitude of 5.0 \pm .5 V p-p, pulse width (50%) of 3.0 \pm .5 \sim seconds, rise time (40-90%) of 0.2 \sim seconds and droop of 0.6 volts maximum.

3.3.1.4 X IRIG SELECT (PHASE A) SIGNAL

This signal is received from the Computer Simulator and is a resultant of the following signals (1) Phase A 3200 pps signal 80 milliseconds wide, (2) 12.5 pps signal 10 microseconds wide and (3) Strobe 0-102.4 K pps signal that is three microseconds wide. The resultant is a signal pulse three microseconds wide in phase with 3200 pps Phase A, the frequency rate is 102.4 K pps for 80 milliseconds duration.

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-T-38		rev B
"General Motors Corporation	by	DATE	TOTAL PAGES	PAGE
Milwaukee, Wisconsin	W. Nowak	Sept. 2, 1965		4

The Y IRIG Select and Z IRIG Select will meet the same requirements as X IRIG Select, however they shall be in phase with 3200 pps Phase B and Phase C respectively. These signals are timed to be on 80 milliseconds and off 160 milliseconds sequentially with Phase A, B and C.

3.3.1.5 PIPA SWITCHING SIGNAL

This signal is received from the Computer Simulator and is a 3200 pps and is strobed by Strobe I, it is a 3 microsecond pulse width that lags the Gyro Error Signal by 135 degrees. This signal is processed in the interrogator with the gyro error signal to determine a plus torque or minus torque by position of the interrogate pulse at either the peak or the trough of the error signal. This position will determine either a 0 or a # phase error.

3.3.1.6 PHASE A, B, C RESET COMMAND SIGNAL

This signal of +30 VDC originates in the Electronic Power Supply and is received from the Test Control Panel. The signal will reset the A, B, C Flip-Flops and stop torquing and caging functions.

3.3.1.7 GYRO TORQUE DISCRETE

This is a 102.4 KPPS generated in the Computer Simulator. It is strobed with Strobe II and will have the following characteristics when terminated into a $200 \pm 10\%$ ohm load, Amplitude of 6 ± 0.6 V p-p, rise time (10-90%) 0.2 microseconds and pulse width of 3.0 + 0.5 microseconds.

3.3.1.8 BLOCK II-LEM STATUS

This signal is a 27 VDC Relay Lamp Power High which originates in the Test Control Panel and is routed to the Gyro Caging Panel when the OIA is in the Block II or LEM Configuration.

3.3.1.9 ENABLE GYRO TORQUING

This is a 27 VDC Relay Lamp Power Lo (ground) which is closed by a switch on the Test Control Panel. Without this ground the Gyro Caging Panel will not operate.

3.3.1.10 -30 VDC

The power used for the A, B and C Flip-Flops is supplied by the Negative Power Supply (NPS) located in the OIA.

3.3.1.11 + 30 VDC

The power used for the X, Y and Z Select and Torque On driver circuits is supplied by the Positive Power Supply (PPS) located in the OIA. Both 3.3.1.10 and .11 shall be properly fused to protect the energized circuitry.

3.3.1.12 The Gyro Caging Panel shall contain two ground points for termination of shielded lead grounds and common chassis ground.

MIL 1018 REV 20

ÁC SPARK PLUG DIVISION General Motors Corporation	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-T-38	rev B
Milwaukee, Wisconsin	BY	DATE TOTAL PAGES	PAGE
	W. Nowak	Sept. 2, 1965	5

3.3.1.13 CONTINUOUS TORQUE COMMAND

This signal is a 27VDC High sent from the Test Control Panel which will provide the Gyro Caging Panel the capability to continuously torque a gyro which has been selected by the Computer Simulator. This capability is required to conduct the Friction Test.

3.3.2 OUTPUTS

The Gyro Caging Panel shall have outputs to the Airborne IMU, the GSE Test Control Panel, Monitor Panel and the Forward Backward Counter located in the OIA. The Output signals shall have the following characteristics.

3.3.2.1 PLUS AND MINUS X, Y AND Z SELECT SIGNALS

The signal pulses are 102.r KPPS with a duration of 80 milliseconds, pulse width 3.5 ± 1 microsecond, rise time of less than 1 microsecond, amplitude of 5 to 10 volts. The output impedance of the signal shall be less than 100 ohms transformer coupled and the load is 100k shunted with 1500 pf capacitor. These signals are used to select both the gyro and the direction to torque.

3.3.2.2 TORQUE ON AND TORQUE OFF COMMAND SIGNALS

These torque signals shall have the following characteristics. They are 3200 per second pulses with amplitude of 5 to 10 volts, pulse width of 3.5 ± 1 microsecond, rise time of less than 1 microsecond and a load of 2.2 K ohms shunted with a 1500 pf capacitor. The output impedance of the signal is less than 100 ohms transformer coupled. These signals shall be positive going pulses.

3.3.2.3 PHASE A, B, C RESET ENABLE

This signal is +30 volts DC originating in the OIA Electronic Power Supply and is routed out of the Gyro Caging Panel to the Test Control Panel.

3.3.2.4 GYRO CAGING PANEL FUNCTIONS NORMAL

This ground completes a circuit of the Torque Enable Relay which will turn on of power to operate the Gyro Caging Panel. The Torque Enable Relay Low circuit will connect the Relay Lamp Power Low onlywhen the inputs Gyro Select Phase A, B and C timing from the Computer Simulator is operating properly. This is a fail safe feature to assure that no malfunction has occurred prior to turning the power on to the Gyro Caging Panel.

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE	34- T -38		rev B
General Motors Corporation Milwaukee, Wisconsin	By W. Nowak	DATE Sept.	2, 1965	TOTAL PAGES	PAGE 6

3.3.2.5 RELAY LAMP POWER LOW

This ground functions as a part of the interlock scheme described in paragraph 3.3.2.4.

3.3.2.6 X, Y, Z GYRO CAGE INDICATION

This is the connection of the Relay Lamp Power Low when a gyro error signal and a cage command signal is present. This ground is used to complete an indicator light circuit in the Test Control Panel.

3.3.2.7 TORQUE SET SIGNAL PULSE

This signal is buffered Torque On signal and will occur for every Torque On output pulse. The Torque On pulses can be counted on the Forward Backward Counter. The repetition rate is 3200 pps, with minimum amplitude of 1.0 volt, and pulse width of 3.5 + 1 microsecond. The input impedance of the Forward Backward Counter is 1 megohm shunted with approximately 75 pf. The spurious input spikes shall be less than 100 mv rms. The output impedance of the Buffer Amplifier is less than 2.2 K ohms.

3.3.2.8 BLOCK I SERIES 100 INDICATION

This signal is a Relay Lamp Power Low that is switched to the Monitor Panel to operate in a status interlock scheme used to verify that the proper relays are energized for the Block I Series 100 configuration.

3.3.2.9 NOT BLOCK I SERIES 100 INDICATION

This signal is a Relay Lamp Power Low that is switched to the Monitor Panel to operate in a status interlock scheme to verify that the proper relays are energized for the Block II-LEM configuration.

3.3.2.10 PLUS AND MINUS X, Y AND Z IRIG SET

These output signals shall have identical characteristics as the Plus or Minus X, Y and Z IRIG Set Signals that are received from the Computer Simulator (paragraph 3.3.1.3) with the exception of the phasing. The input to the Gyro Caging Panel are positive going pulses, whereas the outputs of the Gyro Caging Panel are negative going pulses. The inputs to the Gyro Caging Panel shall be switched when the OIA is in the Block I Series 100 to be used for operation of the Caging Electronics in the Primary Signal Select.

3.3.2.11 CONTINUOUS TORQUE INDICATION

This signal is a 27VDC RLP Low which shall be sent to the Test Control Panel to complete a circuit to light the Continuous Torque Indicator.

MIL 1018 REV 265

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE	34 -T- 38	•	REV B
General Motors Corporation Milwaukee, Wisconsin	BY W. Nowak	DATE Sept.	2, 1965	TOTAL PAGES	PAGE 7

3.4 DETAIL REQUIREMENTS

3.4.1 TIME DELAY (2 MILLISECOND)

The two millisecond delay is used to delay the Torque On signal to insure that the IRIG selection has started before the torquing has begun. It also insures that Torque ON and Torque OFF do not occur simultaneously. The delay shall have a tolerance of +10%.

3.4.2 TIME DELAY-TURN OFF (468 MICROSECONDS)

This delay is located in each of the plus and minus selection outputs to delay the selection turn off time, this selection time will be at least 80.3 milliseconds. This adjusts the timing to assure that the reset pulse will occur one clock pulse (312microseconds) before the end of selection. The delay shall be 468 microseconds + 156 microseconds.

3.4.3 BUFFER AMPLIFIER

This amplifier shall buffer the Torque On signals to the Forward-Backward Counter. The characteristics of the signal, load and impedances are the same as specified in paragraph 3.3.2.6.

3.4.4 TIME DELAY TURN ON (1.0 MILLISECONDS)

A 1.0 millisecond time delay shall be located in each \pm X, Y Z Gyro Select circuit. It is used to delay the turn on of the gyro selection in order to eliminate the possibility of selecting two gyros simultaneously. The delay shall have a tolerance of 1 millisecond $\pm 10\%$.

3.4.5 SCALE FACTOR TEST

The GCP shall provide the capability to perform an IRIG Scale Factor Test. This test requires that two gyros are caged and the third gyro shall be torqued by signals from the Computer Simulator. The Torque Set output signals to the Counter in the Primary Signal Selector shall only be the torque set signals from the Computer Simulator and not the Gyro Caging Torque Set Signals. The ability to count these pulses shall be used to determine the Scale Factor of the gyro.

DAGE PAGE		G	YRO CAGING PANEL INTERFACE	
	Cross Reference	Connector/		
PAGES	Number	Pin .	Nomenclature	Signal Description
AL P	1	JI-A	Chassis Ground	
TOTAL	1613	Jl-P	Block II/LEM Status	27VDC RLP High
38	1570	Jl-R	Y IRIG Cage Command	27VDC RLP High
3 4-1 -38	1569	JI-S	Y IRIG Cage Indication	27VDC RLP LOW
0	121	J1-U	Y Gyro Error High	{ Sinusoidal 3200 (0 or phase)
XUE DATE Sept	122	JI-T	Y Gyro Error Low	0 - 10 V(amplitude)
	1568	JI-V	X IRIG Cage Command	27 VDC RLP High
EXHIBIT	1567	Jl-W	X IRIG Cage Indication	RLP Low
DESIGN	119	JI-Y	X Gyro Error High	Sinusoidal 3200 CPS
	120	JI-X	X Gyro Error Low	0 or T phase 0 - 10 V(amplitude)
Nowak	1574	Jl-M*	GCP Functions Normal	RLP LOW
EXPERIMENTAL BY W. Nowak	1575	J1-P*	Phase ABC Reset Enable	+ 30 VDC
BY	1576	JI-Q*	Phase ABC Reset Command	+ 30 VDC
	1572	JI-R*	Z IRIG Cage Command	27 VDC RLP High
ation n	1571	JL-S*	Z IRIG Cage Indication	RLP LOW
Corporation isconsin	129	J1-U*	Z Gyro Error High	\int 3200 CPS 0 or η phase
JEAKN FLUG L meral Motors Cor Milwaukee, Wisc	130	JI-T*	Z Gyro Error Low	Amplitude 0 - 10V
al Mot	l	JI-CC	27 VDC RLP LOW	
AL SFARN FLUG General Motors Cc Milwaukee, Wis	1573	J1-DD	Enable Gyro Torquing	27 VDC RLP LOW

MIL 1018 REV 265

PAGE 9	Cross Reference Number	Connector/ Pin	Nomenclature	Signal Description
	273	J1-EE	- 30 VDC High	
L PAGES	274	JL-GG	+ 30 VDC High	
TOTAL	2	jl-FF	<u>+</u> 30 VDC Low	
	1644	JI-MM	Block I, Series 100 Indication	27VDC RLP Low
1965	1645	Jl-NN	Not Block I Series 100 Indic.	27 VDC RLP LOW
s,	1732	JI-HH	Continuous Gyro Torque Cmd.	27 VDC RLP High
DATE Sept.	1733	J1-PP	Continuous Gyro Torque Ind.	27 VDC RLP LOW
- 0	1611 1612	J2-1 I 0	PIPA Switching High PIPA Switching Ret	3200 pps 3 u sec pulse width Lags Error Sig. by 135
	1601 TL 1602 TL	J2-3 I 0	Torque ON Command High Torque ON Command Low	3200pps ampl. 56 10V, pos. going P/W 3.5 usec Buffered
Nowak	1626 TL 1627 TL	J2-4 I 0	Torque Set High Torque Set Low	3200 min amp. 1.0V P/W 3.5 usec Buffered
М.	1603 TL 1604 TL	J2-9 I 0	Torque OFF Command High Torque OFF Command Low	3200 pps amp 56 10V P/W 3.5 <u>+</u> lusec positive going
BY	865 864	J2-11 I 0	-Y IRIG Set High -Y IRIG Set Low	3200 pps amp 5.0 <u>+</u> .5 V P/W 3usec <u>+</u> .5
	860 861	J2-12 I 0	-X IRIG Set High -X IRIG Set Low	3200 pps A.M. 5.0 <u>+</u> .5V P/W- 3usec <u>+</u> .5
Milwaukee, Wisconsin	1591 1592	J2-14 I 0	-X Gyro Select Hi -X Gyro Select Low	102.4 KPPS 80mil sec. duration Jusec pulse width
Milwaukee, W	866 867	J2-10 I 0	-Z IRIG Set High -Z IRIG Set Ret	Same as -X IRIG Set
Milwo	1625 1624	J2-21 0 I	-Z IRIG Set High -Z IRIG Set Ret	Same as -X IRIG Set

..

10	CROSS REFERENCE	CONNECTOR/ PIN	NOMENCLATURE	DESCRIPTION
	1617 1616	J2-22 0 I	-X IRIG Set High -X IRIG Set Ret	3200 pps P/W 3.0 + 5usec Amp 5.0 + .5V neg going
	1615 1614	J2-23 0 I	+X IRIG Set High +X IRIG Set Ret	Same as above
1965	863 862	J2-24 I 0	+Z IRIG Set High +Z IRIG Set Ret	Same as above but positive but positive going pulses
ŝ	857 856	J2-25 I 0	+Y IRIG Set High +Y IRIG Set Ret	Same as above
Sept	858 859	J2-26 I 0	+X IRIG Set High +X IRIG Set Ret	Same as above
	1593 TL 1594 TL	J2-28 I 0	+Y Gyro Select High +Y Gyro Select Low	102.4 KPPS amp 5 to 10V P/W - 3.5 <u>+</u> 1 usec
X	1589 TL 1590 TL	J2-29 I 0	+X Gyro Select High +X Gyro Select Low	Same as above
W. Nowak	1595 TL 1596 TL	J2-30 I 0	-Y Gyro Select High -Y Gyro Select Low	Same as above
3	1623 1622	J2-38 0 I	+Z IRIG Set High +Z IRIG Set High	3200 pps P/W 3.0 <u>+</u> .5usec Amp. 5 <u>+</u> .5V neg. going.
-	1621 W 1620 W	J2-39 0 I	-Y IRIG Set High -Y IRIG Set Ret	Same as above Neg. going.
sin	1617 W 1618 W	J2-40 0 I	+Y IRIG Set HI +Y IRIG Set Ret	Same as above Neg. going.
, Wisconsin	1605 1606	J2-41 I 0	X IRIG Select (Phase A) HI X IRIG Select (Phase A) Ret	Jusec pulse width, in phase 3200, Freq. Rate 102.4 KPPS
Milwaukee,	1607 1608	J2-42 I 0	Y IRIG Select (Phase B) HI Y IRIG Select (Phase B) Ret	Same as above

General Motors Corporation Milwaukee, Wisconsin	EXPERIMENTAL DESIGN EXHIBIT	DATE 34-1-30 Bept. 2, 1965	1965	TOTAL PA	PAGES PAGE	LI GE
		1599 1600	1658 1659	1597 1598	1609 1610	REFERENCE
		J2-48 I 0	J2-47 I 0	J2-46 I 0	J2-43 I	PIN
		-Z Gyro Select HI -Z Gyro Select LO	Gyro Torque Discrete HI Gyro Torque Discrete Ret	+Z Gyro Select HI +Z GYro Select Low	Z IRIG Select (Phase C)HI Z IRIG Select (Phase C)Low	NOMENCLATURE
		102.4 KPPS amp 5 to 10V P/W 3.5 <u>+</u> lusec	102.4 KPPS AM 6 + .6V P/W 3.0 + 0.5usec	102.4 KPPS amp 5 to 10V P/W 3.5 <u>+</u> lusec	Same as preceding page.	DESCRIPTION

AC SPARK PLUG DIVISION General Motors Corporation	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-T-38	REV
Milwaukee, Wisconsin	By	DATE TOTAL PAGES	PAGE
	W. Nowak	Sept. 2, 1965	12

. le

W. Mowak System Mechanization APOLLO GSE

WN/sj

Approved:

c

W. J. Cattoi - Group Head System Mechanization APOLLO GSE