| AC ELECTRONICS DIVISION                            | EXPERIMENTAL DESIGN EXH                                   | IBIT XDE 34-T-53                             |                  |
|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------|
| General Motors Corporation<br>Milwaukee, Wisconsin | BY<br>H. Neuville                                         | DATE<br>12-22-65                             | TOTAL PAGES PAGE |
| ·                                                  |                                                           | £.0                                          | harson           |
| F<br>Ex                                            | REINSTALLATION G&N TESTIN                                 | NG OF THE LUNAR<br>ENDEZVOUS SYSTEM          |                  |
| Writt                                              | en by: Harlan Neuvil<br>Optical Subsy<br>Apollo Engine    | LIE, Head<br>ystem Group<br>eering           |                  |
| Аррго                                              | ved by:<br>A./Wachholz,<br>System's Inst<br>Apollo Engine | Head<br>Head<br>crumentation Group<br>eering |                  |
|                                                    |                                                           |                                              |                  |
|                                                    |                                                           |                                              |                  |
|                                                    |                                                           |                                              |                  |

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin |      | DN EXPE            | RIMENTAL DESIGN EXHIBIT | XDE 34-T-53                      |                | REV |          |
|-------------------------------------------------------------------------------|------|--------------------|-------------------------|----------------------------------|----------------|-----|----------|
|                                                                               |      | n BY H.            | Neuville                | DATE<br>12-22-65                 | TOTAL PAGES    | PAG |          |
|                                                                               |      |                    |                         | INDEX                            |                |     |          |
|                                                                               |      |                    |                         |                                  |                | De  | 70       |
| 1.                                                                            | Scop | 2                  |                         |                                  |                | 10  | 1        |
| 2.                                                                            | Appl | icable Do          | cuments                 |                                  |                |     | ī        |
| 3.                                                                            | Requ | irements           |                         |                                  |                |     | 2        |
|                                                                               | 3.1  | General<br>Detaile | d Function              | al Requirements                  |                |     | 2        |
|                                                                               |      | 3.2.1              | Tracker                 |                                  |                |     | 2        |
|                                                                               |      |                    | 3.2.1.1                 | Weight                           |                |     | 2        |
|                                                                               |      |                    | 3.2.1.2                 | Power                            |                |     | 2        |
|                                                                               |      |                    | 3.2.1.3                 | Tracking Sensitivity             |                |     | 3        |
|                                                                               |      |                    | 3.2.1.5                 | Tracking During LEM M            | aneuvers       |     | 4        |
|                                                                               |      |                    | 3.2.1.6                 | Multiple Target Discr            | imination      |     | 5        |
|                                                                               |      |                    | 3.2.1.7                 | Lunar Marker Tracker             | Accuracy       |     | 5        |
|                                                                               |      |                    | 3.2.1.9                 | Star CSM Lock-On                 |                |     | 5        |
|                                                                               |      |                    | 3.2.1.10                | Probability of Lock-C            | n              |     | <b>5</b> |
|                                                                               |      |                    | 3.2.1.11                | Failure Rate                     |                |     | 5        |
|                                                                               |      | 3.2.2              | Luminous                | Beacon                           |                |     | 6        |
|                                                                               |      |                    | 3.2.2.1                 | Weight                           |                |     | 6        |
|                                                                               |      |                    | 3.2.2.2                 | Power                            |                |     | 6        |
|                                                                               |      |                    | 3.2.2.4                 | Visual Mode                      |                |     | 6        |
|                                                                               | 3.3  | Loop Pe            | rformance,              | Logic Characteristics.           | and Test Point | ;s  | 6        |
|                                                                               |      | 3.3.1              | Star Trac               | k Signal Processing Loo          | q              |     | 6        |
|                                                                               |      |                    | 3.3.1.1                 | General                          |                |     | 6        |
|                                                                               |      |                    | 3.3.1.2                 | Operational Character            | istics         |     | 7        |
|                                                                               |      | 3.3.2              | Beacon Tr               | ack Signal Processing L          | qoo            | ł   | 8        |
|                                                                               |      |                    | 3.3.2.1                 | General<br>Operational Character | istics         | 1   | 8        |
|                                                                               |      | 3.3.3              | Automatic               | Gain Control Loop                |                |     | 9        |
| •                                                                             |      |                    | 3.3.3.1                 | General                          |                |     | 9        |
|                                                                               |      |                    | 3.3.3.2                 | Operational Character            | istics         | 10  | 0        |
|                                                                               |      | 3.3.4              | Star Trac               | k and Beacon Track Serv          | o Loop         | 10  | C        |
|                                                                               |      |                    | 3.3.4.1                 | General                          |                | 10  | C        |

| AC ELECTRONICS DIVISION                            |                                               | EXPE                                                                 | RIMENTAL DESIGN EXHIB                                                                                                                                   | IT XDE 34-T-53                                                        |                                                | REV                        |
|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|----------------------------|
| General Motors Corporation<br>Milwaukee, Wisconsin |                                               | BY                                                                   | H. Neuville                                                                                                                                             | DATE<br>12-22-65                                                      | TOTAL PAGES                                    | PAGE<br>ii                 |
|                                                    |                                               |                                                                      | INDEX, cont.                                                                                                                                            |                                                                       |                                                |                            |
|                                                    |                                               |                                                                      |                                                                                                                                                         |                                                                       | Pe                                             | lge                        |
|                                                    | 3.3.5 <u>Ac</u>                               | quisiti                                                              | lon Loop                                                                                                                                                |                                                                       | 3                                              | -3                         |
|                                                    | 3.<br>3.                                      | 3.5.1<br>3.5.2                                                       | General<br>Operational Charac                                                                                                                           | teristics                                                             | נ                                              | .3<br>.3                   |
|                                                    | 3.3.6 <u>Ac</u>                               | quisiti                                                              | on/Scan Loop                                                                                                                                            |                                                                       | נ                                              | .5                         |
|                                                    | 3.<br>3.                                      | 3.6.1<br>3.6.2                                                       | General<br>Operational Charac                                                                                                                           | teristics                                                             | ב<br>נ                                         | .5<br>.5                   |
|                                                    | 3.3.7 <u>Su</u>                               | n Shutt                                                              | er                                                                                                                                                      |                                                                       | נ                                              | .6                         |
|                                                    | 3.<br>3.                                      | 3.7.1<br>3.7.2                                                       | General<br>Operational Charac                                                                                                                           | teristics                                                             | ב<br>נ                                         | 6<br>.6                    |
|                                                    | 3.3.8 Mo                                      | de Logi                                                              | . <u>c</u>                                                                                                                                              |                                                                       | l                                              | .6                         |
|                                                    | 3.<br>3.                                      | 3.8.1<br>3.8.2                                                       | Mode Logic for Inpu<br>Mode Logic for Serv                                                                                                              | ut/Output Signals<br>vo Compensation                                  | 1<br>1                                         | .6<br>.8 A                 |
|                                                    | 3.3.9 <u>G&amp;</u>                           | N Test                                                               | Signals                                                                                                                                                 |                                                                       | 1                                              | .9                         |
| 3.4                                                | Components                                    | and Co                                                               | mponent Performance                                                                                                                                     |                                                                       |                                                |                            |
|                                                    | 3.4.1 <u>Si</u>                               | gnal Pr                                                              | ocessing for Star Tra                                                                                                                                   | ack Mode                                                              | 2                                              | 0                          |
|                                                    | 3.<br>3.<br>3.<br>3.<br>3.<br>3.              | 4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>4.1.6<br>4.1.6<br>4.1.7 | Light Shade Assembl<br>Nutating Wedge<br>Cassegrain Objectiv<br>Induction Motor an<br>Reticle Mask and Se<br>Photomultiplier Tuk<br>Photomultiplier Tuk | ly<br>ve<br>nd Phase Generator<br>ector Division Opti<br>be<br>be and | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0<br>1<br>2<br>3<br>4<br>5 |
|                                                    | 242 04                                        | mal De                                                               | ASSOCIATED FIELD                                                                                                                                        | TONICS                                                                | 3                                              | 0                          |
|                                                    | J.4.2 <u>21</u>                               | ual Pr                                                               | Bessen Mountána                                                                                                                                         | ITACK                                                                 | 3                                              | 0                          |
|                                                    | 3.1<br>3.1<br>3.1<br>3.1<br>3.1<br>3.1<br>3.1 | +.2.2<br>+.2.3<br>+.2.4<br>+.2.5<br>+.2.6<br>+.2.6                   | Light Shade Assembl<br>Nutating Wedge<br>Cassegrain Objectiv<br>Sector Division Opt<br>Photomultipliers<br>AGC Amplifier and A                          | Ly<br>ve<br>tics<br>Associated Electroni                              | 3<br>3<br>3<br>3<br>3<br>2<br>3                | 0<br>3<br>3<br>4<br>4<br>4 |

-1 -1

| AC ELECTRONICS DIVISION<br>General Motors Corporation |                                                               | SION EX                                                                                                               | PERIMENTAL DESIGN EXHIB                                                                                                                                                                    | IT XDE 34-T-53                                                                                                                                                                                                                    |                                      |                                        |
|-------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|
| Milwaukee, Wisconsin                                  |                                                               | BY                                                                                                                    | H Neuville                                                                                                                                                                                 | DATE 10.00.65                                                                                                                                                                                                                     | TOTAL PAGES                          | PAGE                                   |
|                                                       |                                                               |                                                                                                                       | H. MERAITTE                                                                                                                                                                                | 12-22-05                                                                                                                                                                                                                          | 52                                   | <u> </u>                               |
|                                                       |                                                               |                                                                                                                       | INDEX, cont.                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                      |                                        |
|                                                       | 2 1. 2                                                        |                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                                                                   | Pa                                   | lge                                    |
|                                                       | 3.4.3                                                         | Automat                                                                                                               | cic Gain Control                                                                                                                                                                           |                                                                                                                                                                                                                                   | 3                                    | 34                                     |
|                                                       | 3.4.4                                                         | Servome                                                                                                               | chanisms                                                                                                                                                                                   |                                                                                                                                                                                                                                   | 3                                    | 35                                     |
|                                                       |                                                               | 3.4.4.2<br>3.4.4.3<br>3.4.4.4<br>3.4.4.4<br>3.4.4.5<br>3.4.4.6<br>3.4.4.7<br>3.4.4.8<br>3.4.4.8<br>3.4.4.9<br>3.4.4.1 | Signal Processing<br>Compensation (Error<br>Secant Pot<br>Secant Pot Amplific<br>Torque Limiter<br>Torquer Preamp and<br>Torquer Motor Chars<br>Gimbal Characterist<br>Tachometer Characte | Signal Processing<br>Compensation (Error Amplifier)<br>Secant Pot<br>Secant Pot Amplifier<br>Torque Limiter<br>Torquer Preamp and Driver<br>Torquer Motor Characteristics<br>Gimbal Characteristics<br>Tachometer Characteristics |                                      | 36<br>36<br>38<br>88<br>89<br>90<br>20 |
|                                                       | 3.4.5                                                         | Acquisi                                                                                                               | tion                                                                                                                                                                                       |                                                                                                                                                                                                                                   | 4                                    | 3                                      |
|                                                       |                                                               | 3.4.5.1<br>3.4.5.2<br>3.4.5.3<br>3.4.5.4<br>3.4.5.4                                                                   | LEM Guidance Comput<br>Azimuth and Elevati<br>Amplifier and Demod<br>Compensation for El<br>Azimuth and Elevati                                                                            | er<br>Ion CDU<br>Iulator<br>Levation Axis<br>Ion Integrators                                                                                                                                                                      | ې<br>ب<br>ب<br>ب<br>ب<br>ب<br>ب<br>ب | 3<br>5<br>7<br>7<br>7                  |
|                                                       | 3.4.6                                                         | Acquisi                                                                                                               | tion/Scan                                                                                                                                                                                  | 0                                                                                                                                                                                                                                 | 4                                    | 7                                      |
|                                                       |                                                               | 3.4.6.1<br>3.4.6.2                                                                                                    | Scan Electronics<br>Compensation for El                                                                                                                                                    | evation Axis                                                                                                                                                                                                                      | 4<br>4                               | 7<br>9                                 |
| 4.                                                    | Preinstalla                                                   | einstallation G&N Testing                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                      |                                        |
|                                                       | 4.1 G&N S<br>4.2 G&N A<br>4.3 G&N T<br>4.4 Sun S<br>4.5 Lumin | elf-testin<br>equisition<br>esting of<br>nutter Ope<br>ous Beacon                                                     | g of the Optical Tracke<br>and Track Testing<br>Pole Passage<br>ration                                                                                                                     | r                                                                                                                                                                                                                                 | 4<br>4<br>5<br>5<br>5<br>5           | 99122                                  |
|                                                       | ×.                                                            |                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                      |                                        |

| General Motors Corporation |                                    | ВҮ                                                       | DATE                                   | TOTAL PAGES PAG     |
|----------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------|---------------------|
| Milw                       | aukee, Wisconsin                   | H. Neuville                                              | 12-22-65                               | 52 1                |
|                            |                                    |                                                          |                                        |                     |
|                            | Gł                                 | N TESTING OF THE LINAR EXC                               | URSTON MODILLE                         |                     |
|                            |                                    | OPTICAL RENDEZVOUS                                       | CVCTTEM                                |                     |
|                            |                                    | OT LIGHT NEWDERAOOD                                      | SIGIEM                                 |                     |
| l.                         | SCOPE                              |                                                          |                                        |                     |
|                            | l.l This docum<br>Excursion Module | ent establishes the perform<br>Optical Rendezvous System | mance required of<br>(LORS) at the G&N | the Lunar<br>level. |
| 2.                         | APPLICABLE DOCUME                  | INTS                                                     |                                        |                     |
|                            | 2.1 Unless oth                     | erwise indicated, the follo                              | owing documents sl                     | hall form a         |
|                            | part of this docu                  | ment to the extent specific                              | ed herein.                             |                     |
|                            | NASA PROCUREMENT                   | SPECIFICATIONS                                           |                                        |                     |
|                            | PS 2017500                         | Contract End Item ]<br>Luminous Beacon                   | Detail Specificat:                     | ion (Part I),       |
|                            | PS 6021500                         | Contract End Item 1<br>Optical Tracker                   | Detail Specificat:                     | ion (Part I),       |
|                            | INTERFACE CONTROL                  | DOCUMENTS                                                |                                        |                     |
|                            | TRACKER                            |                                                          |                                        |                     |
|                            | LIS-520-14                         | 001 Design Environment                                   |                                        |                     |
|                            | LIS-390-14                         | 001 Power                                                |                                        |                     |
|                            | LIS-490-14                         | 001 Weight (Design Load                                  | 1)                                     |                     |
|                            | LIS-510-14                         | 001 Thermal                                              |                                        |                     |
|                            | LIS-370-14                         | 001 Measurements                                         |                                        |                     |
|                            | LID-280-14                         | 000 Installation                                         |                                        |                     |
|                            | LID-390-14                         | 000 Wiring and Connecto                                  | ors                                    |                     |
|                            | LID-280-14                         | 001 LORS Field of View                                   |                                        |                     |
|                            | LIS-520-14                         | 002 Materials Compatibi                                  | lity                                   |                     |
|                            | BEACON                             |                                                          |                                        |                     |
|                            |                                    | -436 GSE                                                 |                                        |                     |
|                            | MH01-24004                         |                                                          |                                        |                     |

----

---

| AC ELE         | CTRONICS D                     | RONICS DIVISION              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXPERIMENTAL DESIGN EXHIBIT                                 |                             | DE 34-T-53                                   |                                 | REV  |  |
|----------------|--------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|----------------------------------------------|---------------------------------|------|--|
| Genera<br>Milw | l Motors Corp<br>aukee, Wiscou | oration<br>nsin              | BY<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Neuville                                                    | D                           | ATE                                          | TOTAL PAGES                     | PAGE |  |
|                |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neuville                                                    |                             | ±=====================================       | 22                              |      |  |
|                | M                              | 101-24003                    | -436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Design Envir                                                | onment                      |                                              |                                 |      |  |
|                | MI                             | 101-24001                    | -436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Electrical H                                                | Require                     | ments                                        |                                 |      |  |
|                | ME                             | 101-24005                    | -436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mechanical a                                                | nd Ins                      | tallation                                    |                                 |      |  |
|                | MF                             | 101-24002                    | -436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thermal Envi                                                | ronmen                      | t                                            |                                 |      |  |
|                | XDE's                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                              |                                 |      |  |
|                | 34                             | -R-302                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LORS-PGNS E1                                                | ectric                      | al Interface                                 | Control Docur                   | nent |  |
|                | 34                             | -R-301                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LORS-PGNS Co                                                | mputer                      | Program Func                                 | tional                          |      |  |
|                |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Software) I                                                | interfa                     | ce Control Do                                | cument                          |      |  |
|                | DRAWINGS                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                              |                                 |      |  |
|                | 20                             | 17500                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tracking Bea                                                | con As                      | sembly                                       |                                 |      |  |
|                | 60                             | 21500                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optical Trac                                                | ker Sul                     | bsystem                                      |                                 |      |  |
| 3.             | REQUIREME                      | NTS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                              |                                 |      |  |
|                | 3.1 <u>Ge</u>                  | neral                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                              |                                 |      |  |
|                | The funct                      | ion of LA                    | ORS is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                           |                             |                                              |                                 |      |  |
|                | a)                             | provid<br>of the<br>(IMU),   | le attit<br>Lunar :<br>and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ude information w<br>Excursion Module                       | hich ca<br>(LEM) 1          | an be used for<br>Inertial Measu             | r alignment<br>urement Unit     |      |  |
|                | b)                             | provid<br>fixed<br>ascent    | le guidan<br>site op<br>/rendez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nce information d<br>erations on the l<br>vous phase of the | uring t<br>unar su<br>lunar | the lunar desc<br>urface, and ag<br>mission. | cent phase, du<br>gain during t | ring |  |
|                | LORS cons<br>beacon mo         | ists of a<br>unted on        | n optic<br>the Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al tracker mounte<br>mand/Service Modu                      | d on th<br>le (CSM          | ne LEM and a 1<br>M).                        | luminous                        |      |  |
|                | 3.2 <u>De</u>                  | tailed Fu                    | inctiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l Requirements                                              |                             |                                              |                                 |      |  |
|                | 3.                             | 2.1 Trac                     | ker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                             |                                              |                                 |      |  |
|                | 3.                             | 2.1.1 <u>We</u>              | eight - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The optical track                                           | er sha]                     | Ll weigh 27 p                                | oounds or les                   | S .  |  |
|                | 3.                             | 2.1.2 <u>Pc</u><br>2.1.3 thr | ower - Theorem - | ne tracker shall :<br>2.1.11 under powe:                    | meet th<br>r suppl          | ne requirement<br>Ly variations              | s of paragra<br>and             | phs  |  |
|                |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                              |                                 |      |  |

| General Motors Corporation           | EXPERIMENTAL DESIGN EXHIBI                                                                                                                        | T XDE 34-T                                                                   | -53                                                                 |              |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|--|
| Milwaukee, Wisconsin                 | BY<br>H. Neuville                                                                                                                                 | DATE<br>12-22-65                                                             | TOTAL PAGES                                                         | S PAGE       |  |
|                                      |                                                                                                                                                   |                                                                              |                                                                     |              |  |
| restrictio                           | ons listed in LIS-390-14001                                                                                                                       | and XDE 34-R-30                                                              | 2.                                                                  |              |  |
| 3.2.1.2.1                            | DC Power -                                                                                                                                        |                                                                              |                                                                     |              |  |
| a) <u>Ste</u><br>pov<br>of           | eady State Voltage Limits -<br>wer of 50 watts or less; 24<br>80 watts or less.                                                                   | 25 to 32 volts<br>to 32 volts DC                                             | DC with a<br>with a power                                           |              |  |
| b) <u>Tra</u><br>the<br>-10          | nsient Voltages - Transient<br>DC steady state voltage sh<br>O volts for 10 µ sec with a                                                          | voltages super<br>all be less than<br>repetition rate                        | imposed on<br>n +50 volts,<br>e of 10 pps.                          |              |  |
| c) <u>Rir</u><br>ste<br>wit          | ple Voltage - Ripple voltag<br>ady state voltage shall not<br>h frequency components from                                                         | e superimposed of<br>exceed + 1.5 vo<br>20 cps to 20 Ko                      | on the DC<br>olts, peak,<br>C.                                      |              |  |
| d) <u>Pow</u><br>by<br>wat           | er Requirements - At 28 VDC<br>the tracker shall be 80 wat<br>ts. Minimum power requirem                                                          | , the maximum po<br>ts, and the aver<br>ents are still t                     | ower required<br>rage power 40<br>to be defined.                    |              |  |
| 3.2.1.2.2                            | 28V, 800~Resolver Excitat                                                                                                                         | ion -                                                                        |                                                                     |              |  |
| a) The<br>tio<br>put<br>not<br>lis   | 800 cps signal input chara<br>ns (800 cps frequency synch<br>er clock) and under degrade<br>synchronized by LEM Guidan<br>ted in Table 3.2.1.2.2. | cteristics under<br>ronized by LEM (<br>d conditions (80<br>ce Computer cloc | r normal condi<br>Guidance Com-<br>OO cps frequen<br>ck) shall be a | -<br>cy<br>s |  |
|                                      | TABLE 3.2.1.2.2                                                                                                                                   |                                                                              |                                                                     |              |  |
|                                      | Normal Condition                                                                                                                                  | ns Degraded (                                                                | Conditions                                                          |              |  |
| Voltage<br>Frequency<br>Harmonic Con | 28 + 2% VRMS<br>800 + 0.5% cps<br>5% maximum                                                                                                      | 28 <u>+</u> 5%<br>750 <u>+</u> 40<br>5% maxim                                | VRMS<br>) cps<br>rum                                                |              |  |
| b) <u>Max</u>                        | imum Load - One watt at 28                                                                                                                        | VRMS, 800 cps.                                                               |                                                                     |              |  |
| c) <u>Tur</u><br>Gui<br>vol<br>sec   | n-On Transient - The voltage<br>dance and Navigation System<br>ts rms, and shall be within<br>onds.                                               | e at turn-on of<br>(PGNS) shall no<br>tolerance in le                        | the Primary<br>t exceed 45<br>ss than five                          |              |  |
| 3.2.1.3 <u>T</u>                     | racking Sensitivity -                                                                                                                             |                                                                              |                                                                     |              |  |
| a) <u>Sta</u><br>a t<br>lim<br>ant   | r Tracking - The tracker sh<br>nird magnitude star to within<br>o of the sum-illuminated ear<br>enna, and 20° of any extended<br>the LEM.         | hall be capable<br>n 30° of the sun<br>rth, 5° of the e<br>ed sunlit surfac  | of tracking<br>, 5° of the<br>dge of any<br>e of the CSM            |              |  |

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53      |             | REV  |
|-------------------------------------------------------------------------------|-----------------------------|------------------|-------------|------|
|                                                                               | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | PAGE |

- b) <u>CSM Tracking</u> The tracker shall be capable of tracking a sun-illuminated CSM at ranges of 0.5 to 400 n.mi. under the conditions specified in 3.2.1.3.a.
- c) Luminous Beacon Tracking The tracker shall be capable of tracking a luminous beacon on the CSM at ranges of 0.5 to 400 n.mi. against a star background. The tracker shall also be able to track the luminous beacon at ranges of 0.5 to 40 n.mi. against the sunlit lunar surface. Tracking shall be under the conditions specified in 3.2.1.3.a.
- d) Lunar Marker Tracking The tracker shall be capable of tracking a sunlit marker on the lunar surface (such as a 15 ft. balloon with diffuse reflectance of 0.8) at ranges of 0.5 to 22 n.mi.

3.2.1.4 Tracking Accuracy - The tracker shall be capable of a tracking accuracy of 0.15 milliradian (one sigma random) or the angle subtended by the target, whichever is larger, of target LOS position relative to the tracker mounting axes, as represented by the resolver outputs. This error shall not include alignment errors readily measured during normal ground testing and easily compensated in LEM Guidance Computer (LGC), such as LOS to mounting base errors but not orthogonality errors. The deviation caused when the nutating wedge is stopped in a fixed position will be compensated with a single correction factor in all LGC's. Uncertainties in establishing this correction factor shall be included in the tracking accuracy error analysis. Uncertainty in the determination of these alignment errors and instabilities in all parameters over the life of the instrument shall be included in the tracking uncertainty. The tracking accuracy shall be achieved under the conditions of 3.2.1.3.a, 3.2.1.3.b, and 3.2.1.3.c and be maintained during:

- a) A combination of LOS and body rate angular velocities of less than l°/sec about each body axis simultaneously.
- b) LOS angular accelerations of less than 0.01 rad/sec<sup>2</sup> about any body axis.
- c) CSM fly-by at a lunar altitude of not less than 80 n.mi. up to a tracker elevation angle of 84°.

3.2.1.5 <u>Tracking During LEM Maneuvers</u> - The tracker shall be capable of tracking during spacecraft accelerations of up to 0.75 rad/sec<sup>2</sup>, and angular velocities of up to 10°/sec about any vehicle axis without loss of lock-on. The tracking accuracy need not be maintained during the above conditions but shall be restored:

| C ELECTRONICS DIVISION                                                                             | EXPERIMENTAL DESIGN EXHIBIT                                                                                                                                                                | XDE 34-T-53                                                                                 |                                                                                   | REV       |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|--|
| General Motors Corporation<br>Milwaukee, Wisconsin                                                 | BY<br>H. Neuville                                                                                                                                                                          | DATE<br>12-22-65                                                                            | TOTAL PAGES                                                                       | PAGE<br>5 |  |
|                                                                                                    |                                                                                                                                                                                            |                                                                                             |                                                                                   |           |  |
| a) With acce<br>+ 10<br>sec                                                                        | nin 1.0 seconds after cessati<br>elerations of 0.75 rad/sec <sup>2</sup> f<br>0°/sec about any axis to an a                                                                                | on of vehicle a<br>rom angular vel<br>ngular velocity                                       | simultaneous<br>locities of<br>v within ±1°/                                      |           |  |
| b) With<br>of (<br>axis                                                                            | nin 0.5 seconds after cessati<br>0.75 rad/sec <sup>2</sup> and velocity ch<br>s.                                                                                                           | on of vehicle a<br>anges of l°/sec                                                          | accelerations<br>about any                                                        |           |  |
| 3.2.1.6 <u>Mult</u><br>the LOS coord<br>target within<br>when in the a<br>equivalent to            | tiple Target Discrimination -<br>dinates of the most brilliant<br>h the field of view to the ac<br>star track mode. The brightn<br>o 1 visual magnitude or great                           | The tracker a<br>point-source u<br>curacy specific<br>ess difference<br>er                  | shall provide<br>anmodulated<br>ed in 3.2.1.4<br>shall be                         |           |  |
| 3.2.1.7 Luna<br>of a tracking<br>by the target<br>to the tracker<br>Tracker accur<br>3.2.1.3.d and | ar Marker Tracker Accuracy -<br>g uncertainty of 5.0 mr, one<br>t, whichever is greater, of t<br>er mounting axes as represent<br>racy shall be maintained under<br>d during:              | The tracker sha<br>sigma, or the a<br>arget LOS posit<br>ed by the resol<br>r conditions in | all be capable<br>angle subtende<br>tion relative<br>over outputs.<br>adicated in | e<br>eđ   |  |
| a) A co<br>less                                                                                    | ombination of LOS and body ra<br>s than l°/sec about each body                                                                                                                             | te angular velc<br>axis simultaer                                                           | ocities of<br>nously.                                                             |           |  |
| b) LOS<br>abou                                                                                     | angular accelerations of les<br>nt any body axis.                                                                                                                                          | s than 0.01 rad                                                                             | l/sec <sup>2</sup>                                                                |           |  |
| c) Duri<br>abou                                                                                    | ing simultaneous angular rate<br>at each body axis and acceler                                                                                                                             | s of less than<br>ations of 0.75                                                            | 10°/sec<br>rad/sec <sup>2</sup> .                                                 |           |  |
| d) Duri<br>oper                                                                                    | ing vibrational environment or<br>ration.                                                                                                                                                  | f LEM descent e                                                                             | engine                                                                            |           |  |
| 3.2.1.8 Beac<br>luminous beac<br>to a position<br>beacon mode.<br>presence of 4<br>the accuracie   | con Lock-On - The tracker sha<br>on modulated signal in less<br>in in a 2° cone containing the<br>The tracker shall lock on the<br>l visual magnitude stars in<br>es specified in 3.2.1.4. | ll lock onto th<br>than 30 sec whe<br>target LOS whe<br>he luminous bea<br>the field of w   | e CSM<br>en directed<br>en in the<br>con in the<br>riew with                      |           |  |
| 3.2.1.9 <u>Star</u><br>sun-illuminat<br>a 2° cone con                                              | c, CSM Lock-On - The tracker and the condition of the sec when diataining the target LOS when                                                                                              | shall lock onto<br>rected to a pos<br>in the star tra                                       | stars or<br>ition in<br>.ck mode.                                                 |           |  |
| 3.2.1.10 Pro<br>get lock-on s<br>this specific                                                     | bability of Lock-On - The probability be greater than 0.99 for<br>shall be greater than 0.99 for<br>sation.                                                                                | obability of op<br>r the targets d                                                          | tical tar-<br>efined in                                                           |           |  |
| 3.2.1.11 Fai                                                                                       | llure Rate - The tracker oper                                                                                                                                                              | ational failure                                                                             | rate shall                                                                        |           |  |

| STATE IN | IVIU | NLV | 200 |
|----------|------|-----|-----|

| AC ELECTRONICS DIVISION<br>General Motors Corporation | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV       |
|-------------------------------------------------------|-----------------------------|--------------------|-------------|-----------|
| Milwaukee, Wisconsin                                  | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>6 |

### 3.2.2 Luminous Beacon

3.2.2.1 Weight - The luminous beacon shall weigh 25 pounds or less.

3.2.3.2 Power - The beacon shall meet the requirements of paragraphs 3.2.2.3 and 3.2.2.4 under the power supply variations and restrictions listed in MHO1-24001-436.

- a) Steady State Voltage Limits 25 to 30 volts DC.
- b) Transient Voltages Transient voltages superimposed on the DC steady-state voltage shall be less than +80 volts, -24 volts for 10 µ sec with a repetition rate of 10 pps.
- c) <u>Ripple Voltage</u> Ripple voltage shall not exceed 1 volt peak-to-peak within the band width of 30 cps to 30 KC.
- d) <u>Power Requirements</u> The power drawn by the beacon shall not exceed 365 watts.

3.2.2.3 Autotrack Mode - The beacon shall be pulsed as required to achieve the tracker performance specified in 3.2.1.3-4-5-8-10. The operational failure rate in this mode shall not exceed 10 failures per million hours.

3.2.2.4 <u>Visual Mode</u> - The beacon shall be modulated with a onesecond period and shall appear brighter than a third magnitude star when at a range of 175 n. mi. The operational failure rate in this mode shall not exceed 50 failures per million hours.

#### 3.3 Loop Performance, Logic Characteristics and Test Points

3.3.1 Star Tracker Signal Processing Loop

3.3.1.1 General

Servo error signals for the star track mode will be generated by a signal process which is basically pulse position modulation working into a sample and hold.

Pulse position modulation of the deviation of a target star from the optical centerline is accomplished by optical means that combines image nutation with spatial filtering. Image nutation will be produced by directing incoming star light through a rotating refracting prism. The result will be an image that rotates in the image plane with a diameter of 10 milliradians. Spatial filtering will be accomplished by a four slit reticle mask located in the image plane. As the star image sweeps across each reticle slit, an energy pulse is released into the detection circuitry. When the image is on the tracker optical centerline, four equally spaced

| AC ELECTRONICS DIVISION                                        | EXPERIMENTAL DESIGN EXHIBIT                                                                                                                                                          | XDE 34-T-5                                                                | 53                                                      | REV           |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|---------------|--|
| Milwaukee, Wisconsin                                           | BY<br>H. Neuville                                                                                                                                                                    | <sup>ДАТЕ</sup><br>12-22-65                                               | TOTAL PAGES                                             | PAGE<br>7     |  |
| pulses wi<br>deviation<br>will prod<br>a function<br>The in-li | ill be generated, characterizin<br>of the target image from the<br>duce a train of pulses whose re<br>on of the image displacement.<br>The component functions of the<br>es follows: | ng a tracker nul<br>tracker optical<br>petition period<br>star tracker si | ll. Any<br>L centerline<br>1 varies as<br>Ignal process | ing           |  |
| a)                                                             | Light shade assembly for mini                                                                                                                                                        | mizing the effe                                                           | ects of stray                                           | light         |  |
| b)                                                             | Nutating wedge for rotating t                                                                                                                                                        | he image in the                                                           | e image plane                                           |               |  |
| c)                                                             | Reticle mask for pulse positi                                                                                                                                                        | on modulation.                                                            |                                                         |               |  |
| a)                                                             | Sector division optics for se elevation signals.                                                                                                                                     | paration of azi                                                           | muth from                                               |               |  |
| e)                                                             | Photomultiplier tubes for con electrical signals.                                                                                                                                    | version of radi                                                           | ant energy to                                           | 0             |  |
| f)                                                             | Pulse conditioning electronic                                                                                                                                                        | s and drive axi                                                           | s logic.                                                |               |  |
| g)                                                             | Threshold circuitry for rejec certain magnitude.                                                                                                                                     | ting stars weak                                                           | er than a                                               |               |  |
| h)                                                             | Sample and hold phase locked                                                                                                                                                         | to the nutation                                                           | drive.                                                  |               |  |
| A block d<br>shown in<br>processin                             | iagram of the signal processin<br>Figure 3.3.1A. The overall fu<br>g loop is approximated by the                                                                                     | g for the star<br>nctional equiva<br>illustration in                      | track mode in<br>lent of this<br>Figure 3.3.            | 3<br>1B.      |  |
| 3.3.1.2<br>of the st                                           | Operational Characteristics -<br>ar track signal processing loo                                                                                                                      | The operational<br>p shall be as f                                        | characterist                                            | tics          |  |
| a)                                                             | Reject all stars whose bright<br>by one visual magnitude.                                                                                                                            | ness is less th                                                           | an the target                                           | t             |  |
| b)                                                             | Reject all background origina<br>accuracy requirements specifi                                                                                                                       | ted and tube no<br>ed in 3.2.1.4 t                                        | ise such that<br>hrough 7 are                           | t the<br>met. |  |
| c)                                                             | Provide an end to end overall<br>for image displacements to 5.                                                                                                                       | gradient of 30<br>0 milliradians.                                         | 00 volts per                                            | radia         |  |
| d)                                                             | Provide the gradient factor is<br>significant dynamic lags or so<br>system.                                                                                                          | n c) above with<br>ervo break poin                                        | out contribut<br>ts to the ove                          | ing<br>erall  |  |
|                                                                |                                                                                                                                                                                      |                                                                           |                                                         |               |  |



| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-1         | -53         | REV       |  |
|-------------------------|-----------------------------|------------------|-------------|-----------|--|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | PAGE<br>8 |  |

# 3.3.2 Beacon Track Signal Processing Loop

3.3.2.1 General

Servo error signals for the beacon track mode will be generated by a signal process which is based on detecting energy pulse inputs by an energy balance scheme.

Impulse inputs to the beacon tracker will originate from a flashing beacon mounted on the CSM. The resulting energy pulses are processed by a clear optical path that produces a shaped energy distribution in the sector division plane for detection by the photomultipliers on an energy balance basis.

The optical path for beacon signal processing will differ from that used for star signal processing in two respects:

- a) The nutating wedge is held stationary for processing beacon signals. Because of this, a standoff error to the tracker optical centerline of 5 milliradians will occur. This will be compensated for by a single correction factor in the LEM Guidance Computer.
- b) The reticle mask will be removed from the optical path for processing beacon signals.

The in-line component of the beacon track signal processing loop are as follows:

- a) Light shade assembly for minimizing the effects of stray light.
- b) Nutating wedge which introduces a standoff error from the optical centerline of 5 milliradians.
- c) Sector division optics for separation of the blur image into four sectors.
- d) Photomultiplier tubes for conversion of sector energy to an electrical signal.
- e) Pulse conditioning electronics and drive axis logic.
- f) Threshold circuitry for accurate gating of the sample and hold.
- g) Linearization circuitry to compensate for the nonlinear gradient inherent in the energy balance detection scheme.
- h) Sample and hold phase locked to the pulses from each image plane sector.

| A blow<br>mode :<br>of th:<br>Figure<br>3.3.2.<br>of the<br>a<br>b<br>b<br>c<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d | <ul> <li>BY<br/>H. Neuville</li> <li>Ek diagram of the signal processing<br/>is shown in Figure 3.3.2A. The ov<br/>is processing loop is approximated<br/>e 3.3.2B.</li> <li>2 Operational Characteristics -<br/>e beacon track signal processing 1</li> <li>a) Provide sufficient predetecti<br/>such that the tracking requir<br/>are met when there is a sudde<br/>irradiance due to the moon sw<br/>view.</li> <li>b) Reject all background origina<br/>that the accuracy requirement</li> <li>c) Provide an end to end overall<br/>radian for image displacement<br/>the beacon tracking line.</li> <li>c) Provide servo error signals w<br/>for image displacements great<br/>but less than 5 milliradians<br/>line.</li> <li>c) Provide the gradient factor m<br/>contributing significant dyna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pare<br>12-22-65<br>g for the beacon track<br>erall functional equiva-<br>by the illustration in<br>The operational charac-<br>oop shall be as follows<br>on high pass filtering<br>ements specified in 3.2<br>n change in background<br>eeping into the field of<br>ted and tube noise such<br>s specified in 3.2.1.4<br>gradient of 3000 volts<br>s to 0.2 milliradians is<br>ith a nonlinear gradier<br>er than 0.2 milliradian<br>from the beacon tracking | PAGES PAGE<br>9<br>alent<br>n<br>teristics<br>s:<br>2.1.3<br>of<br>are met.<br>s per<br>from<br>nt<br>ns<br>ng |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| A blow<br>mode :<br>of th:<br>Figure<br>3.3.2.<br>of the<br>a<br>b<br>c<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d | <ul> <li>ek diagram of the signal processing<br/>is shown in Figure 3.3.2A. The ov<br/>is processing loop is approximated<br/>e 3.3.2B.</li> <li>2 Operational Characteristics -<br/>e beacon track signal processing 1</li> <li>a) Provide sufficient predetecting<br/>such that the tracking requirer<br/>are met when there is a sudde<br/>irradiance due to the moon sw<br/>view.</li> <li>b) Reject all background originat<br/>that the accuracy requirement</li> <li>c) Provide an end to end overall<br/>radian for image displacement<br/>the beacon tracking line.</li> <li>c) Provide servo error signals w<br/>for image displacements great<br/>but less than 5 milliradians<br/>line.</li> <li>c) Provide the gradient factor m<br/>contributing significant dyna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g for the beacon track<br>erall functional equiva-<br>by the illustration in<br>The operational charac-<br>oop shall be as follows<br>on high pass filtering<br>ements specified in 3.2<br>n change in background<br>eeping into the field of<br>ted and tube noise such<br>s specified in 3.2.1.4<br>gradient of 3000 volta<br>s to 0.2 milliradians is<br>ith a nonlinear gradien<br>er than 0.2 milliradian<br>from the beacon trackin                      | alent<br>n<br>teristics<br>s:<br>2.1.3<br>of<br>are met.<br>s per<br>from<br>at<br>as                          |
| 3.3.2<br>of the<br>1<br>c<br>c<br>3.3.3                                                                                                                           | <ul> <li>2 Operational Characteristics -<br/>beacon track signal processing 1</li> <li>a) Provide sufficient predetecti<br/>such that the tracking requir<br/>are met when there is a sudde<br/>irradiance due to the moon sw<br/>view.</li> <li>b) Reject all background origina<br/>that the accuracy requirement</li> <li>c) Provide an end to end overall<br/>radian for image displacement<br/>the beacon tracking line.</li> <li>c) Provide servo error signals w<br/>for image displacements great<br/>but less than 5 milliradians<br/>line.</li> <li>c) Provide the gradient factor m<br/>contributing significant dyna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The operational charact<br>oop shall be as follows<br>on high pass filtering<br>ements specified in 3.2<br>n change in background<br>eeping into the field of<br>ted and tube noise such<br>s specified in 3.2.1.4<br>gradient of 3000 volts<br>s to 0.2 milliradians is<br>ith a nonlinear gradient<br>er than 0.2 milliradiant<br>from the beacon tracking                                                                                                   | teristics<br>s:<br>2.1.3<br>of<br>are met.<br>s per<br>from<br>at<br>as<br>ag                                  |
| 4<br>7<br>6<br>6<br>8<br>3.3.3                                                                                                                                    | <ul> <li>a) Provide sufficient predetecti<br/>such that the tracking requir<br/>are met when there is a sudde<br/>irradiance due to the moon sw<br/>view.</li> <li>b) Reject all background origina<br/>that the accuracy requirement</li> <li>c) Provide an end to end overall<br/>radian for image displacement<br/>the beacon tracking line.</li> <li>d) Provide servo error signals w<br/>for image displacements great<br/>but less than 5 milliradians<br/>line.</li> <li>e) Provide the gradient factor m<br/>contributing significant dyna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on high pass filtering<br>ements specified in 3.2<br>n change in background<br>eeping into the field of<br>ted and tube noise such<br>s specified in 3.2.1.4<br>gradient of 3000 volts<br>s to 0.2 milliradians i<br>ith a nonlinear gradien<br>er than 0.2 milliradian<br>from the beacon trackin                                                                                                                                                             | 2.1.3<br>of<br>are met.<br>s per<br>from<br>at<br>as<br>ag                                                     |
| ۲<br>د<br>ذ<br>3.3.3                                                                                                                                              | <ul> <li>c) Reject all background originat that the accuracy requirement</li> <li>c) Provide an end to end overall radian for image displacement the beacon tracking line.</li> <li>c) Provide servo error signals w for image displacements great but less than 5 milliradians line.</li> <li>c) Provide the gradient factor m contributing significant dynamics</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted and tube noise such<br>s specified in 3.2.1.4<br>gradient of 3000 volts<br>s to 0.2 milliradians i<br>ith a nonlinear gradien<br>er than 0.2 milliradian<br>from the beacon trackin<br>entioned in c) above wi                                                                                                                                                                                                                                             | are met.<br>s per<br>from<br>nt<br>ns<br>ng                                                                    |
| c<br>c<br>3.3.3                                                                                                                                                   | <ul> <li>Provide an end to end overall radian for image displacement the beacon tracking line.</li> <li>Provide servo error signals w for image displacements great but less than 5 milliradians line.</li> <li>Provide the gradient factor m contributing significant dynameters and the serve of the serve of</li></ul> | gradient of 3000 volts<br>s to 0.2 milliradians f<br>ith a nonlinear gradien<br>er than 0.2 milliradian<br>from the beacon trackin<br>entioned in c) above wi                                                                                                                                                                                                                                                                                                  | s per<br>from<br>nt<br>ns<br>ng                                                                                |
| e<br>3•3•3                                                                                                                                                        | <ul> <li>Provide servo error signals w<br/>for image displacements great<br/>but less than 5 milliradians<br/>line.</li> <li>Provide the gradient factor m<br/>contributing significant dyna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ith a nonlinear gradien<br>er than 0.2 milliradian<br>from the beacon trackin<br>entioned in c) above wi                                                                                                                                                                                                                                                                                                                                                       | nt<br>28<br>1g                                                                                                 |
| e<br>3•3•3                                                                                                                                                        | ) Provide the gradient factor m<br>contributing significant dyna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | entioned in c) above wi                                                                                                                                                                                                                                                                                                                                                                                                                                        | thout                                                                                                          |
| 3.3.3                                                                                                                                                             | to the overall system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mic lags or servo break                                                                                                                                                                                                                                                                                                                                                                                                                                        | x points                                                                                                       |
|                                                                                                                                                                   | Automatic Gain Control Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| 3.3.3.                                                                                                                                                            | l General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| The Au<br>in Fig<br>track.<br>voltag                                                                                                                              | tomatic Gain Control Loop for the<br>pure 3.3.3A. AGC will be used for<br>An AGC mode selection scheme will<br>ses from the unselected mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEM Optical Tracker is<br>both star track and be<br>ll eliminate interferin                                                                                                                                                                                                                                                                                                                                                                                    | s shown<br>eacon<br>ng AGC                                                                                     |
| The fuis sho                                                                                                                                                      | nctional equivalent of the multil<br>wn in Figure 3.3.3B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oop dc/ac AGC feedback                                                                                                                                                                                                                                                                                                                                                                                                                                         | loop                                                                                                           |
| The pr<br>of the<br>of vol<br>light<br>curren<br>even t<br>bright<br>be min                                                                                       | imary controlled variable of the<br>four photomultipliers. This in<br>tage applied across the phototube<br>intensity can be neutralized by m<br>t gain. In this manner, PMT outp<br>hrough the tracker is viewing cel-<br>ness. The adverse effects of back<br>imized by AGC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGC system is the current<br>turn is controlled by t<br>dynodes. Large variat<br>aking corresponding cha<br>ut can be maintained co<br>estial objects of diffe<br>kground irradiance will                                                                                                                                                                                                                                                                      | ent gain<br>the amount<br>tions in<br>anges in<br>onstant<br>erent<br>L also                                   |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |







1

.

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53      |             | REV        |
|-------------------------|-----------------------------|------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | PAGE<br>10 |

# 3.3.3.2 Operational Characteristics

- a) The Automatic Gain Control Loop shall provide adequate regulation of phototube output such that the tracking requirements specified in 3.3.4 are met.
- b) When a star appears suddenly in the field of view, the initial burst of light results in saturation of the signal processor sample and hold output. AGC will take control at the fourth pulse allowing the fourth pulse to be sampled and held at the proper error signal level.

## 3.3.4 Star Track and Beacon Track Servo Loops

# 3.3.4.1 General

The servo mechanisms herein defined are common to both the star track and beacon track modes. As shown in Figure 3.3.4A, the block diagrams for star and beacon track differ only because of the signal processing used. The functional equivalent of the star and beacon track servomechanisms is shown in Figure 3.3.4.B.

# 3.3.4.2 Operational Characteristics

3.3.4.2.1 Integrator Characteristics - By a process of armature current and tachometer feedback, (Figures 3.3.4.2.1A and B), the LEM tracker gimbal drive is made to function as an electromechanical integrator. Thus, a constant input to the drive mechanism will produce a constant velocity output. The gimbal drives are therefore velocity coupled to disturbance inputs as measured by the signal processing loops defined in 3.3.1 and 3.3.2. A system of this kind is generally classified as type 1.

The integrator characteristics of the gimbal drives for the LEM Optical Tracker shall be as listed in Table 3.3.4.2.1.

# TABLE 3.3.4.2.1

# Integrator characteristics of Gimbal DriveParameterElevationAzimuthVelocity Constant $K_{V_E} = .045 \text{ rad/sec/volt}$ $K_{V_A} = .090 \text{ rad/sec/volt}$ Parasitic Break Points $\left(\frac{s}{160} + 1\right)\left(\frac{s}{22K} + 1\right)$ $\left(\frac{s}{180} + 1\right)\left(\frac{s}{18K} + 1\right)$ Total Characteristics $\frac{.045}{s}$ $\left(\frac{s}{160} + 1\right)\left(\frac{s}{22K} + 1\right)$ $\frac{.090}{s}$ $\frac{1}{\left(\frac{s}{180} + 1\right)\left(\frac{s}{18K} + 1\right)}$

This information is for product engineering use only; for use in production, the contents should be released on applicable drawings and/or specifications; for use by design subcontractors, contents should be released by XCR (MIL 1101).

# Integrator Characteristics of Gimbal Drive







XDE 34-T-53



34-T-53

| <br> | IN IN Y | 6.M.d. |
|------|---------|--------|
| <br> |         |        |

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|-------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>11 |

3.3.4.2.2 <u>Servo Geometry</u> - When the elevation and azimuth gimbals are rotated from the zero-zero position, the error signals generated by signal processing can no longer be directly transmitted to the torquers mounted on the gimbal axis. To do so would give rise to erroneous corrections. As shown in Figure 3.3.4B, errors in elevation are detected on a one-to-one basis. Errors in azimuth, however, are detected by telescope signal processing as errors in cross-elevation. The factor relating detected disturbances to the appropriate corrections of the azimuth gimbal is the secant of the elevation angle. The ability of the mechanized secant function to neutralize the effects on loop performance of gimbal geometry shall be specified in the "Secant Pot" performance section 3.4.4.3.

3.3.4.3.2 <u>Steady State Error</u> - Finite displacements of the target image from the tracker's optical centerline will produce error signals which are nulled by servo action of the gimbal drives. As the error signal is decreased with respect to spurious inputs and random noise, the signal which is necessary to position the telescope is lost in noise. The result is a quiescent condition during which the gimbals, and hence, the tracking line of sight will exhibit random motion. The angular noise of the azimuth and elevation gimbals shall be limited to a value such that a tracking accuracy as specified in 3.2.1.4 is achieved.

3.2.4.3.4 Dynamic Error - One of inherent characteristics of a type 1 servomechanism is the lag error that exists when the system is tracking a constant rate input. In the LEM Optical Tracker this error will produce a fixed displacement in the field of view while the tracker is undergoing a constant angular rate input. The displacement is linearly related to the tracking rate by the velocity constant of the servo. The velocity "error constant" for the elevation and azimuth servos shall be as specified in Table 3.3.4.2.4 below:

## TABLE 3.3.4.3.4

| Parameter                                             | Elevation | Azimuth |
|-------------------------------------------------------|-----------|---------|
| Velocity "Error Constant"<br>in milliradians/rad/sec. | 1.11      | 1.11    |

The severest requirements with regard to dynamic tracking capability occur for the azimuth gimbal when the elevation line of sight passes near the zenith pole. Loss of track shall not occur for pole passage up to 84° elevation, and the tracking requirement specified in 3.2.1.3a shall be met.

3.3.4.2.6 Servo Parameters - The overall open loop transfer function of the tracking servo mechanisms shall be as shown in Figure 3.3.4.2.6A.



REV

The Bode diagram characterizing open loop performance for both star and beacon track shall be as shown in Figure 3.3.4.2.6B.

The servo characteristics shall apply to both the star track and beacon track modes.

The servo parameters for both loops shall be as shown in Table 3.3.4.2.5.

| TABLE 3.3.4.2.5     |                  |  |  |  |
|---------------------|------------------|--|--|--|
| Phase Margin        | > 60°            |  |  |  |
| Gain Margin         | >40 db           |  |  |  |
| Open Loop Crossover | 36 rad./sec.     |  |  |  |
| Velocity Constant   | 900 rad/sec/volt |  |  |  |



5

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|-------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>13 |

# 3.3.5 Acquisition Loop

# 3.3.5.1 General

The servomechanism used to point the LEM Optical Tracker during the acquisition mode shall be a multiloop system as shown in Figure 3.3.5. Secondary error signals for positioning the Optical Tracker are generated by the LEM Coupling Data Unit. The unit, the gimbal drives and the encoding resolvers constitute the inner loop of the multiloop acquisition system.

The LEM coupling data unit shall provide both digital to analog (D/A) and analog to digital (A/D) interfaces between the LEM Guidance Computer (LGC) and analog section of the acquisition loop. The D/A converter accepts position pulses from the LGC and feedback pulses from a gimbal counter, stores their difference in an error counter and provides an ac signal proportional to this stored information. The A/D converter accepts analog signals from the gimbal resolvers and generates digitized information which is stored in a gimbal counter. The interchange of digitized information between the error counter and the gimbal counter of the Coupling Data Unit allows closed loop slewing of the inner loop.

Feedback to the LEM Guidance Computer is also provided by the CDU gimbal counter. This information will be processed by the LGC such that primary positioning error signals are generated. Primary position commands will be time shared between the elevation and azimuth CDU's. Sequential pulsing between the elevation and azimuth servos will be cycled until positioning is accomplished.

The severest requirements with regard to dynamic tracking capability occurs for the azimuth gimbal when the elevation line of sight passes near the zenith pole. Loss of track is expected during this event for elevation angles greater than 84°. Reacquisition of the target image will be accomplished by the LEM Guidance Computer.

3.3.5.2 Operational Characteristics - The mechanization shown by Figure 3.3.5 shall be capable of the following acquisition characteristics:

- a) Position the LEM Optical Tracker to a designated inertial reference such that lock on is achieved as specified in 3.2.1.8 and 3.2.1.9.
- b) Remove and restore the tracker to the stow position as programmed in the LGC.
- c) Reacquire tracking after lock on is lost due to zenith pole passage.



| Constant of the second | Conservice       Formula       Formula <th>AC ELECTRO</th> <th>DNICS DIVISION</th> <th>EXPERIMENTAL DESIGN EXHIBIT</th> <th>XDE 34-T-53</th> <th></th> <th>REV</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AC ELECTRO                | DNICS DIVISION                 | EXPERIMENTAL DESIGN EXHIBIT                                                                                          | XDE 34-T-53                                                |                     | REV    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|--------|
| <ul> <li>d) Provide adequate isolation from vehicle motion by periodically updating the position of the desired inertial reference.</li> <li>The acquisition loop parameters shall be as shown in Table 3.3.5.</li> <li>TABLE 3.3.5</li> <li>a) LGC Output Scale Factor .044°/bit = 160 sec/bit</li> <li>b) LGC Output Repetition Rate 3200 bits/sec</li> <li>c) LGC Maximum bits/burst 384</li> <li>d) CDU Error Counter D/A Scale Factor 13 mv/bit = 300 mv/degree</li> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 sec/bit</li> <li>f) CDU Error Counter Output Scale Factor .044°/bit = 160 sec/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian Azimuth Elevation</li> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier .044°/bit = 160 sec/bit</li> <li>ii) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>d) Provide adequate isolation from vehicle motion by periodically updating the position of the desired inertial reference.</li> <li>The acquisition loop parameters shall be as shown in Table 3.3.5.</li> <li>TABLE 3.3.5</li> <li>a) LGC Output Scale Factor .044°/bit = 160 sec/bit</li> <li>b) LGC Output Repetition Rate</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Moto<br>Milwaukee | ors Corporation<br>, Wisconsin | BY<br>H. Neuville                                                                                                    | DATE<br>12-22-65                                           | TOTAL PAGES         | PAGE   |
| TABLE 3.3.5a)LGC Output Scale Factor $.044^{\circ}/bit = 160 \ ec/bit$ b)LGC Output Repetition Rate $3200 \ bits/sec$ c)LGC Maximum bits/burst $384$ d)CDU Error Counter D/A Scale Factor $13 \ mv/bit = 300 \ mv/degree$ e)CDU Error Counter Output Scale Factor $.044^{\circ}/bit = 160 \ sc/bit$ f)CDU Error Counter gradient factor $16.65 \ mv ec \ rms/milliradian$ g)Amplifier and Demodulator gain $3.75 \ vdc/vrms$ $5 \ vdc/vrms$ h)Secant Isolation Amplifier $5 \ vdc/vdc$ i)Compensation Amplifier $5 \ vdc/vdc$ j)Velocity Constant of Integrator $.09 \ rad/sec/volt \ .045 \ rad/sec/volt$ h)Resolver Gradient $.044^{\circ}/bit = 160 \ sc-bit$ i)Feedback scale factor between gimbal<br>counter and error counter $.044^{\circ}/bit = 160 \ sc-bit$ m)Feedback scale factor between gimbal<br>counter and LGC $.045 \ rad/sec/volt \ .045 \ r$                                                                                                                                                                                                                                                                                                                                                                                                                                       | THELE 3.3.5a)LGC Output Scale Factor $.044^{\circ}/btt = 160 \ 56^{\circ}/btt$ b)LGC Output Repetition Rate $3200 \ bits/sec$ c)LGC Maximum bits/burst $384$ d)CDU Error Counter D/A Scale Factor $13 \ mv/bit = 300 \ mv/degree$ e)CDU Error Counter Output Scale Factor $.044^{\circ}/bit = 160 \ 56^{\circ}/bit$ f)CDU Error Counter gradient factor $.044^{\circ}/bit = 160 \ 56^{\circ}/bit$ g)Amplifier and Demodulator gain $A.75 \ vdc/vrms$ $5 \ vdc/vrms$ h)Secant Isolation Amplifier $5 \ vdc/vdc$ i)Compensation Amplifier $.09 \ rad/sec/volt \ .045 \ rad/sec/volt$ i)Velocity Constant of Integrator $.09 \ rad/sec/volt \ .045 \ rad/sec/volt$ i)Feedback scale factor between gimbal<br>counter and LGC $.044^{\circ}/bit = 160 \ 56^{\circ}/bit$ m)Feedback scale factor between gimbal<br>counter and LGC $.044^{\circ}/bit = 160 \ 56^{\circ}/bit$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | d) Proper<br>per<br>inc        | ovide adequate isolation from<br>riodically updating the posit:<br>ertial reference.<br>ion loop parameters shall be | vehicle motion b<br>ion of the desire<br>as shown in Table | y<br>:d<br>≥ 3.3.5. |        |
| <ul> <li>a) LGC Output Scale Factor</li> <li>a) LGC Output Scale Factor</li> <li>b) LGC Output Repetition Rate</li> <li>c) LGC Maximum bits/burst</li> <li>d) CDU Error Counter D/A Scale Factor</li> <li>c) DU Error Counter Output Scale Factor</li> <li>c) DU Error Counter Output Scale Factor</li> <li>c) OU Error Counter gradient factor</li> <li>d) CDU Error Counter gradient factor</li> <li>d) Secant Isolation Amplifier</li> <li>f) velocity Constant of Integrator</li> <li>d) Secont Gradient</li> <li>d) Secont factor between gimbal counter and error counter</li> <li>d) Secont Factor between gimbal counter and LGC</li> <li>d) Sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>a) LGC Output Scale Factor</li> <li>a) LGC Output Repetition Rate</li> <li>b) LGC Output Repetition Rate</li> <li>c) LGC Maximum bits/burst</li> <li>d) CDU Error Counter D/A Scale Factor</li> <li>c) TOU Error Counter Output Scale Factor</li> <li>c) DU Error Counter gradient factor</li> <li>d) CDU Error Counter gradient factor</li> <li>d) Amplifier and Demodulator gain</li> <li>d) Secant Isolation Amplifier</li> <li>f) Velocity Constant of Integrator</li> <li>d) Secale factor between gimbal counter and error counter</li> <li>d) Feedback scale factor between gimbal counter and LGC</li> <li>d) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                | TABLE 3.3.5                                                                                                          |                                                            |                     |        |
| <ul> <li>b) LGC Output Repetition Rate 3200 bits/sec</li> <li>c) LGC Maximum bits/burst 384</li> <li>d) CDU Error Counter D/A Scale Factor 13 mv/bit = 300 mv/degree</li> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 sec/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian</li> <li>Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and LGC</li> <li>b) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>b) LGC Output Repetition Rate 3200 bits/sec</li> <li>c) LGC Maximum bits/burst 384</li> <li>d) CDU Error Counter D/A Scale Factor 13 mv/bit = 300 mv/degree</li> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 sec/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian Azimuth Elevation</li> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter</li> <li>m) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a)                        | LGC Output Se                  | cale Factor                                                                                                          | .044°/bit = 160                                            | sec/bit             |        |
| <ul> <li>c) LGC Maximum bits/burst 384</li> <li>d) CDU Error Counter D/A Scale Factor 13 mv/bit = 300 mv/degree</li> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 5€C/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian</li> <li>Azimuth Elevation</li> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter</li> <li>m) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>c) LGC Maximum bits/burst 384</li> <li>d) CDU Error Counter D/A Scale Factor 13 mv/bit = 300 mv/degree</li> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 Sec/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian</li> <li>Azimuth Elevation</li> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter</li> <li>m) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b)                        | LGC Output Re                  | epetition Rate                                                                                                       | 3200 bits/sec                                              |                     |        |
| <ul> <li>d) CDU Error Counter D/A Scale Factor</li> <li>e) CDU Error Counter Output Scale Factor</li> <li>f) CDU Error Counter gradient factor</li> <li>g) Amplifier and Demodulator gain</li> <li>h) Secant Isolation Amplifier</li> <li>j) Velocity Constant of Integrator</li> <li>k) Resolver Gradient</li> <li>l) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> <li>k) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>d) CDU Error Counter D/A Scale Factor</li> <li>i) mv/bit = 300 mv/degree</li> <li>c) CDU Error Counter Output Scale Factor</li> <li>c) CDU Error Counter gradient factor</li> <li>i) CDU Error Counter gradient factor</li> <li>i) CDU Error Counter gradient factor</li> <li>i) Compensation Amplifier</li> <li>j) Velocity Constant of Integrator</li> <li>i) Compensation Amplifier</li> <li>j) Velocity Constant of Integrator</li> <li>i) Feedback scale factor between gimbal counter and error counter</li> <li>i) Feedback scale factor between gimbal counter and LGC</li> <li>i) Feedback scale factor between gimbal counter and LGC</li> <li>i) Secale factor between gimbal to factor</li> <li>i) Feedback scale factor between gimbal to factor</li></ul> | c)                        | LGC Maximum 1                  | oits/burst                                                                                                           | 384                                                        |                     |        |
| <ul> <li>e) CDU Error Counter Output Scale Factor .044°/bit = 160 Sec/bit</li> <li>f) CDU Error Counter gradient factor 16.65 mv ac rms/milliradian</li> <li>Azimuth Elevation</li> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 Sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 Sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>e) CDU Error Counter Output Scale Factor</li> <li>f) CDU Error Counter gradient factor</li> <li>amplifier and Demodulator gain</li> <li>b) Secant Isolation Amplifier</li> <li>b) Compensation Amplifier</li> <li>c) Compensation Amplifier</li> <li>c) Secont Gradient</li> <li>c) Preedback scale factor between gimbal counter and error counter</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> <li>c) Feedback scale factor between gimbal counter and LOC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a)                        | CDU Error Cou                  | unter D/A Scale Factor                                                                                               | 13 mv/bit = 300                                            | mv/degree           |        |
| <ul> <li>f) CDU Error Counter gradient factor</li> <li>and Demodulator gain</li> <li>ang) Amplifier and Demodulator gain</li> <li>b) Secant Isolation Amplifier</li> <li>compensation Amplifier</li> <li>compensation Amplifier</li> <li>velocity Constant of Integrator</li> <li>velocity Constant of Integrator</li> <li>velocity Constant of Integrator</li> <li>counter and error counter</li> <li>counter and error counter</li> <li>peedback scale factor between gimbal counter and LGC</li> <li>b) Feedback scale factor between gimbal counter and LGC</li> <li>counter and LGC</li> </ul>                                                  | <ul> <li>f) CDU Error Counter gradient factor</li> <li>amplifier and Demodulator gain</li> <li>Amplifier and Demodulator gain</li> <li>3.75 vdc/vrms</li> <li>5 vdc/vdc</li> <li>1) Compensation Amplifier</li> <li>5 vdc/vdc</li> <li>j) Velocity Constant of Integrator</li> <li>.09 rad/sec/volt</li> <li>.045 rad/sec/v</li> <li>k) Resolver Gradient</li> <li>16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter</li> <li>m) Feedback scale factor between gimbal counter and LGC</li> <li>40 Sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)                        | CDU Error Con                  | unter Output Scale Factor                                                                                            | .044°/bit = 160 *                                          | sec/bit             |        |
| AzimuthElevationg)Amplifier and Demodulator gain3.75 vdc/vrms5 vdc/vrmsh)Secant Isolation Amplifier5 vdc/vdc5 vdc/vdci)Compensation Amplifier5 vdc/vdc5 vdc/vdcj)Velocity Constant of Integrator.09 rad/sec/volt.045 rad/sec/vk)Resolver Gradient16X - 5 v ac/rad;1X - 26 v/radl)Feedback scale factor between gimbal<br>counter and error counter.044°/bit = 160 sec/bitm)Feedback scale factor between gimbal<br>counter and LGC40 sec/bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amplifier and Demodulator gainAzimuthElevationg)Amplifier and Demodulator gain3.75 vdc/vrms5 vdc/vrmsh)Secant Isolation Amplifier5 vdc/vdci)Compensation Amplifier5 vdc/vdcj)Velocity Constant of Integrator.09 rad/sec/volt.045 rad/sec/vk)Resolver Gradient16X - 5 v ac/rad;1X - 26 v/radl)Feedback scale factor between gimbal<br>counter and error counter.044°/bit = 160 sec/bitm)Feedback scale factor between gimbal<br>counter and IGC40 sec/bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f)                        | CDU Error Cou                  | inter gradient factor                                                                                                | 16.65 mv ac rms/1                                          | milliradian         | 1      |
| <ul> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>g) Amplifier and Demodulator gain 3.75 vdc/vrms 5 vdc/vrms</li> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                |                                                                                                                      | Azimuth                                                    | Elevation           | 1      |
| <ul> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>h) Secant Isolation Amplifier 5 vdc/vdc</li> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g)                        | Amplifier and                  | i Demodulator gain                                                                                                   | 3.75 vdc/vrms                                              | 5 vdc/vr            | ns     |
| <ul> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>i) Compensation Amplifier 5 vdc/vdc</li> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h)                        | Secant Isolat                  | tion Amplifier                                                                                                       | 5 vdc/vdc                                                  |                     |        |
| <ul> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient .045 rad/sec/v</li> <li>l) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC .044°/bit = 160 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>j) Velocity Constant of Integrator .09 rad/sec/volt .045 rad/sec/v</li> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1)                        | Compensation                   | Amplifier                                                                                                            |                                                            | 5 vdc/vdc           | 3      |
| <ul> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>k) Resolver Gradient 16X - 5 v ac/rad; 1X - 26 v/rad</li> <li>1) Feedback scale factor between gimbal counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | j)                        | Velocity Cons                  | stant of Integrator                                                                                                  | .09 rad/sec/volt                                           | .045 rad/           | /sec/v |
| <ul> <li>Feedback scale factor between gimbal<br/>counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal<br/>counter and LGC</li> <li>40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Feedback scale factor between gimbal<br/>counter and error counter .044°/bit = 160 sec/bit</li> <li>m) Feedback scale factor between gimbal<br/>counter and LGC 40 sec/bit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k)                        | Resolver Grad                  | lient                                                                                                                | 16X - 5 v ac/rad                                           | ; 1X - 26 v         | r/rad  |
| m) Feedback scale factor between gimbal<br>counter and LGC 40 Sec/bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m) Feedback scale factor between gimbal<br>counter and LGC 40 Sec/bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)                        | Feedback scal<br>counter and ( | Le factor between gimbal<br>error counter                                                                            | .044°/bit = 160                                            | sec/bit             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m)                        | Feedback scal<br>counter and I | le factor between gimbal<br>LGC                                                                                      | 40 fec/bit                                                 |                     |        |

| STATE NAME. | <br>-      | A. 3.1.4 |
|-------------|------------|----------|
| 444 9 689   | <br>IV P A |          |

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|-------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | 12-22-65           | TOTAL PAGES | раде<br>15 |

# 3.3.6 Acquisition/Scan Loops

3.3.6.1 General

The servomechanism used for the scan mode is shown in Figure 3.3.6. An area scan is produced about the designated angle by superimposing small ramp and staircase commands on the acquisition loop. As shown in Figure 3.3.6, the designated angle is maintained by the LGC during the scan mode.

Both scan commands originate from modular electronics which are free wheeling and not cyclically synchronized to computer moding. Reset and recycling of the scan pattern shall continue for 30 seconds after initiation of this mode or until lock-on occurs. Should lock-on not occur within the 30 second time period, the system will down mode to the acquisition mode.

3.3.6.2 <u>Operational Characteristics</u> - The severest test within specified conditions for the reset accuracy of the scan program occurs for an elevation angle of 84°. Recycling, reset, and reinitiation of acquisition by the LGC shall be such that the performance requirements specified in 3.2.1.8 and 3.2.1.9 are met.

The acquisition/scan loop parameters for the acquisition portion of the system shall be as shown in Table 3.3.5. The scan loop parameters of the scan portion of the system are as listed in Table 3.3.6.

## **TABLE 3.3.6**

a) Azimuth axis staircase Command

| Discretes - position levels |  |
|-----------------------------|--|
| Quantized weight each step  |  |
| Step rate                   |  |
| Total time before reset     |  |

8

5 mrad 1 level/sec 8 seconds

b) Elevation axis sawtooth Command

|    | Sawtooth peak to peak amplitude<br>Sawtooth ramp characteristic<br>Total time before reset | 2°<br>2°/sec<br>8 seconds |
|----|--------------------------------------------------------------------------------------------|---------------------------|
| c) | Compensation gain Azimuth Loop                                                             | 2.0 vdc/vdc               |
| a) | Secant gain Azimuth Loop                                                                   | 0.1/Cos E                 |
| e) | Mixing ratio adjustment elevation axis                                                     | 0.34 v/v                  |
| f) | Area scan about the designated angle                                                       | 2° x 2° square            |
| g) | Time for one area scan                                                                     | 8 seconds                 |



al.

-

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53      |             | REV               |
|-------------------------------------------------------------------------------|-----------------------------|------------------|-------------|-------------------|
|                                                                               | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | <b>раде</b><br>16 |

# 3.3.7 Sun Shutter

3.3.7.1 General

Direct exposure of the photomultiplier tubes to the sun can seriously damage the tubes. Therefore, a sun shutter shall be used which will rotate a mask into the optical path when incoming irradiance is sufficient to damage the phototubes.

A functional block diagram of the loop used to protect the photomultipliers from over exposure is shown in Figure 3.3.7.



# Figure 3.3.7

Sun Shutter Mechanization

# 3.3.7.2 Operational Characteristics

- a) Sun Stop Actuator
  - 1) Power required only when sun protection is required. The power requirements are the same as those for the reticle actuator.
  - 2) Sun protection actuator is identical to reticle actuator.
- b) Sun Protection The shutter shall operate when the edge of the sun is 5° from the optical centerline.

### 3.3.8 Mode Logic

## 3.3.8.1 Mode Logic for Input/Output Signals

The LEM Optical Rendezvous System logic input and output signals shall be as follows:

| a) | LOCK-ON<br>DISCRETE<br>(TO LGC)   | on (+28 vdc)<br>off (o v) | The target is the tracker field<br>of view<br>There is no target in the tracker                |
|----|-----------------------------------|---------------------------|------------------------------------------------------------------------------------------------|
|    |                                   |                           | field of view.                                                                                 |
| ъ) | DATA GOOD<br>DISCRETE<br>(TO LGC) | ON (+ 28 VDC)             | The angular error between the<br>target line of sight and the<br>tracker optical centerline is |

| AC ELECTRONICS DIVISION                   |                 | N EXPERIMENT                          | EXPERIMENTAL DESIGN EXHIBIT                     |                                                                                                         | <b>XDE</b> 34-T-53                                                              |                            |
|-------------------------------------------|-----------------|---------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|
| General Motors Corpo<br>Milwaukee, Wiscon | pration<br>isin | BY<br>H. Neuvi                        | lle                                             | DATE<br>12-22-65                                                                                        | TOTAL PAGES                                                                     | PAGE<br>17                 |
|                                           |                 |                                       | OFF (O V)                                       | less than .1 m<br>The angular er<br>target line of<br>tracker optica<br>greater than .                  | illiradian<br>ror between t<br>sight and th<br>l centerline<br>l milliradiar    | che<br>le<br>is            |
|                                           | c)              | MODE-INDICATE<br>DISCRETE<br>(TO LGC) | ON (+28 VDC)<br>OFF (0 V)                       | The tracker is<br>Track Mode<br>The tracker is<br>track mode.                                           | in the Star<br>in the Beacc                                                     | n                          |
|                                           | a)              | TRACK≁<br>ENABLE<br>(FROM LGC)        | on (+28 VDC)                                    | The tracker ha<br>to the desired<br>target is not<br>view, therefor<br>grams should b<br>the servo loop | s been design<br>angle but th<br>in the field<br>e, the scan p<br>e connected i | ated<br>of<br>oro-<br>.nto |
|                                           |                 |                                       | OFF (O V)                                       | The scan progra<br>connected from<br>servo loop.                                                        | am should be<br>the input to                                                    | dis-<br>the                |
|                                           | e)              | STAR/BEACON<br>MODE COMMAND           | ON (80 ms<br>BURST of<br>3.2 KPPS)              | Switch signal<br>If the signal<br>beacon mode ch<br>mode. If it i<br>change to beac                     | processor mod<br>processor is<br>ange to star<br>s in the star<br>on track mode | in<br>track<br>mode        |
|                                           |                 |                                       | OFF (OV)                                        | Do not change modes.                                                                                    | signal proces                                                                   | sor                        |
|                                           | f)              | SELF-TEST<br>COMMAND<br>(FROM LGC)    | ON (80 ms<br>BURST OF<br>3.2 KPPS)<br>OFF (0 V) | Change state of<br>If it is on, to<br>it is off turn<br>Leave the self<br>its present st                | fself-test la<br>urn it off.<br>it on.<br>-test lamp in<br>ate.                 | mp.<br>If                  |

by the tracker.

The lock-on signal shall be used together with the track enable signal from the LGC to control the servo moding as shown in Table 3.3.8.

Signal processor moding shall be controlled by the star/beacon mode command from the LGC. The Star mode shall be selected automatically when tracker power is turned on; from there a command from the computer will switch modes. Tracker moding shall be accomplished by disconnecting power from the beacon track modules when in the star track mode, and by disconnecting power from the star track modules when in the beacon track mode.

drawings and/or specifications; for use by design subcontractors, contents should be released by XCR (MIL 1101). This information is for product engineering use only; for use in production, the contents should be released on applicable

| MODE                    |                                    | ACQUIS        | ITION            | SCAN                       | TRACK                      |
|-------------------------|------------------------------------|---------------|------------------|----------------------------|----------------------------|
| Logic                   | TRACK ENABLE                       | OFF           | OFF              | ON                         | ON                         |
| Inputs                  | LOCK-ON                            | OFF           | ON               | OFF                        | ON                         |
|                         | Signal Processor<br>Error Voltages | Disco<br>from | nnected<br>Servo | Disconnected<br>from Servo | Connected                  |
| Controlled<br>Functions | Acquisition<br>Command from<br>CDU | Conne         | cted             | Connected                  | Disconnected<br>from servo |
|                         | Scan<br>Programs                   | Disco         | nnected<br>Servo | Connected                  | Disconnected<br>from servo |
|                         | Compensation                       | Pure          | Gain             | Pure Gain                  | LAG - Lead                 |
|                         | v <sub>A</sub>                     | + 5 V         | DC               | + 5 VDC                    | - 5 VDC                    |
| Mode                    | v <sub>B</sub>                     | - 21          | VDC              | + 21 VDC                   | - 21 VDC                   |
| Control<br>Voltages     | v <sub>c</sub>                     | + 21          | VDC              | + 21 VDC                   | - 21 VDC                   |
|                         | v <sub>D</sub>                     | - 21          | VDC              | - 21 VDC                   | + 21 VDC                   |

TABLE 3.3.8

-**AC ELECTRONICS DIVISION** ----**General Motors** Corporation Milwaukee, Wisconsin EXPERIMENTAL DESIGN EXHIBIT BΥ

H. Neuville

DATE 12-22-65

TOTAL PAGES PAGE

XDE

34-T-53

REV

Ŧ

.

|                            |                                                                                               | I                                              | 15-55-02                       | <u>    1    52           </u> |    |
|----------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------|----|
| 3.3<br>(Er:<br>be          | .8.2 <u>Mode Logic for Theorem 1998</u><br>ror amplifier) - Moding<br>as shown in Figure 3.3. | ne Servomechanis<br>g for the compen-<br>.8.2. | am Compensati<br>nsation ampli | on Amplifier                  |    |
|                            | AZIMUTH                                                                                       |                                                |                                |                               |    |
| MODE                       | SERVO FUNCI                                                                                   | FIONAL EQUIVALE                                | T CONFIGURAT                   | TON                           | _  |
| Star Track<br>Beacon Track | Compensation Amp.<br>$6.65 \frac{(S/8.05 + 1)}{(S/.318 + 1)}$                                 | l<br>Cos E<br>(Nominal Serv                    | Secant<br>Pot<br>Amplifie      | $\frac{K_{V_A}}{S}$           |    |
| Scan -                     | Compensation Amp.<br>K = 2.05                                                                 | l<br>Cos E                                     | Secant<br>Pot<br>Amplifie      | r KvA                         | ]  |
| Acquisition                |                                                                                               |                                                | Secant<br>Pot<br>Amplifie      | $r$ $\frac{K_{V_A}}{s}$       |    |
| 1000                       | ELEVATION                                                                                     | WITCHALL FOUTUAL                               |                                |                               |    |
| MODE                       | SERVO FUNC                                                                                    | TIONAL EQUIVAL                                 | INT CONFIGURA                  |                               |    |
| Star Track<br>Beacon Track | Compensation Amp.<br>$6.65 \frac{(^{8}/8.05 + 1)}{(^{8}/.318 + 1)}$                           | (Nominal Se                                    | rvo Configur                   | $\frac{K_{V_E}}{S}$           | ]- |
| Scan                       | Compensation Amp.<br>K = (.34)(5.1) = 1.                                                      | ]                                              |                                | Kv <sub>E</sub>               | }- |
| Acquisition                | Compensation Amp.<br>K = 5.1                                                                  | ]                                              |                                |                               | -  |
|                            | FIG                                                                                           | URE 3.3.8.2                                    |                                |                               |    |

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|-------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>19 |

#### 3.3.9 G&N Test Signals

-

Test signals available for G&N testing shall be as defined in Table 3.3.9.

Measurement signals qualified by the notation a), b), or c) shall be as follows:

a) The tracker composite analog signal shall be composed of the following:

DATA GOOD

LOCK ON

STAR/BEACON MODE

SCAN MOTOR OPERATE

LOTS OPERATE

b) The beacon composite analog signal shall show the following conditions:

Both channels functional

One lampor trigger failed, one channel functional

One charge supply failed, one channel functional

Both lamps or triggers failed

One charge supply and the other lamp or trigger failed

Both charge supplies failed

c) Conditioning of 0 to 5 volts dc shall be available only for the R&D flights.

Test point locations that are available for G&N testing shall be as shown in Figure 3.3.9.

| Measurement                              | TABLE 3.3.9<br>Display<br>Requirement | Range<br>(Unconditioned<br>Signal) | Conditioning                       | Genera      |
|------------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------|
| Operational                              | · · · · · · · · · · · · · · · · · · · |                                    |                                    | al M        |
| Tracker (OTS) - LEM                      | ,                                     |                                    |                                    | ee, otors   |
| Main Automatic Gain                      |                                       |                                    |                                    | Visc        |
| Control (AGC) - A.C.                     | A, CRT                                | -10 to 30 V                        | O to 5 VDC                         | onsi        |
| Composite Analog                         | CRT                                   | 0 to 5 V                           | O to 5 VDC                         | n tion      |
| Sun Shutter                              | CRT                                   | Discrete                           | O to 5 VDC                         |             |
| Beacon (CLBS) - CSM                      |                                       |                                    |                                    | <u> </u>    |
| Composite Analog                         | E, CRT                                | 0 to 5 V                           | O to 5 VDC                         | ×           |
| Research and Development Instrumentation |                                       |                                    |                                    | H.          |
| (OTS) - LEM                              |                                       |                                    |                                    | Neu         |
| Automatic Gain Control D.C.              | A, CRT                                | +8 to +30 V                        | O to 5 VDC                         | V11         |
| Photomultiplier Tube Temp                | A, CRT                                | To be deter.                       | O to 5 VDC                         | le          |
| Azimuth Tachometer Amplifier             | A, CRT                                | 0 to ±15 V                         | O to 5 VDC                         |             |
| Elevation Tachometer Amplifier           | A, CRT                                | 0 to ±15 V                         | 0 to 5 VDC                         |             |
| Azimuth Error Amplifier                  | A, CRT                                | 0 to ±15 V                         | 0 to 5 VDC                         |             |
| Elevation Error Amplifier                | A, CRT                                | 0 to ±15 V                         | O to 5 VDC                         |             |
| Automatic Checkout Equipment (OTS) LEM   |                                       |                                    |                                    | 12          |
| PMT Star Mode                            | Scope                                 |                                    |                                    | -22         |
| LOTS Operate +                           | CRT                                   | 0 to +35 V                         | Available in<br>Unconditioned form | -65         |
| LOTS Operate -                           | CRT                                   | 0 to ±6.4 V                        | Available in<br>Unconditioned form |             |
|                                          |                                       |                                    |                                    | TOTAL PAGES |

раде 194

REV
| Measurement                    | Display<br>Requirement | Range<br>(Unconditioned<br>Signal) | Conditioning                       | Milwauk   |
|--------------------------------|------------------------|------------------------------------|------------------------------------|-----------|
| Servo Secant Pot               | A, CRT                 | 0 to ±6.4 V                        | Available in<br>Unconditioned form | ••, Wia   |
| Elevation Drive                | A, CRT                 | 0 to ±15 V                         | Available in<br>Unconditioned form | consin    |
| Azimuth Drive                  | A, CRT                 | 0 to ±15 V                         | Available in<br>Unconditioned form |           |
| Elevation Error                | A, CRT                 | 0 to ±15 V                         | Available in<br>Unconditioned form | -         |
| Azimuth Error                  | A, CRT                 | 0 to ±15 V                         | Available in<br>Unconditioned form | H. Nei    |
| Elevation Torque Motor Current | A, CRT                 | 0 to <b>±1.6</b> A                 | Available in<br>Unconditioned form | uvill     |
| Azimuth Torque Motor Current   | A, CRT                 | 0 to ±.4 A                         | Available in<br>Unconditioned form | CD        |
| CDU Test Points                |                        |                                    |                                    |           |
| Azimuth Fine Error             | Scope                  | 0 to 5 V rms,<br>800 cps           |                                    |           |
| Azimuth Coarse Error           | Scope                  | 0 to 5 V rms,<br>800 cps           | Buffer resistor<br>brought to G&N  | DAT       |
| Elevation Fine Error           | Scope                  | 0 to 5 V rms,<br>800 cps           | end connector                      | 2-22-     |
| Elevation Coarse Error         | Scope                  | 0 to 5 V rms,<br>800 cps           |                                    | 65        |
|                                |                        |                                    |                                    | TOTAL PAG |
|                                |                        |                                    |                                    | P         |
|                                |                        |                                    |                                    | 19        |

.



| General Meters Course | VISION                   | EXPERIMENTAL DESIGN EXHIBIT                                                                     | XDE 34-T-5                                       | 3                                                |            |
|-----------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------|
| Milwaukee, Wiscons    | in                       | BY<br>H. Neuville                                                                               | DATE<br>12-22-65                                 | TOTAL PAGES                                      | PAGE<br>20 |
| 3.4                   | Compone                  | ents and Component Performance                                                                  | 5                                                |                                                  |            |
| •                     | 2 1 2                    |                                                                                                 | -                                                |                                                  |            |
|                       | meet the component loop. | Signal Processing for the Sta<br>a requirements specified in s<br>ents shall be utilized in the | ar Track Mode<br>Section 3.3.1,<br>star track si | - In order to<br>the following<br>gnal processir | g<br>1g    |
|                       | a)                       | Light Shade Assembly                                                                            |                                                  |                                                  |            |
|                       | b)                       | Nutating Wedge                                                                                  |                                                  |                                                  |            |
|                       | c)                       | Cassegrain Objective                                                                            |                                                  |                                                  |            |
|                       | a)                       | Induction Motor and Phase Ge                                                                    | enerator                                         |                                                  |            |
|                       | e)                       | Reticle Mask and Sector Divi                                                                    | sion Optics                                      |                                                  |            |
|                       | f)                       | Photomultiplier Tubes                                                                           |                                                  |                                                  |            |
|                       | g)                       | Photomultiplier Load Network                                                                    | and Associat                                     | ed Electronics                                   |            |
|                       | 3.4.1.1                  | Light Shade Assembly - The                                                                      | light shade as                                   | ssembly consis                                   | ts         |
|                       | 01 000                   | right shades, window housing                                                                    | and window (F.                                   | igure 3.4.1)                                     |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |
|                       |                          | · · · · · · · · · · · · · · · · · · ·                                                           | (- <del>1</del> )                                |                                                  |            |
| 30°                   |                          |                                                                                                 |                                                  |                                                  |            |
|                       | 1-5°-                    |                                                                                                 |                                                  |                                                  |            |
|                       | <u> </u>                 |                                                                                                 |                                                  |                                                  |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |
|                       | 4                        |                                                                                                 | 4-1                                              |                                                  |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |
|                       |                          |                                                                                                 |                                                  | N                                                |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |
|                       |                          | Figure 3.4.1                                                                                    |                                                  |                                                  |            |
|                       |                          | Light Shade Assembly                                                                            |                                                  |                                                  |            |
| 24                    |                          |                                                                                                 |                                                  |                                                  |            |
|                       |                          |                                                                                                 |                                                  |                                                  |            |

| AC ELECTRONICS DIVISION<br>General Maters Corporation | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53      | REV         |            |
|-------------------------------------------------------|-----------------------------|------------------|-------------|------------|
| Milwaukee, Wisconsin                                  | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | PAGE<br>21 |

The outer light shade prevents direct light from striking the window face for incidence angles greater than 30° from the optical centerline, and it minimizes scattered light by means of a series of baffles.

The inner shade houses the sun sensor, and prevents direct light from striking the sun-sensing photodiode for incidence angles greater than  $5^{\circ}$ .

The window housing contains the tracker window and provides the structural support for the nutating wedge, motor, reference signal generator and sun sensor.

Using a window as the forward optical element allows the tracker head to be hermetically sealed and pressurized with inert gas. The window is made of fused silica which extends transmission into the ultraviolet.

3.4.1.2 Nutating Wedge - The nutating wedge shall refract collimated light as shown in Figure 3.4.1.2



Nutation Wedge

Figure 3.4.1.2

After imaging, the star shall be displaced 5 mr from the optical centerline in the image plane. The nutation wedge shall have the following characteristics:

- a) Line of sight deviation 5 mr
- b) Material-fused silica/calcium fluoride composite construction

| AC ELECTRONICS DIVISION                                                                | EXPERIMENTAL DESIGN                             | EXHIBIT XDE                         | <b>XDE</b> 34-T-53                   |                             |                                  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|--------------------------------------|-----------------------------|----------------------------------|--|
| Milwaukee, Wisconsin                                                                   | BY<br>H. Neuville                               | DATE<br>12-2                        | 2-65                                 | TAL PAGES                   | PAGE<br>22                       |  |
| 3.4.1.3 Cas<br>incoming lig                                                            | ssegrain Objective -<br>ght, and shall have th  | The objective c<br>e characteristic | ollects and<br>s in Table (          | images<br>3.4.1.3.          |                                  |  |
|                                                                                        | TABLE 3.4                                       | .1.3                                |                                      |                             |                                  |  |
|                                                                                        | Star Tra                                        | ck                                  | Bea                                  | acon Tr                     | ack                              |  |
| Focal length                                                                           | 1                                               | 12 inches                           |                                      |                             |                                  |  |
| Diameter of<br>entrance pup                                                            | 2.8 inch                                        | es                                  | 3.1 ir                               | nches                       |                                  |  |
| Obscuration<br>area due to<br>centrically<br>scan motor,<br>and reference<br>generator | of<br>con-<br>mounted<br>sun sensor<br>e signal | 25%                                 |                                      |                             |                                  |  |
| Spectral reg                                                                           | ion                                             | 0.25 u = 0.70 u                     |                                      |                             |                                  |  |
| Instantaneou<br>field of vie                                                           | us ± 5 mrad<br>w                                |                                     | ± 5 mr                               | ad                          |                                  |  |
| Blur diamete<br>(including c                                                           | er 0.0012 i<br>color) (0.1 mra                  | nch<br>d)                           | 80% of<br>withir<br>diamet<br>mrad)  | energy<br>0.0048<br>er circ | with:<br>-inch<br>le (0          |  |
|                                                                                        |                                                 |                                     | Remain<br>distri<br>0.120-<br>circle | buted winch dia<br>(10 mr   | of end<br>ithin<br>amete:<br>ad) |  |
| Deviation of                                                                           | wedge                                           | 5 mrad                              |                                      |                             |                                  |  |
| Diameter of<br>circle                                                                  | nutation 10 mrad                                |                                     | None                                 |                             |                                  |  |
| <b>Transmiss</b> ion<br>(Total)                                                        |                                                 | >51%                                |                                      |                             |                                  |  |
|                                                                                        |                                                 |                                     |                                      |                             |                                  |  |
|                                                                                        |                                                 |                                     |                                      |                             |                                  |  |
|                                                                                        |                                                 |                                     |                                      |                             |                                  |  |

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53      | REV         |            |
|-------------------------|-----------------------------|------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65 | TOTAL PAGES | PAGE<br>23 |

A shaped energy distribution near the focal plane is necessary to control the sensor gain in the beacon track mode. The required energy distribution is obtained by grinding a conical surface on the perimeter of the secondary mirror. This results in a point source image with a blur diameter of 0.0012 inches (0.1 mr) at the focal plane. Eightly percent of the light energy lies inside this diameter, and the remaining twenty percent is distributed over the remainder of the exit pupil. In the beacon track mode the point source image is deliberately defocused by using the relay prism faces as a reticle, since the prism faces lie 0.014 inches behind the focal plane. At the prism faces, eighty percent of the energy is within a 0.4 mr diameter circle and the remaining twenty percent within 10 mr.

The beacon track mode signal processing utilizes all the light falling on the prism faces. However, the light energy spread over the exit pupil by the conical periphery of the secondary mirror does not contribute to the information content of the signal in the star track mode. Thus, the effective diameter of the collecting area in the star track mode is reduced from 3.1 inches to 2.8 inches.

### 3.4.1.4 Induction Motor and Phase Generator

Nutation of the star image in the image plane shall be produced by driving the nutating wedge with an induction motor. The induction motor shall have the following characteristics:

- a) Induction motor type 2 phase ac 12 pole
- b) Excitation 28 volts rms 200 cps from dc to ac power supply
- c) Synchronous speed 33.3 rpm

The phase generator shall be used as a phase reference from which pulse position information of the star detection process is demodulated to anlog form for nulling by the servos. The phase generator shall have the following characteristics:

- a) Phase generator type Permanent magnet 2 toridal windings 90° apart
- b) Output characteristics  $V_{2} = 10.6 \text{ sin wt at } 32 \text{ rpm}$

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53 |             | REV  |
|-------------------------|-----------------------------|-------------|-------------|------|
| Milwaukee, Wisconsin    | BY                          | DATE        | total pages | PAGE |
|                         | H. Neuville                 | 12-22-65    | 53          | 24   |

3.4.1.5 <u>Reticle Mask and Sector Division Optics</u> - The reticle mask and sector division optics shall be the mechanism which converts angular displacements of the star image from the optical centerline to pulse position information.

The sector division optics shall be a four prism array which divides the image plane into four sectors as shown in Figure 3.4.1.5A.



Incoming light shall be reflected by each relay prism such that the light energy of each image plane sector is directed to a corresponding photomultiplier.

The reticle mask shall be the mechanism which modulates the nutating image in pulse position form.

Pulse position information as a function of image displacement from the optical centerline shall be produced as shown in Figure 3.4.1.5B.



| AC ELECTRONICS DIVISION<br>General Mators Corporation | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 | REV         |            |  |
|-------------------------------------------------------|-----------------------------|--------------------|-------------|------------|--|
| Milwaukee, Wisconsin                                  | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>25 |  |

# 3.4.1.6 Photomultiplier Tubes

The photomultiplier tube (Figure 3.4.1.6A) converts luminous flux to usable electrical current. This is accomplished in two steps:

- 1. Incident photons produce electrons at a photomissive surface (photocathode)
- 2. The photocathode current is amplified by secondary emission occurring at each of the 14 dynodes.



Figure 3.4.1.6A

The efficiency of the photoelectric process occurring at the photocathode is characterized by two parameters:

- 1. Quantum efficiency Q, which is the number of electrons produced per incident photon of a given wavelength.
- Spectral response, which is the photocathode current in amps per watt of incident flux at a given wavelength (Figure 3.4.1.6B)



Figure 3.4.1.6B



Lines of constant quantum efficiency would be straight lines with a positive slope equal to Q.

The electrons produced at the photocathode are accelerated through a potential of approximately 200 V and strike the first dynode. Secondary electrons are ejected from the dynode surface with a typical yield of three - four secondary electrons per primary electron. The secondary electrons are in turn accelerated, striking the second dynode, and the process is repeated at each dynode until the electrons are collected at the anode. Overall current amplifications of  $10^6 - 10^8$  are typical.

The secondary emission yield at each dynode is proportional to the primary electron energy, which is in turn proportional to the accelerating voltage between dynodes and thus to the supply voltage. Thus current gain is a function of supply voltage (Figure 3.1.4.6 C).



Observed dark current is the sum of currents due to three causes:

- 1. Thermionic emission from the photocathode and dynodes.
- 2. Ohmic leakage through the glass envelope, supporting members and base.
- 3. Regenerative effects which occur when the supply voltage becomes too great and which may permanently damage the tube.

Dark current increases rapidly with both temperature and current gain. The equivalent anode dark current input is the luminous flux in either lumens or watts that, if incident on the photocathode, would result in the observed anode dark current. Both temperature and current gain must be specified when the equivalent input is given.

The emission of electrons from the photocathode and dynodes is a statistical process, and resulting current fluctuations contribute to the overall noise of the system. A parameter used to characterize

| AC EL | ECTRONICS DIVISION                                                                         | EXPERIMENT                                                                              | TAL DESIG                                                                | N EXHIBI                                                        | т х                        | DE 3                                    | 84-T-53                             | 3                                    |          | REV        |
|-------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|-----------------------------------------|-------------------------------------|--------------------------------------|----------|------------|
| Gener | al Motors Corporation<br>waukee, Wisconsin                                                 | вү<br>H. Ne                                                                             | uville                                                                   |                                                                 | DA                         | 12-2                                    | 2-65                                | TOTAL                                | PAGES    | PAGE<br>28 |
|       | the noise co<br>which is the<br>wave pulses<br>current with<br>The typical<br>used for LOF | ontributions<br>value of l<br>produces an<br>in a specif<br>characteris<br>S are as sho | of the t<br>uminous f<br>rms outr<br>ied bandw<br>tics of t<br>own in Ta | tube is<br>flux whith<br>put curr<br>ridth.<br>the photoble 3.4 | equi<br>ch,<br>ent<br>omul | valent<br>if inc:<br>equal t<br>tiplier | noise<br>Ident i<br>o rms<br>s whic | input,<br>in squa<br>noise<br>ch may | re<br>be |            |
|       |                                                                                            | :                                                                                       | TABLE 3.4                                                                | .1.6                                                            |                            |                                         |                                     |                                      |          |            |
| Α.    | Spectral Character                                                                         | istics                                                                                  |                                                                          | <u>S-2</u>                                                      | 0                          | <u>S-17</u>                             |                                     |                                      |          |            |
| в.    | Cathode Type                                                                               |                                                                                         | Semitra<br>trialka                                                       | nsparen<br>11                                                   | t,                         | Semi-<br>cesiv                          | transp<br>m                         | parent,                              | antin    | ony-       |
| c.    | Dynode Material &                                                                          | Туре                                                                                    | A <sub>g</sub> - M <sub>g</sub>                                          | Veneti<br>blind                                                 | an                         | A <sub>g</sub> -                        | M <sub>g</sub> , Ve                 | netian                               | Blind    |            |
| D.    | Window Material                                                                            |                                                                                         | 7056 G1                                                                  | 888                                                             |                            | 7056                                    | Glass                               |                                      |          |            |
| E.    | Number of Dynodes                                                                          |                                                                                         | 14                                                                       |                                                                 |                            | 14                                      |                                     |                                      |          |            |
| F.    | Collecting Area of                                                                         | Cathode                                                                                 | .785 in                                                                  | 2                                                               |                            | <del>*</del> 785                        | in <sup>2</sup>                     |                                      |          |            |
|       |                                                                                            |                                                                                         | MI                                                                       | N.                                                              | TYP                        | ICAL                                    | MAX                                 | : 1                                  | UNITS    | 3          |
|       |                                                                                            |                                                                                         | E                                                                        | A                                                               | E                          | A                                       | E                                   | A                                    |          |            |
| G     | Quentum Efficiency                                                                         | et 4100°A                                                                               | 12.5                                                                     | 12                                                              | 19                         | 15                                      |                                     |                                      | ah.      |            |

- H. Cathode Luminous Sensitivity
- I. Cathode Radiant Sensitivity at Wavelength of Max. Spectral Response
- J. Voltage Required for Current Amplification of 10<sup>5</sup>

|     | MI   | .N.  | TIP. | ICAL | MAX  |      | UNITS |
|-----|------|------|------|------|------|------|-------|
|     | E    | A    | E    | A    | E    | A    |       |
|     | 12.5 | 12   | 19   | 15   |      |      | %     |
|     | 100  | 45   | 150  | 65   |      |      | ma/lm |
| at  |      |      |      |      |      |      |       |
|     | .042 | .041 | .065 | •055 |      |      | a/lm  |
| 105 |      |      | 1900 | 1600 |      | 1900 | V     |
| 106 |      |      | 2400 | 2100 | 2900 | 2400 | v     |
| 107 |      |      | 3300 | 2720 |      | 3020 | V     |
| 108 |      |      |      | 3450 |      |      | v     |

| AC ELECTRONICS DIVISION                                                      | EXPERIMEN         | TAL DE                             | SIGN | EXHI | BIT          | XDE                                    | 34-T-53                                      |                                            | REV              |                                          |
|------------------------------------------------------------------------------|-------------------|------------------------------------|------|------|--------------|----------------------------------------|----------------------------------------------|--------------------------------------------|------------------|------------------------------------------|
| General Motors Corporation<br>Milwaukee, Wisconsin                           | BY<br>H           | . Neuv                             | ille |      | 1            | 12-22-                                 | -65                                          | TOTAL PA                                   | GES PAG          | 3E                                       |
|                                                                              |                   |                                    | M    | IN.  |              | TYPI                                   | CAL                                          | MAX                                        |                  | Units                                    |
|                                                                              |                   |                                    | E    | A    | I            | C                                      | A                                            | Е                                          | A                |                                          |
| K. Dark Current at +20<br>Current Amplificat                                 | C. and<br>ion of  | 105                                |      |      | 1.5>         | <10 <sup>-10</sup>                     | 2.2x10 <sup>-10</sup>                        |                                            |                  |                                          |
|                                                                              |                   | 10 <sup>6</sup><br>10 <sup>7</sup> |      |      | 1.52         | (10 <sup>-9</sup><br>(10 <sup>-8</sup> | $2.0 \times 10^{-9}$<br>$2.0 \times 10^{-8}$ | 5x10 <sup>-9</sup>                         | 7x109            |                                          |
| L. Equivalent Anode Da                                                       | rk Current        | ;                                  |      |      |              |                                        | 2.0XIO                                       |                                            |                  |                                          |
| Input at +20°C and<br>Amplification of 10                                    | Current           |                                    |      |      |              |                                        |                                              |                                            |                  |                                          |
| Luminous<br>Radiant at 45                                                    | 00 A              |                                    |      |      | 1x10<br>2.3x | -11<br>10 <sup>-14</sup>               | 3×10 <sup>-11</sup><br>3.7×10 <sup>-14</sup> | 5x10 <sup>-11</sup><br>9x10 <sup>-14</sup> | 1.6x10           | 0 <sup>-10</sup> 1<br>0 <sup>-13</sup> w |
| M. Equivalent Noise In<br>+20°C and Current A<br>cation of 10 <sup>6</sup> : | put at<br>mplifi- |                                    |      |      |              |                                        |                                              |                                            |                  |                                          |
| Luminous<br>Radiant at 45                                                    | 00°A              |                                    |      |      | 1.6x<br>3x10 | 10 <sup>-13</sup>                      | 3.9x10 <sup>13</sup><br>4.6x10 <sup>16</sup> | 5x10-13<br>7x10-16                         | 1.1x10<br>1.1x10 |                                          |
| N. Supply Voltage                                                            |                   |                                    |      |      |              |                                        |                                              | 3600                                       | 3600             | v                                        |
| 0. Anode Current                                                             |                   |                                    |      |      |              |                                        |                                              | ı                                          | l                | m                                        |
| P. Temperature                                                               |                   |                                    | -55  | -55  |              |                                        |                                              | +75                                        | +75              | •                                        |
| Q. Anode Pulse Rise Ti                                                       | me                |                                    |      |      |              |                                        |                                              |                                            |                  | sec                                      |
| R. Electron Transit Ti                                                       | me                |                                    |      |      |              |                                        |                                              |                                            |                  | se                                       |

| AC ELECTRONICS DIVISION EXPERIMENTAL DESIGN EXHIB | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|---------------------------------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin                              | BY<br>H. Neuville           | 12-22-65           | TOTAL PAGES | PAGE<br>30 |

#### 3.4.1.7 Photomultiplier Load Network and Associated Electronics

The photomultiplier load network and its associated electronics shall process pulse signals such that the requirements specified in 3.3.1 will be met.

3.4.2 Signal Processing for Beacon Track - In order to meet the requirements specified in Section 3.3.2, the following components shall be utilized in the beacon track signal processing loop.

- a) Beacon mounted on the CSM
- b) Light Shade Assembly
- c) Nutating Wedge
- d) Cassegrain Objective
- e) Sector Division Optics
- f) Photomultiplier Tubes
- g) Automatic Gain Control Amplifier and Associated Electronics

3.4.2.1.1 Beacon Mounting - The LEM optical tracker is required to track a flashing beacon mounted on the Command Service Module. The beacon shall be mounted to the CSM as shown in Figure 3.4.2.1.1.



| AC ELECTRONICS DIVISION                                                                 | EXPERIMENTAL DESIGN EXHIBIT                                                                                                                                                                                  | XDE 34-T-                                                                                        | 53                                                  | REV.       |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|
| General Motors Corporation<br>Milwaukee, Wisconsin                                      | BY<br>H. Neuville                                                                                                                                                                                            | DATE<br>12-22-65                                                                                 | TOTAL PAGES                                         | PAGE<br>31 |
| The beacon a<br>top of the<br>plane about<br>3.4.2.1.2 I<br>produce rad<br>radiant ener | shall be mounted between the (<br>SM, and shall be rotated -41.5<br>the X axis.<br>Beacon Radiation Characterist:<br>ant energy in an 80° cone. I<br>rgy shall be as shown in Figur<br>Optical<br>Centerline | CM heat shield<br>5° from X - Z<br>sc<br>ics - The beacon<br>The concentration<br>for 3.4.2.1.2. | and the<br>nb <sup>- Z</sup> sc<br>n shall<br>on of |            |
|                                                                                         | Typical Beacon Radiation Chara                                                                                                                                                                               | A                                                                                                | 40°                                                 |            |
|                                                                                         | Figure 3.4.2.1.2                                                                                                                                                                                             |                                                                                                  |                                                     |            |



.

X

| General Motors Consection                                                                                        | EXPERIMENTAL DESIGN EXHIBI                                                                                                                                                        | T XDE 34-T-53                                                                                                           | 3                                                                               |      |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|
| General Motors Corporation<br>Milwaukee, Wisconsin                                                               | BY                                                                                                                                                                                | DATE                                                                                                                    | TOTAL PAGES                                                                     | PAGE |
| Milwaukee, wisconsin                                                                                             | H. Neuville                                                                                                                                                                       | 12-22-65                                                                                                                | 52                                                                              |      |
| The control<br>of a capacit<br>3.4.2.1.4 <u>B</u><br>operating mo<br>simultaneous<br>shall be mod<br>pulses off. | electronics for each xenon<br>or, a capacitor charging su<br>eacon Operating Modes - Th<br>des. In the AUTO-TRACK mod<br>ly at 32 pps. In the visua<br>ed to produce a one-second | flash lamp shall<br>apply and a trigg<br>te beacon shall h<br>le, both lamps sh<br>l mode, the 32 c<br>cycle of 16 puls | consist<br>er circuit.<br>ave two<br>all be flashe<br>ps oscillator<br>es on 16 | đ    |
| 3.4.2.1.5 B<br>the followin                                                                                      | eacon Operational Character<br>g operational characteristi                                                                                                                        | <u>istics</u> - The bea<br>cs.                                                                                          | con shall hav                                                                   | e    |
| Symbol                                                                                                           | Parameter                                                                                                                                                                         | Value                                                                                                                   |                                                                                 |      |
| a) f                                                                                                             | Frequency                                                                                                                                                                         | 32 срв                                                                                                                  |                                                                                 |      |
| b) t                                                                                                             | Pulse Width                                                                                                                                                                       | s بر 10                                                                                                                 | ec                                                                              |      |
| c) <u>n</u>                                                                                                      | Beacon Field of Vi                                                                                                                                                                | ew 1.47 s<br>(80° c                                                                                                     | teradians<br>one)                                                               |      |
| 3.4.2.1.5 <u>B</u><br>3.4.2.1.5.                                                                                 | eacon Composite TM Output -                                                                                                                                                       | The same as show                                                                                                        | wn in Table                                                                     |      |
| 5.0 ± 0.25 VI                                                                                                    | C Both channels funct                                                                                                                                                             | ional                                                                                                                   |                                                                                 |      |
| 4.0 + 0.25 VI                                                                                                    | OC One lamp or trigger                                                                                                                                                            | failed, one char                                                                                                        | nnel function                                                                   | al   |
| 3.0 ± 0.25 VI                                                                                                    | C One charge supply fa                                                                                                                                                            | ailed, one channe                                                                                                       | el functional                                                                   |      |
| 2.0 <u>+</u> 0.25 VI                                                                                             | C Both lamps or trigg                                                                                                                                                             | ers failed                                                                                                              |                                                                                 |      |
| 1.0 <u>+</u> 0.25 VI                                                                                             | C One charge supply as failed                                                                                                                                                     | nd the other trig                                                                                                       | gger or lamp                                                                    |      |
| 0 ± 0.25 VDC                                                                                                     | Both charge supplies                                                                                                                                                              | failed                                                                                                                  |                                                                                 |      |
|                                                                                                                  | TABLE 3.4.2.1.5                                                                                                                                                                   |                                                                                                                         |                                                                                 |      |
| 3.4.2.2 Lightrack signal<br>3.4.1.1 for t                                                                        | t Shade Assembly - The ligh<br>processing shall be the sam<br>he star track mode.                                                                                                 | nt shade assembly<br>ne as that descri                                                                                  | y for beacon<br>lbed in                                                         |      |
| 3.4.2.3 <u>Nute</u><br>processing sh<br>for the follo                                                            | ting Wedge - The nutating wall be the same as that deawing operational exceptions                                                                                                 | wedge for beacon<br>scribed in 3.4.1.<br>s.                                                                             | track signal<br>l except                                                        |      |

| General Motors C     | Division                                                 | TSION EXPERIMENTAL DESIGN EXHIBIT XDE 34-T-53                                                               |                                                                | 3                                           |            |
|----------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------|
| Milwaukee, Wisc      | onsin                                                    | BY<br>H. Neuville                                                                                           | DATE<br>12-22-65                                               | TOTAL PAGES                                 | PAGE<br>34 |
|                      |                                                          |                                                                                                             |                                                                |                                             |            |
|                      | a) The<br>pos                                            | e wedge shall be stationary sition,                                                                         | and locked in a k                                              | nown                                        |            |
|                      | b) A c<br>sha                                            | continuous standoff from the                                                                                | e optical centerli<br>e.                                       | ne                                          |            |
| 3.<br>be             | 4.2.4 <u>Cas</u><br>acon track<br>3.4.1.3.               | segrain Objective - The Ca<br>signal processing shall co                                                    | assegrain objectiv<br>onform to the requ                       | e for the<br>irements                       |            |
| 3.<br>be<br>in<br>ma | 4.2.5 Sec<br>acon track<br>3.1.5 f<br>sk.                | tor Division Optics - The signal processing shall be<br>or star track signal proces                         | sector division op<br>e the same as thos<br>ssing except for t | tics for<br>e described<br>he reticle       |            |
| Du<br>pa             | ring beaco<br>th by a ro                                 | on track the reticle mask slotary actuator.                                                                 | hall be removed fr                                             | om the optics                               | al         |
| 3.<br>si<br>fo       | 4.2.6 <u>Pho</u><br>gnal proce<br>r the star             | tomultipliers - The photon<br>ssing shall be the same as<br>track signal processing.                        | multipliers for be<br>those described i                        | acon track<br>n 3.4.1.6                     |            |
| 3.<br>Th<br>pr       | 4.2.7 <u>Aut</u><br>automati<br>ccess beac<br>ecified in | omatic Gain Control Amplif:<br>c gain control amplifier an<br>on originating pulse signal<br>3.3.2 are met. | ier and Associated<br>nd associated elec<br>ls such that the r | Electronics<br>tronics shall<br>equirements | L          |
| 3.<br>sp<br>ut       | 4.3 <u>Autom</u><br>cified in<br>ilized for              | atic Gain Control - In ord<br>section 3.3.3, the follow:<br>automatic gain control.                         | der to meet the re<br>ing components sha                       | quirements<br>11 be                         |            |
|                      | a) Lig                                                   | ht Shade Assembly                                                                                           |                                                                |                                             |            |
|                      | b) Nut<br>bea                                            | ation wedge (rotating for s<br>con track)                                                                   | star track, statio                                             | nary for                                    |            |
|                      | c) Cas                                                   | segrain Objective                                                                                           |                                                                |                                             |            |
|                      | d) Ind                                                   | uction motor and phase gene                                                                                 | erator (for star t                                             | rack)                                       |            |
|                      | e) Ret<br>sta                                            | icle mask and sector divis:<br>r track)                                                                     | ion optics (reticl                                             | e mask for                                  |            |
|                      | f) Pho                                                   | tomultiplier tubes                                                                                          |                                                                |                                             |            |
|                      | g) Aut                                                   | omatic load network                                                                                         |                                                                |                                             |            |
|                      | h) Aut                                                   | omatic Gain Amplifier                                                                                       |                                                                |                                             |            |
|                      | i) Hig                                                   | h pass filter and isolation                                                                                 | n electronics                                                  |                                             |            |

| C ELECTRONICS DIVISION                      | EXPERIMENTAL DESIGN EXHIBIT                                                      | XDE 34-T-53                      | 3                            | REV        |
|---------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|------------------------------|------------|
| Milwaukee, Wisconsin                        | BY<br>H. Neuville                                                                | DATE<br>12-22-65                 | TOTAL PAGES                  | PAGE<br>35 |
| i) "OR                                      | " logic bandness filter and                                                      | isolation elect                  | rontas                       |            |
| k) Res                                      | istor summing electronics                                                        | IDOLATION CICCU                  | OILES                        |            |
| 1) Aut                                      | ometic threshold and ACC de                                                      | testor alestron                  |                              |            |
| m) Aut                                      | ometic threshold and ACC det                                                     | ector electron.                  |                              |            |
| n) Pef                                      | erance smolifier electronics                                                     | Sector effectionit               | .5                           |            |
|                                             | d network "OP" Coto                                                              |                                  |                              |            |
| 5) 10a                                      | " logic and reference armlif                                                     |                                  |                              |            |
| p) OR                                       | togic and reference amplif                                                       | ler                              |                              |            |
| q) Pho                                      | comultiplier nigh voltage Do                                                     | -DC converter                    |                              |            |
| 3.4.4 Servo<br>in section 3<br>nominal serv | mechanisms - In order to mee<br>.3.4, the following componen<br>o configuration. | t the requirements shall be util | ts specified<br>ized for the |            |
| Eleva                                       | tion                                                                             | Azimuth                          |                              |            |
| a) Signal p                                 | rocessing                                                                        | Signal processi                  | ng                           |            |
| b) Compensa                                 | tion (Error Amplifier)                                                           | Compensation (I                  | Error Amplifi                | er)        |
| c)                                          |                                                                                  | Secant Pot                       |                              |            |
| d)                                          |                                                                                  | Secant Pot Ampl                  | ifier                        |            |
| e)                                          |                                                                                  | Torque Limiter                   |                              |            |
| f) Torquer                                  | Preamp & Driver                                                                  | Torquer Preamp                   | & Driver                     |            |
| g) Elevation                                | n torquer motor                                                                  | Azimuth torquer                  | motor                        |            |
| h) Elevation                                | n Gimbal                                                                         | Azimuth Gimbal                   |                              |            |
| i) Elevation                                | n tachometer                                                                     | Azimuth tachome                  | ter                          |            |
| j) Elevation                                | n tachometer Amplifier                                                           | Azimuth tachome                  | ter Amplifie                 | r          |
|                                             |                                                                                  |                                  |                              |            |
|                                             |                                                                                  |                                  |                              |            |

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV               |  |
|-------------------------|-----------------------------|--------------------|-------------|-------------------|--|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | <b>раде</b><br>36 |  |

3.4.4.1 <u>Signal Processing</u> - The signal processing for servo operation during specified modes of operation shall be as defined in Table 3.4.4.1.

| Servo Mode   | Signal Processing |
|--------------|-------------------|
| Star Track   | Section 3.3.1     |
| Beacon Track | Section 3.3.2     |
| Acquisition  | Section 3.3.5     |
| Scan         | Section 3.3.6     |

#### TABLE 3.4.4.1

3.4.4.2 <u>Compensation Amplifier</u> - The function of the error amplifier is to provide dc gain in the acquisition and scan modes and dc gain and frequency compensation in the tracking modes. In addition to these functions the error amplifier shall provide summing and switching between the various servo drive inputs (except for the azimuth acquisition drive which is summed into the loop at the secant pot amplifier). To accomplish these functions the error amplifier utilizes a high gain operational type amplifier with complex feedback and a number of resistor inputs which may be switched on or off to enable the various tracking modes.

The error amplifier is shown functionally in figure 3.4.4.2.



The switches that are shown are field effect transisters which are opened or closed by voltages generated by the mode control logic as defined in Paragraph 3.3.8. Switch  $S_1$  is closed in the track mode,  $S_2$  in the scan mode and  $S_3$  and  $S_4$  are closed in the acquisition and scan modes. The impedance values for the input and feedback components shall be as shown in the above figure and the corresponding gain and

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |  |  |
|-------------------------|-----------------------------|--------------------|-------------|------------|--|--|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | 12-22-65           | TOTAL PAGES | page<br>37 |  |  |

i.

compensation is listed in Table 3.3.4.c. The elevation error amplifier is identical to the azimuth error amplifier except that the AZ error amplifier will not have an acquisition drive input. The input impedances and gains will differ for the scan mode inputs.

Maximum input levels are listed, below. These are the maximum levels at each input which will not produce amplifier saturation.

| AZ | track input       | ± 2.2 VDC |
|----|-------------------|-----------|
| AZ | scan input        | ± 7.3 VDC |
| EL | track input       | ± 2.2 VDC |
| EL | scan input        | ± 8.8 VDC |
| EL | acquisition input | ± 3.0 VDC |

3.4.4.3 Secant Pot - The secant function shall be generated by using a conductive plastic Secant function potentiometer. The pot track shall be shorted and connected to a trimming resistor for angular positions between plus and minus 28°. This results in a gain of .1 for angles less than  $\pm 28^{\circ}$ . The secant function shall be good only to  $\pm 84^{\circ}$  at which point the gain of the pot is 1.0. This value of gain will be held for angles greater than  $84^{\circ}$ .

A sketch of the Secant pot and its gain verses angular position is shown in Figure 3.4.4.3.



| <br>ININ | The Desite of the The Desite of the Desite o | 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second sec |  |  | a local sector and s |

-

| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |
|-------------------------|-----------------------------|--------------------|-------------|------------|
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>38 |

3.4.4.4 Secant Pot Amplifier - The secant pot amplifier shall provide gain for the servo loop and a high input impedance to prevent loading of the secant pot. The amplifier shall also serve as a summing point for the azimuth acquisition command signal. The proper gain for this amplifier is achieved by using feedback resistors around a high gain amplifier.

Maximum input signal that will not produce amplifier saturation

 $V_{max} = \pm 3 \text{ vdc}$ 

Gain = 5 V/V (Both inputs)

3.4.4.5 Torque Limiter - Torque limiting shall be provided by diode bridge shown in Figure 3.4.4.1.



Torque is limited to a value of 60 oz-in by this diode network.

3.4.4.6 <u>Torquer Preamp and Drivers</u> - The torquer preamps and drivers act functionally as one module. Their purpose is to sum the servo error signals and tachometer feedback signals and provide a torque motor current which is proportional to that sum. Constant current output for a given voltage input is achieved through the use of current feedback. The transfer function, as a result of this current feedback, takes the form of current out/voltage in.

Azimuth Torquer Preamp and Driver. The voltage limiter shown in Figure 3.4.4.1 is included in the preamp module. By limiting the voltage into the torquer preamp, the current output is proportionally limited. This is done to prevent torque motor desaturation.

 $GAIN = 3.33 \text{ amps/volt } \pm 5\%$ 

Input Impedance 10K Servo Drive Input 10K Tachometer Input

| AC ELECTRONICS DIVISION    | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53 |             | REV  |
|----------------------------|-----------------------------|-------------|-------------|------|
| General Motors Corporation | BY                          | DATE        | TOTAL PAGES | PAGE |
| Milwaukee, Wisconsin       | H. Neuville                 | 12-22-65    |             | 39   |

Max Output Current 1.6 amps (with voltage limiting)

Elevation torquer preamp and driver. The elevation preamp shall not have voltage limiting at its input because full voltage applied to the preamp will not cause the torque motor to desaturate.

 $GAIN = .33 amps/volt \pm 5\%$ 

Input Impedance 10K Servo Drive Input 10K Tachometer Input

3.4.4.7 Torque Motor Characteristics - Torque motor characteristics shall be as shown in Table 3.4.4.7

| Parameter                           | Value               | levation<br>Value   | Units                  |
|-------------------------------------|---------------------|---------------------|------------------------|
| Inertia (Motor + Gimbal)(J)         | 3.75                | 2.3                 | in-oz-sec <sup>2</sup> |
| Peak Torque (T)                     | 60                  | 35                  | in-oz                  |
| T/J (No Friction)                   | 16                  | 15.2                | sec <sup>-2</sup>      |
| T/J (With Disturbing Torque)        | 15.6                | 14.85               | sec <sup>-2</sup>      |
| Torque Constant (K <sub>a</sub> )   | 38.4                | 54                  | oz-in/amp              |
| Motor Break Point (R/L)             | 1080                | 1580                | sec <sup>-1</sup>      |
| Armature Resistance (R)             | 13                  | 95                  | ohms                   |
| Armature Inductance (L)             | 12x10 <sup>-3</sup> | 60x10 <sup>-3</sup> | henries                |
| Volta at Peak Torque Stalled (25°c) | 20.3                | 61.6                | volts                  |
| Back EMF Constant                   | .27                 | . 38                | volts/rad/sec          |
| Amps at Peak Torque                 | 1.6                 | .65                 | amps                   |
| Coulomb Friction                    | 1,.5                | .8                  | oz-in                  |
| Viscous Friction                    | .81                 | .21                 | oz-in/rad/sec          |

TABLE 3.4.4.7

| AC ELECTRONICS DIVISION                            |                                      | EXPERIMENTAL DESIGN EXH                                                             | HBIT XDE 34-T-53                                                 |                                                 |                          |
|----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|--------------------------|
| General Motors Corporation<br>Milwaukee, Wisconsin |                                      | BY<br>H. Neuville                                                                   | DATE<br>12-22-65                                                 | TOTAL PAGES                                     | PAGE<br>40               |
| 3.1                                                | 4.4.8 <u>Gir</u>                     | nbal Characteristics -                                                              |                                                                  |                                                 |                          |
| Gir<br>CO                                          | nbal Defin<br>nventions              | relating to the LEM opti                                                            | The angles and<br>cal tracker shall                              | direction<br>be as follows:                     |                          |
| a)                                                 | Azimuth<br>of the L                  | Angle. A <sub>A</sub> is defined as<br>OTS line of sight in the                     | the angle between<br>LEM Y-Z plane and                           | the projectio<br>the LEM + Z a                  | n<br>xis.                |
| b)                                                 | Elevatio<br>of-sight<br>Y-Z plan     | $\frac{n \text{ Angle.}}{and \text{ the projection of the}}$                        | as the angle betweene LOTS line-of-sig                           | en the LOTS light in the LEM                    | ne-                      |
| c)                                                 | Azimuth<br>defined<br>LEM Z ax       | and Elevation Zero Angles<br>as the position of the LA<br>is and pointing in the "4 | s. The O, O coordi<br>MTS when it is pars<br>Z direction.        | inates are<br>allel to the                      |                          |
| a)                                                 | Azimuth<br>measured<br>the righ      | Sense. Positive azimuth<br>from the zero azimuth co<br>t hand sense.                | angles are defined<br>pordinate about the                        | l as those ang<br>ELEM +X axis                  | les<br>in                |
| e)                                                 | Elevatio<br>angles m<br>+Y axis      | n Sense. Positive elevat<br>easured from the zero ele<br>in a right hand sense whe  | tion angles are def<br>evation coordinate<br>en the azimuth angl | ined as those<br>about the LEM<br>e is 0 degree | s.                       |
| f)                                                 | Azimuth<br>yielding                  | Limit Stops. The azimuth <u>+</u> 360 <sup>0</sup> of angular freedo                | n limit stops are a<br>om from the stow po                       | sition which                                    | 450 <sup>0</sup><br>is + |
| g)                                                 | Elevation<br>The negative<br>between | n Limit Stops. The posit<br>tive limit stop is a fund<br>+20° and -26° of elevatio  | tive elevation limi<br>tion of azimuth an<br>on.                 | t stop is at s<br>gle and varies                | +88 <sup>0</sup><br>s    |
| h)                                                 | Stow Coo                             | rdinates.<br>Azimuth +90 <sup>0</sup>                                               | )                                                                |                                                 |                          |
|                                                    |                                      | Elevation -26°                                                                      |                                                                  |                                                 |                          |
| i)                                                 | Optical (<br>system si<br>20° belo   | Coverage. The overall op<br>hall take the form of a h<br>w the LEM +Z axis to 20°   | otical coverage of<br>memisphere which is<br>above the LEM -Z a  | this gimbal<br>canted from<br>xis.              |                          |
|                                                    |                                      |                                                                                     |                                                                  |                                                 |                          |
|                                                    |                                      |                                                                                     |                                                                  |                                                 |                          |
|                                                    |                                      |                                                                                     |                                                                  |                                                 |                          |



Figure 3.4.4.8.

| AC SPARK PLUG DIVISION     | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 | REV         |      |
|----------------------------|-----------------------------|--------------------|-------------|------|
| General Motors Corporation | BY                          | DATE               | TOTAL PAGES | PAGE |
| Milwaukee, Wisconsin       | H. Neuville                 | 12-22-65           | 52          | 42   |

3.4.4.9 Tachometer Characteristics - The tachometer characteristics shall be as shown in Table 3.4.4.9.

| Parameter                                                                                                                                                                                                                                                               | Value                                                          | Units                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Friction Torque<br>Ripple Voltage (average pk to pk)<br>Ripple (cycles/revolution)<br>Inertia<br>Weight<br>DC Resistance (25 <sup>o</sup> c)<br>Voltage Sensitivity<br>Inductance<br>Minimum Load Resistance<br>Maximum Operating Speed<br>Volta at Max Operating Speed | 1.2<br>5<br>33<br>.007<br>9<br>667<br>1.06<br>.40<br>67K<br>39 | oz-in<br>percent<br>cycles/rey<br>oz-in-sec<br>oz<br>ohms<br>volts/rad/sec<br>henries<br>ohms<br>rad/sec |
|                                                                                                                                                                                                                                                                         |                                                                |                                                                                                          |

# TABLE 3.4.4.9

3.4.4.10 Tachometer Amplifier - The tachometer amplifier utilizes a high gain operational type amplifier with feedback to yield the desired gain. The operational amplifier is a three stage differential amplifier and the input and feedback impedances are purely resistive. The circuit is shown functionally below along with a table of paramter values.



| Parameter                 | Azimuth<br>Value                        | Elevation<br>Value |
|---------------------------|-----------------------------------------|--------------------|
| Zi                        | 19.09 K                                 | 19.31 к            |
| Zf                        | 200 K                                   | 402 K              |
| Gain(Eo/ <sub>Ein</sub> ) | 10.5 $\frac{\text{volts}}{\text{volt}}$ | 20.8 volts volt    |

AZ Tach Amplifier. - The function of this amplifier is to amplify the output of the azimuth gimbal tachometer by the required gain factor.

| Input Impedance:           | 19.1K     |
|----------------------------|-----------|
| Maximum Input Level:       | + 1.5 VDC |
| Gain:                      | 10.5 v/v  |
| Maximum Output Capability: | +15 VDC   |

| General Motors Corporation                            |                                                                                                                                             | AIBIT XDE                           | 34-T-53                                    |                             |     |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------|-----|--|--|
| Milwaukee, Wisconsin                                  | H. Neuville                                                                                                                                 | DATE<br>12                          | -22-65                                     | 52                          | PAG |  |  |
|                                                       |                                                                                                                                             |                                     | •                                          |                             |     |  |  |
| Elevation T<br>as the azim                            | ach Amplifier This ampl<br>uth tach amplifier.                                                                                              | lfier perf                          | orms the sam                               | e function                  |     |  |  |
| Input<br>Maximu<br>Gain:<br>Gain T                    | Impedance:<br>m Input Level:<br>olerance:                                                                                                   | L9.3K<br>±.75 VDC<br>20.8 v/v       |                                            |                             |     |  |  |
| 3.4.5. Acq<br>in section                              | uisition In order to m<br>3.3.5, the following comp                                                                                         | et the re<br>ments sha              | quirements s<br>ll be utiliz               | pecified<br>ed:             | ,   |  |  |
| a) LE<br>b) El<br>c) Am<br>d) Co<br>e) El             | M Guidance Computer (LGC)<br>evation and Azimuth CDU's<br>plifier and Demodulator<br>mpensation electronics fo<br>evation and azimuth elect | r the elev<br>romechanic            | ation axis<br>al integrato                 | rs                          |     |  |  |
| 3.4.5.1 IE                                            | M Guidance Computer.                                                                                                                        |                                     |                                            | ·                           |     |  |  |
| 3.4.5.1.1<br>control dur<br>capable of<br>following t | General. The LEM Guidance<br>ing all aspects of the ac-<br>originating the appropria<br>asks:                                               | Computer<br>Luisition<br>Ce command | will be in<br>mode and sha<br>s to accompl | primary<br>ll be<br>ish the |     |  |  |
| a) Re<br>th                                           | move the optical tracker a<br>e azimuth and elevation a                                                                                     | rom the s<br>tes for pr             | tow location<br>oper trackin               | and positi<br>g.            | ion |  |  |
| b) What to                                            | en use of the tracker is the stow position.                                                                                                 | completed,                          | move the tr                                | acker                       |     |  |  |
| c) In<br>pro                                          | itialize azimuth before ea<br>ovide unambiguous angle re                                                                                    | ich tracke<br>adout.                | r operation                                | to                          |     |  |  |
| d) Re<br>pa                                           | cover tracking if lock-on<br>ssage or encountering an a                                                                                     | is lost d<br>zimuth or              | uring zenith<br>elevation l                | pole<br>imit stop.          |     |  |  |
| e) Po:                                                | int the tracker to within                                                                                                                   | ±1° of th                           | e target.                                  |                             |     |  |  |
| f) Pe:                                                | rform self tests of the op                                                                                                                  | tical tra                           | cker.                                      |                             |     |  |  |
| g) Dec                                                | cide as to whether or not                                                                                                                   | the optic                           | al tracker h                               | as failed.                  |     |  |  |
| 3.4.5.1.2<br>by the LGC                               | Angle Designation The when an angle is designate                                                                                            | ollowing :                          | functions wi                               | ll be perfo                 | me  |  |  |
| a) The                                                | e LGC determines a designa                                                                                                                  | tion angl                           | e.                                         |                             |     |  |  |
| b) The<br>wit                                         | e LGC checks to determine<br>thin OTS gimbal limits; in                                                                                     | whether d<br>not, the               | esignation a<br>LGC re-ories               | ngle is<br>nts the LEM      | 1.  |  |  |
|                                                       |                                                                                                                                             |                                     |                                            |                             |     |  |  |

MIL IVIS KEY 200

| AC SPARK PLUG DIVISIO            | EXPERIME                                                                          | ENTAL DESIGN EXHIBIT                                                                                              | XDE 34-T-53                                                                                    |                                                                   |                            |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|--|--|--|--|
| Milwaukee, Wisconsin H. Neuville |                                                                                   | uville                                                                                                            | DATE<br>12-22-65                                                                               | ATE TOTAL PAGES<br>12-22-65 52                                    |                            |  |  |  |  |
|                                  |                                                                                   |                                                                                                                   | •                                                                                              |                                                                   |                            |  |  |  |  |
| c)                               | The LGC sends<br>of the 800 cp<br>the latch sol<br>The scale fac                  | designation angle<br>s angle error comman<br>enoid through circu<br>tor of the analog co                          | through CDU to Of<br>nd in excess of a<br>itry in the serve<br>ommand is .044°/                | IS (the pres<br>2 <sup>0</sup> operates<br>5 electronic<br>Bit.   | sence                      |  |  |  |  |
| a)                               | When the erro<br>the OTS is po<br>issues the Tr                                   | or angle in the CDU a<br>binted in the designa-<br>rack Enable discrete                                           | goes to zero (ind<br>ated direction),                                                          | licating<br>the LGC                                               |                            |  |  |  |  |
| e)                               | The LGC looks<br>doesn't appea<br>or initiates                                    | for the Lock On di<br>ar in 30 sec the LGC<br>the Tracker Warning                                                 | screte from the (<br>either redesigns<br>indication.                                           | DTS. If it<br>ates the tra                                        | cker                       |  |  |  |  |
| f)                               | When acquisit<br>discrete the                                                     | ion does occur as in<br>IGC then looks for                                                                        | ndicated by the 1<br>the Data-Good dia                                                         | Lock-On<br>screte.                                                |                            |  |  |  |  |
| g)                               | When Data-Goo<br>angle data fr                                                    | d occurs, the LGC bo                                                                                              | egins sampling th                                                                              | ne                                                                |                            |  |  |  |  |
| 3.4.5.1.<br>astronau             | Mode Select<br>via the DSKY                                                       | ion The LGC will,                                                                                                 | after a discrete                                                                               | e from the                                                        |                            |  |  |  |  |
| a)                               | determine whi                                                                     | ch optical tracker n                                                                                              | node will be used                                                                              | 1.                                                                |                            |  |  |  |  |
| ъ)                               | <b>examine</b> the S<br>tracker is in                                             | tar/Beacon Mode dise                                                                                              | crete to see which                                                                             | ch mode the                                                       | •                          |  |  |  |  |
| c)                               | if the mode r<br>with 80 milli                                                    | equires changing to<br>second (±5 <sup>*</sup> / <sup>*</sup> ) burs                                              | ggle the optical<br>t of 3.2 kpps (                                                            | tracker<br>±5 % ) pulse                                           | es.                        |  |  |  |  |
| d)                               | check mode di                                                                     | screte for change to                                                                                              | proper mode.                                                                                   |                                                                   |                            |  |  |  |  |
| 3.4.5.1.1<br>the LGC a           | Loss of Dat<br>tops sampling                                                      | a-Good When the t:<br>the angle outputs of                                                                        | racker removes the first the CDU.                                                              | ne Data-Good                                                      | l dis                      |  |  |  |  |
| 3.4.5.1.5<br>Lock On d           | Loss of Loc<br>iscretes                                                           | k-On When the trad                                                                                                | cker removes the                                                                               | Data-Good a                                                       | and                        |  |  |  |  |
| a)                               | LGC removes t                                                                     | he Track Enable.                                                                                                  |                                                                                                |                                                                   |                            |  |  |  |  |
| b)                               | LGC checks th                                                                     | e last sampled angle                                                                                              | es for:                                                                                        |                                                                   |                            |  |  |  |  |
|                                  | 1) Relations                                                                      | hip of LOS to optics                                                                                              | al tracker Gimbal                                                                              | Limits                                                            |                            |  |  |  |  |
|                                  | 2) Relations<br>i.e., nea                                                         | hip of LOS to no tra<br>r sun, earth or giml                                                                      | ack zones,<br>bal pole.                                                                        |                                                                   |                            |  |  |  |  |
|                                  | If the target<br>gimbal limits<br>repositions t<br>be reacquired<br>elevation lim | angles are outside<br>, the LGC returns to<br>he LOS (rotate azimu<br>. If the target ang<br>its, the LGC must re | of the optical to<br>the angle designth 360°) so that<br>gles are outside<br>eposition the LEM | racker azim<br>mation mode<br>the Target<br>of the OTS<br>vehicle | uth<br>and<br>may<br>negat |  |  |  |  |

| MIL IVIN RET AND        |                             |                             |             |         |
|-------------------------|-----------------------------|-----------------------------|-------------|---------|
| AC ELECTRONICS DIVISION | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53          |             | REV     |
| Milwaukee, Wisconsin    | BY<br>H. Neuville           | <sup>ДАТЕ</sup><br>12-22-65 | TOTAL PAGES | PAGE 45 |

and the OTS so that the target may be reacquired. If the target angles are inside the optical tracker gimbal limits and outside the no-track zones, the LGC returns to the angle designate mode.

If the target angles are within a no-track zone the IGC also returns to the angle designate mode. The IGC must then reposition the OTS gimbals so that the target can be reacquired when it emerges from the no-track zone. If the Lock On discrete is absent for a predetermined time after the computed LOS leaves the no-track zone, the IGC gives a warning.

### 3.4.5.2 Azimuth and Elevation CDU

3.4.5.2.1 Functions. - The CDU shall perform the following basic functions:

- a) Provide the analog to digital conversion link required to read the OTS gimbal angles into the LGC.
- b) Provide the digital to analog conversion capability required to allow the IGC to position the OTS gimbals.
- c) Provide a feedback path between change in the indicated angle and change in angle commanded by the IGC. This allows the IGC to command a change in OTS gimbal angle by sending to the CDU a number of pulses equal to the desired gimbal change, and then the CDU analog output to the gimbal servo will be proportional to the difference between the present angle and the desired angle.

3.4.5.2.2 Moding .- Mode control of the CDU shall be as follows:

- a) <u>CDU Zero.</u> The CDU Zero discrete clears and inhibits the <u>CDU read counter</u>. When the CDU Zero discrete is removed the read counter will repeat the input angle.
- b) <u>D/A Enable</u>. The D/A Enable discrete will enable the Error Angle Counter and the feedback path between the read counter and the error counter. This discrete is used to implement the acquisition mode.
- c) <u>Display Inertial Data.</u> The Display Inertial Data discrete, not to be used when the OTS is operating, is used to produce the Display Inertial Data mode. In this mode, the computer will display information to the astronaut by connecting the D/A converter DC output to a meter. The D/A Enable and the Display Inertial Data discrete must be present to accomplish this. In this mode, the

| AC ELECTRONICS DIVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRONICS DIVISION EXPERIMENTAL DESIGN EXHIBIT                                                                                                                                       |                                                                                                                                                                                                                            | 53                                                                                                          | KEV (                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| General Motors Corporation<br>Milwaukee, Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BY<br>H. Neuville                                                                                                                                                                      | DATE<br>12-22-65                                                                                                                                                                                                           | DATE TOTAL PAGE<br>12-22-65 52                                                                              |                              |  |  |  |  |
| fee<br>courses of the second sec | dback loop between the read<br>nter is not closed.<br><u>nputs and Outputs The inp</u><br>of the CDU shall be as show<br><u>RMS ±1%</u> CDU<br><u>S Clock</u><br><u>le</u><br>Inertial | a counter and the<br>puts and outputs<br>m in Figure 3.4.<br>Outputs<br>$+ \Delta \Theta_G$<br>$- \Delta \Theta_G$<br>CDU Fail<br>D/A Conv.<br>BOO~ Output<br>D/A Conv.<br>DC Output<br>D/A Conv.<br>Coarse Alig<br>Output | error<br>for a<br>5.2.3.<br>To LGC<br>To LGC<br>Acquisiti<br>Command t<br>For Displ<br>Inertial<br>Not Used | on<br>o LOR<br>ay of<br>Data |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 3.4.                                                                                                                                                                            | .5.2.3                                                                                                                                                                                                                     |                                                                                                             |                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the same of a relation                                                                                                                                                                 | 1                                                                                                                                                                                                                          |                                                                                                             |                              |  |  |  |  |

| AC ELECTRONICS DIVISION                                                                                                                                                                               | EXPERIMENTAL DESIGN EXHIBIT                                                                                                                                                                                                                                                                                                                   | XDE 34-T-5                                                                                                                                                            | 3                                                                                                         | REV        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|
| eneral Motors Corporation<br>Milwaukee, Wisconsin<br>H. Neuville                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               | DATE<br>12-22-65                                                                                                                                                      | TOTAL PAGES                                                                                               | PAGE<br>47 |
| 3.4.5.3 Amp<br>circuitry sh<br>and provide<br>a) Azimuth<br>b) Elevatio<br>3.4.5.4 <u>Com</u><br>electronics<br>as defined for<br>3.4.5.5 <u>Ele</u><br>The Elevatio<br>acquisition m<br>mode 3.3.4.2 | lifier and Demodulator The<br>all demodulate the 800 cps ac<br>a dc output with the followin<br>axis - 3.75 Volts dc/Volt ac<br>n axis - 5.00 Volts dc/Volt a<br>pensation Electronics for Ele<br>for the elevation axis in the<br>or the servomechanism mode 3.<br>vation and Azimuth Electromechanic<br>mode shall be as defined for<br>.1. | amplifier and o<br>signal of the<br>g gain character<br>rms<br>c rms<br><u>vation Axis 7</u><br>acquisition mo<br>4.4.2.<br><u>hanical Integra</u><br>the standard ar | demodulator<br>CDU output<br>eristics.<br>The compensat:<br>ode shall be<br>ators<br>for the<br>nd beacon | ion        |
| 3.4.6 <u>Acqui</u><br>in section 3                                                                                                                                                                    | sition/Scan In order to mee<br>.3.6, the following component                                                                                                                                                                                                                                                                                  | t the requireme<br>s shall be util                                                                                                                                    | ents specified<br>lized:                                                                                  | 1          |
| a) Acquisit                                                                                                                                                                                           | ion mode components Section                                                                                                                                                                                                                                                                                                                   | 3.4.5                                                                                                                                                                 |                                                                                                           |            |
|                                                                                                                                                                                                       | atmonted                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                           |            |

c) Elevation axis mixing ratio adjustment.

3.4.6.1. Scan Electronics. - The scan electronics shall be comprised of three functions, the staircase scan, triangle scan and scan logic. The purpose is to generate servo drive signals which will sweep the tracker through a 2° square field of view according to the pattern shown in figure 3.4.6.1A Scan programs are generated whenever the tracker power is turned on and are not synchronized to any reference.



Figure 3.4.6.1A

The scan logic function synchronizes the staircase scan and the triangle scan to produce the pattern shown above. It accomplishes this function by using the output of the first stage of the binary counter in the staircase scan function to drive the sweep generator in the triangle scan function.



Figure 3.4.6.1.B

The desired waveform is produced by using a three stage binary counter to drive a resistive summing network which acts as a digital to analog convertor. The first stage of the counter is a free running multivibrator with a period of two (2) seconds.

The function of the triangle scan module is to drive the elevation gimbal during the scan mode by generating the waveform shown in figure 3.4.6.1.C.



The waveform shown above is synchronized to the staircase scan by the scan logic. The scan logic accomplishes this by generating a signal which drives a sweep generator in the triangle scan in either the positive or negative direction depending upon the output of the staircase scan.

|                            |                             | GN EXHIBIT XDE 34-T-53 |             |      |
|----------------------------|-----------------------------|------------------------|-------------|------|
| AC ELECTRONICS DIVISION    | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53     |             | REV  |
| General Motors Corporation | BY                          | DATE                   | TOTAL PAGES | PAGE |
| Milwaukee, Wisconsin       | H. Neuville                 | 12-22-65               | 52          | 49   |

3.4.6.2 Elevation Axis Mixing Ratio Adjustment.. The mixing ratio adjustment in 3.3.6 is a block diagram accommodation to the definition of the compensation amplifier function. The gain of the compensation amplifier is as defined by the acquisition mode, i.e. 5 volts/volt (3.3.8.2). Since mixing of CDU signals at a gain of 5 v/v is combined with scan signals at a gain of 1.7 v/v, a compensation factor of 1.7/5.0 must be used in the block diagram.

4. Preinstallation G&N Testing. - The following recommendations on preinstallation testing are made without regard to test facility accommodations or availability of GSE. Sections 4.1 through 4.5 are references from which detailed documentation on G&N testing may be derived. The test point and logic events which are pertinent to each of the following sections are shown in Table 4.

4.1 G&N Self Testing of the Optical Tracker .-

4.1.1 <u>Turn-On</u>.- The 28 VDC and 28 V rms, 800 cps power shall be turned on and the tracker checked to see that it is in the star mode.

4.1.2 Angle Readout. - The azimuth and elevation angles in the latched position shall be  $+90^{\circ}$  and  $-26^{\circ}$ , respectively.

4.1.3 <u>Lock-On</u>. - With the tracker still latched, the self=test light source shall be turned on and the track enable command issued. After 30 sec. the lock-on signal shall be present. Azimuth and elevation torque motor currents shall be monitored for phasing and magnitude.

4.1.4 <u>Tracker Loop</u>.- With the self-test light still on, the stow latch shall be released by commanding track enable and then commanding an elevation angle greater than 2°. After 30 seconds the azimuth and elevation angles shall indicate the self-test light coordinates and the data good and lock-on signals shall be present.

4.1.5 Stow.- The tracker enable discrete shall be removed and the tracker commanded to an azimuth angle of  $+90^{\circ}$  and an elevation angle of  $-30^{\circ}$  sequentially. After an interval of 15 seconds the CDU error command output will be removed by removing the D/A error counter enable command discrete to the CDU. This shall latch the tracker in the stow position.

4.1.6 Beacon Mode. - Perform 4.1.2 - 4.1.5, except that the beacon track mode indication shall be present and the self-test lamp shall be pulsed at 32 pps.

4.2 <u>G&N Acquisition and Track Testing</u>. - Acquisition mode testing shall consist of the following tests. Appropriate test points shall be as shown in Table 4.

| AC ELECTRONICS DIVISION EXPERIMENTAL D |                          | PERIMENTAL DESIGN EXHIBIT |            |     |      |     |    |     |     |     | <b>XDE</b> 34-T-53 |              |     |             |    |    |    |    |     |    |  |  |
|----------------------------------------|--------------------------|---------------------------|------------|-----|------|-----|----|-----|-----|-----|--------------------|--------------|-----|-------------|----|----|----|----|-----|----|--|--|
| Milwaukee, Wisconsin                   | BY                       |                           |            |     | DATE |     |    |     |     |     |                    |              |     | TOTAL PAGES |    |    |    |    |     |    |  |  |
|                                        | H. Neuville              |                           |            |     |      |     |    |     | 12. | -22 | 2-6                | 5            |     |             | 1  |    | 52 | 2  |     | 40 |  |  |
|                                        | SIGNALS AVAILAN<br>TABLE | BLI<br>g l                | E H<br>+.( | FOF | R (  | 185 | 1  | TES | ST  |     |                    |              |     |             |    |    |    |    |     |    |  |  |
|                                        |                          | J-H                       | [CI        | Im  | 1=   | ŝ   | *  | ì   | N   | 3   |                    | ,<br>av      |     | -m          |    |    | ~  |    | 011 |    |  |  |
|                                        |                          | 1.                        | H          | H   | H    | ч.  | -  | 2   | Q,  | å   | ~                  | vo           |     | 2.          | 3. | 3. | ŝ  | 4. | 4.9 |    |  |  |
|                                        |                          |                           | F          | F   | 4    |     | 7  | 4   | -7  | *   | 4                  | * -=         | +   | 4           | 4  | 4  | 4  | 4  | 4   |    |  |  |
| MODING                                 |                          |                           |            |     |      |     |    |     |     |     |                    |              |     |             |    |    |    |    |     |    |  |  |
| Composite Analo                        | g:                       |                           |            |     |      |     |    |     |     |     |                    |              |     |             |    |    |    |    |     |    |  |  |
| a) -30V Reg.                           | Good                     | X                         | X          | X   | X    | X   |    | X   | х   | X   | X                  | x x          | X   | X           | X  | х  | X  | X  | x   |    |  |  |
| b) +30V Reg.                           | Good                     | x                         | X          | x   | X    | x   |    | X   | x   | x   | x                  | x x          | x   | x           | X  | x  | x  | Х  | x   |    |  |  |
| c) Scan Motor                          | On                       | X                         | X          | X   | X    | X   |    | X   | X   | x   | x                  | x x          |     | X           | X  |    | x  | X  | x   |    |  |  |
| d) Beacon Mode                         | e Operation              |                           |            |     |      |     | x  |     |     |     |                    |              | X   |             |    | x  |    |    |     |    |  |  |
| e) Data Good                           | Present                  |                           |            |     | x    |     |    |     |     |     |                    | X            | X   | x           | X  | x  | x  |    |     |    |  |  |
| f) Lock-On Pro                         | esent                    |                           |            | x   | x    |     |    |     |     |     |                    | X            | X   | x           | X  | x  | x  |    |     |    |  |  |
| Track Enable                           |                          |                           |            | X   | x    |     |    | Х   | x   | x   | XX                 | ( X          | x   | X           | X  | x  | x  |    |     |    |  |  |
| SIGNALS NORMALLY A                     | VAILABLE                 |                           |            |     |      |     |    |     |     |     |                    |              |     |             |    |    |    |    |     |    |  |  |
| Main Automatic (                       | Gain Control             | x                         |            | x   |      |     |    | x   | x   | x   | xx                 |              | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| Sun Shutter Open                       | ate                      |                           |            |     |      |     |    |     |     |     |                    |              |     |             |    |    |    | x  | x   |    |  |  |
| PMT Star Mode                          |                          |                           |            | x   | x    | x   |    |     |     |     |                    | x            |     | x           | x  | x  | x  | x  | x   |    |  |  |
| LOTS Operate +                         |                          | x                         | x          | x   | x    | x   |    | X   | x   | x   | xx                 | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| LOTS Operate -                         |                          | x                         | X          | x   | x    | X   |    | X   | x   | x   | x x                | X            | x   | x           | X  | X  | X  | X  | x   |    |  |  |
| Servo Secant Pot                       |                          |                           |            | x   | x    | X   |    | X   | x   | x   | x x                | $\mathbf{x}$ | x   | x           | х  | x  | x  | x  | x   |    |  |  |
| Elevation Drive                        | (sample & hold)          |                           |            | x   | x    | x   |    |     |     |     |                    | x            | x   | х           | x  | x  | x  | x  | x   |    |  |  |
| Azimuth Drive (s                       | ample & hold)            |                           |            | x   | x    | x   |    |     |     |     |                    | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| Elevation Torque                       | Motor Current            |                           |            | x   | х    | x   |    | X   | x   | X   | x x                | x            | x   | x           | X  | x  | x  | x  | x   |    |  |  |
| Azimuth Torque M                       | otor Current             |                           |            | x   | х    | х   |    | X   | x   | x   | x x                | x            | x   | x           | x  | X  | x  | x  | x   |    |  |  |
| R&D INSTRUMENTATION                    | I                        |                           |            |     |      |     |    |     |     |     |                    |              |     |             |    |    |    |    |     |    |  |  |
| Automatic Gain (                       | ontrol                   | x                         | x          | x   | х    | x   |    | x   | x   | x   | x x                | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| PMT Tube Temp.                         |                          | x                         | x          | X   | X    | x   |    | x   | x   | x   | x x                | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| Azimuth Tachomet                       | er Amp.                  |                           |            | x   | x    | x   |    | x   | x   | x   | x x                | x            | x   | x           | x  | X  | x  | x  | x   |    |  |  |
| Elevation Tachon                       | eter Amp.                |                           |            | x   | x    | X   |    | x   | x   | x   | x x                | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| Azimuth Error An                       | ъ.                       |                           |            | x   | х    | x   |    | x   | X   | x   | x x                | x            | x   | x           | x  | x  | x  | x  | x   |    |  |  |
| Elevation Error                        | Amp.                     |                           |            | x   | x    | ĸ   |    | x   | x   | x   | x x                | x            | x   | x           | х  | x  | X  | x  | x   |    |  |  |
| * Repeat 4.1.1 throu<br>Scan Motor On. | ngh 4.1.5 measure        | me                        | ent        | s,  | e    | xc  | ep | ot  | PM  | T : | Sta                | r            | Mod | le          | an | d  |    |    |     |    |  |  |

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |             | REV        |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------|-------------|------------|--|
|                                                                               | BY<br>H. Neuville           | DATE<br>12-22-65   | TOTAL PAGES | PAGE<br>50 |  |

K

4.2.1 The computer shall position the tracker from the stow position to an attitude of  $-20^{\circ}$  Elevation,  $0^{\circ}$  Azimuth. The computer shall reposition the tracker to the stow position after the track enable discrete has been issued.

4.2.2 The computer shall position the tracker from the stow position to an attitude of  $+88^{\circ}$  Elevation,  $90^{\circ}$  Azimuth. The computer shall reposition the tracker to the stow position after the track enable discrete has been issued.

4.2.3 The computer shall position the tracker from the stow position to an attitude of +84° Elevation, +450° Azimuth. The computer shall reposition the tracker to the stow position after the track enable discrete has been issued.

4.2.4 The computer shall position the tracker from the stow position to an attitude of  $+84^{\circ}$  Elevation,  $-270^{\circ}$  Azimuth. The computer shall reposition the tracker to the stow position after the track enable discrete has been issued.

4.2.5 The acquisition/scan/acquisition test shall be performed with the target simulator off and the star track mode selected. With the tracker on the 84° fixture, the computer shall position the tracker from the stow position to an attitude of +84° Elevation and an appropriate azimuth angle such that alignment is achieved with the target simulator. The track enable discrete shall be issued from the computer and the scan program started. Thirty seconds after issuance of the track enable discrete the computer shall remove the track enable discrete and stop the scan program. The computer shall then be commanded to return the tracker to the stow position.

4.2.6 The Acquisition/scan/star track test shall be performed with the target simulator set to a +3.0 visual magnitude star (sunlit CSM) against a star background and the star track mode selected. With the tracker on the  $84^{\circ}$  fixture, the computer shall position the tracker from the stow position to an attitude of  $+84^{\circ}$  Elevation and an appropriate azimuth angle such that alignment is achieved with the target simulator. After alignment is completed the track enable discrete shall be issued from the computer and the scan program started. Within 30 seconds after issuance of the track enable discrete the tracker shall issue a lock-on discrete and the scan program shall be terminated. Automatic tracking shall occur and the tracker shall issue a data good discrete. After tracking characteristics have been determined, the target simulator shall be turned off. Data good and lock-on shall be lost and the computer shall reacquire control and hold the tracker at the tracking attitude. The computer shall then be commanded to return the tracker to the stow position.

4.2.7 The acquisition/scan/beacon track test shall be performed with the target simulator set to a flashing beacon with a star background and the beacon track mode selected. With the tracker on the  $84^{\circ}$  fixture, the computer shall position the tracker from the stow position to an attitude

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin | EXPERIMENTAL DESIGN EXHIBIT | XDE 34-T-53 |             | REV        |
|-------------------------------------------------------------------------------|-----------------------------|-------------|-------------|------------|
|                                                                               | BY<br>H. Neuville           | DATE        | TOTAL PAGES | PAGE<br>51 |

of +84° Elevation and an appropriate azimuth angle such that alignment with the target simulator is achieved. After alignment is achieved, the track enable discrete shall be issued from the computer and the scan program started. Within 30 seconds after issuance of the track enable discrete the tracker shall issue a lock-on discrete and the scan program shall be terminated. Automatic tracking shall occur and the tracker shall issue a data good discrete. After tracking characteristics have been determined the sunlit lunar background shall be introduced into the field of view. After the resulting transients and tracking characteristics have been determined, the target simulator shall be turned off. The computer shall reacquire and hold the tracker at the tracking attitude. The computer shall then be commanded to return the tracker to the stow position.

4.2.8 The acquisition/scan/reflecting marker test shall be performed with the target simulator set to a sunlit reflecting marker against the sunlit lunar surface. The procedure for the test shall be the same as that specified in 4.2.6.

### 4.3 G&N Testing of Pole Passage .-

4.3.1 The  $84^{\circ}$  pole passage test shall be performed with the target simulator set to the +3.0 visual magnitude star (sunlit CSM) against a star background. With the tracker on the  $84^{\circ}$  fixture and the system in the star track mode, the computer shall position the tracker from the stow position to an attitude of  $+84^{\circ}$  Elevation and an appropriate Azimuth angle such that alignment is achieved with the target simulator. After alignment is completed and automatic track achieved the rate table shall be repositioned until the tracker elevation readouts indicate  $70^{\circ}$ .

With the above as an initial condition, the tracking characteristics for pole passage within  $6^{\circ}$  of azimuth may be tested by rotating the rate table at  $0.58^{\circ}$ /sec in a direction which causes the elevation angle to increase to  $84^{\circ}$  and then decrease to  $70^{\circ}$ . Data good may be lost during this event but lock-on shall not be lost.

4.3.2 The 84° pole passage test shall be performed with the target simulator set to a flashing beacon against a star background and the system in the beacon track mode. The procedure shall be the same as that defined in 4.3.1.

4.3.3 The 90° pole passage test shall be performed with the target simulator set to the +3.0 visual magnitude star against a star background. With the tracker on the 90° fixture and the systems in the star track mode, the computer shall position the tracker from the stow position to an attitude of +80° Elevation and 0° Azimuth. The rate table shall then be positioned until automatic tracking is achieved. With the above as an initial condition, the tracking and computer control characteristics shall be tested by rotating the rate table at  $0.63^{\circ}$ /sec. Lock-on should be lost during this event and the computer should position the tracker such that lock-on and data good is reachieved as the elevation angle decreases from 90°.

| AC ELECTRONICS DIVISION<br>General Motors Corporation<br>Milwaukee, Wisconsin | EXPERIMENTAL DESIGN EXHIBIT | <b>XDE</b> 34-T-53 |            | REV        |  |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------|------------|------------|--|--|
|                                                                               | BY<br>H. Neuville           | DATE T             | OTAL PAGES | PAGE<br>52 |  |  |

# 4.4 Sun Shutter Operation

4.4.1 <u>Shutter Functional Limits.</u> The tracker shall be positioned from stow to be aligned with the luminous target simulator. Thirty seconds after the scan mode is entered, the tracker will down-mode to steady state pointing. The simulated sun shall then be turned on and the rate table slewed until the sun shutter operates. The shutter shall function when the limb of the simulated sun is a minimum of 5° from the tracker LOS.

4.4.2 <u>Shutter Operation During Acquisition</u>.- The tracker shall be commanded to an angle in such a fashion that the tracker LOS will pass within 5° of the simulated sun. The shutter shall close and open without interrupting the acquire mode tracker operation.

## 4.5 Luminous Beacon

4.5.1 One Point Intensity Check. - The far-field irradiance of each lamp shall be measured using the auxiliary tester.