

GUIDANCE, NAVIGATION AND CONTROL

Approved: \qquad Date: 26 Nov 68 A. KOSMALA, DIRECTOR, SUPPORT PROGRAM DEVEL. APOLLO GUIDANCE AND NAVIGATION PROGRAM Approved:
 Date: $26 N_{0} \cdot 68$ G. CHERRY, LUMINARY PROJECT MANAGER APOLLO GUIDANCE AND NAVIGATION PROGRAM Approved: $\frac{R, N, 1]}{R}$ Date: \qquad
R. BATTEN, DIRECTOR, MISSION DEVELOPMENT APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved:

 Date: 26: Nov 68 D. G. HAG, DIRECTOR APOLLO GUIDANCE AND(NAVIGATION PROGRAM Approved: ralph Q Gaga Date: 26Mon-156P R. R. RAGAS, DEPUTY DIRECTOR INSTRUMENTATION LABORATORY

R-567
GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED LM EARTH ORBITAL AND LUNAR MISSIONS USING PROGRAM LUMINARY

SECTION 6 CONTROL DATA

This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory, Massachusetts institute of Technology, Cambridge, Mass.

Principal contributors to the digital simulation data were Herb Chasan and Keith Glick who together prepared the sections on LM and CSM Spacecraft Data. Keith Glick also presented the LM Radar section, new to this revision, and up-dated the Prelaunch from earlier Sunburst data. Herb Chasan revised the Natural Environment data from the Sunburst documentation prepared by William Widnall who also contributed to the earlier Prelaunch data.

The hybrid simulation data were prepared by Philip Felleman and James Cutter.

Editing and copy preparation were supervised by Joseph Glendenning. The text editing programs were written by David Crocker.

R-567
 GUIDANCE SYSTEM OPERATIONS PLAN
 FOR MANNED LM EARTH ORBITAL AND LUNAR MISSIONS USING
 PROGRAM LUMINARY
 SECTION 6 CONTROL DATA

Signatures appearing on this page designate approval of this document by NASA/MSC.

```
Approved:
``` \(\qquad\)
```

Thomas F. Gibson
Asst. Chief, Flight Software Branch
Manned Spacecraft Center, NASA

``` Date: \(\qquad\) Date: \(\qquad\) Date: \(\qquad\)


\section*{6. CONTROL DATA}

\subsection*{6.1 Introduction}

The Guidance System Operations Plan is published as six separate volumes (sections) as listed below:
\begin{tabular}{ll}
Section 1 & Prelaunch \\
Section 2 & Data Links \\
Section 3 & Digital Auto-Pilots \\
Section 4 & Operational Modes \\
Section 5 & Guidance Equations \\
Section 6 & Control Data
\end{tabular}

This volume (Section 6) is published as a summary of data used in the digital and hybrid simulators in support of the verification of the LGC program LUMINARY. The data presented herein represent the most current data available at the time the simulator underwent configuration control. Brief discussions of the most significant mathematical models are included. The data are arranged as follows:
\begin{tabular}{ll}
Section 6.2 & \begin{tabular}{l}
Digital Simulator Prelaunch Environment Data, describing \\
the gravity and swaying booster simulation used to verify the
\end{tabular} \\
Section 6.3 & \begin{tabular}{l}
prelaunch operations. \\
Digital Simulator Launch Vehicle Data, not used for this \\
mission program.
\end{tabular} \\
Section 6.4 & \begin{tabular}{l}
Digital Simulator LM and CSM Spacecraft Data, including \\
reference positions and dimensions, mass properties,
\end{tabular} \\
& \begin{tabular}{l}
propulsion data, and dynamic models for staging forces, \\
propellant slosh effects and structural bending effects.
\end{tabular} \\
Section 6.5 \(\quad\)\begin{tabular}{l}
DigitalSimulator LM Radar Data, including models of landing
\end{tabular} \\
and rendezvous radar self-test modes, rendezvous radar
\end{tabular}

Section 6.10 Hybrid Simulator Radar Data
Section 6.11 Hybrid Simulator Coordinate Systems and Natural Environment Data
Section 6.12 References, listing the basic source documents from which the control data and models were derived.

In Sections 6.2 through 6.11 , a number in the right hand column, opposite a data entry, is the identifying number of the source document as given in the Reference Section 6.12. A more detailed description of the various simulation models used by MIT/IL is given in references 1.1 and 1.2.

This volume constitues a control document. Revisions to it require NASA approval. Contact H. Chasan (617-864-6900 Ext 1293) or J. O'Connor (Ext 1118) regarding questions or corrections to data in this document.

\subsection*{6.2 Digital Simulator Prelaunch Environment Data}
6.2.1 To simulate a prelaunch environment, the position, velocity, gravity and time integral of gravity at the spacecraft navigation base are computed as analytic functions of time, and not by the numerical integration method used in the flight mode.

The gravitational acceleration includes perturbations due to earth oblateness, and sun and moon attractions. The centripetal acceleration due to earth rotation is then added to the gravitational acceleration vector.
\begin{tabular}{|c|c|c|c|c|}
\hline Earth rotation rate expressed & WE & 0.0 & \(\mathrm{rad} / \mathrm{sec}\) & 2.1 \\
\hline in the reference coordinate & & 0.0 & \(\mathrm{rad} / \mathrm{sec}\) & \\
\hline system & & \(72921.2 \times 10^{-9}\) & \(\mathrm{rad} / \mathrm{sec}\) & \\
\hline North latitude of the launch site & LAT & 28.079 & deg & \\
\hline East longitude of the launch site & LONG & 279.43507 & deg & \\
\hline Altitude of the spacecraft navigation base above the reference ellipsoid & AL'T & 56.7 & m & \\
\hline Spacecraft \(+Z\) axis measured counterclockwise from east & AZIMUTH & 180 & deg & 2.2 \\
\hline
\end{tabular}
6.2.2 Superimposed on the deterministic model of gravity and earth rotation is a stochastic model for the launch vehicle swaying in the wind on the launch pad. The swaying motion is assumed to have no preferred direction, so it is modeled by two independent random processes in the two horizontal directions. The swaying booster is modeled as a damped second order oscillator so that the displacement, \(r\), is related to the normalized force, \(f\), by the differential equation
\[
\ddot{\mathbf{r}}+2 \mathrm{aw} \dot{\mathbf{r}}+\mathrm{w}^{2} \mathbf{r}=\mathrm{f}
\]
Damping ratio of the
vehicle for swaying motion

The wind force, \(f\), on the side of the launch vehicle is modeled as an exponentially correlated Gaussian process. It is governed by the differential equation
\[
\dot{f}+f / T=W
\]
where \(W\) is a piecewise constant random forcing function whose amplitude distribution is Gaussian.
\begin{tabular}{lllll}
The correlation time of the & T & 10 & sec & 2.3 \\
wind force
\end{tabular}

\subsection*{6.3 Digital Simulator Launch Vehicle Data}

\section*{Intentionally Blank}

Launch vehicle data is not required for the LUMINARY program

\subsection*{6.4 Digital Simulator LM (LM-6) and CSM (CM-107) Spacecraft Data}

\subsection*{6.4.1 LM Reference Positions and Tolerances}

The following \(X, Y\), and \(Z\) coordinates define reference positions in the LM vehicle coordinate system. Tolerances are given in the appropriate units.

The LIM vehicle coordinate system is a right hand orthogonal system with its origin fixed at a point 254 inches (6.4516 meters) below the RCS reference plane.
\(\overline{\mathrm{X}} \quad\) is measured up relative to the astronaut
\(\bar{Y} \quad\) is measured toward the astronaut's right
\(\overline{\mathrm{Z}} \quad\) is measured forward relative to the astronaut

\subsection*{6.4.1.1 LM Descent Engine}
\begin{tabular}{lllll}
Pivot point position & DENG & 3.9116 & m & 4.1 \\
& & 0.0 & m & \\
& & 0.0 & m \\
Three-sigma error & DEPOSERR & \(\pm 0.00508\) & m \\
tolerance on above & & \(\pm 0.00508\) & m \\
point (DENG) & & \(\pm 0.00508\) & m
\end{tabular}
6.4.1.2 LM Ascent Engine
\begin{tabular}{llll}
Point of application & AENG & 5.91718 & m \\
of thrust & & 0.0 & m \\
& & 0.09525 & m \\
& & & \\
Three-sigma error & AEPOSERR & \(\pm 0.00762\) & m \\
tolerance on above & & \(\pm 0.00762\) & m \\
point (AENG) & \(\pm 0.00762\) & m
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Thruster LI-U & Jet 9 & \(\mathrm{RCPOS}_{27}\) & \[
\begin{array}{r}
6.57352 \\
-1.67894
\end{array}
\] & \[
\begin{aligned}
& \mathrm{m} \\
& \mathrm{~m}
\end{aligned}
\] \\
\hline & & & -1.67894 & m \\
\hline \multirow[t]{3}{*}{Thruster II-D} & \multirow[t]{3}{*}{Jet 10} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{30}\)} & 6.31698 & m \\
\hline & & & -1.67894 & m \\
\hline & & & -1.67894 & m \\
\hline \multirow[t]{3}{*}{Thruster II-F} & \multirow[t]{3}{*}{Jet 11} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{33}\)} & 6.4516 & m \\
\hline & & & -1.5621 & m \\
\hline & & & -1.68529 & m \\
\hline \multirow[t]{3}{*}{Thruster II-S} & \multirow[t]{3}{*}{Jet 12} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{36}\)} & 6.4516 & m \\
\hline & & & -1.68529 & m \\
\hline & & & -1.5621 & m \\
\hline \multirow[t]{3}{*}{Thruster I-U} & \multirow[t]{3}{*}{Jet 13} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{39}\)} & 6.57352 & m \\
\hline & & & -1.67894 & m \\
\hline & & & 1.67894 & m \\
\hline \multirow[t]{3}{*}{Thruster I-D} & \multirow[t]{3}{*}{Jet 14} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{42}\)} & 6.31698 & m \\
\hline & & & -1.67894 & m \\
\hline & & & 1.67894 & m \\
\hline \multirow[t]{3}{*}{Thruster I-F} & \multirow[t]{3}{*}{Jet 15} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{45}\)} & 6.4516 & m \\
\hline & & & -1.5621 & m \\
\hline & & & 1.68529 & m \\
\hline \multirow[t]{3}{*}{Thruster I-S} & \multirow[t]{3}{*}{Jet 16} & \multirow[t]{3}{*}{\(\mathrm{RCPOS}_{48}\)} & 6.4516 & m \\
\hline & & & -1.68529 & m \\
\hline & & & 1.5621 & m \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Three-sigma position error tolerance for each}} & \multirow[t]{3}{*}{RCPOSERR} & \(\pm 0.00762\) & m \\
\hline & & & \(\pm 0.00762\). & m \\
\hline \multicolumn{2}{|l|}{RCS jet} & & \(\pm 0.00762\) & m \\
\hline \multicolumn{2}{|l|}{Three-sigma angular} & \multirow[t]{4}{*}{RCMISAL} & \(\pm 0.05236\) & rad \\
\hline \multicolumn{2}{|l|}{alignment tolerance of} & & & \\
\hline \multicolumn{2}{|l|}{each RCS quad about} & & & \\
\hline \multicolumn{2}{|l|}{each vehicle axis} & & & \\
\hline
\end{tabular}

\subsection*{6.4.1.5 LM Propellant Tank Positions}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{DPS Tank 1 Position} & \multirow[t]{3}{*}{TANKPOS 3} & 4.067429 & m & \multirow[t]{3}{*}{4.2} \\
\hline & & 1.3716 & m & \\
\hline & & 0.0 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 2 Position} & \multirow[t]{3}{*}{TANKPOS 6} & 4.067429 & m & \\
\hline & & -1.3716 & m & \\
\hline & & 0.0 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 3 Position} & \multirow[t]{3}{*}{TANKPOS 9} & 4.067429 & m & \\
\hline & & 0.0 & m & \\
\hline & & 1.3716 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 4 Position} & \multirow[t]{3}{*}{\(\mathrm{TANKPOS}_{12}\)} & 4.067429 & m & \\
\hline & & 0.0 & m & \\
\hline & & -1.3716 & m & \\
\hline \multirow[t]{3}{*}{APS Tank 1 Position} & \multirow[t]{3}{*}{\[
\text { TANKPOS }_{15}
\]} & 5.791403 & m & \multirow[t]{3}{*}{4.2} \\
\hline & & -1.8099 & m & \\
\hline & & 0.0 & m & \\
\hline \multirow[t]{3}{*}{APS Tank 2 Position} & \multirow[t]{3}{*}{\(\mathrm{TANKPOS}_{18}\)} & 5.791403 & m & \\
\hline & & 1.1308 & m & \\
\hline & & 0.0 & m & \\
\hline
\end{tabular}

\subsection*{6.4.2 CSM Reference Positions and Dimensions}

The following reference positions and dimensions are expressed in the CSM coordinate system. The relation between CSM and LM vehicle coordinates is given below in terms of the displacement of the LM origin in the CSM system and a transformation matrix which when pre-multiplying a vector in CSM coordinates converts it to LM vehicle coordinates.
\begin{tabular}{llcccc}
Position of LM & X & DISP & 36.1378 & m & 4.30 \\
coordinate origin & Y & & 0.0 & m & \\
in CSM coordinates & Z & & 0.0 & m &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Transformation matrix from CSM coordinates to LM coordinates & \(\mathrm{T}_{\text {LA }}\) & \[
\begin{aligned}
& -1.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.5 \\
& 0.86603 \\
& 0.0 \\
& 0.86603 \\
& -0.5
\end{aligned}
\] & nd & \\
\hline Radius of Service Module (SM) storage oxidizer and fuel tanks & RSTOR & 0.5715 & m & 4.31 \\
\hline X station for geometric center of SM storage oxidizer and fuel tanks & CSTOR & 23.1223 & m & 4.32 \\
\hline Radius of SM sump oxidizer and fuel tanks & RSUMP & 0.6477 & m & 4.31 \\
\hline X station for geometric center of SM sump oxidizer and & CSUMP & 23.0861 & m & 4.32 \\
\hline
\end{tabular}

\subsection*{6.4.3 LM Mass Properties}

The LM mass properties are presented at three propeliant loadings for both the ascent-descent and the ascent-only configurations. At each propellant loading the initial tanked RCS propellant mass is included (see 6.4.3.3). The inertia for each propellant loading is calculated assuming that the liquid propellant is composed of a rigid mass and a sloshing mass and has no moment of inertia about its own axis (the liquid is assumed to be irrotational). During the simulated mission, adjustments are made to the mass properties as propellant is burned. These are done by parabolic interpolation between the tabulated entries for the DPS and APS propellant loadings. Changes are also made to account for any RCS propellant used. Modifications to the mass properties are made to include the effect of either DPS fuel or oxidizer shifting between its two connected tanks due to the static heads of propellants attempting to remain perpendicular to the engine thrust vector.

In addition to the nominal modifications to the mass properties mentioned above, the center of gravity for the ascent-descent configuration may be effected by a propellant shift due to unbalanced heating of the DPS tanks. This condition, due to either the DPS fuel or the oxidizer shifting between its two connecting tanks, occurs in the absence of an accelerating force and changes the center of gravity at engine ignition (see 6.4.3.4).

Usable propellant loadings depend on the mission objective rather than on the tank capacities (as specified in reference 4.4). If the usable propellant loadings are revised from those cited in 6.4.3.5, it is not necessary to change the LM mass properties at the six propellant loadings. During the simulated mission the center of gravity and the inertia can be corrected for the new propellant loadings after doing the parabolic interpolations.

The inertia matrix is defined as:
\[
\begin{aligned}
& I_{X X}=\int\left(Y^{2}+Z^{2}\right) d m J_{X Y}=-\int X Y d m \quad J_{X Z}=-\int X Z d m \\
& J_{Y X}=-\int X Y d m \quad I_{Y Y}=\int\left(X^{2}+Z^{2}\right) d m \quad J_{Y Z}=-\int Y Z d m \\
& J_{Z X}=-\int X Z d m \quad J_{Z Y}=-\int Y Z d m \quad I_{Z Z}=\int\left(X^{2}+Y^{2}\right) d m
\end{aligned}
\]

\subsection*{6.4.3.1 Ascent-Descent Configuration}

The landing gear is deployed.

Descent Stage
DPS propellant loading \(100 \%\) of usable
\begin{tabular}{ll}
Ascent Stage & 4.13
\end{tabular}

APS propellant loading \(100 \%\) of usable

Mass \(\quad \mathrm{ML}_{0} \quad 15025.3 \quad \mathrm{~kg}\)
\begin{tabular}{lllll}
Center of Gravity & X & \(\mathrm{CGL}_{0}\) & 4.7515 & m \\
& Y & & 0.0022 & m \\
& Z & & 0.0183 & m
\end{tabular}
\begin{tabular}{clcrl}
Inertia Values & \(\mathrm{I}_{\mathrm{XX}}\) & \(\mathrm{IL}_{0}\) & 31222.2 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{XY}}\) & & -127.5 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{XZ}}\) & & -835.5 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YX}}\) & & -127.5 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{YY}}\) & & 33931.6 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YZ}}\) & & -369.8 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{ZX}}\) & -835.5 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{ZY}}\) & -369.8 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{ZZ}}\) & 33968.8 & \(\mathrm{~kg} \mathrm{~m}^{2}\)
\end{tabular}

\section*{Descent Stage}

DPS propellant loading \(50 \%\) of usable
Ascent Stage
APS propellant loading
\(100 \%\) of usable

Mass
\(\mathrm{ML}_{1}\)
11036.4
kg
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{\(\mathrm{CGL}_{3}\)} & 4.9302 & m \\
\hline & Y & & 0.0034 & m \\
\hline & Z & & 0.0254 & m \\
\hline \multirow[t]{9}{*}{Inertia Values} & \(\mathrm{I}_{\mathrm{XX}}\) & \multirow[t]{9}{*}{\(\mathrm{IL}_{9}\)} & 23725.0 & \[
\mathrm{kg} \mathrm{~m}^{2}
\] \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & -118.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & -783.5 & \(\mathrm{kg} \mathrm{m}^{2}\) \\
\hline & \[
\mathrm{J}_{\mathrm{YX}}
\] & & -118.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }_{\mathrm{I}}^{\mathrm{YY}}\) & & 28258.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{YZ}}\) & & \(-364.7\) & \(\mathrm{kg} \mathrm{m}^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZX }}\) & & -783. 5 & \(\mathrm{kg} \mathrm{m}^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & -364.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\mathrm{Z} Z}\) & & 30017.5 & kg m \({ }^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Descent Stage} \\
\hline DPS propella & loading & 0\% & & \\
\hline \multicolumn{5}{|l|}{Ascent Stage} \\
\hline \multicolumn{2}{|l|}{APS propellant loading} & \multicolumn{3}{|l|}{100\% of usable} \\
\hline \multicolumn{2}{|l|}{Mass} & \(\mathrm{ML}_{2}\) & 7047. 5 & kg \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{\(\mathrm{CGL}_{6}\)} & 5.5245 & m \\
\hline & Y & & 0.0059 & m \\
\hline & Z & & 0.0406 & m \\
\hline \multirow[t]{9}{*}{Inertia Values} & \({ }^{\text {I }}\) X & \multirow[t]{9}{*}{\(\mathrm{IL}_{18}\)} & 16225.4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & -91. 4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {JXZ }}\) & & -611. 2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{J_{Y X}}\) & & -91. 4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {I }} \mathrm{YY}\) & & 16834.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{YZ}}\) & & -359.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(J_{\text {ZX }}\) & & -611. 2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{ZY}}\) & & -359.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{Z Z}\) & & 20333.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline
\end{tabular}

\subsection*{6.4.3.2 Ascent-Only Configuration}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Ascent Stage} & 4. 30 \\
\hline \multicolumn{2}{|l|}{APS propellant loading} & \multicolumn{3}{|l|}{\(100 \%\) of usable} & 4.13 \\
\hline Mass & & \(\mathrm{ML}_{3}\) & 4933.3 & kg & \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{\(\mathrm{CGL}_{9}\)} & 6.2036 & m & \\
\hline & Y & & 0.0026 & m & \\
\hline & Z & & 0.0582 & m & \\
\hline \multirow[t]{9}{*}{Inertia Values} & \({ }^{\text {I }}\) XX & \multirow[t]{9}{*}{\(\mathrm{IL}_{27}\)} & 9138.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & -38.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\text {J }} \mathrm{XZ}\) & & -187.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\mathrm{J}} \mathrm{YX}\) & & -38.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\text {I }}\) YY & & 4684.6 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\mathrm{J}} \mathrm{YZ}\) & & 32.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{ZX}}\) & & -187.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{ZY}}\) & & 32.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{2 Z}\) & & 8250.5 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Ascent Stage} \\
\hline \multicolumn{2}{|l|}{APS propellant loading} & \multicolumn{3}{|l|}{\(50 \%\) of usable} \\
\hline Mass & & \(\mathrm{ML}_{4}\) & 3781.6 & kg \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{\(\mathrm{CGL}_{12}\)} & 6. 3261 & m \\
\hline & Y & & 0.0022 & m \\
\hline & Z & & 0.0760 & m \\
\hline \multirow[t]{9}{*}{Inertia Values} & \({ }^{\text {I }} \mathrm{XX}\) & \multirow[t]{9}{*}{\(\mathrm{IL}_{36}\)} & 6795.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & -39.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & -152.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\mathrm{J}} \mathrm{YX}\) & & -39.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\mathrm{YY}}\) & & 4414.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {J }}\) Y & & 32.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{ZX}}\) & & -152.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{Z} Y}\) & & 32.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }_{\text {I }}^{\text {LZ }}\) & & 5648.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline \multicolumn{5}{|l|}{Ascent Stage} \\
\hline \multicolumn{2}{|l|}{APS propellant loading} & \multicolumn{2}{|l|}{\(0 \%\) of usable} & \\
\hline Mass & & \(\mathrm{ML}_{5}\) & 2629.9 & kg \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{\(\mathrm{CGL}_{15}\)} & 6. 5588 & m \\
\hline & Y & & 0.0023 & m \\
\hline & Z & & 0. 1097 & m \\
\hline \multirow[t]{9}{*}{Inertia Values} & \({ }^{\text {I }}\) XX & \multirow[t]{9}{*}{\({ }^{1 L} 45\)} & 4445.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {J }}\) XY & & -38.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {J }}\) XZ & & -85.4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{Yx}}\) & & -38.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }_{1}{ }_{\text {YY }}\) & & 3921.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {J }}\) YZ & & 32.2 & \(\mathrm{kg} \mathrm{m}^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZX }}\) & & -85.4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{ZY}}\) & & 32.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\mathrm{ZZ}}\) & & 2825.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline
\end{tabular}
6.4.3.3 During the simulated mission the vehicle mass properties are adjusted as RCS propellant is used. In the tanks, the usable propellant is assumed to be above the unusable propellant.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{RCS propellant} & \multicolumn{4}{|l|}{\(100 \%\) of usable} \\
\hline Mass & & TMRFUEL & 266.7 & kg & 4. 30 \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & \multirow[t]{3}{*}{CGRCS1} & 7.1018 & m & \\
\hline & Y & & 0.0 & m & \\
\hline & Z & & 0.0 & m & \\
\hline \multirow[t]{9}{*}{Inertia Values} & \({ }^{\text {I }}\) X & \multirow[t]{9}{*}{IRF} & 367.4 & \multicolumn{2}{|l|}{\[
\mathrm{kg} \mathrm{~m}^{2}
\]} \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & 0.0 & & \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\mathrm{J}} \mathrm{YX}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{\mathrm{YY}}\) & & 35.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{YZ}}\) & & 33.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \({ }^{\text {J }}\) Z & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & 33.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{Z Z}\) & & 332.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Height of RCS propellant surface above RCS pro-}} & \multirow[t]{3}{*}{HRCSF} & \multirow[t]{3}{*}{0.3708} & \multirow[t]{3}{*}{m} & \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{} & & & & \\
\hline Y and Z coordinates & Y & RTANKPOSY & \(\pm 1.13284\) & m & \\
\hline of the four RCS tank & Z & RTANKPOSZ & \(\pm 0.3683\) & m & \\
\hline \multicolumn{2}{|l|}{geometric centers} & & & & \\
\hline \multicolumn{2}{|l|}{RCS Fuel Density} & RFDENS & 902.3 & \multicolumn{2}{|l|}{\(\mathrm{kg} / \mathrm{m}^{3}\)} \\
\hline RCS Oxidizer Density & & RODENS & 1442.5 & \(\mathrm{kg} / \mathrm{m}^{3}\) & \\
\hline
\end{tabular}
6.4.3.4 In addition to the nominal motion of the center of gravity, a time dependent shift can be included at DPS ignition to model the effect of propellant shift between the descent tanks.

The center of gravity is shifted instantaneously at DPS ignition and thereafter decays to the nominal location exponentially with time measured from DPS ignition. The magnitude of the shift is a function of the DPS propellant load remaining at ignition. It increases linearly from zero for full tanks to a maximum for half-full tanks and then decreases linearly to zero for empty tanks.
\begin{tabular}{llllll}
Maximum center of gravity & DCGMAX & X & 0.1346 & m & 4.15 \\
shift due to propellant shift & & Y & 0.2007 & m & \\
& & \(Z\) & 0.3226 & m & \\
& & & & & \\
Time constant of the center & CGTC & & 50.0 & sec & 4.16 \\
of gravity offset decay & & & & &
\end{tabular}

\subsection*{6.4.3.5 LM Initial Usable Propellant Loads and Densities}
\begin{tabular}{clcll}
DPS usable propellant mass & TMDFUEL & 7977.8 & kg & 4.30 \\
APS usable propellant mass & TMAFUEL & 2303.3 & kg \\
APS usable oxidizer mass & MAOX & 1420.5 & kg \\
APS usable fuel mass & MAF & 882.8 & kg \\
APS or DPS fuel density & FUELDENS & 902.3 & \(\mathrm{~kg} / \mathrm{m}^{3}\) \\
APS or DPS oxidizer density & OXDENS & 1442.5 & \(\mathrm{~kg} / \mathrm{m}^{3}\)
\end{tabular}

\subsection*{6.4.4 CSM Mass Properties}

When the LM and CSM are docked and the LM is the controlling vehicle, the mass of the SM propellant is assumed fixed and located at the LM end of its tanks. The center of gravity of the propellant is calculated with the assumption that the SM tanks are cylindrical with the same geometric center and volume as the actual tanks. The inertia of the propellant is calculated with the assumption that the propellant is in the shape of a slender rod with the same mass and height as the actual propellant. These assumptions are also used to find the propellant center of gravity and height in the tank for slosh parameter evaluation. The center of gravity is expressed in the CSM coordinate system. The inertia is given about the center of gravity of each item. See 6.4.3 for the definition of the inertia matrix.
6.4.4.1 Full CSM in orbit less two crewmen with the LM pushing the CSM
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mass & & MCSM & 27737.6 & kg & 4.33 \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & CGCSM & 23.986 & m & 4.33 \\
\hline & Y & & 0.097 & m & \\
\hline & Z & & 0.168 & m & \\
\hline \multirow[t]{9}{*}{Inertia Values} & \(\mathrm{I}_{\mathrm{XX}}\) & ICSM & 45012.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(J_{\text {XY }}\) & & 2404.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & -282.4 & \(\mathrm{kg} \mathrm{m}^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{YX}}\) & & 2404.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{\mathrm{YY}}\) & & 98487.5 & \(\mathrm{kg} \mathrm{m}{ }_{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{YZ}}\) & & -4263.5 & \(\mathrm{kg} \mathrm{m}^{2}\) & \\
\hline & \(\mathrm{J}_{\text {ZX }}\) & & -282.4 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & -4263.5 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{\text {ZZ }}\) & & 101822.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline
\end{tabular}

\subsection*{6.4.4.2 SM Propellants}

The service module has oxidizer and fuel sump tanks and oxidizer and fuel storage tanks. Propellant is first depleted from the storage tanks and then from the sump tanks.
6.4.4.2.1 SM tanked propellant with the LM pushing the CSM
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mass & & TMCFUEL & 16978.0 & kg & 4.33 \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & CGP & 23.313 & m & \\
\hline & Y & & 0.206 & m & \\
\hline & Z & & 0.137 & m & \\
\hline \multirow[t]{9}{*}{Inertia Values} & \(\mathrm{I}_{\mathbf{X X}}\) & IP & 25575.1 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & 260.3 & \(\mathrm{kg} \mathrm{m}_{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & -333.0 & \(\mathrm{kg} \mathrm{m}^{2}\) & \\
\hline & \(J_{\text {YX }}\) & & 260.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{\mathrm{YY}}\) & & 25341.2 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{J}_{\mathrm{YZ}}\) & & -4729.6 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(J_{\text {ZX }}\) & & -333.0 & kg m \({ }^{2}\) & \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & -4729.6 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) & \\
\hline & \(\mathrm{I}_{\mathrm{ZZ}}\) & & 30884.5 & \(\mathrm{kg} \mathrm{m}^{2}\) & \\
\hline
\end{tabular}
6.4.4.2.2 Propellant Densities
\begin{tabular}{llrl}
SM Fuel Density & CFDENS & 902.96 & \(\mathrm{~kg} / \mathrm{m}^{3} 4.34\) \\
SM Oxidizer Density & CODENS & 1443.58 & \(\mathrm{~kg} / \mathrm{m}^{3}\)
\end{tabular}
6.4.4.2.3 Sump tank propellant with the LM pushing the CSM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Mass} & MSU & 10173.0 & kg & 4.35 \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & CGSU & 23.180 & m & \\
\hline & Y & & 0.283 & m & \\
\hline & Z & & 0.039 & m & \\
\hline Inertia Values & \[
\begin{aligned}
& { }^{{ }^{X X X}} \\
& { }^{J_{X Y}} \\
& \mathrm{~J}_{\mathrm{XZ}} \\
& \mathrm{~J}_{\mathrm{YX}} \\
& { }^{\mathrm{I}_{\mathrm{YY}}} \\
& \mathrm{~J}_{\mathrm{YZ}} \\
& \mathrm{~J}_{\mathrm{ZX}} \\
& \mathrm{~J}_{\mathrm{ZY}} \\
& \mathrm{I}_{\mathrm{ZZ}}
\end{aligned}
\] & ISU & \[
\begin{array}{r}
14768.6 \\
0.0 \\
0.0 \\
0.0 \\
10616.28 \\
-1981.08 \\
0.0 \\
-1981.08 \\
24843.49
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{kg} \mathrm{m}^{2}\) \\
kg m \\
\(\mathrm{kg} \mathrm{m}^{2}\) \\
kg m \\
kg m
\end{tabular} & \\
\hline \multicolumn{6}{|l|}{Sump Tank Oxidizer} \\
\hline Mass & & MSUO & 6258.8 & kg & \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & CGSUO & 23.180 & m & \\
\hline & Y & & 1.227 & m & \\
\hline & Z & & 0.168 & m & \\
\hline
\end{tabular}
\begin{tabular}{clrl}
Inertia Values & ISUO & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{XX}}\) & & 0.0 \\
\(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{XY}}\) & & 0.0 \\
\(\mathrm{~J}_{\mathrm{XZ}}\) & & \(\mathrm{kg} \mathrm{m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YX}}\) & & 0.0 \\
\(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{YY}}\) & & 6365.0 \\
\(\mathrm{~J}_{\mathrm{YZ}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{ZX}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{ZY}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{ZZ}}\) & 6365.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\)
\end{tabular}

Sump Tank Fuel
\begin{tabular}{|c|c|c|c|c|}
\hline Mass & & MSUF & 3914.2 & kg \\
\hline Center of Gravity & X & CGSUF & 23.180 & m \\
\hline & Y & & -1.227 & m \\
\hline & Z & & -0.168 & m \\
\hline Inertia Values & \({ }^{\text {I }}\) XX & ISUF & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(J_{\text {XY }}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\mathrm{J}} \mathrm{YX}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\mathrm{YY}}\) & & 3980.5 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\mathrm{J}} \mathrm{YZ}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZX }}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\mathrm{ZZ}}\) & & 3980.5 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline
\end{tabular}
6.4.4.2.4 Storage tank propellant with the LM pushing the CSM
\begin{tabular}{lllrl}
Mass & & MST & 6805.0 & kg \\
\multirow{3}{*}{ Center of Gravity } & X & CGST & 23.512 & m \\
& Y & & 0.091 & m \\
& Z & & 0.284 & m
\end{tabular}
\begin{tabular}{llrr}
Inertia Values & \(\mathrm{I}_{\mathrm{XX}}\) & IST & 10409.5 \\
& \(\mathrm{~J}_{\mathrm{XY}}\) & & \(\mathrm{kg} \mathrm{m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{XZ}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YX}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{YY}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YZ}}\) & 14028.6 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{Z X}\) & -2941.1 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{Z Y}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{Z Z}\) & -2941.1 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& & 5440.5 & \(\mathrm{~kg} \mathrm{~m}^{2}\)
\end{tabular}

\section*{Storage Tank Oxidizer}
\begin{tabular}{|c|c|c|c|c|}
\hline Mass & & MSTO & 4186.4 & kg \\
\hline \multirow[t]{3}{*}{Center of Gravity} & X & CGSTO & 23.512 & m \\
\hline & Y & & 0.376 & m \\
\hline & Z & & 1.214 & m \\
\hline \multirow[t]{9}{*}{Inertia Values} & \(\mathrm{I}_{\mathrm{XX}}\) & ISTO & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XY}}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{YX}}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{1} \mathrm{YY}\) & & 2786.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{\text {J }} \mathrm{YZ}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZX }}\) & & 0.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\text {ZY }}\) & & 0.0 & \[
\mathrm{kg} \mathrm{~m}_{\rho}^{2}
\] \\
\hline & \(1_{Z Z}\) & & 2786.7 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline
\end{tabular}

Storage Tank Fuel
\begin{tabular}{lllll}
Mass & & MSTF & 2618.6 & kg \\
\multirow{3}{*}{ Center of Gravity } & & & \\
& X & CGSTF & 23.512 & m \\
& Y & & -0.376 & m \\
& Z & & -1.214 & m
\end{tabular}
\begin{tabular}{llrl}
Inertia Values & \(\mathrm{I}_{\mathrm{XXX}}\) & ISTF & 0.0 \\
\(\mathrm{~J}_{\mathrm{XY}}\) & & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{XZ}}\) & & 0.0 \\
\(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{~J}_{\mathrm{YX}}\) & & 0.0 \\
\(\mathrm{I}_{\mathrm{YY} \mathrm{m}}{ }^{2}\) \\
& \(\mathrm{I}_{\mathrm{YY}}\) & & 1743.1 \\
& \(\mathrm{~J}_{\mathrm{YZ}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{Jg} \mathrm{m}_{\mathrm{ZX}}\) & \\
& \(\mathrm{J}_{\mathrm{ZY}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& \(\mathrm{I}_{\mathrm{ZZ}}\) & 0.0 & \(\mathrm{~kg} \mathrm{~m}^{2}\) \\
& & 1743.1 & \(\mathrm{~kg} \mathrm{~m}^{2}\)
\end{tabular}

\subsection*{6.4.5 LM Reaction Control System Data}
6.4.5.1 The individual RCS thruster is modeled as a constant thrust engine. The buildup and tailoff of thrust are modeled by instantaneous changes in thrust, shifted in time from the electrical command. The shift is different for the application and removal of thrust. The amount of the shift is calculated to give a transient impulse typical of a real thruster.

Step delay in RCS thrust RCONDEL \(\quad 0.019 \quad\) sec 4.5 application from receipt of electrical command

Step delay in RCS thrust
RCOFFDEL
0.015 sec
4. 39 removal from removal of electrical command
\begin{tabular}{lllll}
Minimum allowed RCS & TMINPULS & 0.013 & sec & 4.1
\end{tabular} electrical pulse length

The propellant usage of each RCS thruster is given by

FUEL \(=\) TRCON JSECTOKG + NFIRE NFIRTOKG
\begin{tabular}{ll}
FUEL & is the mass of propellant used \\
TRCON & is the accumulated firing time of the thruster \\
NFIRE & is the number of firings of the thruster
\end{tabular}
Constant RCS mass flow
rate \(\quad\) JSECTOKG \(\quad 0.1610 \quad \mathrm{~kg} / \mathrm{sec}\)

Propellant penalty per NFIRTOKG 0.0009525 kg
firing
6.4.5.2 The nominal force applied to the vehicle by individual RCS thrusters, expressed in the LM vehicle coordinate system is given below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Thruster IV-U} & \multirow[t]{3}{*}{Jet 1} & \multirow[t]{3}{*}{\(\mathrm{RCFORCE}_{3}\)} & -444.82 & n & 4.1 \\
\hline & & & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline \multirow[t]{3}{*}{Thruster IV-D} & \multirow[t]{3}{*}{Jet 2} & \multirow[t]{3}{*}{\(\mathrm{RCFORCE}_{6}\)} & 444.82 & n & \\
\hline & & & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline & & \multirow{4}{*}{\(\mathrm{RCFORCE}_{9}\)} & & & \\
\hline \multirow[t]{3}{*}{Thruster IV-F} & \multirow[t]{3}{*}{Jet 3} & & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline & & & -444.82 & n & \\
\hline \multirow[t]{3}{*}{Thruster IV-S} & \multirow[t]{3}{*}{Jet 4} & \multirow[t]{3}{*}{\[
\text { RCFORCE }_{12}
\]} & 0.0 & n & \\
\hline & & & -444.82 & n & \\
\hline & & & 0.0 & n & \\
\hline \multirow[t]{3}{*}{Thruster III-U} & \multirow[t]{3}{*}{Jet 5} & \multirow[t]{3}{*}{\(\mathrm{RCFORCE}_{15}\)} & -444.82 & n & \\
\hline & & & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline \multirow[t]{3}{*}{Thruster III-D} & \multirow[t]{3}{*}{Jet 6} & \multirow[t]{3}{*}{\(\mathrm{RCFORCE}_{18}\)} & 444.82 & n & \\
\hline & & & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline \multirow[t]{3}{*}{Thruster III-F} & \multirow[t]{3}{*}{Jet 7} & \multirow[t]{3}{*}{\[
\text { RCFORCE }_{21}
\]} & 0.0 & n & \\
\hline & & & 0.0 & n & \\
\hline & & & 444.82 & n & \\
\hline \multirow[t]{3}{*}{Thruster III-S} & \multirow[t]{3}{*}{Jet 8} & \multirow[t]{3}{*}{\(\mathrm{RCFORCE}_{24}\)} & 0.0 & n & \\
\hline & & & -444.82 & n & \\
\hline & & & 0.0 & n & \\
\hline
\end{tabular}

6.4.5.3 With the ascent-descent configuration, the plumes of the +X translation jets impinge on the descent structure. The force each of these jets apply to the vehicle is given below. The force is expressed in the LM vehicle coordinate system.
\begin{tabular}{ccccc}
Thruster IV-D & Jet 2 & X & -35.586 & n \\
& Y & -28.308 & n & \\
& Z & -28.308 & n &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Thruster III-D} & Jet 6 & X & -35.586 \\
\hline & & Y & -28. 308 \\
\hline & & Z & 28. 308 \\
\hline \multirow[t]{3}{*}{Thruster II-D} & Jet 10 & X & -165.474 \\
\hline & & Y & 33.341 \\
\hline & & Z & 33. 341 \\
\hline \multirow[t]{3}{*}{Thruster I-D} & Jet 14 & X & -35.586 \\
\hline & & Y & 28. 308 \\
\hline & & Z & -28. 308 \\
\hline
\end{tabular}
6.4.5.4 The torque applied about the origin of the GAEC-FMES coordinate system by the impinging plume of each jet is given below. The GAEC-FMES coordinate system has its axes parallel to the respective LM vehicle axes and its origin is given below.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Thruster III-D} & \multirow[t]{3}{*}{Jet 6} & X & 0.0 & n m \\
\hline & & Y & 111.663 & n m \\
\hline & & Z & 111.663 & n m \\
\hline \multirow[t]{3}{*}{Thruster II-D} & \multirow[t]{3}{*}{Jet 10} & X & 0.0 & n m \\
\hline & & Y & 297.612 & n m \\
\hline & & Z & -297.612 & n m \\
\hline \multirow[t]{3}{*}{Thruster 1-D} & \multirow[t]{3}{*}{Jet 14} & X & 0.0 & n m \\
\hline & & Y & -111.663 & n m \\
\hline & & Z & - \(\mathbf{- 1 1 . 6 6 3}\) & n m \\
\hline
\end{tabular}

\subsection*{6.4.6 LM Descent Propulsion System Data}
6.4.6.1 The DPS thrust buildup and decay upon receipt of the electrical ON-OFF commands are modeled by time delays followed by an instantaneous change in thrust. These delays are calculated to provide transient impulses typical of the real engine. At full throttle the simulated thrust increases linearly with time to model the effect of nozzle and valve erosion. The specific impulse of the DPS is a tabulated function of DPS thrust. At each thrust level a linear interpolation is made between the ISP table entries.
\begin{tabular}{lllll}
Step delay from LGC engine & DEONDEL & 2.55 & sec & 4.19, \\
ON command to application & & 4.38 \\
of rninimum DPS thrust
\end{tabular}
\begin{tabular}{lllll}
Step delay from LGC removal & DEOFFDEL & 0.38 & sec & 4.40 \\
of engine ON command to \\
removal of thrust
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline The minimum DPS thrust & FMIN & 5337.9 & n & 4.38 \\
\hline The maximum DPS thrust & FMAX & 46706.33 & n & 4.1 \\
\hline The uneroded maximum DPS thrust & FCMAX & 43203.3 & n & 4.38 \\
\hline Thrust tolerance on FCMAX & FCMAXTOL & \(\pm 155.7\) & n & 4.18 \\
\hline Thrust tolerance on the DPS thrust at the end of a 370 sec . burn if the burn starts at FCMAX & FENDTOL & \(\pm 444.8\) & n & \\
\hline
\end{tabular}

Specific impulse of the DPS as a function of normalized thrust is given below. 'lhe ISP values have the effect of erosion included. The ISP corresponding to a normalized thrust of unity is included to model the decrease in ISP with engine burn time.

THRUST/FMAX
\begin{tabular}{llll}
.114 & 289.7 & sec & 4.38 \\
.115 & 292.7 & sec & \\
.252 & 293.6 & sec & \\
.401 & 295.0 & sec & \\
.925 & 303.0 & sec & \\
.945 & 299.0 & sec &
\end{tabular}
6.4.6.2 The response of the descent engine control assembly to automatic throttle incrementing and decrementing pulses is modeled as a perfect integrator, limited by three non-linearities. The automatic throttle cannot command a thrust level which is less than the minimum thrust level given above. This minimum thrust command corresponds to the ground state or zero of the automatic throttle counter. The automatic throttle is held in this ground state when the DPS is not armed.

Voltage applied to the throttle
VMIN
2.5
v
4. 38 valve actuator when automatic throttle is in its ground state

The LM Guidance Computer (LGC) issues throttle incrementing or decrementing pulses (bits) to an automatic throttle counter whose output goes to a digital-to-analog converter, thus producing a voltage. When the sum of the voltages produced by the throttle digital-to-analog converter and the manual throttle commands the engine to produce its maximum uneroded thrust, additional automatic throttle incrementing commands have no effect.
\begin{tabular}{lllll}
Voltage which commands & VMAX & 13.8 & v & 4.17
\end{tabular}

The final non-linearity associated with the automatic throttle is the saturation of the automatic throttle counter.
\begin{tabular}{llll}
\begin{tabular}{l}
Maximum automatic throttle \\
count
\end{tabular} & 3428 & bits & 4.15 \\
\\
\begin{tabular}{l}
Rate at which the LGC issues \\
automatic throttle pulses (bits)
\end{tabular} & 3200 & bits/sec & 4.8, \\
\end{tabular}

Voltage applied to the throttle valve actuator per automatic throttle bit

Thrust command per volt VTN applied to throttle valve actuator

BTV
0.0035
v/bit
4.15

The thrust response of the descent engine to throttle commands is modeled by a first order lag.

Time constant of thrust response WDENG \(\quad 0.3\) sec 4.1 to throttle commands

Rate of change of thrust at DTD \(2.525 \quad \mathrm{n} / \mathrm{sec} 4.38\) full thrust command to simulate erosion effects
6.4.6.3. The orientation of the DPS thrust vector with respect to the LM vehicle coordinate system is determined by the position of the DPS trim gimbals, the fixed misalignment of the engine center line with respect to the vehicle center line, the fixed misalignment of the thrust center line with respect to the engine center line and the thrust dependent misalignment of the thrust vector due to flexing of the mount.

The trim gimbal actuators are modeled asconstant speed drives with a time delay in coming to speed and coming to a stop.
\begin{tabular}{lllll}
Trim gimbal rate & GIMRATE & \(0.00349 \mathrm{rad} / \mathrm{sec}\) & 4.1 \\
Trim gimbal drive step & TRIMDEL & 0.1 & sec & \\
ON-OFF delay & & & & \\
Trim gimbal excursion limits & LMY,LMZ & 0.10472 & rad & \\
Time delay from gimbal failure & GIMFLDEL & 0.429 & sec & \(\mathbf{4 . 2 2}\) \\
to LACC receipt of a failure signal
\end{tabular}

Three-sigma angular alignment
\begin{tabular}{lccc}
DEMACL & Y & \(\pm 0.005236 \mathrm{rad}\) \\
& \(Z\) & \(\pm 0.005236\) & rad
\end{tabular}
tolerance of the engine center line with respect to the vehicle center line about the noted axes

Three-sigma angular alignment tolerance of the thrust center line with respect to the engine center line about the noted axes

Thrust dependent misalignment of the thrust center line with respect to the vehicle center line at full thrust about the noted axes
DEMATA \(\quad \mathrm{Y} \quad \pm 0.008727 \mathrm{rad}\)
\(\angle \pm 0.008727 \mathrm{rad}\)

DEMAC \(\quad\) Y \(+0.01107 \quad \mathrm{rad}\)
4.9 Z -0.01107 rad

\subsection*{6.4.7 LM Ascent Propulsion System Data}
6.4.7.1 The APS thrust buildup and decay upon receipt of the electrical ON-OFF commands are modeled by pure delays followed by an instantaneous change in thrust. These delays are calculated to provide transient impulses typical of the real engine. The thrust of the simulated APS increases linearly with time to model the effect of nozzle and valve erosion. The specific impulse of the APS is a constant.

Step delay from LGC engine AEONDEL 0.382 sec 4.38
ON command to application of thrust (FASCENTN)
Step delay from LGC removal of AEOFFDEL
engine ON command to
removal of thrust
Uneroded thrust of the APS
engine

Specific impulse of the APS ISPA 309.0 sec

At APS thrust application, 0.687 seconds after the abort stage command, staging forces and torques are included. These are modeled by two sets of polynomial time series. The first of these model the staging force during the interval immediately following APS ignition, the second set is used after this initial buildup. The staging forces are zeroed at the end of the second interval.

The staging force is given by
\[
F_{\text {staging }}=\left(F_{X}, F_{Y}, F_{Z}\right) \quad \text { in newtons }
\]

The staging torque is given by

Where for
\[
\mathrm{M}_{\text {staging }}=\left(0, \mathrm{M}_{\mathrm{Y}}, \mathrm{M}_{Z}\right) \quad \text { in newton meters }
\]
\[
\mathrm{t}_{\text {ignition }} \leqq \mathrm{t} \leqq \mathrm{t}_{\text {ignition }}+0.10
\]

When
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(I=(C\)} & \multicolumn{4}{|l|}{\(\left(t_{\text {ignition }}+0.10\right) \leqq t \leqq\left(t_{\text {ignition }}+0.35\right)\)} \\
\hline & \(t_{\text {ignition }}-0.1\) & \(\mathrm{D}\left(\mathrm{t}-\mathrm{t}_{\text {ignition }}\right.\) & & E) \(10^{5}\) \\
\hline \(\mathrm{I}=\mathrm{F}_{\mathrm{X}}\) & \(C=1.99280\) & \(D=-1.70812\) & E & 0.30248 \\
\hline \(\mathrm{I}=\mathrm{F}_{\mathrm{Y}}\) & \(C=0.10676\) & \(D=-0.06405\) & E & 0.00934 \\
\hline \(I=F_{Z}\) & \(C=0.39856\) & \(\mathrm{D}=-0.24020\) & & 0.03559 \\
\hline \(\mathrm{I}=\mathrm{M}_{\mathrm{Y}}\) & \(C=0.20880\) & \(D=-0.03471\) & & -0.00434 \\
\hline \(\mathrm{I}=\mathrm{M}_{Z}\) & \(C=3.05059\) & \(D=-1.25006\) & & 0.12202 \\
\hline
\end{tabular}

The sequencing of events following a lunar launch is as follows. At APS thrust application, AEONDEL seconds after the LGC engine on command, Fire-in-the-Hole forces and torques are included. These are modeled by two sets of polynomial time series. The first of these model the staging force during the interval immediately following APS ignition, the second set is used after this initial buildup. The staging forces are zeroed at the end of the second interval.

The staging force is given by
\[
F_{\text {staging }}=\left(F_{X}, F_{Y}, F_{Z}\right) \quad \text { in newtons }
\]

The staging torque is given by

Where for
\[
\mathrm{M}_{\text {staging }}=\left(0, \mathrm{M}_{\mathrm{Y}}, \mathrm{M}_{Z}\right) \quad \text { in newton meters }
\]
\[
t_{\text {ignition }} \leqq t \leqq t_{\text {ignition }}+0.14
\]
\[
\begin{array}{llr}
& I=\left[A\left(t-t_{\text {ignition }}\right)^{2}+B\left(t-t_{\text {ignition }}\right)\right] 10^{5} \\
I=F_{X} & \mathrm{~A}=12.935 & B=0.698 \\
I=F_{Y} & \mathrm{~A}=0.338 & \mathrm{~B}=0.027 \\
\mathrm{I}=\mathrm{F}_{\mathrm{Z}} & \mathrm{~A}=2.042 & \mathrm{~B}=0.013 \\
\mathrm{I}=\mathrm{M}_{\mathrm{Y}} & \mathrm{~A}=0.270 & \mathrm{~B}=-0.068 \\
\mathrm{I}=\mathrm{M}_{\mathrm{Z}} & \mathrm{~A}=9.342 & \mathrm{~B}=-0.484
\end{array}
\]

When
\[
\begin{aligned}
& \left(t_{\text {ignition }}+0.14\right) \leqq t \leqq\left(t_{\text {ignition }}+0.64\right) \\
& I=\left(C\left(t-t_{\text {ignition }}-0.14\right)^{2}+D\left(t-t_{\text {ignition }}-0.14\right)+E\right) 10^{5} \\
& \begin{array}{llll}
\mathrm{I}=\mathrm{F}_{\mathrm{X}} & \mathrm{C}=0.632 & \mathrm{D}=-1.019 & \mathrm{E}=0.351 \\
\mathrm{I}=\mathrm{F}_{\mathrm{Y}} & \mathrm{C}=0.016 & \mathrm{D}=-0.029 & \mathrm{E}=0.011 \\
\mathrm{I}=\mathrm{F}_{\mathrm{Z}} & \mathrm{C}=0.119 & \mathrm{D}=-0.143 & \mathrm{E}=0.042 \\
\mathrm{I}=\mathrm{M}_{\mathrm{Y}} & \mathrm{C}=0.030 & \mathrm{D}=0.004 & \mathrm{E}=-0.004 \\
\mathrm{I}=\mathrm{M}_{\mathrm{Z}} & \mathrm{C}=0.654 & \mathrm{D}=-0.557 & \mathrm{E}=0.115
\end{array}
\end{aligned}
\]

\subsection*{6.4.9 LM Propellant Slosh Model}

The effect of propellant sloshing in the LM tanks is modeled by a two dimensional mass-spring oscillator analog for each propellant tank; RCS tanks are neglected. The slosh mass, frequency and attachment points are stored as tabulated functions of the fraction of propellant remaining in the appropriate tank.

The slosh frequency is given by
\[
\mathrm{w}=\operatorname{LAMBDA}\left(\mathrm{A}_{\mathrm{X}} / \mathrm{R}_{\operatorname{tank}}\right)^{1 / 2}
\]

Where LAMBDA is a function of the liquid level in the tank,
\(A_{x}\) is the contact acceleration along the vehicle \(X\) axis and
\(R_{\text {tank }}\) is the radius of the tank in question.

The following table of slosh parameters is used for the DPS tanks. The slosh masses are expressed in kilograms; the slosh frequency parameter, LAMBDA, in radians. The attachment point is the displacement of the slosh oscillator attachment point, in meters, along the \(+X\) vehicle axis measured from the tank geometric center. A linear interpolation is made between tabulated points. The slosh damping is a constant for all tank loadings greater than 2 percent of the total usable propellant. When 2 percent or less of the usable propellant remains, the slosh damping ratio is changed and then held constant to propellant depletion.
\begin{tabular}{lllll}
Slosh damping ratio when & SDELC & 0.005 & \(1 / \mathrm{sec}\) & 2.3 \\
tank loading is greater \\
than 2 percent & & & \\
Slosh damping ratio when & SDELC & 0.1 & \(1 / \mathrm{sec}\) \\
tank loading is less & & &
\end{tabular}
\begin{tabular}{cccccc}
\begin{tabular}{c}
Fraction of \\
Fuel Remaining
\end{tabular} & \begin{tabular}{c}
Oxidizer Slosh \\
Mass
\end{tabular} & \begin{tabular}{c}
Fuel Slosh \\
Mass
\end{tabular} & LAMBDA & \begin{tabular}{c}
Attachment \\
Point
\end{tabular} & \\
& & & & & 4.38 \\
0.0 & 0.0 & 0.0 & 1.00 & -0.246 & \\
0.1 & 199.4 & 125.1 & 1.09 & -0.246 & \\
0.2 & 373.8 & 234.6 & 1.16 & -0.246 & \\
0.3 & 461.0 & 289.3 & 1.23 & -0.227 & \\
0.4 & 498.4 & 312.8 & 1.29 & -0.200 \\
0.5 & 523.4 & 328.4 & 1.33 & -0.155 \\
0.6 & 535.8 & 336.2 & 1.35 & -0.071 & \\
0.7 & 535.8 & 336.2 & 1.38 & 0.039 & \\
0.8 & 498.4 & 312.8 & 1.44 & 0.155 \\
0.9 & 398.8 & 250.2 & 1.56 & 0.226 \\
1.0 & 0.0 & 0.0 & 2.50 & 0.246
\end{tabular}

DPS propellant tank radius \(\quad\) TANKR \(_{0} \quad 0.6477 \quad \mathrm{~m} \quad 4.30\)
The following table of slosh parameters is used for the APS tanks.
\begin{tabular}{ccccc}
Fraction of & Oxidizer Slosh & Fuel Slosh & LAMBDA & Attachment \\
Fuel Remaining & Mass & Mass & & Point \\
& & & & 4.38
\end{tabular}

APS propellant tank radius
0.0
0.0
1.00
0.0
\(72.4 \quad 1.06\)
0.0
\(144.9 \quad 1.10 \quad 0.0\)
0.2
230.5
0.3
0.4
317.
199.2
1.14
0.0
389.0
0.5
432.2
244.4
1.18
0.0
0.6
446.6
0.7
439.4
0.8
389.0
0.9
273.7
0.0
271.6
1.22
0.0
280.7
1.27
0.0
276.1
1.33
0.0
244.41 .43
0.0
0.0
172.0
1.64
0.0
1.0

TANKR \(_{1}\)
0.62738 m
4. 30

\subsection*{6.4.10 CSM Propellant Slosh Model}

The effect of propellant sloshing in the CSM tanks is modeled by a two dimensional mass-spring oscillator analog for each propellant tank; RCS tanks are neglected. The slosh mass, frequency, and attachment point are all calculated using the following relations.

The slosh frequency is given by
\[
\mathrm{w}=\operatorname{SLFP}\left(\mathrm{A}_{\mathrm{X}} / \mathrm{R}_{\operatorname{tank}}\right)^{1 / 2}
\]
\begin{tabular}{|c|c|c|}
\hline where & w & is the slosh frequency, \\
\hline & \({ }^{A_{X}}\) & is the contact acceleration along the vehicle X axis. \\
\hline & \[
\mathrm{R}_{\text {tank }}
\] & is the radius of the tank in question. \\
\hline & SLFP & \[
\left(X I \tanh \left(X I H P / R_{\operatorname{tank}}\right)\right)^{1 / 2}
\] \\
\hline & \(\mathrm{XI}=\) & 1.84 (argument of Bessel function of the first kind of order one when its derivative is zero) \\
\hline & HP & is height of propellant in tank (see 6.4.4) \\
\hline & \(\tanh\) & is hyperbolic tangent \\
\hline
\end{tabular}

The slosh mass is given by
\[
\mathrm{SM}=\mathrm{MP} 2 \tanh \left(\mathrm{XIHP} / \mathrm{R}_{\operatorname{tank}}\right) /\left[\left(\mathrm{XI}^{2}-1\right) \mathrm{XI} \mathrm{HP} / \mathrm{R}_{\operatorname{tank}}\right]
\]
where SM is the slosh mass.

MP is the mass of propellant in a tank.

The slosh attachment point is given by
\[
\overline{S A P}=\left(C G_{X}-H O, C G_{Y}, C G_{Z}\right)
\]
\[
\begin{aligned}
& \text { SAP } \begin{array}{l}
\text { is the position of the slosh attachment point in CSM } \\
\text { coordinates. }
\end{array} \\
& \left(\mathrm{CG}_{\mathrm{X}},{ }^{\mathrm{CG}_{\mathrm{Y}},} \mathrm{CG}_{\mathrm{Z}}\right) \text { is the center of gravity of the propellant in the } \\
& \text { tanks (See } 6.4 .4) .
\end{aligned}
\]

The slosh damping ratio for the CSM propellant tanks is a constant.
\begin{tabular}{|c|c|c|c|c|}
\hline Slosh damping ratio for CSM oxidizer tanks & ZETAO & 0.005 & 1/sec & 2.3 \\
\hline Slosh damping ratio for & ZETAF & 0.005 & 1/sec & 2.3 \\
\hline CSM fuel tanks & & & & \\
\hline
\end{tabular}

\subsection*{6.4.11 CSM/LM Bending}

It is necessary to simulate the structural deflections of the spacecraft caused by external loadings or contact forces such as main propulsion system thrust, RCS thrust and fuel slosh. These structural deflections influence the spacecraft control systems by deflecting the navigation base. The bending deflection of the spacecraft can be expanded in terms of an infinite number of orthogonal eigenfunctions or modes and their associated eigenvalues or frequencies. The modes corresponding to the three lowest frequencies are simulated. The external excitations or forcing functions driving these modes can also be expanded in terms of the same eigenfunctions. Since all of the excitations are modeled by forces applied at a point, they are all spatial impulses. The expansion of the driving functions thus becomes the vector inner product of the external force and the normalized deflection of the mode at the point of application of the force. The equation for the generalized coordinate for a given bending mode with the driving terms included is
\[
\begin{aligned}
& \mathrm{D}^{2} \mathrm{QB}_{\mathrm{J}} / \mathrm{DT}^{2}=-2 \text { ZETAB }_{J} \mathrm{WB}_{\mathrm{J}} \mathrm{D} \mathrm{QB}_{\mathrm{J}} / \mathrm{DT}-\mathrm{WB}_{\mathrm{J}}^{2} \mathrm{QB}_{\mathrm{J}} \\
&\left.+\sum_{\mathrm{I}} \overline{(D I S P}_{\mathrm{I}} / \mathrm{GM}\right) \cdot \mathrm{FORCE}_{\mathrm{I}}
\end{aligned}
\]
where \(Q_{J}\) is the generalized coordinate associated with the Jth mode,

ZETAB \(_{J}\) is the damping ratio associated with the Jth mode,
\(W_{J} \quad\) is the frequency associated with the \(J\) th mode,

FORCE \(_{1} \quad\) is one of the contact forces which excite the generalized bending coordinates

DISP \(_{I} \quad\) is the vector displacement of the point of application of \(\operatorname{FOR} \overline{C E}_{1}\),

GM is the generalized mass associated with the Jth mode.

It is seen that the bending coordinate for each of the three simulated modes is the solution of a second order differential equation.

The motion of the navigation base is the product of the modal displacements at the navigation base and the appropriate derivative of the generalized bending coordinate. For example, the translational velocity of the navigation base due to the Jth bending mode is given by
\[
\overline{\mathrm{V}}_{\mathrm{J}}=\overline{\operatorname{DISPNB}}_{\mathrm{J}} \quad \mathrm{DQB} \mathrm{D}_{\mathrm{J}} / \mathrm{DT}
\]
where DISPNB \(_{J}\) is the modal displacement of the navigation base due to the Jth bending mode.

Similarly rotational displacement of the navigation base is the product of a modal rotation vector at the navigation base and the generalized bending coordinate
\[
\bar{\theta}=\mathrm{SLOPNB}_{J} \overline{Q B}_{J}
\]
\(\begin{aligned} & \text { where } \quad S_{O P N B} \text { is the modal rotation of the navigation } \\ & \text { base due to the } J \text { th bending mode. }\end{aligned}\)

The mode shapes or specifically the displacements and rotations at individual spacecraft stations and the corresponding modal frequencies, depend on the mass distribution of the spacecraft. Data is thus required for representative loading conditions. The data is the displacements and rotations at all points of interest given below, the generalized mass, and the frequency and damping ratio for each mode. Three complete sets of data are given, one for each reference vehicle mass. A linear interpolation based on instantaneous
total vehicle mass is used to obtain the bending parameters at points between two adjacent reference masses. Within a set of data for a given reference mass, each parameter has three entries for a scalar parameter, or nine entries for a vector parameter. The first entry for a scalar parameter, or the first three entries for a vector parameter pertain to the first mode simulated; the second or second three pertain to the second mode simulated; and similarly for the third mode. The vector parameters are expressed in the LM vehicle coordinate system.

\subsection*{6.4.11.1 Bending Data}

The following data is expressed in the LM vehicle coordinate system.
\begin{tabular}{ccccc}
Reference spacecraft mass & \(\mathrm{MB}_{0}\) & 29898.5 & kg & 4.36 \\
SPS propellant loading & \(25 \%\) & & & \\
DPS propellant loading & \(100 \%\) & & & \\
APS propellant loading & \(100 \%\) & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Generalized mass used for all modes & GM & 175.127 & kg & 4.36 \\
\hline Frequency of each mode & \(\mathrm{WB}_{0}\) & \[
\begin{aligned}
& 14.074 \\
& 14.954 \\
& 18.661
\end{aligned}
\] & \[
\mathrm{rad} / \mathrm{sec}
\] & 4.36 \\
\hline Damping ratio for generalized coordinate & \(\mathrm{ZETAB}_{0}\) & \[
\begin{aligned}
& 0.005 \\
& 0.005 \\
& 0.005
\end{aligned}
\] & n d & 2.3 \\
\hline Displacement of the DPS trim gimbal station & DISPGIMB \(_{0}\) & & \[
\mathrm{m} / \mathrm{m}
\] & \[
\begin{aligned}
& 4.36 \\
& 4.37
\end{aligned}
\] \\
\hline & & \[
\begin{array}{r}
-0.00118 \\
0.00035 \\
0.04005
\end{array}
\] & & \\
\hline & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Displacement of DPS & DISPTANK \(_{18}\) & 0.00127 & \(\mathrm{m} / \mathrm{m}\) \\
\hline \multirow[t]{8}{*}{oxidizer tank 3} & & 0.04791 & \\
\hline & & 0.00158 & \\
\hline & & 0.06711 & \\
\hline & & 0.00599 & \\
\hline & & 0.04649 & \\
\hline & & 0.00463 & \\
\hline & & -0.07833 & \\
\hline & & 0.00584 & \\
\hline \multirow[t]{9}{*}{Displacement of DPS oxidizer tank 4} & DISPTANK \(_{27}\) & 0.00255 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & 0.04182 & \\
\hline & & 0.00032 & \\
\hline & & -0.07199 & \\
\hline & & -0.00543 & \\
\hline & & 0.04563 & \\
\hline & & -0.00454 & \\
\hline & & 0.08674 & \\
\hline & & 0.00488 & \\
\hline \multirow[t]{9}{*}{Displacement of APS fuel tank 5} & DISPTANK \(_{36}\) & -0.08535 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & -0.04731 & \\
\hline & & 0.0 & \\
\hline & & -0.00246 & \\
\hline & & 0.00278 & \\
\hline & & -0.04880 & \\
\hline & . & -0.00080 & \\
\hline & & -0.00684 & \\
\hline & & -0.09251 & \\
\hline
\end{tabular}

Displacement of APS oxidizer tank 6
\[
\begin{array}{cr}
\text { DISPTANK }_{45} & 0.05247 \\
& -0.04967 \\
& -0.00497 \\
& 0.00078 \\
& 0.00023 \\
& -0.05601 \\
& \\
& -0.00335 \\
& -0.01188 \\
& 0.03424
\end{array}
\]

Displacement of SM oxidizer sump tank
\[
\begin{array}{cc}
\text { DISPTANK }_{54} & 0.0 \\
& 0.02502 \\
& -0.00156 \\
& \\
& 0.0 \\
& -0.00911 \\
& 0.03209
\end{array}
\]
0.0
0.07548
-0.05255

Displacement of SM
fuel sump tank

DISPTANK \(_{63}\)
\(0.0 \mathrm{~m} / \mathrm{m}\)
0.03005
-0.00545
0.0
0.00390
0.02126
0.0
-0.07778
0.07292

\begin{tabular}{|c|c|c|c|}
\hline Displacement of LM & DNQUAD 27 & 0.06152 & \(\mathrm{m} / \mathrm{m}\) \\
\hline \multirow[t]{8}{*}{RCS Quad IV} & & -0.06423 & \\
\hline & & -0.01090 & \\
\hline & & 0.06826 & \\
\hline & & 0.00193 & \\
\hline & & -0.08250 & \\
\hline & & -0.00543 & \\
\hline & & -0.05548 & \\
\hline & & 0.04052 & \\
\hline \multirow[t]{9}{*}{Displacement of LM navigation base} & \(\mathrm{DISPNB}_{0}\) & -0.00668 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & -0.12383 & \\
\hline & & 0.00671 & \\
\hline & & 0.06020 & \\
\hline & & 0.00510 & \\
\hline & & -0.12018 & \\
\hline & & 0.00411 & \\
\hline & & -0.03270 & \\
\hline & & -0.01610 & \\
\hline \multirow[t]{9}{*}{Rotation of LM navigation base} & \(\mathrm{SLOPNB}_{0}\) & 0.01032 & \(\mathrm{rad} / \mathrm{m}\) \\
\hline & & -0.00787 & \\
\hline & & -0.01673 & \\
\hline & & -0.00421 & \\
\hline & & 0.04972 & \\
\hline & & 0.00102 & \\
\hline & & 0.03236 & \\
\hline & & 0.00476 & \\
\hline & & -0.00465 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{cc}
\text { Reference spacecraft mass } & \mathrm{MB}_{0} \\
\text { SPS propellant loading } 25 \% & \\
\text { DPS propellant loading } 50 \% \\
\text { APS propellant loading } 100 \%
\end{array}
\] & 25633.4 & kg & 4.36 \\
\hline Generalized mass used for GM all modes & 175.127 & kg & 4.36 \\
\hline Frequency of each mode \(\quad \mathrm{WB}_{0}\) & \[
\begin{aligned}
& 12.818 \\
& 12.818 \\
& 18.661
\end{aligned}
\] & \(\mathrm{rad} / \mathrm{sec}\) & 4.36 \\
\hline \begin{tabular}{l}
Damping ratio for
\[
\mathrm{ZETAB}_{0}
\] \\
generalized coordinate
\end{tabular} & \[
\begin{aligned}
& 0.005 \\
& 0.005 \\
& 0.005
\end{aligned}
\] & nd & 2.3 \\
\hline Displacement of the DPS DISPGIMB \(_{0}\) trim gimbal station & \[
\begin{aligned}
& 0.0 \\
& 0.0485 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0485 \\
& 0.0 \\
& 0.0 \\
& 0.0
\end{aligned}
\] & \(\mathrm{m} / \mathrm{m}\) & \[
\begin{aligned}
& 4.36 \\
& 4.37
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{Rotation of the DPS trim gimbal station} & \multirow[t]{9}{*}{\(\mathrm{SLOPGIMB}_{0}\)} & 0.0 & \(\mathrm{rad} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & -0.06260 & \\
\hline & & 0.0 & \\
\hline & & 0.06260 & \\
\hline & & 0.0 & \\
\hline & & 0.04331 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline \multirow[t]{8}{*}{Displacement of DPS fuel tank 1} & \multirow[t]{8}{*}{DISPTANK \(_{0}\)} & \[
\begin{aligned}
& 0.0 \\
& -0.01850
\end{aligned}
\] & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & -0.01850 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.05940 & \\
\hline \multirow[t]{9}{*}{Displacement of DPS fuel tank 2} & \multirow[t]{9}{*}{DISPTANK \(_{9}\)} & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & -0.01850 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & -0.01850 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & -0.05940 & \\
\hline
\end{tabular}

Displacement of DPS oxidizer tank 3
0.0
\(-0.01850\)
0.0
0.0
0.0
\(-0.01850\)
0.0
\(-0.05940\)
0.0

Displacement of DPS oxidizer tank 4

DISPTANK 27
0.0
\(\mathrm{m} / \mathrm{m}\)
\(-0.01850\)
0.0
0.0
0.0
\(-0.01850\)
0.0
0.05940
0.0

Displacement of APS fuel tank 5

DISPTANK 36
0.0
\(-0.07520\)
0.0
0.0
0.0
\(-0.07520\)
0.0
0.0
\(-0.07840\)
\begin{tabular}{|c|c|c|c|}
\hline Displacement of APS oxidizer tank 6 & DISPTANK \(_{45}\) & \[
\begin{aligned}
& 0.0 \\
& -0.07520
\end{aligned}
\] & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & -0.07520 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.04900 & \\
\hline Displacement of SM & DISPTANK \(_{54}\) & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline oxidizer sump tank & & 0.07400 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.07400 & \\
\hline & & 0.0 & \\
\hline & & 0.05390 & \\
\hline & & -0.04190 & \\
\hline Displacement of SM & DISPTANK 63 & & \(\mathrm{m} / \mathrm{m}\) \\
\hline fuel sump tank & & 0.07400 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.07400 & \\
\hline & & 0.0 & \\
\hline & & -0.05390 & \\
\hline & & 0.04190 & \\
\hline
\end{tabular}
\begin{tabular}{lccc}
Displacement of LM & DNQUAD \(_{0}\) & -0.10200 & \(\mathrm{~m} / \mathrm{m}\) \\
RCS Quad I & & -0.1100 & \\
& & 0.0 & \\
& & 0.10200 & \\
& & 0.0 & \\
Displacement of LM & & 0.11100 & \\
RCS Quad II & & -0.07040 & \\
& & -0.07040 & \\
& & -0.10200 & mNQUAD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Displacement of LM & \(\mathrm{DNQUAD}_{27}\) & 0.10200 & \(\mathrm{m} / \mathrm{m}\) \\
\hline \multirow[t]{8}{*}{RCS wuad IV} & & -0.11100 & \\
\hline & & 0.0 & \\
\hline & & 0.10200 & \\
\hline & & 0.0 & \\
\hline & & -0.11100 & \\
\hline & & 0.0 & \\
\hline & & -0.07040 & \\
\hline & & 0.07040 & \\
\hline \multirow[t]{9}{*}{Displacement of LM navigation base} & \(\mathrm{DISPNB}_{0}\) & -0.00950 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & -0.19980 & \\
\hline & & 0.0 & \\
\hline & & 0.09070 & \\
\hline & & 0.0 & \\
\hline & & -0.19980 & \\
\hline & & 0.0 & \\
\hline & & -0.06270 & \\
\hline & & -0.00660 & \\
\hline \multirow[t]{9}{*}{Rotation of LM navigation base} & \(\mathrm{SLOPNB}_{0}\) & 0.0 & \(\mathrm{rad} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & -0.06260 & \\
\hline & & 0.0 & \\
\hline & & 0.06260 & \\
\hline & & 0.0 & \\
\hline & & 0.04331 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Reference spacecraft mass & \(\mathrm{MB}_{0}\) & 22248. 3 & kg & 4.36 \\
\hline \multicolumn{5}{|l|}{SPS propellant loading \(25 \%\)} \\
\hline \multicolumn{5}{|l|}{DPS propellant loading 0\%} \\
\hline \multicolumn{5}{|l|}{APS propellant loading \(100 \%\)} \\
\hline Generalized mass used for & GM & 175.127 & kg & 4.36 \\
\hline \multicolumn{5}{|l|}{all modes} \\
\hline \multirow[t]{3}{*}{Frequency of each mode} & \multirow[t]{3}{*}{\(\mathrm{WB}_{0}\)} & 13.132 & \multirow[t]{3}{*}{\(\mathrm{rad} / \mathrm{sec}\)} & \multirow[t]{3}{*}{4.36} \\
\hline & & 13.132 & & \\
\hline & & 19.729 & & \\
\hline \multirow[t]{3}{*}{Damping ratio for generalized coordinate} & \multirow[t]{3}{*}{\(\mathrm{ZETAB}_{0}\)} & 0.005 & \multirow[t]{3}{*}{nd} & \multirow[t]{3}{*}{2.3} \\
\hline & & 0.005 & & \\
\hline & & 0.005 & & \\
\hline \multirow[t]{9}{*}{Displacement of the DPS trim gimbal station} & \multirow[t]{9}{*}{DISGIMB \(_{0}\)} & 0.0 & \multirow[t]{9}{*}{\(\mathrm{m} / \mathrm{m}\)} & 4.36 \\
\hline & & 0.05680 & & \multirow[t]{8}{*}{\[
4.37
\]} \\
\hline & & 0.0 & & \\
\hline & & 0.0 & & \\
\hline & & 0.0 & & \\
\hline & & 0.05680 & & \\
\hline & & 0.0 & & \\
\hline & & 0.0 & & \\
\hline & & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{7}{*}{Rotation of the DPS trim gimbal station} & SLOPGIMB 0 & \[
\begin{aligned}
& 0.0 \\
& 0.0 \\
& -0.06535
\end{aligned}
\] & \(\mathrm{rad} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & 0.06535 & \\
\hline & & 0.0 & \\
\hline & & 0.05118 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline \multirow[t]{9}{*}{Displacement of DPS fuel tank 1} & DISPTANK 0 & & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & 0.10410 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.10410 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.07020 & \\
\hline \multirow[t]{9}{*}{Displacement of DPS fuel tank 2} & DISPTANK 9 & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & 0.10410 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & 0.10410 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline & & -0.07020 & \\
\hline
\end{tabular}

Displacement of APS oxidizer tank 6
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{DISPTANK \(_{45}\)} & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & -0.06100 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & -0.06100 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.05780 & \\
\hline \multirow[t]{9}{*}{DISPTANK \(_{54}\)} & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & 0.07300 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.07300 & \\
\hline & 0.0 & \\
\hline & 0.05000 & \\
\hline & -0.03890 & \\
\hline \multirow[t]{9}{*}{DISPTANK \(_{63}\)} & 0.0 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & 0.07300 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.0 & \\
\hline & 0.07300 & \\
\hline & 0.0 & \\
\hline & -0.05000 & \\
\hline & 0.03890 & \\
\hline
\end{tabular}

Displacement of SM oxidizer sump tank

Displacement of SM fuel sump tank

Displacement of LM RCS Quad I

Displacement of LM RCS Quad II
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{\(\mathrm{DNQUAD}_{0}\)} & -0.10600 & \multirow[t]{6}{*}{\(\mathrm{m} / \mathrm{m}\)} \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & 0.10600 & \\
\hline & 0.0 & \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & -0.08320 & \\
\hline & -0.08320 & \\
\hline \multirow[t]{9}{*}{DNQUAD 9} & -0.10600 & \multirow[t]{9}{*}{\(\mathrm{m} / \mathrm{m}\)} \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & -0.10600 & \\
\hline & 0.0 & \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & 0.08320 & \\
\hline & -0.08320 & \\
\hline \multirow[t]{9}{*}{\(\mathrm{DNQUAD}_{18}\)} & 0.10600 & \multirow[t]{9}{*}{\(\mathrm{m} / \mathrm{m}\)} \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & -0.10600 & \\
\hline & 0.0 & \\
\hline & -0.10920 & \\
\hline & 0.0 & \\
\hline & 0.08320 & \\
\hline & 0.08320 & \\
\hline
\end{tabular}

Displacement of LM RCS Quad III
\begin{tabular}{|c|c|c|c|}
\hline Displacement of LM & \(\mathrm{DNQUAD}_{27}\) & 0.10600 & \(\mathrm{m} / \mathrm{m}\) \\
\hline \multirow[t]{8}{*}{RCS Quad IV} & & -0.10920 & \\
\hline & & 0.0 & \\
\hline & & 0.10600 & \\
\hline & & 0.0 & \\
\hline & & -0. 10920 & \\
\hline & & 0.0 & \\
\hline & & -0.08320 & \\
\hline & & 0.08320 & \\
\hline \multirow[t]{9}{*}{Displacement of LM navigation base} & \(\mathrm{DISPNB}_{0}\) & -0.00990 & \(\mathrm{m} / \mathrm{m}\) \\
\hline & & -0.20220 & \\
\hline & & 0.0 & \\
\hline & & 0.09450 & \\
\hline & & 0.0 & \\
\hline & & -0.20220 & \\
\hline & & 0.0 & \\
\hline & & -0.74100 & \\
\hline & & -0.00780 & \\
\hline \multirow[t]{9}{*}{Rotation of LM navigation base} & \(\mathrm{SLOPNB}_{0}\) & 0.0 & \(\mathrm{rad} / \mathrm{m}\) \\
\hline & & 0.0 & \\
\hline & & -0.06535 & \\
\hline & & 0.0 & \\
\hline & & 0.06535 & \\
\hline & & 0.0 & \\
\hline & & 0.05118 & \\
\hline & & 0.0 & \\
\hline & & 0.0 & \\
\hline
\end{tabular}

\subsection*{6.5 Digital Simulator Rendezvous Radar}

For verification purposes, the LM radar system has three modes of operation: a self-test mode; a search-designate mode; and a tracking mode.
6.5.1 The self-test mode is initiated by the appropriate setting of the "RADAR TEST" panel switch. This mode substitutes internally generated test signals for the normal return signal. These test signals can be interrogated by the LGC in the usual manner. The contents of the radar shift register at the end of the 80 millisecond read or strobe interval are given below.
\begin{tabular}{lllll}
\begin{tabular}{l}
Rendezvous radar self-test \\
range count accumulated \\
over an 80 millisecond \\
sample period
\end{tabular} & TSTRGE & 16204 & bits & 5.1 \\
Rendezvous radar self-test \\
range rate count simulated \\
over an 80 millisecond \\
sample period & TSTRATE & 17796 & bits \\
\begin{tabular}{l}
Landing radar self-test \\
X velocity count accumulated \\
over an 80 millisecond \\
sample period
\end{tabular} & & & \\
\begin{tabular}{l}
Landing radar self-test \\
Y velocity count accumulated \\
over an 80 millisecond \\
sample period
\end{tabular} & TSTVX & 12672 & bits & \\
\hline
\end{tabular}
6.5.2 The search-designate mode is initiated by placing the "RADAR MODE" switch in the LGC position and issuing the radar CDU error counter enable. In this mode the rendezvous radar antenna stabilization loops are simulated. The antenna is inertially stabilized in two axes by the stabilization loops which hold the mechanical bore sight fixed in the presence of spacecraft motion. These loops are controlled by the LGC through the radar CDU digital-to-analog converters. The output of the D/A converter is interpreted as a rate command to the antenna shaft or trunnion gimbal torquers. The D/A conversion is linear up to a saturation level.

Commanded antenna rate per \(.0004709 \mathrm{rad} / \mathrm{sec}\) bit 5.3
CDU error counter pulse

Saturation of CDU D/A \(\pm 384\) bits
converter

Mechanical stops limit antenna motion, with respect to the vehicle, to the intervals given below.

Antenna Mode I

Shaft coverage
\(-126^{\circ}<\theta_{S}<+60^{\circ}\)

Trunnion coverage
\(-90^{\circ}<\theta_{\mathrm{T}}<+70^{\circ}\)

Antenna Mode II

Shaft coverage
\(-140^{\circ}<\theta_{\mathrm{S}}<-20^{\circ}\)

\section*{Trunnion coverage}
\[
-250^{\circ}<\theta_{\mathrm{T}}<-90^{\circ}
\]
where \(\quad \theta_{\mathrm{S}} \quad\) is the shaft angle measured in a positive right hand sense about the plus \(Y\) vehicle axis,
\(\theta_{\mathrm{T}} \quad\) is the trunnion angle measured in a positive right hand sense about the plus X vehicle axis when \(\theta_{\mathrm{S}}\) is zero.

Within the above limits, the stabilization loops are simulated by the following differential equations.
\[
\begin{aligned}
& \mathrm{D}^{2} \mathrm{~W}_{\mathrm{S}} / \mathrm{DT}^{2}=\left(\mathrm{W}_{\mathrm{T}} \tan \theta_{\mathrm{T}}-\mathrm{K}_{01}\right) \mathrm{D} \mathrm{~W}_{\mathrm{S}} / \mathrm{DT} \\
&+\left(\mathrm{K}_{01} \mathrm{~W}_{\mathrm{T}} \tan \theta_{\mathrm{T}}-\mathrm{K}_{02}\right) \mathrm{W}_{\mathrm{S}} \\
&+\mathrm{K}_{02} \sec \theta_{\mathrm{T}}\left(\gamma \mathrm{~W}_{\mathrm{SC}}-\mathrm{W}_{\mathrm{SB}}\right) \\
& \mathrm{D}^{2} \mathrm{~W}_{\mathrm{T}} / \mathrm{DT}= \\
& \mathrm{D} \theta_{\mathrm{S}} / \mathrm{DT}=-\mathrm{K}_{11} \mathrm{D} \mathrm{~W}_{\mathrm{T}} / \mathrm{DT}-\mathrm{K}_{12} \mathrm{~W}_{\mathrm{T}}+\mathrm{K}_{12}\left(\mathrm{~W}_{\mathrm{TC}}-\mathrm{W}_{\mathrm{TB}}\right) \\
& \mathrm{D} \theta_{\mathrm{T}} / \mathrm{DT}= \mathrm{W}_{\mathrm{T}} \\
& \mathrm{~W}_{\mathrm{S}}
\end{aligned}
\]
where \(\quad W_{S B} \quad\) is the vehicle rate about the shaft axis,
\(W_{\text {TB }} \quad\) is the vehicle rate about the trunnion axis,
\(W_{\text {SC }} \quad\) is the shaft rate command from the LGC,
\({ }^{W}\) TC \(\quad\) is the trunnion rate command from the LGC.
\(\gamma \quad\) inverts the shaft command in antenna mode 2.
\(\gamma=1\), antenna mode I
\(\gamma=-1\), antenna mode II

The constant coefficients in the above equations are chosen so that the response to a step rate command is typical of a real antenna assembly.
\begin{tabular}{llll}
Shaft damping coefficient & \(\mathrm{K}_{01}\) & 20 & \(\mathrm{sec}^{-1} 5.6\) \\
Shaft restoring coefficient & \(\mathrm{K}_{02}\) & 370 & \(\mathrm{sec}^{-2}\)
\end{tabular}
\begin{tabular}{llll}
Trunnion damping coefficient & \(\mathrm{K}_{11}\) & 20 & \(\mathrm{sec}^{-1}\) \\
Trunnion restoring coefficient & \(\mathrm{K}_{12}\) & 370 & \(\mathrm{sec}^{-2}\)
\end{tabular}
6.5.3 The tracking mode is initiated when the radar antenna has been designated so that the angle between the antenna electrical beam center and the line of sight to the transponder is less than a specified angle and the LGC has issued the "SELF-TRACK ENABLE" discrete to the radar.

In general the orientation of the electrical beam center differs from the orientation indicated to the LGC through the CDU analog-to-digital conversion. This resuits because of misalignments of the electrical and mechanical bore sights, and misalignments of the mechanical bore sight with respect to the resolvers. To simulate these errors, a fixed error is added to the shaft and trunnion angle. The magnitude of these angular bias errors is left optional but typical values used for testing are given below.

Certain other conditions must be satisfied before the tracking mode commences. These also appear below. When all conditions for tracking are satisfied, the "DATA GOOD" discrete is issued to the LGC and the radar drives the stabilization loops so as to align the antenna electrical beam center with the line of sight to the target.

The tracking mode is terminated when any of the tracking conditions are violated.

\begin{tabular}{llll}
Typical shaft angle bias & \(\mathrm{E}_{0}\) & 0.010 & rad \\
errors used in testing & &
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{l}
Typical trunnion angle bias \\
errors used in testing
\end{tabular} & \(\mathrm{E}_{1}\) & 0.010 & rad
\end{tabular}

In the tracking mode the \(L G C\) may interrogate the radar for range and range rate information. At ranges below a specified range, the radar scaling of range informaion changes and accordingly a discrete is set to inform the LGC of this condition. A bias frequency is added to the range rate measurements. The range rate count is added to the count due to this bias for closing range and subtracted fromit for opening ranges.
\begin{tabular}{llll}
\begin{tabular}{l}
Rendezvous radar range \\
scale factor for high ranges
\end{tabular} & RANGESC & 0.043721214 & \(\mathrm{bits} / \mathrm{m} 5.7\) \\
\begin{tabular}{l}
Rendezvous radar range \\
scale factor for low ranges
\end{tabular} & RANGESC & 0.34976971 & bits \(/ \mathrm{m}\) \\
\begin{tabular}{l}
Range threshold at which \\
range scale factor is changed
\end{tabular} & LOSC & 93681.639 & m \\
\begin{tabular}{l}
Rendezvous radar range \\
rate scale factor
\end{tabular} & RRATESC & 5.226 & bit sec/m \\
\begin{tabular}{l}
Rendezvous radar range \\
rate bias count based on \\
an 80 millisecond counting \\
interval
\end{tabular} & RRBIAS & 17000 & bits
\end{tabular}

\subsection*{6.6 Digital Simulator Coordinate Sysytems and Natural Environment Data}

\subsection*{6.6.1 Reference Inertial Coordinate System}

The reference inertial coordinate system used in verification of Apollo guidance computer programs is defined by the intersection of the mean equatorial plane and the ecliptic at the nearest beginning of the Besselian year. The rectangular coordinates are defined so that the \(+X\) axis is along the ascending node of the ecliptic on the equator (the equinox), the \(+Z\) axis is along the mean rotational axis of the earth and the \(Y\) axis completes the right-handed set.

The origin of the reference system is the center of mass of the earth.

\subsection*{6.6.2 Geodetic Coordinate System}

Positions in the earth fixed system are specified by geodetic latitude, referenced to the Fischer ellipsoid of 1960; longitude, measured positive east from the meridian of Greenwich; and altitude, measured above the ellipsoid along the geocentric radius vector.

A cross-section of the Fischer ellipsoid containing the axis of symmetry has the equation
\[
\left(x^{2} / a^{2}\right)+\left(z^{2} / b^{2}\right)=1
\]

The equatorial radius of the earth

The flattening of the ellipsoid
a
(a-b)/a
b
6378165.
m
6.1

The polar radius of the earth

\subsection*{6.6.3 Local Horizontal Coordinate System}

The system to which spacecraft attitude is referred is the local horizontal coordinate system. It is defined in terms of the spacecraft position and velocity
expressed in the reference inertial coordinate system such that
\[
\begin{aligned}
\bar{u}_{x} & =\bar{u}_{y} \times \bar{u}_{z} \\
\bar{u}_{y} & =\bar{v}_{\text {ref }} \times \bar{R}_{\text {ref }} /\left|\overline{\mathrm{V}}_{\text {ref }} \times \bar{R}_{\text {ref }}\right| \\
\bar{u}_{z} & =-\bar{R}_{\text {ref }} /\left|\bar{R}_{\text {ref }}\right|
\end{aligned}
\]

Starting with the vehicle coordinate axes initially aligned with the local horizontal system, the application of the Euler rotations pitch, yaw, and roll about the \(Y, Z\) and \(X\) vehicle axes in that order determines the vehicle attitude.

\subsection*{6.6.4 Earth Gravitational Model}

The gravitational potential of the earth is assumed to be
\[
\begin{aligned}
V_{e}(r, L)= & \left(M U_{e} / r\right)\left(1+(J / 3)\left(r_{e} / r\right)^{2}\left(1-3 \sin ^{2} L\right)\right. \\
& +(H / 5)\left(r_{e} / r\right)^{3}\left(3-5 \sin ^{2} L\right) \sin L \\
& \left.+(D / 35)\left(r_{e} / r\right)^{4}\left(3-30 \sin ^{2} L+35 \sin ^{4} L\right)\right)
\end{aligned}
\]
where \(r_{e}\) is the equatorial radius of the earth.
The earth's gravitational \(\quad\) MU \(e \quad\) 3986032. \(\times 10^{8} \quad \mathrm{~m}^{3} / \mathrm{sec}^{2} 6.1\) parameter

Oblateness coefficients
J
\[
\text { 162345. } \times 10^{-8} \mathrm{n} / \mathrm{a} \quad 6.1
\]
\(\begin{array}{lll}\mathrm{H} & -575 . \times 10^{-8} \mathrm{n} / \mathrm{a} & 6.1\end{array}\)

D
\[
7875 . \times 10^{-9} \mathrm{n} / \mathrm{a}
\]
6.1

The mass distribution of the earth is assumed symmetric about the rotational axis, hence there is no dependence on longitude in the potential equation.

\subsection*{6.6.5 Sun and Moon Gravitational Models}

The acceleration due to the sun and moon is the difference between the gravitational field at the spacecraft and the field at the origin of the coordinate system. The acceleration of the spacecraft due to the earth, sun and moon relative to an inertial system is
\[
\bar{a}_{v}=\bar{g}_{e}+\left(M U_{s} / r_{v s}^{3}\right) \bar{r}_{v s}+\left(M U_{m} / r_{v m}^{3}\right) \bar{r}_{v m}
\]

The acceleration of the earth is
\[
\bar{a}_{\mathrm{e}}=\left(\mathrm{MU}_{\mathrm{s}} / \mathrm{r}_{\mathrm{es}}^{3}\right) \overline{\mathrm{r}}_{\mathrm{es}}+\left(\mathrm{MU}_{\mathrm{m}} / \mathrm{r}_{\mathrm{em}}^{3}\right) \overline{\mathrm{r}}_{\mathrm{em}}
\]

Thus the acceleration of the vehicle relative to the center of mass of the earth is
\[
\begin{aligned}
\overline{\mathrm{a}}_{\mathrm{ev}}=\overline{\mathrm{g}}_{\mathrm{e}} & +M \mathrm{U}_{\mathrm{s}}\left(\left(\overline{\mathrm{r}}_{\mathrm{vs}} / \mathrm{r}_{\mathrm{vs}}^{3}\right)-\left(\overline{\mathrm{r}}_{\mathrm{es}} / \mathrm{r}_{\mathrm{es}}^{3}\right)\right) \\
& +M U_{\mathrm{m}}\left(\left(\overline{\mathrm{r}}_{\mathrm{vm}} / \mathrm{r}_{\mathrm{vm}}^{3}\right)-\left(\overline{\mathrm{r}}_{\mathrm{em}} / \mathrm{r}_{\mathrm{em}}^{3}\right)\right)
\end{aligned}
\]

The sun's gravitational \(\quad \mathrm{MU}_{\mathrm{S}} \quad 132715445 . \times 10^{12} \mathrm{~m}^{3} / \mathrm{sec}^{2} 6.1\) parameter

The moon's gravitational \(\quad\) MU \(m \quad 4902778 . \times 10^{6} \quad \mathrm{~m}^{3} / \mathrm{sec}^{2} 6.1\) parameter
6.7 Hybrid Simulator Prelaunch Environment Data

\section*{Intentionally Blank}

Prelaunch data is not used by hybrid simulator for LUMINARY program.

\subsection*{6.8 Hybrid Simulator Launch Vehicle Data}

Intentionally Blank

Launch vehicle data is not required for LUMINARY program.

\subsection*{6.9 Hybrid Simulator LM(LM-6) Spacecraft Data}

\subsection*{6.9.1 LM Reference Positions}

The following \(X, Y, Z\) coordinates are referenced to the \(L M\) vehicle coordinate system.

\subsection*{6.9.1.1 LM Descent Engine}
\begin{tabular}{lllll}
Engine gimbal plane & \(\mathrm{X}_{\mathrm{A}}\) & 3.9116 & m & 4.1 \\
\(\mathrm{Y}_{\mathrm{A}}\) & 0.0 & m \\
& \(\mathrm{Z}_{\mathrm{A}}\) & 0.0 & m
\end{tabular}

\subsection*{6.9.1.2 LM Ascent Engine}

The LM ascent engine thrust application point is located off the \(+X\) vehicle axis and the engine is canted so that a vector along the center line of the engine toward the \(+X\) spacecraft direction has a component in the \(-Z\) direction.
\begin{tabular}{lllll}
Engine thrust application & \(\mathrm{X}_{\mathrm{A}}\) & 5.91718 & m & 4.14 \\
point & \(\mathrm{Y}_{\mathrm{A}}\) & 0.0 & m \\
& \(\mathrm{Z}_{\mathrm{A}}\) & 0.09525 & m \\
& & & \\
Engine cant angle & THETA & 0.02617 & rad
\end{tabular}
6.9.1.3 LM Navigation Base
\begin{tabular}{llll}
Intersection of the three & \(\mathrm{X}_{\mathrm{A}}\) & 7.7978 & m \\
accelerometer input axes & \(\mathrm{Y}_{\mathrm{NB}}\) & 0.0 & m \\
& \(\mathrm{Z}_{\mathrm{NB}}\) & 1.2668 & m
\end{tabular}

\subsection*{6.9.1.4 LM Reaction Control System}
\begin{tabular}{lllll}
Thrust application point & \(\mathrm{Y}_{\mathrm{E}}\) & \(\pm 1.67894\) & m & 4.1 \\
of up and down jets & \(\mathrm{Z}_{\mathrm{E}}\) & \(\pm 1.67894\) & m & \\
\begin{tabular}{llll}
Thrust application point \\
of front and side jets
\end{tabular} & \(\mathrm{Y}_{\mathrm{E}}\) & \(\pm 1.5621\) & m \\
& \(\mathrm{Z}_{\mathrm{E}}\) & \(\pm 1.5621\) & m \\
\begin{tabular}{l}
Front and side jet firing \\
plane
\end{tabular} & \(\mathrm{X}_{\mathrm{E}}\) & 6.4516 & m
\end{tabular}

\subsection*{6.9.1.5 LM Propellant Tanks}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{DPS Tank 1 Position} & X & 4.0674 & m & 4.2 \\
\hline & Y & 1.3716 & m & \\
\hline & Z & 0.0 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 2 Position} & X & 4.0674 & m & \\
\hline & Y & -1.3716 & m & \\
\hline & Z & 0.0 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 3 Position} & X & 4.0674 & m & \\
\hline & Y & 0.0 & m & \\
\hline & Z & 1.3716 & m & \\
\hline \multirow[t]{3}{*}{DPS Tank 4 Position} & X & 4.0674 & m & \\
\hline & Y & 0.0 & m & \\
\hline & Z & -1.3716 & m & \\
\hline \multirow[t]{3}{*}{APS Oxidizer Position} & X & 5.7914 & m & 4.2 \\
\hline & Y & 1.1308 & m & \\
\hline & Z & 0.0 & m & \\
\hline \multirow[t]{3}{*}{APS Fuel Position} & X & 5.7914 & m & \\
\hline & Y & -1.8099 & m & \\
\hline & Z & 0.0 & m & \\
\hline
\end{tabular}

\subsection*{6.9.2 LM Mass Properties}

The hybrid simulation of the spacecraft mass properties is as follows. The unstaged spacecraft consists of a fully loaded ascent stage and empty descent stage as a single fixed rigid mass. The DPS propellants are represented as rigid and sloshing masses attached at the appropriate points. The inertia reaction forces and torques contributed by the propellant masses are summed with the forces and torques produced on the empty spacecraft. For the staged configuration, the same principle is used, i.e. empty spacecraft and attached propellant masses. The slosh masses are considered to be slightly damped pendulums. The rigid mass is considered to move with the tank. The sum of the slosh mass and rigid mass represents the total propellant mass. During coasting flight (non-thrusting phases) all propellant is considered as rigidly attached to the tanks.

Ap;arent discrepancies between the Hybrid and Digital mass data reflect differences in the respective mass models rather than the use of different data.

\subsection*{6.9.2.1 Unstaged LM}

The unstaged LM consists of a full ascent and empty descent stage. The full ascent stage in the unstaged configuration includes \(80 \%\) of the RCS propellant, the APS propellant, and men and equipment. The landing gear is deployed.

\subsection*{6.9.2.2 Staged Configuration}

The empty ascent stage of the staged configuration includes men and equipment but no RCS propellant.
\begin{tabular}{|c|c|c|c|}
\hline Mass & M & 2437.7 & kg 4.4 \\
\hline & & & 4.13 \\
\hline Center of gravity & \(\mathrm{X}_{\mathrm{CG}}\) & 6.5285 & m \\
\hline & \(\mathrm{Y}_{\mathrm{CG}}\) & -0.0045 & m \\
\hline & \({ }^{Z} \mathrm{CG}\) & 0.1279 & m \\
\hline Inertia Values & \(\mathrm{I}_{\mathrm{XX}}\) & 4128.8 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \({ }^{1} \mathrm{YY}\) & 3789.9 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{I}_{\text {Z }}\) & 2381.3 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(J_{X Y}\) & 77.5 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline & \(\mathrm{J}_{\mathrm{XZ}}\) & 152.9 & \[
\mathrm{kg} \mathrm{~m}^{2}
\] \\
\hline & \({ }^{\text {Y Z }}\) & 1.0 & \(\mathrm{kg} \mathrm{m}{ }^{2}\) \\
\hline
\end{tabular}

\subsection*{6.9.2.3 Propellant Mass Properties}

The mass properties of the propellant are computed for each tank based on the properties for a single oxidizer tank and then multiplied by the mixture ratio for the fuel tanks. This allows for propellant shift between descent tanks.
\begin{tabular}{lllll}
DPS tank radius & RDES & 0.6477 & m & 4.30 \\
DPS cylindrical length & CYL & 0.4897 & m \\
DPS propellant mass \\
(Full tank capacity) & MLFD & 8409.375 & kg \\
DPS usable propellant load & DESFUELMAX & \(94.45 \%\) & & \\
APS tank radius & RASC & 0.6274 & m & 4.30 \\
\begin{tabular}{llll}
APS propellant mass \\
(Full tank capacity)
\end{tabular} & MLFA & 2366.5 & kg
\end{tabular}

APS usable propellant load ASCFUELMAX \(96.69 \%\)

The following table of slosh parameters is used for the DPS tanks. The slosh masses (MS) are expressed in percent of full tank capacity. The distance, HS , of the attachment point of the pendulum representing slosh mass is given from the bottom of the tank parallel to the spacecraft \(+X\) axis. The distance, HR , of the center of mass of the rigid propellant is given from the bottom of the tank parallel to the spacecraft \(+X\) axis, and the slosh frequency parameter is defined as OMEGA \({ }^{2} /\) UDOT, where UDOT is the acceleration along the spacecraft \(+X\) axis. A linear interpolation is made between tabulated points.
\begin{tabular}{llcrcc}
\begin{tabular}{c}
Fraction of \\
full capacity
\end{tabular} & \begin{tabular}{c}
MS \\
MLFD
\end{tabular} & \begin{tabular}{c}
HS \\
(meters)
\end{tabular} & \begin{tabular}{c}
HR \\
(meters)
\end{tabular} & \begin{tabular}{c}
OMEGA \({ }^{2} /\) UDOT \\
\((1 /\) meters)
\end{tabular} \\
1.0 & 0.0 & 1.14 & 0.89 & 9.71 & 4.13 \\
0.9 & 0.16 & 1.12 & 0.79 & 3.75 & \\
0.75 & 0.21 & 0.95 & 0.74 & 3.03 \\
0.3 & 0.185 & 0.66 & 0.66 & 2.34 \\
0.15 & 0.12 & 0.65 & 0.65 & 1.93 \\
0.0 & 0.0 & 0.65 & 0.65 & 1.55
\end{tabular}

The following table of slosh parameters is for the ascent tanks:
\begin{tabular}{ccc}
\begin{tabular}{c}
Fraction of \\
full capacity
\end{tabular} & \begin{tabular}{c}
MS \\
MLFA
\end{tabular} & \begin{tabular}{c}
OMEGA \(^{2} /\) UDOT \\
(u/meters)
\end{tabular} \\
1.0 & 0.0 & 8.49 \\
0.9 & 0.20 & 4.33 \\
0.75 & 0.30 & 3.05 \\
0.3 & 0.22 & 2.10 \\
0.15 & 0.12 & 1.87 \\
0.0 & 0.0 & 1.61
\end{tabular}
4.13

HS and HR are constant at 0.6274 meter since the tanks are spherical.

\subsection*{6.9.2.4 DPS Propellant Shift}

Due to interconnections of the DPS tanks, it is possible for fuel and oxidizer to shift between either tank at various propellant loadings. The maximum shift occurs at \(50 \%\) loading when one fuel and one oxidizer tank may be full and the other fuel and oxidizer tank empty. The propellant will shift toward equalization in the presence of acceleration with a time constant of 50 seconds.

\subsection*{6.9.3 LM Reaction Control System Data}

In the hybrid simulation the Reaction Control System is modeled as having no delay in turn on or shut off. Accordingly it was necessary to use a reduced value of dribble volume to produce an RCS fuel accounting consistent with the digital simulation. Each thruster produces 444.82 newtons of force. No effects due to jet impingement on the descent stage are taken into account.
\begin{tabular}{lc}
RCS propellant flow rate & \(0.1610 \mathrm{~kg} / \mathrm{sec}\) \\
\\
DRIBBLE mass penalty \\
per jet firing
\end{tabular}
6.9.4 LM Descent Propulsion System Data

The hybrid simulation represents both the initial and final transient conditions and the steady state response of the DPS engine by a single damped second order system with a natural frequency of 12.5 radians per second and a damping constant of 0.7 .

The thrust level of the engine increases with time due to erosion of the throat.
\begin{tabular}{|c|c|c|c|c|}
\hline Rate of change of thrust at full thrust command to simulate erosion effects & \(K_{E}\) & 2.525 & \multicolumn{2}{|l|}{\(n / \sec 4.38\)} \\
\hline Minimum thrust & \(\mathrm{T}_{\text {MIN }}\) & 5337.9 & n & 4.38 \\
\hline Maximum thrust (uneroded) & \(\mathrm{T}_{\text {M AX }}\) & 43203. 3 & n & 4.38 \\
\hline
\end{tabular}

Specific impulse is represented as a linear function of applied thrust for thrust values below 13344.6 newtons and a constant of 302 seconds for thrust levels above 13344.6 newtons.
\[
\text { ISP }=22 \times(\text { THRUST } / 13344.6)+280
\]

The trim gimbal system determines the direction of the descent engine thrust vector. The trim gimbal drive signal is applied to a first order lag with a time constant of 0.0333 second arriving at full speed in 0.1 second.
Gimbal drive rate \(\quad 0.00349 \mathrm{rad} / \mathrm{sec}\)

Gimbal drive time constant
0.0333
sec

\subsection*{6.9.5 LM Ascent Propulsion System}

The hybrid simulation represents both the initial and final transient conditions and the steady state response of the APS engine by a single damped second order system with a natural frequency of 12.5 radians per second and a damping constant of 0.7 .

Thrust (uneroded) TASC \(\quad 15568.8\) 4.41

\subsection*{6.10 Hybrid Simulation of Radar Data}

The Rendezvous Radar is simulated by two voltage-to-frequency converters which accept dc voltages and produce frequencies centered about 150 kHz for range rate and zero for range. These are varied as a function of the input voltage which provides a change in frequency of 1 Hz for a change of 0.065 volt in the range rate channel and \(1 \mathrm{~Hz} / 0.0208\) volt for range.
\begin{tabular}{llcc}
Maximum range & RMAX & 740800 & m \\
Minimum range & RMIN & 1000 & m \\
Low scale factor range & RSCF & 92970.4 & m \\
Range accuracy & & \(1 \%\) & \\
Maximum range rate & RDOTMAX & 1500 & \(\mathrm{~m} / \mathrm{s}\) \\
Range rate accuracy & & \(1 \%\) & \\
Radar gimbal torquing rate & & 0.105 & \(\mathrm{rad} / \mathrm{sec}\)
\end{tabular}

\subsection*{6.12 References}
1.1 Digital Simulation for the Verification of Program SUNBURST (Unmanned LM, AS-206), Massachusetts Institute of Technology, Instrumentation Laboratory, E-2146, 5 July 1967.
1.2 Pre-simulation Report LM Dynamic Simulation, Massachusetts Institute of Technology, Instrumentation Laboratory, E-2079, September 1966.
2.1 Directory of Standard Geodetic and Geophysical Constants for Gemini and Apollo, NASA General Working Paper No. 10, 020B, 6 April 1966.
2.2 Apollo Mission Data Specification "C" Apollo-Saturn 206A (U), TRW Systems, 2131-6002-TC000, 5 November 1965.
2.3 Undocumented estimate.
2.4 MIT Apollo Guidance and Navigation Information, Massachusetts Institute of Technology, Instrumentation Laboratory, G-532, 28 November 1962.
4.1 Lunar Excursion Module Primary Guidance Navigation and Control Subsystem Equipment Performance and Interface Specification, Grumman Aircraft Engineering Corporation, LSP 370-3, 18 March 1966.
4.2 Specific Station Locations of Coupled LEM/CSM, GN and C Data Exchange Submittal, S-36, 3 August 1966.
4.3 Vehicle Dynamics Equation for the Full Mission Engineering Simulator, Grumman Aircraft Engineering Corporation, LMO 500-258, 5 August 1965.
4.4 LM-3 Mass Properties Data, US Memorandum, PM3/M-215/67, 6 October 1967.
4.5 Master End-Item Specification for LM, Grumman Aircraft Engineering Corporation, LSP-470-2C, SCN 222A-188, 6 July 1967.
4.6 Results of The Effects of RCS Thruster Plume Impingement on The LM-2 \& LM-3 Descent Stage, Grumman Aircraft Engineering Corporation, LMO 310-385, 19 June 1968.
4.7 Revised Apollo Mission Data Specification (AMDS) "D" for AS-204 (LM-1), US Memorandum, PD7/M-278/67, 12 December 1967.
4.8 LM G and C Data Book, Revision 2, NAS 9-4810, 15 July 1967.
4.9 Effect of Gimballed Engine Mount Compliance, Grumman Aircraft Engineering Corporation, LAV 500-619, 1 August 1967.
4.10 Abort Stage Sequence of Events, Grumman Aircraft Engineering Corporation, LMO 500-441, 23 August 1966.
4.11 FITH (Fire-in-the-hole) Force and Moment Impulses for LM-1 Through LM-4 Abort-Stage Situations, Grumman Aircraft Engineering Corporation, LMO 500-530, 16 January 1967.
4.12 LM Descent Engine Phase B Qualification Test Performance, US Memorandum, 28 September 1967.
4.13 A Comparison Between a "Static" and "Dynamic" Liquid Propellant Method for Calculating LM Mass Properties, Grumman Aircraft Engineering Corporation, LMO 500-583, 1 June 1967.
4.14 Ascent Engine Thrust Location, GN\&C Data Exchange Submittal, MSC-S-58, 1 November 1967.
4.15 Mission Modular Data Book, Grumman Aircraft Engineering Corporation, LED 500-19, 15 October 1967.
4.16 Private Communication, R. Portnoy, GAEC, to K. Glick, MIT/IL, 13 October 1967.
4.17 Private Communication, R.D. Baker, TRW Systems, to H. Chasan, MIT/IL, 16 February 1968.
4.18 Design Control Specification for Propulsion Subsystem, Grumman Aircraft Engineering Corporation, LSP 270-6B, 5 May 1967.
4.19 Startup and Shutdown Impulse of LM DE, TRW Systems, 4721.3.67-200, 10 August 1967.
4.22 Method of Checkout for Auto-PGNCS Descent Engine Gimbal Trim, Grumman Aircraft Engineering Corporation, LMO-500-456, 8 July 1966.
4.23 Prelaunch Checkout of PGNCS/AGNCS Auto Ascent Engine On/Off Control, Grumman Aircraft Engineering Corporation, LMO 500-474, 15 August 1966.
4.24 Determination of Valve Response Times for the Ascent Engine Control Solenoid Valves and Actuator Isolation Valves, Grumman Aircraft Engineering Corporation, LAV 540-530, 15 July 1966.
4.25 Evaluation of the LM DE Shallow Throttling Concept with Respect to a Lunar Landing Mission, TRW Systems, 4721.3.68-52, 27 February 1968.
4.30 CSM/LM Spacecraft Operational Data Book, Volume III, Mass Properties, Manned Spacecraft Center, SNA-8-D-027, March 1968.
4.31 SPS Propellant Sloshing Parameters, North American Aviation, FS/GCA/65241, 15 September 1965.

GN \(\& C\) Data Submittal, NAA-S-68, 11 March 1966.
4.33 CM 103 and LM 3 Mass Properties, GN\&C Data Submittal, MSC-S-59, 14 November 1967.
4.34 Private Communication, R. Morton, MSC to H. Chasan, MIT/IL, 4 December 1967.

BLK II SPS Propellant by Tank, GN\&C Data Submittal, MSC-S-62, 20 December 1967.

Three Dimensional Vibrational Modes of the Apollo CSM/LM Docked Vehicles, TRW Systems, 05952-H239-R0-00, 30 June 1967.
4.37 Dynamic Characteristics of the CSM/LM Docked Vehicle During LM DPS Burn, Manned Spacecraft Center, MSC-S-75, 22 May 1968.
4.38 CSM/LM Spacecraft Operational Data Book, Volume II, LM Data Book, Manned Spacecraft Center, SNA-8-D-027, June 1968.
4.39 Results of RCS Engine Supplemental wualification Test Program, Grumman Aircraft Engineering Corporation, LMO-310-335, 14 March 1967.
4.40 PCR 587.2, APS and DPS Tail-off Constants, 29 October 1968.
4.41 Private Communication, H. Byington, MSC to T. Price, Jr., MSC, 25 October 1968.
5. 1 Apollo Operations Handbook, Lunar Module, LM-3, Volume I, Grumman Aircraft Engineering Corporation, LMA-790-3-LM3, 1 January 1968.
5. 2 Radar Section Study Guide, Lunar Module, LM-3, Grumman Aircraft Engineering Corporation, LSG 770-430-44-LM3, February 1968.
5. 3 Primary Guidance Navigation and Control System to Rendezvous Radar Angle Electrical Interface Control Document, Grumman Aircraft Engineering Corporation, LIS 370-10006, 30 July 1965.
5.4 Block II Moding and Programming Requirements, Massachusetts Institute of Technology, Instrumentation Laboratory, Apollo Project Memo 1259, 20 April 1965.
5. 5 LEM Seventh Quarterly Design Report, Rendezvous Radar/Transponder, Volume I of II, Radio Corporation of America, 15 September 1965.
5.6 Third Radar Design Review, Radio Corporation of America, 15 May 1968.
5. 7 Lunar Excursion Module Primary Guidance Navigation and Control Subsystem Equipment Performance and Interface Specification, Grumman Aircraft Engineering Corporation, LSP 370-3, 18 March 1966.
6.1 Directory of Standard Geodetic and Geophysical Constants for Gemini and Apollo, NASA General Working Paper No. 10, 020B, 6 April 1966.

Internal:
\begin{tabular}{|c|c|c|}
\hline P. Adler (2) & M. Johnston & R. Ragan \\
\hline R. Battin & E. Jones & K. Riebesell \\
\hline E. Blanchard & G. Kalan & R. Rose \\
\hline H. Chasan & D. Keene & P. Rye \\
\hline G. Cherry (3) & J. Kernan & J. Sapanaro \\
\hline A. Cook & * J. Kingston & C. Schulenberg \\
\hline E. Copps & A. Kosmala & N. Sears \\
\hline S. Copps & G. Kossuth & A. Seidler \\
\hline S. David & W. Kupfer & J. Shillingford \\
\hline W. Day & A. Laats & L. Silver \\
\hline J. Deckert & L. Larson & B. Sokkappa \\
\hline G. Eddleston & R. Larson & W. Stameris \\
\hline G. Edmonds & D. Lickly & R. Stengel \\
\hline P. Felleman & R. Lones & R. Strunce \\
\hline L. Gediman (20) & W. Marscher & G. Stubbs \\
\hline J. Glendenning & F. Martin & J. Suomala \\
\hline K. Glick & H. McOuat & J. Sutherland \\
\hline K. Goodwin & R. Metzinger & W. Tanner \\
\hline R. Goss & J. E. Miller & R. Tinkham \\
\hline E. Grace & J.S. Miller & K. Vincent \\
\hline K. Green & P. Mimno & J. Vittek \\
\hline D. Gustavson & R. Morth & R. Weatherbee \\
\hline P. Heinemann & J. Morse (2) & P. Weissman \\
\hline J. Henize & E. Muller & J. Wells \\
\hline J. Heybl & J. Nevins & C. Wenk \\
\hline D. Hoag & J. O'Connor & R. Werner \\
\hline B. Ireland & L. Petrillo & P. White \\
\hline T. Isaacs & P. Philliou & W. Widnall \\
\hline I. Johnson & P. Plender & M. Womble \\
\hline L. B. Johnson (2) & P. Pu & C. Work \\
\hline M. Johnson & & Apollo Library (2) \\
\hline *Letter of Transmi & only. & MIT/IL Library (6) \\
\hline
\end{tabular}

MIT Instrumentation [abowatory
c/o North American Rockwell, Inc.
Space and Information Division
12214 Lakewood Boulevard
Downey, California 90241
Attn: Mr. Thomas A. Hemker
MIT Instrumentation Laboratory
G\&N Systems Laboratory
c/o Grumman Aircraft Engineering Corp.
LM Project - Plant 25
Bethpage, Long Island, New York
Attn: Mr. James A. Hand
MIT Instrumentation Laboratory
P.O. Box 21025

Kennedy Space Center, Florida 32815
Attn: Mr. George Silver
MIT Instrumentation Laboratory
Code EG/MIT Building 16
NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. Thomas Lawton
NASA MSC HW
Building M7-409
Kennedy Space Center, Florida 32815
Attn: Mr. Frank Hughes
Mr. A. Metzger (NASA/RASPO at MIT/IL)
AC Electronics Division
General Motors Corporation
Milwaukee, Wisconsin
Attn: Mr. J. Stridde, Dept. 32-31
Attn: Mr. Reino Karell
Kollsman Instrument Corporation
575 Underhill Boulevard
Syosset, Long Island
Attn: Mr. F. McCoy
Raytheon Company
Boston Post Road
Sudbury, Massachusetts 01776
Attn: Mr. J. Shrmack
NASA/RASPO/National Aeronautics and Space Administration
NAR Resident Apollo Spacecraft Program Office North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California
\(\begin{array}{ll}\text { NASA/KSC } & \text { National Aeronautics and Space Administration } \\ & \text { John F. Kennedy Space Center } \\ & \text { J. F. Kennedy Space Center, Florida } 32899 \\ & \text { Attn: Technical Document Control Office }\end{array}\)
\begin{tabular}{lll}
NASA/RASPO & NASA Daytona Beach Operation \\
GE \\
P.O. Box 2500 \\
Daytona Beach, Florida 32015
\end{tabular}\(\quad\) (1)
\begin{tabular}{lll}
NASA/RASPO & National Aeronautics and Space Administration & \\
GAEC & Resident Apollo Spacecraft Program Officer \\
& Grumman Aircraft Engineering Corporation & \\
& Bethpage, Long Island, New York
\end{tabular} (l)```

