AP WLO GUIDANCE, NAVIGATION AND CONTROL

A. L. KOSMALA, DIRECTOR, SUPPORT PROGRAM DEVEL. APOLLO GUIDANCE AND NAVIGATION PROGRAM
Approved: \exists_{Ne}. H. Mrwitin Date: $1 / 3 / 69$ F. H. MARTIN, COLOSSUS PROJECT MANAGER APOLLO GUIDANCE AND NAVIGATION PROGRAM
Approved: R, 14.7 Datum 3 gan 69 R. H. BATTIN, DIRECTOR, MISSION DEVELOPMENT APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved:
 Date: $\frac{30}{\text { TION PROGRAM } 9}$ APOLLO GUFBANCE AND NAVIGATION PROGRAM Approved: R.R.RAGAN, DEPUTY DIVECTOR Date: $3 \operatorname{gan} 69$ INSTRUMENTATION LABORATORY

R-577

GUIDANCE SYSTEM OPERATIONS PLAN

 FOR MANNED CM EARTH ORBITAL AND LUNAR MISSIONS USINGPROGRAM COLOSSUS I (REV. 237)
AND PROGRAM COLOSSUS IA (REV. 249)
SECTION 6 CONTROL DATA
(Rev. 1)
DECEMBER 1968

ACKNOW LEDGEMENT

This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.

GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CM EARTH ORBITAL OR LUNAR MISSIONS USING PROGRAM COLOSSUS

SECTION 6 CONTROL DATA

Signatures appearing on this page designate approval of this document by NASA/MSC.

REVISION INDEX COVER SHEET GUIDANCE SYSTEM OPERATIONS PLAN

GSOP \# R-577 Title: For Manned CM Earth Orbital and Lunar Missions Using Program Colossus 1 (Rev 237)

Section \#6 Title: Control Data (Rev.1)

This document has been revised from the previous issue of June 1968 by the following Program Change Notifications (PCN^{\prime} s) which have been implemented in the COLOSSUS digital simulator with NASA/MSC approval:

Date	Rev.	Remove Pages	Add Pages	PCN Ref
$\begin{aligned} & \text { Dec. } \\ & 1968 \end{aligned}$	1	Title page page ii page iii	Title page (Rev 1) page ii (Rev 1) page iii (Rev 1)	
			$\begin{aligned} & 6-27 a, 6-32 a, \\ & 6-35 a, 6-51 a, \\ & 6-37 \end{aligned}$	624*
			$\begin{aligned} & 6-13 a, 6-14 a, \\ & 6-15 a, 6-25 a, \\ & 6-43 a, 6-46 a \\ & 6-57 \end{aligned}$	629*

* Indicates an MIT Program Change Notice (PCN)

Because the baseline data documented in this section is historical in nature, original pages have not been altered, but additional pages have been added to reflect the incorporation of new data into the simulators. Page number suffixes have been used to implement this scheme. As an example, page 6-13a was added to reflect changes to the original page $6-13$. In addition, implementation dates accompany all new data.

FOREWORD

The Guidance System Operation Plan (GSOP) for Program COLOSSUS is published in six sections as separate volumes (sections) as listed below:

Section 1	Prelaunch
Section 2	Data Links
Section 3	Digital Autopilots
Section 4	Operational Modes
Section 5	Guidance Equations
Section 6	Control Data

This volume (Section 6) is published as a control document governing the data used in the digital and hybrid simulators in support of the verification of the AGC program COLOSSUS. The data presented herein represent the most current data available at the time the simulators underwent configuration control (17 May 68). Revision to this document requires NASA approval.

Data represented in the Digital Simulation were gathered together by Sidney S. David who prepared the major portion of the CSM section. Robert D.Wadsworth also contributed to this section. The Saturn and Prelaunch sections were prepared by Lance W. Drane. Frederick K. Glick presented the VHF Range System data. Leonard W. Silver prepared the Entry section.

The several sections corresponding to the Hybrid Simulation were presented by George J. Kossuth.

Editing and copy preparation were supervised by Joseph P. Glendenning

6. CONTROL DATA

6.1 Introduction and Description of Simulators

6.1.1 Introduction

To formulate, code, and verify flight computer programs for an Apollo mission requires accurate, timely information regarding the mission and spacecraft characteristics. In this section (6) the data which were used in the MIT digital and hybrid simulations for the verification of the program COLOSSUS (Manned Block II Apollo Lunar Mission)are summarized. Brief discussions of the most significant mathematical models are included as well as the numerical data. The data are arranged as follows:

Section 6.2 Digital Simulator Prelaunch Environment Data, describing the gravity and swaying booster simulation used to verify the prelaunch operations.

Section 6. 3 Digital Simulator Launch Vehicle Data, describing the key booster parameters used in the simulation from lift-off until separation of the CSM.

Section 6.4 Digital Simulator CSM and LM Spacecraft Data, including reference positions and dimensions, mass properties, propulsion data, and dynamic models for structural bending and propellant slosh.

Section 6.5 Digital Simulator CM Reentry Spacecraft Data, including reference positions and dimensions, mass properties, propulsion data, and reentry aerodynamics.

Section 6.6 Digital Simulation VHF Range System, including range limitation and scale factor.

Section 6.7 Digital Simulator Coordinate Systems and Natural Environment Data, describing models used which influence the spacecraft trajectory.

Section 6.8 Hybrid Simulator Prelaunch Environment Data.
Section 6.9 Hybrid Simulator Launch Vehicle Data.
Section 6.10 Hybrid Simulator CSM and LM Spacecraft Data, including vehicle dimensions, mass properties, and dynamic models for structural bending and propellant slosh.

Section 6.11 Hybrid Simulator CM and Reentry Spacecraft Data, including vehicle dimensions, mass properties and reentry aerodynamics.

Section 6. 12 Hybrid Simulator VHF Range System, describing the data and the interface with the AGC.

Section 6.13 Hybrid Simulator Coordinate Systems and Natural Environment Data, describing models used which influence the spacecraft trajectory.

Section 6.14 References, listing the basic source documents from which the control data and models were derived.

In Section 6.2 through 6. 13 a number in the right hand column opposite a data entry is the number of the source document as given in the Reference Section 6. 14.

6.1.2 The Digital Simulator

The MIT Apollo Digital Simulator is a complex, highly flexible tool used to support design, development, and verification of onboard Apollo Guidance Computer programs. The Simulator is entirely digital - no flight hardware of any sort is incorporated in the simulation, and elements of the Simulator are represented by programs on a general purpose digital computer. The Simulator exists in the purely abstract form of a number of computer programs. Its usefulness is closely tied to the precision with which its programs represent the detailed functioning of the real hardware and flight environment. Considerable care was taken to ensure that the simulated AGC and the real AGC function identically, and that all aspects of the Apollo hardware and flight environment that interact significantly with the AGC are simulated.

6.1.3 The Hybrid Simulation

The Apollo Hybrid Simulator is a real-time simulation of the vehicle and any environment the AGC or flight crew would experience. Flight hardware such as a real CDU and real DSKY interface with a real AGC with its fixed memory replaced by a core rope simulator. The cockpit mock-up provides discretes for the AGC and man-in-the-loop capability so that procedures and mission programs can be verified. Rapid debugging is possible as AGC registers can be monitored or fixed memory changed easily, and environment and downlink data can be compared using the offline edit. Because vehicle dynamics can be simulated on analog computers and the vehicle's environment and trajectory can be computed on the digital computer, a sophisticated simulator is available to the user for real-time studies.

6.2 Digital Simulator Prelaunch Environment Data

6.2.1 To simulate a prelaunch environment, the position, velocity, gravity and time integral of gravity at the spacecraft navigation base are computed as analytic functions of time, and not by the numerical integration method used in the flight mode.

The gravitational acceleration includes perturbations due to earth oblateness, and sun and moon attractions. The centripetal acceleration due to earth rotation is then added to the gravitational acceleration vector.

Earth rotation rate expressed in the reference coordinate system	WE	$\begin{gathered} 0.0 \\ 0.0 \\ 72921.2 \times 10^{-9} \end{gathered}$	rad/sec rad/sec rad/sec	2.1
North latitude of Launch Pad 39A	LAT	28.53186	deg	2.2
East longitude of Launch Pad 39A	LONG	279.43507	deg	2.2
Altitude of the spacecraft navigation base above the reference ellipsoid	ALT	96.83	m	2.3
Spacecraft $+Z$ axis measured counterclockwise from east	AZIMUTH	180	deg	2.3

6.2.2 Superimposed on the deterministic model of gravity and earth rotation is a stochastic model for the launch vehicle swaying in the wind on the launch pad. The swaying motion is assumed to have no preferred direction, so it is modelled by two independent random processes in the two horizontal directions. The swaying booster is modelled as a damped second-order oscillator so that the displacement, r, is related to the normalized force, f, by the differential equation

$$
\ddot{r}+2 a w \dot{r}+w^{2} r=f
$$

Damping ratio of the vehicle for swaying motion	0.1	n / a	2.4
Natural frequency of the launch vehicle in sway	2.70	$\mathrm{rad} / \mathrm{sec}$	2.5

The wind force, f, on the side of the launch vehicle is modelled as an exponentially correlated Gaussian process. It is governed by the differential equation

$$
\dot{f}+f / T=W
$$

where W is a piecewise constant random forcing function whose amplitude distribution is Gaussian.

The correlation time of the wind force

6.3 Digital Simulator Launch Vehicle (AS-503) Data

6.3.1 Major Events During Saturn Trajectory 3.1				
The following sequence is a chronological ordering of the simulated				
Guidance reference release (ST124 platform)	GRR	-16.7	sec	
SIC lift-off	LIFTOFF	0.0	sec	
Lift-off signal	TBASE1	0.3	sec	
Attitude hold constant for staging	ATTHOLD	153.0	sec	
SIC outboard engines turned off	OUTOFF	158.754	sec	
SII 90\% Thrust	SII IG	164.994	sec	
Launch escape tower jettisoned	LES	195.564	sec	
Initiate IGM calculations	STARTIGM	201.0	sec	
SII mixture ratio change	SIIMR47	432.0	sec	
SII/SIVB separation	SEP	538.285	sec	
SIVB 90\% Thrust	SIVBLO	544.410	sec	
Approximate time of SIVB cut-off	APPCO	661.439	sec	

6. 3. 2 Pre-Iterative Guidance Mode Pitch Polynomials 3.5Open loop steering commands are generated during SIC flight throughthe atmosphere by a fourth order polynomial function of time from lift-off.
PITCH =

$$
\underset{\mathrm{J}=0}{\stackrel{4}{\text { SUM }}} \quad \mathrm{F}_{\mathrm{J}} \quad \mathrm{~T}^{\mathrm{J}} \quad \operatorname{deg}
$$

Time period $0.0<t<13.0$ sec

PITCH $=$	0	
	Time Period 13.0<t<35.0	sec
F_{0}	3.19840	deg
F_{1}	-0.544236	$\mathrm{deg} / \mathrm{sec}$
F_{2}	0.0351605	$\mathrm{deg} / \sec ^{2}$
F_{3}	-0.00116379	$\mathrm{deg} / \mathrm{sec}^{3}$
F_{4}	0.0000113886	$\mathrm{deg} / \sec ^{4}$
	Time Period 35.0<t<80.0	sec
F_{0}	-10.9607	deg
F_{1}	0.946620	$\mathrm{deg} / \mathrm{sec}$
F_{2}	-0.0294206	$\mathrm{deg} / \mathrm{sec}^{2}$
F_{3}	0.000207717	$\mathrm{deg} / \mathrm{sec}^{3}$
F_{4}	-0.000000439036	deg/sec ${ }^{4}$
	Time Period 80.0<t<15.0	sec
F_{0}	78. 7826	deg
F_{1}	-2.83749	$\mathrm{deg} / \mathrm{sec}$
F_{2}	0.0289710	$\mathrm{deg} / \mathrm{sec}^{2}$
F_{3}	-0.000178363	deg/sec ${ }^{3}$
F_{4}	0.000000463029	$\mathrm{deg} / \mathrm{sec}^{4}$

Time Period $13.0<t<35.0$
3.19840
-0.544236
0.0351605
-0.00116379
0.0000113886
80.0
sec
deg
$\mathrm{deg} / \mathrm{sec}$
$\mathrm{deg} / \sec ^{2}$
$\operatorname{deg} / \sec ^{3}$
$\operatorname{deg} / \sec ^{4}$

Time Period 80. $0<\mathrm{t}<115.0$:
78.7826
-2.83749
0.0289710
-0.000178363
0.000000463029
$\operatorname{deg} / \sec ^{4}$

	Time Period $115.0<t<153.0$	sec
F_{0}	69.9191	deg
F_{1}	-2.007490	$\mathrm{deg} / \mathrm{sec}$
F_{2}	0.0105367	$\mathrm{deg} / \mathrm{sec}^{2}$
$\mathrm{~F}_{3}$	-0.0000233163	$\mathrm{deg} / \mathrm{sec}^{3}$
$\mathrm{~F}_{4}$	0.0000000136702	$\mathrm{deg} / \mathrm{sec}^{4}$

6.3.3 Parking Orbit Insertion Guidance 3.1Steering commands during SIVB burn for parking orbit insertion aregenerated by solving the closed loop Iterative Guidance Mode equations.

The IGM steering terminal conditions are:

Launch azimuth measured clock- wise from north	72.0	deg
Terminal geocentric radius magnitude	6563365.1	m
Terminal inertial velocity magnitude	7749.955	$\mathrm{~m} / \mathrm{sec}$
Terminal flight path angle	0.0	deg
Inclination of orbit	32.55754	deg
Descending node of orbit	123.1935	deg

6.3.4 Thrust Simulation3.3
6.3.4.1 To simulate the time thrust of the five F1 engines of the SIC stage, thrust is simulated as a step function of time from lift-off. This reflects the actual change in thrust of the engines and does not include forces caused by atmospheric drag.

Time	Thrust		
0.0	33938250	newtons	
2.5	33971990	newtons	
7.5	34034200	newtons	
12.5	34132540	newtons	
17.5	34270180	newtons	
22.5	34449660	newtons	
27.5	34672080	newtons	
32.5	34939320	newtons	
37.5	35248680	newtons	
42.5	35596560	newtons	
47.5	35976510	newtons	
52.5	36377720	newtons	
57.5	36789440	newtons	
62.5	37200670	newtons	
67.5	37599950	newtons	
72.5	37989150	newtons	-
77.5	38357830	newtons	
83.0	38561320	newtons	
85.0	38688970	newtons	
90.0	38976740	newtons	
95.0	39212910	newtons	
100.0	39403610	newtons	
105.0	39559480	newtons	
110.0	39692710	newtons	
115.0	39812460	newtons	
120.0	39926380	newtons	
125.0	40039970	newtons	

Time	Thrust	
130.0	40158150	newtons
135.0	40285400	newtons
140.0	40426160	newtons
145.0	40585170	newtons
150.0	40768200	newtons
154.524	32768450	newtons

6.3.4.2 Thrust of the SII stage is simulated as constant.

Average thrust of the 5115450 newtons five J2 engines of the SII stage

Average thrust after	$4225810 \quad$ newtons
fuel mixture ratio shift	

6.3.4.3 Thrust of the SIVB stage is simulated as constant.

Average thrust of the J2 889652 newtons engine of the SIVB stage first burn first fuel mixture ratio

Average thrust of the J 2
911885.4
newtons engine of the SIVB stage first burn second fuel mixture ratio
6.3.5 Mass History and Mass Decrement Rates

- 3.3

6.3.5.1 The following data describe the mass history of the Saturn V

 trajectory.| Total Mass of SIC and | 2903620 |
| :--- | :--- |
| SII and SIVB and Apollo | |
| Configurations with frost, | |
| LES, and all other masses | |
| at lift off. | |

Total Mass of SII and $661450 \quad \mathrm{~kg}$
SIVB, Apollo Configuration, LES, ullage cases, and all other masses at SII ignition.

Total Mass of SIVB 164855 kg and Apollo Configuration at SIVB ignition.
6.3.5.2 The following data describe the mass decrement rates of the Saturn V trajectory.

```
Average mass decrement 13185
rate during the SIC burn
caused by fuel consumed,
by frost burned off, and by
all other changes in mass
not submitted as a specific
mass decrement
```

Average mass decrement $1265 \quad \mathrm{~kg} / \mathrm{sec}$ rate during the SII burn first mixture ratio.

Average mass decrement 1010 $\mathrm{kg} / \mathrm{sec}$ rate during the SII burn second mixture ratio.

Average mass decrement $226 \quad \mathrm{~kg} / \mathrm{sec}$ rate during the first SIVB burn first mixture ratio.
6.3.6 Flight Control Computer control loop gains during SIC, SII, and SIVB burns.

TIME

ERROR GAIN A_{0}
$\mathrm{rad} / \mathrm{rad}$

ROLL PITCH \& YAW
SIC Lift-off
SIC Lift-off +100
0.245
0.82
0.245
0.45
0.245
0.15
$0.25 \quad 1.12$
$0.25 \quad 0.65$
0.25
0.44
1.0
0.809
1.0
1.0

RATE GAINS A_{1} $\mathrm{rad} /(\mathrm{rad} / \mathrm{sec})$

ROLL PITCH \& YAW
$0.15 \quad 0.657$
$0.15 \quad 0.438$
$0.15 \quad 0.2$
0.21 .89
0.21 .10
0.2
0.74
$5.0 \quad 0.97$
$5.0 \quad 5.0$

6.4 Digital Simulator CSM (CSM-103) and LM (LM-3) Spacecraft Data

6.4.1 CSM Reference Positions and Dimensions

The following reference positions and dimensions are expressed in the Apollo coordinate system in the order X component, Y component, Z component unless otherwise noted.

6.4.1.1 CM Navigation Base	NB	1055.715	in.	4. 1
Position		0.0	in	
Intersection of the three accelerometer input axes.		40.914	in.	
6.4.1.2 SPS Gimbal Ring	SP	833.2	in.	4. 2
Position		0.0	in.	
Instersection of the two gimbal ring axes.		0.0	in.	

6.4.1.3 RCS Quad Location and Jet Orientation

Each of the 4 RCS jet quads are located at the same point on the X axis. The quads are 90 degrees apart in the $Y-Z$ plane. They are offset from alignment with the Y and Z axes by a negative rotation about the $+X$ axis in accordance with the right-hand rule. The engine nozzles are positioned (canted) such that the exhaust gases are directed away from the spacecraft surface. The distance from the X axis to the RCS jet centerline intersection has been averaged and is modelled as a constant for each quad. See Fig. 2. 9 of Reference 4.2.
X axis location of all \quad RCRX 958.97 in RCS Quads

Average distance from
RCRAD 82.68 in X axis to RCS jet centerline intersection

RCS quad offset from Y
OFFSET
7.25
deg and Z axes
Nozzle cant angle \quad CANT $10.0 \quad$ deg

Prior to the simulated mission, when the LM mass is selected, its center of gravity and inertia are computed in the LM coordinate system (Section 6.4.4). These parameters are subsequently transformed into the Apollo coordinate system. The relation between the Apollo and LM vehicle coordinates is given below in terms of the displacement of the LM origin in the Apollo coordinate system and a transformation matrix. The transformations are as follows:

$$
\begin{gathered}
\text { CG }_{\text {APOLLO }}=\text { TEMP }_{\text {CG }}^{\text {LM }} \\
+ \text { DISP } \\
\text { * INERTA }_{\text {APOLLO }}=\text { TEMP INERTIA }_{\text {TMM }} \text { TEMP }^{*}{ }^{*}
\end{gathered}
$$

Position of LM	X	DISP	1422.75	in.
coordinate origin	Y		0.0	in.
in Apollo			0.0	in.
coordinates	Z			

Transformation matrix TEMP -1.0 nd from LM to Apollo Coordinates
0.0
0.0
0.0
0.5
0.86603
0.0
0.86603
-0.5

6.4.3 CSM Mass Properties

The CSM mass properties are presented for the vehicle components and several propellant loadings. The center of gravity is expressed in the Apollo coordinate system. The inertia is about the center of gravity of each item and is given with respect to the Apollo coordinate directions. Both the diagonal and off-diagonal elements of the inertia tensor are used as positive elements. Hence the numerical values of the off-diagonal elements reported below have signs opposite to those given in the referenced documents.

Prior to the simulation, the masses, center of gravities and inertias of all vehicle components (including propellants and the docked LM if desired) are appropriately combined. During the simulated mission, the vehicle mass is decremented by propellant usage, and vehicle center of gravity and inertia are recalculated.

6.4.3.1 Empty Service Module Including Total

Service Module RCS Propellant and SPS System Residuals

Mass MSM 10800 lb

Center of Gravity	X	CGSM	918.0	in.
	Y		-6.0	in.
	Z		10.3	in.

Inertia	I_{XX}	ISM	7337.0	slug ft^{2}
	I_{YY}		12222.0	slug ft^{2}
	I_{ZZ}		11745.0	slug ft ${ }^{2}$
	I_{XY}		96.7	slug ft ${ }^{2}$
	I_{XZ}		-321. 3	slug ft ${ }^{2}$
	$\mathrm{I}_{\mathrm{Y} Z}$		186.4	slug ft ${ }^{2}$

6.4.3.2 Spacecraft Lunar Module Adapter Attach Ring

Mass
MSLAR
91.0
lb

Center of Gravity	X	CGSLAR	837.1	in.
	Y		-0.3	in.
	Z		1.9	in.
Inertia	I_{XX}	ISLAR	113.0	slug ft^{2}
	I_{YY}		58.0	slug ft^{2}
	I_{ZZ}		55.0	slug ft^{2}
	$\mathrm{I}_{X Y}$		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft^{2}
	I_{YZ}		0.0	slug ft^{2}

Prior to the simulation, the masses, center of gravities and inertias of all vehicle components (including propellants and the docked LM if desired) are appropriately combined. During the simulated mission, the vehicle mass is decremented by propellant usage, and vehicle center of gravity and inertia are recalculated.
6.4.3.1 Empty Service Module Including Total

Service Module RCS Propellant and SPS System Residuals 4.3

Mass		MSM	10675	1 b	9/30/68
Center of Gravity	X	CGSM	918.7	in.	$9 / 30 / 68$
	Y		-5.7	in.	9/30/68
	Z		11.2	in.	$9 / 30 / 68$
Inertia	I_{XX}	ISM	7340.0	slug ft^{2}	9/30/68
	I_{YY}		12250.0	slug ft^{2}	9/30/68
	I_{ZZ}		11725.0	slug ft^{2}	$9 / 30 / 68$
	$\mathrm{I}_{X Y}$		90.0	slug ft^{2}	9/30/68
	${ }^{\text {I }} \mathrm{XZ}$		-430.0	slug ft^{2}	9/30/68
	I_{YZ}		600.0	slug ft ${ }^{2}$	$9 / 30 / 68$

6.4.3.2 Spacecraft Lunar Module Adapter Attach Ring
4.3

Mass		MSLAR	91.0	1b
Center of Gravity	X	CGSLAR	837.1	in.
	Y		-0.3	in.
	Z		1.9	in.
Inertia	I_{XX}	ISLAR	113.0	slug ft^{2}
	I_{YY}		58.0	slug ft^{2}
	$\mathrm{I}_{\mathbf{Z Z}}$		55.0	slug ft^{2}
	$\mathrm{I}_{X Y}$		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft ${ }^{2}$

$$
6-13 a
$$

6.4.3.3 Nominal Full Command Module, including CM RCS Propellants 4.3

Mass		MCM	13065.0	lb
Center of Gravity	X	CGCM	1042.8	in.
	Y		-0. 5	in.
	Z		5.3	in.
Inertia	I_{XX}	ICM	6032.0	slug ft ${ }^{2}$
	I_{YY}		5575.0	slug ft ${ }^{2}$
	$\mathrm{I}_{\text {ZZ }}$		5043.0	slug ft^{2}
	$\mathrm{I}_{X Y}$		-56.4	slug ft ${ }^{2}$
	${ }^{1} \mathrm{XZ}$		440.6	slug ft^{2}
	I_{YZ}		-13.2	slug ft^{2}

6.4.3.4 Service Module RCS Propellant Mass Properties

During the simulated mission, the RCS propellant center of gravity is modelled as a constant. The propellant inertia is found by a linear interpolation between two tabulated points; one of which corresponds to zero mass, zero inertia, and the other which corresponds to an approximate full load.

Usable Service Module RCS propellant loaded for this mission

RCS Propellant Loading 100%

Mass (Usable)

Center of Gravity
X
Y
Z

Inertia

MRCINIT 1317.2

CGRCS
941.8
0.0
0.0
1250.0
750.0
700.0
0.0
0.0
0.0
4. 4
4.4
in.
in.
slug ft^{2}
4.5
slug ft ${ }^{2}$
slug ft^{2}
slug ft^{2}
$I_{X Z}$
$\mathrm{I}_{\mathrm{Y} Z}$

MRCINIT
1317.2
lb
4. 4
6.4.3.3 Nominal Full Command Module, including CM RCS Propellants

Mass		MCM	12392.0	lb	9/30/68
Center of Gravity	X	CGCM	1042.1	in.	$9 / 30 / 68$
	Y		-0.2	in.	$9 / 30 / 68$
	Z		5.8	in.	$9 / 30 / 68$
Inertia	I_{XX}	ICM	5800.0	slug ft ${ }^{2}$	$9 / 30 / 68$
	I_{YY}		5220.0	slug ft^{2}	9/30/68
	$\mathrm{I}_{\text {ZZ }}$		4725.0	slug ft^{2}	9/30/68
	I_{XY}		-40.0	slug ft^{2}	9/30/68
	I_{XZ}		420.0	slug ft ${ }^{2}$	9/30/68
	I_{YZ}		-15.0	slug ft^{2}	$9 / 30 / 68$

6.4.3.4 Service Module RCS Propellant Mass Properties

During the simulated mission, the RCS propellant center of gravity is modelled as a constant. The propellant inertia is found by a linear interpolation between two tabulated points; one of which corresponds to zero mass, zero inertia, and the other which corresponds to an approximate full load.

Usable Service Module	MRCINIT	1317.2	$1 b$	4.4
RCS propellant loaded				
for this mission				

RCS Propellant Loading 100%

Mass (Usable)		MRCINIT	1317.2	lb	4.4
Center of Gravity	X	CGRCS	941.8	in.	4.4
	Y		0.0	in.	
	Z		Q. 0	in.	
Inertia	I_{XX}	IR	1250.0	slug ft^{2}	4.5
	${ }^{\text {I }} \mathrm{YY}$		750.0	slug ft^{2}	
	$I_{Z Z}$		700.0	slug ft ${ }^{2}$	
	I_{XY}		0.0	slug ft ${ }^{2}$	
	I_{XZ}		0.0	slug ft ${ }^{2}$	
	I_{YZ}		0.0	slug ft ${ }^{2}$	

Added

6.4.3.5 Service Module SPS Propellant Mass Properties

The Service Module SPS Propellant mass properties are presented at three different propellant loadings for each of the four propellant tanks. Prior to the simulation, these mass properties are appropriately combined to produce two sets of mass properties at three different propellant loadings for both the combined storage tanks and the combined sump tanks. During the simulated mission, depending upon the propellant level, the propellant center of gravity is found by a linear interpolation between two calculated points; and the inertia is found by a cubic interpolation between three calculated points.

Since SPS propellant loading is mission dependent and the predicted value frequently varies prior to the mission, the capability to change this parameter within the simulation exists. It is incumbent upon the users of the simulator to keep abreast of mission planning and select the appropriate propellant loading to meet their particular objectives.

Tanked Service Module SPS propellant mass	MSPINIT	35268.0	lb	4.3
Sump tank propellant mass capacity	MSUMP	22300.0	lb	4.6
Sump tank propellant residual	MSPRESID	239.0	1 lb	4.3

Oxidizer Storage Tank
4. 2

Propellant Loading No. 1

Mass		MSO_{0}	3746.84	lb
Center of Gravity	X	RSO_{0}	861.8	in.
	Y		14.8	in.
Inertia	Z		47.8	in.
	I_{XX}	ISO_{0}	0.0	slug ft ${ }^{2}$
	I_{YY}		244.6	slug ft ${ }^{2}$
	I_{ZZ}		244.6	slug ft ${ }^{2}$
	I_{XY}		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft ${ }^{2}$

6.4.3.5 Service Module SPS Propellant Mass Properties

The Service Module SPS Propellant mass properties are presented at three different propellant loadings for each of the four propellant tanks. Prior to the simulation, these mass properties are appropriately combined to produce two sets of mass properties at three different propellant loadings for both the combined storage tanks and the combined sump tanks. During the simulated mission, depending upon the propellant level, the propellant center of gravity is found by a linear interpolation between two calculated points; and the inertia is found by a cubic interpolation between three calculated points.

Since SPS propellant loading is mission dependent and the predicted value frequently varies prior to the mission, the capability to change this parameter within the simulation exists. It is incumbent upon the users of the simulator to keep abreast of mission planning and select the appropriate propellant loading to meet their particular objectives.

Tanked Service Module SPS propellant mass	MSPINIT	40583.0	$1 \mathrm{lb} 9 / 30 / 68$	4.3
Sump tank propellant mass capacity	MSUMP	22300.0	1 b	4.6
Sump tank propellant residual	MSPRESID	239.0	$1 b$	4.3
Oxidizer Storage Tank				

Propellant Loading No. 1

Mass		MSO_{0}	3746.84	lb
Center of Gravity	X	RSO_{0}	861.8	in.
	Y		14.8	in.
Inertia	Z		47.8	in.
	I_{XX}	ISO_{0}	0.0	slug ft ${ }^{2}$
	I_{YY}		244.6	slug ft ${ }^{2}$
	I_{ZZ}		244.6	slug ft ${ }^{2}$
	I_{XY}		0.0	slug ft 2
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft 2

\boxed{X} Added GSOP \#R-577 PCR \#_629_ Rev. 1 Date $12 / 68$

Propellant Loading No. 2

Mass		MSO $_{1}$	7579.05	lb
Center of Gravity	X	RSO_{3}	885.1	in.
	Y		14.8	in.
	Z		47.8	in.
Inertia				
	I_{XX}	ISO_{9}	0.0	slug ft ${ }^{2}$
	I_{YY}		1362.0	slug ft ${ }^{2}$
	I_{ZZ}		1362.0	slug ft ${ }^{2}$
	I_{XY}		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft ${ }^{2}$

Propellant Loading No. 3

Mass		MSO_{2}	11084.90	lb
Center of Gravity	X	RSO_{6}	906.2	in.
	Y		14.8	in.
Inertia	Z		47.8	in.
	$\mathrm{I}_{\mathrm{XXX}}$	ISO_{18}	0.0	slug ft ${ }^{2}$
	I_{YY}		3891.1	slug ft ${ }^{2}$
	I_{ZZ}		3891.1	slug ft ${ }^{2}$
	I_{XY}		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft ${ }^{2}$

Fuel Storage Tank
Propellant Loading No. 1

Mass		MSF $_{0}$	2343.24	lb
Center of Gravity	X	RSF $_{0}$	861.8	in.
	Y		-14.8	in.
	Z		-47.8	in.

Inertia	I_{XX}	ISF_{0}	0.0
	I_{YY}		153.0
	I_{ZZ}		153.0
slug ft $^{2}{ }^{2}$			
	I_{XY}		slug ft 2
	I_{XZ}		0.0
slug ft			

Propellant Loading No. 2

Mass		MSF_{1}	4739.87	lb
Center of Gravity	X	RSF_{3}	885.1	in.
	Y		-14.8	in.
Inertia	Z		-47.8	in.
	I_{XX}	ISF_{9}	0.0	slug ft ${ }^{2}$
	I_{YY}		851.8	slug ft 2
	I_{ZZ}		851.8	slug ft 2
	I_{XY}		0.0	slug ft 2
	I_{XZ}		0.0	slug ft 2
	I_{YZ}		0.0	slug ft 2

Propellant Loading No. 3

Mass

Center of Gravity

Inertia $\begin{array}{ll} & \mathrm{I}_{\mathrm{XX}} \\ & \mathrm{I}_{\mathrm{YY}} \\ & \mathrm{I}_{\mathrm{ZZ}} \\ & \mathrm{I}_{\mathrm{XY}} \\ & \mathrm{I}_{\mathrm{XZ}} \\ & \mathrm{I}_{\mathrm{YZ}}\end{array}$
X
Y
Z
MSF_{2}
RSF_{6}

RSF $_{18}$

Oxidizer Sump Tank
Propellant Loading No. 1

Mass		MSO_{3}	4684.25	1b
Center of Gravity	X	RSO_{9}	862.1	in.
	Y		48.3	in.
	Z		6.6	in.
Inertia	${ }^{\text {I }}$ XX	ISO_{27}	0.0	slug ft ${ }^{2}$
	I_{YY}		331.9	slug ft ${ }^{2}$
	I_{ZZ}		331.9	slug ft^{2}
	$\mathrm{I}_{X Y}$		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft ${ }^{2}$
	I_{YZ}		0.0	slug ft^{2}

Propellant Loading No. 2

Mass		MSO_{4}	0155.85	lb
Center of Gravity	X	RSO_{12}	883.3	in.
	Y		48.3	in.
Inertia	Z		6.6	in.
	I_{XX}	ISO_{3}	0.0	slug ft ${ }^{2}$
	I_{YY}		1561.2	slug ft ${ }^{2}$
	I_{ZZ}		1561.2	slug ft ${ }^{2}$
	I_{XY}		0.0	slug ft ${ }^{2}$
	I_{XZ}		0.0	slug ft 2
	I_{YZ}		0.0	slug ft ${ }^{2}$

Propellant Loading No. 3

Mass		MSO_{5}	13798.30	lb
Center of Gravity	X	RSO_{15}	905.2	in.
	Y		48.3	in.
	Z		6.6	in.

Inertia	I_{XX}	ISO_{45}	0.0
I_{YY}		4694.6	slug ft 2
	slug ft 2		
	I_{ZZ}		4694.6
slug ft 2			
	I_{XY}	0.0	slug ft 2
	I_{XZ}	0.0	slug ft 2
	I_{YZ}	0.0	slug ft

Fuel Sump Tank

Propellant Loading No. 1

Mass

Center of Gravity
X
Y
Z

Inertia
I_{XX}
I_{YY}
$\mathrm{I}_{Z Z}$
I_{XY}
I_{XZ}
I_{YZ}

Propellant Loading No. 2

Mass

Center of Gravity | | X |
| :---: | :---: |
| Inertia | Y |
| | Z |
| | |
| | I_{XX} |
| | I_{YY} |
| | I_{ZZ} |
| | I_{XY} |
| | I_{XZ} |
| | I_{YZ} |

MSF_{3}
RSF_{9}

862.1	in.
-48.3	in.
-6.6	in.

ISF_{27}
0.0
207.6
207.6
0.0
0.0
0.0
MSF_{4}
RSF_{12}
883.3
-48. 3
-6.6
0.0
976.3
976.3
0.0
0.0
0.0

ISF $_{36}$
4.2
lb
in.
in.
in.
slug ft^{2} slug ft ${ }^{2}$ slug ft^{2} slug ft^{2} slug ft ${ }^{2}$ slug ft ${ }^{2}$

1b
in.
in.
in.
slug ft^{2} slug ft^{2}
slug ft ${ }^{2}$
slug ft^{2}
slug ft ${ }^{2}$
slug ft^{2}

Propellant Loading No. 3

Mass				
Center of Gravity		MSF_{5}	8629.30	lb
	X	RSF_{15}	905.2	in.
Inertial	Y		-48.3	in.
	Z		-6.6	in.
	I_{XX}	ISF_{45}	0.0	slug ft ${ }^{2}$
	I_{YY}		2935.9	slug ft 2
	I_{ZZ}		2935.9	slug ft 2
	I_{XY}		0.0	slug ft 2
	I_{XZ}		0.0	slug ft 2
	I_{YZ}		0.0	slug ft 2

6.4.4 LM Mass Properties

When the CSM is the controlling vehicle, there exists within the simulator the capability of simulating a constant-mass docked LM vehicle in either the ascent-descent or the ascent-only configuration. The LM mass properties are presented at three propellant loadings for both of these configurations. At each propellant loading the initial tanked RCS propellant mass is included. The LM is unmanned. The masses of the LM propellants are assumed constant and located at the CSM end of the tanks. The inertia of each propellant loading is calculated assuming that the liquid propellant is composed of a rigid mass and a sloshing mass and has no moment of inertia about its own axis (the liquid is irrotational, see reference 4.8). As is described in section 6.4.2, the center of gravity of the vehicle at each propellant loading has been transformed to and is expressed in the Apollo coordinate system. The inertia is about this center of gravity and is given with respect to the Apollo coordinate direction. Both the diagonal and off-diagonal elements of the inertia tensor are used as positive elements. Hence, the numerical values of the off-diagonal elements reported below have signs opposite to those given in the referenced documents.

Prior to the simulation, when the LM mass is selected, the center of gravity and inertia are calculated. This is achieved by a parabolic interpolation between the tabulated entries listed below for the appropriate configuration.

Since APS and DPS propellant loadings are mission dependent and their predicted values frequently vary prior to the mission, the capability to change these parameters within the simulator exists. It is incumbent upon the users of the simulator to keep abreast of mission planning and select the appropriate propellant loadings to meet their particular objectives.

6.4.4.1 Ascent-Descent Configuration

The landing gear is deployed.

Descent Stage

DPS propellant loading 100% of usable

Ascent Stage

APS propellant loading 100% of usable

Mass		32637.0	lb
Center of Gravity	X	1235.7	in.
	Y	0.02	in.
Inertia	Z	0.71	in.
	I_{XX}	21531.0	slug ft ${ }^{2}$
	I_{YY}	23764.0	slug ft 2
	I_{ZZ}	24221.0	slug ft ${ }^{2}$
	I_{XY}	387.0	slug ft ${ }^{2}$
	I_{XZ}	-247.0	slug ft ${ }^{2}$
	I_{YZ}	-395.0	slug ft ${ }^{2}$

Descent Stage
DPS propellant loading 50% of usable

Ascent Stage
APS propellant loading 100% of usable

Mass		23869.0	lb
Center of Gravity	X	1225.3	in.
	Y	0.07	in.
	Z	0.93	in.

6.4.4.2 Ascent-Only Configuration

Ascent Stage
APS Propellant loading 100% of usable

Mass		10610.0	lb
Center of Gravity	X		
	Y	1178.2	in.
	Z	0.62	in.
		-0.56	in.

The SM Reaction Control System contains 16 thrust chambers in four separate and independent quads of four thrust chambers each. The individual RCS thruster is modelled as a constant-thrust motor.
6.4.5.1 The buildup and tailoff of thrust are modelled by instantaneous changes in thrust, shifted in time from electrical command. The shift is different for the application and removal of thrust. The amount of the shift is calculated to give a transient impulse typical of a real thruster.
$\begin{array}{llll}\text { Constant RCS thrust } & \text { RCTHRUST } & 99.8 & 1 b\end{array}$

Step delay in RCS thrust application from receipt of electrical command

Step delay in RCS thrust removal from removal of electrical command	RCOFFDEL	0.0105	sec
Minimum allowable RCS electrical pulse width	TMINPULS	0.014	sec

6.4.5.2 The propellant usage of each RCS thruster is modelled by a constant mass flow rate when the jet is fired, plus a propellant penalty for each jet firing.
Constant RCS propellant RCMFLO $\quad 0.361 \quad \mathrm{lb} / \mathrm{kec}$
flow rate
Propellant penalty per NFIRTOKG $0.0033 \quad$ lb
jet firing

6.4.6 Service Propulsion System

6.4.6.1 Steady and Transient Performance

The SPS engine is modelled as a constant-thrust constant-flow rate motor. The buildup and tailoff of thrust are modelled by instantaneous changes in thrust, shifted in time from electrical command. The shift is different for the application and removal of thrust. The amount of the shift is calculated to give a transient impulse typical of the real engine.

To simulate SPS burn durations between 400 milliseconds and one second, nominal SPS minimum impulse test data are used to calculate total impulse (see reference 4.2). For burn durations of less than 400 milliseconds, a zero-impulse model is employed.

Constant SPS thrust SPTHRUST $20500.0 \quad$ lb $\quad 4.9$

Step delay in SPS thrust
SPONDEL
0.52
sec
4. 9 application from receipt of electrical command

Step delay in SPS thrust removal from removal of electrical command

Minimum SPS pulse TSPMINPL 0.40 sec
4.2 duration for non-zero impulse

SPOFFDEL
0.49
sec
4. 9

Actual time from removal SPOFFTRANS
2.2
sec
4.9 of electrical command to 1. 0 percent thrust (during which thrust vector control should be maintained)
$\begin{array}{lllll}\text { Constant SPS propellant } & \text { SPMFLO } & 63.8 & \mathrm{lb} / \mathrm{sec} & 4.6\end{array}$ flow rate
6.4.6.2 Actuator Dynamics 4.2

The SPS engine is mounted on a gimbal system which permits angular motion in pitch and yaw. Engine angular position is controlled by closed-loop servomechanisms in both axes. The servo loops include an amplifier (modelled as a constant gain, no lags), a clutch (modelled as a constant gain - torquer/current ratio, no lags), position feedback and rate feedback. For small signal inputs, the operation of the servos is linear. The total torque applied to the SPS engine includes clutch torque, angular velocity dependent torques caused by damping within the actuator and exhaust jet damping, angular position dependent torques caused by hose stiffness and snubber spring stiffness (if the angular deflection exceeds the position limit), and reaction torques caused by the acceleration of the vehicle. The angular acceleration of the engine is the ratio of total torque to total inertia and is integrated twice to obtain angular deflection. Total inertia includes both engine inertia and actuator inertia.

To simulate SPS burn durations between 400 milliseconds and one second, nominal SPS minimum impulse test data are used to calculate total impulse (see reference 4.2). For burn durations of less than 400 milliseconds, a zero-impulse model is employed.

Constant SPS thrust	SPTHRUST	21118.0	lb $9 / 30 / 68$	4.9
Step delay in SPS thrust application from receipt of electrical command	SPONDEL	0.52	sec	4.9
Step delay in SPS thrust removal from removal of electrical command	SPOFFDEL	0.49	sec	4.9

Minimum SPS pulse duration for non-zero impulse	TSPMINPL	0.40	sec	4.2

Actual time from removal SPOFFTRANS 2.2 sec 4.9 of electrical command to 1.0 percent thrust (during which thrust vector control should be maintained)

Constant SPS propellant	SPMFLO	67.2	$\mathrm{lb} / \mathrm{sec}$
flow rate	4.6		
		$9 / 30 / 68$	

6.4.6.2 Actuator Dynamics 4.2

The SPS engine is mounted on a gimbal system which permits angular motion in pitch and yaw. Engine angular position is controlled by closed-loop servomechanisms in both axes. The servo loops include an amplifier (modelled as a constant gain, no lags), a clutch (modelled as a constant gain - torquer/current ratio, no lags), position feedback and rate feedback. For small signal inputs, the operation of the servos is linear. The total torque applied to the SPS engine includes clutch torque, angular velocity dependent torques caused by damping within the actuator and exhaust jet damping, angular position dependent torques caused by hose stiffness and snubber spring stiffness (if the angular deflection exceeds the position limit), and reaction torques caused by the acceleration of the vehicle. The angular acceleration of the engine is the ratio of total torque to total inertia and is integrated twice to obtain angular deflection. Total inertia includes both engine inertia and actuator inertia.

Servo amplifier gain	KS	20.0	$\mathrm{amp} / \mathrm{rad}$
Actuator clutch gain	KT	3480.0	ft 1b/amp
Position feedback gain	KD	1.0	nd
Rate feedback gain	KG	0.089	sec
Actuator damping (reflected to engine)	CAD	1600.0	ft lb sec per rad
Engine exhaust jet damping	CJD	171.0	ft lb sec per rad
Hose stiffness	KH	285.0	$\mathrm{ft} \mathrm{lb} / \mathrm{rad}$
Snubber spring stiffness	KL	29400.0	ft lb/deg
Engine inertia about gimbal axis (average of pitch and yaw - wet)	IR	240.5	slug ft ${ }^{2}$
Actuator inertia (reflected to engine)	IA	68.0	slug ft^{2}
Engine mass	ME	25.4	slugs
Engine moment arm (distance from center of gravity to gimbal axis)	LE	0.271	ft

6.4.6.3 Actuator and CDU Limit Data
4.2

The operation of the SPS engine gimbal servomechanisms is nonlinear in several respects. The commanded angular position is limited within the digital-to-analog converter which provides the signal. (The D/A converters are located within the optics CDUs.) The torque applied by the actuators is limited by the maximum torque which the clutches can transmit. Angular rate is limited by the actuator motor speed and is modelled as a fixed gimbal rate limit. The engine angular position is limited by snubbers (stiff springs) beyond a limited range of motion. Angular position is measured with respect to the engine mount. The mount is offset in angular position with respect to vehicle axes in both
pitch and yaw. Therefore, the angle between the thrust vector direction and the vehicle axis will be the sum of the engine angular position and the engine mount angular offset. Angular positions are measured as positive rotations of the engine about the vehicle Y and Z axes (e.g. a positive engine angular position in pitch will result in a negative pitch acceleration of the vehicle).

Optics D/A limit (optics error counter)	LMP	384	pulses
Scale factor: pulse count to gimbal angle command	RPP	1.52	arc min per pulse
Pulse train rate	PPS	3200	pulses per sec
Clutch torque limit	LMT	1300	ft lb
Gimbal rate limit	LMR	0.15	rad/sec
Gimbal position limit	LMG	4.5	deg
Engine gimbal mounting offset-pitch	YBIAS	-2.15	deg
Engine gimbal mounting offset-yaw	ZBIAS	0.95	deg

6.4.7 CSM/LM Bending

It is necessary to simulate the structural deflections of the spacecraft caused by external loadings or contact forces such as main propulsion system thrust, RCS thrust, and fuel slosh. These structural deflections influence the spacecraft control systems by deflecting the navigation base. The bending deflection of the spacecraft can be expanded in terms of an infinite number of orthogonal eigenfunctions or modes and their associated eigenvalues or frequencies. The modes corresponding to the three lowest frequencies are simulated. The external excitations or forcing functions driving these modes can also be expanded in terms of the same eigenfunctions. Since all of the excitations are modelled by forces applied at a point, they are all spatial impulses. The expansion of the driving functions thus becomes the vector inner product of the external force and the normalized deflection of the mode at the point of application of the force. The equation for the generalized coordinate for a given bending mode with the driving terms included is

$$
\begin{aligned}
\mathrm{D}^{2} \mathrm{QB}_{\mathrm{J}} / \mathrm{DT}^{2}= & -2 \mathrm{ZETAB}_{\mathrm{J}} \mathrm{WB}_{\mathrm{J}} \mathrm{D} \mathrm{QB}_{\mathrm{J}} / \mathrm{DT}-\mathrm{WB}_{\mathrm{J}}^{2} \mathrm{QB}_{\mathrm{J}} \\
& +\sum_{\mathrm{I}} \quad\left(\mathrm{DISP}_{\mathrm{I}} / \mathrm{GM}\right) \cdot \mathrm{FORCE}_{\mathrm{I}}
\end{aligned}
$$

pitch and yaw. Therefore, the angle between the thrust vector direction and the vehicle axis will be the sum of the engine angular position and the engine mount angular offset. Angular positions are measured as positive rotations of the engine about the vehicle Y and Z axes (e.g. a positive engine angular position in pitch will result in a negative pitch acceleration of the vehicle).

Optics D/A limit
(optics error counter)
Scale factor: pulse count to gimbal angle command

Pulse train rate

Clutch torque limit
Gimbal rate limit
Gimbal position limit
Engine gimbal mounting offset-pitch

Engine gimbal mounting offset-yaw

LMP
384

RPP

RPP	1.42	arcmin per pulse
PPS	3200	pulses per sec
LMT	1300	ft lb
LMR	0.15	rad/sec
LMG	4.5	deg
YBIAS	-2.15	deg
ZBIAS	0.95	deg

6.4.7 CSM/LM Bending

It is necessary to simulate the structural deflections of the spacecraft caused by external loadings or contact forces such as main propulsion system thrust, RCS thrust, and fuel slosh. These structural deflections influence the spacecraft control systems by deflecting the navigation base. The bending deflection of the spacecraft can be expanded in terms of an infinite number of orthogonal eigenfunctions or modes and their associated eigenvalues or frequencies. The modes corresponding to the three lowest frequencies are simulated. The external excitations or forcing functions driving these modes can also be expanded in terms of the same eigenfunctions. Since all of the excitations are modelled by forces applied at a point, they are all spatial impulses. The expansion of the driving functions thus becomes the vector inner product of the external force and the normalized deflection of the mode at the point of application of the force. The equation for the generalized coordinate for a given bending mode with the driving terms included is

$$
\begin{aligned}
\mathrm{D}^{2} \mathrm{QB}_{J} / \mathrm{DT}^{2}= & -2 \mathrm{ZETAB}_{J} \mathrm{WB}_{J} \mathrm{D} \mathrm{QB}_{J} / \mathrm{DT}-\mathrm{WB}_{\mathrm{J}}^{2} \mathrm{QB}_{J} \\
& \left.+\sum_{\mathrm{I}} \quad \underline{\mathrm{ISP}}_{\mathrm{I}} / \mathrm{GM}\right) \bullet \mathrm{FORC}_{\mathrm{I}}
\end{aligned}
$$

$$
6-27 a
$$

Revised COLOSSUS
X Added \quad GSOP \#R-577 PCR \# 624
Rev. 1
Date $12 / 68$
where $\mathrm{QB}_{\mathrm{J}} \quad$ is the generalized coordinate associated with the J th mode, ZETAB $_{J}$ is the damping ratio associated with the J th mode, $\mathrm{WB}_{\mathrm{J}} \quad$ is the frequency associated with the J th mode,
FORCE $_{I} \quad$ is one of the contact forces which excite the generalized bending coordinates,

DISP $_{I} \quad$ is the vector displacement of the point of application of FORCE ${ }_{1}$,
GM is the generalized mass associated with the Jth mode.

It is seen that the bending coordinate for each of the three simulated modes is the solution of a second-order differential equation.

The motion of the navigation base is the product of the modal displacements at the navigation base and the appropriate derivative of the generalized bending coordinate. For example, the translational velocity of the navigation base due to the Jth bending mode is given by

$$
\underline{\mathrm{V}}_{\mathrm{J}}=\operatorname{DISPNB}_{\mathrm{J}} \quad \mathrm{D} \mathrm{QB}_{\mathrm{J}} / \mathrm{DT}
$$

where DISPNB $_{J}$ is the modal displacement of the navigation base due to the Jth bending mode.

Similarly, rotational displacement of the navigation base is the product of a modal rotation vector at the navigation base and the generalized bending coordinate

$$
\underline{\theta}=\mathrm{SLOPNB}_{\mathrm{J}} \quad \mathrm{QB}_{\mathrm{J}}
$$

where SLOPNB $_{J}$ is the modal rotation of the navigation base due to the J th bending mode.

The mode shapes, or specifically the displacements and rotations at individual spacecraft stations and the corresponding modal frequencies, depend on the mass distribution of the spacecraft. Data are thus required for representative loading conditions. The data are the displacements and rotations at all points of interest given below, the generalized mass, and the frequency and damping ratio for each mode. Three complete sets of data are given, one for each reference vehicle mass. A linear interpolation based on instantaneous total vehicle mass is used to obtain the bending parameters at points between two adjacent reference masses. Within a set of data for a given reference mass, each parameter has three entries for a scalar parameter, or nine entries for a vector parameter.

The first entry for a scalar parameter, or the first three entries for a vector parameter, pertain to the first mode simulated; the second or second three pertain to the second mode simulated; and similarly for the third mode. The vector parameters are expressed in the Apollo coordinate system.

Bending Data
The following data are expressed in the Apollo coordinate system: SPS 100\%
Reference spacecraft mass $\quad \mathrm{MB}_{0} \quad 91590 \quad \mathrm{lb}$
SPS propellant loading 100%
DPS propellant loading 100%
APS propellant loading 100%
Generalized mass used for \quad GM $\quad 1.0 \quad 1 \mathrm{~b} \mathrm{sec}{ }^{2} / \mathrm{in}$.

Frequency of each mode	RWB1 $_{0}$	2.08	cps
	RWB2 $_{0}$	2.26	cps
	RWB3 $_{0}$	2.44	cps
Damping ratio for generalized coordinate			
	ZETA1	0.005	nd
	ZETA2	0.005	nd
	ZETA3	0.005	nd

Displacement of the SPS trim gimbal station

RDSPT 10^{0}	-0.00353	in./in.
	0.03294	in./in.
	0.06023	in./in.
RDSPT 2^{0}	-0.00093	in./in.
	0.05176	in./in.
	-0.03372	in./in.
RDSPT 3_{0}	-0.00205	in./in.
	0.02919	in./in.
	-0.01589	in./in.

Rotation of the SPS trim \quad RROTT1 ${ }_{0} \quad 0.0 \quad \mathrm{rad} / \mathrm{in}$ gimbal station

RROTT $_{0}$	0.0	$\mathrm{rad} / \mathrm{in}$.
	0.0006605	$\mathrm{rad} / \mathrm{in}$.
	-0.0003967	$\mathrm{rad} / \mathrm{in}$.
RROTT $^{2} 0$	0.0	$\mathrm{rad} / \mathrm{in}$.
	-0.0003741	$\mathrm{rad} / \mathrm{in}$.
	-0.0006000	$\mathrm{rad} / \mathrm{in}$.

	RROTT3 $_{0}$	$\begin{aligned} & 0.0 \\ & -0.0001041 \\ & -0.0002658 \end{aligned}$	rad/in. rad/in. rad/in.	-
Displacement of SM RCS Quad A	RDSPR 1_{0}	$\begin{aligned} & -0.05799 \\ & -0.02290 \\ & -0.02407 \end{aligned}$	in. /in. in. /in. in. /in.	
	RDSPR2 ${ }_{0}$	$\begin{array}{r} 0.02244 \\ -0.04816 \\ 0.02085 \end{array}$	in. /in. in. /in. in. /in.	
	$\mathrm{RDSPR}_{3}{ }_{0}$	$\begin{array}{r} 0.00478 \\ 0.05992 \\ -0.01277 \end{array}$	in. /in. in. /in. in./in.	
Displacement of SM RCS Quad B	$\mathrm{RDSPR1}_{3}$	$\begin{array}{r} 0.01271 \\ -0.01703 \\ -0.03238 \end{array}$	in. /in. in. /in. in. /in.	
	RDSPR_{3}	$\begin{array}{r} 0.04857 \\ -0.02949 \\ -0.00539 \end{array}$	in. /in. in. /in. in. /in.	
	RDSPR_{3}	$\begin{aligned} & 0.02106 \\ & 0.00854 \\ & 0.06136 \end{aligned}$	in. /in. in. /in. in. /in.	-
Displacement of SM RCS Quad C	$\mathrm{RDSPR1}_{6}$	$\begin{array}{r} 0.05016 \\ -0.00802 \\ -0.02614 \end{array}$	in. /in. in. /in. in. /in.	
	$\mathrm{RDSPR}^{6} 6$	$\begin{array}{r} -0.02440 \\ -0.00152 \\ 0.01319 \end{array}$	in. /in. in. /in. in. /in.	
	RDSPR_{6}	$\begin{array}{r} -0.00516 \\ -0.07158 \\ 0.00628 \end{array}$	in. /in. in. /in. in. /in.	

Displacement of SM RCS Quad D	$\mathrm{RDSPR}^{1} 9$	-0.02032	in. /in.
		-0.01388	in./in.
		-0.01775	in. /in.
	RDSPR2 9	-0.05100	in. /in.
		-0.01993	in. /in.
		0.03995	in. /in.
	$\mathrm{RDSPR}_{3} 9$	-0.02164	in. /in.
		-0.02109	in. /in.
		-0.06587	in. /in.
Displacement of CSM navigation base	$\mathrm{RDSPA}^{1} 0$	$\begin{aligned} & 0.0 \\ & -0.05300 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
		-0.09059	in. /in.
	RDSPA2 0	0.0	in. /in.
		-0.08607	in. /in.
		0.05610	in. /in.
	RDSPA 3_{0}	0.0	in. /in.
		-0.02992	in. /in.
		0.00766	in. /in.
Rotation of CSM navigation base	$\mathrm{RROTA1}_{0}$	0.0000249	rad/in.
		0.0005974	rad/in.
		-0.0003090	$\mathrm{rad} / \mathrm{in}$.
	RROTA2 $_{0}$	0.0000530	rad/in.
		-0.0003347	rad/in.
		-0.0004559	$\mathrm{rad} / \mathrm{in}$.
	RROTA3 0	0.0000916	rad/in.
		-0.0000598	$\mathrm{rad} / \mathrm{in}$.
		-0.0002428	$\mathrm{rad} / \mathrm{in}$.
Displacement of top of oxidizer storage tank	RDSPO_{0}	0.0	in. /in.
		-0.01127	in. /in.
		-0.02700	in. /in.
	$\mathrm{RDSPO}_{2}{ }_{0}$	0.0	in. /in.
		-0.00305	in. /in.
		0.00218	in. /in.
	RDSPO_{0}	0.0	in. /in.
		-0.05988	in. /in.
		0.02288	in. /in.

Generalized mass used for GM all modes

Frequency of each mode

Damping ratio for generalized coordinate

Displacement of the SPS trim gimbal station

Rotation of the SPS trim gimbal station	$\mathrm{RROTT}^{1} 3$	$\begin{aligned} & 0.0 \\ & 0.0006589 \\ & -0.0005334 \end{aligned}$	rad/in. rad/in. rad/in.
	RROTT_{3}	$\begin{aligned} & 0.0 \\ & -0.0005074 \\ & -0.0005929 \end{aligned}$	rad/in. rad/in. rad/in.
	RROTT_{3}	$\begin{aligned} & 0.0 \\ & -0.0001947 \\ & -0.0001726 \end{aligned}$	$\begin{aligned} & \mathrm{rad} / \mathrm{in} . \\ & \mathrm{rad} / \mathrm{in} . \\ & \mathrm{rad} / \mathrm{in} . \end{aligned}$
Displacement of SM RCS Quad A	$\mathrm{RDSPR}^{1} 12$	$\begin{aligned} & -0.05872 \\ & -0.02396 \\ & -0.01536 \end{aligned}$	in./in. in. /in. in. /in.
	RDSPR2 12	$\begin{array}{r} 0.03226 \\ -0.03864 \\ 0.02238 \end{array}$	in./in. in./in. in. /in.
	RDSPR 312	$\begin{array}{r} 0.01223 \\ 0.06315 \\ -0.01714 \end{array}$	in. /in. in. /in. in./in.
Displacement of SM RCS Quad B	$\mathrm{RDSPR}^{1}{ }_{15}$	$\begin{array}{r} 0.02336 \\ -0.01643 \\ -0.02617 \end{array}$	in. /in. in. /in. in. /in.
	RDSPR2 1_{15}	$\begin{array}{r} 0.04867 \\ -0.02193 \\ -0.00085 \end{array}$	in. /in. in. /in. in. /in.
	RDSPR ${ }^{15}$	$\begin{aligned} & 0.02092 \\ & 0.01154 \\ & 0.05702 \end{aligned}$	in./in. in. /in. in./in.
Displacement of SM RCS Quad C	RDSPR1 ${ }_{18}$	$\begin{array}{r} 0.05175 \\ -0.00507 \\ -0.01818 \end{array}$	in./in. in. /in. in. /in.
	RDSPR2 1_{18}	$\begin{array}{r} -0.03367 \\ 0.00244 \\ 0.01516 \end{array}$	in./in. in. /in. in./in.
	RDSPR ${ }_{18}$	$\begin{array}{r} -0.01148 \\ -0.06690 \\ 0.00443 \end{array}$	in./in. in. /in. in. /in.

Displacement of SM RCS Quad D	$\operatorname{RDSPR1}_{21}$	$\begin{aligned} & -0.03039 \\ & -0.01239 \\ & -0.00766 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPR2 21	$\begin{array}{r} -0.05074 \\ -0.01386 \\ 0.03896 \end{array}$	in. /in. in. /in. in. /in.
	RDSPR^{21}	$\begin{aligned} & -0.01968 \\ & -0.01561 \\ & -0.06943 \end{aligned}$	in. /in. in. /in. in. /in.
Displacement of CSM navigation base	$\mathrm{RDSPA1}_{3}$	$\begin{aligned} & 0.0 \\ & -0.06534 \\ & -0.08270 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPA_{3}	$\begin{aligned} & 0.0 \\ & -0.07594 \\ & 0.07016 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
	RDSPA_{3}	$\begin{array}{r} 0.0 \\ -0.02573 \\ 0.01194 \end{array}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
Rotation of CSM navigation base	RROTA 1_{3}	$\begin{array}{r} 0.0000106 \\ 0.0006027 \\ -0.0004267 \end{array}$	rad/in. rad/in. rad/in.
	RROTA_{3}	$\begin{array}{r} 0.0000347 \\ -0.0004461 \\ -0.0004399 \end{array}$	$\begin{aligned} & \mathrm{rad} / \mathrm{in} . \\ & \mathrm{rad} / \mathrm{in} . \\ & \mathrm{rad} / \mathrm{in} . \end{aligned}$
	RROTA_{3}	$\begin{array}{r} 0.0001466 \\ -0.0001436 \\ -0.0002133 \end{array}$	rad/in. rad/in. rad/in.
Displacement of bottom of oxidizer storage tank	$\mathrm{RDSPO}^{1} 3$	$\begin{aligned} & 0.03585 \\ & 0.04506 \\ & 0.04952 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPO_{3}	$\begin{array}{r} -0.01677 \\ 0.05439 \\ -0.04047 \end{array}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$

Displacement of top of oxidizer sump tank	RDSPO_{3}	$\begin{aligned} & -0.00654 \\ & -0.02075 \\ & -0.01019 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPO_{6}	$\begin{aligned} & 0.0 \\ & -0.01394 \\ & -0.02394 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
	RDSPO_{6}	$\begin{aligned} & 0.0 \\ & -0.00302 \\ & -0.02737 \end{aligned}$	in. /in. in./in. in. /in.
	RDSPO_{6}	$\begin{aligned} & 0.0 \\ & -0.04017 \\ & 0.11774 \end{aligned}$	in./in. in./in. in. /in.
Displacement of bottom of fuel storage tank	$\mathrm{RDSPF}^{1} 3$	$\begin{array}{r} -0.04272 \\ 0.03277 \\ 0.05352 \end{array}$	in. /in. in. /in. in. /in.
	RDSPF^{2}	$\begin{array}{r} 0.01573 \\ 0.02748 \\ -0.03098 \end{array}$	in. /in. in./in. in. /in.
	$\mathrm{RDSPF}^{3} 3$	$\begin{array}{r} 0.00459 \\ 0.06547 \\ -0.04117 \end{array}$	in. /in. in. /in. in. /in.
Displacement of top of fuel sump tank	$\mathrm{RDSPF}_{1}{ }_{6}$	$\begin{aligned} & 0.0 \\ & 0.01943 \\ & -0.00229 \end{aligned}$	in. /in. in./in. in. /in.
	RDSPF_{6}	$\begin{aligned} & 0.0 \\ & -0.02241 \\ & 0.03738 \end{aligned}$	in. /in. in./in. in./in.
	RDSPF 36	$\begin{aligned} & 0.0 \\ & 0.02947 \\ & -0.10876 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$

RDSPO3 $_{3}$	-0.00654	in./in.
	-0.02075	in./in.
	-0.01019	in./in.

Displacement of top of
oxidizer sump tank
Displacement of bottom of
fuel storage tank

Displacement of top of fuel sump tank

RDSPO1 $_{6}$	0.0	in./in.
	-0.01394	in./in.
	-0.02394	in./in.
RDSPO2 $_{6}$	0.0	in./in.
	-0.00302	in./in.
	-0.02737	in./in.
RDSPO $_{6}$	0.0	in./in.
	-0.04017	in./in.
	0.11774	in./in.
	-0.04272	in./in.
	0.03277	in./in.
	0.05352	in./in.
	0.01573	in./in.
	0.02748	in./in.
	-0.03098	in./in.
	0.00459	in./in.
	0.06547	in./in.
	-0.04117	in./in.

RDSPF1 $_{6}$	0.0	in./in.
	-0.01943	in./in. $8 / 15 / 68$
	-0.00229	in./in.
RDSPF2 $_{6}$	0.0	in./in.
	-0.02241	in./in.
	0.03738	in./in.
	0.0	in./in.
	0.02947	in./in.
	-0.10876	in./in.

Reference spacecraft mass

 SPS propellant loading 25%DPS propellant loading 100%
APS propellant loading 100%

Generalized mass used for all modes	GM	1.0	$\mathrm{lb} \sec ^{2} / \mathrm{in}$
Frequency of each mode	RWB1 2 RWB2 2 RWB3 2	$\begin{aligned} & 2.24 \\ & 2.38 \\ & 2.97 \end{aligned}$	cps cps cps
Damping ratio for generalized coordinate	ZETA1 ZETA2 ZETA 3	$\begin{aligned} & 0.005 \\ & 0.005 \\ & 0.005 \end{aligned}$	nd nd nd
Displacement of the SPS trim gimbal station	$\operatorname{RDSPT}{ }_{6}$ RDSPT_{6} RDSPT_{6}	$\begin{array}{r} -\theta .00266 \\ 0.04405 \\ 0.08190 \\ -0.00176 \\ 0.07629 \\ -0.04505 \\ -0.00051 \\ 0.01436 \\ -0.01101 \end{array}$	in. /in. in. /in. in./in. in./in. in./in. in./in. in. /in. in. /in. in. /in.
Rotation of the SPS trim gimbal station	RROTT1 $_{6}$ RROTT $_{6}{ }_{6}$ RROTT $^{6} 6$	$\begin{aligned} & 0.0 \\ & 0.0007691 \\ & -0.0004293 \\ & 0.0 \\ & -0.0004182 \\ & -0.0007434 \\ & 0.0 \\ & -0.0000629 \\ & -0.0000738 \end{aligned}$	rad/in. rad/in.

$\mathrm{MB}_{2} \quad 65915.0$
lb

Displacement of SM RCS Quad A	$\mathrm{RDSPR1}_{24}$	$\begin{aligned} & -0.06537 \\ & -0.01482 \\ & -0.01620 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPR2 24	$\begin{array}{r} 0.02334 \\ -0.02886 \\ 0.01199 \end{array}$	in./in. in. /in. in. /in.
	RDSPR^{24}	$\begin{array}{r} 0.00376 \\ 0.13613 \\ -0.02382 \end{array}$	in. /in. in. /in. in. /in.
Displacement of SM RCS Quad B	$\mathrm{RDSPR}^{1} 27$	$\begin{array}{r} 0.01508 \\ -0.01087 \\ -0.02198 \end{array}$	in. /in. in./in. in. /in.
	RDSPR2 27	$\begin{array}{r} 0.05856 \\ -0.01940 \\ -0.00104 \end{array}$	in. /in. in./in. in. /in.
	RDSPR 3_{27}	$\begin{aligned} & 0.00808 \\ & 0.03249 \\ & 0.12585 \end{aligned}$	in./in. in. /in. in./in.
Displacement of SM RCS Quad C	$\mathrm{RDSPR}^{1} 30$	$\begin{array}{r} 0.05987 \\ -0.00471 \\ -0.01743 \end{array}$	in. /in. in./in. in. /in.
	RDSPR2 30	$\begin{array}{r} -0.02573 \\ -0.00576 \\ 0.00810 \end{array}$	in. /in. in. /in. in. /in.
	$\mathrm{RDSPR}^{3} 30$	$\begin{array}{r} -0.00333 \\ -0.12959 \\ 0.01536 \end{array}$	in. /in. in. /in. in. /in.
Displacement of SM RCS Quad D	RDSPR1 ${ }_{33}$	$\begin{aligned} & -0.02053 \\ & -0.00850 \\ & -0.01199 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPR2 33	$\begin{array}{r} -0.06159 \\ -0.01479 \\ 0.02140 \end{array}$	in. /in. in. /in. in. /in.
	$\mathrm{RDSPR}^{3} 3$	$\begin{aligned} & -0.00707 \\ & -0.02628 \\ & -0.13280 \end{aligned}$	in. /in. in. /in. in. /in.

Displacement of CSM navigation base	$\mathrm{RDSPA}^{1} 6$	$\begin{aligned} & 0.0 \\ & -0.05080 \\ & -0.09383 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
	RDSPA 26	$\begin{aligned} & 0.0 \\ & -0.08990 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
		0.05206	in./in.
	RDSPA_{6}	$\begin{aligned} & 0.0 \\ & -0.03293 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
		0.00192	in./in.
Rotation of CSM navigation base	$\mathrm{RROTA}^{1} 6$	$\begin{array}{r} 0.0000022 \\ 0.0007058 \\ -0.0003570 \end{array}$	rad/in. rad/in. rad/in.
	RROTA 6	$\begin{array}{r} 0.0000263 \\ -0.0003618 \end{array}$	rad/in. rad/in.
		-0.0005890	rad/in.
	RROTA 3_{6}	$\begin{array}{r} 0.0008182 \\ -0.0000247 \end{array}$	$\begin{aligned} & \mathrm{rad} / \mathrm{in} . \\ & \mathrm{rad} / \mathrm{in} . \end{aligned}$
		-0.0001058	$\mathrm{rad} / \mathrm{in}$.
Displacement of middle of oxidizer sump tank	RDSPO_{9}	$\begin{aligned} & \mathbf{0 . 0} \\ & 0.01115 \\ & 0.02245 \end{aligned}$	in. /in. in. /in. in. /in.
	$\mathrm{RDSPO}^{2} 9$	$\begin{aligned} & 0.0 \\ & 0.02324 \\ & -0.02394 \end{aligned}$	in. /in. in. /in. in. /in.
	$\mathrm{RDSPO}_{3} 9$	$\begin{aligned} & 0.0 \\ & -0.00777 \\ & 0.09164 \end{aligned}$	in. /in. in. /in. in. /in.
Displacement of middle of fuel sump tank	$\mathrm{RDSPF}^{1} 9$	$\begin{aligned} & 0.0 \\ & 0.01030 \\ & 0.02875 \end{aligned}$	$\begin{aligned} & \text { in. /in. } \\ & \text { in. /in. } \\ & \text { in. /in. } \end{aligned}$
	$\mathrm{RDSPF}^{2} 9$	$\begin{aligned} & 0.0 \\ & 0.02036 \\ & -0.00725 \end{aligned}$	in. /in. in. /in. in. /in.
	RDSPF3 9	$\begin{aligned} & 0.0 \\ & 0.02426 \\ & -0.10382 \end{aligned}$	in. /in. in. /in. in. /in.

6.4.8 Propellant Slosh

Slosh motions of the propellant in the SPS tanks are simulated as a linear spring mass system. Each tank in which sloshing occurs is characterized by a slosh mass, a slosh frequency and a slosh mass attachment point. Slosh mass motion is constrained to the plane defined by the vehicle Y and Z axes. Sloshing occurs either in the two storage tanks (no slosh in the full sump tanks) or in the two sump tanks (no slosh in the empty storage tanks). It is assumed, for each tank, that slosh mass is constant, slosh frequency is inversely proportional to the square root of vehicle mass, and the X coordinate of the slosh attachment point varies linearly with propellant mass. Slosh damping ratios are held constant.

6.4.8.1 Slosh dynamics

Oxidizer storage tank slosh mass	MO_{0}	24.95	slugs
Fuel storage tank slosh mass	MF_{0}	15.61	slugs
Oxidizer sump tank slosh mass	MO_{1}	35.85	slugs
Fuel sump tank slosh mass	MF_{1}	22.43	slugs
Oxidizer storage tank slosh frequency	WO_{0}	3.40	$\mathrm{rad} / \mathrm{sec}$
Fuel storage tank slosh frequency	WF_{0}	3.40	$\mathrm{rad} / \mathrm{sec}$
Vehicle mass corres- ponding to storage tank slosh frequencies	MP_{0}	59901.0	lb
Oxidizer sump tank slosh frequency	WO_{1}	3.88	$\mathrm{rad} / \mathrm{sec}$
Full sump tank slosh frequency	WF_{1}	3.88	$\mathrm{rad} / \mathrm{sec}$
Vehicle mass corres- ponding to sump tank slosh frequencies	MP_{1}	40588.0	lb

Oxidizer slosh damping ratio	ZETAO	0.0007	nd .

Fuel slosh damping \quad ZETAF
ratio

Oxidizer storage tank (full) slosh station (X_{A} coordinate)	XO_{0}	933.7	in.
Fuel storage tank (full) slosh station (X_{A} coordinate)	XF_{0}	933.0	in.
Propellant mass corresponding to full storage tanks	MX 0	38626.0	1b
```Oxidizer storage tank (half) slosh station ( }\mp@subsup{\textrm{X}}{\textrm{A}}{}\mathrm{ coordinate)```	$\mathrm{XO}_{1}$	862.0	in.
Fuel storage tank (half) slosh station ( $\mathrm{X}_{\mathrm{A}}$ coordinate)	$\mathrm{XF}_{1}$	861.7	in.
Propellant mass corresponding to half-full storage tanks	$\mathrm{MX}{ }_{1}$	28969.0	1 b
Oxidizer sump tank (full slosh station ( $\mathrm{X}_{\mathrm{A}}$ coordinate)	$\mathrm{XO}_{2}$	922.5	in.
Fuel sump tank (full) slosh station ( $\mathrm{X}_{\mathrm{A}}$ coordinate)	$\mathrm{XF}_{2}$	922.3	in.
Propellant mass corresponding to full sump tanks	MX 2	19313.0	lb
Oxidizer sump tank (half) slosh station ( $\mathrm{X}_{\mathrm{A}}$ coordinate)	$\mathrm{XO}_{3}$	869.1	in.

Fuel sump tank
(half) slosh station
$\left(\mathrm{X}_{\mathrm{A}}\right.$ coordinate $)$
$\mathrm{XF}_{3}$
869.0
in.
(half) slosh station
$\mathrm{X}_{\mathrm{A}}$ coordinate)

Propellant mass corresponding to half full sump tanks

Oxidizer storage tank
$\mathrm{YO}_{0}$ Y coordinate
( $\mathrm{Y}_{\mathrm{A}}$ coordinate)

Fuel storage tank
$Y F_{0}$
$-14.8$
in.
Y coordinate
( $\mathrm{Y}_{\mathrm{A}}$ coordinate)
Oxidizer sump tank
Y coordinate $\quad \mathrm{YO}_{1}$
( $\mathrm{Y}_{\mathrm{A}}$ coordinate)

Fuel sump tank
$\mathrm{YF}_{1}$
$-48.3$
in.
( $\mathrm{I}_{\mathrm{A}}$ coordinate)

Oxidizer storage tank $\quad \mathrm{ZO}_{0}$
$Z$ coordinate
(Z $\mathrm{A}^{\text {coordinate }}$ )

Fuel storage tank
$Z$ coordinate
( $Z_{A}$ coordinate)

Oxidizer sump tank
$\mathrm{ZO}_{1}$
6.6
in.
( $Z_{A}$ coordinate)

Fuel sump tank
$\mathrm{ZF}_{1}$
$-6.6$ $Z$ coordinate
( $Z_{A}$ coordinate)

Apollo station of tank
XTB bottoms
$Z F_{0}$
$-47.8$
in.
in.
47.8
in.
48.3

### 6.5 Digital Simulator CM (CM-103) Reentry Spacecraft Data

### 6.5.1 CM Reference Positions and Dimensions

The following reference positions and dimensions are expressed in the CM vehicle coordinate system in the order $X$ component, $Y$ component, $Z$ component, unless otherwise noted.
6.5.1.1 CM Navigation Base
RNB Position

55.715	in.	5.1
0.0	in.	
40.914	in.	

5. 2
6.5.1.2 CM RCS Thruster Positions

Jet 1

Jet 2

Jet 3

Jet 4

Jet 5

Jet 6

Jet 7

Jet 8
$\begin{array}{rr}27.6750 & \text { in. } \\ 4.4211 & \text { in. } \\ -72.2846 & \text { in. } \\ 85.1200 & \text { in. } \\ 3.929 & \text { in. } \\ -35.5743 & \text { in. } \\ 27.6750 & \text { in. } \\ -4.4211 & \text { in. } \\ -72.2846 & \text { in. }\end{array}$
85.1200 in.
-3.929 in.
-35.5743 in.
27.6750 in.
72.2846 in.
-4.4211 in.
27.6750 in.
-72.2846 in.
-4.4211 in.
27.6750 in.
72.2846 in.
4.4211 in.
27.6750 in.
-72. 2846 in.
4.4211 in.

Jet 9	32.3000	in.
	51.9826	in.
Jet 10	-50.3454	in.
	32.3000	in.
	-51.9826	in.
	-50.3454	in.
	32.3000	in.
Jet 11	-51.9826	in.
	-50.3454	in.
	32.3000	in.
	51.9826	in.
	-50.3454	in.

## 6. 5. 2 CM Mass Properties

5.3

At present, the entry simulation does not account for changes in CM mass properties due to RCS propellant usage or heat shield ablator loss. Hence, the mass, center of gravity, and inertia of the vehicle are assumed constant during the simulated entry at values corresponding to CM/SM separation. The center of gravity is expressed in the CM vehicle coordinate system. The moments and products of inertia are about the vehicle center of gravity and with respect to the $C M$ vehicle axes. Both the diagonal and offdiagonal elements of the inertia tensor are used as positive elements. Hence the numerical values of the off-diagonal elements reported below have signs opposite to those given in the referenced document.

Mass		MASS	12984	lb
Center of Gravity	X	$\mathrm{CG}_{0}$	41.7	in.
	Y		-0.4	in.
	Z		5.6	in.
Inertia	$\mathrm{I}_{\mathrm{XX}}$	INERTIA $_{0}$	6068.0	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{X Y}$		-62.3	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{\mathrm{XZ}}$		434.4	slug $\mathrm{ft}^{2}$
	$\mathrm{L}_{\mathbf{Y X}}$		-62. 3	slug ft ${ }_{2}$
	$\mathrm{I}_{\mathrm{YY}}$		5431.0	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{\mathrm{Y} Z}$		-12.0	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{\text {ZX }}$		434.4	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{\mathrm{ZY}}$		-12.0	slug $\mathrm{ft}^{2}$
	$\mathrm{I}_{\mathrm{ZZ}}$		4883.0	slug $\mathrm{ft}^{2}$


Jet 9	32.3000	in.
	51.9826	in.
	-50.3454	in.
Jet 10	32.3000	in.
	-51.9826	in.
	-50.3454	in.
	32.3000	in.
	-51.9826	in.
	-50.3454	in.
	32.3000	in.
	51.9826	in.
	-50.3454	in.

### 6.5.2 CM Mass Properties

At present, the entry simulation does not account for changes in CM mass properties due to RCS propellant usage or heat shield ablator loss. Hence, the mass, center of gravity, and inertia of the vehicle are assumed constant during the simulated entry at values corresponding to $\mathrm{CM} / \mathrm{SM}$ separation. The center of gravity is expressed in the CM vehicle coordinate system. The moments and products of inertia are about the vehicle center of gravity and with respect to the CM vehicle axes. Both the diagonal and offdiagonal elements of the inertia tensor are used as positive elements. Hence the numerical values of the off-diagonal elements reported below have signs opposite to those given in the referenced document.

Mass		MASS	12215.8	1 b	9/30/68
Center of Gravity	X	$\mathrm{CG}_{0}$	40.7	in.	9/30/68
	Y		0.0	in.	$9 / 30 / 68$
	Z		5.9	in.	$9 / 30 / 68$
Inertia	$\mathrm{I}_{\mathrm{XX}}$	INERTIA $_{0}$	5817.0	$\text { slug } \mathrm{ft}^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\mathrm{XY}}$		-46.6	slug $\mathrm{ft}^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\mathrm{XZ}}$		403.0	slug ft ${ }^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\mathrm{YX}}$		-46.6	slug $\mathrm{ft}^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\mathrm{YY}}$		4985.0	slug $\mathrm{ft}^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\mathrm{YZ}}$		-27.4	slug ft ${ }^{2}$	$9 / 30 / 68$
	$\mathrm{I}_{\text {ZX }}$		403.0	slug ft ${ }^{2}$	9/30/68
	$\mathrm{I}_{Z Y}$		-27.4	slug $\mathrm{ft}^{2}$	9/30/68
	$\mathrm{I}_{\mathrm{ZZ}}$		4506.0	slug $\mathrm{ft}^{2}$	9/30/68

$6-43 \mathrm{a}$

### 6.5.3 CM Reaction Control System Data

The individual RCS thruster is modelled as a constant thrust, constant specific impulse motor; values of thrust and specific impulse presented below correspond to the nominal vacuum performance of the basic thruster with no nozzle extension, i.e., prior to installation in the command module. The performance of an engine installed in the spacecraft will vary from location to location, depending upon the geometry of the nozzle extension for that particular location. The average increase in steady-state axial thrust and specific impulse from the addition of various nozzle extensions is also given below. It is noted that the addition of a nozzle extension will have no effect on the steady-state or pulse mode propellant flow rates or mixture ratios.

No provision is made in the entry simulation to account for the falloff of thrust with increasing atmospheric pressure. The buildup and tailoff of thrust are modelled by instantaneous changes in thrust, shifted in time from the electrical command. The shift is different for the application and removal of thrust. The amount of the shift is calculated to give the same total impulse during a transient firing as would be obtained from a real thruster.

6.5.3.1 Thrust	TH	93.6	lb
Specific Impulse	RCISP	272.1	sec
Step delay in RCS thrust application from receipt of electrical command	RCONDEL	0.012	sec
Step delay in RCS thrust removal from receipt of electrical command	RCOFFDEL	0.007	sec
Minimum allowed RCS electrical pulse length	TMINPULS	0.014	sec
Thrust increase for pitch nozzle extension	A DTHRUST $_{P}$	2.1	1b
Thrust increase for yaw nozzle extension	A DTHRUST $_{Y}$	1.8	lb
Thrust increase for long roll nozzle extension	A DTHRUST ${ }_{\text {LR }}$	0.6	1b
Thrust increase for short roll nozzle extension	A DTHRUST $_{\text {SR }}$	0.0	lb

Increase in specific
ADISP $_{P}$
6.12
sec
impulse for pitch nozzle extention

Increase in specific ADISP $_{Y}$
5.24
sec
impulse for yaw nozzle
extention
Increase in specific
ADISP $_{\text {LR }} \quad 1.75$ sec
impulse for long roll
nozzle extention
Increase in specific $\quad$ ADISP $_{\text {SR }} \quad 0.0 \quad \mathrm{sec}$
inpulse for short roll nozzle extention
6.5.3.2 The direction of the thrust vectors produced by individual RCS thrusters can be obtained from Fig. 4-20 of the cited reference which shows the orientation of the individual thrust chamber center lines.
6.5.3.3 The propellant usage of each RCS thruster is modelled by a constant mass flow rate when the jet is firing plus a propellant penalty for each jet firing. The mass flow rate is calculated as follows:

## RCMFLO $=\mathrm{TH} /($ RCISP GRAV)

where GRAV is acceleration of gravity ( $32.174048 \mathrm{ft} / \mathrm{sec}^{2}$ ).

Propellant penalty NFIRTOKG 0.003 lb per jet firing

### 6.5.4 CM Entry Aerodynamics

The CM lift-to-drag ratio (L/D) is not an explicit variable in the entry simulation; its value is implied, however, by the specification of a CM center of gravity location. Provision has been made to simulate the CM operating at an off-nominal L/D by varying the position of the $C G$ along the spacecraft $Z$ axis. $C G$ position along the $X$ and $Y$ axes are assumed to remain constant, and the desired $\mathrm{L} / \mathrm{D}$ is converted into a corresponding Z coordinate using a set of curves (Fig. 6.2, Ref. 5.3) which are analytically represented in the simulation. It is further assumed that the CG can be varied without causing variations in the nominal mass and inertia properties
of the vehicle. Although this cannot be done in actuality, no method is presently available for determining the variations that would occur and so they have not been accounted for.

The aerodynamic forces and moments acting on the CM during entry are calculated from three aerodynamic coefficients;

## Force coefficient along <br> CA

the command module axis
Force coefficient normal to CN
the command module axis
Pitching moment coefficient CM
about the theoretical command module cone apex

Values of the aerodynamic coefficients are presented at three angles of attack for each of eleven Mach numbers. Values at other angles of attack and Mach numbers are found by a parabolic interpolation between the three tabulated angles and by a linear interpolation between the two nearest reference Mach numbers. The data has been corrected for an effective aft heat shield cant of 0.1365 degrees and centerline shift in the $+Z$ direction.
6.5.4.1

Lift-to-Drag Ratio
LDNOM
0.283
nd
5.3

Reference Mach	MACHD $_{0}$	6.0	nd	5.3
numbers for		3.0	nd	
interpolation	2.4	nd		
		2.0	nd	
	1.65	nd		
	1.35	nd		
	1.2	nd		
		1.1	nd	
Reference angles of		0.9	nd	
attack for interpolation		0.7	nd	
		0.4	nd	
		140.1365	deg	5.3

of the vehicle. Although this cannot be done in actuality, no method is presently available for determining the variations that would oceur and so they have not been accounted for.

The aerodynamic forces and moments acting on the CM during entry are calculated from three aerodynamic coefficients;

Force coefficient along
CA
the command module axis
Force coefficient normal to CN
the command module axis
Pitching moment coefficient CM
about the theoretical command
module cone apex

Values of the aerodynamic coefficients are presented at three angles of attack for each of eleven Mach numbers. Values at other angles of attack and Mach numbers are found by a parabolic interpolation between the three tabulated angles and by a linear interpolation between the two nearest reference Mach numbers. The data has been corrected for an effective aft heat shield cant of 0.1365 degrees and centerline shift in the $+Z$ direction.
6.5.4.1

Lift-to-Drag Ratio	LDNOM	0.296	nd $10 / 1 / 68$	5.3
Reference Mach	MACHD $_{0}$	6.0	nd	5.3
numbers for		3.0	nd	
interpolation		2.4	nd	
		2.0	nd	
	1.65	nd		
		1.35	nd	
		1.2	nd	
		0.9	nd	
Reference angles of		0.7	nd	
attack for interpolation			0.4	nd

6-46a

Moment reference center (CM theoretical apex)	$\mathrm{REF}_{0}$	$\begin{gathered} 141.25 \\ 0.0 \\ 0.0 \end{gathered}$	in.   in.   in.	5.2
Reference area for converting aerodynamic coefficients to forces and moments	AREA	129.35	$\mathrm{ft}^{2}$	5.2
Reference length for converting pitching moment coefficient to pitching moment	REFD	154.0	in.	5.2
6.5.4.2 Tabulated Va	es of Aerod	Coeffici		5.2
	ic Mach Ra			
ALPHA $=140.1365 \mathrm{deg}$	CM	-0.03		
	CN	0.16		
	CA	-0.97		
ALPHA $=160.1365 \mathrm{deg}$	CM	0.00		
	CN	0.07		
	CA	-1. 34		
ALPHA $=180.1365 \mathrm{deg}$	CM	0.01		
	CN	-0.00		
	CA	-1.4900		
	Mach 3.			
ALPHA $=140.1365 \mathrm{deg}$	CM	-0.05		
	CN	0.18		
	CA	-1.03		
ALPHA $=160.1365 \mathrm{deg}$	CM	-0.00		
	CN	0.06		
	CA	-1.38		
$A L P H A=180.1365 \mathrm{deg}$	CM	0.00		
	CN	-0.00		
	CA	-1.47		


	Mach	2.4	
$\mathrm{ALPHA}=140.1365 \mathrm{deg}$	CM		-0.0644
	CN		0.1974
	CA		-1.0805
ALPHA $=160.1365 \mathrm{deg}$	CM		0.0026
	CN		0.0587
	CA		-1.4051
$A L P H A=180.1365 \mathrm{deg}$	CM		0.0057
	CN		-0.0035
	CA		-1.4700
	Mach	2.0	
$A L P H A=140.1365 \mathrm{deg}$	CM		-0.0683
	CN		0.2024
	CA		-1. 1055
$\mathrm{ALPHA}=160.1365 \mathrm{deg}$	CM		0.0108
	CN		0.0466
	CA		-1.4361
ALPHA $=180.1365 \mathrm{deg}$	CM		0.0057
	CN		-0.0035
	CA		-1.4720
	Mach	1.65	
$A L P H A=140.1365 \mathrm{deg}$	CM		-0.0659
	CN		0.2042
	CA		-1.1805
$A L P H A=160.1365 \mathrm{deg}$	CM		0.0132
	CN		0.0416
	CA		-1.4201
$A L P H A=180.1365 \mathrm{deg}$	CM		0.0056
	CN		-0.0035
	CA		-1.4500
	Mach	1.35	
ALPHA $=140.1365 \mathrm{deg}$	CM		-0.0615
	CN		0.2071
	CA		-1.2205


$\mathrm{ALPHA}=160.1365 \mathrm{deg}$	CM		0.0177
	CN		0.0367
	CA		-1. 4051
$A L P H A=180.1365 \mathrm{deg}$	CM		0.0054
	CN		-0.0034
	CA		-1.4200
	Mach	1.2	
$A L P H A=140.1365 \mathrm{deg}$	CM		-0.0232
	CN		0. 1542
	CA		-1.1614
$\mathrm{ALPHA}=160.1365 \mathrm{deg}$	CM		0.0164
	CN		0.0370
	CA		-1.2801
ALPHA $=180.1365 \mathrm{deg}$	CM		0.0051
	CN		-0.0032
	CA		-1.3250
	Mach	1.1	
$A L P H A=140.1365 \mathrm{deg}$	CM		-0.0142
	CN		0.1462
	CA		-1.1684
ALPHA $=160.1365 \mathrm{deg}$	CM		0.0189
	CN		0.0349
	CA		-1.2901
$A L P H A=180.1365 \mathrm{deg}$	CM		0.0050
	CN		-0.0031
	CA		-1.3050
	Mach	0.9	
$A L P H A=140.1365 \mathrm{deg}$	CM		0.0313
	CN		0.0848
	CA		-0.9352
$A L P H A=160.1365 \mathrm{deg}$	CM		0.0233
	CN		0.0354
	CA		-1. 1051
$A L P H A=180.1365 \mathrm{deg}$	CM		0.0042
	CN		-0.0026
	CA		-1.0900


	Mach 0.7		
$\mathrm{ALPHA}=140.1365 \mathrm{deg}$	CM	0.0859	
	CN	0.0280	
	CA	-0.8601	
$\mathrm{ALPHA}=160.1365 \mathrm{deg}$	CM	0.0304	
	CN	0.0276	
	CA	-1.0001	
ALPHA $=180.1365 \mathrm{deg}$	CM	0.0038	
	CN	-0.0023	
	CA	-0.9800	
	Mach 0.4		
$A L P H A=140.1365 \mathrm{deg}$	CM	0. 1049	
	CN	-0.0118	
	CA	-0.7400	
$\mathrm{ALPHA}=160.1365 \mathrm{deg}$	CM	0.1196	
	CN	-0.0921	
	CA	-0.8998	
$A L P H A=180.1365 \mathrm{deg}$	CM	0.0034	
	CN	-0.0021	-
	CA	-0.8700	

### 6.6 Digital Simulator VHF Range System

The VHF range unit provides a range measurement to the CMC. Associated with this data interface is a "DATA GOOD" status signal. This status signal is generated by the simulator whenever the range unit is in use and the range to the $L M$ is less than the specified limit given below. The issuance of this discrete by the simulator does not depend on the attitude of the CSM or LM.

Maximum range at which   acquisition and tracking   can occur	MAXR	370650	m	6.1
Range scale factor RANGESC 0.053959261 bits $/ \mathrm{m}$	6.2			

The VHF range unit provides a range measurement to the CMC. Associated with this data interface is a "DATA GOOD" status signal. This status signal is generated by the simulator whenever the range unit is in use and the range to the LM is less than the specified limit given below. The issuance of this discrete by the simulator does not depend on the attitude of the CSM or LM.

Maximum range at which   acquisition and tracking   can occur	MAXR	370650	m	6.1
Range scale factor	RANGESC	0.05399568	bits $/ \mathrm{m}$	$6.28 / 30 / 68$

### 6.7 Digital Simulator Coordinate Systems and Natural Environment Data

### 6.7.1 Reference Inertial Coordinate System

The reference inertial coordinate system used in verification of Apollo guidance computer programs is defined by the mean equator and mean equinox at the nearest beginning of a Besselian year. The rectangular coordinates are defined so that the $+X$ axis is in the direction of the mean equinox, the $+Z$ axis is along the mean rotational axis of the earth and the $Y$ axis completes the right-handed set.

The origin of the reference system is the center of mass of the earth.

### 6.7.2 Geodetic Coordinate System

7.1

Positions in the earth-fixed system are specified by geodetic latitude, referenced to the Fischer ellipsoid of 1960; longitude, measured positive east from the meridian of Greenwich and altitude, measured above the ellipsoid along the geocentric radius vector.

A cross-section of the Fischer ellipsoid containing the axis of symmetry has the equation

$$
\left(x^{2} / a^{2}\right)+\left(z^{2} / b^{2}\right)=1
$$

The equatorial radius of the earth

The flattening of the ellipsoid

The polar radius of the earth
a
$(a-b) / a$
b
6356784
6378166
-
$1 / 298.3$
m
$\mathrm{n} / \mathrm{a}$
,
m
m

### 6.7.3 Local Horizontal Coordinate System

The system to which spacecraft attitude is referenced is the local horizontal coordinate system. It is defined in terms of the spacecraft position and velocity expressed in the reference inertial coordinate system such that

$$
\begin{aligned}
& \underline{u}_{\mathrm{x}}=\underline{\underline{u}}_{\mathrm{y}} \times \underline{u}_{\mathrm{z}} \\
& \underline{u}_{\mathrm{y}}=\underline{v}_{\text {ref }} \times \underline{R}_{\text {ref }} /\left|\underline{\mathrm{V}}_{\text {ref }} \times \underline{R}_{\text {ref }}\right| \\
& \underline{u}_{\mathrm{z}}=-\underline{R}_{\text {ref }} /\left|\underline{R}_{\text {ref }}\right|
\end{aligned}
$$

Starting with the vehicle coordinate axes initially aligned with the local horizontal system, the application of the Euler rotations pitch, yaw and roll about the $Y, Z$ and $X$ vehicle axes in that order determines the vehicle attitude.

### 6.7.4 Earth Gravitational Model

The gravitational potential of the earth is assumed to be

$$
\begin{aligned}
\mathrm{V}_{\mathrm{e}}(\mathrm{r}, \mathrm{~L})= & (\mathrm{MU} / \mathrm{e})\left[1+(\mathrm{J} / 3)\left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}\right)^{2}\left(1-3 \sin ^{2} \mathrm{~L}\right)\right. \\
& +(\mathrm{H} / 5)\left(\mathrm{re}_{\mathrm{e}} / \mathrm{r}\right)^{3}\left(3-5 \sin ^{2} \mathrm{~L}\right) \sin \mathrm{L} \\
& \left.+(\mathrm{K} / 35)\left(\mathrm{r}_{\mathrm{e}} / \mathrm{r}\right)^{4}\left(3-30 \sin ^{2} \mathrm{~L}+35 \sin ^{4} \mathrm{~L}\right)\right]
\end{aligned}
$$

where $r_{e}$ is the equatorial earth (gravitational) radius of the Fischer ellipsoid.

The earth's gravitational $\quad \mathrm{MU}_{\mathrm{e}} \quad 3986032 \times 10^{8} \quad \mathrm{~m}^{3} / \mathrm{sec}^{2}$ parameter

Oblateness coefficients

J	$162345 \times 10^{-8}$	$\mathrm{n} / \mathrm{a}$
H	$-575 \times 10^{-8}$	$\mathrm{n} / \mathrm{a}$
K	$7875 \times 10^{-9}$	$\mathrm{n} / \mathrm{a}$

The mass distribution of the earth is assumed symmetric about the rotational axis, hence there is no dependence on longitude in the potential equation.
6.7.5 Sun and Moon Gravitational Models
7.1

The acceleration due to the sun and moon is the difference between the gravitational field at the spacecraft and the field at the origin of the coordinate system. The acceleration of the spacecraft due to the earth, sun, and moon relative to an inertial system is

$$
\underline{a}_{\mathrm{v}}=\underline{\mathrm{g}}_{\mathrm{e}}+\left(\mathrm{MU}_{\mathrm{s}} / \mathrm{r}_{\mathrm{vs}}^{3}\right){\underset{\mathrm{r}}{\mathrm{vs}}}+\left(\mathrm{MU}_{\mathrm{m}} / \mathrm{r}_{\mathrm{vm}}^{3}\right) \underline{\mathrm{r}}_{\mathrm{vm}}
$$

The acceleration of the earth is

$$
\underline{a}_{e}=\left(M U_{s} / r_{e s}^{3}\right){\underset{\mathrm{r}}{e s}}+\left(M U_{\mathrm{m}} / \mathrm{r}_{\mathrm{em}}^{3}\right) \underline{\mathrm{r}}_{\mathrm{em}}
$$

Thus the acceleration of the vehicle relative to the center of mass of the earth is

$$
\begin{aligned}
\underline{a}_{e v}=g_{e} & +M U_{s}\left[\left(\underline{r}_{v s} / r_{v s}^{3}\right)-\left(\underline{r}_{e s} / r_{e s}^{3}\right)\right] \\
& \left.+M U_{m}\left[\underline{\underline{r}}_{\mathrm{vm}} / r_{\mathrm{vm}}^{3}\right)-\left(\underline{\mathrm{r}}_{\mathrm{em}} / \mathrm{r}_{\mathrm{em}}^{3}\right)\right]
\end{aligned}
$$

The sun's gravitational   parameter	$\mathrm{MU}_{\mathrm{S}}$	$132715445 \times 10^{12}$	$\mathrm{~m}^{3} / \mathrm{sec}^{2}$
The moon's gravitational   parameter	$\mathrm{MU}_{\mathrm{m}}$	$4902778 \times 10^{6}$	$\mathrm{~m}^{3} / \mathrm{sec}^{2}$

### 6.7.6 Atmospheric Model

The model of the earth's atmosphere is based on the 1962 U.S. Standard atmosphere; atmospheric perturbations due to winds are not included in the model. In the digital simulation, values of molecular scale temperature and density are tabulated for 14 reference altitudes ranging from 0 to 160,000 meters, and the temperature gradient between reference altitudes is also tabulated.

Using these reference data, atmospheric temperature T and density RHO at intermediate altitudes are calculated from the following equations:

Reference geopotentials and
altitudes

$$
\begin{array}{rr}
\text { BOUND }_{0} & 160000 \mathrm{~m} \\
& 150000 \mathrm{~m} \\
& 120000 \mathrm{~m} \\
& 110000 \mathrm{~m} \\
& 100000 \mathrm{~m} \\
& 90000 \mathrm{~m} \\
& 79000 \mathrm{~m} \\
& 61000 \mathrm{~m} \\
& 52000 \mathrm{~m} \\
& 47000 \mathrm{~m} \\
& 32000 \mathrm{~m} \\
& 20000 \mathrm{~m} \\
& 11000 \mathrm{~m} \\
& 0 \mathrm{~m}
\end{array}
$$

Molecular scale temperatures at the reference altitudes

Temperature gradients between reference altitudes

Densities at the reference altitudes

BTEMP $_{0}$	1110.65	deg K
	960.65	deg K
	360.65	deg K
	260.65	deg K
	210.65	deg K
	180.65	deg K
	180.65	deg K
	252.65	deg K
	270.65	deg K
	270.65	deg K
	228.65	deg K
	216.65	deg K
	216.65	deg K
	288.15	deg K

TEMPGRAD $_{0} \quad 0.015$
0.020
0.010
0.005
0.003
0.0
$-0.004$
-0.002
0.0
0.0028
0.001
0.0
$-0.0065$
$\mathrm{BRHO}_{0}$

$$
\begin{array}{rl}
1159 \times 10^{-12} & \mathrm{~kg} / \mathrm{m}^{3} \\
1836 \times 10^{-12} & \mathrm{~kg} / \mathrm{m}^{3} \\
2436 \times 10^{-11} & \mathrm{~kg} / \mathrm{m}^{3} \\
9829 \times 10^{-11} & \mathrm{~kg} / \mathrm{m}^{3} \\
4974 \times 10^{-10} & \mathrm{~kg} / \mathrm{m}^{3} \\
3170 \times 10^{-9} & \mathrm{~kg} / \mathrm{m}^{3} \\
2001 \times 10^{-8} & \mathrm{~kg} / \mathrm{m}^{3} \\
25109 \times 10^{-8} & \mathrm{~kg} / \mathrm{m}^{3} \\
75943 \times 10^{-8} & \mathrm{~kg} / \mathrm{m}^{3} \\
14275 \times 10^{-7} & \mathrm{~kg} / \mathrm{m}^{3} \\
13225 \times 10^{-6} & \mathrm{~kg} / \mathrm{m}^{3} \\
88035 \times 10^{-6} & \mathrm{~kg} / \mathrm{m}^{3} \\
36392 \times 10^{-5} & \mathrm{~kg} / \mathrm{m}^{3} \\
12250 \times 10^{-4} & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Empirical constant used in atmospher equations	c EARTHRAD	$63550.00 \times 10^{2}$	m
	$A T M C=M_{\text {AIR }} \times \mathrm{G} / \mathrm{R}$		
	SOUNDC $=$ GAMMA $\times \mathrm{R} / \mathrm{M}_{\text {AIR }}$		
Molecular weight of air	$\mathrm{M}_{\text {AIR }}$	28.9644	n/a
Acceleration of gravity	G	9.80665	$\mathrm{m} / \mathrm{sec}^{2}$
Universal gas constant	R	8314. 32	$\mathrm{nm} / \mathrm{kg} \mathrm{K}$
Ratio of specific heats for air	GAMMA	1.4	$\mathrm{n} / \mathrm{a}$
Case 1: $\quad \mathrm{H}<\mathrm{BOUND}_{5}(90,000 \mathrm{~m})$			
$\Delta \mathrm{H}_{\mathrm{N}}=\mathrm{K}-\mathrm{BOUND}_{\mathrm{N}}$			
If TEMPGRAD $_{\mathrm{N}-1}=0, \mathrm{~T}=\mathrm{BTEMP}_{\mathrm{N}}$			
$\mathrm{RHO}=\mathrm{BRHO}_{\mathrm{N}} \exp \left(-\mathrm{ATMC}^{\left(\Delta H_{N}\right.} / \mathrm{BTEMP}_{\mathrm{N}}\right)$			
If TEMPGRAD $_{\mathrm{N}-1} \neq 0, \mathrm{~T}=\mathrm{BTEMP}_{\mathrm{N}}+\mathrm{TEMPGRAD}_{\mathrm{N}-1} \times \Delta \mathrm{H}_{\mathrm{N}}$			
$\mathrm{RHO}=\mathrm{BRHO}_{\mathrm{N}} \exp \left\{\left(1+\mathrm{ATMC} /\right.\right.$ TEMPGRAD $\left._{\mathrm{N}-1}\right)$			
$\times \ln \left[\operatorname{BTEMP}_{\mathrm{N}} /\left(\right.\right.$ BTEMP $_{\mathrm{N}}+$ TEMPGRAD $\left.\left.\left._{\mathrm{N}-1} \times \Delta \mathrm{H}_{\mathrm{N}}\right)\right]\right\}$			

Case 2:

$$
\mathrm{H} \geq \mathrm{BOUND}_{5}
$$

$$
\Delta \mathrm{H}_{\mathrm{N}}=\mathrm{H}-\mathrm{BOUND}_{\mathrm{N}}
$$

$$
\begin{aligned}
& \text { If TEMPGRAD }{ }_{N-1}=0, \mathrm{~T}=\mathrm{BTEMP}_{\mathrm{N}} \\
& \qquad \mathrm{RHO}=\mathrm{BRHO}_{\mathrm{N}} \exp \left(-\mathrm{ATMC} \times \Delta \mathrm{H}_{\mathrm{N}} / \mathrm{BTEMP}_{\mathrm{N}}\right)
\end{aligned}
$$

$$
\text { If TEMPGRAD }{ }_{\mathrm{N}-1} \neq 0, \mathrm{~T}=\mathrm{BTEMP}_{\mathrm{N}}+\operatorname{TEMPGRAD}_{\mathrm{N}-1} \times \Delta \mathrm{H}_{\mathrm{N}}
$$

$$
R_{0}=1 /\left(E A R T H R A D+\text { BOUND }_{N}-\text { BTEMP }_{N} / T E M P G R \wedge D_{N-1}\right)
$$

$$
\mathrm{R}_{1}=\text { BTEMP }_{\mathrm{N}} /\left(\mathrm{BTEMP}_{\mathrm{N}}+\text { TEMPGRAD }_{\mathrm{N}-1} \times \Delta \mathrm{H}_{\mathrm{N}}\right)
$$

$$
\mathrm{R}_{2}=\Delta \mathrm{H}_{\mathrm{N}} /\left[(\text { EARTHRAD }+\mathrm{H})\left(\text { EARTHRAD }+ \text { BOUND }_{\mathrm{N}}\right)\right]
$$

$$
\mathrm{RHO}=\mathrm{BRHO}_{\mathrm{N}} \exp \left\{A T M C \times E A R T H R A D{ }^{2} \times \mathrm{R}_{0}\right.
$$

$$
\times\left\{\mathrm{R}_{2}+\mathrm{R}_{0} \ln \left[\mathrm{R}_{1}\left(1+\Delta \mathrm{H}_{\mathrm{N}} / \text { EARTHRAD }\right)\right]\right\} / \text { TEMGRAD }{ }_{\mathrm{N}-1}
$$

$$
\left.+\ell \ln _{1}\right\}
$$

Dynamic pressure $Q$ and Mach number $M$ can now be calculated as follows:

$$
\mathrm{Q}=0.5 \mathrm{RHO}\left|\mathrm{VAT}_{\mathrm{I}}\right|^{2}
$$

where VAT $_{I}$ is the velocity of the vehicle with respect to the atmosphere in the reference inertial coordinate system.

If $\mathrm{RHO} \neq 0$,

$$
\mathrm{M}=\left|\underline{V A T}_{\mathrm{I}}\right| /\left[\operatorname{SOUNDC}\left(\mathrm{BTEMP}_{\mathrm{N}}+\text { TEMPGRAD}_{\mathrm{N}-1} \times \mathrm{H}_{\mathrm{N}}\right)\right]^{1 / 2}
$$

If $\mathrm{RHO}=0, \quad \mathrm{M}=0$.
In the case that $H>$ BOUND $_{0}(160,000 \mathrm{~m})$, the simulation considers the vehicle to be "outside" the atmosphere, and $\operatorname{sets} Q$ and $M$ equal to zero.

## 6. 8 Hybrid Simulator Prelaunch Data

## Intentionally Blank

No prelaunch environment is simulated.

### 6.9 Hybrid Simulator Launch Vehicle Data

## Intentionally Blank

The launch vehicle is not simulated.

## 6. 10 Hybrid Simulator CSM and LM Spacecraft Data

### 6.10.1 CSM Reference Positions and Dimensions

The following $\mathrm{X}, \mathrm{Y}$, and Z components describe positions in the Apollo Coordinate System. Inertias are about the center of gravity of each item.

6.10 .1 .1 CM Navigation Base	1055.715	in.
	0.0	in.
6.10.1.2 SPS Gimbal Ring	40.914	in.
	833.2	in.
	0.0	in.
	0.0	in.

### 6.10.1.3 SM RCS Positions and Orientation

The position vectors of the RCS jet thrust application points were modelled to have the same $X$ component and the quads to be the same distance from the spacecraft $X$ axis. Each quad is offset from the $Y$ and $Z$ axis and the jets are canted to reduce the thermal effects of the exhaust gas on the SM skin.

X component of RCS position	958.9	in.
Distance from jet to X axis	6.89	ft
Offset	7.25	deg
Cant	10	deg

6.10. 2 Vehicle Mass Properties

Mass properties are presented for each of three different vehicle configurations: the CSM-only, the CSM docked with the full LM Ascent-Descent Configuration, and the CSM docked with the empty LM Ascent Stage.

The center of gravity and moments of inertial of the vehicle are computed as functions of total vehicle mass using a least-squares curve fit on 82 fuel data points to generate two sets of polynominal coefficients, one for the storage tank and one for the sump tank.

The polynomials fitted to the curves are of the form

$$
P=\sum_{k=0}^{n} \quad a_{K} M^{K}
$$

where M is in slugs. The centers of gravity are measured in feet and the inertias in slugs $\mathrm{ft}^{2}$.

The principal moments of inertia are defined as
$\mathrm{I}_{\mathrm{XX}}=\int\left(\mathrm{Y}^{2}+\mathrm{Z}^{2}\right) d m$
$I_{Y Y}=\int\left(X^{2}+z^{2}\right) d m$
$I_{Z Z}=\int\left(X^{2}+Y^{2}\right) d m$
and the products of inertia are defined as

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{XY}}=+\int \mathrm{XY} \mathrm{dm} \\
& \mathrm{~J}_{\mathrm{XZ}}=+\int \mathrm{XZ} \mathrm{dm} \\
& \mathrm{~J}_{\mathrm{YZ}}=+\int \mathrm{YZ} \mathrm{dm}
\end{aligned}
$$

### 6.10.2.1 The Empty CSM Configuration

The Empty CSM includes the SLA ring and RCS propellant.
Mass
751.88
slugs
10.2

Curve-Fit Coefficients for the Sump Tank
10.3

	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$
$\mathrm{CG}_{\mathrm{X}}$	. $974539438{ }^{2}$	-. $288966331{ }^{-1}$	. $112181054^{-4}$
$\mathrm{CG}_{\mathrm{Y}}$	$-.162673947{ }^{1}$	. $239141573^{-2}$	$-.731027577^{-6}$
$\mathrm{CG}_{\mathrm{Z}}$	. $130175554{ }^{1}$	-. $110282091^{-2}$	. $337119334^{-6}$
${ }^{\text {I }} \mathrm{XX}$	. $164888331^{4}$	. $164654595{ }^{2}$	
$\mathrm{I}_{\mathrm{YY}}$	$-.725881195^{5}$	. $217161712^{3}$	$-.860099539^{-1}$
$\mathrm{I}_{Z Z}$	$-.861562667^{5}$	$.233884920{ }^{3}$	-. $865211357^{-1}$
$\mathrm{J}_{\mathrm{XY}}$	$.143099699{ }^{5}$	-. $256770983^{2}$	. $997922616^{-2}$
$\mathrm{J}_{\mathrm{XZ}}$	$-.699385787^{4}$	$.118178513^{2}$	-. $458638456^{-2}$
${ }^{\mathrm{J}} \mathrm{YZ}$	$-.125587571{ }^{4}$	$.111737291{ }^{1}$	. $299136797^{-3}$
Curve	Fit Coefficients for the	Storage Tank	10.3
	$\mathrm{A}_{0}$	$\mathrm{A}_{1}$	$\mathrm{A}_{2}$
$\mathrm{CG}_{\mathrm{X}}$	. $101623351{ }^{3}$	-. $258668285^{-1}$	. $704619841^{-5}$
$\mathrm{CG}_{\mathrm{Y}}$	. $356847596{ }^{1}$	-. $426294439^{-4}$	. $829889876^{-8}$
$\mathrm{CG}_{Z}$	-. $485198234^{1}$	. $885097950{ }^{-3}$	$-.184470384^{-6}$




## Curve-Fit Coefficients for the Storage Tank

	$\mathrm{A}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$
$\mathrm{CG}_{\mathrm{X}}$	$.10852103^{3}$	$-.28094546^{-1}$	$.68026968^{-5}$
$\mathrm{CG}_{\mathrm{Y}}$	.37312096	$-.47401071^{-4}$	$.8389768^{-7}$
$\mathrm{CG}_{\mathrm{Z}}$	-.68268762	$.9148723^{-3}$	$-.17297510^{-5}$
$\mathrm{I}_{\mathrm{XX}}$	$.149142449^{4}$	$.167075445^{2}$	$------\cdots-{ }^{2}$
$\mathrm{I}_{\mathrm{YY}}$	$-.337703110^{6}$	$.460629996^{3}$	$-.110802143^{1}$
$\mathrm{I}_{\mathrm{ZZ}}$	$-.306147195^{6}$	$.447738505^{3}$	$-.111047773^{1}$
$\mathrm{~J}_{\mathrm{XY}}$	$-.356426251^{4}$	$.153248911^{1}$	$-.368334660^{-3}$
$\mathrm{~J}_{\mathrm{XZ}}$	$.255052535^{5}$	$-.271964172^{2}$	$.661679522^{-2}$
$\mathrm{~J}_{\mathrm{YZ}}$	$-.708545992^{4}$	$.479540000^{1}$	$.432501693^{-4}$

### 6.10.3 Service Module RCS Performance

6.10.3.1 The thrust from an RCS jet is displaced in time from the CMC on-off signal without thrust shaping. Propellant usage was treated as a constant-mass flow rate while the jet is firing, plus a dribble-volume penalty for each jet firing.

RCS thrust	100	lb	10.1
Propellant flow rate	0.001122	$\mathrm{slugs} / \mathrm{sec}$	10.1
Dribble penalty	0.00010256	slug	10.4
On delay	0.012	sec	10.4
Off delay	0.007	sec	10.4

6.10.4 Service Propulsion System

### 6.10.4.1 SPS Thrust and Time Delays

The SPS engine was modelled as a constant thrust, constant propellant flow rate motor. The build-up and tail-off of thrust are treated as instantaneous changes of force shifted in time from the electrical command.

Constant thrust 20	$20,500 \mathrm{lb}$	10.8
Constant propellant flow rate	1.975 slugs/sec	10.5
SPS usable propellant	1165.5 slugs	10.3
On-Off delays		
$t$ is duration of electrical on command in seconds		
$0<\mathrm{t}<0.40$	no engine on	10.9
$0.40<t<1.00$	$\Delta t_{\text {on }}=0.52$	10.9
	$\Delta t_{\text {off }}=26.475 t_{\text {on }}-6.590$	10.9
. $1.00<t$	$\Delta t_{\text {on }}=0.52$	10.8
	$\Delta t_{\text {off }}=0.49$	10.8

### 6.10.4.2 SPS Actuator Dynamics

The SPS engine angular position is controlled by closed-loop servomechanisms in pitch and yaw. All applicable dynamics have been included for the amplifier, clutch, motor, and feedback loops.

		Pitch	Yaw		
Amplifier gain	$\mathrm{K}_{\text {A }}$	20	20	amps/rad	10.6
Current limit		士. 343	$\pm .343$	amps	10.6
Clutch gain	$\mathrm{K}_{\mathrm{C}}$	3.5	3.5	$\mathrm{lb} / \mathrm{mA}$	10.6
time constant	$\tau_{1}$	. 0268	. 0268	sec	10.6
time constant	$\tau_{2}$	. 0326	. 0326	sec	10.6
time constant	$\tau_{3}$	. 0038	. 0038	sec	10.6
Inertia	J	304	313	slugs/ft ${ }^{2}$	10,6
Rate damping feedback gain	$\mathrm{K}_{\mathrm{RD}}$	1000	1000	1 b sec	10.6



Snubber spring constant	$\mathrm{K}_{\mathrm{S}}$	$6.72 \times 10^{6}$	$7.02 \times 10^{6}$	lb/rad	10.6
Snubber spring position limit	$\ell_{P}$	. 0785	. 0785	rad	10.6
Actuator lever arm	R	1	1	ft	10.6
Rate feedback gain	$\mathrm{K}_{\mathrm{R}}$	. 0943	. 0985	sec	10.6
time constant	$\tau_{4}$	. 00151	. 00151	sec	10.6
Position feedback gain	$K_{P}$	1	1	nd	10.6
time constant	$\tau_{5}$	. 00794	. 00794	sec	10.6
Null bias	$\delta_{\text {bias }}$	-2. 15	0.95	deg	10.1
Motor lag-time constant	$\tau_{6}$	. 1	. 1	sec	
Motor gain	$\mathrm{K}_{\mathrm{M}}$	$1.02 \times 10^{-4}$	$1.02 \times 10^{-4}$	$\frac{\mathrm{rad} / \mathrm{sec}}{\mathrm{ft} 1 \mathrm{~b}}$	
Motor no-load speed	${ }^{\omega} \mathrm{NL}$	. 212	. 206	rad/sec	
Motor rate limit constant	RL	$1.68 \times 10^{6}$	$1.754 \times 10^{6}$	$\mathrm{lb} / \mathrm{rad} / \mathrm{s}$	

### 6.10.5 Spacecraft Bending with LM attached

With the LM attached, the combined vehicle will have 3 degrees of bending. Bending parameters were determined to have a constant value equal to the average between the full and half-full vehicle; this represents the range of values expected for Mission D.

Values given are the $X, Y, Z$ components of the indicated mode at a particular station. Because of the coupling of the Modes, the damping rations were made the same.

$\omega_{1}=13.5 \mathrm{rad} / \mathrm{sec}$				
$\zeta=$				
$\phi_{1}(\mathrm{XA})$	-.058	-.0234	-.020	nd
$\phi_{1}(\mathrm{XB})$	.018	-.017	-.029	nd
$\phi_{1}(\mathrm{XC})$	.050	-.007	-.022	nd
$\phi_{1}(\mathrm{XD})$	-.025	-.013	-.013	nd



### 6.10.6 Propellant Slosh

Slosh motion of the propellant in the SPS tanks is simulated during SPS thrusting as a linear spring mass system that can be characterized by a sloshing mass (constant for each tank), a slosh frequency (a function of mass for each tank), and an attachement point (a function of propellant mass). Sloshing can occur in the two storage tanks (full sump tanks) or in the two sump tanks (empty storage tanks).

In addition, when the LM is attached, the LM propellant will slosh when the SPS engine is on. The LM slosh parameters are held fixed.

6.10.6.1 CSM Slosh Data					10.1
The total vehicle mass in slugs is represented by M.					
		Storage	Sump		
Slosh frequency	squared	$21500 / \mathrm{M}$	19000/M	$\mathrm{rad}^{2} / \mathrm{slugs}{ }^{2}$	
Oxidizer slosh	mass	24.0	35.0	slugs	
Fuel slosh mas		15.0	22.0	slugs	
Fuel tank	Y coordinate	-1.233	-4.025	ft	
Fuel tank	Z. coordinate	-3.983	-0.55	ft	
Oxidizer $\operatorname{tank}$	Y coordinate	1. 233	4.025	ft	
Oxidizer tank	Z coordinate	3.983	0.55	ft	
Fuel spring con	stant	$323000 / \mathrm{M}$	418000/M	lb/ft	
Oxidizer spring	constant	$516000 / \mathrm{M}$	665000/M	$\mathrm{lb} / \mathrm{ft}$	
Damping ratio		0.0007	0.0007	nd	
6.10.6.2 LM	losh Data				10.7
Slosh frequency		3.7	$\mathrm{rad} / \mathrm{sec}$		
Damping ratio		0.005	nd		
Fuel slosh mas		11.4	slugs		


Oxidizer slosh mass	19.0	slugs
Fuel spring constant	156.0	$\mathrm{lb} / \mathrm{ft}$
Oxidizer spring constant	260.0	$\mathrm{lb} / \mathrm{ft}$
Slosh moment arm	13.0	ft

Oxidizer slosh mass

Slosh moment arm
13.0
t

## 6. 11 Hybrid Simulator CM Spacecraft Data

6.11.1 CM Mass Properties   The mass properties are assumed to be consta			
separation prior to reentry and mass is not decremented d or ablative heat shield loss.			
Mass		409.12	slugs
Center of Gravity	$\mathrm{X}_{\text {CG }}$	1045.1	in.
	$Y_{C G}$	-0. 4	in.
	$\mathrm{Z}_{\text {CG }}$	6.0	in.
Inertia	$\mathrm{I}_{\mathrm{XX}}$	6427	slug ft ${ }^{2}$
	$\mathrm{I}_{\mathrm{YY}}$	5866	slug ft ${ }^{2}$
	$\mathrm{I}_{\text {ZZ }}$	5149	slug ft ${ }^{2}$
	$\mathrm{J}_{\mathrm{XY}}$	59.5	slug $\mathrm{ft}^{2}$
	$\mathrm{J}_{\mathrm{XZ}}$	-461.1	slug ft ${ }^{2}$
	${ }^{\text {J }}$ YZ	21.7	slug ft ${ }^{2}$

### 6.11.2 CM RCS Data

11.2

The thrust from a RCS jet is displaced in time from the AGC on-off command without thrust shaping or atmospheric effects. The acceleration of the spacecraft due to jet firing is neglected.

Thrust
93.6
lb

Propellant flow rate	0.001122 slug/sec
Dribble penalty	0.00010256 slug

The $X, Y$, and $Z$ components of the moment arm of each jet are given in feet.

Jet	X	Y	Z
1	-.27161	4.77114	.35428
2	.36075	-3.33500	0
3	0	5.75962	-.30553
4	-.29408	-3.33500	0


Jet	X	Y	Z
5	-.33897	.69558	5.41832
6	.34175	.69558	-5.36956
7	-.34175	0	5.41832
8	.33898	0	-5.36956
9	5.14500	1.04895	-.19362
10	-5.07944	1.04895	.19362
11	4.51783	0	-1.06579
12	-4.86809	0	1.06579

### 6.11.3 CM Entry Aerodynamics

11.2

The aerodynamic forces and moments acting on the spacecraft during reentry are calculated from three aerodynamic coefficients: CA ( $\alpha, \mathrm{M}$ ), the axial-force coefficient; $\mathrm{CN}(\alpha, \mathrm{M})$, the normal-force coefficient; and $\mathrm{CM}(\alpha, \mathrm{M})$, the pitching-moment coefficient about the theoretical $C M$ cone apex. These are computed using a linear bivariate interpolation scheme as a function of angle of attack $\alpha$ and Mach number M.

Moment reference center	1141.25	in.
	0.0	in.
	0.0	in.
Reference area	129.35	$\mathrm{ft}^{2}$
Reference length	154.0	in.



		CN							
	$\bar{M}\langle\alpha$	145.1365	150.1365	155.1365	160.1365	165.1365	170.1365	175.1365	180.1365
	. 7	. 0178	. 0227	. 0327	. 0276	. 0076	-. 0224	-. 0274	-. 0023
	. 9	. 0756	. 0675	. 0524	. 0354	. 0173	-. 0027	-. 0126	-. 0026
	1.1	. 0871	. 0650	. 0490	. 0349	. 0219	. 0019	-. 0131	-. 0031
	1.2	. 0871	. 0621	. 0520	. 0370	. 0219	. 0069	-. 0011	-. 0032
	1.35	. 1319	. 0717	. 0517	. 0367	. 0216	. 0096	. 0066	$-.0034$
$\stackrel{\square}{ \pm}$	1.65	. 1440	. 1018	. 0667	. 0416	. 0246	. 0126	. 0026	-. 0035
	2.0	. 1591	. 1218	. 0847	. 0466	. 0185	. 0065	-. 0015	-. 0035
	2.4	. 1592	. 1220	. 0868	. 0587	. 0366	. 0185	. 0065	-. 0035
	3.0	. 1573	. 1221	. 0949	. 0697	. 0476	. 0315	. 0145	-. 0035
	4.0	. 1464	. 1202	. 0930	. 0693	. 0479	. 0291	. 0116	-. 0035
	$6.0+$	. 1424	. 1202	. 0960	. 0748	. 0526	. 0305	. 0115	-. 0035


CM									
		145.1365	150.1365	155.1365	160.1365	165.1365	170.1365	175.1365	180.1365
	. 7	. 0834	. 0603	. 0385	. 0304	. 0333	. 0419	. 0327	. 0038
	. 9	. 0245	. 0210	. 0212	. 0233	. 0246	. 0271	. 0171	. 0042
	1.1	. 0160	. 0161	. 0170	. 0189	. 0178	. 0212	. 0155	. 0050
os	1.2	. 0149	. 0185	. 0147	. 0164	. 0175	. 0184	. 0154	. 0051
$\xrightarrow{\text { c) }}$	1. 35	-. 0177	. 0149	. 0181	. 0177	. 0184	. 0170	. 0094	. 0054
	1.65	-. 0294	-. 0075	. 0061	. 0132	. 0146	. 0135	. 0110	. 0056
	2.0	-. 0424	-. 0223	-. 0050	. 0108	. 0197	. 0188	. 0135	. 0057
	2.4	-. 0433	-. 0237	-. 0067	. 0026	. 0079	. 0088	. 0072	. 0057
	3.0	-. 0416	-. 0243	-. 0126	-. 0036	. 0006	. 0010	. 0025	. 0057
	4.0	-. 0319	-0. 209	-. 0090	. 0023	. 0013	. 0037	. 0033	. 0057
	$6.0+$	-. 0194	-. 0103	-. 0016	. 0033	. 0003	. 0114	. 0129	. 0137

6. 12 Hybrid Simulation Coordinate Systems and Natural Environment Data

### 6.12.1 Reference Coordinate System

The reference inertial coordinate system is defined in Section 6.7.
All spacecraft state vectors and attitudes are referenced to this coordinate system.
6.12.2 Earth Gravitation Model

Accelerations due to the gravitational attraction of the earth were computed from

$$
\underline{a}_{E}=\frac{\mu_{E}}{r^{2}} \quad \sum_{i=2}^{4} J_{i E}\left(\frac{r_{E}}{r}\right)^{i}\left[P_{i+1}^{\prime}(\cos \phi) \underline{u}_{R}-P_{i}^{\prime}(\cos \phi) \underline{u}_{Z}\right]
$$

where

$$
\begin{array}{ll}
r_{E}=6378165 \mathrm{~m} & \text { equatorial radius of the earth } \\
\mu_{E}=0.3986032 \times 10^{5} \mathrm{M}^{3} / \mathrm{S}^{2} & \text { gravitational parameter } \\
J_{2 \mathrm{E}}=0.10823 \times 10^{-2} & \text { oblateness coefficients } \\
J_{3 E}=-0.23 \times 10^{-5} & \\
J_{4 E}=-0.18 \times 10^{-5} & \\
r_{\text {is length of position vector }} & \\
\underline{u}_{R} \text { is the unit position vector } \\
\underline{u}_{Z} \text { is unit vector along the polar axis } \\
P_{2}^{\prime}(\cos \phi)=3 \cos \phi \\
P_{3}^{\prime}(\cos \phi)=1 / 2\left(15 \cos { }^{2} \phi-3\right) & \\
P_{4}^{\prime}(\cos \phi)=1 / 3\left(7 \cos \phi P_{3}^{\prime}-4 P_{2}^{\prime}\right) & \\
P_{5}^{\prime}(\cos \phi)=1 / 4\left(9 \cos \phi P_{4}^{\prime}-5 P_{3}^{\prime}\right) \\
\cos \phi=\underline{u} \underline{R}_{Z}
\end{array}
$$

### 6.12.3 Moon Gravitation Model

When the moon is the primary body, no influence of a secondary body is considered. The gravitational accelerations due to the primary body are computed from:

$$
\begin{aligned}
& \underline{a}_{M}=\frac{\mu_{M}}{r^{2}}\left\{J_{2 M}\left(\frac{r_{M}}{r}\right)^{2}\left[P_{3}^{\prime}(\cos \phi) \underline{u}_{r}-P_{2}^{\prime}(\cos \phi) \underline{u}_{z}\right]\right. \\
& +3 J_{22 M}\left(\frac{r_{M}}{r}\right)^{2}\left[4 \frac{X_{M} Y_{M}}{X_{M}^{2}+Y_{M}^{2}} \quad\left(\underline{u}_{r} \times \underline{u}_{z}\right)\right. \\
& \left.\left.+\frac{X_{M}^{2}-Y_{M}^{2}}{X_{M}^{2}+Y_{M}^{2}}\left(\left(5 \cos ^{2} \phi-3\right) \underline{u}_{r}-2 \cos \phi \underline{u}_{z}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
r_{M}=1738090 \mathrm{~m} & \text { equatorial radius of the moon } \\
\mu_{\mathrm{M}}=0.4902778 \times 10^{13} \mathrm{M}^{3} / \mathrm{S}^{2} & \text { gravitational parameter } \\
\mathrm{J}_{2 \mathrm{M}}=0.207108 \times 10^{-3} & \text { oblateness coefficient } \\
\mathrm{J}_{22 \mathrm{M}}=0.207160 \times 10^{-4} & \\
\mathrm{r} \text { is length of position vector }\left\{\mathrm{X}_{\mathrm{M}}, \mathrm{Y}_{\mathrm{M}}, \mathrm{Z}_{\mathrm{M}}\right\} \\
\underline{u}_{\mathrm{r}}, \underline{u}_{\mathrm{z}}, P_{\mathrm{i}}^{\prime}, \cos \phi \text { defined analogous to the earth. }
\end{array}
$$

6.12.4 Atmospheric Model

The atmospheric model is the 1962 U. S. Standard atmosphere; atmospheric perturbations due to winds are not included in the model. The model is described in Section 6.7.

When the LM is present and within 327 miles of the CSM, range data is transmitted from a VHF simulator to the CMC.

The simulator is a 15 -bit shift register, preset during the simulator statevector update calculation once-a-second, asynchronous to the CMC.

Each bit represents 0.01 mile.

### 6.14 References

2. 1 Directory of Standard Geodetic and Geophysical Constants for Gemini and Apollo, NASA General Working Paper, No. 10, 020B, 6 April 1966.
2.2 Natural Environment and Physical Standards for the Apollo Program, NASA, M-D E 8020.008B, SE 015-001-1, April 1965.
3. 3 CSM/LM Spacecraft Operational Data Book, Vol. I, CSM Data Book, Manned Spacecraft Center, SNA-8-D-027, May 1968
4. 4 Undocumented Estimate.
5. 5 MIT Apollo Guidance and Navigation Information Massachusetts Institute of Technology, Instrumentation Laboratory, G-532, 28 November 1962.
6. 1 Saturn V AS-504 Launch Vehicle Guidance and Navigation Error Analysis, The Boeing Company, D5-15708-4, 27 November 1967.
3.2 Saturn V AS-504 Launch Vehicle Guidance and Navigation Error Analysis, NASA George C. Marshal Spaceflight Center, R-AERO-DGA-1-68, 13 February 1968.
3.3 Saturn V AS-504 Launch Vehicle Reference Trajectory, The Boeing Company, D5-15481-1, 15 May 1967.
3.4 Control System Math Models for Switchover Studies, NASA George C. Marshall Spaceflight Center, R-ASTR-F-66-56, 1 April 1966.
7. 5 Saturn V Launch Vehicle Guidance Equations, SA504, The Boeing Company, D5-15706-4, 15 July 1967.
4.1 Block II, G\&N Navigational Base and Optics Assembly to Command Module Structure, MIT and North American Aviation, Inc., Interface Control Document MH01-01301-116, 1 June 1967.
8. 2 CSM/LM Spacecraft Operational Data Book, Volume I, CSM Data Book, NASA, SNA-8-D-027, May 1968.
9. 3 CSM/LM Spacecraft Operation Data Book, Volume III, Mass Properties, NASA, SNA-8-D-027, Amendment 2, 20 May 1968.
4.4 CSM-103 Apollo Technical Information Listing, NASA, 68-FS55-3-20, 19 January 1968.
10. 5 Apollo Mission Data Specification C-Apollo Saturn 207/208A, TRW Systems, 2131-H005-R8-000, 9 June 1966.
11. 6 Performance Data Supplement to Mission Modular Data Book-Block II Earth Orbital Mission, North American Aviation, Inc., SID 66-1501-A, Revised 15 March 1967.
12. 7 LM-3 Mass Properties Data, US Memorandum, PM3/M-215/67, 6 October 1967.
13. 8 A Comparison Between a "Static" and "Dynamic" Liquid Propellant Method for Calculating LM Mass Properties, Grumman Aircraft Engineering Corporation, LMO 500-583, 1 June 1967.
14. 9 Conversations with NAR Propulsion Groups, 23 May 1968.
15. 10 Three Dimensional Vibrational Modes of the Apollo CSM/LM Docked Vehicles, TRW Systems Report No. 05952-H300-R000, 29 September 1967.
16. 11 Three Dimensional Vibrational Modes of the Apollo CSM/LM Docked Vehicles, TRW Systems Report No. 05952-H342-R000, 20 November 1967.
17. 12 Three Dimensional Vibrational Modes of the Apollo CSM/LM Docked Vehicles, TRW Systems Report No. 05952-H239-R000, 30 June 1967.
5.1 Block II, G\&N Navigational Base and Optics Assembly to Command Module Structure, MIT and North American Aviation, Inc., Interface Control Document MH01-01301-116, 1 June 1967.
5.2 Performance Data Supplement to Mission Modular Data Book Block II Earth Orbital Mission, North American Aviation, Inc., SID 66-1501-A, Revised 15 March 1967.

## 5. 3 CSM/LM Spacecraft Operational Data Book, Volume I, CSM Data Book, NASA, SNA-8D-027, May 1968.

6. 1 Apollo VHF Ranging Preliminary Design Review, North American Aviation, Inc., MS-901-0712D, 19 December 1967.
7. 2 Command Module Guidance Computer Electrical Interfaces, Block II, NAA-MIT, North American Aviation, Inc., MH01-01380216, 15 December 1967.
8. 1 Directory of Standard Geodetic and Geophysical Constants for Gemini and Apollo, NASA General Working Paper No. 10, 020B, 6 April 1966.
9. 2 U.S. Standard Atmosphere, 1962, published under the sponsorship of NASA, U.S. Air Force, and U.S. Weather Bureau, December 1962.
10. 1 CSM/LM Spacecraft Operational Data Book, Volume I, (SNA-8-D-027), MSC, May 1968.
10.2 CM 103, LM3 Mass Properties, MSC-S-59, 14 November 1967.
10.3 TRW AMDS, 2131-H002-T8-000.
10.4 Coordination with MSC-SSM on 20 November 1967, (R. Taeuber MSC and J. Owen/G. Holland - TR - TRW).
10.5 Performance Data Supplement, NAA SID 66-1501-A, Revision, 15 March 1967.
10.6 Internal Letter, North American Aviation, 190-600-BII-67-018, 9 August 1967.
10.7 LM GN\&C Data Book: GAEC-S-7, 13 October 1965.
10.8 Undocumented Data from North American Aviation Propulsion Group, 23 May 1968.
10.9 Memorandum from FM7/Guidance and Performance Branch/Guidance Analysis Section/MSC, 68-FM7 3-239, 22 May 1968.
```
11.1 Preliminary CSM 103 and LM3 Mass Properties Summary, 14 November 1967.
```


### 11.2 CSM/LM Spacecraft Operational Data Book, Volume I, SNA-8-D-027, MSC, May 1968.

12. 1 Natural Environment and Physical Standards for the Apollo Program, NASA, M-DE-8020-008B, April 1965.
13. 1 Command Module Guidance Computer Electrical Interfaces, Block II, NAA -MIT, North American Aviation, Inc. , MH01-01380-216, 15 December 1967.

## COLOSSUS

Section 4 (Rev 6)

Internal:

Adler, P.	Grace, E.	Levine, G.	Schlundt, R.
Bairnsfather, R.	Greene, K.	Lickly, D. (3)	Schmidt, W.
Battin, R.	Griggs, K.	Lones, R.	Scholten, R.
Beals, C.	Hamilton, M.	Marscher, W.	Schroeder, S.
Blanchard, E.	Haslam, R.	Martin, F.	Schulenberg, C.
Cooper, W.	Heinemann, P.	McOuat, H.	Schulte, R.
Copps, E.	Henize, J.	Megna, V.	Sears, N.
Copps, S.	Hoag, D.	Metzinger, R.	Sewall, A.
Cox, G.	Hsiung, D.	Millard, D.	Shillingford, J.
Davis, S.	Hughes, E.	Miller, J.E.	Sokkappa, B.
Day, W.	Ireland, B .	Miller, J.S.	Sprague, D.
DeCain, F.	Issacs, T.	Mimno, P .	Stameris, W.
Denniston, E.	Johnson, I.	Morse, J. (10)	Stubbs, G.
Deutsch, S.	Johnson, L. B.	Morth, R.	Suomala, J.
DeWolf, D.	Johnson, M.	Muller, E.	Sutherland, J.
Dimock, G.	Johnston, M.	Nevins, J.	Tanner, W.
Drake, L.	Keene, D.	O'Connor, J.	Tinkham, R.
Drane, L.	Kernan, J.	Ostanek, W.	Turnbull, J.
Dunbar, J.	Kiburz, R.	Parr, T.	Vincent, K.
Dunbar, V.	Kido, K.	Philliou, P.	Vittek, J.
Edmonds, G.	* Kingston, J.	Plender, P. (6)	Volante, P.
Eliassen, S.	Klumpp, A.	Pope, G.	Weatherbee, R.
Engel, A. (2)	Kosmala, A.	Pu, C.	Wenk, C.
Felleman, P .	Kossuth, G.	Ragan, R.	Werner, R.
Fleming, J.	Kupfer, W.	Riebesell, K.	White, P.
Gediman, L. (20)	Laats, A.	Robertson, W.	White, R.
Glendenning, J.	Larson, L.	Rye, P. (3)	Widnall, W.
Glick, K.	Larson, R.	Sapanaro, J. (4)	Wolff, P.
Goldberger, S.	Lawrence, J.	Sarda, P.	Womble, M.
Goodwin, K.	Leone, F.	Savatsky, S.	Zeldin, S.
			Apollo Library (2)
			MIT /IL Library (6)
*Letter of transmittal only.			

MIT Instrumentation Laboratory
c/o North American Rockwell, Inc.
Space and Information Division
12214 Lakewood Boulevard
Downey, California 90241
Attn: Mr. Thomas A. Hemker
MIT Instrumentation Laboratory
G\&N Systems Laboratory
c/o Grumman Aircraft Engineering Corp.
LM Project - Plant 25
Bethpage, Long Island, New York
Attn: Mr. James A. Hand
MIT Instrumentation Laboratory
P.O. Box 21025

Kennedy Space Center, Florida 32815
Attn: Mr. George Silver
MIT Instrumentation Laboratory
Code EG/MIT Building 16
NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. Thomas Lawton
NASA MSC HW
Building M7-409
Kennedy Space Center, Florida 32815
Attn: Mr. Frank Hughes
Mr. A. Metzger (NASA/RASPO at MIT/IL)
AC Electronics Division
General Motors Corporation
Milwaukee, Wisconsin
Attn: Mr. J. Stridde Dept. 32-31
Attn: Mr. Reino Karell
Kollsman Instrument Corporation
575 Underhill Boulevard
Syosset, Long Island
Attn: Mr. F. McCoy
Raytheon Company
Boston Post Road
Sudbury, Massachusetts 01776
Attn: Mr. J. Shrmack
NASA/RASPO/National Aeronautics and Space Administration
NAR Resident Apollo Spacecraft Program Office North American Rockwell, Inc.
Space and Information Systems Division 12214 Lakewood Boulevard Downey, California

NASA/KSC National Aeronautics and Space Administration John F. Kennedy Space Center J. F. Kennedy Space Center, Florida 32899 Attn: Technical Document Control Office

NASA/RASPO   GE	NASA Daytona Beach Operation		(1)
	P.O. Box 2500		
	Daytona Beach, Florida 32015		
	Attn: Mr. A. S. Lyman		
NASA/HDQ	NASA Headquarters		(6)
	600 Independence Avenue SW		
	Washington, D. C. 20546		
	Attn: MAP-2	(4)	
	Attn: Mission Director, Code MA	(1)	
	Attn: Robert Aller, Code MAO	(1)	
NASA/LEWIS	National Aeronautics and Space Administration		(2)
	Lewis Research Center		
	Cleveland, Ohio		
	Attn: Library		
NASA/FRC	National Aeronautics and Space Administration		(1)
	Flight Research Center		
	Edwards AFB, California		
	Attn: Research Library		
NASA/LRC	National Aeronautics and Space Administration		(2)
	Langley Research Center		
	Langley AFB, Virginia		
	Attn: Mr. A. T. Mattson		
NASA/GSFC	National Aeronautics and Space Administration		(2)
	Goddard Space Flight Center		
	Attn: Mr. Paul Pashby, Code 813		
G AEC	Grumman Aircraft Engineering Corporation		(2)
	Attn: Mr. J. Marino		
	Mr. R. Pratt	(1)	
NAR	North American Rockwell Inc.		$(1+1 R$
	Space and Information Systems Division		
	12214 Lakewood Boulevard		
	Attn: Apollo Data Requirements		
	Atn: Apollo Data Requirements		
	Building 3, CA 99		

$\left.\begin{array}{lll}\text { NASA/RASPO } & \text { National Aeronautics and Space Administration } \\ \text { GAEC } \\ \text { Resident Apollo Spacecraft Program Officer } \\ \text { Grumman Aircraft Engineering Corporation }\end{array}\right]$ (1)

