7322.3-17

ABORT ELECTRONIC ASSEMBLY
PROGRAMMING REFERENCE

APRIL 1966

/“/5/ _—
Prepared By: e e

L. Stiverson

Approved By: 7‘;/ J%fﬂﬂf Pidns

H. B. Grossman

Approved By: ul L ®

D. L. Megirnity

TABLE OF CONTENTS

INTRODUCTION

1.0 . COMPUTER DESCRIPTION

“ 1, CENTRAL COMPUTER
.1.2 INPUT-OUTPUT SECTION
1.3 MEMORY '

2.0 COMPUTER_INSTRUCTIONS

2.1 ARITHMETIC INSTRUCTIONS
2.2 ILOAD AND STORE INSTRUCTIONS
2:3 SHIFT INSTRUCTIONS
2.4, TRANSFER INSTRUCTIONS

~2.5 INDEX INSTRUCTIONS

. 2.6 TIMING INSTRUCTION

3.0 INPUT-OUTPUT INSTRUCTIONS'

3.1 INPUT REGISTERS
3.2 OUTPUT REGISTERS

L.0 START-UP AND SHUT DOWN PROCEDURES
L.l AUTOMATIC START-UP SEQUENGE
4.2 PROGRAMMED INITIALIZATION
4.3 AUTOMATIC SHUT DOWN SEQUENCE

ABBREVIATIONS AND SYMBOLS

" . APPENDIX A ASSEMBLY PROGRAM DESCRIPTION

APPENDIX B TABLES

7332.3-17
Page i

Page No,

= o v ON M

10
10

12
C A2

8E&

26
.26
26
26
=&l
f

A36
B1-B7

"KL

g

1

1332.3~-17
Page 1

! ‘ : - 1

t

INTRODUCTION
This document is intended as a reference source of data

needed for the preparation of Abort Electronic Assembly (AERA)
programs. It contains information about the AEA such as its

- physical descfiption, input and output capabilities, word

formats, and operation of programmable orders. It also-con-

" “tains information about the LEM Abort Mission frequently

referred to by the prdgrammer such as input and output resolution
and rates, and the use of input and output registers and dis-
cretes. Contained in the appendix section is information for
the use of the AFA Assembly Program, diagrams of coordinate

systems in use, and condensed forms of information contained

-in the body of the reference.

7332.3-17
- Page 2

1.0 COMPUTER DESCRIPTION

The AEA is a small, high speed, general purpose computer with a substantial -
amount of special purpose input/output electronics. It employs a fractional two's
ccﬁplemgnt, paraliellarithmetic section and parallel data trahsfer. Instruction
words are 18 bits in length, coﬁsisting of a 5 bit order code, an index bit, and a
single 12 bit operand address. Data words are 18 bits in length including sign.
The ferrite core memory syétem is partially hardwired, pértially scratchpad and has
a five microseéond cycle time. For purposes of explanation, the computer may be

separated into the Memory, the Central Computer, and the Input/Qutput Section.
1.1 CENTRAL COMPUTER WS

: . Iﬁ the Central Computer are eigﬁt data and control registers, an 18 bit parallel
adder, two timing reglsters and associated logic. The data and control registers
are interconnected by a parallel data bus. Computer operations are executed by
appropriately timed transfers of information between these registers, between the
Memory and the M Register, and between the Accumulator and input/output registers.
The Adder and three registers, the M Register, the Q Register and the Accumulator,

forin the baslis for execution of arithmetic operationé.
Adder

The arithmetic section is designed around an 18 bit three microsecond baraliel
adder. Two 18 bit registers, the Accumulator and the M Register furnish the inputs t
the Adder. The sum generated by the Adder is loaded into the Accumulator. Shifting
operations are implemented by displacing the sum generated by the Adder one bit right

or left when loading it into the Ac%pmulator.
Accumu1ator (A Reglster)

This 18 bit reglstﬂr communicates in parallel with the Adder and the Data Bus.
In addition, it communicates serially with the Q Register for shifting operations suc
as multiplication, division, and double length shifts. The Accumulator holds the
"results of most arithmetic operations and is the register which is used to communicat

with input/output registers.

Memory Register (M Register)

The M Register is an 18 bit register which is loaded from the Memory or from
the Data Bus. It holds data which is being transferred between the Central Computer

7332.347
Page 3

nd the Memory via the Data Bus. Data transferred from‘the-Memory is held by the M
Register as it is placed on the Data Bus. During this time, the data is also written
back into the Memory from the M Register if the transfer of data is a read and restore
operation. - Data transferred to the Memory from the Central Computer is held by the M
Register as it is written into the Memory._ The M Register holds the multiplicand dgring
multipllcatlon, the divisor during division, the addend during addition, and the

subtrahendldurlng subtraction. ‘Load_Accumulator operatlons are accomplished by

élearing the Accumulatﬁr and then adding the contents of the M Register to the Accumulatc:

Multiplier-Quotient Register (Q Register) "

The Q Register is an 18 bit regisﬁar which cormnu.nicétes in parallei with the
Data—B@s_ﬁnd serially with the Accumplator. The Q Register holds the least significani

half of the’ double length product after multiplication, and initially holds the least

significanf half of the double iéngth dividend for division. After division, it holds
the unrounded quotient. For double length shifting opefaﬁions, the Q Register is
logically attached to the low--order end of the Accumulator. After execution of a

T5Q instruction, the Q Registef holds a transfer instruction with an address field set
S0 one greater than fhe location of the TSQ instruction. If the Q Register is then
stored by the routine which has been transferred into, a convenient means offrefurning
to.the main program is provided. ' For divide operations, an extra bit, Q18, is attaéhed
to the Q Register. X« = ‘ :

Index Register

.- The Index Reglster is a three blt counter which is used for operand address
modification. When an indexed 1nstruct10n is executed, the effective operand address
is computed by a logical OR operation b&tween the Index Register and the three least
significant bits of the operand address. When a TIX.instruction is executed, the Index
Register is decremented by one if it is greater than zero, and the next instruction is
taken from the location specified by the address field of the TIX instruction. If the

Index Register is zero, it is not decremented, and the next instruction is taken in

.sEquencé: The Index Registef is loaded under program control from the least significant
three bits of the data bus.

Address Register

The Address Register is a 12 bit register which is loaded under computer control
from the least significant 12 bits of the Data Bus. It holds the address of the memory

location to which access has been reqpestéd_by the Central Computer,

7332.3-17

Page 4

Operation Code Register

The Operation Code Register is a 5 bit register which is loaded under computer
control from the 5 most significant bits of the data bus. It holds the 5 bit order
code during its execution. - ' . ; |

Program Counter

The Program Counter is a 12 bit counter which is 1oaded.from the least significant

12 bits of the data bus by execution of a.transfer instrucpion. _It holds and generates

instruction addresses in sequence.

Cycle Counter

. The Cycle Counter is a five bit counter which is used to céntrol shift instruction

and certain long orders.

Timing
Timing is controlled by two registers, one eight bits in length, and the other'f
three bits in length. These registers produce the timing signals required to control

all operations of the Central Computer.

‘1.2 INPUT-OUTPUT SECTION . R = S % S

There are four basic types of registers'in the input-output secfion;_'Thése
registers operate independently of the central computer except when they are accessed
during exccution of an input or output instruction. All transfers of data between the
central computer and the input-output registers are in parallel. The PGNS Euler Angles
are accumuléted in three 15 bit integrator registers. The integrator . registers $hift
15 bit positions upon receipt of each”input pulse, serially adding or subtracting onc
from the previous coﬁnt. The integrator registers are set to zero by an external
signal. ASA gyro and accelerometer pulses-are accumulated in-‘six 11 bit counters
ﬁhich are set to zero when accessed by the central'computer. The four bit DEDA
Register, the 18 bit Input Telemetry Register, the 24 bit Output Telemetry Register,
and the 15 bié output register time shared for altitude and altitude rate are all
implemented as shift registers. The remaining registers, the-D[A Converter registers
-and the diécrete input and output registers, are static registérs. The Discrete
Output Register is changed by setting or resetting specific bits within the register

with specific output instructions.

7332.3-17
Page 5

1.3 MEMORY

The AEA memory is a coincident-current, parallel, random access, ferrite core
stack with a capacity of 4096 18 bit words. It is divided into two equal sections -
temporary storage and permanent storage. The addresses of the temporary storage
locations are O thru 37?78, and the addresses of the permanent storage locations are
4000y thru 7777g. SEd e

, & et S \ :

Each core in the temporary storage memory is threaded by an X selection winding,
a Y selection winding, a sense winding, and an inhibit winding. In the permanent
storage memory, the inhibit winding is omitted, and the X selection winding passes

only through cores which represent zeros.

. The cycle time of the memory is five psec. . ' .

& E 7332.3-17
Pags 6

2.0 COMPUTER INSTRUCTIONS

The AEA instruction word consists of a five bit operation code, an index bit,

and a single 12 bit address field. Instruction and data formats are shown in

Figure 1.

INDEX BIT |
OP CODE | i ADDRESS FIELD

0 Ll s |6

17| INSTRUGTION FOR:A

SIGN _DATA FIELD - TWO's COMPLEMENT FORM
: 17| DATA FORMAT

0]l

FIGURE 1. AEA INSTRUGTION AND
.+ DATA FORMATS.

If the index bit is a one, the address field of any instruction which accesses
the Memory is modified by the Index Register} The effective operand address isr
computed.by a logical OR operation between the three bits of the Index Register and
the three least significant bits of the operand address. ' e

The AEA executes 27 basic instructions. Féur of these insﬁructioﬁs, CLz, ADZ,
SUZ,-andlﬂﬁgzdo not include a memory restore cycle after data is read, leaving the
addressed memory cell contents equal to zero. These instructions require less .
power than the corresponding instrpctions CLA, ADD, SUB, and-MPR, and should be used

vhenever the contents of the addressed memory location need not be retained.

In the subsequent functional definitioﬁ of AEA program instructions, eath
description is headed by the following information: A three letter mnemonic code
used in symbolic programs to represent the five bit operation code;-the letter Y or

N to represent the address field in the description of the instruction; a two digit

-octal number which corresponds to the five bit operation code of the instruction

word; and the time, in microseconds, required to execute the instruction. The lette:

Y, as used in the definitions, represents bolh the address field of the instruction

~and the memory location of the operand. This is only the case when no indexing is

.1332.3-17
Page 7

present. If indexing is present, the memory location which is actually addressed
is Y modified by the Index Register. The execution times llsted are nominal tlmes
The actual times are obtained by d1v1d1ng the nominal times by 1.024. Ind1v1dua1
bit positions of a register are referred to by the letter which represents the

register, followed by the bit position..
2.1 ARITHMETId INSTRUCTIONS
o :
ADD Y 2 10 psec
_ The contents of Y are algebralcally added to the contents of the Accumulator

If overflow occurs, the overflow'lndlcator is se* The contents of ¥ are unchanged.

Add and Zero

ADZ Y ; 32 10 usec
The contents of Y are algebraically added to the contents of the Accumulator

If overflow occurs, the overflow indicator is set. The contgnts of ¥ are set to zerc

Subtract _
SUB Y 2L) iD psec

The contents of Y are algebraically subtracted from the contents of the
. Accumulator. The contents of Y are unchanged. If overflow occurs, the overflow

indicator is set.

. Subtract and Zero

SUzZ Y ' 3L 10 psec

The contents of Y are algebraically subtracted from the contents of the
Accymulator. The contents of Y are set to zero. If overflow occurs, the overflow

indicator is set.

Multiply
MPY Y 06 70 psec

The contents of the Accumulator are multiplied by the contents of Y. The most
significant half of the double length product is placed in the Accumulator and the

' 7332.317
Page 8

i F

Jeast significant half in the Q Register. A . é
/ ;
.A special condition exists when the contents of ¥ arefequal to minus one

(YO = 1, Y1 thru Y18 = o). Tn this case, the contents of the Accumulator will
remain unchanged for all initial values of the Accumulator including minus one.

The Q %egister will contain zeros. if the Accumulator iniﬁially contains minus

one and Y con@ains'some value other than minus one, multipiication proceeds normally.

In this case, the product will be represented bj'the two'sfcomplgment of the con-

tents of ¥ in the Accumulator, ‘and Zeros in the Q Register,

Multiply and Round

MPR Y ; 26 70 psec

This instruction is identical to the MPY instruction with the exéeptiqn that
the most significant half of the double length product, held in the Accumulator, |
. is rounded. Rounding is implemented as follows: If, after obtaining the double
length unrounded product, bit Ql is a one, a one is added into the least signifi-
can£ bit of the Accumulator. If bit Q1 is a zero, both the Q Register and the)

Accumulator remain unchanged.

Multiply and Zero

MPZ Y 36 70 psec

This instruction is identical to the MPR instruction with the exception that
&
the contents of Y- are set to zero.

Divide

DVP Y , Ohb - - 73 usec

.‘-

The contents of the double léngth dividend, the most significant half of which .

is contained in the Accumulator and the least significant half in the Q Register, is

-

7332.3-17

Page 9
divided by the contents of Y. The sign of the Q Register is disregarded. The
rounded quotient is held by the Accumulator and the unrounded quotient by the
Q Register.

To prevent greater than fractional quotients, the dividend and divisor must

be scaled such that the absolute magnitude of the dividend is less than that of

the divisor when represented in the machine. When initial conditions which result

in greater than fractional quotients are detected, the overflow indicator is set

and the divide operation proceeds normally. One exception to this occurs when

the contents of Y are positive and the Accumulator contains an equal negative

value. The overflow indicator is not set and the qﬁotient which results is minus

one (A0 = 1, Al thru Al7 = 0). If the contents of Y are negative and the Accumulator
contains an equal positive value, the overflo& indicator is set. The result,

however, is also minus one. Y

' The last step of the division process is placing the quotient in the Accumu-
lator and rounding it. Rounding is based upon a determination of the next bit
of the qudtient. If the additional bit is a oﬁe, a one in the least significant
bit position is added to the quotient in the Accumulator. If the additional bit
is a zero, the Accumulator remains unchanged and equal to the unrounded quotient

retained in the Q Register. Rounding is inhibitled when it causes overfléw in the”

~Accumulator, This condition exists when the Accumulator contains the maximum

positive value (A0 = O, Al thru A17 =1). It results from division of a'qpantit§
by a quantity of equal sign and only slightly larger magnitude.

Complement Accumulator

coM 60 £. 16 psec

The contents of the Accumulator are replaced by their two's complement. It
the contents of the Accumulator are minus one (A0 = 1, Al thru Al7 = 0) or zero,
the Accumulator remains unchanged.

.,

Absolute Value of Accumulator

ABS 62 7 16 psec
If the contents of the Accumulator are negative, they are replaced by their

two's complement. If the contents of the Accumulator are possitive, zero, or equal to

7332.3-17
Page 10

minus one (A0 =1, Al thru A17 = 0), the Accumulator remains unchanged.

2.2 IOAD AND STORE INSTRUCTIONS

Clear and Add

CLA Y . 20 SJe5 2 10 psec:

The Accumulator is loaded from Y. The contents of Y remain unchanged.

Glear,hAdd and Zero

ClZ Y ; 30 . 10 psec

The Accumulator is loaded from Y. The contents of Y are set to Eero.

Toad O Repister

Qg ¥ 2k 13 psec

The Q Register is loaded from Y. The contents of Y remain unchanged;

-

Store Aécumulator

S0 ¥ 10 - 13 psec

-

The contents of the Accumulator are storéd in Y. The ﬁbcumnlator.remains

. unchanged.

2.3

Store Q Register

STQ Y . 12 g£. 13 psec
The contents of the Q Register are stored in Y. The Q Register remains unchang:
[]

SHIFT INSTRUCTIONS

Accumulator Left Shift

ALS N 56 3N + 13 psec

The contents of the Accumulator afe shifted left N places. N is specified by

bits 13 thru 17 of the instruction word. If any bit shifted from Al changes AQO, the

overflow indicator is set. Zeros are shifted into Al7, and bits shifted from AO ars

lost.

7332.3-17
Page 11

Long Left Shift

s N 52 3N + 13 psec

The contents of the Accumulator and 5its one thru seventeen of the Q Register
are 1%ft‘shiftéd'as ohe register N placés.:_N'is'specified By‘bits 13 thru 17 of
the instruction word. The sign of the Q Register is made to agree with the sign
of the Accumulator. If any bit shifted from Al changes AO, the overflow indicator
is set. ~ Zeros are shifted into Ql7, and bits shifted from AO are lost.

Long Right Shift

IRS N " 54 3N + 13 psec)

The contents of the Accumilator and bits one thru seventeen of the Q Register
are right shifted as one register N places. N is specified by bits 13 thrull7 of
the instruction word. The sign of the Q Register is made to agrée with the sign
of the Accumulator. Bits shifted into AO are the same as AO,.and bits shifted from
Q17 are lost. e ' ol ' e 5 VT

2.5, TRANSFER INSTRUCTIONS: e faghdL
Transfer & .
TRA Y 40 . 10 psec I

»ihe nex£ instruction is taken from Y. ' | gl i‘—

Transfer and Set Q

TSQ Y 72 16 psec

The contents of the Q Register are replaced by a transfer instruction with
an address field set to one greater’%han the location of the TSQ instruction, and
a one in the index bit position. The next ‘instruction is taken from Y. If the

Q Register is stored by the routine to which control.has been transferred, a

convenient means of returning to the main program is provided. The one in the index

bit position of the transfer instruction is disregarded when the instruction is

executed.

Transfer on Minus Accumulator

™I Y : L6 : 10 psec

The next instruction is taken from Y if the contents of the Accunulator are
negative. If the contents of the Accumulator are positive or zero, the next

instruction is taken in sequence.

B e s o ——

o’

7332.3-17
Page 12

Tranasfer on Qverflow

EUAN T ksec

If the overflow 1nd1cator 13 set, the next 1nstruct10n 13 taken from ¥, and

_the overflow indicator is reset If the overflow indicator is reset, the next

.instructlon is taken in sequence.

2.5 INDEX INSTRUCTIONS

Address to Index

AT N) "~ 13 psec
- The index register is set to N. N 1s spec ified by-blts 1 thru 1? of the

Anstruction word. _. .. . o vl oo . o, S L

Test Index and Transfer

" TIX Y - L2 = _ 10 pusec -

If the index register is greater than zero, it is decremented by one and the

‘next instruction is taken from Y. If the index register is zero, it remains unchangec

‘and the next instruction is taken in sequence.

© 2.6 TIMING INSTRUCTION - | LIS

- Delay
DLY Y o

‘Execution is halted until a timing signal, which is generated at 20 millisecond

_intervalé, is received. The next ipsiruction is taken from Y. If the computer is

not in the halt mode when the timing signal is generated, the Test Mode Failure
Discrete is set. Execution of this instruction at the completion of each computation.

cycle provides a means of equalizing the time duration of computational cycles.

A

. input registers and one to address output registers. The individual_registers are

. 7332.317
Page 13

_ 3.0 INPUT-OQUTPUT INSTRUCTIONS

" There are two operation codes for this set of instructions, one to address

- addressed by variations in the address field of the input or output instruction
- word. Section 2.0 defines the format for AEA instructions. The following is a

- definition of the two input—output instructions:

~Input
NP Y 64, " 16 or 67 psec

The contents of the 1nput register specified by Y are loaded 1nto ‘the
Accumulator and the register is set to zero or remains unchanged dependlng upon
the reglster which is selected. To facilitate resetting registers, the addresses
of certain registefs'may be combined. When this is done, each of the input registers
involved will be reset or will remain unchanged depending upon the registers which
are addressed. When more than one input register is addressed simultaneously, the
Accumulator will contain the logical OR of the contents of all of the registers which
are addressed. Only addresses which have the same most significant octal character
can be combined. To combine the addreéses of two or more input registers, add their

addresses together algebralcally, excluding the most significant character. For example

-combining the addresses of all six of the eleven bit counters res ults in an address

of 6176, Execution time is 67 psec if -a PGNS Angle—Reglster is addresged ~and 16

fsec for all other 1nput registers.

The addresses of the individual inpﬁt registefs énd iﬁput discrete bit'poéitions

are given in Table C and Table D of Appendix B.

£
Output

OUT XY - 66 13 psec " ' ol sk

The contents of the Accu@ulﬁtor'are transferred to the output register

specified by Y unless Y is the address of a discrete output. If Y is the address of

a discrete output, the discrete is set or reset as specified by Y. The addresses of
certain groups of output registers and output discretes may be combined. Only
addresses with the same most significant octal character may be combined. To combine
the addresses of two or more output registers, add their addresses together algebraica1

excluding the most significant octal digit. When combining the addresses of two or

7332.3-17
Page 1L

more discrete outputs, this procedure cannot be followed for the set addresses. When
adding the .set addresses together, the most significant four binary bits are excluded.
For example, combining the addresses of the first four discrete set outputs results

in an address of 2760. When more than one output register is addressed'simultanebusly}
each register is loaded from the bit positiong of the Accumulator which normally load
the specific register. Combinations of output discrete addresses cause each of the

discretes involved to be set or reset depending upon the four most significant binary

bits of the'combination.

The addresses of the individual output reglsters and discretes are given in

Table B and Table E of Appendix B.
3.1 INPUT REGISTERS Tt : ' .

The AEA contains 13 input registérs; They are the three fifteen-bit integrating
registers for accumulating PGNS Euler Anglés, the six eleven-bit counters for accumulati
ASA gyro and accelerometer pulses, the eighteen-bit shift register for Dowhlinﬁ Telemety
the seven and eight-bit static registers for Discrete Inputs, and the four-bit shift
register for DEDA input and output. Each of these registers is discussed separately

in the following sections wilh emphasis on its function within the Abort Guidance Syster

i

Integrator Registers

The three fifteen-bit integralor registers accumulate the PGNS Euler Angles _
©, ¥, and ¥ . The inputs to these registers are in the form of pulse train signals
which have a repetition rate which ranges from zero to 6.& kpps. There are two inputs
to each register, one for positive pulses and one for negative pulses. The registers
shift fifteen-bit positions upon the rﬁqeipt of each pulse train, serially adding or
subtracting one from 1he previous count. Shifting i1s inhibited when a register is
accessed by the Central Computer. The registers are reset only by receipt of an,
external signal. Vhen read by an input instruction, the contents of the addressed
register are loaded into bits 1 thru 15 of the Accumﬁlator. Bits 16 and 17 of the

~ AccumuTator are set to zero.

The three PGNS Euler angles, which are the IMU gimbal angles, have i'= following
characteristics: I
~ a) Scale Factor - 360/215 degrees per bit
b) Range - 15 bits :

¢) Format -. two's complement

. 7332.3-17
: ! Page 15

I
i
L)
1
|
i
]

ASh Input Counters

The six 11-bit ripple counters accumulate incremental anghlar information about
the vehicle x, y, and z axes and incremental velocity changes élong the vehicle x, y,
and z axes. The inputs to these registers are in the form of pulse train signals which
have a repetition rate which rahges from zero toléh kpps. The registers are increﬁented
by one count upon the receipt of each pulse train. When read by an input instruction,
the contents of the addressed régister are loadeé ipto bits 1 ﬁhru 11 of the Accumulator

- and the register is set to zero. Bits 12 thru 17 of the Accumhlator’are set to zero.

During any one millisecond period,lthe presence of‘éz puises represents a zero
signal; the presence of 61 pulses represents the maximum positive signal; the presence_
of 3 pulses represents the maximun negative signal. The bias of 32,000 pulses pér
second is removed by the program after sampling the input register. To prevent overflow,

the registers must be sampled at 20 msec intervals.

The nominal pulse weight of the incremental angular information is 2h16 radians/puls
The nominal pulse weight of the velocity increments is (0.1/32) feet/second/pulse.

Downlink Telemetry Register

" The Downlink Telemetry Register is an 18 bit shift register which receives data

. from the PGNé in serial form. The register retains the first 18 bits of a L0 bit

downlink telemetry word which is shifted, under external control, at a rate of 51.2 kpps.

The déta is transmitted by the PGNS at a basic rate of 50 words per second, every
fifth word being an identification (ID) word. "A stop pulse discrete is received from
the PGNS to indicate the end of a transmitted word. TolachiEVB proper synchronization
with the data transmissions, the Stop Bulse Discrete is sampled twice each 20 msec :
interval with a minimum separation between samplings of 1 msec. When the program detects

the Stop Pulse Discrete, it inputs the register. When the Downlink Telemetry'Reéister

-1s read with an input instruction, the 18 bits of the register are loaded into the

Accumulgtor and the Stop Pulse Discrete is automatically reset.

Input of data through the Downlink Telemetry Register is initiated Ey a command
via the DEDA. Upon receiving the'qomm;nd, the ‘program searches for the ID word which
signals the start of the block of data. Upon finding the correct ID word, the program
reads in and stores the block of data, skipping over every fifth word which is an ID
word. The number of words in the block of data is predetermined by system requirements.

The downlink data words consist of a word order bit, a sign bit, 14 magnitude bits, and

SRR S

7332.3-17

Page 16
two additional bits.
The PGNS dovmlink word formats are shown in Fig. 2. i
Bit No. 0 1 @ 3 & 5 6 7 8 9 10 11 12 13 14 15 16 17
1D Word GOOEFEXTEET E X X L XY T
Data Vord 1S XXXXXXXXX X X X X X ¥ 1
o G = o, Tt
Y = Not Applicable ' .
S

= Sign Bit (0 or 1)

FIG. 2 PGNS DOWNLINK WORD FORMAT

Communication With Ground Support Equipment

The Dovmlink Telemetry Register'is also used to transfer a block of computer words
from the Ground Support Equipment (GSE) to the erasable portion of the AEA Memory. The
fumbe; of 18 bit words in the block is determined by the GSE. Initiation of the

information transfer is also controlled‘by the GSE.

. The starting address, from which this block of information is to be stored, is
specified by the first word which is transmitted to the computer. The format of the
word, expressed in octal, is as follows" ‘ '

(CRESH

"Bits O thru 5 are an identification code, and blts 6 thru 17 specify the Suartlng

address.
. ' ' _
Two input discretés (GSE 1 and GSE 2) and one output discrete (GSE 5) are used to

control the transfer of information. GSE 1 is sampled periodically to determine if the
GSE is requesting a loading operation. If the discrete is present, the first word is
input from the Downlink Telemetry Register, and the starting address is extracted. The
program ¥hen sets GSE 5 to acknowledge receipt of the word, and waits for GSE 1 to be
feset. When GSE 1 is reset, the program resets GSE 5 and waits for an additional
setting of GSE 1 to indicate that the next word has been transmitted to the Downlink

ITelemetr& Register. If both GSE 1 and GSE 2 are set by the GSE, the program interprets

he associated word as the last word of the block.

7332.3-17
Page 17

DATA Entry and Display Assembly (DEDA) Register

'-fThélDEDA Register is a four bit input and output register which communicates
.aéfiéliy with the DEDA. Four bits of data are shifted in or out of the regiéter by
éiﬁéfﬁéljshifﬁ pulses at the rate of 64 kpps. A one in the serial data is
éepfésénted_by the presence of a pulse and a zero by the absence of a pulsé. Four -

. bits of information are received serially from the DEDA by setting the DEDA-Shift-In
Discrete Output. Four bits of information are transmitted serially to the DEDA by
setting the DEDA-Shift-Out Discrete Output. Both of these discretes are reset

| automatically. A minimum period of 80 psec must be allowed between settings of these
discretes, Bits 1 thru 4 of the DEDA Register are transferred to bits 1 thru 4 of

the Accumulator by addressing the DEDA Register with an input instruction. Addressing.
the DEDA Register ﬁiph an output instruction transfers bits 14 thru 17 of the

. Accumalator to bits 1 thru 4 of the DEDA Register. '

Information transfers to and from the DEDA Registér ére controlled by the
Astronaut via the DEDA. The DEDA provides a means of transmitting m&de commands,
instructions, and data to the AEA, and read-out of data stored in the AEA Memory.
512'memory locations in the AEA may be addressed by the DEDA for read-out or storégé
of data. The DEDA keyboard consists of ten decimal digit pushbuttons, two sign ”
pushbuttons,, and four control pushbuttons. The displays consists of a three digit
address display, a sign plus five digit data display, and an operator error display.
The four control pushbuttons, CLEAR, ENTER, READQUT, and HOLD, apply discretes of
fhe same name to the AFEA. | ‘

DEDA operation is initiated by depression of the CLEAR pushbutton. When the
program determines that the Clear Discgqte has been set, it prepares for a new
operation and then checks for the presence of the Readout or Enter Discrete.

Data Readout

PO

To initiate readout of a computcf memory location, a three digit octal address
is entered followed by depression of the READOUT pushbutton. Upon entry of each
~ digit, it appears on the address display. When the program determines that the .
Readout Discrete has been set, it inputs, in four bit serial groups, the 9 bits of
address information. The program then transmits to the DEDA, in four bit serial groups,
the contents of the addressed memory location along with the address information. This
information appears on the DEDA display. The scaling of the transmitted information

is determined by its address as is its data format, which is either octal or binary code:

7332.3-17
Page 18

decimal. The contents of the specified location are transmitted at half second
intervals unless the Hold discrete is received from the DEDA. If the Hold Discrete is
received, the program étops transmitting data. Transmission is resumed from the same
address if the Readout Discrete is again received. Data tran§mission is terminated

following receipt of the Clear Discrete.

Data Entry

To enter data, a three digit address, a sign, and five digits of data are entered

" via the keyboard, followed by depression of the Enter pushbutton. When the program

detects the Enter Discrete, it inputs, in four bit serial groups, 36 bits of address
and data information. Depending on the address specified, the enteriﬁg information may

be a mode command, an instruction, or input data. Its address also specifies the scalil

of the data and vhether it is to be treated as octal or binary coded decimal informatio

Operator Errors

If an operator ervor exists at the time the ENTER or READOUT pushbutton is depress
subssquent four bit data transmissions from the DEDA will contain all ones. In normal

operation no four bit transmission will contain all ones.

-
-

Data Format

kL

‘ Data transmissions in either direction are in four bit groups beginning at the mos
significant end of the 36 bit word shown in Figure 3. Fach 4 bit group is transmitted

serially, most significant bit first.

[12
OXXX[oXXX|oX XX
" ADDRESS
-;:o
13 16 17 : 36 . :
00O XPEXXX[#* X XX[*XXX[¥XXX[*¥XXX = e
SIGN DATA
0 - Zero
X = One or Zero _ .
% ~ One or Zero if format is BCD, Zero if format is octal

FIG. 3 36 BIT DEDA WORD

——

g

7332.3-17
Page g

2+ Discrete Inputs

The discrete inpubs are grouped into two words, Discrete Word One, which
represents eight input discretes, and Word Two, which represents seven input
discretes. All but the Stop Pulse discretes are buffered switch closures to
computer ground. The Stop Pulse input lines set flip-flops in the computer.

When addressed by an input instruction, the Specified discrete word is set into
the accumulator. The individual discretes occupy the bit positions shown in
Table D of Appendix B, a zero representing the true state of the discrete. Unused

s

bit positions of the Accumulator are set to zero.

Most of the individual discrete inputs are associated with data transfers

via a particular register. The following list shows this association:

- Dovmlink Telemetry Register Dovnlink Telemstry Stop
- GSE1 |

Output Telemetry Stop

| Cutput Telemetr& Register
' - GSE 3 e
DEDA Register . DEDA Glear | = =
_ ~ DEDA Hold
. — DEDA Enter
=~ DEDA Readout

Information on the use of these discretes may be found under the discussions

of the associated registers. o ~

]

Six discrete inpuls are interrogated by the program to determine the system
status. They are: Fcllowup, Automatic, Abort, Abort Stage, Descent Engine On,
and Aséent Engine On. The first four of these are Astronaut controls. The Descent
Engine On Discrete and the Ascent Engine On Discrete are applied to the computer

vhen the Descent Engine or the Ascent Engine,.respectiVely, are firing.

. 7332.3-17
Page 20

3.2 -OUTPUT REGISTERS

- The AEA contains 13 output registers. They are the 10 static D/A converter
registers used for displays and attitude control, the 14 bit shift register for
controlling the altitude and altitude-rate displays, the 24 bit shift register for
output telemetry, and the 4 bit shift register for communication with the Data Entry
and Display Assembly. In addltlon, there are 11 discrete outputs. Each output‘
register and discrete is discussed separately in the following paragraphs w1tn

emphasis on its use within the Abort Guidance System.

-
-

-

Total Attitude Display Registers

The six Total Altitude Display Registers are 10 bit static reglsters vhich
control D/A converters. They are used to output the sines and cosines of the Euler
angles a, B, and SP, for control of the Total Attitude Display. When addressed with
an oﬁtput instruction, the specific register is loaded from bits O thru 9 of the
Accunulator. The computed data must be limited before outputting, and has fhe

following characteristics:.

a) Output Rate - 25 times per second. _
b) Range - 9 bits plus sign. ‘ Al - i >
¢) Scale Factor - most 51gn1flcant bit equals 1/2

~d) Format - Sign plus magnitude with a p051t1ve sign represented by a zero.

Figure H in Appendix B shows the order of rotation of the Euler Angles a, B,
and 7", which'relate the vehicle axes to the inertial’ axes with the gimbal
sequence of the attitude display indicator.

Attitude Error Registers ‘.

The three Attitude Error Registers aré 10 bit static registers which control
D/A converters. They are used to output the rotational attitude errors abcut.the
three body axes for control of the vehicle and for display. When addressed with an
output instruction, the specific register is loaded from bits O thru 9 of the
Accumulator. The computed data must be limited before outputting and has the

following characteristics:

a) Output Rate - 25 times per second.
"b) Computatlon Delay -~ Maximum of 10 msec between sampling of gyro inputs
and the subsequent output of the attitude errors.

4 |

7332.3-17
Page 21
¢) Range - 9 bits plus sign.

d) Scale Factor - Least significant bit equals Qf5113269 X 10_3 radians.
e) Format - .Sign magnitude with a positive sign represented by a zero. '

Iateral Velocity Register

The Lateral Yelbcity Register is a 9 bit static register which controls a D/A
converter. It is used to output the lateral velocity, that velocity along the Y
body axis, for tﬁe Navigation Displays. When addressed with an output instruction, ths
registér is loaded from bits O thru 8 of the Accumul&tor, The ddmputed data must be
limited before outputting, and has the following characteristics: :

2) Minimum Output Rate - 5 times per second.
" b) Range - 8 bits plus sign. '
¢) Scale Factor - Most significant bit equals 100 ft/séc.
d) Format f'Sign magnitude with a positive sign fepresented by a zero.

-

Altitude -~ Altitude Rate Register

The Altitude - Altitude Rate Register is a 15 bit output shift register which
provides both serial data and shift pulées to the external equipment. The register is
used to output both altitude and altitude rate to the Navigation Displays and, therefor
has two output data lines and two outpul shift pulse lines. A one in the output data
is represented by a pulse and.a zero by the absence of a pulse. Fifteen bits of data
are output, most significant bit first, with the shift pulses, at a rate of 64 kpps.
Data output from this register is initiated by loading it from bits 0 thru 14 of the

Accumlator with an output instruction. Before loading the register, the desired

. output lines must be selected with diScrete outputs. If output to the Altitude Displa;

is desired, the Altitude Rate Discrete must be reset and the Altitude Discrete set,

‘prior to loading the register. If output to the Altitude Rate display is desired,

the discrete output settings must be reversed. If both discretes are set, output on
both sels of lines will occur. Successive oulputs to the register must be spaced by

a2 minimum of 270 psec to allow the previous data to be shifted out,

The computed data must be limited before it is output and has the following

characteristics:
Altitude

a) Minimum Output Rate - 5 times per second.

| 7332.3-17
nge 22

b) Range - 15 blts _ :
_¢) Scale Factor - Least s:LgnlfJ.cant blt equals 2. 34 feet
d) Format - Magnltude ?

- Altitude Rate
“a) Minimun Output Rate - 5 times per second.
b) Range. - 14 bitélplus gign. -
¢) Scale Factor - Teast significant bit equals 0.5 ft/sec.
d) Format - Sign magnltude with a p031t1ve sign represented by a one.

Page 23

Output Telcmetrv Register

The Output Telemetry Reglster is a 24 bit shift reglster'which is used to output
serial telemetry data. A one in the output data is represented by a pulse and a zero
by the absence of a pulse. The 2, bits of data are shifted fron the register, most
significant bit first, by externally supplied shift pulses at a rate of 51.2 kpps. As
the register is shifted, zeros are shifted into the least significant bit of the
register., When the external equipment has supplied 24 shift pulses it sends a stop
pulse which sets the butput Telemetry Stop Discrete. The 24 ?hift pulses, followed
by the stop pulse, are sent to the computer at 20 msec intervﬁls. '

The Output Telemetry Register is loaded in two 0peratioﬁs by execution of two
different output instructions. An output instruction with 6200 in.the address field

-_ resets the register and the Stop Discrete, and loads bits O thru 17 of the register

from the Accumulator. An output instruction with 6100 in the address fiecld loads

‘bits 6 thru 23 of the register with the logical OR of the Accumulator and bits 6 thru
.23 of the register. ' -

The Output Telemetry Stop Discrete indicates that the previous word has been
shifted out of the Output Telemetry Reglster. To assure proper synchronization wﬂth
the external equipment, it is sampled twice in a 20 msec period with a minimum v
interval between the two samplings of 1 msec. When the program detects the. .prescnce
of this discrete, it loads the Uutput Telemetry Register w1th the next word to be
output, thereby resettlng the discrete. . '

GSE Communication

The Output Teiemetry Register, in conjunction witﬁ discrete input GSE 3, and’
discrete outputs GSE 4 and GSE 6, can bé used to commumicate with the Ground
Support Equipment (GéE). When the GSE receives discrete output GSE 4, it unloads
the Output Telemetry Register by transmitting 18 shift pulses to the AEA, theregy
receiving the contents of the 18 most significant bits of the Output Telemetry Register,
The GSE acknowledges receipt of the information by applying discrete input GSE 3 to
the AEA., VWhen the program detects this discréte, it resets discrete output GSE 4 and

S

7332.3~17
Page 24

walts for dlscrete 1nput GSE 3 to be reset. When discrete input GSE 3 is reset, the
program. 1oads the Outpuu Telemetry Reglster with the next word and then sets discrete
output GS“ h The program indicates that the current word is fhe last word of the
block by settlng discrete output GSE 6 in cclnc1dence with the usual Settlng of

dlscrete output GSE h

DEDA Regﬂster

i ok diséussion of this register will be found.in the section describing input

registers. “ BT = bt e

Discrete Outputs

The AEA contains 11 discrete output flip-flops. When addressed by-an output

instructloﬁ the 1nd1v1dual dlscrete 15 set or reset dependlng upon the address. The

two DEDA dlscrete outputs cannot be reset by executlon of an output 1nstructlon but
are automatically reset. qut of the 1nd1v1dual discrele outputs are associated
with'data transfers via a particular registgr._ The following list shows this aséoéiati
Mtitude - Altitude Rate Register — Altitude - :
- | - Altitude Rate
DEDA Register " . . DEDA Shift In

. - DEDA Shift Out 5 *
Output Telemetry'ﬁegister "~ GSE 4 . -
e "~ GSE 6
Dovmlink Telemetry Registep - GSE 5

Information on the use of these discretes may be found under the discussions

of the associated registers. — R

: o

The Test Mode Failure Discrete Output is automatically set if a Delay instruction
is not being executed when the computer issues the 20 msec timing pulse. It is also
used to indicate the detection of a fault by the self test program and -can be set

or reset by addressing it with an output 1ns truction.

The Ascent Engine On and Descent Frngine On discrete outputs control the main
engines when the Abort Guidance System is in control of the vehicle. An Ascent
Engine On Command is issued by setting the Ascent Engine On Discrete and resetting the
Descent Engine On Discrete. A Descent Engine On Command is issued by reversing the
discrete settings. '

Carry Inhibit Discrete Qutput

The Ripple Carry Inhibit Discrete Output is used by self'test proérams to
provide a more complete check of the computer adder. Vhen set, it inhibits the normal

a : r

|

Page 25

path of carry propagation, thereby providing a method of testing the carry by-pass.

logic. Thie method of test is necessary because, under nor#al operating Conditioqq'

" the carry by-pass 1oglc is redundant, and therefore, its. fallure to produce a valid

carry wogld go undetected. f

The carry by-pass logic operates as foliows: If eitherror both of the

-operands of each stage within the by-passed are ones, and if & carry'into the

least significant stage of the by—passed section is present, a carry is 1mmed1ately

- generated out of the most significant stage of the bprassed section.

1 b

The Carry Inhibit Discrete, when set, inhibits carrlee out of the most
significant stage of a by-passed section only when they are caused by a carry into
this stage from the next most significant stage. For example. If both operands of
the next most significani stage of a by-passed section are ones, and if one of the
ooerands of the most significant stage is a one, a carrylout of the most sigﬁifioant
stage is not produced if the Carry Inhibit Discrete is set, unless the required
conditions are present for a carry to be generated by the by-pass logic. However,
if both operanos of the most significant stage of a by-passed section are ones, a
carry out of this stage is generated regardless of the state of the Carry Inhibit
Discrete,

Figure J, shows the carry by-pass system. _ 2 e -'1,

i
4 :

BY-PASS I.OGIC _ |<— ~——]_BY-PASS LOGICF

~

6 &7(18(——(9}—10——[—‘]@12](—13&14%‘15\ 16 | 17

BY-PASS LOGIC

DL

FIG. h .CARRY BY-PASS SYSTEM

7
\n
3

To test the ability of a sectlon of by-pass logic to generate & carry, the

following conditions are necessary
1) Carry Inhibit Discrete Set
2) A carry out of the stage preceding least 31gn1flcant utage of by—passed

e m e g S

7332.3-17
Page 26

'3) One, but not both, of the operands of the most significant stage of the

.by-passed section must be a one.

4.0 START-UP AND SHUT DOWN PROCEDURES

This section deals with automatic and programmed start;up and shut down. procedur
4.1 AUTOMATIC START-UP SEQUENCE

.When the computer is switched to the OPFRATE mode, power is applied in a

predetermined sequence which prevents loss of data from temporary storage. When the

voltages are at their proper levels, initial conditions are established such that the

computer obtains its first instruction from memory location 60008. If:this'memory
location does not contain an unconditional transfer (TRA, TSQ, or DLY), the next
instruction will be taken from memory location 00018. The automatic initialization

sequence also resets the overflow indicator and the Engine On Diécrete Output.
4.2 PROGRAMMED INITIALIZATION

When power is applied to the AEA, most of the registers and discretes in the
Input/Output Section assume a random state. To prevent random outputs from the

‘computer, and for proper execution of programs, it is necessary to initialize certair

of these registers and discretes,

Before any instruction which involves use of the adder can be executed, the
Carry Inhibit Discrete must be reset.., All of the discrete outputs and the Chrry
Inhibit Discrete may be reset by executing iwo output instructions, one with BOSC in
the address field, and one with 7077 in the address field.

The Dovmlink Telemetry Register and the DEDA Register must be initialized by

inputting each of these registers. .

The permanent memory must be initialized by accessing each of.its locations

.]
at least one time before executing programs from it. Under normal conditions,

-initialization of the permanent memory is necessary only the first time it is

operated. However, for maximum protection against loss of information, this

initialization procedure should be pe}formed as part of the start-up sequence.

4.3 " AUTOMATIC SHUT DOWN SEQUENCE

When the power supply input voltage drops below the required level, the compute:
shuts down operation systematically and restarts Operatioh, as described in
Section 4.1, vhen the.required voltage is restored. To prevent loss of information
from temporary storage when shutting down, the computer does not halt operation when

& memory cycle is in process.

7332.3-17
- Page 27

- ABBREVIATIONS AND SYMBOLS USED IN THE TEXT

‘ABBREVIATIONS
AEA ~ Abort Electronic Assembly
" AGS ~ Abort Guidance System
ASA ~- Abort Sensor Assembly
D/A - Digital to Analog _
DEDA ~ Data Entry and Display Assembly
GSE "~ Ground Support Equipment
ID ~ Identification
IMU - Inertial Measurements Unit
LEM o= Iunar Excursion Module

OP CODE -~ Operation Code .
PGNS - Primary Guidance and Navigation System

-

-

- SYMBOLS

X . = Represents a memory location or the address .
field of an instruction.

N | - Represents the address field of an instruction.
AO, A, ... A7 - Individual bit positions in the Accumulator.
Q0, Ql, ... Q17 =~ Individual bit positions in the Q Register.

Y0, Y1, ... Y17 - Jndividual bit positions of a memory location.

(228.0=L{

APPENDIX A

LEM ASSEMBLY PROGRAM R, Ry

i

7332.3-17
Page i |

APPENDIX A

This appendix provides all of tﬂe information
necessary for the use of the LEM Assembly Program‘
(LEMAP), a program which assembles symbolically
coded programs into binary information for filling
~the AEA memory. ’ =

M

7332.3-17
Page ii

~7" CONTENTS

i | _ _ -~ Page No.
3. 7 pemepmorvey’ T T e L30T, T dreor gy

S, o LA TANGaGE - T T T T s
ST, Basic Definitions = " A3
:Syﬁboiic Card Format g we C A;h
Symbols - e C I St &
‘The Location Counter Gt ;‘_ Rl
Relative Expressions ' 3 = K;E
‘Use of "¥" as a Symbol PR - A:?
© TII. DESCRIPTION OF LEMAP OPERATIONS . . A
| _Classification of LEMAP Operations R %
R Péeudo—Operatidns (s N 5. ' A-T7
ORG R o, " g e G
BSS e e T R M £-9
" BES N T g, e T A
SYN, EQU ' S |
St L T R A-12
- -"DEC B B A-12
-0CT - e S _ A-15
END B S T
IV. ERROR INDICATION “ : - A6
V. DECK SET UP AND PRODUCTION PROCEDURES IR A
Original Compilation Using LEMAP R 5 1
loading the Compressed Deck without MODS T
Loading the Compressed Deck with MODS . A8
Sequence Number in CC 65-71 . A-18
Use of PSeudo—Opération ALTER - A-20
Control Cards . ' _ A-22

Notes A-23

7332.3-17
i . " Page A-1
X INTRODUCTION I

The LEM Assembly Program (IEMAP) consists of two éub—pérts:_ the assembler

and a}Fard handling routine,) "

The card handling routine used by LEMAP is SCUFFE("Symbolic Compression
6f Unspecified Free Fields"). SCUFF provides the capability of compressing
an original symbolic deck, of reading a compressed deck; and of reading a
compressed deck and introducing symbolic modifications to it. Four general
typés of runs are possible: g
1. Compression of a symbolic deck. : ;

2. Modification and loading of a compressed deck.
3. The punching of a new compressed deck from a modified deck;’-

L. Punching of a symbolic deck from a compressed deck.

On each run which includes punching, LEMAP will provide a listing of
the new deck, with a sequence number associated with each card. LEMAP may also,

by use of a LIST card, provide a listing of an unmodified compresscd deck in a

non-punch run.

The compressed deck contains, in binary form, the BCI equivalent of the
information contained on the original symbolic cards. The compressed deck is
thus merely a more compact and manageable means of handling totally symbolic
information. It provides essentially the same degree of flexibility of

modification and rearrangement és a symbolic deck.

The Assembler reduires two passes. On the first pass the following thin

(not necessarily in the order given) are done:

1. Whenever an ORG pseudo-operation is enéountered, the location count:s

is set to the value appearing in the variable field (for an explanation of the

. location counter, see Section D in Chapter 2; also for more detailed informati

about pseudo~opsrations, see Section B in Chapter 3). " If the location counter

is not set to the desired value by the programmer by using an ORG as the first

- instruction of his program, the location counter will start with the value 00C

i.e., the first instruction of the program which requires a location in the Il

memory will be assigned to location 0000.

2. VWhenever a LEM machine operation is encountered, the value of the

location counter is increased by one, thus assigning an absolute location to

" LEM machine operation.

| 7332.3-17
fage A-2

il
i
t

3 Whenever a data generatlng pSeudohoperatlon, l.80; QCT or DFC
is encountered the 1ocat10n is increased by the number of wo}ds generated
by the OC{ or DmC pseudo-operation, thus assigning an absolute location for
each data word generated by the DEC and OCT pseudo-~ opﬂratlons.

L. Whenever a block storage allocating_pseudo—ope%atibn;'iﬂel, BSS or
BES, is encountered the location counter is increased by the number appearing

‘in the variable field, thus assigning an absolute location to this block of

storage. : 29 B e ¥ e o
5. Whenever a location symbol is encountered, regard%eés of whether it
is associated with a IEM machine operation or a pseudo-operation, it is sﬁpred
away in the dictionary together with the current value of the location coﬁhter
except for the pseudo operatlons EQU, SYN, BES and DEFINE (for a detailed

explanatlon of what is done for these pseudo-operations see Section B in Chapter 3).

_6. A tape (logical unlt SYSBUL) contalnlng the BCI image of all the
symbol1c cards is written. This tape is then read during the second pass of tbe

-

Assgmbler.

- o

e It }equeéted; a‘compressed deck is punched.
On the second pass, the following things (not necessarily in the order
given) are done: ; ' -
. 1. All LEM machine operations are converted to the bit patterns used by-
the machine, i.e., the symbolic operation codes are replaced by the actual bit
patterns used by the machine. The variable field of these operations is

evaluated and converted to the bit patterns used by the machine. The assembled
IEM word is then stored in the location set aside for it in the first pass.

2. The variable fields of all data generating pseudo-operations are .
converted to the actual bit patterns used by the machine and these data words

are stored in the locations set aside for them in the first pass.

-,

3. If a listing is requested, the Assembler lists the LEM location and
the binary bit patterns generated together with the corresponding symbolic input
cards. The LEM locations and generated bit patterns are printed as octal '

" characters. For more information the reader is advised to examine the appended

listing.
L. If requested, by-a REFER card, a symbol reference table is printed.
This symbol reference table gives the symbol name and its sequence number and

7332.3-17

Page A-3
lists all the sequence numbers and mnemonics of instructions that refer to a
given symbol. In addition, a "$" will be printed beside the mnemonic if the

given symbol is referenced in a relative expression and an "#" will be printed

if the tag field (index register field) is non-blank.

5. If requested by a CPLPA or PA card, an absolute deck of the LEM
program, which is to be used by the LEM Interpretlve Computer Simulation Program

is punched.

6. Ir requested by a GO card, the guldance program will be left in
7094 core and ‘the ICS will be read in. £ ’ g

II. THE LEMAP LANGUAGE

T LR

N

A. Basic Definitions

The IFMAP (IEM Assembly Program) language is made up of operation

codes, symbols and integers which are arranged into an ordered series to form

the symbolic instructions which the Assembler can recognize.

An Operation Code, which appears in the operation field of a symbolic

instruction, is any one of the fixed sgt of mnemonic alphabetié.codes which
make up the vocabulary of the Assembler. These include all the basic LEM Comput.
(Abort Electronic Assembly) operations as well as the LEMAP pseudo-operations

which are described in Chapter 3.

A Symbol is a name invented by the programmer which may appear
either in the location field or the variable field of a symbolic instruction.
In fact, placing a symbol in the location field of an instructiocn is the bnly
way of defining a symbol, (Seg_sectlon on symbols in this chapter for a further

- »

discussion of .symbols.)

An Integer is a string of numeric characters which will be interprete
as decimal (base 10) or octal (base 8), dependiﬁg on the number of digits contair
in the integer. An integer consisting of 3 or less digits will be interpreted
as decimal and an integer consisting of L, or more digits will be interpreted as
octal with the following exceptions: (1) all integers in the variable field of
the OCT, DEFINE and ORG pseudo-operations will always be interpreted as octal,
and (2) all integers in the variable field of the psaudo—operablon DEC will be

interpreted as decimal.

frey

7332.3-17
Page A-L

B. Symbolic Card Format

A symbolic instruction consists of four major fields: location field,

- -operation field, variable field, and comment field.

A program written in the IEMAP language is a succession of symbolic

instructions punched one per card, in the following Symbolic Card Format.

The following are selectively punched or left blank.

: 1. location Field (fixed length) occupies columns 1-6. Contains
a location symbol or may be left blank. Column 7 is always blank.

2. .Operation Field (fixed length) begins iﬁ column 8 and gﬁds in

or before column 14. It contains a mneronic opération code. X

3. The Variable Field (veriable length). For LEM computer operations

the variable field in its most general form consists of two subfields separated
by a comma: address, tag. (Note that this is the reverse of the internal machin

order, which is tag, address.)

In the following example:

—_—

TIX ALPHA, 1 -

LOGATION “ op VARIABLE FIELD

_ the operation TIX has an address of ALPHA and a tag of 1. (Note
that 1 or O is the only legal tag because the LEM Computer has only one index

register.)

" One or more blank columns separate the variable field from the
operation field. The variablegfield may begin in or following column 12, but
in no case later than column 16, and it must end prior to column 64. The
‘variable field cannot contain any blanks, since a blank signals its end., Hence,
there may not be any blanks betweeh subfields or within any subfield of the

variable field.

Any valid expression may éppear in any subfield of the variable
field and will be evaluated according to the rules of expressions, as stated in
Section E, except that only the rightmost bit of the tag subfield will be used,

i.,e., the tag subfield expression will be reduced modulo 2.

e

7332.3-17
Page A-5

Certain pseudo-operations (non-LEM machine operations) in the
Assembler which will be discussed in Chapter 3 require variable fields not of

the type discussed in this section. The rules for specifying the variable

~ field depend on the given pseudo-operation,

4. The Comment Field (variable length) begins with the first non-
blank character following the blank character which terminates the variable
field. All punching to the right of such a blank is considered tc be a comment

and has no effect on the processing of the source program. The comments are

of course retained within the compressed deck.

C. Symbols . ‘ _gh
A symbol (also referred to by the terms "location symbol" and :
"gymbolic address") will consist of a string of one to six hon-blank characters,

at least one of which is non-numeric, and none of which is among the following

set of seven characters:

+ (plus) | $ (dollar sign)
- (mipus)) = (qual sign)
/ (slash) | » (comma) : 5 b

. % (asterisk (see special use of "¥!" as a symbol in this cHapter))
For example,
A, A1, 12345X, (1), SQF2, and 12. are all legal symbols.

Every symbol used in the program must be defined exactly once. An
error will be indicaled by the.Assembler if any symbol is defined more or less
than once. It is gererally desirable to use a location symbol for an instruction:
only if this symbol is needed to refef’to that instruction from elsewhere in the
program. The reason-for this is that the Assembler, in brocessing the source
program, keeps in core storage a "dictionary" (or symbol table) of location '
symbols, and there is a limit though reasonably large, as to the amount of a core

storage vhich can be allotted for this purpose (2048 symbols at present).

" D. The Iocation Counter -

_ Each entry in the dictionary compiled by the Assgmbly contains a
location symbol and the "value" of the location symbol. This value is an

absolute binary number denoting an actual machine cell in the LEM computer. In

7332.3-17
Page A-6'

-order that the Assembler may assign the proper value to each location symbol

used in the source progrém, it uses a device called the "location counter", This
can be set initially to an arbitrary value by the source program (see "ORG" under
fSeudo—Operations, Chapter 3). Each time a LEM Computerlinstruction is encountered,
the location counter is increased by one. (Certain pseudo~operations may result

in no increasé or an increase of more than one. For example, "END" and "EQU"

have no effect on the location éounter, whereas pseudo-operations such as "BSS"

and "BES" may change the value of the Jocation counter by more than one.)

Whenever a locationlsymboi is associated with the.instruction being processed,

an entry is made in the dictionary, taking the current value in the iocation counte

for the value of the symbol,

E. Relative Expressions

A relative expression is the sum or difference of two dr more symbols

or constants. Consider the following coding:

LOGATION oP VARTABLE, FIELD
- ALPHA TRA . ° BETA ® B b are
cLA GAMA . ;
. | e suB. . L(1) 2
STGAM 810 GAMMA
I C DELTA

r

~ Suppose the programmer—ﬁishes to transfer control to the instruction

"CLA GAMMA". He may then write:

LOCATION oP VARIABLE FIELD

" TRA ALPHA+L

or alternately
he may write:

- TRA . STGAM-2

Thus, he may refer to an unnamed instruction, "N'", by using the symbol
of an instruction somewhere in the vicinity of "N" and adding or subtracting a&n

integer. The combination "ALPHA+1" or "STGAM~2" is called a relative expression.

7332.3-17
Page A-7

F. The Use of "#!" as a Symbol

The asterisk may be used as a symbcl. When employed in this way, it
is regarded as a symbol whose value is the current value of the location counter.

For example, the instruction,

LOCATION OP _ VARIABIE FIELD
ALPHA TRA #*52

is equivalent to _ _

ALPHA - TRA _ALPHA+2

and represents a transfer to the second 1o¢ation-following the TRA instruction.

With this application of "*“:an a program, one can avoid introducing supérfluous

P

symbols. _
III. DESCRIPTION OF LEMAP OPERATIONS s ¢

A. Classification of LEMAP Operations

The LEMAP language includes all LEM (Abort Electronic Assembly) machine

operations, and a group'of pseudo-operations (non-machine operations).

A IEM machine operation generates an 18-bit binary machine word.
The rules for specifying the location field and the variable field of a machine
operation have already been discussed in Chapter II under Symbolic Card Format.

Unlike machine operations, some pseudo-operations may genefate more
than one IEM machine word and others may generate no words at all. All of the
pseudo-operations of the Assembler will be described in detail in the remainder

of this Chapter. ’

B. Pseudo-Operations B

Tocation Counter . Control

The following three pseudo-operations, ORG, BSS and BES are used

principally to control the contents of the location counter.

(1) orRG ("Origin")

If the programmer wishes the machine location of the first word
in his program to be, say, (1000)8, he may simply start his source program with

the pseudo-operation:

- LOCATION . oP VARIABLE FIELD
ORG 2 1000

1332.3-17
Page A-8

Né word is generated in the object program by this instruct
but the effect is to direct the assembler to set the 1oca£ion counter to t.
éalue (1000)8. _If the instru;tion immediately followingl“ORG" is "ALPHA C:
BETA", then the symbol "ALPHAY" will receive the value (1000)8 in the dictic
of location symbols, and the binary machine word vhich eventually results f
"(‘,LJ!L-B}"J'I‘NT will-be ear-marked for location (1000)8.

_MNote that the variable field of ORG consists of a single
subfield and if more than one subfield is written, only the first will be
used. The remaining subfields will be ignored and flagged as an error on th

v

output listing.

. If there is a symbol in the location field of an ORG instructi

it will be assigned the value in the variable field. Notice that, in the exa

LOCATION 0P VARIABLE FIELD
~ ALPHA " ORG - 1000
CLA BETA

The same effect would have been obtained by writing:

K - LOCATION _ OP VARIABLE FIELD
' . R 1000
ATPHA CLA BETA

On the other hand, if the programmer were to write:

LOCATTON OP VARTABIE FIELD
¥ :

ALPHA .ORG .. 1000

GAMMA CLA ~ BETA - 7

then "ALPHA" and "GAMMA" would both be entered into the dictionary
each with the associated value of (1000)8. (Another way of achieving such a
Usynonym" effect will be seen later in the pseudo-operations "SYN" and “EQU“).

ORG instructions may appear anywhere in a program, not necessarily
in the beginning. In fact, the Assembler does not require the presence of an ORG

at the beginning, or anywhere within the source program.

Gl

1of the block. Consider the following examples

| 7332.3-17
Page A-9

If the programmer decides not to set the initial value of the

“ocation counter with ORG, the Assembler will assume the intent is to be begin

the program at location (OOOO)8 B3 wr

Restriction: . The varlable field of an ORG instruction will

always be interpretéd as an octal integer and therefore should not contain

any symbols or dec1mal 1ntegers

(2) BSS ("Block Started bv Svmbol")

The BSS pseudo- 0peratlon is used to réserve a block of one or
more words of memory within an object program for such purposes as "erasable

storage". The length of the block reserved is given in the variable field ‘and

“if there is a symbol in the location field, this symbol refers to the first cell

LOGATION ~ op VARIABLE FIELD
| B 50

When the Assembler encounters this 1nstruct10n it will increase

the 1ocatlon counter by (50%u).

: LOCATION oP VARIABLE FIELD
* ALPHA _ ocT U0 '
s BETA _..... .BSS L
GAI@IA 0ot 1677

SuppOse the symbol ALPHA has been a551gned to location 1001.

Then the symbol BETA will be assagned to location 1002, and the symbol GAMMA

will be assigned to location 1006, 1eav1ng four locations (1002, 1003, 1004 and
1005) for the block BETA. : S _ ; ;

(3) BES ("Block Ended by Symbol")

This pseudo-operation has exactly the same propertﬁes as "BS3"
except that when it is used with a location symbol, that symbol is associated
with the first word following the reserved block. In the example,

LOCATION oP " VARIABIE FIELD
ALPHA _ . BES 50
CLA BETA

7332.3-17
Page A-10

the symbol "ALPHA" gets associated w1th the instruction "CLA BETA". The

' programmer could have equivalently written:

LOCATION - op ' VARIABIE FIEID
. | BES .50
ALPHA CIA BETA

On the other hand, if the programmer writes:

 LOGATION P VARIABIE FIEID
e MR - S
GAMMA CLA BETA

[then “ALPHA" and "GAMMA" would both be entered into the dictionary, each with
the assoc1ated value of the location counter at the time that the assembler

'proceSSes the CLA instructlon

The effect of "ALPHA BES 50“ is, then, to~ 1ncrease the

/// location counter by (50)10, and then to enter ALPHA into the dlctlonary with the
= resulting value in the location counter. ;

in the location field, If the location field had been left blank, BES would be

I
| = . The ,examples given illustrate the use of BES with a symbol
|

|

' exactly the same as BSS.

Pseudo-Operations for Relating §ymbols-

SYN, EQU and DEFINE are three pseudo-operations which serve the purely
logical function of relating two or more symbols with respect to their value, or

of simply assigning a value to a,symbol.

(L) SYN, EQU ("Synonymous", . 'iEquals")

1]

In the LEMAP language, SYN and EQU are identical and may be

used interchangeably. Hence, this discussion applies to both pseudo-operations.

We have seen that symbols may be defined by appearing in the
location field of an instruction, and the symbol is assigned the current value of
the location counter. Unlike ORG, BSS and BES, the pseudo-operations SYN and ‘EQU

do not affect the value of the location counter, but define a location symbol as

;-- being equivalent to the value of the expression in the variable field. Morecover,

7332.3-17
Page A-11

~a SYIN (or EQU) instruction is meaningless if it does not'have a location Symh51_
-The variable field of a SYN or EQU instruction should contain only one subfielq,

"and this may be a symbol, an integer or an arithmetic expression.

- _Cohsider the foilowing examples:

o - LOCATION oP . VARIABIE FIEID
S et B CIA ALPHA
S s e e fi L B ' BETA

‘ ' At P - oA _ GAMMA

. g The 1nstruct10n e SYN NEG" states that ghe value of the
ymbol “NEG" should be assigned to the symbol "XI" The SYN instruction could hz

been placed anywhere in the program.

"LOCATION op | VARIABLE FIELD
ALPHA - SN BETA-GAMMA+17

The effect éf_the above instruction is to enter "ALPHA" in

the diétionarw'with‘the value of the arithmetic expression in the variable field.

LOCATION 0oP VARIABLE FIELD
1LS SHIFT
- SHIFT ‘ SYN . 35

7332.3-17
Page A-12

!‘; . +
i In this example, the variable fleld expr6351an is compl

nuneric, and gives the value (35)10 to the symbol ”SH;F?”

_/ (5) DEFINE ("0Octal Equals")

The pseudo-operation DEFINE is similar to SYN and EQU in
the sense that the associated location symbol is defined as being equivalent
the expression in the variable field, except that the varlable field is alwa‘

1nterpreted as ‘an octal integer. v ;

: DEFINE is a useful pseudo-operatlon for defining symbols
which are most meaningful vhen expressed in octal, such as an addresu 1n LEM

" Data Generating Pseudo~0perat10ns

The ILEMAP language provides two pseudo-operations (DEC, OCT)

* which may be used to introduce words of data (often referred to as "constants"
into a program. These data words will be converted into binary by the Assembl
and are considered as much a part of -the object program as the binary instruct:

Negative data will be converted to 2's complement.

(6) DEC ("Decimal Data')

The DEC pseudo-operation is used to introduce into a progra
words of data expressed as decimal numbers. A symbol or blank may appear in th
Jocation field. One or more subfields, each containing a decimal number, appesa:
the variable field. ' i '

If there is a symbol in the location field, this symbol is
. entered into the dictionary with the current value of the location counter so i

the first decimal number in the‘%ériable field may be referred to by this symbol

The subfields of the variable field are separated by commas.
The number of subfields permissible is limited only by the restrictions that the
last subfield must be terminated by a blank, and that the entire instruction must
. fit on one symbolic card,li.e., the variable field must end in or before card

column 63.

Each subfield is coﬁvarted to a Einary word. These words are
assigned to successively higher storage locations as the variable field is
processed from left to right. Conseculive commas in the variable field, indicatin

a null subfield, cause the number.zero to be generated; as does a comma followed L,

~ . a blank. Hence, the number of words generated is always one more than the number

of commas in the variable field.

7332.3-17
Page A-13

; Every decimal number must be represented by a string of
characters from the following set of 15 characters: 0,1, 2, 3, 4, 5, 6, 7,
8, 9 (numeric characters), + (plus sign), - (minus sign), . (decimal point),

E (exponent), and B (binary scaling).
‘Two types of decimal numbers can be used:

a) Infegers (whole numbers)
'b) Fixed Point numbers

~ The sﬁgn of any decimal number is always specified by the
first character, either "+" or "-", The "+" 51gn may be omitted, i.e., if no

initial "+" or "-" appears in the string, the sign Is assumed to be fen, -

A decimal integer is composed of a string of exclusively

numeric charactérs, possibly preceded by a plus sign or a minus sign, -which is
converted to a 17-bit binary number with sign (negative ‘numbers will be convezbed

to 2's complement) Thus, the decimal integer
=31
would be converted to the binary number whose octal representation is

77741

Both O and -0 are converted to octal number 000000. A decimal
integer is dlstlngulshed from a fixed p01nt decimal number by the fact that the
letter B, the letter E and the decimal point are all absent. For all decimal
integers, the position of the binary point is con51dered as belng at the rlght

" hand end of the vord, i.e., at Bl7.
£ . ;
A fixed point number has three components:
a) The prln__pal part is written with or without a

decimal point. The decimal point may appear at

“the beginning or end of the principal part, within

- the principal pért, or may be omitted. If the
decimal point is omitted. it is assumed to be located
at the-right hand end of the principal part.

b) The exponent part consists of the letter "E" followed

by a signed or unsigned decimal integer. The
exponent part may be absent. If present, it must
follow the principal part, but may précede or follow
_the binary-place part.

1332.3~-17
Page A-1L

--¢) The binary-place part consists of the letter "B"
- followed by a Signed or unsigned decimal integer.
N . The binary-place part must be present in a fixed point
fe Viiliti.. Wof Li..o:: Jnumber, -and must follow the principal part. If the
- ' ‘ number has an exponent part, then the binary-place
_ part may precede or follow the exponent part. '

A fixed point number is converted to a flxed point blnary

qpantlty which contalns an ‘understood blnary point. The purpose of the blnary—
place part of the number is to specify the locatipn of this understood binary
point within the word. The number which follows the letter "B" specifies the
nurber of binary places in the word to the left of the binary point (that is, the
number of integral placés in the word). The sign bit is not éounted. Thus a
binary-place part "O" Sp&lelEu a 17-bit fraction,. "B2" speclfles 2 1ntegral
places and 15 fractional places, "Bl7" specifies a blnary integer. "B-2"-

would Spec1fy a binary point 1ocated 2 places to the left of the leftmost blt of
the word, that is, the word would contain the low-order 17 bits of a 19-bit binary
.fraction. The exponent part, if present, sp601f1es a power of ten by which the

principal part will be multlplled during conversion.

3 In the process of shifting the converted word to position éhe
binary point, significant bits may be shifted past the right-hand end of the ‘
word and lost; no error will be in&icated.' However, if non-zero bits must be
shifted past the left-hand end of fhé word, an error will be indicate& on the
oufﬁut lisﬁing. Thﬁs, the inteéral'part of a fixed point number must be small
enough to fit in the number of integral places allowed. Also, if the binary-

place part is negative, the numbef must be an appropriately small fraction.

For example, the following fixed point numbers all specify
the same configuration of bits; but not all of them specify the same location
for the understood binary point: 4

22.5B5
11.25B4
1125BLE-2

1125.E-2BL
9B7EL

A1l of these fixed point numbers will be converted to the binary configuration

whose octal representation is

264,000

7332.3-17
Page A-15

The 18-bit word size of the LEH computer cannot accommodate
integers vhose absolute value exceeds 217—1. Hence, decimal numbers outside of
this range should not be specified in a DEC pseudo-operation. If this restrictic:
is violated, the number will be taken as zero and an error will be indicated on i3
output listing. - i '
. ! ' If the TRA instruction, in the following eiample, is
assigned to location 1001, then the symbol DATA will be entered into the
dictionary for location 1002. The five words (98,309.6B10,~5E-1B1,0,0) generated
b& DEC will occupy locations 1002-1006 aﬁd the ssymbol BETA will be assigned to

location 1007.

- LOGATION - 0P VARIABLE FIELD

ALPHA® e R GAMMA
DATA DEC =~ 98,309.6B10,-5E-1Bl,,

BETA i BSS 7

(7) 0CT ("Octal Datam)

, The OCT pseudo-operation is used to introduce into a program,
binary data expressed in octal form, A symbol or blanks may appear in the locatic
'field. One or more subfields, each containing a signed or unsigned octal integer,

,éppears in the variable field.

_ If there is a symbol in the location field, this symbol is
entered into the dictionary with the current value of the location countér, s0
that the first octal integer in the variable field may be referred to by this

symbol.
;:J

The subfields of the variable field are separated By comnas.
The number of subfields permissible is limited only by the restrictions that the
last subfield must be terminated by a blank, andﬁthat the entire instruction must
fit on one symbolic card, i.e., the variable field must end in or before card
column 63. Each subfield is converted to a binary word; these words are éssigned
to successively higher storage locations as the variable field is processed from

left to right.

Consecutive commas in the variable field, indicating a null
subfield, cause the number zero to be generated as does a comma followed by a
blank. Hence, the nurber of words of data generated is always one more than the

number of commas in the variable field.

7332.3-17
" Page A-16

| Every octal integer must be represented by a string of
characters from the following set of 10 characters: 0 ks 2y 3 by 5,647

(numeric charactefs) + (plus sign), and - (minus sign).

The octal representatlon should consist of no more than 7
characters (a plus or minus 51gn and 6 numeric characters) Numbers preceded
* by a minus sign will be converted to their 2's complement Thus, -2 and 7?77?6
will bdth be converted to 777776. Both O and -0 are converted to 000000,

: 5, g If the TRA instruption,.iﬁ the following eiample, is assignes
to lbcation_ldOl, then the symbol DATA will be entered into the dictionary for
location 1062; the five words (777?7?,0,h77,66,0) generated by OCT will occupy
locations 1002-1006 and the symbol GAMMA will be assigned to location iOO?.

‘f‘?’v__.fT T tooATION op VARIABLE FIELD
CALPHA TRA . BETA -
DATA ocT T, ,-T7,66,

GAMMA " BSs i

(8) g "End")

“END" must be used as the last instruction of every source

program to signal the Aésémble: that it has reached the end of the program.

: * If the location field of an "END" card contains a symbol.,
.it will be 1gnored and will not be entered into the dlctlonary

i The variable field of an "END" card is ignored.

IV. ERROR INDICATION

If certain error conditions are detected during the second pass of the
assembler, an appropriate comment will be printed and the instruction will be
flagged as an error. Whether or not a listing is requested, the card in error
is printed and an error code will be printed at the extreme left of thié line of

print. A description of the error codes follows:

BD The variable field of data generating pseudo-operation
j is in error. Either too many bits are generated or the

MB" field is missing in a fixed point decimal number.

'7332.3-17
Page A-17

"IADR - Illegal operand address (either.negative or larger than
LEM memory) . : :

I10C Illegal LEM location (larger than LEM memory).

™ Tag missing. The two instructions "AXT" and "TIX" always
" pequire a tag field. If the tag is missing, it will be
inscerted; however, the programmer should correct this instruction

~on the next run.
I0P The operation field contains an illegal mnemonic.

¢ The variable field contains an undefined ‘symbol.

In addition to the above error codes the assembler will prlnt a 115t of

" undefined eymbols and a list of multiply defined symbols.
~ V. - DECK SET UP AND PRODUCTION PROCEDURES

LEMAP (LEM Assembly Program) allows modlflcatlon of a current LEM program

and the execulion of an interpretive routine run in a 31ngle pass on ‘the machine.

A. Orisinal Compilation Using LEMAP

- (1) nput
' The symbolic deck, preceded by either a CPL or a CPLPA control
card. The symbolic deck may be followed by a GO card which will cause the

reading in of the Interpretive Routine.

(2) Output
a) The compresseqrsymbolic program punched in column binary form.

This deck contains the entire symﬁolic deck in a'highly compressed form.

b) A listing of the Asuembly Jncludlng a sequence nunber attached
to each line in the symbolic coding. '

¢) If the CPLPA control card was used, a column binary absolute

-

deck is also produced and is separated from the compressed deck by three (3)
blank cards

B. lLoading the Compressed Deck Without Modifications

(1) Input

The compreseed deck, preceded by one of the following contlol
cards, PA, PS, PSM, or ML. This control card may be followed by a REFER (or a

7332.3-17
Page A-18

REFER-and LIST in the case of ML). The compressed deck is followed by a blank
card, and optlonally a GO card ’

(2) Output
a) The ML control card produces no output other than error
-diagnostics.,
_ _b) The PS control card results in the punchlng of a new compressai

‘deck, and produces a new listing. '

.'_c) The PA'control card produces a new absolute deck in addition
to the PS output. o

: "~ d) The PSM control card results in the punching of a eyﬁbclic

deck and produces a listing. ' ' o

_ e) The LIST control card causes. a 115t1ng to be produced when used
with an ML. Use with a PA, PSM, or PS has no effect. v -

f) The REFER control card causes a symbolic. reference to ‘be output
when used with PS PA, CPL, CPLPA, or ML and LIST.

C; Loading the Gompressed Deck With Modifications

a

. The modificatiens are preceded by a MOD control card and are followed
By an ENDMOD control card. This modification deck immediately precedes the
compressed deck. For output see "Loading the Compressed Deck without Modlflcatlc

(l) Modlflcatlcns by Use of a Sequence Number in Card Columns 65 71

a) Replacements

An 1netruct10n punched in normal Symbollc format, with-tﬁe
sequence number n in columns 65 through Y%, will replace the,line of codlgg bearir

sequence number n.
- b) Insertions

A symbolic instruction containing a non-integral sequence
number in columns 65 through 71 will cause the instruction to be inserted such

that the sequence numbers are kept in sort.

7332.3-17 '
Page A-19 '

. ¢) Rules for Punching Sequence Numbers

.5 (i) A1l sequence numbers must be left justified in

columns 65-71. : e : : _ L

: a;(ii)_ Integral sequence nuﬁbers less than 10 must be punched
with a decimal point following the integer. Thus, seven must appear as 7., 7.0
or_?;OO. : L

ah (iii) The last digit punched in a sequence number determines

the "counting'positioﬁ", and if the sequencé number on the‘followiﬁg card consists
of only one digit which is one greater than the counting position digit_bf the

previous card, it is assigned a sequence number one greater than the previous card.

‘For example:

. Card n _ : 7.2Iﬁ‘ is- given sequence number 7.2
Card n+l b el :3'- R given sequence number 7.:
‘Card n+2 A 4 i is given sequence number 7..
Card n+3 91 {_ is given sequence number 91
' Gard n+l 2 . is given sequence number 92

. ks ‘ In fhe following examples,.blocks l,‘S, and 6 are due to rule-
(iii) above. Ovérlapping modifications occur in blocks 1 and 4. The blocks need
not be in sort, for example; it is quite permissible for block 5 to follow block 2.

Machine time saved if the modifications appear in ascending sequence is negligible.

"Block No. - . Sequence No. tPunched) Sequence No. (Assigned)
et F e L 5.0 :
J R 401 < 5.1
= _ i 2 . e ‘ _- 5. e
S {73 B :
ViR TR T S 14 i,
15 15
5.2 5.2 —I
ll- ““““““““ 5-3 5-3
5.5 5l
[22.1 22.1
2 22.2
g Al R 13 22.3
! | 4 22.};
[65.21 65.21
R T 65.22 65.22
3 65.23
L 65.21,

7332.3-17
- Page A-20

' '_(Ej‘Hodifications by Use of the Pseudo-Operation ALTER

The ALTER pseudo-operation can be used to delete symbolic sourc:

program cards, insert additional symbolic source program cards, or both, depeni
on the form of the instruction.

.. There are two permissible forms for ALTER. The firét is;

LOCATION op VARIABIE FIELD
 ALTER N, N,

1’
where Ni and N2 represent

_sequence numbers.

Thls form 1nd;cates that the 1nformat10n corresponding to sequenz

numbers N through N, inclusive, is to be deleted from the program. If, in
addlthn, symbolic cards inmediately follow an ALTER of this form they will be

inserted into the program between Nl - 1 and Né + 1. BSince.insertions are made

as in an assembly, the words following Né are automatically adjusted and the nu:b
.of insertions need not be enual to the number of deletions,

~ The second form is:

. locATION o VARIABLE FIELD

ALTER N
2 where N is a sequence pumbe;

This form indicates that no deletions are to be made, and that
the associated symbolic modification cards, j.e., the symbolic cards immediately

following an ALTER of this form, are to be inserted between the symbolic instructi
numbered N and N+1.

f : - - N .
Restrictions: i

a2) In an ALTER instruction in the first form,lNl must be

less than or equal to N,; otherwise an error will be indicated and the symbolic
cards to be inserted will be ignored..

b) A1l cards to be inserted by an ALTER must be blank in

This is necessitated by the fact that each ALTER block is
terminated by either another ALTER card or by a sequence number in colwans 65-71

columns 65-71.

7332.3-17
Page A-21

: 2 .
¢) A modification by an ALTER must not overlap a modification
- either by another ALIER or a modlflcatlon of the type discussed in Section C (l)

of this chapter

Examgles-

a) Suppose that it is de51red to correct the instruction

w1th the sequence number 15 in the fo_lowlng llstlng

24 ERR CLA N

2%, oL eI ALPHA
16. TRA " ERPRT

. The 1nstruct10ns necessary to accompll h the correctlon

-

are: ; =
LOCATION [0 VARIABLE FIELD
 ALTER 15, 15
- 810 - BETA

- Assuming that there are no modifications affecting the

preceding instructions, after this change is made the iistiﬁg will appeér as:

© 14." ERR ~ CIA N
15. | . 8TO BETA
16. ' T T ERPRT,

b) Suppose that in the following listing, the instructions
with sequence numbers 92 and 93 are to be deleted: ' '

91. NUMBER, EQU T2

92. N1 . EQU. - L

93. N2 ' EQU 0 G B
94. N3 DEC 102, : :

The required instruction is:

LOCATION _ OP VARIABLE FIELD
ALTER 92, 93

Assuming that there are no modifications affecting the

preceding instructions, after this change is made, the listing will appear as:

7332.3-17
Page A-22

91. NUMBER EQU 2l
92. N3 ‘ DEC - 1024,

¢) Suppose that it is desired to insert the instructions SUB
A,l and TMI. NEG following the instruction which has the sequence number 9 in the
‘1isting below, without deleting any instructions. E :

8. CKN CLA N2

g ~ aDD © cON
' 0. - Ciagn T BA
11. . TIX - . CKN,I

-~

The required instructions are:

LOCATION 0P VARIABIE FIELD .
i ALTER 9
T R % |
" NEG

" Assuming that there are no modifications affecting

the preceding instructions, after this change is made, the listing will appear as:

8. CKN CLA N,1
. A . DD coN
' 10: : | 8UB A
T oI NEG
e © 870 B,1
13. TIX - CKN,1

Note: Of the thnee examples given, the lst and 3rd could

have been done in the following manner.

LOCATION OF ¢+ VARIABIE FIEID
Ex. a) STO - BETA
Ex. ¢) SUB Al

™I NEG
D. Control Cards

The control card operation code is punched left justified in column 8

through 15, the remainder of the card is ignored.

7332.3-17

Page A-23
CPL _ Results in the compilation of the symbolic deck, :
-listing of the compilation, and punching of the compressc
deck. o : .' = : Dt
CPLPA Results in the punching of an absolute column binary

program deck in additon to the normal CPL output.

"ML " Results in the 1oad1ng of the compressed deck and any
' h modifications. ' :
LIST Produces a listing of the assembled (perhaps nodlfled)

program during an ML run. This card has no effect on
CPL, CPLPA, PS, PSM, or PA runs.

PS Produces a listing, and a new compressed deck wnth any

- modifications merged into place.

PA ~ Results in the punching of an absolute binary deck,
 in addition to the normal PS output. :

-~ PSM Causes the punching of the (modified) program in
.- symbolic form and produces an assembly listing.

] REFER - Produces a symbolic¢ reference table. Used only when
' normal assembly listing is to be produced.

MOD ~ This card must precede the modifications.

- ENDMOD This card must follow the last modification.
E. Notes]

(1) Sequence numbers appearing ‘on modification cards always refer to
the sequence numbers appearing on the listing of the compressed deck with which
they are used. Be extremely cautious of a listing produced on an ML run which had

modifications.

(2) M1 information in CC1-64 is packed into the compressed deck;

therefore, sequencing done in CC<< 65 will cause a larger deck.

(3) On the DEC option: If either an E or a decimal point is used, a
B must be specified; if none of these characters (E, ., or B) appear, an integer
scaled at 17 will result.

; ! Page A-2/,

! 3 : t

(4) Numexlc 1nformat10n appearing in the varlable field of operatio.
‘codes w1ll be conSLdered decunal if three characters or less are punched and
octal 1f four characters or more are punched. The prmnczpal pseudo—ops are
exceptlons to thls treatment. The varlable field ‘of ORG DEFINE and OCT is

always treated as octal while that of DEC is always treated as decimal.

e (5) If the first two symbolic cards of any deck that is o be compil
have an asterisk in column 1, they will be used as header cards and will be
printed at the top of each page of the IEMAP listing. ‘

* - SAMPLE LISTING FOR THE LEM

#* o, ‘ ASSEMBLY PROGRAM {(LEMAP) ; : . T332.3-17
04/28/66 . PAGE L Page A-25
3. %
4, - T~ :
5 % THERE ARE FDUR FORMS FOR THE DOCTAL :PORTION OF 'THE LEMAP
6. * LISTING. ‘
Te # ! _ o ik . e S o o S
8. % {1} THE LEM MACHINE OPERATIONS HAVE THE FOLLOWING FORM
C. 3 BC EF . LLLL ©OB.R AAAA ;
10 i WHERE B=X DRIVER
1ls * C=Y DRIVER
124 e E=X SWITCH
13. % F=Y SWITCH
14. % LLLL=LOCATION OF - THE GIVEN INSTRUCTION
15 e 00=0PERATION CODE
16, ¢ R=INDEX REGISTER BIT
17. % AAAA=VALUE OF -THE ADDRESS FIELD
1 Bl e z
19. % .. {2) THE DATA GENERATING PSEUDO-OPERATIONS, I.E., DEC AND OCT:
20. % © HAVE THE FOLLOWING FORM
21 & * BC EF LLLL DDDDDD
225 5 WHERE B=X DRIVER
23. . %, ' C=Y DRIVER
24 . % E=X SWITCH
26a . * F=Y SWITCH
26 " LLLL=LOCATION OF :THE GIVEN INSTRUCTION
27a %* DDDDDD=DATA GENERATED '
28. K
29 % . {3) ALL .NON DATA GENERATING PSEUDO- DPERATIUNS, EXCEPT .BSS
30. ¥ AND BES HAVE THE FOLLOWING FORM . SR, S ——
' 3l. % AAAA
: 32. e WHERE AAAA=VALUE OF THE ADDRESS FIELD
' 33. %*
34, # {4) THE PSEUDO-OPERATIONS BSS AND BES HAVC THE FOLLOWING FDRN
35. %* LELL
36. . # WHERE LLLL=LOCATION OF THE FIRST CELL .OF :THE BLOCK
37 * ~ FOR A BSS /
' . BB8a * AND LLLL=LOCATION OF .THE CELL IMMEDIATELY FOLLOWING
. 39. x| "THE LAST CELL OF THE BLBCX FOR A BES

* : . SAMPLE LISTING FOR THE LEM

* ASSEMBLY PROGRAM .{LEMAP) b i : ' 7332.3-17
' 04/28/66 . ' PAGE 2 Page A-26
40« e .
41. # % o
42. % p : :
43, % CHECKSUM . i
44 * THE VALUE PRINTED AFTER THE END CARD AS THE CHECKSUM IS
45, 5 THE 2 S COMPLEMENT OF THE SUM, DISREGARDING OVERFLOW,
46. %, DF THE CONTENTS OF LOCATIONS 400C(8) TO 7776{8),
47. * INCLUSIVE, AND IS STORED IN LOCATION 77771(8)
48- *
49, %
50« ¥
51« % _ : , :
52, % THE FOLLOWING PROGRAM IS NOT MEANT TO BE EXECUTED. ITS PURPOSE
53. . %' IS TO FAMILIARIZE THE READER WITH THE FORMAT AND ERROR CODES
544 % OF THE LEMAP LISTING.
55. *
- 5634 . . %
00 00 0000 - 010000 : 57. X1 oCcT 1000041000
00 :01 0001 . 001000 : :
01 00 ©002 777777 58. A. ocT -1ls1y=3,3
01 01 0LOV3 000001
02 00 . 0004 777775
02 01 0005 00C003
03 00 - VOU6 252525 . 59. . BCT . = 252525
03 0L 0007 . 525252 '60. L BET 5252524=125252
04 QU U010 . 652526 :
04 01 0Ull 0U0O0UO - 61. B ocT 0 ‘ b N SURTINE 0 e Wt WP . S S
0012 - 62. . o BSS 8 : : ' e
0022 63. . Cl. BSS 8 ‘ '
0032 64 o c2 BSS 32 '
65. # THE NEXT INSTRUCTION SPECIFIES A NUMBER THAT .1S TOO .LARGE FOR
_ 66. %« THE LEM COMPUTER, l1.E.y, IT CANNOT BE REPRESENTED BY 18 BITS.
e sfeslesje sl o e sie e stesfe e e sfe ek sje e ol e o e e ol e i el ofe ILLEGAL SITUATION IN AREA OF .ALTER NUMBER 67 :
0072 67. UeT .- 1252525
O260 . - 68 M DEFINE 200 .-
0003 69. 1IEQU EQU A+l

05 07 0073 50 1 0007 TU. : AXT B=Agl

%

x ASSEMBLY PROGRAM
06 06 . 0074 .20 ‘1 0002 Tis
06 07 0075 22 0 0000 . T2
07 06 0076 10.1 0012 73.
07 07 0077 . 42 1 0074 T4
00 10 0100 50.1 0007 THa
‘0011 0101 201 0012 76
0L 10. 0102 46 0 0105 b o
0L 11 0103 42 1 0101 78.
02 10 0l04 40 0 D107 79.
U2 11 0105 14 1 0012 80.
03 10- 0106 12 0 0011 81.
¢3 11 0107 20 0 0011 82
; 83.
844

*jesiesfefe sl e sotool ekt Ak e S stk etk deojeslesk e feole el
U 04 10 0110 46 C N85,
04 11 0111 50 1 0007 T 86.
05 10 : pL1Z. 20-1 0002 87
05 11 0li3 22 ¢ oogl 88,
06 10 01il4 101 0012 89.
90 -

':k*#ak**#-****##I*******%ﬁ**####****##
™ 06 11 011 42 1 0112 91.

. 0T 10 0ll6 20 .0 0U02 92.
07 11 0lL17 22 0 00LlL 93.
‘00 12 0120 10 0.0014 94,
00 13 0l2L 20 O 0011 95.

96, :

e e e e e N e ol e ol e e ofe e vl vl e ek e %*##*ﬁt*#****
IADR 01 12 0122 10 .0-0002 97.

' 0310 - 98.

14 10 ©310- 50 1 QOQ7 99,

14 11 03211 20 1 0002 100.

15 10 0312 06 0 0347. 101.

15 11 0313 46 0 0321, 102,

16.-10 - 0314 42 1 0311 103.

16% 1L Els 20 0 U347 104.

SAMPLE LISTING FOR THE LEM

(LEMAP} _ . e i ' 7332.3-17
. 04/28/66 "PAGE "3 Page A-27
Ll CLA A.l]
ADD Xl b s
STO . C,1 ' i
TIX 11,1 o
AXT B=As1 . ' ;
CLA C,1)
™I - NEG
TIX =241
" TRA NEG#+2
NEG LDQ C,1
STQ 8
CLA B

. THE' NEXT INSTRUCTION HAS AN UNDEFINED SYMBOL IN ITS ADDPE%S
* FIELD.

ILLEGAL SITUATION IN AREA OF ALTER NUMBER 85
TMI - NEGC
‘ AXT Tl
L2 CLA Al
ADD X1i+1
ST . Cel :
* THE NEXT INSTRUCTION IS A TIX WITH THE TAG FIELD OMITTED.
ILLEGAL SITUATION IN AREA OF ALTER NUMBER 91
TIX L2
CLA A
ADD 8
STO C+2
CLA A+T

% THE NEXT INSTRUCTION HAS A NEGATIVE ADDRESS™ FIPLD.“”

ILLEGAL SITUATION IN AREA OF ALTER NUMBER . 87

STO . A~4
DRG 310 .
L3 AXT R %
CLA Asl
MPY DC1
TMT - LA oI
T1X L3+1,1

‘CLA - DCl.

ADR

ADR

1gpr

* . ASSEMBLY PROGRAM (LEMAP)) . . 7333 .53=17
; ' g 04/28/66 'PAGE 4 Page A-28
17 10 - 0316 22 0 0370 105. ADD DC+10 - -
17 11 Q0317 110 O 0347 106. STO DC1L
1012 0320 40 0 0310 - 107. -TRA. L3
10 13 0321 . 10 0 0350 - 108. STO DC1+1 .
10c. % THE NEXT :INSTRUCTION .IS AN AXT:WITH AN ADDRESS FIELD THAT
110. % EXCEEDS THE CAPACITY DF .THE INDEX REGISTER (3 BITS).
e afe o o el e e e e dele ok el o e e e e de e deale e dle i e Ak ILLEGAL SITUATIDM IN AREA OF ALTER NUMBER 111
23 12 0322 50 1 0012 AL ke AXT 10,1 ’
11 13 0323 20 00005 1124 D CLA A+3
12 12 0324 24 0 .0006 113 sSup A+s <1
12 13 0325 24 00012 ll4. y sus A+8
13 12 0326 22 0 00l4 115. E . ADD A+10 - .
- . 0G02 ll6. KING'™ EQU A Tig i el i Wi
‘13 13 0327 20.0 0200 1174 CLA M o, § o
14 12 0330 10 00002 "118. ' ~ STO "' KING it g i s
: 0000 . 119, -1AD - DEFINE 10C00.
120. % 'THE NEXT INSTRUCTION HAS AN ADDRESS FIELD THAT EXCEEDS THE
. 121. % MEMDRY CAPACITY OF THE LEM COMPUTER.
e ez e e aie sfe 2 s ic ade e aje e e e afeale ek sfe o ofe sheale ale e aleole e e ole ILLEGAL SITUATION IN AREA UF ALTER NUMBER 122
14 13 0331 20 0 0000 - 122. CLA IAD
15 12 0332 56 ¢ 0001 123. 0CTOPl ALS 1
15 13 0333 10.0 0005 124, STO B=4
16 12 0334 20 0 00G3 125 CLA I1EQU
A6 12 0335 10 O 0037 s 126.. STO C2+5
L2 a % THE NEXT INSTRUCTION IS AN AXT WITH THE TAG FIELD DMITTED.
#***** s************#**#*** ILLEGAL SITUATION IN AREA OF ALTER NUMBER 128
17 12 0336 50 1 0007 128. AXT T
17 13 0337 20 1 0002 . 129. L4 CLA Aol '
10 .14 0340 14 1 0012 130. LDQ Cel |
1015 0341 04 0 0376 131a Dvp DC+16
11 14 0342 10 1 0022 132. STC Cl,1
11 15 0343 42 1 0337 133. TIX CL4,1
134, % . THE NEXT ' INSTRUCTION HAS AN ILLEGAL MNEMDNIC IN ITS OPERATIC
, 135, ‘% FJIELD.
e e e e eafe e fk o o ok e 3 ok sfeafeale dfefe ke slele e e ek ke ook ek ILLEGAL SITUATION. IN AREA OF ALTER NUMBER 136
Y12 14 n244 0 0002 136. RNT - Ko
LE b s345% 66 0 0015 -~ ouT ' 13

» ‘ SAMPLE LISTING FOR THE LEM

137

e SAMPLE LISTING FOR THE LEM

: ASSEMBLY PROGRAM {LEMAP) C 7332.3-17
i . “ 04/28/766 . PAGE 5 . Page A-29
13 14 0346 40.0 7774 138. : TRA LS
13 15 0347. 000000 139. OC1 . DEC . 040
14 14 0350 000000 . .
14 15 0351 700000 . 140. DEC -.581
15 14 0352 700000 141 DEC -+5B+1
15 15 0353 700000 - 1A% ; DEC . -5E=-181 .
16 14 0354 700000 143. . DEC ~5E=-18+1
16 15 0355 100000 - l44, DEC * «5B1 . >
17 14 0356 000725 145. DC DEC . +.3E5823
17 15 0357 700000 . - 146 DEC . -o5B14=.2121B~2,309.6B1C -
10 16 0360 - 446637. _ :
10 1T 0361 115315 - : ; ’
147. % . THE NEXT INSTRUCTION SPECIFIES A NUMBER THAT 1S TOO LARGE FOFf
148. * THE GIVEN BINARY SCALING.
a0 s el el sk ok o Fe el o Xk e ok kol ok e ek el ILLEGAL SITUATION IN AREA OF ALTER NUMBER 149
0362 - 149, DEC 309.6B7
11 17 03263 331141 ' 150. DEC «21218~2
12 16 0364 446637 . 151, DEC -.21218B-2
12 17 0365 220626 152. DEC e 14148-2
13 16 0366 557152 153. ' DEC . -.1414B-2 ‘
: : " 154. * THE NEXT INSTRUCTION SPECIFIES A NUMBER THAT 1S TOO LARGE FO
1555 * THE LEM COMPUTER, I.E.s IT CANNOT BE REPRESENTED BY 18 BRITS.
e je e e e e e sk ek e e afe feafeofe e e e ofe ok afe e oe sl e ol el ek ole ILLEGAL SITUATION IN AREA DF ALTER NUMBER 156
: 0367 . 1564 DEC 262144
14 16 0370 072724 C 45T ' DEC 15082.B+16
14 17 0371 231312 ; 1584 DEC « 749E-18-3
15 16 0372 776650 159. " DEC -1200.B18
15 17 0373 014000 R, 15 . DEC 3.B+6
16 16 0374 . 656373 161. ' DEC . =«398E~1B-3 ’
16 17 0375 . 700000 - 162. DEC ~.5B1,~-.2121B~2,309.68B10 .
17 16 0376 446637 . \ :
17 17 0377 115315 p -)
20 00 . 0400 662463 163. DEC = =309.6B10
20 :01 0401 0OUOL42 164, DEC 98,602,786
21 00 - 402 001132 . ' - T S
21 01 0403 0Ul422 - ' i

T e db5g . % THE NEXT INSTRUCTION SPECIFIES A FIXEd_PDINT_NUMBéR WITH THE

BD

%* ' SAMPLE LISTING FOR THE LEM .
* . ASSEMBLY PROGRAM (LEMAP) ' : 7332.3-17
04/28/66 . PAGE 6 Page A-30
166. # . B FIELD (BINARY POINT) CMITTED.
iesheaje e e shefeale e e s e sk afeatede e o sl she s dfeleole o ol e 3 ILLEGAL SITUATION IN AREA OF ALTER NUMBER 167
0404 ' 167 DEC —e5
22 01 (0405 700000 168. DEC - =+5B14+581+309.6810

23 0G 0406 00L105
23 01 0407 115315 :
24 00 0410 000142 169. DEC 984309.6B10,602
24 01 0411 115315 -
25 00 0412 001132 .
0423 170, c3 BES 8 ;
2. 03 0423 000155 171. , DEC 1094-.2121B10,778
22 02 0424 777745 : -
22 03 0425 001412 .
23 02 0426 614632 O . DEC -.45805309.6B10,309.6810
23 03 0427 115315 . -
24 02 0420 115315 g
24 C3 0431 115315 173. DEC 309.6810,=581,-,21218=2
25 02 0432 700000 |
25 03 0433 446637 - | ;
26 02 0434 700000 . 1T4. DEC = =.5B1,=.2121B-2,309.6810.
26 03 0435 446637
27 02 0436 115315
27 U3 0437 700000 I75s « ° ' DEC ~.5B14=.21218=~2,309.68B1C
20 04. 0440 446637 '
20 05 0441 115315

176 *
&y 3774 177 ORG 3774
76 36 3774 012156 178. DEC 326.848B13 A
76 37 3775 7165622 179 DEC =~326.8488B13
77 36 3776 002437 © 180 DEC . .0lBC
T 3F. 3TTT TT5341 181. DEC -.01B0 : :
00 40 4000 2006000 182. DEC .50000258G - NO ROUND
00 41 4001 600600 183. ' DEC = =.5C0062580
0l 40 4002 200¢0L 184%. DEC © 50000480 . ROUND
gL 41 40ud STTITT. 185s . DEC ~-.5C000480
V2 40 4004 235361 L e me. W DEC «173139971E15848

U2 41 4005 542417 - 187. ", DEC -.173139971E15R48

SAMPLE LISTING FOR THE LEM. : .

2 : ASSEMBLY. PROGRAM (LEMAP) : ; 7332.3-17
- ' ' 04/728/66 . PAGE T . Page A-31
03 40 4006 064112 188. OEC . «49T291LE-4B-12 ‘ :
03 41 4007 . 713666 . 1l89. ; . DEC ~«497291E~4B=12
04 40 4010: 000000 - 150. DEC «3815E=-58B17
04 41 40LL 0000LO . 191. ' DEC . ~+«3815E~5817
05 40 4012 000001 192. S DEC . « 156814
05 41 . 40)3 777777 - L83 ' DEC ~.156Bl4
06 40 4014 774761 194. BEC = ~+18488E-38B~-6
06 41 4015 003017 195. 4 NDEL +1848BE-3B=6
C7 40 40L6 252517. 196, R A . «166655548-2
U7 41 4017 525261 197. & DEC. . ~+166655548=2
7774 W 198. § o ORG 7774
76 76 7774 50 1 00C7 "t 199. L5 AXT C Tel
76 77 7775 20 1 0002 200. o CLA Asl
"TT 16 7776 24 0 0001 .. 201. sus X1+1
77 .77 . 7777 10 -1 0423 202. ' ' ST0 . C5,1 i :
203. . % THE NEXT INSTRUCTION 1S TO BE STORED IN A LOCATION THAT.
204, % . EXCEEDS THE MEMORY. CAPACITY DOF THE LEM COMPUTER.
a«¢**¢*****¢*****#*********¢x**** ILLEGAL SITUATION IN AREA :OF ALTER NUMBER 205
1L0C . 0000 42 1 7775 205. TIX L5+1,1
0423 206, £h SYN c3 .
0000 - 207. END

. CHECKSUM=617766

B —

e e wm A e = - A
e
%

UNDEFINED SYMBOLS

NEGC

SAMPLE LISTING FOR THE LEM.
ASSEMBLY PROGRAM (LEMAP)

P e

04728766

e T T I R i

7332.3=17

PAGE 8 Page A-32

* SAMPLE LISTING FOR THE LEM
2 - ASSEMBLY PROGRAM (LEMAP}) 7332.3-17
: - 04/28/66 PAGE Page A-33
.YMBOL DICT IONARY TABLE | _ |
A 58 B .8l | C: 62 . €1, 63 c2 64
£3 - 170 - C5 © 208: 0 " D . X 112 . DC 145 DCl . 139
E % 115 . IAD 119 1EQU 69 KING . 116 Ll 71
L2 87 L3 g9 o, RVULE CERT L ieg " L5 199 M 68
NEG . 80 - OCTOPL X 123 XL 57 e - .
o
1

'3 Cl

be C2

»9 1EQU
1 L1

0 NEG

16 KING

19 I1IAD

.SAMPLE LISTING FOR THE LEM
ASSEMBLY. PROGRAM (LEMAP)

SYMBOL REFERENCE TABLE

NOT USED

NOT USED

72 ADD.
69 EQU$
97 STOS

129 CLA *
70 AXTS$*
73 STO *

A1

132 STO *

126 STOS

117 CLA
69 EQU
74 TIX %
77 TMI -
91 TIX

103 TIX$x

118 °STO

122 CLA

88
70
100
136
T3

76

125

79

. 107

ADDS

-AXTS%*

CLA *
ouT

AXTS*

CLA *

CLA
TRAS

TRA

04/28/66

201
71
i O @
200 -
8l

80

suBs

CLA *
CLAS
CLA *

STQ

:LDQ *

PAGE

75 AXTS$*
113 SUBS

82 CLA

89 STO *

10 - Page A-3L

87 CLA =* 92 CLA
114 SUBS 115 ADDS
g3 ADD 95 CLA
94 STOS . 114 SUB

95 CLA!
116 EQU

124 STO:

13C LDO

e L e e e R e O T P R

123
129
139
145
170 -
199

206

OCTOPY .’
L4
DCL

DC

L5

c5

SAMPLE LISTING FOR THE LEM
ASSEMBLY PROGRAM {(LEMAP)

04728766
NOT USED
133 TIX %
101 MPY 104 CLA: . 106 STO
105 ADDS 131 DVPS
206 SYN
1387TRA 205. TIXS*

202 STO *.

7332.3-17

PAGE 11 Page A-35

108 STOs .

* SAMPLE LISTING FOR THE LEM
* ASSEMBLY PROGRAM (LEMAP)
' 04728766

CHECK FOLLOWING .SEQUENCE NUMBERS FOR ILLEGAL .SITUATIONS
67 85 97 b 1dd 1326 149 156 167 205

PAGE

12

1332.3-17
Page A-36

7332.3-17

e APPENDIX B
L e RS

7332.3-17

Page B-1
INSTRUCTION REPERTOIRE '
e Eicecutidn
. Octal ' Time
. Mnemonic ~ Code _ Description _ sec
ABS . 62 Absol_ute-Value oF Soppmilaher 16
ADD 22 Add ' 10
ADZ 32 Add and Zero L T 2o 10
ALS T 56 Accumulator Left Shift ' 3N + 13
AXT 50 . Address to Index 13 '
CLA 20 Clear and Add feiw B R AD
cLZ 30 ‘Clea.r, Add and Zero _ 10 -
coM 0 - Complement Accumulator ' =i
DLY . Delay # -
DVP oL Divide e £ N8
"INP ' A Input | e . 16 or 67
- IDQ B 1 - Load Q Register :) 153"
LLS 52 Long Left Shift RSN T
IRS A Long Right Shift e 3N + 13
MPR 26 ~ Multiply and Round U
MPY 06 Multiply - 70
MPZ L 36 Multiply and Zero 70
ouT 66 Output : ; 13
STO 10 . Store Accumulator ' 13
STQ 12 Store Q Register 18
SUB 2, Subtract o 10
suz ! Subtract and Zero r 10
TIX L2 i Test Index and Transfer ' .10
T™I L6 Transfer on Minus Accunulator 300 =
TOV Ll Transfer on Overflow 10
TRA L0 Transfer 10
TSQ 72 “Transfer and Set Q 16
00) |
e Unéssigned
16 p Operation
7L, Codes
76

“mrir

 7332.3-17

Page B-2
AEA. QUTPUT REGISTERS
NAME TYPE OF REGISTERS ADDRESS

sin © 9 Bits plus Sign 2001
cos (2] " n n " 2002
Sin‘g non " " 200
coS ¢ non n n 2010
Sin])” n n n n 2020
cosyy now " " 2040
Ex noou it n : 6001
E nonu n 1" 6002
Yy S
Ez noun " n 600&_
Lateral Velocity 8 Bits plus Sign 6020
Altitude, Altitude 14 Bits plus Sign 6010

Rate
Output Telemetry* 24 Bit Shift Register

Word 1 Bits 0-17 6200

Word 2 Bits 6-23 6100
DEDA L Bit Shift Register 2200

F'

%
Only Word 1 is used for GSE data output.

TABLE B

-

oy e

- 7332.3-17

Page B-3
AEA INPUT REGISTERS

Name Type of Register Address
® (PGNS) Titegrabing Beg. 2001
g (PGNS) T " 2002 °
‘(/ éPGNs) " " 2004
av, 11 Bit Gofinter 6020
ov, noou n 6040
ov, noow n 6100
aﬁ moomom 6002
oo i i
ofr " " 6001,
Dovnlink Telemetry 18 Bit Shift Register 6200
Disc. Inp. Word 1 g Bits 2020
Disc. Inp. Word 2 7 Bits 2040
DEDA l, Bit Shift Register 2200

- TABIE- C

7432,3-17

Page B-1
AEA DISCRETE INPUTS
BIT POSITION DISCRETE WORD 1 DISCRETE WORD 2
1 Downlink Telemetry Stop GSE Discrete 1
- Output Telemetry Stop GSE Discrete 2
3 Follow-Up "GSE Discrete 3
L Automatic DEDA Clear
5 Descent Engine On DEDA Hold
6 Ascent Engine On DEDA Enter
7 Abort i DEDA Readout
8 Abort Stage ' 7
&

TABLE D

AEA DISCRETE OUTPUTS

NAME SET RESET
Ripple Cérry Inhibit 2410 3010
Atitude) 21,20 3040
Altitude Rate 24,0 3040
DEDA Shift In 2500 ° i
DEDA Shift Out.z. 2600 -
GSE Discrete 4 | v 6401 7001
GSE Discrete 5 6402 7002 |
GSE Discrete 6 | 6L0L 7004
Test Mode Failure “ 6410 7010
Engine Off - 64,20 7020
Engine On 6&40‘ 7040

_TABIE E

7332.3-17
: Page B-5

X AXIS

In Figure F, the direction of the arrows about the
axes indicates positive angular rate (p, q, r) and
displacement. The direction of the arrows along
the axes indicates the direction of positive
translational acceleration and velocity.

FIGURE F. VEHICLE REFERENCE AXES

!._,_. =

&

? ik i
Euler angles (0, V, ¢) are used to

specify the vehicle reference frame

(Xb,) Zb) with respect to the PGNS
inertial reference frame (X, Y, Zi)

FIGURE G.

7332.3-17
Page B-6

B

7332.3-17
Page B-7

: £ _ A 3
Euler angles (a, B,¥) used to specify the vehicle reference frame (Xb, Yb’ 2
with respect to the FDAI reference frame (X;, Y., Zi) ')

P

FIGURE H.

e

S0 AXT

M (w8 [a] N N4
N ¢ N O o w3 “
N4 4 X Y T N Q =
-ﬂM*MQNQ_AM$MQNQ\N
Whhhhhh g ww vea N NN
Q= Q_G'w IW_Q'Q'QININ M oy <t % N N
> X kN k aq 4 Q 2 NN Q9 3 N 8 ¥
QA = W N QY X M § 9 X »m = k= kK

O=NMmtmuebhaosum¥YhuoeRgeuamtlawNg~ anprlawg® g~ g laa ™
SVcQesoaN~~s -~~~ dAdddad Al manmnen PR

