
7322.3-1?
L
V

ABORT ELECTRONIC ASSEMBLY

.- PROGRAMMING REFERENCE "

. . APRIL 1966

H. L. Stiverson

Approved By:
H. B. Grossman

Approved By,-: AJ -U,-
D. L. Meginnit

T"

7332.3-1?
Page i

TABLE OF CONTENTS

INTRODUCTION

1.0 . COMPUTER DESCRIPTION

1.1 CENTRAL COMPUTER

• .' 1.2 INPUT-OUTPUT SECTION

1.3 MEMORY ' ' ' .-

2.0 COMPUTER INSTRUCTIONS

2.1 ARITHMETIC INSTRUCTIONS

: '2.2 LOAD AND' STORE INSTRUCTIONS

2;3 SHIFT INSTRUCTIONS

. 2.4 TRANSFER INSTRUCTIONS

.2.5 INDEX INSTRUCTIONS

. 2.6 TIMING INSTRUCTION

3.0 INPUT-OUTPUT INSTRUCTIONS'

3-1 INPUT REGISTERS '

3.2 OUTPUT REGISTERS .

4.0 START-UP AND SHUT DOWN PROCEDURES

4-1 AUTOMATIC START-UP SEQUENCE

4-2 PROGRAMMED INITIALIZATION

4-3 AUTOMATIC SHUT DOM SEQUENCE

ABBREVIATIONS AND SYMBOLS'r~ •

APPENDIX A ASSEMBLY PROGRAM DESCRIPTION

APPENDIX B TABLES

Page No.

' 1

- 2

2

4
5

6
7
10

lo
11
12

. 12

13

M
20

26 " ;

- -26

26^'

26

27
i

Al - A36

B1-B7

7332.3-17
Page 1

INTRODUCTION . - •

. / " - . . . ; ' . . • > •
This document is intended as a reference source of data

needed for the preparation of Abort Electronic Assembly (AEA.)

programs. It contains information'about the AEA such as its

physical description, input and output capabilities, word

formats, and operation of programmable orders. It also-con-

tains information about the LM Abort Mission frequently

referred to by the programmer such as input and output resolution

and rates, and the use of input and output registers and dis-

cretes. Contained in the appendix section is information for

the use of the AEA Assembly Program, diagrams of coordinate

systems in use, and condensed forms of information contained

in the body of the reference.

7332.3-17
Page 2

1.0 COMPUTER DESCRIPTION

The AEA is a small, high speed, general purpose computer with a substantial

amount of special purpose input/output electronics. It employs a fractional two's

complement, parallel arithmetic section and parallel -data transfer. Instruction

words are 18 bits in length, consisting of a 5 bit order code, an index bit, and a

single 12 bit operand address. Data words are 18 bits in length including sign.

The ferrite core memory system is partially hardwired, partially scratchpad and has

a five microsecond cycle time. For purposes of explanation, the computer may be

separated into the Memory, the Central Computer, and the Input/Output Section.

'1.1 CENTRAL COMPUTER . - " : ' ' 4'

- In the Central Computer are eight data and control registers, an 18 bit parallel

adder, two timing registers, and associated logic. The data and control registers

are interconnected by a parallel data bus. Computer operations are executed by

appropriately timed transfers of information between these registers, between the

Memory and the M Register, and between the Accumulator and input/output registers.

The Adder and. three registers, the M Register, the Q Register and the Accumulator,

form the basis for execution of arithmetic operations. :
-\J

Adder '

The arithmetic section is designed around an 18 bit three microsecond parallel

adder. Two 18 bit "registers, the Accumulator and the M Register furnish the inputs t<

the Adder. The sum generated by the Adder is loaded into the Accumulator. Shifting

operations are implemented by displacing the sum generated by the Adder one bit right

or left when loading it into the Accumulator.

Accumulator (A Register) " . . .

This 18 bit register communicates in parallel with the Adder and the Data-Bus.

In addition, it communicates serially with the Q Register for shifting operations sue

as multiplication, division, and double length shifts. The Accumulator holds the

results of most arithmetic operations and is the register which is used to communicat

with input/output registers.

Memory Register (M Register) ' • .

The M Register is an 18 bit register which is loaded from the Memory or from

the Data Bus. It holds data which is being transferred between the Central Computer

7332.3-17
. - . ' Page 3

\ .nd the Memory via the Data Bus. Data transferred from the Memory is held by the M

Register as it is placed on the Data Bus. During this time, the data is also written

back into the Memory from the M Register if the transfer of data is a read and restore

operation; - Data transferred to the Memory from the Central Computer is held by the M

Register as it is written into the Memory. The M Register holds the multiplicand during

multiplication, the divisor during division, the addend during addition, and the

subtrahend during subtraction. Load Accumulator operations are accomplished by

clearing the Accumulator and then adding the contents of the M Register to the Accumulate

Multiplier-Quotient Register (Q Register) -

The Q Register is an 18 bit register which communicates in parallel with the

Data-Bus and serially with the Accumulator. The Q Register holds the least significant
* ' ' . ' - - . - - - -

half of the' double length product after multiplication, and initially holds the least

significant half of the double length dividend for division. After division, it holds

the unrounded quotient. For double length shifting operations, the Q Register is

logically attached to the low-order end of the Accumulator. After execution of a

TSQ instruction, the Q Register holds a transfer instruction with an address field set

s (io one greater than the location of the TSQ instruction. If the Q Register is then

stored by the routine which has been transferred into, a convenient means of .returning

to the main program is provided. " For divide operations, an extra bit, Q18, is attached

to the Q Register. -

Index Register • '

The Index Register is a three bit counter which is used for operand address

modification. When an indexed instruction is executed, the effective operand address

is computed by a logical OR operation between the Index Register and the three least

, significant bits of the operand address. When a TIX-instruction is executed, the Index

Register is decremented by one if it is greater than zero, and the next instruction is

taken from the location specified by the address field of the TIX instruction. If the

Index Register is zero, it is not decremented, and the next instruction is taken in
•. •

.sequence. The Index Register is loaded under program control from the least significant

three bits of the data bus.

Address Register

The Address Register is a 12 bit register which is loaded under computer control

* from the least significant 12 bits of the Data Bus. It holds the address of the memory

location to which access has been requested by the Central Computer.

7332.3-17
Page 4

-

' Operation Code Register

The Operation Code Register is a 5 bit register which is loaded under computer

control from the 5 most significant bits of the data bus.. It holds the 5 bit order

code during its execution. - ' ' , . ' - - . .

Program Counter

The Program Counter is a 12 bit counter which is loaded from the least significant

12 bits of the data bus by execution of a transfer instruction. It holds and generates

instruction addresses in sequence. ' . . . '

Cycle Counter ,.-• - ..

. The Cycle Counter is a five bit counter which is used to control shift instruction

and certain long orders.

Timing . ' - " . - • * " ' . - • '

Timing is controlled by two registers, one'eight bits in length, and the other :

three bits in length- These registers produce the timing signals required to control

all operations of the Central Computer. r-

1.2 INPUT-OUTPUT SECTION . . - ; .. r'

There are four basic types of registers in the input-output section. These

registers operate independently of the central computer except when they are accessed

during execution of an input or output instruction. All transfers of data between the

central computer and the input-output registers are in parallel. The PGNS Euler Angles

are accumulated in three 15 bit integrator registers. The integrator . registers shift

15 bit positions upon receipt of each^input pulse, serially adding or subtracting one

from the previous count. The integrator registers are set to zero by an external

signal. ASA gyro and accelerometer pulses are accumulated in "six 11 bit counters

which are set to zero when accessed by the central computer. The four bit DEDA

Register, the 18 bit Input Telemetry Register, the 24 bit Output Telemetry Register,

and the 15 bit output register time shared for altitude and altitude rate are all

implemented as shift registers. The remaining registers, the D/A Converter registers

and the discrete input and output registers, are static registers. The Discrete ' .

Output Register is changed by setting or resetting specific bits within the register

with specific output instructions.

C

- . . 7332.3-17
Page 5

1.3 MEMORY

The AEA memory is a coincident-current, parallel, random access, ferrite core

stack with a capacity of 4096 18 bit words. It is divided into two equal sections -

temporary storage and permanent storage. The addresses of the temporary storage"

locations are 0 thru 3777g, and the addresses of the permanent storage locations are

AOOOg thru 7777g- '
/ ;•

Each core in the temporary storage memory is threaded by an X selection winding,

a Y selection winding, a sense winding, and an inhibit winding. In the permanent

storage memory, the inhibit winding is omitted, and the X selection winding passes

only through cores which represent zeros.

. The cycle time of the memory is five n-sec.

r

7332.3-17
Pags 6

2.0 COMPUTER INSTRUCTIONS

The AEA instruction word consists of a five bit operation code, an index bit,

and a single 12 bit address field. Instruction and data formats are shown in

Figure 1. .

INDEX BIT

OP CODE I ' ADDRESS FIELD

0 4 5 6 17 INSTRUCTION FORMAL

SIGN DATA FIELD - TWO'S COMPLEMENT FORM

i>

0 1 DATA FORMAT

FIGURE 1. AEA INSTRUCTION AND
DATA FORMATS.

If the index bit is a one, the address field of any instruction which accesses

the Memory is modified by the Index Register. The effective operand address is

computed-by a logical OR operation between the three bits of the Index Register and

the three least significant bits of.the operand address. - • '

The AEA executes 27 basic instructions. Four of these instructions, CLZ, ADZ,

SUZ, and MPZ,. do not include a memory restore cycle after data is read, leaving the

addressed memory cell contents equal to zero. These instructions require less .

power than the corresponding instructions CLA, ADD, SUB, and-MPR,'and should be used

whenever the contents of the addressed memory location need not be retained.

In the subsequent functional definition of AEA program instructions, each

description is headed by the following information: A three letter mnemonic code

used in symbolic programs to represent the five bit operation code; the letter Y or

N to represent the address field in the description of the instruction; a two digit

octal number which corresponds to the five bit operation code of the instruction

word; and the time, in microseconds, required to execute the instruction. The lettei

Y, as used in the definitions, represents both the address field of the instruction

and the memory location of the operand. This is only the case when no indexing is

-7332.3-17
-e 7

present. If indexing is present, the memory location which is actually addressed

is Y modified by the Index Register. The execution times listed are nominal times.

The actual times are obtained by dividing the nominal times by 1.024. Individual

bit positions of a register are referred to by the letter which represents the
: register, followed by the bit position. • ' . : • -

2.1 ARITHMETIC INSTRUCTIONS -.' ' :'''': ...
 ; ."

Add ' ; • : - . - - • " - " ' ".

ADD Y .22' 10 u-sec , . ;

The contents of Y are algebraically added to the contents of the Accumulator.

If overflow occurs, thet overflow indicator is set. The contents of Y are unchanged.

I Add and Zero - - . '

ADZ Y 32 10 (asec '".

The contents of Y are algebraically added to the contents of the Accumulator.

\ If overflow occurs," the overflow indicator is set. The contents of Y are set to zer;

t r t- , .**

Subtract ''-". - . '" . - - .

SUB Y 24 10 usec - • ". "

The contents of Y are algebraically subtracted from the contents of the

Accumulator. The contents of Y are unchanged. If overflow occurs, the "overflow

indicator is set.

.̂
Subtract and -Zero -

SUZ Y 34 10 u-sec

The contents of Y are algebraically subtracted from the contents of the

Accumulator. The contents of Y are set to zero. If overflow occurs, the overflow

indicator is set.

Multiply

\ MPY Y 06 . 7 0 ̂ sec

The contents of the Accumulator are multiplied by the contents of Y. The most

significant half of the double length product is placed in the Accumulator and the

7332.3-17
Page 8

least significant half in the Q Register.
/

.A special condition exists when the contents of Y are 'equal to minus one

(YO = 1, Yl thru Y18 = 0). In this case, the contents of the Accumulator will

remain unchanged for all initial values of the Accumulator including minus one."

The Q Register will contain zeros. If the Accumulator initially contains minus

one and Y contains some value other than minus one, multiplication proceeds normally,

In this case, the product will be represented by the two' s •'complement of the con-

tents of Y in the Accumulator, and zeros in the Q Register.

Multiply and Round . s
MPR Y - 26 ?0 u-sec

This instruction is identical to the MPY instruction with the exception that

the most significant half of the double'length product, held in the Accumulator,

is rounded. Rounding is implemented as follows: If, after obtaining the double

length unrounded product, bit Ql is a one, a one is added into the least signifi-

cant bit of the Accumulator. If bit Ql is a zero, both the Q Register and the

Accumulator remain unchanged.

Multiply and Zero . .

MPZ Y 36 70 p-sec

This instruction is'identical to the MPR instruction with the exception that

the contents of Y'are set to zero.

Divide.

DVP Y . 0 4 - 7 3

The contents of the double length dividend, the most significant half of which

is contained in the Accumulator and the least significant half in the Q Register, i;

r

7332.3-17
Page 9

v divided by the contents of Y. The sign of the Q Register is disregarded. The

' rounded quotient is held by the Accumulator and the unrounded quotient by the

Q Register.

To prevent greater than fractional quotients, the dividend and divisor must

be scaled such that the absolute magnitude of the dividend is less than that of
! • . _

the divisor when represented in the machine. When initial conditions which result

in greater than fractional quotients are detected, the overflow indicator is set

and the divide operation proceeds normally. One exception to this occurs when

the contents of Y are positive and the Accumulator contains an equal negative

value. The overflow indicator is not set and the quotient which results is minus

one (AO ~ 1, Al thru Al? - 0). If the contents of Y are negative and the Accumulator

contains an equal positive value, the overflow indicator is set. The result,

however, is also minus one. ^
! . >

! -

The last step of the division process is placing the quotient in the Accumu-

lator and rounding it. Rounding is based upon a determination of the next bit

of the quotient. If the additional bit is a one, a one in the least significant

bit position is added to the quotient in the Accumulator. If the additional bit
i

is a zero, the Accumulator remains unchanged and equal to the unrounded quotient

retained in the Q Register. Rounding is inhibited when it causes overflow in thev

Accumulator. This condition exists when the Accumulator contains the maximum

positive value (AO - 0, Al thru Al? = l). It results from division of a"quantity

by a quantity of equal sign and only slightly larger magnitude.

Complement Accumulator

COM 60 f- • 16 ^isec
«

The contents of the Accumulator are replaced" by their two's complement. If

the contents of the Accumulator are minus one (AO = 1, Al thru A17 = 0) or zero,

the Accumulator remains unchanged.

*.
Absolute Value of Accumulator

ABS 62 16 tisec • .

If the contents of the Accumulator are negative, they are replaced by their

\ two's complement. If the contents of the Accumulator are possitive, zero, or equal to

:' . 7332.3-17
Page 10

minus one (AO - 1, Al thru A17 = 0), the Accumulator remains unchanged.

2.2 LOAD AND STORE INSTRUCTIONS - ' .

- Clear and Add • • • . '

CLA Y 20 10

The Accumulator is loaded from Y. The contents of Y remain unchanged.

Clear, Add and Zero . • " .

CLZ Y 30 10 |isec / .*..

The Accumulator is loaded from Y. The contents of Y are set to zero,

Load Q Register •

LDQ Y -14 13 ̂ sec ,

The Q Register is loaded from Y. The contents of Y remain unchanged.

Store Accumulator

STO> Y 10 ' 13 usec

The contents of the Accumulator are stored in Y. The Accumulator .remains

unchanged.

Store Q Register

STQ Y 12 ff 13 u-sec

The contents of the Q Register are stored in Y. The Q Register remains uncharu::

2.3 SHIFT INSTRUCTIONS

Accumulator Left Shift
*.
ALS N 56 3N + 13

The contents of the Accumulator are shifted left N places. N is specified by-

bits 13 thru 17 of the instruction word. If any .bit shifted from Al changes AO, the

overflow indicator is set. Zeros are shifted into Al?, and bits shifted from AO are

'} lost.

r

7332.3-17
Page 11

Long left Shift . •

LLS N ~ 52 3N + 13 ^soc ,

The contents of the Accumulator and bits one thru seventeen of the Q Register

are left'shifted as one register N places. " N is" specified by bits 13 thru 17 of

the instruction word. The sign of the Q Register "is made to agree with the sign

Of the Accumulator. If any bit shifted from Al changes AO, the overflow indicator

is set. " Zeros are shifted into Q17, and bits shifted from AO are lost.

long Right Shift / ;-.

LRS N 54 .3N + 13 M-sec :''.;,-.

The contents of the Accumulator and bits one thru seventeen of the Q Register

are right shifted as one register N places. N is specified by bits 13 thru 17 of

the instruction word. The sign of the Q Register is made to agree with the sign

of the Accumulator. Bits shifted into AO are the same as AO, and bits shifted from

Q17 are lost. ,•. . . .,• -.r . *

2.4 TRANSFER INSTRUCTIONS'

Transfer ' . :"

TEA Y 40 - 10 p.sec

-The next instruction is taken from Y. .

Transfer and Set Q . •' .

TSQ Y 72 16 p,sec *

The contents of the Q Register are replaced by a transfer instruction with

an address field set to one greater €han the location of the TSQ instruction, and

a one in the index bit position. The next 'instruction is taken from Y. If the
i

Q Register is stored by the routine to which control.has been transferred, a

convenient means of returning to the main program is provided. The one in the index

bit position of the transfer instruction is disregarded when the instruction is

executed.

Transfer on Minus Accumulator

IMI Y 46 10 \isec

The next instruction is taken from Y if the contents of the 'Accumulator are

negative. If the contents of the Accumulator are positive or zero, the next

instruction is taken in sequence.

7332.3-1?
Page 12

-Transfer on' Overflow

TOT Y .: : 44" ' 10

If the overflow indicator is set, the next instruction is taken from Y, and

the overflow indicator is reset. If the overflow indicator is reset, the next

instruction is taken in sequence.

2.5 .INDEX INSTRUCTIONS

Address to Index

.AXT N 50 13 î sec :,? ; :

- The index register is set to N. N is specified by bits 14 thru 17 of the

-.instruction word. _ , ; -1; .-..--- "--I, '.i -^. - •„:~ . . - " . -

Test Index and Transfer ." •

: TIX Y 42 10 p-sec ' L

If the index register is greater than zero, it is decremented by one and the

next instruction is taken from Y. If the index register is zero, it remains unchangec

and the next instruction is taken in sequence.

2 . 6 TIMING INSTRUCTION

70

Execution is halted until a timing signal, which is generated at 20 millisecond

intervals, is received. The next instruction is taken from Y, If the computer is

not in the halt mode when the timing signal is generated, the Test Mode Failure

Discrete is set. Execution of this instruction at the completion of each computation.

cycle provides a means of equalizing the time duration of computational cycles.

- 7332.3-17
Page 13

3.0 INPUT-OUTPUT INSTRUCTIONS

-::: Ther.e are two operation codes for this set of instructions, one to address

: input registers and one to address output registers. The individual registers are

; addressed by variations in the address field of the input or output instruction

-• word. Section 2.0 defines the format for AEA instructions; The following is a „

- definition of the two input-output instructions: ~

. 64 16 or 6? usec .'..;;;'

The contents of the input register specified by Y are loaded into ".the

Accumulator and the register is set to zero or remains unchanged depending upon

the register which is selected. To facilitate resetting registers, the addresses

of certain registers"may be combined. When this is done, each of the input registers

involved will be reset or will remain unchanged depending upon the registers which

are addressed. When more than one input register is addressed simultaneously, the

Accumulator will contain the logical OR of the contents of all of the registers which

are addressed. Only addresses which have the same most significant octal character

can be combined. To combine the addresses of two or more input registers, add their

addresses together algebraically, excluding the most significant character. For ekamplt

• combining the addresses of all six of the eleven bit counters results in an address

of 6176. Execution time is 6? JJ-sec if a PGNS Angle Register is addressed, and 16

ttsec for all other input registers. " . .

The addresses of the individual input registers and input discrete bit positions
"

are given in Table C and Table D of Appendix B.

Output

OUT Y 66 13 M-sec

The contents of the Accumulator are transferred to the output register
.

specified by Y unless Y is the address of a discrete output. If Y is the address of

a discrete output, the discrete is set or reset as specified by Y. The addresses of

certain groups of output registers and output discretes may be combined. Only

addresses with the same most significant octal character may be combined. To combine

the addresses of two or more output registers, add their addresses together algebraical!

excluding the most significant octal digit. When combining the addresses of two or

r

7332.3-17
Page 14

more discrete outputs, this procedure cannot be followed for the set addresses. When

adding the .set addresses together, the most significant four binary bits are excluded.

For example, combining the addresses of the first four discrete set outputs results

in an address of 2?60. When more than one output register is addressed simultaneously

each register is loaded from the bit positions of the Accumulator which normally load

the specific register. Combinations of output discrete addresses cause each of the

discretes involved to >be set or reset depending upon the four most significant binary

bits of the combination.

The addresses of the individual output registers and discretes 'are given in
-'./. . -

Table B and Table E of Appendix B. **' • \

' 3.1 INPUT REGISTERS . - ' '
i - " .

The AEA contains 13 input registers. They are the three fifteen-bit integrating

registers for accumulating PGNS Euler Angles, the six eleven-bit counters for accumulat:

ASA gyro and accelerometer pulses, the eighteen-bit shift register for Downlink Telemeti

the seven and eight-bit static registers'for Discrete Inputs, and the four-bit shift

K register for DEDA input and output. Each of these registers is discussed separately
p
i in the following sections with emphasis on its function within the Abort Guidance Syster
i . *
" . Integrator Registers

The three fifteen-bit integrator registers accumulate the PGNS Euler Angles

6, 0, and J*T, The inputs to these registers are in the form of pulse train signals

which have a repetition rate which ranges from zero to 6.4 kpps. There are two inputs

to each register, one for positive pulses and one for negative pulses. The registers

shift fifteen-bit positions upon the receipt of each pulse train, serially adding or*• •
subtracting one from 'the previous count. Shifting is inhibited when a register is

accessed by the Central Computer. The registers are reset only by receipt of an,

external signal. When read by an input instruction, the contents of the addressed

register are loaded into bits 1 thru 15 of the Accumulator. Bits 16 and 1? of the

Accumulator are" set to zero.

The three PGNS Euler angles, which _ai*e the IMU gimbal angles, have t!>o following

characteristics:

a) Scale Factor - 360/2 degrees per bit

N b) Range - 15 bits
\c; Format -- two's complement

i—

7332.3-17
.' Page 15

/ ' -/ i
} ASA Input Counters

The six 11-bit ripple counters accumulate incremental angular information about

the vehicle x, y, and z axes and incremental velocity changes along the .vehicle x, y,

and z axes. The inputs to these registers are in the form of pulse train signals which

have a repetition rate which ranges from zero to 64 kpps. The registers are incremented

by one count upon the receipt of each pulse train. When read by an input instruction,

the contents of the addressed register are loaded into bits 1 thru 11 of the Accumulator

- and the register is set to zero. Bits 12 thru 17 of the Accumulator are set to zero.
\ ,'

During any one millisecond period, the presence of 32 pulses represents a zero

signal; the presence of 6l pulses represents the maximum positive signal;'the presence

of 3 pulses represents the maximum negative signal. The bias of 32,000 pulses per
i

second is removed by the program after sampling the input register. To prevent overflow,

' the registers must be sampled at 20 msec intervals.

> The nominal pulse weight of the incremental angular information is 2~ radians/puls

'. The nominal pulse weight of the velocity increments 5s (0.1/32) feet/second/pulse.

^ Downlink Telemetry Register .:

r The Downlink Telemetry Register is an IB bit shift register which receives data

' " from the PGNS in serial form. The register retains the first 18 bits of a 4Q bit

downlink telemetry word which is shifted, under external control, at a rate of 51*2 kpps.
i

The data is transmitted by the PGNS at a basic rate of 50 words per second, every

fifth word being an identification (ID) word. 'A stop pulse discrete is received from

the PGNS to indicate the end of a transmitted word. To achieve proper synchronization

with the data transmissions, the Stop Raise Discrete is sampled twice each 20 msec

interval with a minimum separation between samplings of 1 msec. When the program detects
t

the Stop Pulse Discrete, it inputs the register. When the Downlink Telemetry Register

is read with an input instruction, the 18 bits of the register are loaded into the

Accumulator and the Stop Pulse Discrete is automatically reset.

Input of data through the Downlink Telemetry Register is initiated by a command •

via the DEDA. Upon receiving the command, the'program searches for the ID word which

signals the start of the block of data. Upon finding the correct ID word, the program

reads in and stores the block of data, skipping over every fifth word which is an ID
>, .

word. The number of words in the block of data is predetermined by system requirements.

The downlink data words consist of a word order bit, a sign bit, 14 magnitude bits, and

7332.3-17'
Page 16

two additional bits.

The PGNS downlink word formats are shown in Fig. 2.

Bit No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

I D Word O O O O O O X X X X ' X X X X X X T Y

Data Word 1 S X X X X X X X X X X X X X X Y ~ Y

. ' X *= 6 or 1 -

Y - Not Applicable . . - y

S = Sign Bit (0 or l) . ' ' . /.

FJG. 2 PGNS DOWNLINK WORD FORMAT
.

Communication With Ground Support Equipment

The Downlink Telemetry Register is also used to transfer a. block of computer words

from the Ground Support Equipment (GSE) to the erasable portion of the AEA Memory. The

•".umber of 18 bit words in the block is determined by the GSE. Initiation of the

information transfer is also controlled by the GSE.
*\'

- The starting address, from which this block of information is to be stored, is

specified by the first word which is transmitted to the computer. The format of the

word, expressed in octal, is as follows:

Bits 0 thru f> are an identification code, and bits 6 thru 17 specify the starting

address.
f-

Two input discretes (GSE 1 and GSE 2) and one output discrete (GSE 5) are used to

control the transfer of information. GSE 1 is sampled periodically to determine if the

GSE is requesting a loading operation. If the discrete is present, the first word is

input from the Downlink Telemetry Register, and the starting address is extracted. The

program then sets GSE 5 to acknowledge receipt of the word, and waits for GSE 1 to be

reset. When GSE 1 is reset, the program resets GSE 5 and waits for an additional

setting of GSE 1 to indicate that the next word has been transmitted to the Downlink

Telemetry Register. If both GSE 1 and GSE 2 are set by the GSE, the program interprets

he associated word as the last word of the block.

7332.3-17
Page 17

DATA Entry and Display Assembly (DSDA) Register

"The DEDA Register is a four bit input and output register which communicates

serially with the DEDA. Four bits of data are shifted in or out of the register by

external "shift pulses at the rate of 64 kpps. A one in the serial data is

represented by the presence of a pulse and a zero by the absence of a pulse. Four

. bits of information are received serially from the DEDA by setting the DEDA-Shift-In

Discrete Output. Four bits of information are transmitted serially to the DEDA by

setting the DEDA-Shift-Out Discrete Output. Both of these discretes are reset

automatically. A minimum period of 80 jisec must be allowed between settings of these

discretes. Bits 1 thru 4 of the DEDA Register are transferred to bits 1 thru 4 of

the Accumulator by addressing the DEDA Register with an input instruction. Addressing

the .DEDA Register with an output instruction transfers bits 14 thru 1? of the

-Accumulator to bits 1 thru 4 of the DEDA Register.

Information transfers to and from the DEDA Register are controlled by the

Astronaut via the DEDA. The DEDA provides a means of transmitting mode commands,

instructions, and data to the AEA, and read-out of data stored in the AEA Memory.

/ 512 memory locations in the AEA may be addressed by the DEDA for read-out or storage

of data. The DEDA keyboard consists of ten decimal digit pushbuttons, two sign

pushbuttons,, and four control pushbuttons. The displays consists of a three digit

address display, a sign plus five digit data display, and an operator error display.

The four control pushbuttons, CLEAR, ENTER, READOUT, and HOLD, apply discretes of

the same name to the AEA.

DEDA operation is initiated by depression of the CLEAR pushbutton. When the

program determines that the Clear Discr-ete has been set, it prepares for a new

operation and then checks for the presence of the Readout or Enter Discrete.

Data Readout ' (.. • *

To initiate readout of a computer memory location, a. three digit octal address

is entered followed by depression of the READOUT pushbutton. Upon entry of each

digit, it appears on the address display. When the program determines that the

Readout Discrete has been set, it inputs, in four bit serial groups, the 9 bits of

address information. The program then transmits to the DEDA, in four bit serial groups,

x the contents of the addressed memory location along with the address information. This

information appears on the DEDA display. The scaling of the transmitted information

is determined by its address as is its data format, which is either octal or binary code:

r~

7332.3-17
Page 18

D

decimal. The contents of the specified location are transmitted at half second

intervals unless the Hold discrete is received from the DEDA. If the Hold Discrete is

received, the program stops transmitting data. Transmission is resumed from the same

address if the Readout Discrete is again received. Data transmission is terminated

following receipt of the Clear Discrete,

Data Entry • . • .

To enter data, a three digit address, a sign, and five digits of data are entered

via the keyboard, followed by depression of the Enter pushbutton. When the program

detects the Enter Discrete, it inputs, in four bit serial groups, 36 bits of address

and data information. Depending on the address specified, the entering information may

be a mode command, an instruction, or input data. Its address also specifies the scalis

of the data and whether it is to be treated as octal or binary coded decimal informatio;

Operator Errors

If an operator error exists at the time the ENTER or READOUT pushbutton is depress

subsequent four bit data transmissions from the DEDA will contain all ones. In normal

operation no four bit transmission will "contain all ones.

Data Format '. .

Data transmissions in either direction are in four bit groups beginning at the mos

significant end of the 36 bit word shown in Figure 3- Each 4 bit group is transmitted

serially, most significant bit first.

12
0 X X X 0 X X X 0 X X X

ADDRESS

13 16 17 36
o o_o x]* x xxi* x x xj* x x xl* x x xl *• x x x
SIGN DATA

0 - Zero

X '- One or Zero

* - One or Zero if format is BCD, Zero if format is octal

FIG. 3 36 BIT DEDA WORD

F

7332.3-17
Page 19

-" ' Discrete Inputs

The discrete inputs are grouped into two words, Discrete Word One, which

represents eight input discretes, and Word Two,' which represents seven input

discretes. All but the Stop Pulse discretes are buffered switch closures to

computer ground. The Stop Pulse input lines set flip-flops in the computer.

When addressed by an input instruction, the specified discrete word is set into

the accumulator. The individual discretes occupy the bit positions shown in

Table D of Appendix B, a zero representing the true state of the discrete. Unused

bit positions of the Accumulator are set to zero.

Most of the individual discrete inputs are associated with data transfers

vi.a a particular register. The following list shows this association:

- -Downlink Telemetry Register - Downlink Telemetry Stop

- GSE 1 .* :

Output Telemetry Register

DEDA Register

- GSE 2

- Output Telemetry Stop

- GSE 3

- DEDA Clear

- DEDA Hold

, - DEDA Enter

- DEDA Readout

Information on the use of these 'discretes may be found under the discussions

of the associated registers, ^
i

Six discrete inputs are interrogated by the program to determine the system

status. They are: Followup, Automatic, Abort, Abort Stage, Descent Engine On,

and Ascent Engine On. The first four of these are Astronaut controls. The Descent

Engine On Discrete and the Ascent Engine On Discrete are applied to the computer

when the Descent Engine or the Ascent Engine, respectively, are firing.

7332.3-17
Page 20

3.2 -OUTPUT REGISTERS ' . .

The' AEA contains 13 output registers. They are the 10 static D/A converter

registers used for displays and attitude control, the 14 bit shift register for

controlling the altitude and altitude-rate displays, the 24 bit shift register for

output telemetry, and the 4 bit shift register for communication with the Data Entry

and Display Assembly. In addition, there are 11 discrete outputs. Each output

register and discrete is discussed separately in the following paragraphs with

emphasis on its use within the Abort Guidance System.

Total Attitude Display Registers

The six Total Attitude Display Registers are 10 bit static registers which

control D/A converters. They are used to output the sines and cosines of the Euler

angles a, £, and d~', for control of the Total Attitude Display. When addressed with

an output instruction, the specific register is loaded from bits 0 thru 9 °f the

Accumulator. The computed data must be limited before outputting, and has the

following characteristics:.

a) Output Rate - 25 times per second,

b) Range - 9 bits plus sign.

c) Scale Factor - most significant bit equals 1/2.

d) Format - Sign plus magnitude with a positive sign represented by a zero.

Figure H in Appendix B shows the order of rotation of the Euier Angles a, 3,

and &~, which'relate the'vehicle axes to the inertial"axes wit.Vthe'gimbal

sequence of the attitude display indicator.

Attitude Error Registers £ •

The three Attitude Error Registers are 10 b££ static registers which control
•

D/A converters. They are used to output the rotational attitude errors about the

three body axes for control of the vehicle and for display. When addressed with an

output instruction, the specific register is loaded from bits 0 thru 9 of the

Accumulator. The computed data must be limited before outputting and has the

following characteristics:

a) Output Rate - 25 times per second.

' b) Computation Delay - Maximum of 10 msec between sampling of gyro inputs

and the subsequent output of the attitude errors.

- . . . - . 7332.3-17
- ; Page 21

| . . . " - .
? - - c) Range - 9 bits plus sign.

-3d) Scale Factor - Least significant bit equals 0.5113269 x 10 radians.

e) Format--. .Sign magnitude with a positive sign represented by a zero.

- Lateral Velocity Register

The Lateral Velocity Register is a 9 bit static register which controls, a D/A

converter. It is used to output the lateral velocity, that velocity along the Y

body axis, for the Navigation Displays. When addressed with an output instruction, th;

register is loaded from bits 0 thru 8 of the Accumulator. The computed data must be

limited before outputting, and has the following characteristics:

| a) Minimum Output Rate - 5 times per second. -• •

i b) Range - 8 bits plus sign.

c) Scale Factor - Most significant bit equals 100 ft/sec.

d) Format - Sign magnitude with a positive sign represented by a zero.

I Altitude - Altitude Rate Register
I . , -
, (• The Altitude - Altitude Rate Register is a 15 bit output shift register which

) provides both serial data and shift pulses to the external equipment. The register is
1 used to output both altitude and altitude rate to the Navigation Displays and, therefo:
1 has two output data lines and two output shift pulse lines. A one in the output data

is represented by a pulse and a zero by the absence of a pulse. Fifteen bits of data

are output, most significant bit first, with th'e shift pulses, at a rate of 64 kpps.

Data output from this register is initiated by loading it from bits 0 thru 14 of the

Accumulator with an output instruction. Before loading the register, the desired

• output lines must be selected with di'screte outputs. If output to the Altitude Displa;.

is desired, the Altitude Rate Discrete must be reset and the Altitude Discrete set,

prior to loading the register. If output to the Altitude Rate display is desired,

the discrete output settings must be reversed. If both discretes are set, output on

both sets of lines will occur. Successive outputs to the register must be spaced by

• a minimum of 2?0 p.sec to allow the previous data to be shifted out.

The computed data must be limited before it is output and has the following

characteristics:

Altitude

* • a) Minimum Output Rate - 5 times per second.

r

7332.3-17
Page 22

b) Range - 15 bits.

c) _Scale Factor - Least significant bit equals 2.34 feet.

d) Format.- Magnitude: ..

• Altitude Rate

a) Minimum Output Rate - 5 times per second.

b) Range.- 14 bits plus sign. •"..""'

c) Scale Factor - Least significant bit equals 0.5 ft/sec.

d) Format - Sign magnitude with a positive sign represented by a one.

Page 23

Output Telemetry Register

The Output Telemetry Register is a 24 bit shift register; which is used to output

serial telemetry data. A one in the output data is represented by a pulse and a zero

by the absence of a pulse. The 24 bits of data are shifted from the register, most

significant bit first, by externally supplied shift pulses at a rate of $1.2 kpps. As

the register is shifted, zeros are shifted into the least significant bit of the

register. ' When the external equipment has supplied 24 shift pulses it sends a stop

pulse which sets the Output Telemetry Stop Discrete. The 24 shift pulses, followed
i

by the stop pulse, are sent to the computer at 20 msec intervals.

The Output Telemetry Register is loaded in two operations by execution of two

different output instructions. An output instruction with 6200 in. the address field

resets the register and the Stop Discrete, and loads bits 0 thru 1? of the register

from the Accumulator. An output instruction with 6100 in the address field loads

'bits 6 thru 23 of the register with the logical OR of the Accumulator and bits 6 thru

23 o'f the register.

The Output Telemetry Stop Discrete indicates that the previous word has been

shifted out of the Output Telemetry Register. To assure proper synchronization with

the external equipment, it is sampled twice in a 20 msec period with a'minimum
.

interval between the two samplings of 1 msec. When the program detects the presence

of this discrete, it loads the Output Telemetry Register with the next word to be

output, thereby resetting the discrete. .

GSE Communication

The Output Telemetry Register, in conjunction with discrete input GSE 3, and

discrete outputs GSE 4 and GSE 6, can T>e used to communicate with the Ground

Support Equipment (GSE). When the GSE receives discrete output GSE 4j it unloadsi
the Output Telemetry Register by transmitting 18 shift pulses to the AEA, thereby

receiving the contents of the 18 most significant bits of the Output Telemetry Register.

The GSE acknowledges receipt of the information by applying discrete input GSE 3 to

the AEA. When the program detects this discrete, it resets discrete output GSE 4 and

• - - 7332.3-17
Page 24

i ' 'i
| " waits for discrete input GSE 3 to be reset. When discrete input GSE 3 is reset, the

. program loa'ds the Output Telemetry Register with the next word;and then sets discrete

output GSE 4. The program indicates that the current-word is the last word of the

block by setting discrete output GSE 6 in coincidence with the: usual setting of

discrete output GSE 4- s ' '

.... DEDA Register ' . .' . ; ; ' - . . ' - - . '

- A discussion of this register will be found-in the section describing input
i - -

registers. :. . :. .; -.. . •

Discrete Outputs • ' i

The AEA contains 11 discrete output flip-flops. When addressed by an output
1 instruction, the individual discrete is set or reset depending upon the address. The

two DEDA discrete outputs cannot be reset by execution of an output instruction, but

are automatically reset. Most of the individual discrete outputs are associated

with'data transfers via a particular register. The following list shows this associate
*

I Altitude - Altitude Rate Register •- Altitude
-* • ~

- Altitude Rate
ia . - - - . - - "
* DEDA Register - DEDA Shift In \-

- DEDA Shift Out :

Output Telemetry Register - GSE 4 ' .

• - GSE 6
i

Downlink Telemetry Register - GSE 5

Information on the use of these discretes may be found under the discussions

of the associated registers. • --- . . . , . _ .

The Test Mode Fail.ure Discrete Output is automatically set if a Delay instruction

is not being executed when the computer issues the 20 msec timing pulse. It is also
•

Used to indicate the detection of a fault by the self test program, and can be set

or reset by addressing it with an output instruction.

The Ascent Engine On and Descent Engine On discrete outputs control the main

engines when the Abort Guidance System is in control of the vehicle. An Ascent

' Engine On Command is issued by setting the Ascent Engine On Discrete and resetting the

Descent Engine On Discrete. A Descent Engine On Command is issued by reversing the

v discrete settings.

Carry Inhibit Discrete Output

The Ripple Carry Inhibit Discrete Output is used by self test programs to

provide a more complete check of the computer adder. When set, it inhibits the normal
... „ i—

Page 25

path of carry propagation, thereby providing a method of testing the carry by-pass,

logic. This method of test is necessary because, under norjnal operating conditions

the carry by-pass logic is redundant, and therefore,- its failure to produce a valid

carry would go undetected.

The carry by-pass logic operates as follows: If either or both of the

operands of each stage within the by-passed are ones, and if a carry into the

least significant stage of the by-passed section is present, a carry is immediately

generated out of the most significant stage of the by-passed section.

The Carry Inhibit Discrete, when set, inhibits carries out of the most

significant stage of a by-passed section only when they are caused by a carry into

this stage from the next most significant stage. For example: If both operands of

the next most significant stage of a by-passed section are ones,, and if one of the

operands of the most significant stage is a one, a carry.out of the most significant

sta'ge is not produced if the Carry Inhibit Discrete is set, unless the required

conditions are present for a carry to be generated by the by-pass logic. However,

if both operands of the most significant, stage of a by-passed section are ones, a

carry out of this stage is generated regardless of the state of the Carry Inhibit

Discrete.

Figure 4 shows the carry by-pass system,

< „.
;

^
- 6

BY-PASS LOGIC

i<£— — 7 z- B £— 9 e-

K*

10 •̂ ~

n* >r^

n

t

§ '- 12 s—

BY-PASS LOGIC

13 z- 14 c-

f*

15 f- - 16 17

0 * 1 KJ 2

BY-PASS LOGIC

v 3 s 4 £~

/\

5

/

s \

1

/
•*.

- -FIG. 4 CARRY BY-PASS SYSTEM

To test the ability of a section of by-pass logic to generate a carry, the

following conditions are necessary:

1) Carry Inhibit Discrete Set :

2) A carry out of the stage preceding least significant stage of by-passed

7332.3-17
. Page 26

3) One, but not both, of the operands of the most significant stage of the

by-passed section, must be a one.

4.0 START-UP AND SHUT DOWN PROCEDURES

This section deals with automatic and programmed start-up and shut down procedur

4.1 AUTOMATIC START-UP SEQUENCE ' - . r '

. When the computer is switched to the.OPERATE mode, power is applied in a

predetermined sequence which prevents loss of data from temporary storage. When the

voltages are at their proper levels, initial conditions are established such that the

computer obtains its first instruction from memory location 6000,,. If this memory

location does not contain an unconditional transfer (TRA, TSQ, or DLY), the next

instruction will be taken from memory location 00010. The automatic initialization
o

sequence also resets the overflow indicator and the Engine On Discrete Output.

4.2 PROGRAMMED INITIALIZATION . ' ;

When power is applied to the AEA, most of the registers and discretes in the

Input/Output Section assume a random state. To prevent random outputs from the

computer, and for proper execution of programs, it is necessary to initialize certair

of these registers and discretes. - '.'.
. .

Before any instruction which involves use of the adder can be executed, the

Carry Inhibit Discrete must be reset. All of the discrete outputs and the Carry

Inhibit Discrete may be reset by executing two output instructions, one with 3050 in

the address field, and one with 7077 in the address field.

The Downlink Telemetry Register and the DEDA Register must be initialized by

inputting each of these registers, £•

The permanent memory must be initialized, by accessing each of its locations
i

at least one time before executing programs from it. Under normal conditions,

initialization of the permanent memory is necessary only the first time it is

operated. However, for maximum protection against loss of information, this

initialization procedure should be performed as part of the .start-up sequence.

4.3 AUTOMATIC SHUT DOWN SEQUENCE . " /' " . . .

When the power supply input voltage drops below the required level, the compute;

shuts down operation systematically and restarts operation, as described in

Section 4-1, when the required voltage is restored. To prevent loss of Information

from temporary storage when shutting down, the computer does not halt operation when

a memory cycle is in process.

- r .

7332.3-17
Page 27-

- ABBREVIATIONS AND SYMBOLS USED IN THE TEXT

ABBREVIATIONS

AEA - Abort Electronic Assembly

AGS - Abort Guidance System

ASA -" Abort Sensor Assembly

.D/A - Digital to Analog

DEDA - Data Entry and Display Assembly

GSE '- Ground Support Equipment

ID - Identification

IMU - Inertial Measurements Unit . :

LEM - Lunar Excursion Module

OP CODE - Operation Code

PGNS . - Primary Guidance and Navigation System

SIMBOLS .:

T . - Represents a memory location or the address *
field of an instruction.

N - Represents the address field of an instruction

AO, Al, ... A17 - Individual bit positions in the Accumulator.

QO, Ql, ... Q17 - Individual bit positions in the Q Register.

YO, Yl, ... Y17 - Individual bit positions of a memory locatibn.

r

APPENDIX A

LEM ASSEMBLY PROGRAM

'

5

7332.3-17
Page i

APPENDIX A '::1

This appendix provides all of the information

necessary for the use of the LEM Assembly Program

(LEMAP), a program which assembles symbolically

coded programs into binary information for filling

the AEA memory.

1
7332.3-17

-. : Page ii

:. - : - ,-'•: • " •-' .•'. - - TT- CONTENTS . • •
-::.:. = - ..- ..:. -• ---• . page No.

I.' " INTRODUCTION ' " ' - A-l

r: :.-; :jj;-
 :" THE LEMAP LANGUAGE ' ' A-3

Basic Definitions" " " " A-3

- • : ' Symbolic Card Format - - A-4

.Symbols - . . '. : A-5

The Location Counter " - A-5• __
. .. Relative Expressions • - . - • - • • A-6

- , ^

;-._.-,.. Use of »*» as a Symbol / A-?

Ill,"" "DESCRIPTION "OF LEMAP OPERATIONS - A-?

Classification of LET-UP Operations , A-t

Pseudo-Operations " .' A-7

ORG \ .A-7
- • • • - - B S S :. . - . . _ - . . A^

BES • •' " A-9

. SIN, EQU . . - : " " A-10

: - : - ' " - - - - ,-' DEFINE - ' . " • " A-12
: "-- "" ; "- • £. - : - - 'DEC --;• - A-12

- :..-. . • I . -OCT • ;'. .- A-15

• ; . ;' : - END. A-l6

IV. JIRROR INDICATION ̂ ' A-16

V. DECK SET UP AND PRODUCTION PROCEDURES " . 1 A-l? '

Original Compilation Using LEMAP - " " A-17

Loading the Compressed Deck vdthout MODS A-17

Loading the Compressed Deck with MODS • A-18

Sequence Number in CC 65-71 - - A-18

Use of Pseudo-Operation ALTER A-20

Control Cards . A-22

3 - Notes A-23

7332.3-17
. Paee A-l

I. INTRODUCTION .' .

" The LEM Assembly Program (IEMAP) consists of two sub-parts; the assembler

and a card handling routine. " !
/ ' I
The card handling routine used by IEMAP is SCUFF [("Symbolic Compression

• --• of Unspecified Free Fields"). SCUFF provides the capability of compressing

an original symbolic deck, of reading a compressed deck, and of reading a

compressed deck and introducing symbolic modifications to it. Four general

types of runs are possible:
* " • • , - . ' - , . ' :

1. Compression of a symbolic deck. j -

2. Modification and loading of a compressed deck.

' 3. The punching of a nevr compressed deck from a modified deck.
i *

4. Punching of a symbolic deck from a compressed deck.

i On each run which includes punching, 1£MAP will provide a listing of

the new deck, with a sequence number associated with each card, LEMAP may also,

by use of a LIST card, provide a listing of an unmodified compressed deck in a
i; , ., ' • non-punch run.
i
N The compressed deck contains, in binary form, the BCI equivalent of the

i &
information contained on the original symbolic cards. The compressed deck is

thus merely a more compact and manageable means of handling totally symbolic

information. It provides essentially the same degree of flexibility of
i

modification and rearrangement as a symbolic deck.

The Assembler requires two passes. On the first pass the following'thir

(not necessarily in the order given) are done:

. 1. Whenever an ORG pseudo-operation is encountered, the location count*

is set to the value appearing in the variable field (for an explanation of the

• location counter, see Section D in Chapter 2j also for more detailed inf9rmati

about pseudo-operations, see Section B in Chapter 3)- If the location counter
.

is not set to the desired value by the programmer by using an ORG as the first

instruction of his program, the location counter will start with the value OOC

.i.e., the first instruction of the program which requires a location in the IJE

memory will be assigned to location 0000.

2, Whenever a LEM machine operation is encountered, the value of the

'\ location counter is increased by one, thus assigning an absolute location to

LEM machine operation.

r

7332.3-17
Page A-2

i ' .
' • i

3. -Whenever a data generating pseudo-operation, i.e., OCT or DEC,

is encountered the location is increased by the number of words generated
* - • /: - ' !- '

by the OCT or DEC pseudo-operation, thus assigning an absolute location for

each:data word generated by the DEC and OCT pseudo-operations*

4. Whenever a"block" storage allocating .pseudo-operation," i'.e"., BSS or

BES, is .encountered the location counter is increased by the number appearing

in the variable field, thus assigning an absolute location to this block of

storage. . "_ • : • - . ; - . - •- . • • • * : : . - . - __

5. Whenever a location symbol is encountered, regardless of whether it

is associated with a L"EM machine operation or a pseudo-operation, it is stored

away in the dictionary together with the current value of the location counter

except for the pseudo-operations EQU, SYN, BES and DEFINE (for a detailed '

explanation of what is done for these pseudo-operations see Section B in Chapter 3)

6. A tape (logical unit SYSBU4) containing the BCI image of all the
- - *

symbolic cards is written. This tape- is then read during the second pass of the

Assembler. - '

.7* If requested, a compressed deck is punched.
v'

On the second pass, the'following things (not necessarily in the order

given) are done:

1. All LEM machine operations are converted to the bit patterns used by

the machine, i.e., the symbolic operation codes are replaced by the actual bit

patterns used by the machine. .The variable field of these operations is

evaluated and converted to the bit patterns used by the machine. The assembled

LEM word is then stored in the location set aside for it in the first pass.

2. The variable fields of all data generating pseudo-operations are

converted to the actual bit patterns used by the machine and these data words

are stored in the. locations .set aside for them in the first pass.
•.

3- If a listing is requested, the Assembler lists the LEM location and

the binary bit patterns generated together- with the corresponding symbolic input

cards. The LEM locations and generated bit patterns are printed as octal

characters. 'For more information the reader is advised to examine the appended

listing.

4. If requested, by'a REFER card, a symbol reference table is printed.

This symbol reference table gives the symbol name and its sequence number and

7332.3-17
Page A-3

lists all the sequence numbers and mnemonics of instructions that refer to a

given symbol. In addition, a "$" will be printed beside the mnemonic if the

given symbol is referenced in a relative expression and an "*" will be printed

if the tag field (index register field) is non-blank.

5. If requested, by a CPLPA or PA card, an absolute deck of the LEM

program, which is to be used by the LEM Interpretive Computer Simulation Program

is punched.

6. If requested, by a GO card, the guidance program will be left in

7094 core and the ICS will be read in.

II. THE LEMAP LANGUAGE , .- -. :--%
^, .- i

' £

- • A. Basic Definitions ••''•.

. . The LEMAP (LEM Assembly Program) language is made up of operation

codes, symbols and integers which are arranged into an ordered series to form

the symbolic instructions which the Assembler can recognize.

An Operation Code, which appears in the operation field of a symbolic

' instruction, is any one of the fixed set of mnemonic alphabetic codes which

make up the vocabulary of the Assembler. These include all the basic LEM Computf

(Abort Electronic Assembly) operations as well as the LEMAP pseudo-operations

which are described in Chapter 3-

A Symbol is a name invented by the programmer which may appear

either in the location field or the variable field of a symbolic instruction,

In fact,.placing a symbol in the location field of an instruction is the only

way of defining a symbol. (See section on symbols in this chapter for a further
\ - • .'discussion of-symbols.) . .

&11 Integer is a string of numeric characters which -will be interpretcc

as decimal (base 10) or octal (base 8), depending on the number of digits contair

in the integer. An integer consisting of 3 or less digits will be interpreted

as decimal and an integer consisting of 4 or more digits will be interpreted as

octal with the following exceptions: (l) all integers in the variable field of

the OCT, DEFINE and ORG pseudo-operations will always be interpreted as octal,

and (2) all integers in the variable field of the pseudo-operation DEC will be

\ interpreted as decimal.

r

7332.3-1?
Page A-4

Symbolic Card Format

A symbolic instruction consists of four major fields: location field

operation field, variable field, and coinment field.

A program written in the IEMAP language is a succession of symbolic

instructions punched one per card, in the following Symbolic Card Format.

The following are selectively punched or left blank.

1. ' Location Field (fixed length) occupies columns 1-6. Contains

a location symbol or may be left blank. Column 7 is always blank.

2. Operation Field (fixed length) begins in column 8 and ends in

or before column 14. It contains a mnemonic operation code. }

3. The Variable Field (variable length). For LEW computer operations

the variable field in its most general form consists of two subfields separated

by a comma: address, tag. (Note that this is the reverse of the internal inachin

order, which is tag, address.) ,. - -

In the following example:

' " -
LOCATION ~ OP VARIABLE FIELD

.TIX ALPHA, 1

the operation TIX has an address of ALPHA and a tag of 1. (Note

that 1 or 0 is the only legal tag because the LEM Computer has only one index

register.)
r

One or more blank columns separate the variable field from the

operation field. The variable i'ield may begin in or following column 12, but

in no case later than column 16, and it must end prior to column 64. The

variable field cannot contain any blanks, since a blank signals its end., Hence,

there may not be any blanks between subfields or within any subfield of the

variable field.

Any valid expression may appear in any subfield of the variable

field and will be evaluated according to the rules of expressions, as stated in

Section E, except that only the rightmost bit of the tag subfield will be used,

i.e., the tag subfield expression will be reduced modulo 2.

7332.3-17 f

Page A-5

Certain pseudo-operations (non-LEM machine operations) in the

Assembler which will be discussed in Chapter 3 require variable fields not of

the type discussed in this section. The rules for specifying the variable

field depend on the given pseudo-operation.

4. The Comment Field (variable length) begins with the first non-

blank character following the blank character which terminates the variable

field. All punching to the right of such a blank is considered to be a comment

and has no effect on -the processing of the source program. The comments are

of course retained within the compressed deck*

C. Symbols
• - \i

A symbol (also referred to by the terms "location symbol" and

"symbolic address") will consist of a string of one to six non-blank characters,

at least one of which is non-numeric, and none of which is among the following

set of seven characters:

+ (plus) $ (dollar sign.)

- (minus) = (equal sign)

/ (slash) , (comma) . ,-f >

- # (asterisk (see special use of "#" as a symbol in this chapter))

For example,

• A, Al, 12345X, (1), SQF2, and 12. are all legal symbols.

Every symbol used in the program must be defined exactly once. An

error will be indicated by the Assembler if any symbol is defined more or less

than once* It is generally desirable to use a location symbol for an instruct5.on.

only if this symbol is needed to refer" to that instruction from elsewhere in the

program. The reason for this is that the Assembler, in processing the source
t \ *: program, keeps in core storage a "dictionary" (or symbol table; of location

symbols, and there is a limit though reasonably large, as to the amount of a core

storage which can be allotted for this purpose (2048 symbols at present).

D. The Location Counter

Each entry in the dictionary compiled by the Assembly contains a

location symbol and the "value" of the location symbol. This value is an

\ absolute binary number denoting an actual machine cell in the IEM computer. In

7332.3-1?
Page £-6 '

' •order that the Assembler may assign the proper value to each location symbol

used in the source program, it uses a device called the "location counter". This

can be set initially to an arbitrary value by the source program (see "ORG" under

Pseudo-Operations, Chapter 3). Each time a LEM Computer instruction is encountered,

: the location counter is increased by one. (Certain pseudo-operations may result

in no increase or an increase of more than one. For example, "END" and "EQU"

have no effect on the location counter, whereas pseudo-operations such as "BSS"

and "BES" may change the value of the location counter by more than one.)

Whenever a location symbol is associated with the instruction being processed,

an entry is made in the dictionary, taking the current value in the location counte

. for the value of the symbol. . —
*

• - E. Relative Expressions - -- ."

A relative expression is the sum or difference of two "or more symbols

or constants. Consider the following coding: _. • •

LOCATION OP VARIABLE FIELD

K • . ALPHA TRA - BETA . # ,

CLA GAMMA r

SUB. . I

.STGAM STO GAMMA

TMI " DF.LTA

Suppose the programmer wishes to transfer control to the instruction

"CLA. GAMMA". He may then write: *

LOCATION OP VARIABLE FIELD

TRA ALPHA+1*. •
or alternately
he may write:

TRA . STGAM-2

Thus, he may refer to an unnamed instruction, "N", by using the symbol

"\ of an instruction somewhere in the vicinity of "N" and adding or subtracting an

integer. The combination "ALPHA+1" or "STGAM-2" is called a relative expression.

r

7332.3-17
Page A-,7

F. The Use of "*" as a Symbol

The asterisk may be used as a symbol. When employed in this way, it

is regarded as a symbol whose value is the current value of the location counter.

For example, the instruction, . V .

LOCATION OP . VARIABLE FIELD

ALPHA TRA '

is equivalent to .

ALPHA TRA -ALPHA+2

and represents a transfer to the second location following the TRA instruction.

With this application of ""»" .̂ n a" program, one can avoid introducing superfluous

symbols .

III. .DESCRIPTION OF IMAP OPERATIONS

A. Classification of LEMAP Operations . ,

The LEMAP language includes all IEM (Abort Electronic Assembly) machine

operations, and a group of pseudo- ope rat ions (non-machine operations).

A LEM machine operation generates an 18-bit binary machine word.

The rules for specifying the location field and the variable field of a machine

operation have already been discussed in Chapter II under Symbolic Card Format.

Unlike machine operations, some pseudo-operations may generate more

than one LEM machine word and others may generate no words at all. All of the

pseudo-operations of the Assembler will be described in detail in the remainder

of this Chapter. * .

B. Pseudo-Operations *'

Location Counter Control~~" °~ --- t

The following three pseudo-operations, ORG, BSS and BES are used

principally to control the contents of the location counter.
* .

("Origin.")

If the programmer wishes the machine location of the first word

in his program to be, say, (lOOO)fi, he may simply start his source program with

the pseudo-operation:

' LOCATION OP VARIABLE FIELT3

" ORG .- 1000

7332.3-1?
Page A-$

No word is generated in the object program by this instruct

but the effect is to direct the assembler to set the location counter to t

value (1000 L. If the instruction immediately following "ORG" is "ALPHA C:

BETA", then the symbol "ALPHA" will receive the value (lOOOL in the dictic

of location symbols, and the binary machine word which eventually results, f

"CIA BETA" vail be ear-marked for location (1000L.

Jfote that the variable field of ORG consists of a single

subfield and if more than one subfield is written, only the first will be

used. The remaining subfields will be ignored and flagged as an error on th
y

output listing,

. If there is a s.ymbol in the location field of an ORG instructs

It will be assigned the value in the variable field. Notice that, in the exa

LOCATION OP VARIABLE FIELD-

ALPHA ORG

CLA

1000

BETA

The same effect would have been obtained by writing:

- LOCATION OP VARIABLE FIELD

ORG

CLA

1000

BETAALPHA

On the other hand, if the programmer were to write:

LOCATION OP VARIABLE FIELD

ALPHA

GAMKA

,ORG

CLA'

1000

BETA

then "ALPHA" and "GAMMA" would both be entered into the dictionary

each with the associated value of (lOOOL. (Another way of achieving such a

"synonym" effect will be seen later in the pseudo-operations "SIN" and "E

ORG instructions may appear anywhere in a program, not necessarily

in the beginning. In fact, the Assembler does not require the presence of an ORG

at the beginning, or anywhere within the source program.

, . 7332.3-17
Page A-9

: . If the programmer decides not to set the initial value of the

'location counter with ORG, the Assembler will assume the intent is to be begin

the program at location (0000),,. -- ..- - -- -

Restriction: The variable field of an ORG instruction will

always be interpreted as an octal integer and therefore should not contain

any symbols or decimal integers.

(2) "ESS ("Block Started by Symbol") ;

The BSS pseudo-operation is used to reserve a block of one or

more words of memory within an object program for such purposes as "erasable

storage". The length of the block reserved is given in the variable field, and

if there is a symbol in the location field, this symbol refers to the first cell

of the block. Consider the following examples: " -' -

LOCATION OP VARIABLE FIELD

BSS 50

."_ When the Assembler encounters this instruction, it will increase

the location counter by ($0) .

LOCATION OP VARIABLE FIELD* * ~° "•""" *

. - . "ALPHA . OCT . 740
.._. BETA _ BSS 4

- ... GAMMA OCT l6?7

Suppose the symbol ALPHA has been assigned to location 1001.

Then "the symbol BETA will be assigned to location 1002, and the symbol GAMMA

will be assigned to location 1006, leaving four locations (1002, 1003, 1004 and

1005) for the block BETA.

(3) BES ("Block Ended by Symbol") ":. ,

This pseudo-operation has exactly the same properties as "BSS"

except that when it is used with a location symbol, that symbol is associated

with the first word _f oil owing the reserved block. In the example,

LOCATION OP VARIABLE FIEID

ALPHA BES 50

CIA BETA

7332.3-17
..-"•'. Page A-10

the symbol "ALPHA" gets associated with the instruction "CLA BETA". The

programmer could have equivalently written:

LOCATION OP VARIABLE FIEID

• : - . ' - B E S - 5 0
ALPHA CLA BETA

On the other hand, if the programmer writes: . -- .

• ' • " • " • " • JflCATIOM ' OP VARIABLE FIELD

; . ALPHA . BES 50

GAMMA CLA BETA 7
' *

then "ALPHA" and "GAMMA" would both be entered into the dictionary, each with

the "associated value of the location counter at the time that the assembler

processes the CLA instruction.

The effect of "ALPHA BES 50" is, then, to'increase the

location counter by (50)..,,, and then to enter ALPHA into the dictionary with the

resulting value in the location counter;

| The;examples given illustrate the use of BES with a symbol

(in the location field. If' the location field had been left blank, BES would be
i
' exactly the same as BSS.

i : Pseudo-Operations for Relating Symbols .' '

SIN, EQU and DEFINE are three pseudo-operations which serve the purely

logical function of relating two or more symbols with respect to their value,"or

of simply assigning a value to a^-symbol.

(4) SYN, EQU ("Synonymous",. "Equals_")
i

In the 1EMAP language, SYN and EQU are identical and may be

used interchangeably. Hence, this discussion applies to both pseudo-operations.

We have seen that symbols may be defined by appearing in the

location field of an instruction,, and the symbol is assigned the current value of

the location counter. Unlike ORG, BSS and BES, the pseudo-operations SYN and'EQU

do not affect the value of the location counter, but define a location symbol as

\- being'equivalent to the value of the expression in the variable field. Moreover,

r

- 7332.3-17
- Page A-ll

& a SYN (or EQU) instruction is meaningless if it does not'have a location symbol
f r , " „ - ! .

:The variable field of a SYN or EQU instruction should contain only one subfield.
and ;bhis may be a symbol, an integer or an arithmetic expression.

Consider the following examples:

-,.".-• ; ' • • • " , '.-.-•' " ' LOCATION OP VARIABLE FIELD

\j • .; - START: CLA ALPHA

-v^ -:;:'•'.';-'-;; .;-- ::.;.- ';.:-; - "... SUB ; BETA. •;'••
" " ' ' " ' " !. xi

KEG . . AXT 7,1

XI '.""•; . SYW NEG
- 'CLA . GAMMA

•'.. . ;'/•-•- •"-.•;-;' . Y. ' . (etc.) r

The instruction "XI SYN MEG" states that the value of the

symbol "NEG" should be assigned to the symbol "XI", The SYN instruction could ha'

been placed anywhere in the program. " ' . - . • .

'• -". • " LOCATION .OP VARIABLE FIELD

, ALPHA SYN BETA-GAK1̂ A+17
£>

The effect of the above instruction is to enter "ALPHA" in

the dictionary with the value of the arithmetic expression in the variable field,

- LOCATION OP VARIABLE FIELD

LLS SHIFP

SHIFT SYN 35

7332.3-17
Page A-12

• . .
Jn this example, the variable field; expression is compl

numeric, and gives the value (35)in to the symbol "SHIFT".
J-*-* . !

I (5) DEFINE ("Octal Equals")

The pseudo-operation DEFINE is similar to SYW and EQU in

the sense that the associated location symbol is defined as being equivalent

the expression in the variable field, except that the variable field is alwa;

interpreted as an octal integer. ;• -
i

. DEFINE is a useful pseudo-operation for defining symbols

which are most meaningful when expressed in octal, such as an address in LEK :

Data Generating Pseudo-Operations

The LEMAP language provides two pseudo-operations (DEC, OCT)

which may be used to introduce words of data (often referred to as "constants"

into a program. These data words will be converted into binary by .the Assembl

and are considered as much a part of -the object program as the binary instruct:

Negative data v/ill be converted to 2fs complement.

DEC ("Decimal Data") .;

The DEC pseudo-operation is used to introduce into a progra

words of data expressed as decimal numbers. A symbol or blank may appear in thi

location field. One or more subfields, each containing a decimal number, appear

the variable field.

If there is a symbol in the location field, this symbol is

entered into the dictionary with the current value of the location counter so I
£ •

the first decimal number in the variable field may be referred to by this symbol

The subfields of the variable field are separated by commas.

The number of subfields permissible is limited only by the restrictions that the

last subfield must be terminated by a blank," and that the entire instruction must

fit on one symbolic card, i.e., the variable field must end in or before card

column 63.
*

Each subfield is converted to a binary word. These words are

assigned to successively higher storage locations as the variable field is

processed from left to right. Consecutive commas in the variable field, indicator;

a null subfield, cause the number. zero to be generated; as does a comma followed b,

a blank. Hence, the number of words generated is always one more than the number

of commas in the variable field.

. 7332.3-1?
Page A-13

Every decimal number must be represented by a string of

characters from the following set of 15 characters: 0, 1, 2, 3> 4, 5, 6, 7,

8, 9 (numeric characters), + (plus sign), - (minus sign), . (decimal point),

E (exponent), and B (binary scaling) .

•'. Two types of decimal numbers can be used:

a) Integers (whole numbers)

. . . - .• b) Fixed point numbers . . ,

The sign of any decimal number is always specified by the

first character, either "+" or "-". The "+" sign may be omitted, i.e., if no

initial "+" or "-" appears in the string, the sign i's assumed to be

A decimal integer is composed of a string of exclusively

numeric characters, possibly preceded by a plus sign or a minus sign, which is

converted to a 17-bit binary number with sign (negative numbers will be converted

to 2's complement). Thus, the decimal integer " >

'. -31 ; -
would be converted to the binary number whose octal representation is

. 777741. - - . •
• Both 0 and -0 are converted to octal number 000000. A decimal

integer is distinguished from a fixed point decimal number by the fact that the

letter B, the letter E and the decimal point are all absent. For all decimal

integers, the position of the binary point is considered as being at the right

hand end of the word , i.e., at Bl? .
C--

A fixed point number has three components:

a) The principal, part is written with or without &

decimal point. The decimal point may appear at

• the beginning or end of the principal part, within

the principal part, or may be omitted. If the

decimal point is omitted, it is assumed to be located

at the right hand end of the principal part.

b) The exponent part consists of the letter "E" followed

• • by a signed or unsigned decimal integer. The

exponent part may be absent. If present, it must

follow the principal part, but may precede or follow

the binary-place part.

7332.3-17
Page A-14

? c) The binary-place part consists of the letter "B"

:_..-.._- . » • . .1. • -followed by a signed or unsigned decimal integer.

;.-..;" : _..': - :".. .1. The binary-place part must be present in a fixed point

if v; ;l.i.-._... v; ~ :..—:-;. .number, .and must £ ollow the principal .part.. .If the

- , , . . ; number has an exponent part, then the binary-place

- . Part may precede or follow the exponent part.

z'f-.: - ; - - A fixed point number is converted to a fixed point binary

. - - quantity which contains an;understood binary .point. -The purpose of the binary-

place part of the number is to specify the location of this understood binary

point within the word. The number which follows the letter I!B" specifies the

number of binary places in the word to the left of the binary point (that is, the

number of integral places in the word). The sign bit is not counted. Thus a

binary-place part "0" specifies a 17-bit fraction. "B2" specifies 2 integral

places and 15 fractional places. "B17" specifies a binary integer. "B-2"

would specify a binary point located 2 places to the left of the leftmost bit of

the word, that is, the word would contain the low-order 17 bits of a 19-bit binary

v .fraction. The exponent part, if present, specifies a power of ten by which the
/ . ; .

principal part vrill be multiplied during conversion.

In the process of shifting the converted word to position the

binary point, significant bits may be shifted past the right-hand end of the

word and lost; no error will be indicated.' However, if non-zero bits must be

shifted past the left-hand end of the word, an error will be indicated on the

output listing. Thus, the integral part of a fixed point number must be small

enough to fit in the number of integral places allowed. Also, if the binary-

place part is negative, the number'must be an appropriately small fraction.

For example, the following fixed point numbers all specify

the same configuration of bits; but not all of them specify the same location

for the understood binary point:

22.5B5
11.25B4
1125B4E-2 '
1125.E-2B4
9B7E1 -

All of these fixed point numbers will be converted to the binary configuration

whose octal representation is

264000

r

7332.3-17 ..
Page A-15

j . - - . " ' The 18-bit word size of the LEM computer cannot accommodate
17integers whose absolute value exceeds 2 ~1. Hence, decimal numbers outside of

this range should not be specified in a DEC pseudo-operation. If this restrictic::

is violated, the number will be taken as zero and an error will be indicated or. t:;.

ôutput listing.

. If the TRA instruction, in the following example, is

assigned to location 1001, then the symbol DATA will be entered into the

dictionary for location 1002. The five words (98,309.6B10,-5E-1B1,0J0) generated

by DEC will occupy locations 1002-1006 and the .symbol BETA will be assigned to

location 100?. . ': . - . \t

> ". ' ' • LOCATION OP VARIABLE FIELD

I • -. . ALPHA' TRA GAMHA

, DATA DEC. 98,309.6B10,~5E-1B1,,

1 BETA BSS 7

, • . - (7) OCT ("Octal Data")

k . . ' . The OCT pseudo-operation is used to introduce into a program,

binary data expressed in octal form. A symbol or blanks may appear in the locatic

'. field. One or more subfields, each containing a signed or unsigned octal integer,r - • •
appears in the variable field.

1 . - If there is a symbol in the location field, this symbol is

entered into the dictionary with the current value of the location counter, so

that the first octal integer in the variable field may be referred to by this

symbol.

The subfields of the variable field are separated by commas.

The number of subfields permissible is limited only by the restrictions that the

last subfield must be terminated by a blank, and that the entire instruction must

fit on one symbolic card, i.e., the variable field must end in or before card

column 63. Each subfield is converted to a binary word; these words are assigned

to successively higher storage locations as the variable field is processed from

left to right.

Consecutive commas in the variable field, indicating a null

2 subfield, cause the number zero to be generated as does a comma followed by a

blank. Hence, the number of words of data generated is always one more than the

number of commas in the variable field.

; 7332.3-17
Page A-16

Every octal integer must be represented by a string of

characters from the following set of 10 characters: 0, 1, 2, 3, 4, 5, 6, 7

(numeric characters), + (plus sign), and - (minus sign).

The octal representation should consist of no more than 7

characters (a plus or minus sign and 6 numeric characters). Numbers preceded

by a minus sign will be converted to their 2's complement. Thus, -2 and 777776

will both be converted to 777776. Both 0 and -0 are converted to 000000.

.. " • • • If the TRA instruction, in the following example, is assigne;

to location 1001, then the symbol DATA will be entered into the dictionary for

location 1002; the five words (777777,0,-77,66,0) generated by OCT will occupy

locations 1002-1006 and the symbol GAMMA will be assigned to location 1007.

-""-;•-. v; ; ... • , LOCATION OP VARIABLE FIELD

; "." ' ;-- • " / ALPHA TRA. BETA

. • ;;,-*" DATA OCT 777777, ,-77,66,
. • • ' ; • " -• - . GAMMA BSS 7

•-. - (8) END ("End") - ,

. ' "END" must be used as the last instruction of every source

program to signal the Assembler that it has reached the end of the program.

. ' If the location field of an "END" card contains a symbol,

it will be ignored and will not be entered into the dictionary.

. The variable field of an "END" card is ignored.

IV. ERROR INDICATION
?.

If certain error conditions are detected during the second pass of the

assembler, an appropriate comment will be printed and the instruction will be

flagged as an error. Whether or not a listing is requested, the card in error

is printed and an error code will be printed at the extreme left of this line of

print. A description of the error codes follows:

BD The variable field of data generating pseudo-operation

is in error. Either too many bits are generated or the

• "B" field is missing in a fixed point decimal number.

7332.3-17
- . Page A-17

IADR Illegal operand address (either negative or larger than

LEM. memory). .

ILOC Illegal LEM location (larger than LEM memory).

TM Tag missing. The two instructions "AXT" and "TIX" always

'•. ' . require a tag field. If the tag is missing, it will be

inserted; however, the programmer should correct this instruction

. . pn the next run. . . -

IOP The operation field contains an illegal mnemonic.

U The variable field contains an undefined symbol.

In addition to the above error codes, the assembler will print a list of

undefined symbols and a list of multiply defined symbols.

V. CECK SET UP AND PRODUCTION PROCEDURES : .,.-

LEMAP (LEM Assembly Program) allov/s modification of a current LEM program

and the execution of an interpretive routine run in a single pass on the machine.

A. .Original Compilation Using LEMAP - . . .

(1) Input - " ' .
*—P - x.

The symbolic deck, preceded by either a CPL or a CPLPA control

card. The symbolic deck may be followed by a GO card which will cause the

reading in of the Interpretive Routine.
V-?J

(2) Output

a) The compressed symbolic program punched in column binary form.
»" *

This deck contains the entire symbolic deck in a highly compressed form.

b) A listing of the Assembly including a sequence number attached

to each line in the symbolic coding. ' - ; .

c) If the CPLPA control card was used, a column binary absolute

deck is also produced and is separated from the compressed deck by three (3)

blank cards.

B. Loading the Compressed Deck Without Modifications

(1) Input

The compressed deck, preceded by one of the following control

cardsj PA, PS, PSM, or ML. This control card may be followed by a REFER (or a

I-
7332.3-17
Page A-1S

REFER and LIST in the case of ML). The compressed deck is followed by a blank
" " " . " .

card, and optionally a GO card.

. : (2) Output

- • • ' a) The ML control card produces no output other than error

-diagnostics. ' • . - .' "

. • b) The PS control card results in the punching of a new compressed

deck, and produces a new listing.

•- -'. - _ " . c) The PA control card produces a new absolute deck in addition

to the PS output. • . ••'•=

d) The PSM control card results in the punching, of a symbolic

deck and produces a listing. .

e) The LIST control card causes a listing to be produced when used

with an ML. Use with a PA, PSM, or PS has no effect. - • ;. '"

f) The REFER control card causes a symbolic.' reference to be output

when used with PS, PA, CPL, CPLPA, or ML and LIST.

"C. Loading the Compressed Deck With Modifications

The modifications are preceded by a MOD control card and are followed

by an ENDMOD control card. This modification deck immediately precedes the

compressed deck. For output, see "Loading the Compressed Deck without Modificatic

(l) Modifications by Use of a Seqiience Number in Card Columns 65-71

a) Replacements
~ " *•

An instruction punched in normal symbolic format, with the

sequence number n in columns 65 through 71, will replace the lj?ne of coding bearir

sequence number n.

b) Insertions . ~ - .
*.

A symbolic instruction containing a non-integral sequence

number in columns 65 through 71 will cause the instruction to be inserted such

that the sequence numbers are kept in sort.

r

. . . 7332.3-17
".:.''. Page A-19

c). Rules for Punching Sequence Numbers

(i) All sequence numbers must be left justified in

columns 65-71- . . •:

; ;--. (ii) Integral sequence numbers less than "10 must be punched

with a decimal point following the integer. Thus, seven must appear as 7«i 7-0

or 7-00. •_ • ' .

(iii) The last digit punched in a sequence number determines

the "counting position", and if the sequence number on the' following card consists

of only one digit which is one greater than the counting position digit of the

previous card, it is assigned a sequence number one greater than the previous card.

: •.-•' . " • . - . "" "; •"' For example: .. . • ' - , • '.

"- - ,"'/ . - • - ••:•" Card n . 7«2 is given sequence number 7«2

'. Card n+1 ;3 is given sequence number If.:.

Card n+2 '4 is given sequence.number 1 ,L

. . . . Card n+3 91 is given sequence number 91

-•' :/ - , - . • • " Card n+4 2 is given sequence number 92

. . " In the follovdng examples, blocks 1, 5, and 6 are due to rule'

.(iii) above". Overlapping modifications occur in blocks 1 and 4- The blocks need

not be in sort, for example; it is quite permissible for block 5 to follow block 2.

Machine time saved if the modifications appear in ascending sequence is negligible.

, "Block No. . .Sequence No. (Punched) Sequence No. (Assigned)

5.0
5.1
5-2 1
73.1 I ,

- - - - - -

2 =_ ^ „ ™ _ -

3 », « , . _ . „ „ -.

4 "_ „ „ „ „ „,

5 m „_ „ „ . „ . .

6 ,, ,, .-, ,. ^ ~,

J4
.. _ J1

ii

F5 .0

L « . . . " •
9^ i, f-5.-L

:14
L15 . -
" 5.2

. 5-4
22.1
2
3

. 4
65.21
65.22
3
4

14
15

b

5.2
5-3
5.4
22.1
22.2
22.3
22.4

65.21
65.22
65.23
65.24
22.25

miltm i j

r

7332.3-17
Page A-20

Modifications by Use of the Pseudo-Operation ALTER

The ALTER pseudo-operation can be used to delete symbolic source

program cards, insert additional symbolic source program cards, or both, depend

on the form of the instruction. . . • •'. L . -

- . There are two permissible forms for ALTER. The first is:

LOCATION VARIABLE FIELD

ALTER N1

•. : . • -where N., and N9 represent
' • - - " . ' . - i • f c

. '•-~ . " - - . . - . sequence numbers,

V .This form indicates that the information corresponding to sequent

numbers N-, through N« inclusive, is to be deleted from the program. If, in

addition, symbolic cards Immediately follow an ALTER of this form, they will be

inserted into the program between JL - 1 and JL + 1. Since ̂ insertion's are made

as in an assembly, the words following KL are automatically adjusted and the nur.c

of insertions need not be eoual to the number of deletions.

The second form is:

LOCATION

ALTER

VARIABLE FIELD

N

where N is a sequence numbe:

• . This form indicates that no deletions are to be made, and that

the associated symbolic modification cards, i.e., the symbolic cards immediately

following an ALTER of this form, are to be inserted between the symbolic instruct.!;

numbered N a n d N+l* . - - . . - .
. • - » .

• Restrictions:

a) In an ALTER instruction in the first form, N-, must be

less than or equal to Ŵ ; otherwise an error will be indicated and the symbolic

cards to be inserted v/ill be ignored. .

b) All cards to be inserted by an ALTER must be blank in

columns 65-71. This is necessitated by the fact'that each ALTER block is

terminated by either another ALTER card or by a sequence number in columns 65-71'

r

. : . . -_ . 7332.3-1?
-. ;. Page A-21

">'
c) A modification by an ALTER must not overlap a modification

either by another ALTER or a modification of the type discussed in Section C (l)

of this chapter. . ;

Examples:

a) Suppose that it is desired to correct the instruction
i - -

with the sequence number 15 in the following listing:

- - " .',. :\" -.14. ERR CLA N

. . . . , ,, - 15. STO ALPHA

. . . . 16. TRA ERPRT

, - • ' • . . . • ' The instructions necessary to accomplish the correction

are: ;-'-"-- " ,;..

- - :: • - • • LOCATION OP -VARIABLE FIELD

' . . . " . : -]'' • - ->; ALTER 15, 15 . \

...:- - - . STO - BETA\ . . - - ~ _ • . _ . - _ - -

" , • ; • Assuming that there are no modifications affecting the
a

preceding instructions, after this change is made the listing will appear as:

' • 14-• ERR CLA N

-., . 15. - STO BETA

-. ..• . . 16. TRA ERPRT.

b) Suppose that in the following listing, the instructions

with sequence numbers 92 and 93 are to be deleted:

91. NUMBp. EQU 24.

92. Nl .-. EQU. 12 .

93- N2 EQU 0 - • ; "

94. N3 DEC 1024 - ,

The required instruction is:

LOCATION OP VARIABLE FIELD

ALTER 92, 93

Assuming that there are no modifications affecting the

J preceding instructions, after this change is made, the listing vail appear as:

". 7332.3-17
Page A-22

) 91. NUMBER EQU 24

92. N3 DEC 1024

c) Suppose that it is desired to insert the instructions SUB

• A,l and TMI. MEG following the Instruction which has the sequence number 9 in the

listing below, without deleting any instructions.

. - 8. CKN CLA N,l

. :'. -;::•- " 9. ADD CON

:10. .STO B,l

' - '!'• 11. • TIX * CKN,!

The required instructions are: f

• LOCATION OP VARIABLE FIELD

. . : ALTER 9

- " • V • • • - . : . . . S U B ' A,l

.- :TMI NEG "• ;

Assuming that there are no modifications affecting

" the preceding instructions, after this change is made, the listing will appear as:

8. CKN CIA N,l - " '. v

- . ' 9- - A D D CON

10. SUB A,l

11. -TMI KEG

' 12'. ' STO B,l

13- TIX CKN.l

Note: Of the th'ree examples given, the 1st and 3rd could

have been done in the following manner. •

LOCATION OP ' '•' VARIABLE FIELD ' .

Ex. a) STO BETA 15

Ex. c) SUB A,l . 9.1

.. TMI NEG - 9-2

D. Control Cards

The control card operation code is punched left justified in column 8

* ' through lp, the remainder of the card is ignored.

7332.3-17
Page A-23

CPL

CPLPA

ML-

LIST

PS

PA

PSM

REFER

MOD

ENDMOD

E. Notes

Results in the compilation of the symbolic deck,

listing of the compilation, and punching of the compre

deck.

Results in the punching of an absolute column binary

program deck in additon to the normal CPL output.

Results in the loading of the compressed deck, and any

modifications.

Produces a listing of the assembled (perhaps modified)

program during an ML run. This card has no effect on

CPL, CPLPA, PS, PSM, or PA runs.

Produces a listing, and a new compressed deck with any

modifications merged into place.

Results in the punching of an absolute binary deck,

in addition to the normal PS output.

Causes the punching of the (modified) program in

symbolic form and produces an assembly listing.

Produces a symbolic reference table. Used only when

normal assembly listing is to be produced.

This card must precede the modifications. ' - r

This card must follow the last modification.

•(l) Sequence numbers appearing ~on modification cards always refer to

the sequence numbers appearing on the listing of the compressed deck with which

they are used. Be extremely cautious of a listing produced on an ML run which had

modifications.

(2) All information in CC1-64 is packed into the compressed deck;

therefore, sequencing done in CC< 65 will cause a larger deck.

(3) On the DEC option: If either an E or a decimal point is used, a

B must be specified; if none of these characters (E, ., or B) appear, an integer

scaled at 1? will result.

r

, 7332.3-1?
; Page A-24

Numeric information appearing in the. variable field of operatic.

codes will be considered d'eciraal if three characters or le£s are punched, and

octal if four characters or more, are punched. The principal pseudo-ops are

exceptions to "this treatment. The variable field -"of OHG, DEFINE, and "OCT is

always treated as octal while that of DEC is always treated as decimal.

I i (5) If the first two symbolic cards of .any deck that is to be compil<

have an asterisk in column 1, they will be used as header cards and will .be

printed at the top of each page of the LEMAP listing,

) -—-^ '-- " "7

* . SAMPLE LISTING FOR THE
* • . • • ASSEMBLY PROGRAM (LEMAP

'
3. *
4. #
5. • #
6. *
7. *
8. *
Q ^

io. *
11. ' *
12. *
13. *.
14. #.
15. *
16. *
17. *

i • . 18. #
19>l. * ,
20. *.
21. • # .

, -. • ' 22. #»
. - • 23. .. * ,
. . 24. *

25. . *
26. *

• 27. #
. 28. *

- 29. #
30. ' #

' ' 31. *
32. *

. • • - • " 3 3 . . #
- . 34. *

35. *
36. . *
37. *

: . • 38. *
39. *

j •
.t

) " "~""' " ' ' —••) —- — l

LEM
) • .- . -7332.3-17

04/28/66 . P.AGE 1. , . Page A-2$

•"• — -
THERE ARE FOUR FORMS FOR THE OCTAL .PORTION OF 'THE LEMAP
LISTING.

• . . . , . . , , . ,
tl.3 THE LEM MACHINE! .OPERATIONS HAVE ' THE .FOLLOWING FORM

BC EF LLLL 00 . R AAAA .
WHERE B=X DRIVER ' ,

C=Y DRIVER
E=X SWITCH
-F-Y SWITCH - ' • i
LLLL=LOCATION OF -THE GIVEN INSTRUCTION
00=OPERATION CODE
R=INDEX REGISTER BIT
AAAA=VALUE OF THE ADDRESS FIELD

. (2) THE DATA .GENERATING PSEUDO-OPERATIONS, I.-E., DEC AND OCT -
HAVE THE FOLLOWING FORM

BC EF LLLL DDDDDD
WHERE B=X DRIVER

C=Y DRIVER .
E=X SWITCH
F=Y SWITCH

. ' LLLL=LOCATION OFiTHE GIVEN INSTRUCTION
DDDDDD=DATA GENERATED

(33 ALL, NON DATA GENERATING PSEUDO-OPERATIONS, EXCEPT . BSS
AND BES HAVE THE FOLLOWING FORM - -..

AAAA , - " . • - .
WHERE AAAA=VALUE OF THE ADDRESS FIELD

.
(4) THE PSEUDO-OPERATIONS BSS AND BES HAVE THE FOLLOWING FORN

LLLL
WHERE LLLL=LOCATION OF THE FIRST CELL -OF :THE BLOCK

FOR A BSS
AND LLLL=LOCATION OF -THE CELL IMMEDIATELY FOLLOWING

THE LAST CELL OF THE BLOCK FOR A BES

— ~

#
*

1,

'

.

00 00 -
00 ,01
01 00
01 01
02 00 •
02 01
03 00 -
03 01
04 00
04. .01

y JIJI im- • • ••• - - • ' — ̂r** — ̂ — - „•„» ,..,. . r ««•»... ̂

• . SAMPLE LISTING FOR THE LEM - - .
ASSEMBLY PROGRAM - REMAP) ' . . . 7332.3-17

04/28/66 PAGE 2 Page A-26
40. *
41. * ' "~ ^ '
42. • * . " . .
43. * CHECKSUM '" --•
44. * THE VALUE PRINTED AFTER THE END CARD AS THE CHECKSUM IS
45. * THE 2 S COMPLEMENT OF THE SUM, DISREGARDING OVERFLOW,
46. # . - OF THE CONTENTS OF LOCATIONS 4000(83 TO 7776!8),
47. * INCLUSIVE, AND IS STORED IN LOCATION 777718) ' •
48. #
49. *
50, .* ' .'
51. *
52. * THE FOLLOWING PROGRAM IS NOT MEANT TO BE EXECUTED. ITS PURPOSE

0000
0001
0002
0003
0004
0005
0006
0007
0010
0011

010000 '•
. 001000 •
777777
000001 . *
777775 '
000003
252525

. 525252
652526
000000

0012 '
0022
0032

53. ,
54.
5?.
56.
57.

58.

59. ' ,
60.

61.
62. .
63. .
64.
65.
66.

j((s!t**X«* ***********************

05 07

"1 '
-1

0072

0073

0200 .
0003

50 1 0007

67.
68.
69.
70.

* ' IS
* OF
#

. *
XI

A .

8
C
Cl
C2
* 'THE
* THE

TO FAMILIARIZE THE READER WITH THE FORMAT AND ERROR CODES
THE LEMAP LISTING.

OCT 100-00,1000

OCT -1,1, -3, 3

.
OCT, ' 252525 • . ' -
OCT '. 525252, -125252 -

t

OCT o • . ..: _ • . '
BSS 8 '-. . ' . • ' • • -'•• • ..
BSS 8 ' . . ' •
BSS 32 •
NEXT INSTRUCTION SPECIFIES A .NUMBER THAT IS TOO -LARGE FOR;
LEM COMPUTER, I.E., IT CANNOT BE REPRESENTED BY 18 BITS.

ILLEGAL SITUATION IN AREA OF .ALTER NUMBER 67

M
IEQU

OCT 1252525
DEFINE 200
ECU A*l
AXT B-A,1 .

' .r~
>- • . ifi

#
#'

06
06
07
07
00
'00
01
01

• 02
02
03
03

###
U 04

04'
05
05
06

'##*
TM 06

. 07
07
00
00

#
I ADR 01

'

14
14
15
15
16'
16'

i

i

vtx

06
07
06
07
10
11
10
11
10
11
10
11

##>?
10
11
10
11
10

=>:#*

11
10
11
12
13

##*
12

10
11
10
11
10
'11

~r**m

. 0074 .'
0075
0076
0077 .
0100
0101
0102
0103
0104
0105
0106
0107

jfĉ oJtXtjjesJi

oiro
0111
0112
0113
0114'-

c*:̂ ^̂)̂ ês}

0115
0116

0117
0120
0121

Kjfojtjfcjjojcifcj

0122

0310
0311
0312
0313
0314

"0315

•«•

SAMPLE LISTING FOR THE LEM
ASSEMBLY PROGRAM (LEMAP)

20
22
10
42
50
20
46
42
40
14
12
20

jffcS

46
50
20
22
10

##'
42
20
22
10
20

c^c^t

10

50
20
06
46
42
20

•1
0
1
1
•1
1
0
i
0
i
0
0

X#y
0
1
-1
0
•1

*#>
1
0
0
0
0

{e*̂

0002
0000
0012
0074
0007
0012
0105
0101
0107
0012
0011 •
0011 .

ft!

0007
0002
0001
0012

Jojc^^c^JJrsJeX

0112

0002

0011

0014
0011

)e# #####>!

0-0002

1
1
0
0
1
0

0310 -
0007 ,
0002
0347 .
0321 ,
0311
0347-

71.
72*
73.
74.
75.
76.

. 77.
78.
79.
80*
81.
82.
83.
84.

«#######!

8̂5.

* 86.
87*
88,
89,
90.

k>)< #*####

91.
92.
93,
94.
95.
96.

|«te *###**

97.
98.
99.
100.
101.
102.
103.
104.

LI CLA
ADD

• STO
TIX
AXT ;
CLA
TMI -
TIX
TRA

NEG LDQ
STQ
CLA

* * , THE' NEXT
* FIELD.

* ILLEGAL SI
TMI -
AXT

L2 CLA
ADD
STO

THE NEXT
* ILLEGAL .SI

TIX
CLA
ADO
STO
CLA

* THE NEXT
* . ILLEGAL SI

STO .
ORG

L3 AXT
CLA
MPY
TMI -
TIX
CLA

) -Mmm m — • • w™ ~ " ; -̂
* ' . - - - . . -., , - -̂ -

- " ' • . ' 7332.3-17
04/28/66 'PAGE 3 Page A-27 -

A,l .
xi ' - . - • - - . .
C,l ~̂
Ll,l
8-A,l , ' ' •
ca , •
NEG ' . ' ,
*-2tl ' .
NEG*2 ,
C,l
B ' • - . - '
3 -

INSTRUCTION HAS AN UNDEFINED SYMBOL IN ITS, ADDRESS'

TUATION IN AREA OF ALTER NUMBER 85
NEGC
7,1 ' ' •
Atl
Xl*l
ca

INSTRUCTION IS A TIX WITH THE TAG FIELD OMITTED.
TUATION IN AREA OF ;ALTER NUMBER 91

L2
A . . .
B
C+2
A+7

INSTRUCTION. HAS A "NEGATIVE ADDRESS" FI-eUDi -- • - -
TUATION IN AREA OF ALTER NUMBER 97 ' . . ' : • .

A-4 . l

310 - - - :

' " 7,1 • , . • -
A a . • •' .
DC1 " . '
*+6- • ' • :-.,. .:•-•
L3-n,i • ' • . :
DC1

i

*
* .

17
17
10
10

#**
ADR 11

11
12
12
13

13
14

#*>
ADR 14

15
15
16
.16

**.!

•M 17
17
10
10
11
11

,10
11
12
13

It***
12
13
12
13
12

13
12

13
12
13
12
13

12
13
•14
15
14
15

>
^

0316
0317
0320
0321

*##A**
0322
0323
0324
0325
0326

0327
0330

0331-
0332
0333
0334
0335

0336
0337
0340
U341
0342
0343

) ~" "; ')'" ™ '•*&** . — _ . M ^ _ ^^

• • • i
!

SAMPLE LISTING FOR THE LEM . ' •}
ASSEMBLY .PROGRAM (LEMAP) . 7332.3-1?

22
10

. 40
10

E***S)

50
20
24
24
22

20
• 10

*#**»!

20
56
10
20

. 10

' * A At)

50
20
14

' 04
10
42

0
0
0
0

!**

I
0
0
0
0

•0
0

lt*>
0
0
0
0
0

**»
1
1
1
0
1
1

0370
0347
0310
0350 -

C****##JM

0012
0005
0006
0012
0014
0002
0200
0002
0000 •

c*$ **$#*'

0000
0001
0005
0003
0037 ..

####*#»
0007
0002 .
0012
0376
0022
0337

105.
106.
107.
108.
109.
110.

c#(#**#*>9i
111.
112.
113.
114.
115.
116.
117.
118.
Iii9,
120.
121.

)t £4 4 $##4
122.
123.
124,
125.
126. .

. 127.

123.
129.
130.
131.
132.
133'.
134.
135.

^<3Ce**s)tX«* ******************* ****̂ <*̂

IOP - 12
12

-V

. 3

14
- i.'

o?,44
• .-> 4 5 66

0
0
0002
0015 -

136.
137.

04/Z8/66 'PAGE . 4 Page A-28
ADD DC* 10- '
STO DC1

•TRA . L3
STO DC1+1 .

* THE NEXT -INSTRUCTION IS AN AXT WITH AN ADDRESS FIELD THAT'
* EXCEEDS THE CAPACITY OF -THE INDEX REGISTER (3 BITSO.
ILLEGAL SITUATION IN AREA OF ALTER NUMBER 111

AXT - lOtl
0 CLA A+3

SUB' A+4 . ' '
SUB A+8 ' .

E ADD A+10 •
KING"-1 EQU ' A ."•:.•• ' • : i"''. ' r. '", -

CLA ' M • ' : ' ..
STO " KING . ' ' '

IAD - DEFINE 10000 -
* 'THE NEXT INSTRUCTION HAS AN ADDRESS FIELD THAT EXCEEDS THE
* MEMORY CAPACITY OF THE LEM COMPUTER.

'. ILLEGAL SITUATION IN AREA OF ALTER NUMBER 122
CLA IAD

OCTOP1 ALS 1 ' ' ' • •
STO . 8-4
CLA IEQU
STO C2*5

* THE NEXT INSTRUCTION IS AN AXT WITH THE TAG FIELD OMITTED.
ILLEGAL SITUATION IN AREA OF ALTER NUMBER 128

AXT 7 ' :
L4 CLA A,l i

LDQ C»l i . .!
DVP DC+16 , 1
S T O C1T1 ' • • • ' . !
TIX ' L4,l

* THE NEXT 'INSTRUCTION HAS AN ILLEGAL 'MNEMONI G IN ITS OPERATIC
'* FIELD.

n ILLEGAL SITUATION, IN AREA OF= ALTER NUMBER 136
RNT A ,
OUT 13

' t .> '

r~~

. H b •

* SAMPLE L
. * ASSEMBLY

13 14 0346 40 0 7774
13 15 0347 • 000000
14 14 0350 000000
14 15 0351 700000
15 14 0352 700000 •

. 15 15 0353 700000
16 14 0354 7000UO
16 15 0355 100000 -
17 14 0356 000725
17 15 0357 700000 •
10 16 0360 446637 .

• 10 17 0361 115315

ISTING FOR
PROGRAM (

138.
139.

. 140.
141.
142.
143,
144.
145.
146.

* 147.
148.

^ ̂3̂ * X<* ***************************

> 0362
11 17 0363 331141
12 16 0364 446637
12 17 0365 220626
13 16 0366 • 557152

t ,

14̂ 9.
150.
151.
152.
153.

' 154.
155.

##*#*#****#**## #**$$ •$*#*#*##>}{
3 ' 0367 .

14 16 0370 072724
14 17 0371 231312
15 16 0372 776650
15 17 0373 014000
16 16 0374'.; 656373
16 17 0375 700000 -
17 .16 0376 446637
17 17 0377 115315
20 00 0400 662463

• 20 01 0401 000142
21 00 • 0402 001132 ..-

' 21 01 0403 001422 •

156.
' -157.

158.
159,
160.
161.
162.

163.
164,

- . 165.

THE LEM • • ' '
LEMAP } , . 7332.3-17

04/28/66 "'. PAGE 5 Page A-29
TRA L5

OC1 . DEC 0,0
• ' • • '- ' " ' . . • ' *

DEC -.581 ' •* • . '.
" DEC -.5B+1 '' -

DEC . -5E-1S1
DEC -5E-1B+1 ^ • '
DEC • .581 . ' '• '

DC DEC. *,3E5B23
DEC , -.5Blt-.2121B-2f309.6B10 - '

•
* THE NEXT INSTRUCTION SPECIFIES A NUMBER THAT IS TOO LARGE FOF
* THE GIVEN BINARY SCALING.
ILLEGAL SITUATION IN AREA OF ALTER NUMBER 149

DEC 309.687 ' '
DEC .21216-2 , .
DEC -.21218-2
DEC .14143-2 - •
DEC . -.14148-2

* THE NEXT INSTRUCTION SPECIFIES A NUMBER THAT IS TOO LARGE FO!
* THE LEM COMPUTER, I.E., IT CANNOT BE REPRESENTED BY 18 BITS.
ILLEGAL SITUATION IN AREA OF ALTER NUMBER 156

DEC 262144
DEC 15082. 5+16
DEC ' .749E-1B-3
DEC -1200.818 •
DEC 3.B+6 .

' ' • DEC -.398E-1B-3 '•' , . . ,
DEC -. 581,-. 2121B-2t309. 6810 •• . |

* ' ' " ' • ' i

DEC . -̂ 309.6810 .'
DEC 98,602,786 '"'-'... ' -

. • . . . f

.,, * tHE NEXT INSTRUCTION SPECIFIES A FI XED .POINT NUMBER WITH THF

BD

*
*

SAMPLE LISTING FOR
•, • ASSEMBLY PROGRAM U

166.
>!caX** *************** **************

22
23
23
24
24
25

21
22
22
23
23
24
24
25
25
26
26
27
27
20
20

76
76
77
77
00
00
01
01
02
u2

01
00
01
00
01
00

03
02
03
02
03
02
03
02
03
02
03
02
03
04
05

36
37
36
37
40
41
40
41
40
41

0404
0405
0406
0407
0410
04.11
0412

0423
0424
0425
0426
0427
0430
0431
0432
'0433
0434
0435
0436
0437
0440
0441

3774
3775
3776
3777
4000
4001
4002
4003
4004
'4005

700000
001105
115315
000142
115315
001132

0423
000155
777745
001412
614632
115315
115315
115315
700000
446637 •
700000
446637
115315
700000
446637
115315

3774
012156
765622
002437
775341
200000
600000
200001
577777.
235361
542417

167.
168.

169.

170.
171.

fx 172.

-

. 173.

: 174.

175.

176.
177.
178.
179. •

• 180.
181.
182.
183.
184.
185.
186. •-•;
187.

THE LEM
LEMAP) . 7332.3-17

04/28/66 : PAGE 6 Page A-30
* - 8 FIELD (BINARY POINT) OMITTED.

ILLEGAL SITUATION IN AREA OF ALTER NUMBER 167
DEC -.5
DEC -.581,581,309.6810

DEC 98,309.6810,602

C3 BES 8
DEC 109,-.2121810,778

DEC -.4580,309.6810,309.6810 .

DEC 309.6810,-.581,-;21218-2

DEC -.581,-.21218-2,309.6810

DEC -.581,-.2121B-2,309.6810

ORG 3774'
DEC 326.848813
DEC -326.848B13
DEC v ' .01BO
DEC -.0180
DEC .50C0025BO '. NO ROUND
DEC " -.5COOG25SO
DEC '". .500004BO -ROUND
DEC -.50000430
DEC .173139971E15B48
DEC -,17313997iE15B48

ILOC

*
*
03 40
03 41
04 40
04 .41
05 40
05 41
06 40
06 41
07 40'-
07 41

76 76
76 77
77 76
77 77 ,

SAMPLE LISTING

4006
4007 .
4010 ••
4011
4012
4013
4014
4015
4016
4017

7774
7775-
7776
7777

0000

ASSEMBLY

064112
713666
000000 -
000000 •
000001
777777
774761
003017
252517 .
525261

7774
50 1 0007
20 1 0002
24 0 0001 ..
10 1 0423

A rfc rft A A A A A * & rfc A*lp» ff *f* ff+ *y» f <V* ff* *f* ff> fjf\ -^

42 1 7775
0423
0000 -

FOR THE LEM
PROGRAM UEMAP)

188
. 189

190
191
192
193
194
195
196
197

'* 198
* 199

200
201
202
203
204

205
206
207

*
.

.

.

.

. ,

•

.

.

. ' . '

.

• ^5

.

*
.

. * THi
**: EX(

&&4t T 1 1 C/"̂l iLLtl

.

C5
*

7332.3-17
04/28/66 . PAGE ... 7 Page A-31 .

DEC .497291E-4B-12 '
DEC ' -.497291E-48-12 :. .
DEC .3815E-5317 . .
DEC . -.3815E-5B17 '
DEC . . 156B14 . ' :
D E C -.156814 . . ' • • ' •
DEC -.18488E-3B-6 ' ' •
DEC *18488E-3B-6 ' . '
DEC . .16665554B-2 ', .. • .
DEC , -.166655548-2
ORG 7774
AXT 7,1 ' ••
CLA A T1 '
SUS Xl-c-1
STO . C5,l
NEXT INSTRUCTION IS TO BE STORED IN A LOCATION THAT
fEDS THE MEMORY CAPACITY OF THE LEM COMPUTER.
^L SITUATION IN AREA ;QF /U.TER NUMBER 205
TIX L5+l,l
SYN C3
END . - .

CHECKSUM=617766

•.'..-. .-j.....'.. .1.. ,,-..:

SAMPLE LISTING FOR THE LEM
ASSEMBLY PROGRAM (LEMAP)

04/28/66 PAGE 8
7332.3-17
Page A-32

UNDEFINED SYMBOLS

NEGC

o
SAMPLE LISTING' FOR THE LEW
ASSEMBLY PROGRAM (LEMAP)

1YMBOL DICTIONARY TABLE

A
C3
c
L2
NEG

58
170

X 115
87
80

B
C5
IAD
L3

61
206
119
99

OCTOP1 .X 123

C
D
IEQU
L4
XI.

Q4/2&/66

62
X 112
69
129
57

PAGE
7332-3-17
Page A-33

Cl ,
DC
KING
L5

63

116
199

C2
DC1
LI
M '

64
139
71
68

G C

.SAMPLE LISTING FOR THE LEM
ASSEMBLY.PROGRAM (LEMAPJ

SYMBOL -REFERENCE TABLE-

04/28/66 PAGE 10 --
7332-3-17
Page A-34

17 XI

18 A

»1 B

>2 C

)3 Cl

>4 C2

38 M

>9 IEQU

rl LI

JO NEC

37 L2

?9 L3

12 D

15 E

16 KING

19 IAD

NOT USED

NOT USED

72 ADD.

69 EQUS
97 STOS
129 CLA *

70 AXTS*

73 STO *
'̂

132 STO *

126 STOS

117 CLA

69 EQU

74 TIX *

77 TMI •

91 TIX

103 TIXS*

88 ADDS

70 -AXTS*
100 CLA *
136. OUT

75 AXTS*

76 CLA *

125 CLA

79 TRAS

107 TRA

201 SUBS

71 CLA *
112 CLA$
200 CLA *

81 STQ

80 <LDQ *

75 AXTS*
113 SUBS

82 CLA

89 STO *

87 CLA *
114 SUBS

93 ADD

94 STOS

92 CLA
115 ADDS

95 CLA

114 SUB

95 CLAi
116 ECU

124 STO:

130 LDO

118 -STO

122 CLA

o

123 OCTOP1

129 L4

139 DC1

145 DC

170 C3

199 L5

206 C5

SAMPLE LISTING FOR THE LEM
ASSEMBLY PROGRAM (LEMAP)'

NOT USED

133 TIX *

101 MPY

105 ADDS

206 SYN

104 CU

131 DVP$

205. TIX5*

04/28/66 PAGE It
7332.3-17
Page A-35

106 STO 108. STOS

202 STO *

o
SAMPLE LISTING FOR THE LEW
ASSEMBLY 'PROGRAM (LEMAP)

04/28/66 PAGE 12
7332.3-17
Page A-36

CHECK FOLLOWING.SEQUENCE NUMBERS FOR ILLEGAL - SITUATIONS
67 85 97 111 122 136 149 156 167 '205

I
7332.3-17

APPENDIX B

' TABLES

L
7332.
Page

INSTRUCTION REPERTOIRE

Octal
, Mnemonic Code Description

ABS . 62

ADD 22

ADZ 32

ALS ' 56

AXT 50

CLA .20

CLZ 30

CM 60

DLY 70

DVP 04

'INP 64

LDQ " 14

LLS 52

LRS 54
* MPR 26

MPY 06

MPZ . . 36

OUT 66

STO 10

. STQ 12

SUB 24

SUZ . 34

TIX 42

TMI 46

TOV 44

.. TRA 40

TSQ 72

Of

02

16

76 -

Absolute Value of Accumulator

Add

Add and Zero

Accumulator Left Shift

Address to Index

Clear and Add

Clear, Add and Zero

Complement Accumulator

Delay

Divide . "

Input

Load Q Register

Long Left Shift

Long Right Shift

Multiply and Round

Multiply

Multiply and Zero

Output

Store Accumulator

Store Q Register

Subtract

Subtract and Zero

Test Index and* Transfer

Transfer on Minus Accumulator

Transfer on Overflow

Transfer

-Transfer and Set Q

Unas signed
> Operation

Codes

-

c

- TABLE A

3-17
B-l

Execution
Time

16

10

10

3N + 13
13
10
10

16
" .-

73
16 or 6?

13
3N + 13
3N + 13

70
70
70

13
13
13"
10
10

. 10
10

10

10

16

1
7332.3-17
Page B-2

AEA. OUTPUT REGISTERS

NAME

sin 9

cos 9

sin 0

cos 0

sin^
cosy

E
X

Ey
E
2

Lateral Velocity-

Altitude, Altitude
Rate

Output Telemetry*

Word 1

Word 2

DEDA
t.

TYPE OF REGISTERS

9 Bits plus Sign

it n n it

. II II M It

II II II II

II II It II

II II II M

II tl II II

II II II 11

II II M 11

8 Bits plus Sign

14 Bits plus Sign

24 Bit Shift Register

Bits 0-17

Bits 6-23 i

4 Bit Shift Register

-

ADDRESS

2001

2002

2004

2010

2020

2040

6001

6002

6004

6020

6010

6200

6100

2200

'Only Word 1 is used for GSE data output

TABLE B

7332.3-1?
Page B-3

AEA INPUT REGISTERS

Name

6 (PGMS)

0 (PGMS)

Iff (TONS)

*Vy ,'
2

A/p .

A/r

Dovmlink Telemetry

Disc . Inp . Word 1

Disc. Inp. Word 2

DEDA

Type of Register

Integrating Reg.

n n

n H

11 Bit Counter

n n n

n ii n

tl 1! 11

II II II

II It 11

18 Bit Shift Register

8 Bits

7 Bits

4 .Bit Shift Register

Address

2001

2002 "

.2004

6020

- 6040 >

6100

6002

.6010

6004

6200

2020

2040

2200 '

TABLE- C

L

AEA DISCRETE INPUTS

7332.3-17
Page B-4

BIT POSITION

1

2

3

4
5
6'

7
8

DISCRETE WORD 1 ;

Downlink Telemetry Stop

Output Telemetry Stop

Follow-Up

Automatic

Descent Engine On

Ascent Engine On

Abort

Abort Stage

DISCRETE WORD 2

GSE Discrete 1

GSE Discrete 2

GSE Discrete 3

DEDA Clear

DEDA Hold

DEDA Enter

DEDA Readout

i

• "'*
-

TABLE D

AEA DISCRETE OUTPUTS

NAME

Ripple Carry Inhibit

Altitude

Altitude Rate

DEDA Shift In

DEDA Shift Out*-?.

GSE Discrete 4

GSE Discrete 5

GSE Discrete 6

Test Mode Failure

Engine Off

Engine On

SET

2410

2420

2440

2500

2600

' ' 6401

6402

6404

6410

6420

6440
*

RESET

3010

3940

3040

.

7001

7002

7004

7010

7020

7040

TABLE E

7332.3-17
Page B-5

X AXIS

Y AXIS

: • P

Z AXIS

In Figure -F, the direction of the arrows about the
axes indicates positive angular rate (p, q, r) and
displacement. The direction of the arrows along
the axes indicates the direction of positive
translational acceleration and velocity.

FIGURE F. VEHICLE REFERENCE AXES

r

7332.3-17
Page B-6

Euler angles (0, Y* (J)) are used to

specify the vehicle reference frame

(X,, Y,, Z) with respect to the PGNS

inertial reference frame (X., Y., Z.)

FIGURE G.

7332.3-1?
Page Br7

L

-,-- •

Kuler angle.s (a, 3,V) used to specify the vehicle reference frame (X, , Y,, 2.

v/ith respect to the FDAI reference 'frame '(X., Y. , Z.) ,

FIGURE H.

V)

N ft -I
Vft

'™!

—h

ls;N
- -1

h

N
N

—*•;--

_^J
"* V*v*

4
O

"HI"

t'

K
1

N^Vsj

