

25 January 1967

LM/AGS FLIGHT ERUATIONS
NARRATIVE DESCRIPTION
25 Januery 1957

Submitted by:

The LM/AGS flight equations explained herein have been developed primarily by the LM Guidance and Navigation Section under the direction of F. A. Evans. Member's of this section are E. V. Avery, K. L. Baker, T. S. Bettiry, M. L. Elowitz, R. L. Eshbaugh, C. M. Kawauchi, H. V. Kienberger, and J. T. Wagner. Other members of the System Analysis and Softwave Department under the direction of P. D. Joseph have contributed at various times in support of this development. This report was written by T. S. Bettwy. K. L. Baker contributed Sections 7.1 and 7.á.

TABLE OF CONTENTS

SECTION PAGE
1.0 INRRODUCTION 1
2.0 MISSION DESCRTPTION 2
3.0 COMPUTER INFUTS, OUTFUTS AIDD OVERALL FUNCTIONAL DIAGRAM 4
4.0 COORDINATE SYSTEM DEFTMITTONS 10
5.0 COMFUTATTONAL CYCLES 12
5.1 Timing of the Flight Equation Computations 13
5.2 Basic Block Computations 14
6.0 DESCRIPTION OF ELON CHARTS 16
6.120 Msec Computations 16
6.2 40 Msec Computations 20
6.3 Two-Second Computations 29
PART IIDERIVATION AND DISCUSSION
7.0 INTRODUCTION 58
Y.1 Alignment 59
7.2 LM AGS Calibratior 66
7. 3 Navigation 73
7.4 Guidance - 83
APCENDIX A 103
REFERENCES 112

LIST OF FIGURES

FIGURE PAGE
2.1 Coolliptic Rendezvous Flight Frofile 2
2.2 AGS Functional Block Diagram 5
2.3 Vehicle Reference Ayes 11
2.4 Accumulated Velocity and Velocity-To-Be-Gained Diagram 20
2.5 AGS Logic Flov Diagram - 22
2.6 Evaluciion of Gravity Vector 32
2.7 Altitude Rate vs. Final Altitude 42
2.8 Sequence of CSI Iterations 45
7.1 Lunar Align Geometry 61
7.2 Theoretical Calibration Frror in Percent vs. Calibration Time 70
7.3 Function of \dot{r}_{p} vs. r_{p} 90
7.4 TPI Geometry 94
Al Elliptical Free Flight Trajeciory and Astrodynamic Notation 109
1.0 INTRODUCTION

The purpose of this document is twofold:
(1) To present a narrative deseription of the LM/AGS flight equations as presented in Reference l and modified by Reference 2.
(2) To present derivations that are not obvious and additional insight into various portions of the guidance equations.
This document is designed to complement the equation documents (Peferences 1 and 2) and is for information purposes only. There is no plan to update the document for each mission.

The document is basically composed of two parts:
(1)' A general narrative description where technical details are kept at a minimum and only logic flow and minor technical points are discussed. This section also contains a functional block diagram of the computer showing inputs and outputs and a description of the coelliptic sequence of maneuvers.
(2) A detailed discussion of various portions of the guidance equations -along with derivations of the equations where appropriate. A small section on orbital mechanics is presented in the Appendix so that the derivations will be as self contained as possible. For deeper insight into these areas a list of references has been prepared.

PABT' J
NARRATIVE DESCRIFPTON

2.0 MISSION DESCRIFITON

The mission for which the flight cquations are designed is the coelliptic rendezvous of the LM with the CSM , with abort initiation possible at any time after separation of the IM from the CSM. To illustrate ell the various maneuvers required, Figure 2.1 shows a coelliptic rendezvous flight profile with abort from the lunar surface.

Figure 2.1
Coelliptic Rendezvous Flight profile

The CSM is in a circular arit at ar altitude of about 80 nmi . The orbit insertion maneuver is tarected to drive the IM to a desired altitude, altitude rate and horizontal velocity with zero crossplane velocity. The Lh then coasts until absolute time $t_{i g A}$, which brings the $[M$ about 90 deg around the oroit from orbit insertion. At that point tre Coelliptic Scquence Initiate (CSI.) burn is performed. The magnitude of this CGI burn is determined by an itorative technique whereby trial values of the horizontal burn magnltude are assumed ond a resultant error function evaluated. The error function is the difierence between the desired central angle difference betveen the $I M$ and the $C S M$ at the desired time of direct transfer and the computed difference that would be achieved using the trial value of the horizontal velocity. Succussive values of the CSI burn are chosen to drive the error function to zero.

The coelliptic (CDH) burn is performed at the predicted time of the IM orbit apofocus (or perifocus). The magnitude of this burn makes the IM orbit coelliptic with the CSM orbit.

The Teminal Fhase Initiste (TPI) bum is perfomed at the time the desired line of sight ($\theta_{\text {LOS }}$) between the LM and the CSM is achieved. The transfer time is specified, and the rendezvous point is the predicted position of the Csm (or ofiset from it). By means of an iteration on the semi-latus rectun (p) of the transfer orbit, the orbit which passes from the present, position to the rendezvous position in the specified time is determined. Once the orbit is determined, the velocity impulse needed to achieve the desired trajectory is calculated. The midcourse maneuver is obtained in the same manner.

Aborts may occur anytime after separation of the $L M$ from the CSM. The sequence of events followed after the abort depends upon the abort situation. That is, if the abort occurs then the M is near the lunar surface the above sequence of events would be desired. If the abort occurs when the IM is high above the lunar surface it may be desirable to begin imediately with the coelliptic sequence. Finally, there is always the possibility of doing a direct transfer to rendezvous. This can be accomplished by utilizing the direct transfer modes available. Built-in mission planning cambilities are available when these modes are employed. These capabilities and sone restrictions are discussed in section 6.3.7.5.

An overall functionel block diagram of the MM/heS is show in Figure 2.2. Not all functions displayed on this diagran are considered in this document. Only those concerning the flight equations are discussed. Those concerning computer operations such as load and verify routines, telenctry, cse service routine are not covered in this document.

The functions of the computer progran are attitude refexence, navigation, abort guidance including attitude commands, Engine Ov/OrF command and data display. These functions must be performed based upon the following inpuis:

$$
\begin{aligned}
& \beta_{2} \text { AS Begtas of }\left(\beta_{2}=1\right) \text { or ORE }\left(\beta_{2}=0\right)
\end{aligned}
$$

Pron Gujomes sutiteh
on instrumene panes β_{3} colles up osfnal $\left(B_{3}=1\right)$;
no follor up $\left(\mathrm{B}_{3}=0\right)$

Pron 3 staie Noie Control suitch on in- $\quad \beta_{1}$ exio ($\beta_{4}=2$); Attitude hold or ctrumant panol

$$
O F\left(b_{4}=0\right)
$$

Prom button on
Instrounent ranel $\quad \rho_{5} \quad$ Eorat $\left(0_{5}=1\right)$
fron bution on
(2) instixument ${ }^{B_{6}}$ evori etoge $\left(\hat{0}_{6}=1\right)$ $\mathrm{I}_{\mathrm{j}}^{2}$ jxput conctonts

Den Contwol surchas - see belun

DEDA COMTROL SUTTCHES
AGS Function Selectoi $\left(\mathrm{S}_{\mathrm{OO}}\right)$
$\left.\begin{array}{ll}S_{00}=0 & \text { Aititude Eold } \\ S_{00}=1 & \text { Guidence Siteering } \\ S_{00}=2 & \text { Ios Acquisition }\end{array}\right\}$
$\left.\begin{array}{ll}S_{00}=3 & \text { Imf Align } \\ S_{00}=h & \text { Innax Align } \\ S_{00}=5 & \text { Eody Avis Align } \\ S_{00}=6 & \text { Calibrate } \\ S_{C O}=7 & \text { Inflight } \\ \text { Accelerousex } \\ \text { Calibretion }\end{array}\right\}$

Thertisl Roference lode

Engine Select $\left(s_{11}\right)$

$$
\begin{aligned}
& S_{11}=0 \quad \text { Desecnt Eropalsion Systen (Das) or Reaction } \\
& \text { Control Sycien (rics) }
\end{aligned}
$$

$S_{11}=1 \quad$ Ascent Propalsion Systera (ABS)
Inflight Self Test Concrol (Sy)
$S_{12}=0 \quad$ reset exor indications
$S_{12}=1 \quad$ test suecersfully corpleted
$S_{12}=3$. logic test failure
$S_{12}=4 \quad$ memory tost failuxe
$s_{12}=7 \quad$ logic end remory test failuxe

Store Landing Azinuth and set Innar Suriace Flag (S_{13})

$$
\begin{array}{ll}
S_{13}=0 & \text { No store } \\
S_{13}=1 & \text { Stove }
\end{array}
$$

Havigation raitialization $\left(S_{14}\right)$

$$
\begin{array}{ll}
S_{14}=0 & \text { Initialization complete } \\
S_{14}=1 & \text { Initialize IM and CSM using FONS data } \\
S_{14}=2 & \text { Initialize CSH using DEDA data }
\end{array}
$$

Redar Date ($\mathrm{S}_{\mathrm{L}^{\prime} \text {) }}$)

$$
\begin{array}{ll}
S_{15}=0 & \text { no radax det } \\
S_{15}=1 & \text { stome } 14 \text { z axis direction cosines }
\end{array}
$$

CDS Apsidor Crosstng Selection (516)

$$
\begin{aligned}
& S_{16}=0 \quad \text { perforta coni hansuves at first crossing of M orbit } \\
& \text { linc or exsides }
\end{aligned}
$$

Altitude rate readout ($\xi_{5,5}$)

$$
\begin{array}{ll}
\mathrm{S}_{55}=0 & \text { select altitude rate readout for lunax missions } \\
\mathrm{S}_{55}=1 & \text { celect oltitude rate readout for earth missions }
\end{array}
$$

The prinary outputs of the $\mathrm{M} / \mathrm{AGS}$ are the attitude error sisnals $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{E}_{\mathrm{z}}$ end the engine 0ii/OFP signals. In addition may quantities axa available for infomation via the DEDA and telemetry. Refoxance I contans 0 shoxt list of these quantities. The overell list will be presented in the Programed Equttions Document.

4.0 COORDINATE SYSTEM DEFINITIONS

Prior to lunar landing the moon centexed incrtial coordinate systeln used by the AGS system is defined in the following maner.

The X axis passes from the center of the moon through the nominal
lunar landing site. The Z axis is defined in the dowrange direction parallel to the CSM orbit plane and obtained from the equation ${ }_{-\mathrm{C}}^{\mathrm{W}} \times \underline{U}_{-1}$ where ${\underset{-}{\mathrm{C}}}$ is the unit vector perpendicular to CSM orbit plane and \underline{U}_{1} is the unit vector in the direction of the X exis. The third component is defined in the direction of the cross product of the ebove two.
After landing on the moon and prior to liftorf a new coordinate system is established which is defined exactly as above except that the X axis passes through the nominal launch site rather than the nominal landing site (inertially different because of the moons rotation). If an inflight glign is performed the coordinates may be oriented in any orthonormal manner so long as the XZ inertial plane lies within 80° of the IM orbit plane. Reasons for this restriction are discussed in Section 6.3.7.5.1.

The $L M$ vehicle body axes denoted by X_{-b}, Y_{-b}, Z_{-b} are oriented as shown on Figure 2.3. The direction of the arrows about the vehicle body axes unit vectors indicate: positive angular rate (P, Q, R) mad displacement. ($\gamma_{X}, \alpha_{Y}, \alpha_{Z}$). The direction of the arrows along the exes indicates the direction of positive translational acceleration and velocity ($\mathrm{V}_{\mathrm{Xb}}, \mathrm{V}_{\mathrm{Yb}}, \mathrm{V}_{\mathrm{Zb}}$).

Figure 2.3
Vehicle Reforence Ayes

5.0 COMFUTATTOIAY, CYOTES

The LM/AGS major computational cycle is 2 sec in duration. In this period of time, the equations uplete navigation, solve the rendezvous guidence problem, perfom inflight selif test, and if requested, align the inerial frame of reference. This major 2 sec cycle is broken into 100 segnonts. Each segment takes 20 msec of time to complete!

Fvery $20-\mathrm{msec}$ segment is divided into two parts the fixst portion of the 20 nsec segment contains equations called"20 nsee computations"which must be calculated enew. every 20 msec . The second portion of the 20 msec time segment is reserved for the calculation of efther of tro different sets of equations.

One set of equations must be completiely recalculated every 40 nisec. This set is called the " 40 unsec computations:" This mone is not to be construed to moan that the calculations take $1 ; 0$ usec to complete; thoy actually teke only about 5 msec . This set of equations is recalculated in the second part of every other 20 msec time segnent, thus assuring that this set of equations is recaiculated every 40 msec.

The other set of equitions must be nevly calculated every tro sec. These equations are called the" 2 sec computations", and are too large to fit into the second portion of the 20 msec time segment. Because of this fect, the 2 sec computations are split into smaller groups of equations. Esch group of equations is small enough to be calculated in one of the remaining 50 parts of the 20 msec time segment.

The diagram belon illustrates the segmentation of the najor two sec computational cycle.

5.1 Timing of the Flight Equation Computetions

In the equation flow diugrams of Referance 2, the 20 msec computations, the 40 msec computations, and the 2 sec computations are shown in serarate diagrams. Unless otherwise indicated the following figures are those of Reference 2. Figure 3.1 is a systens diagram of the logic connecting the three sets of computations. The important decision blocks in Figure 3.1, from the standpoint of the correct interlacing and proper sequencing of the 40 nsec computations and the ? sec computations are labeled G ensures that the 40 msec computations and the 2 sec compitations take place in alternating basic 20 msec periods. The 2 sec computalions are split among the 50 unused paris. When Cycle B is selected by C, the branch control desision block routes the program to the propor set of equations.

Figure 3.1 shows only those portions of the logic and the equations which are hardwired. Included are all of the 20 msec conputations, and the 40 msec computations and only portiors of the 2 sec computations, including Branch 50. The remainder of the 2 sec computations will be fitted by the programer into the remairing unused portions of every other 20 msec cycle between Branch 3 and Branch 50.

At the conclusion of the computations in a particular branch (except Branch 50), a dumny variable Q is set to the number of another branch, and then at point (C) of Figure 3.1, the branch control is set to route the program to this block of equations. This means that the next time ζ routes the program to Cycle B, the branch control switch will route the program to the block of equations selected at the end of the previous 2 see computation. An exception to this sequencing is Branch 50 . Counter μ_{10} counts the number of 2 sec computations. Inumediately following the block labeled Initial Starting Routine, note that u_{10} is set equal to zero and branch control set to Branch 50. This ensures that the first branch of the 2 sec computations will be Branch 50. Branch 50 is unique amone the 2 sec computations branches in that the first thing done in this routine is to set brench control to Branch 1 , and pass from this routine to Branch 1 without going through point (C). Every time point (C) is passed, the μ_{10} counter is advanced. When $\mu_{10}=4$, branch control is set to 50 . This ensures that no matter what equations of the 2 sec computations are performed

- in the major 2 sec cycle, the navication umate equations vill always be performed at equally spaced intervals. The first Branches . . 2, and 3, the last Brarch, 50, indicate the order which the conmutations will be rerforned. As previously stated, all remaining 2 see conputations mont be programed in Dranches ! to 49.

5.2 Eastc Block Cormutation

5.2.1. 20-hsec Computatione.

The rost important block in Figure 3.1. from the stendpoint of regum lating the duration of each bestc co-msec block of conputattons is decision block $\mathrm{I}_{\text {, whe }}$ which ensures that 20 mseconds of real time have passed before a new basic 20 msecond cycle begtos.

The major clessification of equations processed in each of the three difierent computationsl blocks is listed below.

The 20-rasecond computctions constist of:
(1) Gyro data processing and compensation (corrections)
(2) Accelerometer dets processing and compensation.
(3) Attitude direction cosine updating
(4) FGICS domlink date input routine
(5) Telemetry output
(6) TMU or body axis align computritions
5.2 .2 4.0-Msecond Computsitions

The $40-$ msecond computetions consist of:
(1) Therest ond velocity vectox incrementing
(2) Attitude control and engine ON/OFF selection logic

- (3) Output AGS eittitude exror sterals
(4) Output AGS main enging comands. Hence, the engine OFF command has 4.40 msec ond tining resolution.
(5) FDAL computations: thase are outputs to the astronant's stititude indicator on the instrument panel.
(6) Lumar elign loop: Junox align is a dicitej servo loop nulling attitude errox signal, whith e eampling pariod of 4:0 mseconds.
(7) DEDA End External Dincrete bewilinS (GES, GSE)
(8) Normality and orthogonality corpections for direction costnes
(9) Decrementing of velocity-to-be-gained to engine shutdown
(10) GSE service routino entrance.

5.2.3 2 Sec Computations

(1) Decision logic for AGS guidance functioning
(2) Navigation updating from previous 2 sec cycle, i.e., the integration of velocity and position (dciection of ullage)
(3) Initialization of Lh and/or CSM ewheneris, jf DEDA or domlink initialization requested
(4) Calibration using a 2 sec sample deta servo loop for nulling gyro non-g-sensitive drift, when DEDA requested. During inflight calibration, accelerometer bias is also nulled.
(5) Radar data processing; reestimation of the IM ephemeris
(6) Computation of landing azimuth on command via DEDA
(7) Computation of orbit insertion
(8). Computation of Coelliptic Sequence Initiate (CSI) burn
(9) Computation of Coelliptic Maneuver, CDH Bumn
(10) Selection of best of trial values for CSI burn and CDH burn by evaluation of the error function
(11) Calculation of direct intercept transfer orbit (TPI) using p-iteration routine
(12) Computation of an External ΔV maneuver
(13) Computation of velocity-to-be-gaincd, V_{G}, and desired vehicle thrust direction
(14) Computation of altitude, altitude rate and body Y-axis velocity every 2 sec and interpolated for output every 200 imsec.

6.0 DESCRIPTTOF OF WLOM CHANTS

This section contains the narretive description of the flight equations. Unless otherwise specified all figures mentioncd refor to those of Refercnee 2 . The blocks of equations contained in dashed lines are those progrenmed in the hardwired memory of the computer.

6.1 20 Msec Computritions

6.1.1 Sensor Tnrut Erocessing

The 20 msec computations begin on Figure 3.2 . Ait the top of the page a check is made on Δt to Insure that the equetions are calculated every 20 msec. PGNCS Euler Angles, Gyro Data end Accelerometer Data are pheked up and appropriately stored, The first calculations are to compute the velocity inercments over a 20 msec cycle. The accelerometer data is in the form of pulses and an accumulation of 640 pulses per 20 msec indicates no acceleration. The equations subtract 640 pulses (lk7) from the number of pulses accumulated and the remainder is the net pulses around a zero acceleration. The net number of pulses is then multiplied by the appropriate scale factor ($1 \mathrm{Kl8}, 1 \mathrm{~K} 20$, $1 \mathrm{K2} \mathrm{\Omega}$) to convert pulses to $\mathrm{ft} / \mathrm{sec}$. These scale factors can be varied according to ASA calibration measurements. In a zero g environment the accelerometer may not output exactly 640 pulses so this bins is compensated by the constants lK19, 1K21, IK23 for each accelerometer respectively. These numbers are also obtained and varied during calibration.

Following calculation of the volocity increments a check is made to determine if the equations are in the fnertial reference mode or the align and calibrate mode. The latter mode is entered if $S_{00} \geqslant 3$.
6.1.2 Alion or Calibration Mode

If in the align mode the equetions determine which specific submode and act accordingly.
6.1.2.1 IMU Align

If an MMU align is being done ($S_{00}=3$) the Jogic flov proceeds to the top of Figure 3.5 (point (AD) where the direction cosine orthonomality corrections $\left(E_{1}, E_{3}, E_{13}\right)$ are zerocd. The PGNGS Buler angle inputs (pulses) are ilen converted to radians by the conversion constent 1 k 25 . Oparation on these angles yields
the desired direction cosinca $\varepsilon_{1 m}, \varepsilon_{121}, \varepsilon_{130}, \varepsilon_{31 n}, \varepsilon_{32 n}, \varepsilon_{330}$. The remaining direction cosines are obtained torard the botton of the pase. Detailed information on the INJ align equations is sonteined in Socivion T.I.2. fihe quantities $\Delta a_{i j \mathrm{jem}}, \Delta a_{3 j \text { rem }}, j=1,2,3$ aro then set equal to zoro. These quentities will be discussed Jatex. Suffice it to say that when eny aligmont is poxforned these equations are zeroed. rine locic flow of the equations is then at point (BA) which is the seme as if the inertia) refoxance mode hod been selected ($\mathrm{S}_{00}<3$).
6.1.2.2 Lunar Align

If the lunar align mode has been selected ($S_{00}=4$) on Figure 3.2 the logic plow is to the gyro compensation block. runex alien is discussed in detail in Section 7.1.3.

The lunar align mode mechanized in the $M A B S$ is the backup alignment system in case the FGICS is inoparable after the $1 M$ has successfully landed on the lunar surface. If the FGNCS is operating, the lunar alignment is perfomsd by going into the IMU align equations.

Basically the lunar align equetjons compute the [A] Eransfomation matrix (matrix of body exis cosines) which relates the vehicle body axes to the computaitional inertial reference system, so that the X, Y, Z computational jnertial frame coincides with a selenocentric coordinate freme. This selenocentric coordinate system is defined with the X axis along the lunar local vertical positive outward from the lunar center, with the Z axis direction conceptually obtained by crossing the unit angular momentum vector of the CSM orbit with a unit vector along the X axis. The lunar align equations mechanize a. lov gain filiter to compute the desired [A] matrix from the compensated accelerometex output for leveling and an azimuth reference update constant ${ }^{\delta} \Delta$ for the azimuth reference. These equations are computed in the 40 msec computational cycle and are shom on Figure 3.8. Detailed discussion of the equations is presented in Section 7.1.3.

For lunar ellgn to function properly the direction cosines must have been stored. soon after M touchdow on the lunar surface by the setting of $S_{13}=1$.
6.1.2.3 Body Axis Align

If the body axis align mode ($\mathrm{S}_{00}=5$) has been selected the logic flow is to point (AC) on Figure 3.5 where the direction cosines are initialized as ${ }^{a_{11}}=a_{33}=1, a_{12}=a_{13}=a_{31}=a_{22}=0$. The remining direction cosines are computed from these fear the botton of the pege. This aligmment procedure forces the X inertial exis to lic elong the X boty exis, the Y ine tial axis to lie along the Y body axis and the Z inertial axis to lie alone the Z body axis. This alignment must be constrained that the $X Z$ inertial plane lies within 80° of the Lh orbit plane. Detailed discussion of the rode $1 s$ contained in Section 7.1.1. The logic flow again arrives at point (B) or Figure 3.5 .

6.1.2.4 Calibration Subnodes

If the equations are in a calibrate mode $\left(S_{00}=6,7\right)$ then the lunar surface flag δ_{21} is checked to see if the IM is on the lunar surface ($0_{21}=1$) or in flight $\left(\delta_{21}=0\right)$. In either event the logic flon arrives at the gyro compensation block of equations and as in the inertial reference mode to point (BA) on Figure 3.5. The actual calibration equations and techniques axe discussed in Section 7.2 of this report. S_{OO} should NOX be set to 7 when on the lunar surface.
6.1 .3 Inertial Reference Mode

If the equations are in the inertial reference mode the logic flow is to the gyro compensation block at, the bottom of Figure 3. $\mathbf{2}$. The purpose of these equations is to obtain compensated values of the gyro inputs. In order to achieve greater accuracy in the equations a form of double precision is used in these calculations. For convenience, the following discussion is concemed with the X axis gyro. The equations are similar for the other axis except as noted below.

The double precision operates us follows. The quantity $\Delta \alpha$ rem is calculated at a quantization level of 2^{-30}. In calculating $\Delta \alpha_{x}$ (the compensated incremented component of rotation about the X body axis) only that part of $\Delta x x_{x}$ rem that exceeds 2^{-16} is used. This part is derioted by $\Delta \alpha x$ rem $\geq 2^{-16}$. Then $\Delta \alpha x$ rem is recomputed for use in the next computing cycle as $\Delta \alpha_{x}$ rem $-\Delta \alpha_{x}$ rem $\mid \geq 2^{-16}$. Thus the part of Δx_{x} rem not used in the present cycle is retained for use in the next cycle. The three equations under discussion are

$$
\begin{aligned}
& \Delta \alpha_{x \text { rem }}=\Delta \alpha_{x \text { rem }}+K_{1}^{1}+K_{2}^{1} K_{3}^{1}\left(\Delta \alpha_{x i}-K_{\gamma}^{1}\right)+K_{14}^{1} \Delta V_{x} \\
& \Delta \alpha_{x}=K_{2}^{1}\left(\Delta \alpha_{x i}-K_{7}^{1}\right)+\Delta \alpha_{x A}+\Delta \alpha_{x \text { rem }} \mid \geq 2^{-16} \\
& \Delta x_{x \text { rem }}=\Delta \alpha_{x \text { rem }}-\Delta x_{x \text { rem }} \mid \geq 2^{-16}
\end{aligned}
$$

These equations do the following: The raw X axis gyro output ($\Delta \gamma_{x i}$) is received in the form of pulses. In any given 20 msec computing increment a zero angular increment would be indicated by reception of 6 lo pulses $\left(K_{p}^{2}\right)$. Thus a negative angular in. crement would be detected if less than 610 pulses were received per 20 msec and ε positive angular increment if more than 670 pulses per 20 msec vere received. Multiplication of $\left(\Delta \alpha_{x i}-K_{\gamma}^{l}\right)$ by the constant 1 K 2 converts the pulse count to radians. Multiplication of the angular increment lke ($N_{x i} \cdot K_{7}^{l}$) by the constant $J K 3$ forms a correction for the attitude rate scale factor error of the X gyro. This quantity has added to it the gyro drift compensation constant lku end the quantity $1 \mathrm{Kl} \mathrm{l}_{4}\left(\Delta \mathrm{~V}_{\mathrm{x}}\right)$. This latter term is
the correction for X spin exis mass unoalance. This correction tem is required because an imperfect gyro when accelerated vill give indications that in attitude is changing even when it is not. Teras such as this $\mathfrak{c} 0$ not appar in the Y or Z gyro equations because error analyses have indicated thom to be unccessary. Ak ${ }_{x}$ ren is then formed as the sumation of all the terms just discossed and that part of $\Delta \alpha_{x}$ rem of the previous computation cycle that did not exceed e^{-16} radiens. Note that $\alpha_{x} x$ ren appears as a sumation of correction terms to the yar gyro tnput. To obtain the compensated gyro input used in the navigation eguations (αx_{x}), the part of Δx_{x} rem that exceeds 2^{-16} radians is added to the raw gyro input converiea to radians $\left[K_{2}^{1}\left(\alpha_{x i}-K_{7}^{1}\right)\right]$. In addition the alignment error $\Delta x y$ is added. This last teim is used when a lunar align is being performed and is zeroed when any other mode is entered. Following this calculation the $\Delta \alpha_{x}$ rem term is set up for the next computing cycle by subtracting from $\Delta x x$ rem that part of $A_{y} x$ rem greater then 2^{-16}. The flow logic then proceeds to AA) on Figure 3.3. On Figure 3.3 a check is made on the magntude of the angular increments per 20 msec to determine the desired scaling on verious quentities. Scaling at 2^{-9} is necessary to gain precision in updating the dixection cosines. Sealing at 2^{-6} is necessary to obtain the required dynamic range of rotetion about each axis ($\pm 25^{\circ} / \mathrm{sec}$). Switchover of the scaling occurs at epproximately $5 \% / \mathrm{sec}$. The LM usually rotates at a rate less than 5% sec so that the desired precicion is obtained. The logic flow then proceeds to $A D$ on Figure 3.4 .

Figure 3.4 contains the equations to updste six of the nine direction cosines based upon the cormpensated gyro inputs as just discussed. Error terms ($E_{1}, E_{3}, E_{j 3}$) are used appropriately to keep the direction cosines oxthonomal. In addition direction cosine remainder terms are added to improve the computational accurecy due to the higher scaling used on Figure 3.3. $\mathrm{E}_{1}, \mathrm{~F}_{2}$ and E_{13} are then set to zero.

Regardless of the mode of the equations (Figure 3.2) ell logical paths arrive at the point (BA) on Figure 3.5 . Here the remaining airection cosines a 21 , a 22 , a 23 are calculated from $a_{11}, \varepsilon_{12}, a_{13}, a_{31}, a_{32}, a_{33}$ which vere evaluated previously in a manner depending upon the mode of the equations. With these dixection cosines the velocity increments obtained along LiA body axis (from the accelerometers that are mounted on the body axis) are transformed to X, Y, Z ineriial coondinates. These velocity increments are denoted by $\Delta V_{x s}, \Delta V_{y s}, \Delta V_{z s}$ respectively. This group of equations are the last computed in the 20 msec subcycle. At the bottom or Figure 3.5 the decision is made to proceed to the 10 mscc computations or to the 2 second computations. These paths are alternately selected.

6.2 40 Msec Comptations

6.2.1 Updating Accumpated Velocity and Culculntion of Velocity-to-be-Gained

At the becinning of the 40 msec subcycle the coiponents of the vectors V_{-d} and $\frac{\Delta V}{V}$, are computed. A discussion of thesse quantities and several essociated quantities is now presented. Appropriate definitions are:
V_{d} is the accumulated veloctity vector updated every 100 msec
$\underset{-}{ }{ }^{\mathrm{D}}$ is the accurulated velocity vector which is upated (set equal to V_{d}) every 2 seconds
V_{G} is the remaining velocjty to be gained vector (computed every 2 seconds)
$V_{\text {rg }}$ is the total velocity that must be gained and equals the sum of the velocity elready gained V_{D} and the remaning velocity to be gained V_{G}. This quantity is calculated every 2 seconds.
$\Delta \mathrm{V}_{\mathrm{g}}$ is the velocity to be gained vector that is updated every 40 msec and is computed as ${\underset{V}{V}} \cdots{ }_{-d}$.
The following chart shows the relationship between these quantiites. For simplicity the quantities that are updated every 40 msec are depicted as being updated continuously. Also for simplicity the vector notation on the quantities is dropped.

FIGUSE 2.4
Accumbated Veloctty and Velocity-to-be-Guned Dingram

The quantities are calculated this way so that the engine may be shut off based ugon current informtion (ΔV_{g}) rather thon information that may be up to two seconds old $\left(\underline{V}_{G}\right)$. Note that since V_{-D} should increase by the some nownt that V_{-G} decreases every two seconds the quantity V_{-G} remins constant. fhus, the velocity remaining to be gained (calculated each 40 misec) is readily computed as

which in words mesns: set the \% component of velocity already gained equal to that geined up to lfo msec ago plus the velocity gined in the letest a msec computing cycle plus the volocity geined in the second previous 20 msec cycle.
6.:'1 Establishing Vehicle Status

Following these calculations, the status of the β discretes is checked.
Every 40 msec the P discretes are examined to determine the npproprinte mode of operation for the computer.

Several checks are made to determine the status of the $1 M$ vehicle. These checks ascertain whether the descent section has been staged or whether the vehicle is on the lunsr surface. The first check is on the f/, flag which is equal to one if. the descent section has been strged. If the δ_{2} flats has not been set to 1 , then the β_{2} discrete is checked to see if the ascent engine is on $\theta_{2}=1$). If the ascent engine is not on, then the status of the vehicle is assumed to be the same as in the previous 40 msec cycle. However, if the ascent engine is on, then δ_{c}, is set to 1 , meaning the descent section has strged and δ_{21} is set to 0 , meaning the M is not on the surface of the Noon. S_{00} is set to 1 so that the vehicle goas into a guidance steering mode of operation. This is done for the folloning reason. Frior to liftooff fron the lung surface, a lunar align may be performed. It is desirable to perform this align uatil nominnl liftoff time. Thus, instead of making the astronaut take the equations ont of the lunar align mode (switch S_{00} from I_{4} to 1) it is done autonstically. This is also a safegurd aginst en undesirable engine cutoff since the equations comand engine OFP (explsined below) when $\mathrm{S}_{00}: 1$.

The reminder of the floy in the 10 mace abocycle is functionally displayed in Figure 2.4 (this docuncnt). Inis dingran is very useful for considaring the result of various switch settings.

Regardless of the logic flow path just taken, a check is made on S_{OO} to see if the system is in an inertial refecence mode ($S_{00}<3$) or in the align and calibrate mode $\left(S_{\infty} \geq 3\right.$). If in the align and calibrate mode, zero attitude errors are output. If the speciric mode is lunsr align ($S_{00}=4$) a check is made on 8_{5} (abort stage). If an abort stege is occurring, the equations switch out of the lunar align mode by setting $S_{O O}$ to 1 and go to the attitude hold equations. If $B_{5}=0$, the logic flow proceeds to Figure 3.8 where the lunar align calculations are done. The logic flow then proceeds to point (CE) on Figure 3.7 where the engine discrete is set to orrb. (CE) is also the point to which the logic flow proceeds if any of the other align or calibrate modes are operating. The check of S_{00} against \& a.t the botion center of Figure 3.6 determines which of the above paths are taken.

6.2.3 Steering Modes

'Prior to discussing the logic in the center of Figure 3.6, the various steering modes are considered. The result of all steering mode calculations are attitude errors about the $I M$ body axes denoted by E_{x}, E_{y} and E_{z}. Derivation of the equations for these three quantities (in the various steering modes) is contained in Section 7.4 .1 of this report. A general description of the equations is given here.

6.2.3.1 Attitude Hold

The object of the "ottitude hold" equations is to generate steering commands such that the vehicle maintains the inertial attitude existing when the attitude hold mode is first entered. This is done by utilizing the δ_{5} check at the top center of Figure 3.6. When the attitude hold mode is first entered, δ_{5} equals zero. This causes the desired pointing directions X_{D} and Z_{D} to be established as the present pointing direction of the vehicle X_{D} and Z_{b} respectively. In addition, the flag δ_{5} is set equal to 1 so that in the future the operations of setting $X_{D}=X_{-}$and $\underline{Z}_{D}=\underline{Z}_{b}$ are bypassed. The attitude erron signals are then computed as

$$
\begin{aligned}
& E_{X}=-Y_{b} \cdot Z_{D} \\
& F_{X}=-Z_{b} \cdot I_{-1} \\
& E_{Z}=\underline{X}_{b} \cdot{\underset{D}{D}}
\end{aligned}
$$

which are all zero the first tino through the attituce hold computations.

6.2.3.2 Guidence Steering

The object of the "guidance steering" mode of attitude control is to orient the LM thrust vector along the desired thrust vector. The IM thrust vector is actually oriented differently depending upon which engines exe being used. The RCS engines are mounted along the body axes so that if thrusting is done with the X axis thruster the thrust vector will be along the X body axis. If the DPS engine is being used the thrust vector is again along the positive X body axis. However, if the APS engine is used the thrust vector is displaced from the LM positive X body axis by approximately 5 degrees dompard (tovard the positive Z body axis) in pitch and 2 degrees toward the positive Y body axis in yav. Thus, steering comnands must be generated depending upon which engine is used. These equations are derived in Section 7.4.1 and are

$$
\begin{aligned}
& E_{x}=-W_{c} \cdot z_{b} \\
& E_{y}=-z_{b} \cdot x_{b D} \\
& E_{z}=x_{b} \cdot x_{b D}
\end{aligned}
$$

when the DPS or RCS engines are used. These equations appear at the bottom of Figure 3.6 following the logic path $S_{11}=0$ and $A_{2}=0$. They appear slightly different there but are equivalent to those above. For example, y is calculated as

$$
\therefore \quad E_{y}=E_{y}-\left(Z_{-b} \cdot x_{-D}\right)
$$

which in words means, "put into cell E_{y} the previous value of $E y$ minus the value $\underline{Z}_{b} \cdot \underline{X}_{-D}$ ". The previous value of E_{y} is zero (set to zero at the top left center of Figure 3.6) end $X_{D D}=X_{b D}$ so that the resultant value of E_{y} is

$$
E_{y}=-Z_{-b} \cdot X_{-b D}
$$

These equations drive the positive X body exis to the desired thrust direction and the positive Z. body axis perpendicular to the angular monentum vector of the CSM orbit pointing toward the lunar surface (down).

If the APS engine is used the attitude erxor equations are (rollowing the path of $S_{11}=1$ or $\beta_{2}=1$)

$$
\begin{aligned}
& E_{x}=-V_{c} \cdot \underline{Z}_{b}-J^{4} \\
& E_{y}=K_{7}^{4}\left(x_{b} \cdot x_{b D}\right) \cdot\left(\underline{Z}_{b} \cdot x_{b D}\right) \\
& E_{z}=-K_{8}^{4}\left(x_{b} \cdot x_{b D}\right)+\left(\underline{y}_{b} \cdot x_{b D}\right)
\end{aligned}
$$

In the equation for E_{x} the DEDA input constant has been added to allow S band com. munication during the oxbit insertion phase of the Junar mission regardess of the landing site chosen. J^{4} is entered in degrees and should be limited to less than 40° due to accuracy limitations. A positive vetie of J^{4} will drive the positive w Z body axis toward the negative CSM angular momentun vector. Care should be exercised in using this parameter if the desired thrust direction of the $I M$ is nearly colinear with the CSM angular momentum vector. In this situation the attitude error equations (for nonzero values of d^{4}) will try to drive the Z body axis to a physically unrealizable position thus causing the vehicle to continuously roll about the X body axis. If this situation occurs at all it probebly vould be in the final phase of the mission where e value of $J^{4}=0$ should be utilized.

The logic check on the switch S_{11} followed by the check on β_{2} at the botton of Figure 3.6 appears at first glance to be redundant since S_{11} should be switched to 1 when the APS engines axe used $\left(f_{2}=1\right)$. This logic has been inserted because s_{2} is 0 until the APS engine is turned on at which tire it is set to 1 . Thus up until this time the desired steering would not consider the canted engine. In order to overcome this the switch S_{11} has been inserticd so that the correct steering will be done prior to the initjetion of the APS burn. For long APS burns the insertion of the S_{11} switch would not be necessary; however for short duration burns inclusion of this switch is mandatory.

6.2.3.3 Acguisition Sbcezing

The purpose of the "acquisttion stecsing" rode ($\xi_{00}=2$) of attitude control is to point the positive Z body exis of the IM in the compted direction of the CSM. This mode is used priox to tekins redar deta. The owor equations are computed as

$$
\begin{aligned}
& E_{z}=U_{c} \cdot X_{b} \\
& E_{y}=X_{b} \cdot \underline{Z}_{b 0} \\
& E_{x}=-\underline{Y}_{b} \cdot Z_{b 0}
\end{aligned}
$$

Where \mathbb{Z}_{bD} is the desired pointing dixcetion of the M Z body axis. In this mode then, the Z axis is oriented in the diroction of the CSM and the X body axis is orfented perpendicular to the angular momentun vectox of the CSt. If the CSM is ahead of the LM the X body axis will be ebove the local LM horkzontal plane and if the CSM is behind the IM the X body axis will be belov the local horizontal plane.

6.2.4 Steering Mode Deciston Logic

The remainder of the logice in Figure 3.6 is now considered. At the upper left hand side of the page the follow-up flog β_{3} is checked. Consider the situation where $\rho_{3}=0$. A check is then made on the "Auto" discrete $A_{4} \cdot \operatorname{If~}^{a_{4}}=0$ (attitude hold) the fleg δ_{20} is set equal to 1 and the attituce hold equations axe then computed. δ_{20} is used on Figure 3.7 to control the logic flow. The result of δ_{20} being set equal to 1 maintains the Engine ON/OFP discrete in the stetus determined by β_{1} or ${ }^{2} 2^{\text {. That is, }}$ if either R_{1} or ε_{2} equals l the engine discrete is set $O i n$, if not then the engine discrete is set OMF.

Back on Figure 3.6 if the $8_{1,}$ fleg equals 1 (xather than 0 as just discussed) then the "abort stage" discrete β_{5} is checked. Consjder first the case where no abort stage is comanded $\left(\delta_{5}=0\right)$. Immediately following this the lumar surface flag δ_{21} is checked. If on the lunar surface ($\delta_{21}=1$) zero attitude errors are sent to the autopilot and the logic flow procecds to point (CC) on Figure 3.7 where again the engine discrete is detemined by the status of ρ_{1} and 8_{2}. If not on the lunar surface $\left(\delta_{21}=0\right)$ the abort discrete (96) is checked. If $8_{6}:=0$ then again δ_{20} is set to 1 and the logic flow proceeds to attitude hold. If the abort discrete is 1 then either attitude hold, guidance stcering or acquisition steering is done depending upon the setting of S_{00}.

The only other alternative remining is if an abot state comand, l.e., $\beta_{,}=1$. Inis appears in the center of Figure 3.6 . Jif the $I M$ is on the lunar sur. face, foc is set to 1 and the logic flow is to the ettiture hold equations. This some logic flow reperts every 40 msec until the "staging recognition and remove Lunar surface siganl" logic on the left-hand side of figure 3.6 is exercised as discussed above. That is, when the ascent engine comes on ($\beta_{2}=1$), $\delta_{\text {cl }}$ is set to zero so that following the $\beta_{5}=1$ check at the center of the page, the check on ${ }^{2}, 1$ nod sends the logic flow dommard toward the f_{2} check. Since ${ }^{8} 2$ was set to 1 , the logic flow proceeds to the $"_{6}$ counter cbeck. $"_{6}$ is incremented by 1 every 40 msec . The vehicle stays in attitude hold until " 6 exceeds 4 K 32 at which time the logic flow proceeds to the guidance steering equations. If the abort stage had been set in flight with the ascent engine off $\left(\beta_{c}=0\right)$, then the v_{6} logic vould be byyssed (until $\beta_{2}=1$) and the nominal guidance steering continued. The purpose of the $"_{6}$ logic is to allow the vehicle to automatically be in attitude hold as the vehicle liffts off the lunar surface and during staging. After a prescribed amount of time (controlled by $4 \mathrm{~K} 3<$), the vehicle will orient to the attitude defined by the guidance steering equations.

Consider now again the check on B_{3}. In this instance, let the AGS be in followup $\left(\beta_{3}=1\right)$. If $\beta_{4}=0$ (altitude hold), then the attitude errors are zeroed and the logic flow proceeds to (CC) on Figure 3.7 . If $\beta_{4}=1$ (auto), then δ_{20} is set to 1 and the attitude errors are computed for dispjay purposes. These error signals are inhibited by the autopilot so that the vehicle will not act on them but they may be used for display purposes.

6.2.5 Enginc ON/OFF Logic

As already indicated, there are four exits from Figure 3.6. These have all been discussed above with the exception of the exit to (CA) when s_{20} is zero. (CA) appears on Figure 3.7. If δ_{20} is zero and the mode of the computer (S_{00}) is not in "guidance steering", then the engine is command orf. If, hovever, $\mathrm{s}_{00}=.1$ (guldance steering) a series of checks are made to determine the profer status of the engine discretes. First, the ullage counter is checked. If this counter has not accumulated to the value K, , the engine discrete is set OFF. If $\mathrm{H} 8 \geq 1 \mathrm{~K} 9$, then a check is made on the velocity-to-be-galned in the X body direction. Jf this (as computed every 40 msec) is greater than the value $4 k 25$ (enginc shutdom ingulse), the engine discrete is set ON. If less than 4 F . 5 , e check on total velocity-to-be-gainci is made against 4 K26. The total velocliy-to-be-calnod is here denoted by $h W_{G}$. This is a dunty variable set equal to V_{G} neax the and of cach a second congutirs incxamont. ir $\Delta V_{G} \geq 4 K 26$, the engine discrete is set on ir less thon twe6, the attitude
hold mode is entered, S_{11} is set to zero, the ullage counter is reset to hero and the engine discrete is set to ORF. The attitude hold mole of opmation is entered prior to engine OFF because the residual V_{G} vector could pint in any dircction and it is not desirable for the vehicle X body axis to try to point in this erbitrary direction.

The value of 4,26 has been tentatively set at 300 . The reason for the check of ΔV_{G} against lim26 is to guard against the situation (that ray occur in an abort) when the vehicle attitude is poorly oriented and the velocity-to-be-gained is large. In this case $\Delta V_{g x}$ (the quantity that is usce to actually shut off the engine) could be negative yet the desired condition is for the engine to be oN. The check of ΔV_{G} against $4 K 26$ insures that the desired conditions are obtained.

The remainder of Figure 3.7 bas to do vith outputing DEDA words and generating quantities E_{1}, E_{3}, E_{13}. These three terms are used for the orthonormal corrections to the direction cosine matrix as derlved in Section 7.3.1 or this report. The remainder of the 40 msec comptations are done on Figure 3.9 where $\sin \gamma_{\text {s }} \cos \gamma_{\text {s }}$ sin $\gamma, \cos \gamma$ are computed for the FDAI and sent to the D/A converter.

6.3 Tro Second Computations

The equations utilized in the 2 second computation interval are selected by the logic on Figure 3.27 called the "Executive Brench". The selection of equations depends primarily upon switch S_{14} which has the following sottings.

$$
S_{14}= \begin{cases}0 & \text { Initialization Complete } \\ 1 & \text { Initialize M and CSM via Domlink } \\ 2 & \text { Infitiolize IM via DEDA } \\ 3 & \text { Inlifilize CSM via DBDA }\end{cases}
$$

If the switch setting for S_{14} is cither 0 or 3 the equations utilized in the 2 . second computations are those beginning on Figure 3.12. This is the usual mode of operation. If however, S_{14} is $]$ or 2 then only the equations that appear on Figures 3.10 and 3.11 are solved in the 2 sccond cycle. In other vords no guidence computations are done in the 2 second computation interval when S_{14} is either 1 or 2 .

Prior to discussing the initialization equations it is appropriate to explain the navigation techniques for the CSM and LM,

6.3.1 CSM Navigation

The CSM position and velocity at any time is determined by utilization of a subroutine called the "Ellipse Predictor". This subroutine (explained in mathematical detail in Section 7.4.2 of this report) has the capability of accepting position and velocity of a vehicle at any tine, say t_{E}, and determining the position and velocity of the vehicle at any other time, say $t_{E}+T_{i}$. Here T_{i} can be either a positive or negative number. The prediction of position and velocity is based upon the assumption that the acceleration due to gravity is of the form k / r^{2} where k is a constant and r is the distance from the center of the attracting body. This form of the gravity model will hereafter be called "spherical". For the CSM, ephemeris information in the form of r_{E}, V_{E} and t_{E} is stored in the computer. Here $\underline{I}_{\mathrm{E}}$ is the CSM position vector at the epoch time t_{E} end V_{E} is the CSM velocity vector at the epoch time t_{E}. Thus, if it is desired to know the position and velocity of the CSM at say the present time then the CSM position \underline{r}_{E} and velocity V_{E} are
input to the "ellipse predictor" subroutine alone with the time interval
$t_{\mathrm{b}}=\mathrm{t}-\mathrm{t}_{\mathrm{E}}$. The output of the ellipse predictor is then called r_{c} and V_{c}, the position and velocity of the CSh at tire t. Note that the epoch point is not updated to the present time but rathor that the orfinal values of $\mathrm{r}_{\mathrm{E}}, \mathrm{V}_{\mathrm{E}}$ and t_{E} are maintsined. The only time the epoch point for the csat is chenged is when new ephemeris data is obtained vin domlink or DEDA or when the epoch point is greater then 1 oxbit old. In that case the epoch position and velocity is updated (booistrapped, Figure 3.13) one full oxbital period. This is cone so thei the quantity time does not exceed the computer scaling.

6.3 .2 Iki Navigation

The "ellipse predictor" subroutine as discussed above does not take into account any acceleration of the vehicle other then that due to "spherical" gravity. Thus the technique used for CSM navigation is not valid for IM navigation since the LM vehicle goes through various thructing pheses. IM navigation is done by integrating the equations of motion of the vehicle in a central force field. In this way external accelerations (other than gravity) can be entered when appropriate. The only time the ellipse predictor subroutine is used for LM navigation is when new LM epheneris data is obtained and this deta nust be updated to the present time. Oi course for the updating to be valid no LM thrust acceleration can occur between the tire of the ephemeris point and the present time.

6.3.3 Navigation Initialization

Reference is made to Figure 3.10. Tf S_{14} is 1 then a CSM and LM ephemeris update is to be perfomed utilizing information obtained from the LGC domlink via DSKY command. This information is converted to the correct format and stored in the DEDA cells. The quantity t_{b} (to be discussed belon) is set to zero. If $S_{14}=2$ then the LM ephemeris is to be updated via DEDA inputs in the form of constants $1 J 1$ thru $2 J 7$. No now CSM data is obtained at this time.
S_{14} is autometically set to zero so that in the next 2 second computing increment the normal guidence cquations vill be utilized. Also the present time, t, is incremented by 2 seconds. The folloving quantities are obtained for the IM
orbit fron the "orbit parameters suboutine" that appeare on Figure 3.15. This subroutine computes orbital elerents from cquations described in Appendix A of this document.
r-distance of IM from the center of moon
α - seni msjor exis of M orbit
\# - IM mean orbical rate
C - product of LM eccentricity and cosine of cceentric anomaly
S - product of M eccentricity and sine of cccentric anomaly
Definition of these terms is contained in Appendix A .
Figure 3.11 indicates how the M ephencris deta is updated to the present time. First the quantity T_{i} is calculated which is the the fnerement from when the data was valid to the present time. If the vehicle is on the lunar surface $\left(\delta_{21}=1\right)$ then the position vector is updated simply as

$$
\begin{aligned}
& \underline{x}=x_{0}+V_{-0} 1 \\
& \underline{V}_{0}=V_{0}
\end{aligned}
$$

If, however, δ_{21} is 0 then the present position and velocity of the M is obtained via the ellipse predictor as indjcated previously. Folloving these updating calculations several quantities are calculated for use in the next. 2 sec computing increment.

This completes the initialization xoutine and no additional computations are done in the present 2 sec computing increment.

6.3.4 Navigation Equations Description

If S_{14} is neither 1 nor 2 then the two sccond computations begin on Figure 3.12 . The purpose of the equations on this page is to obtain the IM position and velocity based upon the sensed accelerometer $\Delta V ' s$ and attitude, eccundated during the 20 msec computation cycles.

If the IM is on the lunar surface $\left(\delta_{2 l}=1\right)$ the accumulnted velocities $\left(\underline{V}_{d}\right)$ and the gravity integral $\triangle I G$ are set equal to zoro and the "navigation update" equations entered. If not on the lunex surface, thrust acceleration is obtained by differencing accumalrited velocity along the X body axis this cycle with that 2 seconds ago and dividing by 2. As explained above V_{dx} is the accumanted thrust velocity elong the X body axis valid at the
present time and $V_{D X}$ is that valid 2 seconds in the past. The thrust acceleration, a_{T}, is checked against constant $4 \times 35\left(.1 \mathrm{Hps}^{2}\right.$). If $\mathrm{E}_{\mathrm{p}} \geq 1435$, the vllage counter (μ_{8}) is increased by 2. If $a_{\mathrm{T}}<4 \times 35$ the ullage comter (μ_{8}) is set to zero. Av\% is the sum of the absolute values of the components of sensed velocity during the 2 sec computation interval and is checked against the constent 1×35. If 4 V 人 $<1 \mathrm{~K} 35$ it is assumed that no thrusting has occurxed end the accumbtoted sensed velocities (accelerometer biases) are set to zero. Noreover V_{A} is set equal to V_{-D}.

The first equation in the group of equations roxked "ifavigation Upatate" on Figure 3.12 pertains only to the "extemat AV" guidance mode of operetion and will be discussed completely below. Suffice it here to note that Δg_{g} is the accumulated thrust velocity in inertial coordinates and the equation uplates the value every 2 seconds. $\underline{V}_{\mathrm{D}}$ is set equal to V_{d} for use in the celculation of e_{T} in the next 2 sec computing increment. Next the IM velocity vector is uydeted to the present time by the relation

$$
\underline{V}=\underline{V}+\Delta \mathrm{IG}+\Delta \mathrm{V}_{\mathrm{S}}
$$

where again ΔV_{S} is the accumplated senscd volocity in incritial coordinates over the last two seconds and the term $\Delta T G$ tekes into eccount the effect of gravity on velocity. $\Delta I G$ is equal to 2 (since 2 see is the computing increment) times the average value of acceleration due to gravity in the previous computing cycle wich is, assumed to be the value of acceleration one second ago. Pictorially

Thus the average value of G is computed to be $\left[G_{n} \div \frac{1}{2}\left(G_{n}-G_{n-1}\right)\right]$. When this is multiplied by 2 sec to obtain velocity the expression

$$
\Delta \mathrm{IG}=3 G_{\mathrm{n}}-G_{\mathrm{n}}-1
$$

is obtained. The vector value of Q is obtained by the cxpression
where U_{1} is the radial urit vector $\frac{r}{r}$ of the $L M$.
The value of the IN position vector is updated by teking the old position vector and adding to it 2 times the average value of the velocity vector during the previous two seconds. Thus

$$
\underline{r}=\underline{r}+2\left[\frac{V_{n}+V_{n-1}}{2}\right]=\underline{r}+\underline{V}_{n}+\underline{V}_{n-1}
$$

Following these computations \dot{x} is calculated for later guidance purposes and \dot{h} is calculated for display purposes. In addition time is incremented by 2 seconds. The logic flow then proceeds to Figure 3.13 where the CSM orbjt parameters are computed from the ephemeris data.
6.3.5 CSM Orbjit Farameters

Recall that if $S_{14}=3$ a new CSil ephemeris point is to be input via the DEDA. At the top of Figure 3.13 a chock on S_{14} is made against. 3 . If it is 3 the new information is entered and the quantitics t_{b} and S_{14} are zeroed. The same orbit parameters as determined for the IM on Figure 3.10 are not obtained for the CSM from the "Orbit Parameter Subroutine" on Figure 3.15. Next the CSM epoch bootstrap is accomplished if required. As indicated previously if the time since the CSM epoch, i.e.

$$
t_{b}=t-t_{E}
$$

is greater than 1 CSM orbital period then the epoch time is increased by 1 orbit. This is accomplished at the bottom of Figure 3.13 where ${ }^{1}{ }^{C S M}$ is the CSM orbital period.

The Jogic flow then procects io Hgure 3.I年 where the celculations are done to call the "ellipse prediction subroutine" and obtrin the CSM position and velocity ($\underline{r}_{\mathrm{c}}$ and $\underline{\mathrm{V}}_{\mathrm{c}}$) value at the present time. These quantitics are then used for the radar filter, Figure 3.16 .
6.3.6 Radar Filter

Prior to discussing the equation flow logic of the radar filter a general description of the radar operation procedure is discussed. First, it must be understood that the radar and the AEA are separate equipment units and in no way cen rader information be accepted automatically by the ABA. Angle information is obtained in the computer by "saving" the Z body axis direction cosines (a_{31}, a_{32}, a_{33}) at the time that the radiar gimbal angles are zero. This time is indicated to the computer when S_{15} is set to 1 . At this same time the astronaut must read the range tape meter and ritnin 30 seconds enter radar range via the DEDA. This is entered as manual constant $\mathrm{J}^{8} 8$. Explicitly then the procedure is as follows:
(1) The estroneut sets $S_{O O}=2$. This commands the Z body exis of the $L M$ to be pointed in the estimated direction of the CSif.
(2) The astronaut sets the mode control switch to "attitude hold" ($\beta_{4}=0$) and by means of the "nand control." the astronaut orients the LM until the radar gimbal angle on his at.titude display are zeroed. At this time the Z body axis is pointing toward the CSiA. When the "hand control" is taken out of its detent and $\beta_{4}=0$, the AGS computer zutomatically enters the "follow-up" mode ($\beta_{3}=1$).
(3) When the gimbal angles have been zeroed the astronaut enters via the DEDA the appropriate code that sets $S_{15}=1$.
(4) "Radar Range" is read from the tape meters and entered as J^{88} via the DEDA. This entry should be made within 30 seconds after taking the radar point. The radar filter (Figure 3.16) is a simplified Kalman filter. Derivation of the equations are contained in Section 7.3 .2 of this report. Brieflys the filter operates by assuraing that knowledge of the CSM yosition and velocity is perfect. LM position and velocity is then updated based upon the navieqtion estinate of LM present position and velocity, the radar measurement, and the relative "credibility" of these two quantities. This "credibility" is expressed in the equations by the terms P_{11}, P_{12}, P_{22} and σ^{2}. Definition of these terms are:

```
\(P_{11}\) - navigation position error varience
\(\mathrm{P}_{12}\) - navigation position, velocity orror coversance
\(P_{22}\) - navigetion velocity error variance
\(\sigma^{2}\) - sum of the navigation position and rada. measurement error
        variances
```

To see how the equation logic works reforence is mate to Figure 3.16. In the first block of computations the relative range vector E betwecn the CSM and IM is computed along with its magnitude. The desired Z body axis direction ($Z_{b D}$) is also computed. In addition relative range rate, \dot{R}, is comprited for use in the range rate filter (described below) and for displey purposes. Bypass the check on $\dot{\mathrm{R}}$ ** for the moment and proceed to the check on $\delta_{12} \cdot \delta_{12}$ is nomally zero except when radar data is being taken. That is, when S_{15} is set to 1 (direction cosines are to be stored). δ_{12} is also set to 1 . This is done in the DEDA routine and is indicated at the bottom of Figure 4.6. When δ_{12} is zero and no radar updating is being done, $R^{*} *$ (the radar range measurement) is set to zero. The logic flow then pioceeds to point (E) on Figure 3.17.

Assume, however, that a radar measurement is to be made, Assume also that the astronaut has lined up the Z body axis of the LM pointing toward the CSM and he enters the code setting $S_{15}=1$. At this time he notes the radar range on the tape meter. δ_{12} is set to 1 automatically and $S_{15}=1$. Following the flow diagrams it is seen that a quantity Δt is computed. This quantity is the time elapsed since the previous radar point. Assume this to be the first radar point taken. Then t_{1} is zero and Δt is some large number. The calculations of P_{11}, P_{12} and P_{22} have no meaning since they have never been initialized. In this case to overflows (in the check following the P_{11}, P_{12}, P_{22} calculations) and the quantities P_{11}, P_{12} and P_{22} are initialized. If this vas not the first redar point then the calculations of P_{11}, P_{12}, P_{22} would be valid. These calculations propagate the error covariance from the time of the previous radar point to the present time. In this case, ossuming the time since the last radar measurement is not unduly large (less than 2^{10} seconds), no overflow occurs and the block at the botion center of the figure is entered. Here the weighting is determined (W_{1} and W_{2}) based upon range and the magnitude of P_{11} and P_{12}. In addition the tina on the radsr measumenent is saved as t_{1} (for use in the calculation of tt at the next time a measurement is taken) and S_{15} is set to zero. For later purposes the relative range vector R is stored as R and W_{2} is stored as W_{1}^{\prime}. This completes the redar computations this 2 second cycle and the logic flow as previously proceeds to the block where $\mathrm{R} \%$ is set equel to zero. Note that the
navigation update besed upon the xadax measurement has not boen perfonmed yet. This is done in the 2 second computer cycle that the astroneut onters reder range as J^{78}. into the DRDA.

Fach succeeding two second computing increment (until the navigation update is made) the logic path folloved after entering at the top of the page is that of $\delta_{12}=1$ and $S_{15}=0$. Here W_{1} is upated to take into account the fact that the navigation update is not being porfomed at the time of taking the radar neasurement. If the range measuremont has not been entered then the logic flow leaves the radar filter page as described above. In the cycle that the radar measurement, R^{*}, , is entered to the computer, $\mathrm{R}^{*} \%$ is greater than zero and the computations at the right center of the page are perfomed. This is where the navigation updating occurs. The quantity $\underline{\delta r}$ is computed which is the difference between the estimated relative range vector at the time the radar measurement was taken and the actual radar measurement. This quantity is then used in confunction with the filter weights W_{1} and W_{2} to urdate the present estimate of LM position and velocity. This is done by the equations

$$
\begin{aligned}
& \underline{r}=V_{1} \underline{\delta r}+\underline{r} \\
& \underline{v}=W_{2} \underline{\delta r}+\underline{V}
\end{aligned}
$$

Note that the redar measurement taken at some prior point in time is being used to update the present LM position and velocity. Of course the accuracy of this technigue diminishes as the time between taking the radar measurement and performing the update increases. Studies are presently being conducted on the maximun allowable duration between these two events. Until these results are obtained a time limit of 30 seconds has been placed on this procedure. After the updating has occurred the magnitude of the error covariances are decreased since the estimate of position and velocity has been improved. Moreover δ_{12} is set to zero so that the radar filter is not entered again until another radar point is to be taken.

The astronaut also has the carability of entering into the computer the radar range rate obtained from a tape meter. This entry does not need to be associated with the range measurement discussed above. When $i_{i} \%$ is entered the LM velocity vector V is updated in the logic path followed when $\mathrm{R}_{\mathrm{K}}^{\mathrm{K}} ;$ t 0 . The logic flow then leaves the radar filter computations as usund.

6.3.7 Guldance Equstions

After leaving the redar ithter page, the logte flo: procoeds to Figure 3.17 where the actual gubance equetion calculatious begin.

Entering at the dop of Figure 3.17 severi celculetiona ere performed to obtain paraneters of the IM orbit. Spocticuty, TM homizonts, velocity V_{h}, semi-Istus recturs p and econtricity squard (e_{1}^{2}) are computed. From the quantities e_{1} and p, the quantity a le compotod vich is the pericynthion of the LM orbit. This quantity jater hes the vitue of moan Juner redtus, J^{5}, subtrected from it. q then is uscd for displey puroses. If e_{1}^{2} is greatex than 2^{-6}, the calculation of a can cxceed its scaling in the computer so thet q is merely set to the velue 2^{20}.

Inmedjately following this seversi unit vectors are generated. Based upon the present position of the $M\left(U_{y}=r /\left.\right|_{1} \mid\right)$ end the unit vector, W_{c}, paraliel to the angular nomentum vector of the CSM, the horizontsj vector \underline{V}_{1} parallel to the CSM orbit plene 15 generatod. From \underline{I}_{-1} and V_{-1} then the thind unit vector W_{1} for the IM is calculated. The CSI and CDI penenver exe both "in-plane" maneuvers so the quantities v and y are set equal to zero. These quantities are calculated where needed in the other maneuvers. A dumy variable \dot{r}_{A} is set equal to $\dot{\mathrm{r}}$ (present maltitude rate) cho the rlag δ_{10} is set to zero. This flag controls the logic flow later in the equations and is to be zero in $i l l$ guidance nodes except "orbit insertion" where it is set to the value 1. An angle, ξ, is computcd for display purposes which is the angle between the Z body axis and the IM local horizontel plane.

Following these computations, \& series of checks are made on S_{10} to determine the guidence mode of operation. The verfous modes of S_{10} are as follows:

$$
\mathrm{S}_{10}= \begin{cases}0 & \text { oroit insertion } \\ 1 & \operatorname{CSt} \\ 2 & \text { CDH } \\ 3,4 & \text { direct transier }(\mathrm{NPX}, \mathrm{NCC}) \\ 5 & \text { extemsi } \triangle \mathrm{V}\end{cases}
$$

The first check on S_{10} is rgainst the value 5. If S_{10} is $\dot{5}$, the external ΔV mode of operation is entered.

6.3.7.3 Bremex $\triangle V$

 In this path is egeinet the qumbity S_{O}, mo urad the dom this path, S_{07} must be 0. To insure that tints is so, S_{07} is set to zero when wny other guidence rode is selected. This is the equation just to the left of the check of S_{10}^{\prime} agetnst the valuo 5. Esnuming S_{07} is zero, the next cheek rade is on the ullege cowner. The vilage comber insti alno lave on findtial velue of 0 for the "extemet Δy " wode of oparation to wow propenty. This moans that the vehicle must not be thumting the positive X body aris direction the cycle the extermal Δy modo is emored. The next byoel, of cqustions eatabliah the external ΔV wanewver to be perfocmed. This block in bypaeses once thmsting has started. Prior to discussing this inficialsetion, the two fypen of "externsl $\Delta V^{\prime \prime}$ meneuvers posstble are discussci.
(1) FCS Thrusting with Vehtele in Actitule Hotd

Ascuac for some resson it is desired to perfom a maneuver vith the vehicle attitude fixed in frertial space. Datis can be accomplished by setting the suttch $S_{O O}$ to zero, S_{10} to 5 and imputting the appropriate maneuver constents (discussed below). This raneuver is to be perfomed with the keS engines since the E/OMP comband will be generated wen the riode selocton $\left(S_{00}\right)$ is not equal to I (see Section 6.2.5). The maneuver will be pexformed sepexetely blong each exte. If thrusting is done first along the positive X exis, no further ection need be taken by the astronaut to get the "extemal ΔV " mode onerating correctily. This is so because vhen thmsting along the positive X axis occurs the vilege counter increments itiself and the external ΔV infindization equstions are bypassed es desired (S_{07} is set to 1). If, however, thrusiing is performed elong one of the other exes or . elong the nezative X body axis, then Sor nust be eet to l just prior to the intitation of the raneuver by the estronsut. In this situation then the "extemal ΔV " intitalizution equations exe egein bypassed as desired when the neneuver has begun.
(2) firusting vith the Fositive X Body Axis in the Direction of the Desired Velocity-to be-Gained
In this mode S_{10} is set to 5 and S_{00} to 1 . The vehicle will automatically orient itself to point in the concect direction. No extra entry (on the switch S_{O7}) is required and no constraints are placed on which engines can be used.
In the "external ΔV " mode the desired maneuver is characterized by the values of the input constants 28 J 1 , 28 J 2 and 28 J 3 . A velue of 28 Jl characterizes the velocity-to-be-gained in the LM local horizontal direction parallel to the CSM orbit plane with a positive value indiceting a posigrade maneuver. 2832 characterizes the velocity-to-be-gained in the horizontal out of CSM plane direction with a positive value indicating a direction opposite to the angular momentum vector. ¿\&̂3 characterizes the velocity-to-be-geined in the IM local redial direction with a positive value indicating thrusting toward the moon.

These components of velocity-to-be-gained are resolved into incrtial coordinates and fixed once the maneuver starts, yielding an initial velocity-to-be-gained vector $\Delta V . \Delta_{S}$, the accumblated velocity gained in Inertial coordinates is set equal to zero until the maneuver starts at wich time the initialization block is bypussed and the velocity to be gained vector is computed as

$$
\underline{V}_{G}=\Delta V-\Delta q_{S}
$$

or in words, "the velocity-to-be-gained equals the original velocity-to-be-čained minus that already gained". The magnitude of V_{G} is then obtained and δ_{11} set to zero. ${ }^{\delta} 11$ is another logic routing flag (used in the CSI calculation) that must be zero the first time the CSI calculations are perfomed. The logic flow then proceeds to D_{7}) on Figure 3.26. Here, until the velocity-to-be-cained is less than 5 K 26 , the desired poincing direction is computed to be in the direction of the velocity-to-be-gained

$$
x_{b D}=V_{G / V_{C}}
$$

When V_{G} becomas less than 5 K 25 the desixed X body axis direction is not updated because of the large attitude mancuvers that moy cnaue from the indeterminate calculations of V_{G} / V_{G}. The velocity-to-be-gained along each body axis $\left(V_{G X}, V_{G y}, V_{G Z}\right)$ is then
computed and used in the calculation of V_{G} as explained in Section 6.2.1. Note that if the vehicle is in "attitude hold" all the quantities ($V_{G x}, V_{G y}, V_{G z}$) could be non-zero. If however the vehicle is in "rendezvous steering" ($S_{00}=1$) the vehicle will orient itself such that $V_{G x}=V_{G}$ and $V_{G y}=V_{G Z}=0$. The discussion just conpleted concerning the lover portion of Figure 3.26 is common to 311 guidance modes and will not be discussed in the following subsections.

6.3.7.2 orbit Insertion

Returning the Figure 3.17 follow the logic flow dow the left hand side of the page. Assume that $S_{10} \frac{1}{f} 1$ and note that δ_{11} is set to zero. Again this is so because the first time the path $S_{10}=1$ is entered δ_{11}, must be zero. Assume also that $S_{10} \frac{1}{f} 2$ but rather that S_{10} equals zero which means the guidance equations are in the orbit insertion mode of operations.

This guidance mode has been designed to drive the IM vehicle to a prescribed altitude above the moon with specified values of altitude rate and horizontal velocity. In addition, steering in this mode is such that the LM is driven into the CSM orbit plane at engine cutoff with an out of plane velocity component of zero. Of course, in some abort situations all these conditions cannot be achieved. Comments on these situations are contained in the following discussion.

At the bottom of Figure 3.17 several quantities are established. First δ_{10} is set to 1 to control the logic flow later. The desired final value of horizontal velocity $V_{h f}$ is set to the value of the input constant 24 J . The present out of nlane component of position (y) and velocity $\left(V_{y}\right)$ are computed and the desired in al value of radial rate $\left(\dot{r}_{f}\right)$ is established. A detailed discussion of this computation is considered below. Next the in-plane component of horizontal velocity, $V_{n A}$, is computed and the logic flow proceeds to (D8) on Figure 3.25. At this point the magnitude of the velocity-to-be-gained is computed from the following equation
final inflame horizontal. velocity

inplane radial rate

The quantity f is computed to decermine $i \hat{i}$ the thous naneuver is to be posigrade or retrograde. Since $S_{10}:=0$ the time to bura F_{3} is computcd. Derivation of this equation is contained in Section 7. 7.3 of this repore.

Follosing the calculation of T_{B} the derired values of the derivative of radial rate and the derivative of out of plane velocity are computed. In addition, the predicted value of finel radial position and out of plane position are computed. Then since δ_{10} equals 3 the desired valvee of the second dersvative of radial rate and the second derivative of yat velocity are couputed. Thase calculstions are based upon the orbit incertion guldance lar which is such e.s to maintain \dddot{r}_{d} and \dddot{y}_{d} constant. Detailed discussion of this guidence lew is presented in Section 7.4.3 of this report. Following these comptations the value of \ddot{i}_{d} is modified to account for vehicle wotion ebout a opherical body. The resulting value of \hat{r}_{d} is the desired vertical component of the thrust acceleration. The terms $\frac{K_{1}}{r^{2}}$ and $\frac{v_{h}{ }^{2}}{r}$ are r are the gravitational and centrifugal accelecations. The Jogic flow then proceeds to point (I) on Figure 3.26. Note on Figure 3.25 that \dddot{r}_{d} and \dddot{y}_{d} are set to zero when δ_{10} equals zero. This occurs in all guidance modes except orbit insertion.

The purpose of the equations of Figure 3.26 is to generate the desired pointing direction of the vehicle X body axis and to obtain the velocity-to-be-gained along each body exis.
ψ_{p} is defined as the sine of desired pitch ancle and ψ_{y} as the sine of the desired you angle. In general, these quantities are computed as the desired value of radial acceleration divided by thrust acceleration and desired value of out of plane acceleration divided by thrust acceleration respectively. Fowever, when the LM lifts from the lunar surface or if an abort occurs near touchdown it is more desirable to thrust vertically than to follow the computed pitch profile. This is accomplished by setting \dot{f}_{p} equel to 1 and $y_{y}:=$ to 0 . Then the desired pointing vector $X_{b D}$ is merely U_{1}, the unit vector in the radial direction.

The logic at the top of Higure 3.26 is used to determine if the thrust vector should be in the radiel direction or not. The first check is that of IM elititude above the lunar landing site ($r-5 J$) açainst the constant $21 . \mathrm{J}$ ($25,000 \mathrm{ft}$). If the altitude is less than 21 J a check is made of altitude rate (\dot{r}) against the constant 22J ($50 \mathrm{f} \rho \mathrm{s}$). If \dot{r} is greater than $22 J$ the desired pitch profile is flown. If not then the vehicle is commaded to thast varbically. This lest chack actually controls the tine at which the LM starts pibchlag over after the vertical rise from the lunar surface. For nominal missions this ocutrs aporoximately 12 seconds into the powered flight.

Following celculation of the desired pointind vector $X_{b D}$ the various components of velocity-to-be-geined are computed es discuosed in Sections 6.2.1 and 6.3.7.1. These components are meaningivl only notir cutori. This than completes the orbit Insertion celculations for any 2 scond computing cycle.

Two ideas above have been clossed over and are combidered here in somewat more detail. The first is the celculation of \dot{r}_{5}, and the gecond is the calculation and limiting of \dddot{r}_{d} and \dddot{y}_{d}.

The value of \dot{r}_{f} is obtained from the cquation

$$
\dot{r}_{f^{\prime}}=K_{i_{4}}^{k_{4}}\left(K_{5}^{l_{5}}=r_{\hat{f}}\right)
$$

and then limited between the values of $23 J$ and 14 ef follows

$$
J^{23} \leq \dot{r}_{f} \leq K_{6}^{4}
$$

Then \dot{r}_{p} es'a function of final altitude appears as follows (for the DVLP trajectory)

The reason for this type of function is as follovs: When the predicted final value of altitude is near the desired burnout altitude the altitude rate should be the desired value (J^{23}). Hovever sone abort situation may arise where it is irapossible for the desired final altitude to be achieved. For example the low fast abort that. was discussed in Section 7. 4 of Reference 3 .

In this type case, the object is to be on orising ($\dot{r}>0$) trajectory at the time of engine cutoff so that at a later time appropriate nodifications can be made to the orbit to ensure safe pericyithion. Prescribing \dot{r}_{f} as above yields this condition.

The calculation of \dddot{r}_{d} and \dddot{y}_{d} are contained on Figure 3.26. The equation for \dddot{r}_{d} contains the term J^{16} which is the desired finel altitude at the time of orbit insertion. Derivation of this equetion is contajned in Section 7.4.3 of this report. The value of $\stackrel{\rightharpoonup}{r}_{d}$ is constrained to lie between the values of K_{15}^{5} and zero. These values are chosen so es to limit the mancuvers of the vehicle. When \ddot{r}_{d} lies outside either of the limits, the effect is that the equations give up trying to drive the final altitude of the $I M$ to the desired altitude but just make a limited correction. The orbit insertion naneuver will continue, however, until the desired velocity is obtained.

The equation for \dddot{y}_{d} is similar to that of \dddot{r}_{d}. In this instance, the prodicted final value of out-of-plane position error is used in the calculation. This quantity is desired to be driven to zero. Again, \dddot{y}_{d} is limited to the value $\pm{ }_{16}^{5}$. If the computed value of \dddot{y}_{d} is outside the limits, the equations give up trying to drive the IM into the CSM orbit plane at encine cutoff but just make a limit correction. The philosophy used in the simulations made to this date has been to steer out approximately $1 / 2^{\circ}$ out-of-plane error if the abort occurs at liftoff. If the abort occurs later during orbit insertion, only a smaller out-of-plane position error is removed. Since the CSI and CDH maneuvers are done parallel to the CSM orbit plane, any additional out-of-plane error is removed at the TPI maneuver. For quantitsifive purposes, two simulation runs vere made with the LM 2° out of the CSM orbit plane at liftoff (see Reference 3), Section 7.2. In the first run constant K_{16}^{5} was set to steer out $1 / 2^{\circ}$ of this error during orbit insertion and the remsinder during the direct transfer phase (TPI maneuver). Total $\triangle V$ expended to effect rendezvous in this situation was 6388 fps . In the second simulation run, the constant $K_{5}^{5} 6$ was set so that all 2^{0} were eliminsted during orbit insertion. In this situation, the total velocity required to rendezvous vas 6576 fps . These results fndicate the desirebility of the selected orbit insertion phllosophy.

6.3.7.3 CSI Routine

The guidance routine under discuscion in this section is the cSI routine which is initiated on Figure 3.17. Shortly arter the orbit inscrion moneuver is completed, the astronaut switches S_{10} from zero to 1 and escertains that the following targeting constants have been entered:
$t_{i g A} \quad$ absolute time at which the CSI mancuver is to be performed
$J^{1} \quad$ absolute time at which the TPi nancuver is to be performed
$J^{2} \quad$ desired Iinewof-night engle betveen the IM and csM at time J^{J}.

The purpose of the CSI calculation is to dctermine the magnitude of the horizontal bum to be performed parallel to the CSM orbit plane ot CSI time ($t_{\text {f.gA }}$) such that following the coelliptic maneuver (CDH manenver) the desired line-of-sight angle (J^{2}) between LM and CSM wlll be achieved at time J^{1}. By definition, coelliptic means that: (1) the product of semi-major exis and eccentricity of the LM trajectory equals the same product of the CSM orbit, and (2) the line of epsides of the two orbits are aligned. For calculation of these quatities, the semi-major axis of the LM orbit is obtained as the semi-major axis of the CSM trajectory minus Δr, where Δr is the distance between the two orbits on the radial line passing through the LM at the time of the CDH maneuver.

The solution of this problem is solved by an iteration technique. In each twosecond computing increment, three trial values of horizontal velocity magnitude increnents, V_{H}, are selected and an ap ropriate error function evaluated for each. The magnitude of the successive velocity increments differ by the quantity Δ_{6}. The value of the error function associated with each trial value of horizontal velocity increment is examined and the solution corresponding to the mintmum value of error retained.

The horizontal veiocity magnitude corresponding to the mintmum value of error is used as the second of the three trial values in the next 2 -second computing increment. To cause the iteration to converge to the correct velue, the following rule is used to modify Δ_{6}. If either the first or thixd trial value of horizontal velocity increment yielded the minimun cost, increase the value of \wedge_{6} (up to a limit) by a factor 1.5. If the middie (second) trial value of horizontal velocity increment yielded the minimut cost, decrease the velue of 4_{6} by c. factor of 0.4 . Thus, several sequences of the iteration nay apota as follows.

FIGURE 2.8

The maxinum time observed to date for the itemtion routine to converge to within $1 / 4$ fps has been 36 seconds. This stevation was obtained under edverse conditions. Usually it takes dbout 24 seconds to ortain the desired solution.

In order to sfmplify the discusstion of the equation flos logtc, derivation of many of the equations heve becn placed in Pext in of this roport. The discussion begins with mission time sometinc arter orbit insertion and prior to CSI. The first time the logic follows the path $S_{10}: 1$, the quantity δ_{11} equals zero. This is shown on Figure 3.17 . This inftializes the quantity Δ_{6} end $V_{n o} \cdot \delta_{11}$ is then set to 1 and this block is no longer entered. The flow logic nov proceeds to
(D1) on Figure 3.18 where the quantity T_{i} is computcd. This quantity is the time remaining until the time of the CST maneuver which is used in the ellipse predictor routine to obtain the predicted position and velocity of the $L M$ at the time of the CSI maneuver. This predicted position and velocity is denoted by ${\underset{-}{5}}^{5}$ and \underline{V}_{5} respectively. T_{T} is then set to T_{i} for later use and the horizontal unit vector parallel to the CSM orbit plane, $V_{1 A}$, is computed. The velocity increment added at CSI time will be in this direction.

The next group of equations set up the iteration routinc for the present two-second computing increment. This block is entered only once per two-second computing increment. The various quantities are:

1. The variable used to index the three trial values of horizontal velocity increment. This parameter assumes the values $-1,0,+1$. The horizontal velocity fnerenent assoclated vith the index $i=0$ is greater than that essociated with the index $i=-1$ and less than that associated with the index $i=+\mathrm{J}$. This indexing then makes it easy to control \triangle_{6} in the next computine increment because if the index associated with the minimum error this cycle (denoted by 1_{0}) equals zero then the quantity Δ_{6} should be decreased becsuse the middle value was chosen as best. If not, then Δ_{6} should be increased.
C_{o} - This quantity is the minimun value of error each two-second computing increment, which is orizinally set to the maximun value 2^{3}. Even though the best solution of the three trials per two-second computing

- increment is saved for use in the next two-sccond computing increment the value of error associated with this solution is not saved. Thus, the three values of error are compared against each other and not with eny from previous computing cycles.
V_{H} - This quantity is the trial velocity increnent end is first computed as

$$
V_{\mathrm{H}}=\mathrm{V}_{\mathrm{ho}}=\mathrm{V}_{\mathrm{h}}-\dot{\Delta}_{6} .
$$

where
$V_{\text {ho }}$ is the previously determincd (from preceeding computer cycles) best value of horizontal velocity increment obtained plus the L horizontal velocity in that computing increment. The formulation has been done In this way to make the solution valia after the maneuver begins.
V_{h} is the present value of horizontal velocity :
Δ_{6} is the difference between trisi horizontal velocity magnitudes. To understend whet is taking place assume that the CSI calculations are being done for the first time. Then $V_{\text {ho }}=V_{h}$ from the initialization on Figure 3.17 and $\Lambda_{6}=2 \mathrm{~K} 5$. The quantity $V_{\mathrm{F}}=\mathrm{V}_{\mathrm{ho}}-\Delta_{6}=\mathrm{V}_{\mathrm{h}}-V_{\mathrm{h}}-\Delta_{6}=-2 \mathrm{~K} 3$. Thus the first horizontal velocity increment used is $-2 K 5$. As will be seen below the second trial horizontal veioctity increment is obtained from the first by the equation

$$
V_{H}=V_{H}+\Delta_{6}
$$

or in this case

$$
V_{H}=-2 K 5+2 K 5=0
$$

Similarly, the third trial value of V_{H} is obtained by adding Δ_{6} to V_{H}. Thus, the first 2 second computing increment in which the CSI calculations are done, the triol velocity increments are $-2 K 5,0,+2 K 5$ indexed by $1=-1,0,+1$ respectively. The best of the three values of V_{H} is selected and denoted by V_{0} and the quantity $V_{\text {ho }}$ used in the next. 2 .second computing increment is obtained as

$$
v_{h o}=v_{h}+v_{o}
$$

Also Δ_{6} is modified es described above. Thus when the calcuiation for V_{H} is done in the next 2 second computing increment it assumes the value

$$
V_{H}=v_{h o}-v_{h}-\Delta_{6}=v_{h, n-1}+v_{0}-v_{h, n}-\Delta_{6}
$$

where n and $n-1$ heve been used to denote present values and values valid 2 seconds previously. Assume for the moment thet $V_{h, n-1}:=V_{h, n}$
then

$$
\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{0}-\Delta_{6} .
$$

i/s the norizontal velocity increment used as the first trial value.
As above, the sccond trial va!ue is given by $V_{H}=V_{H}+\Delta_{6}=V_{0}$ and Lhe third by $V_{H}=V_{H}+\Delta_{6}=v_{0}+\Delta_{6}$. Remembering that V_{0} was the best, horizontal velocity increment from the previous two-second. computing increment, it is sfen that in the present computing increment the searen is made around the previous best value. The process continues in this way until the best value of V_{H} has been determined. This is characterized uy \triangle_{6} shrinking to a preset value. It is not apparent in the above discussion why the verues of V_{h} have been used. The reason is that once the maneuver starts we desire the iteration routine to follow the effects of the maneuver (maintain the correct answer). This is done by effectively decreasing the value of V_{H} by the horizontal velocity gained or approximately by $\mathrm{V}_{\mathrm{h}, \mathrm{n}-1}-\mathrm{V}_{\mathrm{h}}$.
\dot{r}_{5} - predicted value of LM altitude rate at CSI tine.
\dot{r}_{A} - predicted value of $L M$ altitude rate at CDH time. This quantity is set to zeru because the CDH maneuver is programed to occur at either apocynthion or pericynthion. The CSI calculations assume the CDH maneuver is made impulsively. During the CDH maneuver itself, however, the assumption of zero \dot{r}_{A} is not made because the actual burn is of finite duration and also may not occur precisely at the line of apsides.

The next group of equations beginning with the calculation of \underline{V}_{55} to the calculation of T_{A} are done to detemane the time from the CSI maneuver to the CDH maneurer for the trial value of horizontal velocity increment under consideration. This desired time is T_{A}. The equation for \underline{V}_{55} is the first equation to be solved three times per computing increnent. That is, later in the flow logic, directions will be given to return to (FA) on this page. The time of the CDH maneuver is designsted as either the first or second crossing of the line of apsides after the CST maneuver and is controlled by svitch S_{16}. If $S_{16}=0$, the maneuver is to be performed at the first crossing and if $s_{1.6}=1$, the maneuver is to be pernomed at the second crossing of the line of rasicies.

The following possibilities then exist

\dot{x}_{5}	$\mathrm{~S}_{16}$	Con Maneuvers Occur at
<0	0	pericynthion
<0	1	espcynthion
>0	0	apocynthion
>0	1	pericynchion

When \dot{r}_{5} is close to zero either one of two possibilities exist
(1) The LM is on a near circular orbit in which case quantities such as first and second crossing begin to lose their meaning
(2) The LM is either near apogee or perigee in which case the CDH maneuver is to occur either at 180° away or 360° away.

In either of the situations the switch S_{17} should be set to 1 and S_{16} set to 0 for CDH to occur at 180° or S_{17} set to 1 and S_{16} set to 3 . for CDH to occur at 360°. For (1) above it is obvious why this is necessary. The reason why it is necessary in (2) is now presented. Assume the CSI maneuver begins just prior to say peri: cynthion and it is desired to perform the maneuver at apocynthion and thus on the 2nd crossing of the line of apsides. Nomally then S_{17} would be set to 0 and S_{16} set to 1 . If the duration of the maneuver is sufficiently lonf for the LM to pass through pericynthion then this configuretion of switch settings would cause a discontinuity in the solution because now the second crossing occurs at pericynthlon. For this reason it is suggested that if $\left|\dot{r}_{5}\right|$ is singll then S_{17} should be switched to 1 .

At the bottom of Flgure 3.18 the time T_{A} is used to predict the value of LM position and velocity $\mathrm{S}_{6}, \mathrm{~V}_{6}$ at the time of the Chit maneuver. The logic flow - then proceeds to (ZB on Figure 3.19. The calculations on this page are used to obtain several quantities required in the crror function and to compute the various
components of velocity required to perform tho CDI mancuver. The first computatione on Figure 3.19 compute the CSid position and velocity et the time of the CDH maneuver. The desired quantity fron this infomation it CSM elititulo rate, denoted by \dot{r}_{c} and eventually saved as $\dot{r}_{\bar{B}}$. \hat{b}_{7} is set to zero merely to control the folloving logic flow. \dot{r}_{c} is then celculated and stored in $\dot{r}_{B} .{ }_{6}$ is then set to 1 . The purpose of the calculations on the lower right of Figure 3.19 is to obtain the value of Δr which is defined as the distance difference between the CSM and LM orbits as measured on the radial line passing thru the lat at the tine of the CDH maneuver. Thus to obtain this, the distonce of the CSM mast be determined at the position In the orbit specified. Since the LM can be out of the CSM orbit plane the procedure used is to project the LM at CDII tine onto the CSM orbit plane and the compute the central angle betveen this projection end the CSM. This angle is denoted by θ_{f} and division of θ_{f} by the mean CGM orbital rate yields the approximate time T_{8} that \underline{Y}_{7} and V_{7} (CSM position and velocity et CDH) must be propagated to be on the desired radial line. This propagation is done in the ellipse predictor and the output is again denoted by $\underline{r}_{-7}, V_{7}$. From this then the distance of the CSM fron the center of the moon can be determined along with radial rate. This is done at the top right hand side of the page. Then slace δ_{7} has been set to 1 the logic flow is to the left end the calculations performed to obtain the following quantities.
Δr^{\cdot} definition above
$\alpha_{\text {L }}$ semi major axis of desired IM orbit equals semi major axis of CSM orbit minus Δ_{r}
V_{hA} LM horizontal velocity at time of CDI maneuver
${ }^{n}$ L mean orbital rate of desired LM trajectory

- \dot{r}_{f} desired altitude rale of LM at CDI ifne.
V_{f} desired value of IM velocity at CDH tine
$v_{h f}$ desired horizontal velocity at CDII time
After these calculations logic flov proceces to (11) on Figure 3.25 where the velocity-to-be-gained during the conf mmeuver is colculated as V_{G}. Then since S_{10}
equals 1 the logic flow returns to (D9) on Figure 3.20.
The equations on Figure 3.20 evaluate the error function, store the best solution, generate the best value of the time of CnH mencuver and control the iteration. At the top of Figure 3.20 the quentity b_{3} is calculated. b_{3} is defined as the desired central angle between MM and CSM at TPI timo besed upon the desired line of sight angle J^{2} and Δr. The ercor function is the absolute value of the difference between b_{3} (the desired) and the actuel central angle that would be achieved if this trial trajectory were flom. It is this function that is minimized. Derivation of b_{3} and the error function C is contained in Fart II of this report. The remainder of the iteration logic operates as follows. Assume the first of three trial values of horizontal velocity magnitude (indexed by $i=-1$) is being considered. The check of C against C_{0} will be less than zero because C_{0} was set to its maximm value at the beginning of the two second computer cycle (sce figure 3.18). This solution then is stored in the block to the right of the ($C-C_{0}$) check and i_{o} is set to 1 . Then since 1 equels $-1, V_{H}$ is ineremented by Δ_{6} as explained above and 1 is increased to 0 . The logic flow then goes back to (FA) on Figure 3.18 and a new trial solution is obtained. Back on Figure 3.20 if the error value for this trial is less than the previous value of error then the new solution is stored and i_{o} set to 0 . If ($C-C_{o}$) is greater than zero no new solution is stored. Again i is checked and since $i:=0, V_{H}$ and i arc again incremented and the logic flow again returns to (FA) on Figure 3.18. Rack again on Figure 3.20 the same procedure is followed. This time, hovever, when the check on \dot{i} is made the flow is to the right. The direction to point the I . X body axis is obtained from the sign of V_{o} and used as previously stated. \dot{r}_{f} is set equal to \dot{r}_{A} for later purposes and the magnitute of velocity-to-be-gained during the CSI maneuver is obtained as the magnitude of V_{0}. The best t ine of CDH maneuver $t_{i g B}$ is then computed as $t_{\text {igA }}+T_{A O}$ where $T_{A O}$ is the best value of T_{A}. Then, if 1_{0} (the index of the best solution) is zero, Δ_{6} is decreased and limited. If, hovever, $i_{o}=1$ then Δ_{6} is increased and linited. The flow logic proceds to (D3) on Figure 3.25 .

The purpose of going to Figure 3.25 is to use equations that hove already been programed. In this mode (as in atl modes except orbit insertion) δ_{10} is 0 so that \dddot{r}_{d} and \dddot{y}_{d} are zero. Then, since $\dot{r}_{f}=\dot{r}_{A}$ and V_{y} equals zero, both \ddot{r}_{d} and $\ddot{y}_{\vec{\alpha}}$ are zero. In this mode of operation these are the only equations of interest on this pege. The logic flow then follows exactily as in the orbit insertion mole through pigure 3.26 . Now, however, both ψ_{p} and ψ_{y} equal zero so that the desixed y body axis pointing direction is esteblished to be along the unit vector V_{1} in a direction detemined by ψ (the sign of the horizontal velocity increment).
6.3.7.4 CDH Routine

After the CCT Inaneuver has been executed, the astroneut inserts the setting $S_{10}=2$. Then, during the 2 second computations, Figure 3.17 is entered and the logic flow follows the path $\mathrm{S}_{10}=2$. In this mode the CDII maneuver is computed as if the bum is to be done irmediately. The equations to do this have 2.7 ready been discussed in the preceding section.

When $S_{10}=2$, several quantities are established for succeeding calculations. Both T_{I} and T_{A} are set to zero because the calculations are being done as if the maneuver were to occur imnediately. The quantity T_{Δ} (time until. CDH) is computed as $t_{i g B}$. t. Moreover, \underline{r}_{6} and \underline{V}_{6} are set equal to \underline{Y} and \underline{V} respectively. The logic flow then proceeds to ($Z B$ on Figure 3.19 where the CDH maneuver is calculated as in the CSI computations. Leaving Figure 3.19 the logic flow proceeds to (D8) on Figure 3.25 where the velocity to be gajned is computed. Note that since S_{10} is not equal to 1 , all the CSI function and iteration logic is bypassed. The logic flow proceeds inmediately to the calculations to determine the desired pointing direction X_{bj}. Now, $\ddot{\mathrm{y}}_{\mathrm{d}}=0$
and $\ddot{r}_{d}=\frac{\dot{r}_{f}-\dot{r}_{A}}{T_{B}}$ as celculated on Figure 3.25. Then the logic flow proceeds to Figure 3.26 as previously and ${ }^{\prime} y$ is cot zero and $\psi_{p}=\frac{\overbrace{d}}{\varepsilon_{2}}$ which is approxinately equel to $\frac{\left(\dot{r}_{f}-\dot{r}_{A}\right)}{V_{G}}$. The remander of the equations are exactly the same as: previously.

Note that prior to the rencurex the desixed attitude of the LM is not fixed in inertial space but actually rotates with the Lf vehicle. This is the same situation that occurs prior to the CSS maneuver.

6.3.7.2 Direct Trensfer (TPT)

All possible logic paths on Figure 3.17 have been discussed wf.th the exception of the path going to (Z5) at the botton of the page. This path is used when S_{10} is either 3 or 4 , the drect tronsfer modes.

The direct tronsfer mode is used in the coelliptic rendezvous schene follouing the CDH maneuver. The two previous mancuvers (CSI and CDH) vere performed such that at the desired 'IPI time (J^{2}) the proper phasing exists between the IM and CSM so that the desired line of sight angle is achieved. For each line of sight angle at TPI time there is a corresponding best time until rendezvous. The values used in the simulations to date hove been:

desired line of sight angle $\left(J^{2}\right)$	26.6°
time of TPI to rendezvous	2880 sec

2880 seconds corresponds to 140° central angle of the CSM in an 80 nm circular orbit.

Because of errors in the system (sensors, navigation, maneuver execution, etc.) the desired line of sight will not be achicved at exactly the targeted TPI time but should occur within some relatively mall time feriod ncar the nominal TPI time. For this reason a guidance option has been included where the astronaut can determine when the desired line of sjegh will be achieved and perform the maneuver at this time if so desired. In this mode also, the astroncut could determine total velocity required to rendezvous at various timss and perfom the TPT maneuver based - upon this quantity.

The two different guidance modes opowte as follows:
$\mathrm{S}_{10}=3$
The estronat introduces on increment of tino, T, anced of the present time at winch he whes to look at the rendezvous solution. The time at which the frimaneuver is to occur is alvays moving ahead 2 secs per 2 second because the tine of inttiation of the bim $t_{i g C}$ equals $t+T_{\Delta}{ }^{*} T_{\Delta}$ is a fixed number and it increnents two seconds per 2 second. When the solution is satisfectory - besed upon DEDA bonitoring of the line of sight engle or totel velocity required to rendezvous - S_{10} can be set equal to 4 .
$S_{10}=4$
Whereas the guidance mode $S_{10}=3$ is used for a form of "mission planning" the mode $S_{10}=4$ is used in genezal for the maneuver itself. If the desired rendezvous solution is found with $S_{10}=3$ and then S_{10} is set to 4 no additional entry of $t_{i g C}$ need be insexted in the computer since this is done eutomaticelly. If guidance mode $S_{10}=3$ is not used then when $S_{10}=4$ e. value of TPI time ($t_{\text {igC }}$) must be inserted. Nany different values could be tried if the estronaut desired to do some "mission planning" in this node and did not care to use the ellernete mode. After a velue of $t_{i g C}$ is inserted a solution is found in one computing increment.

Assuming the value of $t_{i g C}$ has been selected (and $S_{10}=4$) then the quantity T_{Δ} is the tine to go until the msneuver. This quantity could be used to set the events timer.

6.3.7.5.1 Equetions Deserintion

Following the logic on Figure 3.21 it is obscrved that when $S_{10}=3$ the input quantity is T_{Δ} and $t_{\text {igC }}$ is computed whereas when $S_{3.0}=4_{4} t_{\text {igC }}$ is the input quantity and T_{Δ} is computed. The remander of the logic is the same for both modes. ${ }^{T} r$ is the time to rendezvous. If T_{Δ} is ereater than zero (neaning the burn has not been initiatec yet) then the position \underline{r}_{5} and velocity \underline{V}_{5} of the $I M$ at the time of the maneuver is ascertained from the ellipse predictor. If T_{Δ} is less than zero it is set to zero for
use in the ellipse predictor and \underline{r}_{5} and V_{5} are the 14 present position and velocity. Next, the position ${\underset{r}{c}}^{c}$ and velocity ${ }_{{ }_{c}}$ of the CSM are uplated to the same time as that of the LM. From these two quantities the line of sicht angle, ${ }_{\text {LOS }}$, is computed. In oxder to determine the transfer trajectory to rendezvous, the position and velocity of the CSM must be determined at the desired tine of rendezvous. This is done by updating the CSM through a time T_{i} from the CSM epoch point where (assume $J^{3}=0$)

$$
t_{i}=t_{b}+T_{r}
$$

where t_{b} is the time from the CSM epoch point to the present time. The CSM position at rendezvous is denoted by r_{T} and the velocity by V_{S}. In preparation for use of the p iterator two other quantities are calculated, T and p. T is the tine from present to rendezvous if $t>t_{i g C}$ or the time from the TPI mancuver to rendezvous if $t<t_{i g C} . p$ is an initial guess of the value of the semi latus rectum for use in the p iterator. r_{f} is the magnitude of the $I M$ radius vector at either the present time, if $t_{1}>t_{i g C}$, or that of the LM at the time TPL if $t<t_{i g C}$. The logic flow then leads directly to figure 3.22 , the first page of calculations of the p iterator.

The piterator equations conteined in Figures $3.22,3.23$ and 3.24 are used to answer the following questions. What. trajectory passes between two specified points in a given time T ? When at the first point on a present trajectory what velocity must be added to achieve the desired trajectory? What velocity is required at the second point to be on the CSM trajectory? Of course, the first point mentioned is either the present position if $t>t_{i g C}$ or the position at the TPI maneuver time if $t<t_{j_{G C}}$. The second point is the rendezvous point. .

The actual details of the p iterator are contained in Fart II of this report. Here only the limitations imposed by the p iterator are considered and the desired outputs noted. The first restriction due to the p iterator equations is that the stable member $X Z$ plane should be within 80 degrees of the IM orbit plane. This restriction comes about because of the calculation (on Figure 3.22)

$$
\operatorname{sgn} c_{2}=\operatorname{sgn}\left(y y_{c}\right)
$$

where y, and y_{c} are the components alons the y inertial axis of \underline{W}_{2} and ${ }_{-c}$ respectively.

The term sen $\left(\mathrm{y} \mathrm{y}_{\mathrm{c}}\right.$) is an approximation to tho exaci expression sgn $\left(\mathrm{W}_{\mathrm{l}} \cdot \mathrm{W}_{\mathrm{c}}\right)$. The constraint of $\pm 80^{\circ}$ imposes no problens on the plenned orbital alignment procedures. In the case of lunar alignarent the stable nomber x.z plone essentially coincides with the LM orbit plane.

The next restriction inposed by the p iterator equations is the central angle through which rendezvous is to cccur. Theoretically, a p iterator yields no solution to the problem then the central angle between the first and second points discussed ábove is any multiple of π orbits. This is evidenced by several equations in the p iterator which contain divisions by the quantity c_{2} which is the sine of the central angle and is zero at these points. Because of the computer vord size a region of increasing inaccuracy occurs near these singularities. For lunar missions these regions are $\pm 10^{\circ}$ and for earth missions the constrained region is $\pm 20^{\circ}$.

In the p iterator, eight trial trajectories are considered each 2 second computing increment. If any of these trial trajectorios has an eccentrjcity greater than 0.5 the p iterator will not determine the solution to the problem. A check is made in the p iterator to detemine if afcer the 8 trial trajectories have been tried, the final trafectory is sufficjently close to the desired trajectory. This is done by comparing the time it takes to get fron the first point to the second point on the chosen trajectory with the desired time for the transfer to occur. If these numbers differ by more then deo seconds (2 seconds) then the p iterator will not yield a solution. A way to check the p iterator to see if a solution has been obtained is to examine the quantity V_{T}, which is essentially the sum of the magnitudes of the 2 velocities to be gained (initial and final). If the value of V_{T} equals $2 k 11$ (8000) then the p iterator hes not obtained a solution:

The outputs of the p iterator needed to perform the first maneuver (both for steering and for velocity-to-bc-gafned) are \dot{f}_{f}, the desjred radial rate after the TPI maneuver, V_{G} - the velocity-to-be-guince, V_{y}.. the out of transfer plane velocity component, ${ }^{t}$ - the indication of o postgrede or retrograde maneuver, and \dot{r}_{A} the actual radial rate at the time the mancuver is perfomed. Then the output of the p iterator goes directly to (D3) on Figure 3.25 where the computation of T_{B} is performed. The remander of the equations are as discussed several times above.

It is interesting to note that if the flight equations are in the "rendozvous steering" mode ($S_{00}=1$) prior to the tine of the mpl marieuver the vehicle will orient itself in inertial spoce to the correct attitude required at the time of the mancuver. This is in contrast to the CST and com manevers were the vehicle will maintain the correct attitude with respect to the locel coordinate system (U_{1}, V_{1}, W_{-1}).

Before concluding the discussion of the Euidenee equstions it should be noted that it is not necessery to orient the X body axis of the venicle in the desired dixection of thrust, i.e. set $S_{O O}=1$, for these various guidance options (orbit insertion, CST, CDH, TPI). This has alrecdy been pointed out for the "external ΔV " mode where a separkte section vas presented on placing the venicle in "attitude hold" $\left(S_{00}=0\right)$ and thrusting along each axis individuaily. This same procedure can be used in all other guidance modes also it desired. * In addstion, this is a feasible way of eliminating resjdual velocity-to-be-gained after engine cutorf. It should be noted, hovever, that the manouver must be accomplishod with the RCS engines since the engine OFE discrete is set when $\mathrm{S}_{00} \frac{l}{\mathrm{I}} \mathrm{J}$

* Obviously, more propellant will be requixed is each aV conponcht is reduced to zero separately.

PART IT

DERTVATRON AMO DISCUSSTOT

7.0 TNTRODUCTTON

In this part of the report dertvations of many of the tmportont equations are presented and discussed. There wre three genexal cotocorien considered. These categories end the subsections contrined within then ave:

ALTGMEMP AMD CALTEPATTON
Body Axis Align
IMU Align
Lunar Align
Gyxo Inflicht Calibration
Accelerometer Inflight Calibration
Gyro Iunar Calibration
NAVJGATTON
Direction Cosine Updating Algorithra
Derivation of Radar Filter Equations
GUIDANCE
Attitude Error Commands
Ellipse Predictor Subrcutine
Steering Equations for Orbit Insertion
Derivation of Cost Function for CSI Calculations
Derivation of the Equations to Obtain Coelliptic Orbits
Derivation of p-iterator Equations

7.1 Alignment

The alignment of e strapiosn system is essentially the computation of the correct direction cosines which relate the vehicle body axes to the desired inertial coordinate axes. This aligment my be eccomplished in many different ways, three of which are mechanized in the 12 abort guidance system.

$$
\text { 7.1.1 Body Axis Align }\left(S_{00}=5\right)
$$

In this alignment mode of the AGS, the direction cosines are set equal to a unit matrix. This is equivalent to aligning to en inerial coordinate system which coincides with the vehicle body axes at the instant the alignment is performed.

$$
\text { 7.1.2 IUU Align }\left(G_{00}=3\right)
$$

In the DMU alignment mode, the AGS direction cosines are set equal to the FONCS direction cosines computed from the FGNCS Euter engles ${ }_{\mathrm{p}}$, ϕ_{p}, ψ_{p}. This alignment method is in error due to the quantization of the fGNCS Euler angles (40 seconds of arc), the FGNCS alignment error, and also by the amount the FGNCS inertial platform has drifted since it was aligned. The equations for computing the desired (fGNCS) direction cosines are shown belov, (Equation 7.1.2) and are based on the gimbal order of the Rares system as expressed in Equation 7.1.1. IMU alignment is performed prior to the inflight eyro calibration, before the descent of the LM vehicle to the lunser surface, and on the lunar surface if the PGNCS is still operating after the lunar landing has occurred.

$\left[c_{i j}\right]: m$		0	0	$\mathrm{C} \cdot 1$	S'	0	CO	0	
	0	C_{6}	S_{0}			0	0	1	0
	0	-5	C	0	0	1	So	0	Ce

where $C \beta=\cos \beta$ and $S \beta=\sin \beta$

$$
\begin{align*}
& \varepsilon_{11}=\cos \dot{\phi}_{p} \cos \theta_{p} \\
& \varepsilon_{12}=\sin \dot{\phi}_{p} \\
& \varepsilon_{13}=-\cos \dot{\phi}_{p} \sin \theta_{p} \tag{7.1.2}\\
& \varepsilon_{31}=\sin \phi_{p} \sin \dot{\phi}_{p} \cos \theta_{p}+\cos \phi_{p} \sin \theta_{p} \\
& a_{32}=-\sin \phi_{p} \cos \phi_{p} \\
& a_{33}=\cos \phi_{p} \cos \theta_{p}-\sin \phi_{p} \sin \dot{\gamma}_{p} \sin \theta_{p}
\end{align*}
$$

Since the other three direction costies may be computed from the above direction cosines, and since these three direction cosines are computed in this mannex in the direction cosine updaic computsibons, the other three direction cosines are computed as show in Equation (7.1.3).

$$
\begin{align*}
& \varepsilon_{21}=\varepsilon_{13} \varepsilon_{32}-\varepsilon_{12} \varepsilon_{33} \\
& \varepsilon_{22}=\varepsilon_{11} \varepsilon_{33}-\varepsilon_{13} \varepsilon_{31} \tag{7.1.3}\\
& \varepsilon_{23}=\varepsilon_{12} \varepsilon_{31}-\varepsilon_{11} \varepsilon_{32}
\end{align*}
$$

Equation (7.1.3) is easily derived us $x_{b}=\left(\begin{array}{l}a_{11} \\ a_{12} \\ \varepsilon_{13}\end{array}\right)$,

$$
y_{b}=\left(\begin{array}{l}
\varepsilon_{21} \\
\varepsilon_{22} \\
\varepsilon_{23}
\end{array}\right)
$$

$$
z_{b}:\left(\begin{array}{l}
\varepsilon_{37} \\
e_{32} \\
\varepsilon_{33}
\end{array}\right) \text {, and } y_{3}=z_{b} \times x_{0}
$$

7.1.3 Lunar Align Eguations.

Prior to the desecht of the M to the Jumax surfece, the $X_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}, Z_{\mathrm{b}}$ vehicle axes are aligned to a selenocentric concinate systen vith the X axis through the intended landine sicht at the nominel the of landing postitive outward from the Iunar center. the Z exis is derined as the cross product of a unit vector alons the angulax momentum vector of the csu orbit.with a unit vector along the X axis. Thus, the fneribial coordinate systan used for the descent phase has the X and the Z inertial ayes in the CSA orbit plane.

When the IM lands on the lumur surface, the vehicle azinath with respect to the CSM orbit plane is determined by stoxing, upon commend of the DEDA, the AGS azimuth reference as defined by the appropriaie elements of the transfomation matrix [A]. This azimath reference δ_{i} is defined to be the ongle between the Y inertial axis and the projection of the Z body axis on the Y - Z inertisl plane, messured positive in the right-hand rotational direction about the X inertial axis. (See Figure 7.1). Fron this figure, the direction cosines which

Fugute 7.1
Lunax Align Geomatry
define the Z body axis jocation with resrect to the X, y, Z inertial axes may be deterinined, and are presented in Equation (7.1.4).

$$
\begin{align*}
& a_{31}=z_{b} \cdot x=\sin \theta_{1} \\
& a_{32}=z_{b} \cdot y=\cos \theta_{1} \cos \delta_{b} \\
& a_{33}=z_{b} \cdot z=\cos \theta_{1} \sin \delta_{b} . \tag{7.1.4}
\end{align*}
$$

Since $a_{31}^{2}=\sin ^{2} \theta_{1}, 1-\varepsilon_{31}^{2}=\cos ^{2} \theta_{1}$, the costne and sine of the landing azimuth δ_{Q} as mechanized in the AGS are computed as shovin in Equation (7.1.5). These equations

$$
\begin{align*}
\sin \delta_{L} & =\frac{\varepsilon_{33}}{\left[1-a_{31}^{2}\right]^{1 / 2}} \\
\cos \delta_{L} & =\frac{\varepsilon_{32}}{\left[1-\varepsilon_{31}^{2}\right]^{1 / 2}} \tag{7.1.5}
\end{align*}
$$

are valid only when $\left|\theta_{1}\right|<90$ degrees. Since the maxtmum vehicle tilt angle is expected to be 30 degrees, and the LM is expected to land within 1 degree from the nominal landing site, the equations used to define δ_{h} are valid as defined.

After the lunar landing, the AGS is aligned to another selenocentric coordinate system with the inerifal x axis through the intended launch site at the tine of launch, positive outward from the luner center. The inertial Z axis direction is defined conceptually by the cross product of a unit vector along the CSM angular momentum vector with a unit vector along the inertial X axis. That is, the Z inertial axis is paralle] to the CSM orbit plane.

In the lunar align equations, the direction costnes which relate the vehicle body axes to the local level lunar centexed coordinate system described above are computed whith a low gain filtex. This filter uses the accelerometer outputs to obtain the estinate of the vohicle levelins errors, and an azinuth reference constant δ_{A} to conpute the estimate of the azimath error. δ_{A} is the
updated value of the landing ezinuth reference constant δ_{L}, where $\delta_{A}=\delta_{L}-\Delta_{\delta}$. Δ_{0} is computed on the earth, and corrects for CSM orbit changes and the lunar rotation during the LM's stay on the lunar surface. Since the updated value for the azimuth reference constant is defined by the difference of two angles, the sine and cosine of the updated azimuth reference constant δ_{A} may be computed from Equation (7.1.6). Using this

$$
\begin{align*}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \tag{7.1.6}
\end{align*}
$$

equation, and small angle approximations for Δ_{0}, the equations for the sine and cosine of δ_{A} are

$$
\begin{align*}
& \cos \left(\delta_{A}\right)=\cos \delta_{L}+\Delta_{\delta} \sin \delta_{L} \\
& \sin \left(\delta_{A}\right)=\sin \delta_{L}-\Delta_{\delta} \cos \delta_{L} \tag{7.1.7}
\end{align*}
$$

Since the LM AGS is being aligned to a coordinate system.with the X inertial axis vertical, the lunar gravity vector $\bar{g}_{6}=g_{\ell} \bar{X}$, where \bar{X} is a unit vector along the x inertial axis and g_{L} is the magnitude of the lunar gravity. Thus, the components of lunar gravity along the X, Y, Z body axes are

$$
\begin{align*}
& g_{x}=g_{L} a_{11} \\
& g_{y}=g_{L} a_{21} \\
& g_{z}=g_{L} a_{31} \tag{7.1.8}
\end{align*}
$$

and the outputs of the body mounted accelerometers are

$$
\begin{align*}
\Delta V_{X i} & =\int g_{L} a_{11} d t \approx g_{L} \Delta t a_{11} \\
\Delta V_{Y i} & =\int g_{L} a_{21} d t \approx g_{L} \Delta t a_{21} \\
\Delta V_{Z i} & =\int g_{L} a_{31} d t \approx g_{L} \Delta t a_{31} \tag{7.1.9}
\end{align*}
$$

The estinates of the leveling errors may be obtsined by comparing the output of the Y and Z accelerometers with Equation (7.1.9).

$$
\begin{align*}
& \Delta \theta_{y}=\frac{1}{g_{\mathrm{L}} \Delta t}\left[\begin{array}{lll}
\Delta V_{z}-g_{L} & \Delta t & a_{31}
\end{array}\right] \\
& \Delta \theta_{z}=\frac{1}{g_{\mathrm{L}} \Delta t}\left[-\Delta V_{y}-g_{\varphi} \Delta t \quad a_{21}\right] \tag{7.1.10}
\end{align*}
$$

The estimates of the azimuth errors are computed from the sine and cosine of δ_{A} in the following steps. First the desired values for a_{32} and a_{33} are computed, based on the assumption that a_{31} is equal to the $\sin \theta_{1}$ as described in Figure 7.1. These equations are

$$
\begin{align*}
& a_{32 D}=\left(1-a_{31}^{2}\right)^{\frac{1}{2}} \cos \delta_{A} \\
& a_{33 D}=\left(1-a_{31}^{2}\right)^{\frac{1}{2}} \sin \delta_{A} \tag{7.1.11}
\end{align*}
$$

equivalent to Equations (7.1.5) used to compute the sine and cosine of δ_{l}, the landing azimuth constant. The computation of $a_{32 D}$ and $a_{33 D}$ assumes that the leveling error in a_{31} is small. The estimate of the azimuth error is then computed by taking the dot product between the desired orientation of the Z body axis defined by $a_{31}, a_{32 D}, a_{33 D}$ and the AGS orientation of the Y body axis defined by a_{21}, a_{22} and a_{23} :

$$
\begin{equation*}
\Delta \theta \cong\left(a_{31} a_{21}+a_{32 D^{a}} a_{22}+a_{33 D^{a}}\right) \tag{7.1.12}
\end{equation*}
$$

The approximations in Equation (7.1.12) are that $\Delta \theta_{x}$ is a sma.ll angle, the difference between a_{31} and $a_{31 D}$ is very small, and the integral of the lunar gravity times a direction cosine is equal to $g_{L} \Delta t a_{i j}$. Since a_{31} is not a function of the azimuth angle δ_{A}, and is only a function of the leveling angle, a_{31} may be used in place of $a_{31 D}$ without any degradation of accuracy. However, the azimuth alignment will not converge until the leveling errors of the lunar align become small. The approximation of $\int_{0}^{T} a_{i j} g_{6}$ by $a_{i j}(\tau) g_{L} T$ should cause a negligible error as the direction cosines will be changing at a very slow rate.

The equations mechenized in the LM AGS for the lunar allgnment of the transformation matrix are presented in Equation (7.l.13).

$$
\begin{align*}
& \Delta \alpha_{x A}=-K_{26}^{1}\left[a_{31} a_{21}+a_{32 D^{a}}+a_{\left.33 D^{a_{23}}\right]}\right] \\
& \Delta \alpha_{y A}=K_{27}^{1}\left(\Delta V_{z}+\Delta V_{z, m-1}\right)-K_{28}^{1} a_{31} \\
& \Delta \alpha_{z A}=K_{28^{a}}^{1} a_{32}-K_{27}^{I}\left(\Delta V_{y, m-1}\right) \tag{7.1.13}
\end{align*}
$$

where

$$
\Delta \alpha_{x A}, \Delta \alpha_{y A}, \Delta \alpha_{z A} \text { are the alignment correction increments }
$$ in radians. .

$\varepsilon_{i j}$ are the present AGS direction cosines.
$a_{i j D}$ are the desired direction cosines specified in (Equation (7.1.11)
$K_{26}^{1}, K_{27}^{1}, K_{28}^{l}$ are alignment gains.
In the lunar align equations, the gains presently used are

$$
\begin{align*}
& K_{26}^{I}=0.007 \\
& K_{27}^{1}=0.0435 \\
& K_{28}^{1}=0.009264595 \tag{7.1.14}
\end{align*}
$$

The quantity $g_{L} \Delta t$ for a 40 -msecond alignment cycle is $\frac{E_{L}}{25}$ and is equal to 0.009264595 . Thus, the effective alignment gains in the hardwired portion of the lunar align equations is 0.007 for azimuth and 0.009264595 for leveling. After leaving the hardwired lunar align equations, the leveling angle increments are shifted to the right 2 bits reducing the leveling gains to 0.00231615 .

7.2 LM AGS Calibration

The AGS has the cepability of performing three calibrations; prelaunch gyro calibration, inflight gyro and accelerometer calibration (during free falle), and lunar gyro calibration.
7.2.1 Gyro Inflight Calibration
:
Any depariure of the LM AGS direction cosines from their correct values may be construed as being due to gyro drift. Since the FGNCS Euler angles, which are used to compute the reference direction cosines, are quantized to 40 seconds of arc, the departure of the AGS direction cosines is e combination of the gyro drift errors and PGNCS Euler angle quantization noise errors. Due to this measurement noise, the inflight gyro calibration requires the use of ε. fillter to achieve the desired accuracy of 0.1 degrees per hour.

A general linear system as represented by a vector state difference equation is shown below in Equation (7.2.1), where X_{n} is a column

$$
x_{n+1}=\emptyset_{n+1}, n_{n}+\sigma_{n} U_{n}
$$

vector representing the state of the system, $\varphi_{n+1, n}$ is the transition matrix from state X_{-n} to X_{n+1}, U_{-n} is a general noise vector and σ_{n} is the corresponding distribution matrix. In the calibration problem considered here, X_{-n} represents the coordinate misalignments and instrument error sources which are to be determined. The noise vector U_{-n} corresponds to the gyro noise. In this case, the observables \underline{Y}_{n} are assumed to be related to \bar{X}_{n} by the linear relationship.

$$
\begin{equation*}
Y_{n}=M_{n} X_{n}+\delta Y_{n} \tag{7.2.2}
\end{equation*}
$$

with δY_{-n} representing observation noise such as quantization errors. Letting
the estimate of the state vector at t_{n} be denoted by \hat{X}_{n}, the general unbiased linear estimate of X_{n} is

$$
\begin{equation*}
\hat{X}_{n}=\hat{X}_{n}^{\prime}+b_{n}\left[\underline{Y}_{n}-\hat{Y}_{n}^{\prime}\right] \tag{7.2.3}
\end{equation*}
$$

$$
\begin{aligned}
& \hat{X}_{n}^{\prime} ? \\
& \hat{\hat{y}}_{n}^{\prime} ?
\end{aligned}
$$

where $\underline{\hat{x}}^{\prime}$ is the predicted (extrapolated) value of $\hat{\underline{x}}_{\mathrm{n}-1}$
$\Rightarrow \begin{aligned} & \hat{x}_{n}^{\prime} \text { ? } \\ & \hat{y}_{n}^{\prime} \text { ? } \\ & \underline{y}_{n}\end{aligned}$

$$
\begin{equation*}
\underline{\underline{x}}^{\prime}=\phi_{n, n-1} \hat{x}_{n-1}+\sigma_{n-1} \underline{U}_{n-1} \tag{7.2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\underline{Y}}_{n}^{\prime}=M_{n} \hat{\underline{x}}_{-n}^{\prime} \tag{7.2.5}
\end{equation*}
$$

and ${\underset{W}{n-1}}$ is given by

$$
\begin{align*}
& \hat{\underline{U}}_{n-1}=\overline{\underline{U}}_{n-1}=0 \tag{7.2.6}\\
& (\underline{\bar{Z}}=\text { ensemble average of } \underline{z})
\end{align*}
$$

In the case of the gyro calibration filter, several simplifying assumptions were made at the outset. The first is that the attitude errors E_{x}, E_{y}, E_{z} about the $I M$ body axes are the integrals of the total gyro drift rates $\varepsilon_{x},{ }^{\epsilon_{y}},{ }^{\varepsilon_{z}}$ about the corresponding axes. Thus, Equation (7.2.1) becomes

$$
\left[\begin{array}{ll}
E_{j} & (n+1) \tag{7.2.7}\\
\varepsilon_{j} & (n+1)
\end{array}\right]=\left[\begin{array}{ll}
1 & \Delta t \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
E_{j} & (n) \\
\varepsilon_{j} & (n)
\end{array}\right]
$$

where $\mathrm{J}=\mathrm{X}, \mathrm{Y}$, or Z .
The observable in this case is simply the attitude error $\mathrm{E}_{3}(\mathrm{n}+1)$ measured with respect to the FGNCS. Thus, Equation (7.2.2) becomes

$$
\left[E_{j}(n)\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
E_{j} & (n) \tag{7.2.8}\\
\varepsilon_{j} & (n)
\end{array}\right]+\delta E_{j}(n)
$$

where $\mathrm{J}=\mathrm{X}, \mathrm{Y}$, or Z .

If a linear filter such as (7.2.3) is used for updating the estimate of gyro drift rate and attitude error, we have
$\left[\begin{array}{ll}\hat{E}_{j}^{A}(n+1) \\ \hat{e}_{j}(n+1)\end{array}\right]=\left[\begin{array}{ll}1 & \Delta t \\ 0 & 1\end{array}\right]\left[\begin{array}{l}\hat{E}_{j}(n) \\ \hat{\varepsilon}_{j} \\ \hat{E}_{j}(n)\end{array}\right]+\left[\begin{array}{l}\dot{Q}_{1} \\ Q_{2}\end{array}\right]\left[E_{j}(n+1)-\hat{E}_{j}(n)-\Delta t \hat{\epsilon}_{j}(n)\right]$

For the IM AGS inflight gyro calibration, the first step performed is to compute the PGNCS direction cosines from the PGNCS Euler angles θ_{p}, ${ }_{\mathrm{p}}$, ${ }_{\mathrm{p}}$ as show in Equation (7.2.10)

$$
\begin{align*}
& a_{11 D}=\cos \psi_{p} \cos \theta_{p} \\
& a_{12 D}=\sin \psi_{p} \\
& a_{13 D}=-\cos \psi_{p} \sin \theta_{p} \\
& a_{31 D}=\sin \phi_{p} \sin \psi_{p} \cos \theta_{p}+\cos \phi_{p} \sin \theta_{p} \\
& a_{32 D}=-\sin \phi_{p} \cos \phi_{p} \\
& a_{33 D}=-\sin \phi_{p} \sin \psi_{p} \sin \theta_{p}+\cos \phi_{p} \cos \theta_{p}
\end{align*}
$$

These 6 direction cosines define the position of the X and Z body axes in the FGNCS, and will be used to compute the attitude errors for the gyro calibration, except during the first cycle through the calibration equations. During this cycle, the AGS direction cosines are set equal to the FGNCS direction cosines with IMU align equations.

During each subsequent cycle through the calibration equations, the vehicle attitude errors are computed from the AGS and FGNCS direction cosines as shown in Equation (7.2.11). These attitude errors

$$
\begin{align*}
& E_{x}=-Y_{b} \cdot z_{D}=-\left[a_{21} a_{31 D}+a_{22^{a} 32 D}+a_{23^{a}} 33 D\right] \\
& E_{y}=-Z_{b} \cdot X_{D}=-\left[a_{31} 1_{11 D}+a_{32} a_{12 D}+a_{33} a_{13 D}\right] \\
& E_{z}=Y_{b} \cdot X_{D}=\left[a_{21}{ }^{a} 11 D+a_{22} a_{12 D}+a_{23} a_{13 D}\right] \tag{7.2.11}
\end{align*}
$$

as computed are the sines of the negative angle drifted about each axis. Since these drift angles are small, the compensation corrections are updated as show in Equation (7.2.12).
where

$$
\begin{align*}
& K_{1}^{1}=K_{1}^{1}+K_{34}^{1} E_{x} \\
& K_{6}^{1}=K_{6}^{1}+K_{34}^{1} E_{y} \\
& K_{11}^{1}=K_{11}^{1}+K_{34}^{1} E_{z} \tag{7.2.12}
\end{align*}
$$

$$
\begin{aligned}
& K_{1}^{1}, K_{6}^{1}, K_{11}^{1} \text { are the } X, Y, Z \text { gyro compensation constants. } \\
& K_{34}^{1} \text { is the compensation correction gain, and equals } \\
& 2 \times 10^{-5} .
\end{aligned}
$$

Small alignment corrections are also computed based on the attitude errors and are the following equations:

$$
\begin{align*}
& \Delta \alpha_{X A}=K_{33}^{1} E_{X} \\
& \Delta \alpha_{y A}=K_{33}^{1} E_{Y} \\
& \Delta \alpha_{z A}=K_{33}^{l} E_{Z} \tag{7.2.13}
\end{align*}
$$

where

$$
\begin{gathered}
\Delta \alpha_{x A}, \Delta \alpha_{y A}, \Delta \alpha_{z A} \text { are alignment corrections about the } \\
X, Y, Z \text { body axes. }
\end{gathered}
$$

K_{33}^{1} is the attitude correction constant, and at present has the value of 0.08 .
The calibration at present is performed at a 2 -second cycle rate. The. effective gains for the calibration are 10^{-3} for. K_{34}^{1} and 0.08 for K_{33}^{1} as the alignment corrections are applied once each calibration cycle, and the conpensation corrections are applied each 20 mseconds.

The transient response for this filter is shown in Figure 7.2, and converges to the desired value in approximately 200 seconds. However, this

transient response curve does not include the RGNCS quantization noise or the AGS quantization errors which cause a delay in the calibration response as well as an oscillatory type of error in the steady state value.
7.2.2 Accelerometer Inflight Calibration

The AGS accelerometers are calibrated during free fall conditions for bias errors. That is, the outputs of the accelerometers are accumilated for 76 seconds, and are divided by the time interval to obtain the accelerometer bias error. Since the accelerometer bias corrections are used every 20 mseconds in feet per second, the accelerometer bias corrections K_{19}^{1}, K_{21}^{1}, and K_{23}^{1} are computed using the gain shown below in Equation (7.2.14). This gain constant is $0.020 / 76$ which converts the accumulated velocities to the amount of feet per second error the accelerometer bias will cause in 20 mseconds.

$$
\begin{align*}
& \mathrm{K}_{19}^{1}=\mathrm{K}_{19}^{1}+2.63158 \times 10^{-4} \mathrm{~S} \Delta \mathrm{~V}_{\mathrm{x}} \\
& \mathrm{~K}_{21}^{1}=\mathrm{K}_{21}^{\mathrm{l}}+2.63158 \times 10^{-4} \mathrm{~S} \Delta \mathrm{~V}_{\mathrm{y}} \\
& \mathrm{~K}_{23}^{1}=\mathrm{K}_{23}^{1}+2.63158 \times 10^{-4} \mathrm{~S} \mathrm{\Delta V}_{z} \tag{7.2.14}
\end{align*}
$$

where
$\mathrm{K}_{19}^{\mathrm{I}}, \mathrm{K}_{21}^{1}, \mathrm{~K}_{23}^{\mathrm{I}}$ are the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ accelerometer compensation
values ${ }^{\mathrm{S} \Delta \mathrm{V}_{\mathrm{x}}, \mathrm{S} \Delta \mathrm{V}_{\mathrm{y}}, S \Delta \mathrm{~V}_{\mathrm{z}} \text { are the } \mathrm{X}, \mathrm{Y}, \mathrm{Z} \text { accelerometer outputs }} \begin{aligned} & \text { accurmlated for } 76 \text { seconds. }\end{aligned}$

7.2.3 Gyro Lanar Calibration

The equations mechsnized for the lunar calibration are exactly the same as the equations previously described in Section 7.2.1. The only difference between the two calibrations is that angular increments which compensate for
the lunar rotation rate are included in the transformation matrix update computations. These equations are approximate corrections, and are shown in Equation (7.2.15).

$$
\begin{align*}
& \Delta \alpha_{x_{\text {rem }}}=\Delta \alpha_{x_{\text {rem }}}-K_{56}^{1} a_{12} \\
& \Delta y_{y_{\text {rem }}}=\Delta \alpha_{y_{\text {rem }}}-K_{56}^{1} a_{22} \\
& \Delta \alpha_{z \text { rem }}=\Delta \alpha_{z \text { rem }}-K_{56}^{1} a_{32} \tag{7.2.15}
\end{align*}
$$

where
K_{56}^{1} is the product of the lunar rotation rate and 20 msecond compute cycle period $\Lambda_{M} \Delta t$ (Radiens)
a_{12}, a_{22}, a_{32} are the LM AGS direction cosines which define the inertial Y axis with respect to the X_{b}, Y_{b}, Z_{b} body axes.
$\Delta \alpha_{g ~ r e m ~}$ is the angle increment rotated about the $g^{\text {th }}$ body axis. This variable has a range of $\pm 2^{-13}$ radiens with a quantization of 2^{-30} radians, and is used to accumulate small angular increments to increase the accuracy of the LM AGS direction cosines. These angle increments are only used when they exceed 2^{-16} radians.

When the LM is on the lunar surface, it is aligned to a selenocentric coordinate system with the X axis along the lunar local vertical positive outward from the lunar center, and the Z axis obtained by crossing the unit angular monentum vector of the CSM orbit with a unit vector along the X axis. The Y axis is also defined by $Y=Z \times X$ and is approximately aligned with the unit angular momentum vector of the CSM orbit.

The equations used to compensate for the lunar rotation rate were designed for the Y axis to be collinear with the lunar rotation axis. However, since the CSM orbit may be inclined to the lunar equator by as much as 10 degrees, the lunar rate compensation may be in error by 0.1 degrees per hour.

7.3 Navigation

7.3.1 Direction Cosine Updating Algorithm

In this section, the derivation of the algoritha used to update the direction cosines (Figure 3.4, Reference 1) is presented. The strapped down system used in the LM/AGS consists of three gyros mounted on the body of the LM. These gyros measure the integral of the turning rate about the three axes. Unit vectors along these three mutually orthogonal axes are denoted by $X_{b}, \underline{Y}_{b}, Z_{b}$ respectively.

The navigation equations operate in a selenocentric inertial coordinate system with unit vectors X, Y, Z respectively. In order to maintain knowledge of the LM attitude in the inertial coordinate system a matrix A of direction cosines is maintained. Thus, A is defined as

$$
A=\left[\begin{array}{lllll}
\underline{X}_{b} & \cdot \underline{X} & \underline{X}_{b} \cdot \underline{Y} & \underline{X}_{b} \cdot \underline{\underline{Z}} \tag{7.3.1}\\
\underline{y}_{b} \cdot \underline{X} & \underline{Y}_{b} \cdot \underline{Y} & \underline{Y}_{b} \cdot \underline{\underline{Z}} \\
\underline{Z} & \underline{X} & \underline{Z}_{b} \cdot \underline{\underline{Y}} & \underline{Z}_{b} \cdot \underline{\underline{z}}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Rotations about the vehicle body axes must be reflected in a change in the A matrix.

The derivative of A is given by

$$
\dot{\mathrm{A}}=\omega \mathrm{A}
$$

where

$$
\omega=\left[\begin{array}{ccc}
0 & \omega_{z} & -(\omega) \tag{7.3.3}\\
-(1)_{z} & 0 & \omega_{x} \\
\omega_{y} & -\omega)_{x} & 0
\end{array}\right]
$$

and " x, " y, " ${ }^{\prime}$ are the rotation rates about the X, Y, and Z body axis respectively.

Assume now that the matrix A is known at the $(n-1)^{\text {th }}$ computing interval. Then A at the $n^{\text {th }}$ computing interval can be obtained as the result of a Trylor serles expansion about A_{n-1}. Thius,

$$
A_{n}=A_{n-1}+\dot{A}_{n-1} \Delta t+\frac{1}{2} \ddot{A}_{n-1} \Delta_{t}^{2}+\frac{1}{6} \bar{A}_{n-1} \Delta t^{3}+\ldots
$$

Upon substituting 7.3.2 into 7.3.4, there results (up to third order)

$$
A_{n}=\left[I+\omega^{\Delta} \Delta t+\frac{1}{2} \Delta t^{2}\left(\dot{\omega}+\omega^{2}\right)+\frac{\Delta t^{3}}{6}\left(\ddot{\omega}+2 \dot{w} w+\omega \dot{\omega}+\omega^{3}\right) A_{n-1}\right.
$$

where I is the identity matrix
Δt is the time between the $(n-1)^{\text {th }}$ and $n^{\text {th }}$ computing points.
The gyro outputs at the $n^{\text {th }}$ computing increment are

$$
\begin{equation*}
\Delta_{\alpha_{i}}=\int_{(n-1) \Delta t}^{n \Delta t} \omega_{i} d t \quad i=x, y, z \tag{7.3.6}
\end{equation*}
$$

If (7.3.3) is integrated as in (7.3.6), there results the matrix

$$
\Delta_{\alpha i}=\left[\begin{array}{lll}
0 & \Delta_{\alpha_{z}} & -\Delta \alpha_{y} \tag{7.3.7}\\
-\Delta_{\alpha_{z}} & 0 & \Delta \alpha_{x} \\
\Delta_{\alpha_{y}} & -\Delta_{\alpha_{x}} & 0
\end{array}\right]
$$

Now Δ_{α} is expanded in a Taylor series (to third order) and

$$
\begin{equation*}
\Delta_{\alpha}=u \Delta t+\frac{1}{2} i \Delta \Delta t^{2}+\frac{1}{6} \ddot{w} \Delta t^{3} \tag{7.3.8}
\end{equation*}
$$

Substituting $7 \cdot 3.8$ and $7 \cdot 3.7$ into $7 \cdot 3.5$ yields

$$
\begin{equation*}
A_{n}=\left[I+\Delta_{\alpha}+\frac{\Delta_{\alpha}^{2}}{2}+\frac{\Delta t^{3}}{12}\left(i x v-\omega \dot{v}+2 \omega^{3}\right)\right] A_{n-1} \tag{7.3.9}
\end{equation*}
$$

if terms on the order of Δt^{4} and higher are neglected. The algorithm used for implementation in the guidance equations (Figure 3.4) is

$$
A_{n}=\left[I+\Delta_{\alpha}+\frac{\Delta_{\alpha}^{2}}{2}\right] A_{n-1}
$$

so that the error up to terms of fourth order in Δt is

$$
\epsilon A_{n}=\left[\frac{(\dot{\omega} \omega-\omega \dot{v})}{12}+\frac{\omega^{3}}{6}\right] A_{n-1} \Delta t^{3}
$$

To counter computer round-off, orthonormality corrections are derived as follows. Let ${\underset{a}{1}}=\left(a_{11}, a_{12}, a_{13}\right)$ and $a_{3}=\left(a_{31}, a_{32}, a_{33}\right)$. Because of computational errors, these vectors are not exactly of unit length nor orthogonal to each other. First compute first order corrections E_{1} and E_{3} so that ${\underset{-1}{1}}$ and \underline{a}_{3} are normalized without a change in orientation; i.e.,

$$
\left|\left(1+E_{1}\right) \varepsilon_{1}\right|=1
$$

Squaring both sides,

$$
\begin{align*}
& \left(1+E_{1}\right)^{2} \underline{e}_{1} \cdot \underline{a}_{1}=1 \\
& E_{1} \approx \frac{1}{2}\left(1-\underline{a}_{1} \cdot \underline{a}_{1}\right)
\end{align*}
$$

Likewise,

$$
E_{3} \approx \frac{1}{2}\left(1-\varepsilon_{-3} \cdot \varepsilon_{3}\right)
$$

To gain orthogonality, ε_{-1} and e_{3} are rotated away from each other in their plane through equal angles until they are perpendicular to each other.

$$
F_{13} \triangleq \sin \phi \approx \frac{1}{2} a_{1} \cdot a_{3}
$$

Hence, the first order orthonormality corrections to a and a a $_{3}$ are:

$$
\varepsilon_{1} \leftarrow-\varepsilon_{1}+E_{1} \varepsilon_{1}-E_{13} \underline{\varepsilon}_{3}
$$

$$
\varepsilon_{3}<\underline{a}_{3}+\mathrm{E}_{3} \mathrm{a}_{3}-\mathrm{E}_{13} \mathrm{a}_{1}
$$

Vector $\varepsilon_{2}=\left(\varepsilon_{21}, \varepsilon_{22}, \varepsilon_{23}\right)$ is then computed as $\varepsilon_{2}=a_{3} \times \varepsilon_{-1}$.

7.3.2 Derivation of the Radar Filter Equations

This section contains a derivation of the radar filter equations. Unless indicated, the symbolism in the derivation does not correspond to that of the flight equations.

DYNAMIC FILIER EQUATIONS

Consider the vector difference equation which represents the actual dymamics of a system.

$$
x_{n+1}=u\left(t_{n+1}, t_{n}\right) x_{n}+q_{n}
$$

where
X_{n} is the state of the system at time \dot{t}_{n}
U models the dynamics of the system.
q_{n} is noise added to the system at time t_{n} with the properties

$$
E\left[q_{n}\right]=0 ; E\left[q_{n} q_{j}^{T}\right]=0 \text { for } n \neq j ; E\left[q_{n} q_{n}^{T}\right]=Q_{n}
$$

T signifies transpose and E the expected value operation.
If a measurement

$$
y_{n}^{*}=M_{n} x_{n}+S_{n}
$$

where S_{n} is noise with the properties

$$
E\left[S_{n}\right]=0 ; E\left[S_{n} S_{j}^{T}\right]=0 \text { for } n \neq j ; E\left[S_{n} S_{n}^{T}\right]=\tilde{S}_{n}
$$

is made at time n then the best, linear, unbiased estimate of X_{n} denoted by \hat{X}_{n} is given by

$$
\hat{X}_{n}=B_{n} y_{n}^{*}+C_{n} X_{n / n-J}
$$

where

$$
\begin{align*}
& \left.B_{n}=P_{n} M_{n} T M_{n} P_{n} M_{n}^{T}+\tilde{S}_{n}\right\}^{-1} \tag{7.3.19}\\
& C_{n}=I-B_{n} M_{n} \\
& X_{n / n-1}=U\left(t_{n}, t_{n-1}\right) \hat{X}_{n-1} \\
& P_{n}=U_{n} P_{n-1 / n-1} U_{n}^{T}+Q_{n} \tag{7.3.22}\\
& P_{n / n}=C_{n} P_{n} \tag{7.3.23}
\end{align*}
$$

In words, $X_{n / n-1}$ is the value of the state at time n as obtained from the value of the best estimate of the state at time $n-1 . X_{n / n-1}$ is sometimes called the "a priori" estimate of the state at time n. P_{n} / n is the value of the error covariance matrix after the measurement and "a priori" estimate have been combined to form the best estimate \hat{X}_{n} and p_{n} is the value of $p_{n-1 / n-1}$ updated by the dymamics through time $\Delta t=t_{n}-t_{n-1}$.

IM FILIER

In constructing the IM filter several assumptions are made. First, the problem can be considered as a one dimensional problem with the resultant filter weights applying to each of the three dimensions. Thus, denoting (in one dinension) p for position and \dot{p} for velocity, the difference equations of motion for each vehicle (LM and CSM) can be expressed as

$$
\begin{align*}
& p_{n+1}=p_{n}+\dot{p}_{n} \Delta t+\frac{1}{2} a_{n} \Delta t^{2} \\
& \dot{p}_{n+1}=\dot{p}_{n}+a_{n} \Delta t
\end{align*}
$$

a_{n} is the acceleration due to gravity at time t_{n}.
Corresponding to Equation (7.3.16), the state vector is taken to be

$$
X=\left[\begin{array}{ll}
p_{L} & -p_{\mathrm{C}} \\
\dot{p}_{\mathrm{L}} & -\dot{p}_{\mathrm{C}}
\end{array}\right]
$$

where L_{6}, c designate $I M$ and CSM respectively. It is assumed that p_{c} and \dot{p}_{c}. are know exactly. Substituting (7.3.24) into (7.3.25) yields

$$
X_{n+1}=\left[\begin{array}{ll}
1 & \Delta t \\
0 & 1
\end{array}\right] \quad X_{n}+\Delta t\left[\begin{array}{cc}
\left(a_{L, n}-a_{c, n}\right) & \frac{\Delta t}{2} \\
a_{L, n}-a_{c, n}
\end{array}\right]
$$

If it is assumed that gravity acts the same on each vehicle, this equation reduces to

$$
x_{n+1}=\left[\begin{array}{ll}
1 & \Delta t \tag{7.3.27}\\
0 & 1
\end{array}\right] x_{n}
$$

Corresponding to equation $7 \cdot 3 \cdot 16$ then

$$
U\left(t_{n}, t_{n-1}\right)=U(\Delta t)=\left[\begin{array}{ll}
1 & \Delta t \\
0 & 1
\end{array}\right]
$$

Since gravity does not act the same on each vehicle q_{n} is taken as noise with covariance matrix (in the nomenclature of the flight equations)

$$
Q_{n}=\left[\begin{array}{lll}
2^{9} & 0 \tag{7.3.29}\\
0 & K_{10}^{2} & \Delta t
\end{array}\right]
$$

The term $K_{10}^{2} \Delta t$ is an experimentally determined term representing noise on velocity and 2^{9} is used to maintain the matrix P_{n} (see equation 7.3.22) positive definite. (22^{9} is one quantum of the element P_{11} of P_{n}). This essentially means that P_{11} is rounded upward rather than downward. From equation 7.3 .22 then, the terms of P_{n} are given by

$$
\begin{align*}
& P_{11}=P_{11}+2 P_{12} \Delta t+P_{22} \Delta t^{2}+2^{9} \\
& P_{12}=P_{12}+P_{22} \Delta t \\
& P_{22}=P_{22}+K_{10}^{2} \Delta t
\end{align*}
$$

The measurement used is that of relative position of the IM and CSM only so that

$$
y_{n}^{k}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] X_{n}+S_{n}
$$

and

$$
M=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

It follows from Equation (7.3.19) that

$$
B_{n}=\left[\begin{array}{c}
\frac{P_{11}}{P_{11}+\tilde{S}_{n}} \\
\frac{P_{12}}{P_{11}+Z_{n}}
\end{array}\right]
$$

and from equation (7.3.20) that

$$
C_{n}=\left[\begin{array}{cc}
1-\frac{P_{11}}{P_{11}+S_{n}} & 0 \tag{7.3.33}\\
\frac{P_{12}}{P_{11}+S_{n}} & 1
\end{array}\right]
$$

Following the nomenclature of the flight equations, let

$$
\sigma^{2}=P_{11}+\widetilde{S}_{n}=P_{11}+K_{3}^{3} R^{2}+K_{7}^{3}
$$

where R is the relative position of the CSM with respect to the LM. Then

$$
\begin{aligned}
& W_{1}=\frac{P_{11}}{\sigma^{2}} \\
& W_{2}=\frac{P_{12}}{\sigma^{2}}
\end{aligned}
$$

The terms K_{7}^{3} and $K_{3}^{3} R^{2}$ model the variances of the radar measurement errors:

Rearranging equation (7.3.18) yields

$$
\hat{X}_{n}=B_{n}\left[M_{n}\left(X_{n}-X_{n / n-1}\right)+S_{n}\right]+I X_{n / n-1}
$$

The term miltiplying S_{n} is the difference between the actual measurement and what the measurement was expected to be. This term is denoted here by δr (a scalar). It should be noted here that even though a simplified model is used for the radar filter, the term δr is obtained as the difference between the radar measurement of range and the navigation estimate of radar range (using the iunar spherical gravitational model). Substitution of the terms in equation (7.3.37) yields

$$
\begin{align*}
& \hat{\mathrm{p}}_{\mathrm{L}, \mathrm{n}}=\mathrm{W}_{1} \delta r+\mathrm{p}_{\mathrm{l}}, \mathrm{n} \\
& \dot{\mathrm{p}}_{\mathrm{L}, \mathrm{n}}=\mathrm{W}_{2} \delta \mathrm{r}+\dot{\mathrm{p}}_{\mathrm{L}}, \mathrm{n}
\end{align*}
$$

Since the same weights are used in all dimensions ($\delta \mathrm{r}$ will be three dimensional) equation ($7 \cdot 3 \cdot 38$) is expanded to the vector flight equations.

$$
\begin{align*}
& \underline{r}=W_{1} \underline{\delta r}+\underline{r} \\
& \underline{V}=W_{2} \underline{\delta r}+\underline{V}
\end{align*}
$$

The updated value of the covariance matrix is obtained directly from equation (7.3.32) and yields

$$
\begin{align*}
& P_{22}=P_{22}-W_{2} P_{12} \\
& P_{12}=P_{12}\left(1-W_{1}\right) \\
& P_{11}=P_{11}\left(1-W_{1}\right)
\end{align*}
$$

In the radar filter, two different values of W_{1} (denoted by W_{1} and W_{1}^{\prime}) are shown. The reason for this is because the radar information is not used at the time it is received, but rather at a time when the range measurement has been inserted into the computer via the DEDA. Thus, the current values of position and velocity
are being updated based upon radar information valid in the past. Therefore, this radar information should not be weighted as much at the current tine as It would have been if used immediately. To see how this weighting is changed, consider how the LM position vector is propagated assuming the filtering was done at the time the radar measurement was taken. Denote filtered quantities of position and velocity by $\hat{\underline{r}}$ and $\hat{\hat{V}}$ respectively. These quantities are obtained in equation (7.3.39). Let the subscript, n, denote the $n^{\text {th }} 2$ second computing increments. Two seconds (1 computing increment) leter the estimated value of \underline{x} would be

$$
\underline{r}_{n+1}=\hat{r}_{n}+2 \hat{v}_{n}
$$

or (utilizing equation $7 \cdot 3 \cdot 39$)
m.

$$
\begin{align*}
\underline{r}_{n+1} & =W_{1} \underline{\delta r}+\underline{r}_{-1}+2 \underline{v}_{n}+2 W_{2} \underline{\delta r} \\
& =\underline{r}_{n}+2 \underline{V}_{n}+\left(W_{1}+2 W_{2}\right) \underline{\delta r} \tag{7.3.42}
\end{align*}
$$

If no filtering had been done, the velue of ${\underset{-n}{n+1}}^{\text {would have been (approximately) }}$

$$
r_{n+1}=r_{n}+2 \underline{v}_{n}
$$

where the uncapped symbols denote unfiltered quantities.
Therefore, letting $W_{1}=W_{1}+2 W_{2}$ it is seen that the filtering can be accomplished. when the range measurement is entered if W_{1} is updated every computing increment and if equation (7.3.42) is valid. This equation becomes invalid after a period of time (not completely determined yet) and thus it has been recommended that the radar range be entered into the computer within 30 seconds of taking the radar measurement.

It should be noted that if only 2 or 3 radar points are taken, the velocity estimate of the IM may deteriorate. For this reason, it is also recommended that at least 5 radar points be used. These restrictions are to be examined in a future enelysis.

7.4 GUIDANCE

7.4.1 Attitude Error Commands

In this section the derivation of the attitude steering errors E_{x}, E_{y}, E_{z} is presented for the rendezvous steering mode of operation and for the acquisition steering mode of operation.
RENDEZVOUS STEERING
The thrust direction is given by

$$
\begin{equation*}
\underline{x}_{t}=\underline{x}_{b}+K_{8}^{4} \underline{y}_{b}+K_{7}^{4} \underline{Z}_{b} \tag{7.4.1}
\end{equation*}
$$

The constants K_{7}^{4} and K_{8}^{4} produce a prescribed thrust offset with respect to the X-body axis. Steering is accomplished by rotating the LM about an instantaneous axis given by ${\underset{-}{t}}^{x}{\underset{-X}{D}}$ where ${\underset{-X}{D}}^{\text {is }}$ the desired thrust direction. Note that the. magnitude of the cross product above, equals the angular error to be steered out. The pitch and yaw errors, F_{Y} and E_{Z} are computed by scalar multiplication of the cross product with ${\underset{Y}{b}}$ and \underline{Z}_{b}, respectively.
Hence,

$$
\begin{align*}
& E_{Y}=\left(\underline{X}_{t} \times \underline{x}_{D}\right) \cdot \underline{\underline{r}}_{-b}=\left(\underline{\underline{Y}}_{\mathrm{b}} \times \underline{x}_{t}\right) \cdot \underline{x}_{D} \tag{7.4.2}\\
& E_{Z}=\left(\underline{x}_{t} \times \underline{x}_{-D}\right) \cdot \underline{Z}_{-b}=\left(\underline{Z}_{b} \times \underline{x}_{t}\right) \cdot \underline{x}_{D} \tag{7.4.3}
\end{align*}
$$

which yields

$$
\begin{align*}
& E_{Y}=-\underline{z}_{b} \cdot \underline{x}_{D}+K_{7}^{4}\left(\underline{x}_{b} \cdot \underline{x}_{-D}\right) \\
& E_{Z}=\underline{Y}_{b} \cdot \underline{x}_{D}-K_{8}^{4}\left(\underline{x}_{b} \cdot \underline{x}_{D}\right) \tag{7.4.5}
\end{align*}
$$

The above pitch and yaw equations are used to steer the APS. For the DPS or RCS, the K_{7}^{4} and K_{8}^{4} terms are dropped because these engines are assumed to thrust along the LM X-body axis.

The E_{x} command is

$$
\begin{equation*}
E_{X}=-W_{-c}: Z_{b}-J^{4} \tag{7.4.6}
\end{equation*}
$$

When J^{4} is zero, the IM Z-body axis is driven parallel to the CSM orbit plane. A positive numerical value of $-{\underset{-c}{c}}^{W_{-b}}-J^{4}$ will rotate the vehicle in a right hand sense about the $+X$-body axis.
J^{4} is entered in degrees as the desired LM orientation about the X-body axis. The DEDA conversion routine multiplies by the appropriate scale factor to convert the angle to radians. The radian value used is the desired value that the Z -body axis makes with the CSM orbit plane. The error in this approximation is given in Table 7.4.1.

Table 7.4.1
Error in E_{X} Made by Using Radian Value of J^{4} as Desired Value of a_{32}

Error in E_{X} (Degrees)	Value of J^{4} (Degrees)
.4	20
1.6	30
3.8	40
11.0	50
32.7	57.3

Inputs such that the J^{4} radian magnitude is greater than one would cause continual rotation of the vehicle about the X-body axis. In practice J^{4} inputs should be less than 40° for the sake of accuracy and to preserve a safe margin of gain in the E_{X} control loop.

ACQUISITION STEERING
In this mode the Z-body axis is to be pointed in the direction of the CSM. Steering is accomplished by rotating the LM about an instantaneous axis given by
where $Z_{b D}$ is the unit vector in the direction of the CSM. The attitude errors E_{x} and E_{y} are determined by scalar multiplication of the cross product with X_{b} and \underline{Y}_{b} respectively. Thus
which yields

$$
\begin{align*}
& E_{x}=-\underline{Y}_{b} \cdot \dot{Z}_{b D} \tag{7.4.9}\\
& E_{y}=\underline{X}_{b} \cdot \ddot{Z}_{b D}
\end{align*}
$$

The E_{z} command is

$$
E_{z}=W_{c} \cdot X_{b}
$$

which orients the X axis parallel to the CSM orbit plane. If the CSM is ahead of the IM the X-body axis will be above the local LM horizontal plane and if the CSM is behind the IM the X-body axis will be below the local horizontal plane.

ELITIPSE PREDICTOR SUBROUTINE
The purpose of the ellipse predictor subroutine is to propagate a known position \underline{r}_{1} and velocity \underline{V}_{1} around an elliptical orbit to obtain the position, \underline{r}_{2}, and velocity, \underline{V}_{2}, T seconds later (or earlier).

To derive the ellipse predictor equations consider equations (A.12) and (A.13) of Appendix A in the form

$$
\begin{align*}
& \underline{r}_{2}=x_{2} \underline{P}+\dot{y}_{2} \underline{Q} \tag{7.4.7.2}\\
& \underline{V}_{2}=\dot{x}_{2} \underline{P}+\dot{y}_{2} \underline{Q} \tag{7.4.13}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{x}_{2}=\alpha\left(\cos \mathrm{E}_{2}-\mathrm{e}\right) \\
& \mathbf{y}_{2}=\alpha\left(1-e^{2}\right)^{\frac{1}{2}} \sin \mathrm{E}_{2} \tag{7.4.15}\\
& \dot{x}_{2}=-\sqrt{\mu \alpha} \frac{\sin \mathrm{E}_{2}}{r_{2}} \tag{7.4.16}\\
& \dot{\mathrm{y}}_{2}=\left[\mu \alpha\left(1-e^{2}\right)\right]^{\frac{1}{2}} \frac{\cos \mathrm{E}_{2}}{r_{2}} \tag{7.4.17}
\end{align*}
$$

To solve for P and Q utilization is made of these same equations valid st the point 1 where everytning is known. i.e.

$$
\begin{align*}
& \underline{r}_{1}=x_{1} \underline{P}+y_{1} \underline{Q} \tag{7.4.18}\\
& \underline{V}_{1}=\dot{x}_{1} \underline{P}+\dot{y}_{1} \underline{Q} \tag{7.4.15}
\end{align*}
$$

and. $\underline{x}_{1}, \underline{V}_{1}, x_{1}, y_{1}, \dot{x}_{1}, \dot{y}_{1}$ are known. Then

$$
\begin{align*}
& \underline{P}=\frac{r_{1} \dot{y}_{1}-\underline{V}_{1} y_{1}}{x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}} \tag{7.4.20}\\
& Q=\frac{r_{1} \dot{x}_{1}-v_{1} x_{1}}{x_{1} \dot{y}_{1}-y_{1} x_{1}} \tag{7.4.21}
\end{align*}
$$

Substituting equation (7.4.20) and (7.4.21) into (7.4.12) and (7.4.13) yields

$$
\begin{align*}
& \underline{r}_{2}=\left[\frac{x_{2} \dot{y}_{1}-y_{2} \dot{x}_{1}}{x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}}\right] \underline{r}_{1}+\left[\frac{y_{2} x_{1}-x_{2} y_{1}}{x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}}\right] \underline{v}_{1}=\underline{f r}_{1}+g \underline{v}_{1} \tag{7.4.22}\\
& \underline{v}_{2}=\left[\frac{\dot{x}_{2} \dot{y}_{1}-\dot{y}_{2} \dot{x}_{1}}{x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}}\right] \underline{r}_{1}+\left[\frac{\dot{y}_{2} x_{1}-\dot{x}_{2} y_{1}}{x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}}\right] \quad \underline{v}_{1}=\dot{f}_{-1}+\dot{g} \underline{v}_{-1} \tag{7.4.23}
\end{align*}
$$

Substituting equations (7.4.14), (7.4.15), (7.4.16), and (7.4.17) with appropriate. subscripts into (7.4.22) and (7.4.23) yields

$$
\begin{align*}
& P=\frac{\alpha}{r_{1}}\left[\cos \Delta E-e \cos E_{1}\right] \tag{7.4.24}\\
& E=T+\frac{\alpha^{3 / 2}}{\sqrt{\mu}}(\sin \Delta E-\Delta E) \tag{7.4.25}
\end{align*}
$$

$$
\begin{align*}
& \dot{f}=\frac{\sqrt{\mu}}{\sqrt{\alpha} r_{1}} \frac{\sin \Delta E}{1-e \cos E_{2}} \tag{7.4.26}\\
& \dot{g}=\frac{\cos \Delta E-e \cos E_{2}}{1-e \cos E_{2}}
\end{align*}
$$

Where $\Delta E=E_{2}-E_{1}$ and T is the time to $g o$ from point 1 to point 2. Quantities such as $\alpha, r_{1}, e \cos E_{1}$ are readily computed from the known quantities r_{1} and V_{-1}. In the above equations there are two unknown quantities ΔE and E_{2}. This cen be reduced to one unknow ΔE by the following:

$$
\begin{aligned}
\operatorname{Cos} E_{2} & =\operatorname{Cos}\left(E_{2}-E_{1}+E_{1}\right)=\operatorname{Cos}\left(\Delta E+E_{1}\right) \\
& =\operatorname{Cos} \Delta E \operatorname{Cos} E_{1}-\operatorname{Sin} \Delta E \operatorname{Sin} E_{1}
\end{aligned}
$$

Then \dot{f} and \dot{g} assume the form

$$
\begin{align*}
& \dot{\mathrm{f}}=\frac{\sqrt{\mu}}{\sqrt{\alpha} r_{1}}\left(1-e \operatorname{Cos} E_{1} \operatorname{Cos} \Delta E+e \operatorname{Sin} E_{1} \operatorname{Sin} \Delta E\right) \tag{7.4.28}\\
& \dot{E}=\frac{\operatorname{Cos} \Delta E-e \operatorname{Cos} E_{1} \operatorname{Cos} \Delta E+e \operatorname{Sin} E_{1} \operatorname{Sin} \Delta E}{1-e \operatorname{Cos} E_{1} \operatorname{Cos} \Delta E+e \operatorname{Sin} E_{1} \operatorname{Sin} \Delta E}
\end{align*}
$$

Equations (7.4.24), (7.4.25), (7.4.28), and (7.4.29) are the equations utilized in the ellipse predictor subroutine on Figure 3.15 of Reference 1.

To cbtain $\triangle E$ use is made of Keplers equation

$$
T=\frac{1}{n}\left[E_{2}-E_{1}-e \sin E_{2}+e \sin E_{1}\right]
$$

Substituting for $\operatorname{Sin} E_{2}$ the terms $\operatorname{Sin} \Delta E \operatorname{Cos} E_{1}+\operatorname{Cos} \Delta E \operatorname{Sin} E_{1}$ yields

$$
n T=M=\Delta E-e \operatorname{Cos} E_{1} \operatorname{Sin} \Delta E-e \operatorname{Sin} E_{1} \operatorname{Cos} \Delta E+e \operatorname{Sin} E_{1}
$$

or

$$
\begin{equation*}
M-\Delta E+e \cos E_{1} \sin \Delta E+e \sin E_{1} \cos \Delta E-e \sin E_{1}=0 \tag{7.4.32}
\end{equation*}
$$

This is a transcendental equation and is solved by using a Newton Raphson technique. That is, if an initial guess is used for the $\triangle E$ (the unknown) and substituted into equation (7.4.32) the equation will not equal zero but some other value, say x_{11}. The next value tried for ΔE is obtained from the equation

$$
\Delta E=\Delta E+\frac{x_{11}}{x_{12}}
$$

where

$$
x_{12}=-\frac{d x_{11}}{d \Delta E}=1-e \operatorname{Cos} E_{1} \operatorname{Cos} \Delta E+e \operatorname{Sin} E_{1} \operatorname{Sin} \Delta E
$$

The convergence of this iteration depends upon the eccentricity of the orbit and the initial guess for ΔE. For the trajectories under consideration in the $I M$ program and if the initial guess of ΔE is chosen to be M then a sufficiently accurate answer for $\Delta \mathrm{E}$ is obtained in two passes through the iterator.

7.4.3 Pitch Steering Equations for Orbit Insertion

A derivetion of the constant \dddot{r} pitch steering law is given below. A similer derivation can be followed for the yaw steering.

The final radial position at orbit insertion, r_{f}, can be expressed in terms of the present radial position, r, and the time to burnout, T_{B}, as follows:

$$
\begin{equation*}
r_{f}=r+\dot{r}_{A} T_{B}+\frac{1}{2} \ddot{r}_{d} T_{B}^{2}+\frac{1}{6} \dddot{r}_{d} T_{B}^{3} \tag{7.4.35}
\end{equation*}
$$

where \dot{r}_{A} is the stored value of the present IM velocity \dot{r}.

Differentiating equation (7.4.35) with respect to T_{B} yields

$$
\dot{r}_{f}=\dot{r}_{A}+\ddot{r}_{d} T_{B}+\frac{1}{2} \dddot{r}_{d} T_{B}^{2}
$$

Solving equation (7.4.36) for $\ddot{\mathrm{r}}_{\mathrm{d}}$ gives

$$
\ddot{r}_{\mathrm{d}}=\left(\dot{r}_{f}-\dot{r}_{A}-\frac{1}{2} \dddot{r}_{\mathrm{d}} \mathrm{~T}_{\mathrm{B}}^{2}\right) / \mathrm{T}_{\mathrm{B}}
$$

In equations (7.4.35) and (7.4.36), the only unknowns are \dddot{r}_{d} and \dddot{r}_{d}. Solving equations (7.4.35) and (7.4.36) simultaneously for \dddot{r}_{d} yields

$$
\dddot{r}_{\mathrm{d}}=\frac{12}{T_{B}^{3}}\left[\left(\dot{r}_{\mathrm{f}}+\dot{r}_{A}\right) \frac{T_{B}}{2}+r-r_{f}\right]
$$

Taking the differential of equation (7.4.38) yields

$$
\begin{equation*}
\Delta \dddot{r}_{d}=\frac{12}{T_{B}^{3}}\left[\frac{T_{B}}{2}\left(\Delta \dot{r}_{f}+\Delta \dot{r}_{A}\right)+\Delta r-\Delta r_{f}\right] \tag{7.4.39}
\end{equation*}
$$

In equation (7.4.39), $\Delta \dot{r}_{\mathrm{f}}=\Delta \dot{r}_{\mathrm{A}}=\Delta r=0$
So,

$$
\begin{equation*}
\Delta \ddot{r}_{d}=\frac{12}{T_{B}^{3}} \Delta r_{f} \tag{7.4.40}
\end{equation*}
$$

But

$$
\Delta r_{f}=r_{f}-J^{16}-. J^{5}
$$

where

J^{16}is the desired altitude above the lunar surface at orbit insertion J^{5} is the lunar radius at the landing site. So

$$
\begin{equation*}
\dddot{x}_{\mathrm{d}}=\dddot{x}_{\mathrm{d}}+\frac{12}{\mathrm{~T}_{\mathrm{B}}^{3}}\left(x_{\mathrm{r}}-J^{16}-J^{5}\right) \tag{7.4.42}
\end{equation*}
$$

The expression for \ddot{r}_{d} gives the desired total radial acceleration. The desired radial thrust acceleration must compensate for gravity and centrifugal force. Thus

The computed value of \ddot{r}_{d} (and also $\dddot{\mathrm{y}}_{\mathrm{d}}$) is limited so that position control by the AGS decreases as V_{G} decreases. This is desirable for two reasons:
(1) As $V_{G} \rightarrow 0$, vehicle attitude would otherwise swing rapidly near cutoff in the vain attempt to null trivial altitude (and yaw displacement) errors
(2) The equations are specifically designed not to return to the nominal trajectory in the event of highly perturbed aborts. The vehicle will directly achieve the desired velocity without expending propellant which would otherwise be required for the return to the nominal trajectory. The desired value of \dot{r}_{f} is computed as a function of r_{f}.

$$
\text { Function of } \dot{r}_{f} \text { vs. } r_{f}
$$

FIGURE 7.3

The desired value of yaw velocity at burnout (component perpendicular to CSM orbit plane) is zero.

When the AEA indicated altitude is less than $J^{2 l}$ feet above the landing site and the indicated altitude rate is less than $\mathrm{J}^{22} \mathrm{fps}$, then the AGS will command vertical thrusting. (This logic provides for the vertical rise after lunar liftoff end also for emergency abort recovery to avoid impacting; the lunar terrain.) Otherwise, the steering proceeds toward the desired burnout velocity and position.

The derivation of the time to engine burnout T_{B} is based on the "rocket equation".

$$
\begin{equation*}
v_{G}=\int_{t}^{T} a_{T} a_{T} d t=\int_{t}^{T} \frac{F}{m_{0}-\operatorname{mitit}^{2}} d t \tag{7.4.44}
\end{equation*}
$$

where
V_{G} is the velocity-to-be-gained
a_{T} is the thrust acceleration
F is force exerted by the engine (assumed constant)
m_{0} is the initial fuel mass
$\dot{\mathrm{m}}$ is the mass flow rate (assumed constant)
t : is present time
T_{f} is the time at orbit insertion
The solution to equation (7.4.44) is

$$
\begin{equation*}
\frac{V_{G} \dot{m}}{F}=\ln \left(\frac{m_{0}-\dot{n} t}{m_{0}-\dot{\mathrm{H}}_{\dot{f}}}\right) \tag{7.4.45}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{0}-\dot{m_{T}}{ }_{f}=\left(m_{0}-\dot{\mathrm{m}}\right) \exp \left[-\mathrm{V}_{\mathrm{G}} \dot{\mathrm{~m}}_{\mathrm{F}}\right] \tag{7.4.46}
\end{equation*}
$$

Expanding the exponential term and dropping all terms higher than the cubic gives

$$
m_{0}-{\dot{m} T_{\mathrm{r}}}=\left(m_{0}-\dot{m} t\right)\left(1-\frac{V_{G} \dot{m}}{F}+\frac{V_{G}^{2} \dot{\mathrm{~m}}^{2}}{2 \mathrm{~F}^{2}}-\frac{V_{G}^{3} \dot{m}^{3}}{G F^{3}}\right)
$$

Solving equation (7.4.47) for T_{f} gives

But
and

$$
\begin{equation*}
T_{B}=T_{F}-t \tag{7.4.49}
\end{equation*}
$$

$$
\begin{equation*}
a_{T \Gamma}=\frac{F}{m_{0}-\dot{m} t} \tag{7.4.50}
\end{equation*}
$$

So equation (7.4 .50) reduces to

$$
\begin{equation*}
\dot{T}_{B}=\frac{V_{G}}{a_{T}}\left(1-V_{G} \frac{\dot{m}}{2 F}+V_{G}^{2} \frac{\dot{m}^{2}}{6 F^{2}}\right) \tag{7.4.51}
\end{equation*}
$$

If $K_{2}^{4}=-\frac{\dot{m}}{2 F}$ and $K_{3}^{4}=\frac{\dot{m}^{2}}{6 F^{2}}$

$$
\begin{equation*}
T_{B}=\frac{V_{G}}{a_{T}}\left(1+K_{2}^{4} V_{G}+K_{3}^{4} V_{G}^{2}\right) \tag{7:4.52}
\end{equation*}
$$

Notice that $F / \dot{m}=C^{*}$, the effective exhaust velocity of the $L M$ engine. C^{*} is related to engine $I_{S P}$ by the formulae $C^{*}=g_{e} I_{S P}$ where $g_{e}=32.174$.
7.4.4 Derivation of the Error Function for CSI Calculations

The purpose of the CSI calculations is to determine the appropriate CSI mancuver such that the desired line of sight angle between the $L M$ and CSM is achieved at TPI time. The "natural" error function to be minimized in the iteration is the dirference between the desired line of sight and the line of sight achieved if the trial CSI maneuver was performed. Computation of the predicted line of sight at TPI time is expensive from the standpoint of the number of computer steps required because in addition to the shuffling of information in and out of the ellipse predictor subroutine a coordinate transformation would have to be pexformed. A simple alternative solution has been developed based upon the trigonometric relationship involving the desired line of sight, the semi major axis of the CSM trajectory, the differential altitude (Δr) between CSM and LM orbits during the coelliptic coast trajectory and the central angle between the LM and CSM vehicles at TPI time.

What is actually done is the following. Based upon the calculated value of Δr and desired line of sight angle J^{2} at TPI time, the desired central angle between the IM and CSM at TPPI time can be determined. Denote this angle by θ_{D} for the moment. Based upon the central angle between the IM and CSM after the CDH maneuver and the known time until the TPI maneuver, the actual central angle $\triangle \theta$ between LM and CSM at TPI time can be determined. The error function is then computed as the absolute value of the difference between θ_{D} and $\Delta \theta$. The first part of the derivation is the computation of θ_{D} or $-b_{3}$ in the nomenclature of the flight equations.

The angle b_{3} is the negative of the desired relative central angle of the CSM with respect to the LM at TPI. This angle is a function of Δr and the differential altitude in the coelliptic orbits. The figure below shows the relative positions of the LM and CSM at TPI.

From the law of sines

$$
\begin{equation*}
\frac{r_{L}}{r_{E}}=\frac{\sin \left(\frac{\pi}{2}-J^{2}-\theta_{D}\right)}{\sin \left(\frac{\pi}{2}+J^{2}\right)}=\frac{\cos \left(J^{2}+\theta_{D}\right)}{\cos J^{2}} \tag{7.4.53}
\end{equation*}
$$

For an elliptical orbit (see Equation A. 9 in Appendix A)

$$
\begin{equation*}
r=\alpha(1-e \cos E) \tag{7.4.54}
\end{equation*}
$$

Substitution in equation (7.4.53) gives

$$
\begin{equation*}
\frac{\alpha_{L}\left(1-e_{L} \cos E_{L}\right)}{\alpha_{E}\left(1-e_{E} \cos E_{E}\right)}=\cos \theta_{D}-\tan J^{2} \sin \theta_{D} \tag{7.4.55}
\end{equation*}
$$

where the subscript L refers to the $I M$ and the subscript E to the CSM. Since the orbits are coelliptic

$$
\begin{equation*}
\alpha_{L} e_{L} \cos E_{L}=\alpha_{E} e_{E} \cos E_{E} \tag{7.4.56}
\end{equation*}
$$

at TPI.
The differential altitude Δr for the coelliptic orbits is given by

$$
\begin{equation*}
\Delta_{\mathrm{r}}=\alpha_{\mathrm{E}}-\alpha_{\mathrm{L}} \tag{7.4.57}
\end{equation*}
$$

or

$$
\alpha_{L}=\alpha_{E}-\Delta r
$$

The CSM orbit is very nearly circular so

$$
e_{E} \cos E_{E}^{\prime} \ll 1
$$

Also assume that

$$
\begin{equation*}
\theta_{\mathrm{D}} \ll 1 \tag{7.4.59}
\end{equation*}
$$

Substitution of equation (7.4.57) in equation (7.4.55), expansion of the terms (1- $\left.e_{E} \cos E_{E}\right)^{-1}$ and $\cos \theta_{D}$ in series and retention of the first two terms of each series leads to

$$
\begin{gather*}
\left(1-\frac{\Delta r}{\alpha_{E}}\right)\left(1-e_{L} \cos E_{L}+e_{E} \cos E_{E}\right) \\
 \tag{7.4.60}\\
\approx 1-\theta_{D}^{2}-\left(\tan J^{2}\right) \theta_{D}
\end{gather*}
$$

Assume

$$
\begin{equation*}
e_{X}=e_{E} \tag{7.4.61}
\end{equation*}
$$

But

$$
\begin{align*}
\cos E_{E}-\cos E_{L} & =-2 \sin \left(\frac{E_{L}+E_{E}}{2}\right) \sin \left(\frac{E_{E}-E_{L}}{2}\right) \\
& \approx-2 \sin \left(E_{E}\right) \sin \left(\frac{{ }^{\theta}}{2}\right) \\
& \approx-\sin \left(E_{E}\right) \theta_{D} \tag{7.4.62}
\end{align*}
$$

Then

$$
\begin{equation*}
\left(1-\frac{\Delta r}{\alpha_{E}}\right)\left[1-\left(e_{E} \sin E_{E}\right) \theta_{D}\right] \approx 1-\frac{\theta_{D}^{2}}{2}-\left(\tan J^{2}\right) \theta_{D} \tag{7.4.63}
\end{equation*}
$$

or

$$
1-\frac{\Delta r}{\alpha_{E}}-\left(e_{E} \sin E_{E}\right) \theta_{D}=1-\frac{\theta_{D}^{2}}{2}-\left(\tan J^{2}\right) \theta_{D}
$$

Solving equation (7.4.64) for θ_{D} leads to

$$
\begin{equation*}
\theta_{D}=\frac{\frac{\Delta r}{\alpha_{E}}}{\frac{\theta_{D}}{2}+\tan J^{2}-\epsilon_{E} \sin E_{E}} \tag{7.4.65}
\end{equation*}
$$

For $\mathrm{e}_{\mathrm{E}}<.05$ and $\Delta r<40 \mathrm{~nm}$, ignoring the e_{E} sin E_{E} term will cause a TPI timing error of no ereater then 100 seconds. For circular orbits, the term has value zero. Hence it is dropped from the computation of ∂_{D}.

A first order approximation for θ_{D} is

$$
\begin{equation*}
\theta_{\mathrm{D}} \approx \frac{\Delta r}{\left(\alpha_{\mathrm{E}} \tan \mathrm{~J}^{2}\right)} \tag{7.4.66}
\end{equation*}
$$

Hence θ_{D} can be expressed as

$$
\begin{equation*}
\theta_{D}=\frac{\frac{\Delta r}{\alpha_{E}}}{\frac{\Delta r}{2 \alpha E \tan J^{2}}+\tan J^{2}} \tag{7.4.67}
\end{equation*}
$$

The approximation is usable because $\theta_{D} \ll \tan J^{2}$.

Let

$$
\begin{aligned}
& b_{3}=-\theta_{D} \\
& b_{4}=\tan J^{2} \\
& b_{5}=-\Delta r / \alpha_{E}
\end{aligned}
$$

then equation (7.4 .67) reduces to

$$
b_{3}=\frac{b_{5}}{\frac{b_{5}}{2 b_{4}}-b_{4}}
$$

The next part of the derivation indicates how the relative central angle between IM. and CSM a.t TPI time is obtained from the relative central angle between LM and CSM at time of CDH.

The true anomaly, θ, can be expressed as an infinite series in the mean anomaly M (see Appendix A)

$$
\theta=M+2 \varepsilon \sin M+\text { higher order terms in } e
$$

The error function is defined as the difference between the desired relative central angle A_{D} at TPI and the computed relative central angle, $\triangle \theta$.

The relative central angle may be written as

$$
\begin{equation*}
\Delta \theta=\theta_{\mathrm{L}}-\theta_{\mathrm{E}}-\theta_{\mathrm{LO}}+\delta \theta_{\mathrm{I}}-\theta_{\mathrm{E}, \mathrm{O}}-\delta \theta_{\mathrm{E}} \tag{7.4.71}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }^{\delta} \theta_{L}=\theta_{L}-\theta_{L O} \tag{7.4.72}
\end{equation*}
$$

$\theta_{\text {LO }}, \theta_{\text {LO }}$ are respectively the $I M$ and the CSM true anomalies at CDH. ${ }^{\theta_{L}}$, θ_{E} are respectively the IM and the CSM true anomalies at TPI.

$$
\begin{align*}
\Delta \theta= & \left(\theta_{L O}-\theta_{E O}\right)+\left(M_{L}-M_{L}\right)+2 e_{L} \sin M_{L}-2 e_{L} \sin M_{L} \\
& -M_{E}+M_{E O}-2 e_{E} \sin M_{E}+2 e_{E} \sin M_{E O}+\ldots \tag{7.4.73}
\end{align*}
$$

The terms in e^{2} and higher (not actually shown) are dropped. Since

$$
\begin{align*}
& M_{L}-M_{L O}=n_{L} T_{E} \\
& M_{E}-M_{E O}=n_{E} t_{E}
\end{align*}
$$

it follows that

$$
\begin{align*}
\Delta \theta= & \left(\theta_{L O}-\theta_{E O}\right)+\left(n_{L}-n_{E}\right) T_{E} \\
& +2 e_{L} \sin M_{L}-2 e_{E} \sin M_{E} \\
& -2 e_{L} \sin M_{L}+22_{E} \sin M_{E O} \tag{7.4.75}
\end{align*}
$$

For circular CSM orbits, the terms containing e_{E} and e_{L} are zero. For noncircular orbits the e_{E} and e_{L} terms contribute significantly. In an early formalation of the CSI equations, all terms shown in Equation (7.4.75) were provided.

- However, to eccomodate other functions, later requested, it was agreed not to apply full capability in the CSI equations for handing unexpectedly eccentric orbits and large
coelliptic differential altitudes at the same time. To this end, the assumption is now made that at MPI, the angles M_{L} and M_{E} are essentially the same, as are the eccentricities. This assumption is based on the fact that for LM/CSM LOS angles greater than 20 degrees, the desired relstive central angle at TPI is less than 5 degrees when the coelliptic differential altitude is less than 40 nautical miles. Thus, the terms $2 e_{L} \sin M_{L}$ and $-2 e_{E} \sin M_{E}$ are dropped. The angles $M_{L O}$ and $M_{E O}$ are then epproxinated by the eccentric anomalies $E_{L O}$ and $E_{E O}$

A further approximation is made as follows:

$$
\begin{align*}
2 e_{E} \sin E_{E O}-2 e_{L} \sin E_{L O} & =\frac{2 r_{E O} \dot{r}_{E O}}{\sqrt{K_{L}^{2} \alpha_{E}}}-\frac{2 r_{L O} \dot{r}_{L O}}{\sqrt{K_{L}^{2} \alpha_{L}}} \\
& \approx-2 \sqrt{\frac{\alpha_{E}}{K_{L}^{2}}}\left(\dot{r}_{L O}-\dot{r}_{E O}\right) \tag{7.4.76}
\end{align*}
$$

where
$r_{\text {LO }}, r_{\text {EO }}$ are respectively the radial distances of the LM and the CSM at CDH
$\dot{r}_{L O}, \dot{r}_{E O}$ are respectively the radial velocities of the $L M$ and the CSM at CDH
K_{1}^{2} is the lunar gravitational constent
α_{L}, α_{E} are respectively the semi-major axis of the LM orbit and the CSM orbit

The cost function is computed using equation (7.4.76)
Let

$$
\begin{align*}
& \theta_{L O}-\theta_{E O}=\theta_{f} \\
& \dot{r}_{f}=\dot{r}_{L O} \\
& \dot{r}_{B}=\dot{r}_{E O} \tag{7.4.77}
\end{align*}
$$

and the desired relative central angle between the $I M$ and the CSM at TPI be $-b_{3}$, then the cost, C, is

$$
c=\left|b_{3}+\theta_{f}+K_{28}^{2}\left(\dot{r}_{f}-\dot{r}_{B}\right)+\left(n_{L}-n_{E}\right) T_{c}\right|
$$

where
T_{c} is the difference in time between the CDH maneuver and the TPI maneuver targeted.

Where K_{28}^{2} is the nominal value of $-2 \sqrt{\frac{\alpha_{E}}{K_{I}^{2}}}$ (Note that $\sqrt{\frac{K_{1}^{2}}{\alpha_{E}}}$ equals the CSM
ular velocity magnitude).
For multiple orbit rendezvous in eccentric orbits (say e $=.03$ and $\Delta r=40 \mathrm{~mm}$), the K_{28}^{2} term provides a correction which is not trivial. For eccentricities less than .015 , the cost function is accurate for Δr magnitudes of 100 n n or less. If the eccentricities become larger, the allowable Δr ragnitude should be decreased accordingly.
7.4.5 Dersvation of the Equations to Obtain Coelliptic Orbits

At the coelliptic burn point (CDH), the LM orbit should be adjusted such thet the following conditions are true after the CDH burn.

$$
\begin{align*}
& \alpha_{L}=\alpha_{E}-\Delta_{r} \tag{7.4.79}\\
& \alpha_{L} e_{L}=\alpha_{E} e_{E} \tag{7.4.80}\\
& \theta_{L} \approx \theta_{E} \tag{7.4.8l}
\end{align*}
$$

where
α_{E}, e_{E} are respectively and the semi-major axis and eccentricity of the CSM orbit
α_{b}, e_{b} are respectively the semi-major axis and eccentricity of the LM orbit
$\Delta r \quad$ is the differential altitude between CSM orbit and $L M$ orbit measured along a radial line through the LM position at CDH θ_{6}, θ_{E} are respectively the true anomalies of the IM and CSM orbits.

If \dot{r}, the radial rate of the $L M$, is chosen properly, then conditions (7.4.79) and (7.4.80) are enough to satisfy (7.4.81). To see this, let E be the eccentric anonaly. For Keplerian orbits (See Appendix Λ)

$$
\begin{align*}
& \cos E_{E}=\frac{1}{e_{E}}\left[1-\frac{r_{E}}{\alpha_{E}}\right] \tag{7.4.82}\\
& \cos E_{6}=\frac{1}{e_{6}}\left[1-\frac{r_{L}}{\alpha_{L}}\right] \tag{7.4.83}
\end{align*}
$$

where
r_{E}, r_{6} are respectively the radial distances of the CSM and the $L M$
E_{E}, E_{L} are respectively the eccentric anomalies of the CSM and the LM orbits

Substituting (7.4.79) and (7.4.80) into $(7.4 .83)$ and noting that $r_{L}=r_{E}-\Delta_{r}$ yields

$$
\begin{equation*}
\cos E_{b}=\frac{\alpha_{b}-r_{b}}{\alpha_{L} e_{b}}=\frac{\alpha_{E}-\Delta r-r_{E}+\Delta_{r}}{\alpha_{E} e_{E}}=\frac{\alpha_{E}-r_{E}}{\alpha_{E} e_{E}}=\cos E_{E} \tag{7.4.84}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{L}=E_{E} \tag{7.4.85}
\end{equation*}
$$

Thus, if \dot{r}_{L} is made to have the same sign as \dot{r}_{E}, then $\mathrm{E}_{\mathrm{L}}=\mathrm{E}_{\mathrm{E}}$.
The relationship between θ and E is given by equation (A.?)

$$
\begin{equation*}
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \tag{7.4.86}
\end{equation*}
$$

Thus, for small values of e the true and eccentric anomalies are essentially the same and hence the coelliptic maneuver aligns the LM's orbital line of apsides with that of the CSM.

At the CDFI point, both r_{L} and α_{L} are known, so the total desired velocity, V_{f}, can be obtained from the relation

$$
\begin{equation*}
v_{f}^{2}=K_{1}^{2}\left(\frac{2}{r_{L}}-\frac{1}{\alpha_{L}}\right) \tag{7.4.87}
\end{equation*}
$$

where
$K_{1}^{?}$ is the Iunar gravitational constant
The desired LM altitude rate is obtained by considering the equations

$$
\begin{align*}
& \dot{r}_{L} r_{L}=\sqrt{K_{1}^{2} \alpha_{L}} e_{L} \sin E_{L} \tag{7.4.88}\\
& \dot{r}_{E} r_{E}=\sqrt{K_{L}^{2} \alpha_{E}} e_{E} \sin E_{E} \tag{7.4.89}
\end{align*}
$$

Dividing equation (7.4.88) by equation (7.4.89) yields

$$
\frac{\dot{r}_{L}}{r_{E}}=\frac{r_{E}}{r_{L}} \sqrt{\frac{K_{L}^{2} \alpha_{L}}{K_{1}^{2} \alpha_{E}}} \frac{e_{L} \sin E_{L}}{e_{E} \sin E_{E}}
$$

Since

$$
\begin{equation*}
E_{L}=E_{E} \tag{7.4.91}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad \frac{r_{E}}{r_{L}}=\frac{\alpha_{E}}{\alpha_{L}} \tag{7.4.92}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e_{\mathrm{L}}}{e_{E}}=\frac{\alpha_{E}}{\alpha_{L}} \tag{7.4.93}
\end{equation*}
$$

then

$$
\frac{\dot{r}_{L}}{\dot{r}_{E}}=\sqrt{\frac{K_{I}^{2} \alpha_{E}^{3}}{K_{2}^{2} \alpha_{L}^{3}}}
$$

The mean orbital angular rates are

$$
\begin{align*}
& n_{b}=\sqrt{\frac{K_{1}^{2}}{\alpha_{L}^{3}}} \tag{7.4.95}\\
& n_{E}=\sqrt{\frac{K_{1}^{2}}{\alpha_{E}^{3}}} \tag{7.4.95}
\end{align*}
$$

It follows that:

$$
\dot{r}_{L}=\frac{n_{L}}{n_{E}} \dot{r}_{E} \quad(7.4 .97)
$$

7.4.6 Derivation of p-Iterator Equations

The purpose of the p-iterator routine is to determine the trajectory that passes between two points $\left(\bar{x}_{5}, \bar{r}_{T}\right)$ in a given time T. With this information the impulsive velocity required to achieve this trajectory when the LM reaches the point \ddot{r}_{5} can be determined.

For this discussion, the initial point will be designated with the symbol i and the final point with the letter f. The p-iterator function is to drive the value of $T p$ in Kepler's equation (7.4.98) to the desired value T.

$$
\begin{equation*}
t_{f}-t_{i}=T_{p}=\frac{1}{n}\left[E_{f}-E_{i}-e\left(\sin E_{f}-\sin E_{1}\right)\right] \tag{7.4.98}
\end{equation*}
$$

To compute T_{p}, the quantities $\Delta E=E_{p}-E_{i}$, e sin E_{f}, $e \sin E_{i}$ and n must be obtained. Several relations from the Appendix are rewritten for current use.

$$
\begin{align*}
& r=\alpha(1-e \cos E) \tag{7.4.99}\\
& p=r(1+e \cos E) \tag{7.4.100}\\
& \sin E=\frac{r}{p}\left(1-e^{2}\right)^{\frac{1}{2}} \sin \theta \tag{7.4.101}\\
& n=\sqrt{K_{1}^{2} / \alpha^{3}} \tag{7.4.102}\\
& \cos E=\frac{r}{p}(\cos \theta+e) \tag{7.4.203}
\end{align*}
$$

ΔI is computed in the following manner which yields a solution that is not indeterminate when e approaches zero

$$
\begin{align*}
\Delta E & =\tan ^{-1} \frac{\sin \Delta E}{\cos \Delta E}=\tan ^{-1}\left[\frac{\sin \left(E_{p}-E_{i}\right)}{\cos \left(E_{p}-E_{i}\right)}\right] \\
& =\tan ^{-1}\left[\frac{\sin E_{p} \cos E_{i}-\cos E_{p} \sin E_{i}}{\cos E_{f} \cos E_{i}+\sin E_{p} \sin E_{i}}\right] \tag{7.4.104}
\end{align*}
$$

Substituting (7.4.101) and (7.4.103) into (7.4.104) yields

$$
\begin{align*}
\Delta E=\tan ^{-1} \frac{\frac{r_{f} \dot{r}_{i}}{p} \sqrt{1-e^{2}}\left\{\sin \left(\theta_{f}-\theta_{i}\right)+e \sin \theta_{f}-e \sin \theta_{i}\right\}}{\frac{r_{f} r_{i}}{p}\left\{\cos \left(\theta_{f}-\theta_{i}\right)\right.}+\begin{aligned}
& \left(e^{2}+e \cos \theta_{i}+e \cos \theta_{f}\right. \\
& \left.\left.-e^{2} \sin \theta_{f} \sin \theta_{i}\right)\right\}
\end{aligned} . \tag{7.4.105}
\end{align*}
$$

where in the notation of the flight equations

$$
\begin{align*}
& \sin \left(\theta_{f}-\theta_{i}\right)=c_{2} . \tag{7.4.105}\\
& e \sin \theta_{f}=x_{l} \tag{7.4.107}\\
& e \sin \theta_{i}=x_{3} \tag{7.4.108}\\
& \cos \left(\theta_{f}-\theta_{i}\right)=c_{1} \tag{7.4.109}\\
& e \cos \theta_{i}=x_{1} \tag{7.4.110}\\
& e \cos \theta_{f}=x_{2} \tag{7.4.111}
\end{align*}
$$

Equations (7.4.110) and (7.4.111) are obtained directly from equation (7.4.100)

Define

$$
\begin{equation*}
\underline{u}_{i}=\frac{\underline{r}_{1}}{\left|\underline{r}_{1}\right|} \tag{7.4.112}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{U}_{-2}=\frac{\underline{r}_{p}}{\left|\underline{r}_{f}\right|} \tag{7.4.113}
\end{equation*}
$$

Then

$$
\begin{align*}
& c_{1}=U_{1} \cdot U_{2} \tag{7.4.114}\\
& c_{2}=\sqrt{1-c_{1}^{2}} \tag{7,4,115}
\end{align*}
$$

The sign of c_{2} is the sign of the component elong the y inertial axis of $\left(W_{2} \cdot W_{c}\right)$ there

$$
\underline{W}_{-1}=\underline{U}_{-1} \times U_{-2}
$$

and

$$
W_{C}=\text { the CSM angular momentum untt vector. }
$$

The following procedure is used to obtain x_{3}

$$
\begin{align*}
e \cos \theta_{f} \approx e \cos \left(\theta_{p}-\theta_{i}+\theta_{i}\right) & =\cos \left(\theta_{f}-\theta_{i}\right) \cos \theta_{1} \\
& -e \sin \left(\theta_{f}-\theta_{i}\right) \sin \theta_{1} \tag{7.4.117}
\end{align*}
$$

or

$$
\begin{equation*}
x_{2}=c_{1} x_{1}-c_{2} x_{3} \tag{7.4.118}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x_{3}=\frac{c_{1} x_{1}-x_{2}}{c_{2}} \tag{7.4.119}
\end{equation*}
$$

x_{4}, which is obtained in the same manner is given by

$$
\begin{equation*}
x_{4}=\frac{x_{1}-c_{1} x_{2}}{c_{2}} \tag{7.4.120}
\end{equation*}
$$

The quantities $e \sin E_{p}$ and $e \sin E_{i}$ are obtained by substitution in equation (7.4.1.01) and multiplication by e.

$$
\begin{equation*}
e \sin E_{f}=\frac{r_{f}}{p}\left(1-e^{2}\right)^{\frac{1}{2}} e \sin \theta_{f} \tag{7.1.121}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{9}=\frac{r_{p}}{p}\left(1-e^{2}\right)^{\frac{1}{2}} x_{l_{4}} \tag{7.4.122}
\end{equation*}
$$

and
or

Thus

$$
\begin{align*}
e \cos E_{1} & =\frac{r_{1}}{p}\left(1-e^{2}\right)^{\frac{1}{2}} e \sin \theta_{1} \tag{7.4.123}\\
x_{8} & =\frac{r_{1}}{p}\left(1-e^{2}\right)^{\frac{1}{2}} x_{3} \tag{7.4.124}\\
T_{p} & =\frac{1}{n}\left(\Delta E+x_{8}-x_{9}\right) \tag{7.4.125}
\end{align*}
$$

T_{p} is made to aprroach T by iterating on the parameter p. Two values of p are used to obtain two values of T_{p}. With this information, the partial derivative of T_{p} with respect to p is obtained. Succeedine values for the parameter p are obtained using the Newton-Raphson formula

$$
\begin{equation*}
p=p+\frac{\left(T-T_{p}\right)}{\frac{\partial_{p}}{\partial_{T}}} \tag{7.4.126}
\end{equation*}
$$

The actual iteration control logic is shown near the bottom for Figure $3: 23$ in Reference (1). w_{3} counts the number of iterations performed. When $\mu_{3} \geq 2$, two previous trial values of T_{p} are retained as T_{p} and T_{p}, and the two previous trial values of p are retained as p and p. These quentities are used to compute the derivative required in the iteration scheme (equation 7.4.126). If μ_{3} is less than $2 k 17$ (8 iterations), the iterations continue. If β_{3} is 2 , the quantity ∂_{F} is computed. This means that in each computation cycle, the partial derivative is computed at least once. As the trial solutions approach the desired solution, large errors can be obtained in the quantity ∂_{T} because p approaches p^{\prime} and T_{p} apy roaches T_{p}^{\prime}. Thus, after the derivative has been computed once (when $\mu_{3}=2$), a check is made on $\left|T_{p}-T_{p}\right|$. If this number is larger than F_{18}^{2}, the derivative is computed. If not, the last value of the derivative is used in the computstion of the increment for p. The increment is computed es

$$
\Delta p=\left(Y-T_{p}\right) I_{T}
$$

and Δp is limited to be less than 2^{19} (524288 ft) in magnitude. This is done for the following reason. When the fteration begins, the value of Δp could be quite large because these initial quantities were obtained with just a guess of the ultimate solution. If p changes too much, it is possible for the scaling in the computer to be exceeded. In this case, no solution would be obtained when an actual solution may exist. Thus, the magnitude of Δp is limited.

When $2 K 17$ iterations have been performed, a check is made of the finsl solution against the desired solution. The difference between T and T is checked against the quantity 2 K 2 O (2 sec). If the difference is greater than $2 K 20$, it is assumed the iteration has not converged. If less than $2 K 20$, the iteration has converged to the desired answer and the logic flow continues to Figure 3.24 where the initial and final velocities required to rendezvous are computed.

Current design is to use eight iterations since there is ample time for this number to be done in the 2-second computing interval. For the trajectories under consideration in the IM program, the minimum that should ever be used is five.

APPENDIX A

general discussion of orbttal mechanics
This section contains a summary of the more important equations of orbital mechanics used in the derivations in the preceding sections. Derivation of these equations and detailed discussions can be found in any of the books on Celestial Mechanics or Astrodynamics (e.g., References 5 and 6)!

Consider Figure Al which depicts a vehicle in firee flight above a spherical attracting body which for our purposes is the Moon. The vehicle fies an elliptical trajectory with the position vector \underline{r} and velocity vector \underline{V} both contained in the orbit plane. The vector normal to the orbit plane defined by

$$
\begin{equation*}
\underline{h}=\underline{x} \times \underline{v} \tag{A.1}
\end{equation*}
$$

is called the angular momentum vector and the magnitude of h is the angular momentum per unit mass. The center of the Moon occupies one focus of the ellipse. The point of closest approach to the Moon is called pericynthion and 180° from pericynthion is apocynthion, the point of greatest distance from the Moon. The central angle between the position of the vehicle and pericynthion is called the true anomaly and is denoted by θ. The semi-latus rectum or parameter of the ellipse is defined by

$$
\begin{equation*}
p=\frac{h^{2}}{4} \quad h=|\underline{h}| \tag{A.2}
\end{equation*}
$$

where μ is the gravitational constant. The velocity at any point on the ellipse can be obtained from the relationship

$$
\begin{equation*}
v^{2}=u\left(\frac{2}{r}-\frac{1}{\alpha}\right) \tag{A.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& r=|\underline{r}| \\
& \alpha \text { is the semi-major axis of the ellfpse }
\end{aligned}
$$

Eccentricity of the ellipse denoted by e is obtained from the relation

$$
\begin{equation*}
e^{2}=1-\frac{p}{\alpha} \tag{A,4}
\end{equation*}
$$

$$
\begin{aligned}
& \alpha-\text { Semi-major exis } \\
& \text { e-Eccentricity } \\
& \text { E - Eccentric enomaly } \\
& \text { O- True anonaly }
\end{aligned}
$$

p - Seni-latus rectum
h - Angular momentun
is - Universal gravity constant times mass of the Noon

P, Q, W - Unit vectors describing orfentation of the ellipse in institial space

FIGURE AI
Elliptical Free Flight Trajectory and Astrodynamic Notation

Another parameter of major importance is the eccentric anomaly E obtained from θ and e by any of the relationships

$$
\begin{align*}
& \sin E=\frac{r}{p}\left(1-e^{2}\right) \frac{1}{2} \sin \theta \tag{A.5}\\
& \cos E=\frac{r}{p}(\cos \theta+e) \tag{A.6}\\
& \tan \frac{E}{2}=\sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2} \tag{A.7}
\end{align*}
$$

and the quadrant of E is the same as that of 0 . From these quantities the radius at any point on the trajectory can be obtained from either

$$
r=\frac{p}{1+e \cos \theta}=\frac{\alpha\left(1-e^{2}\right)}{1+e \cos \theta}
$$

or

$$
\begin{equation*}
\mathbf{r} \equiv \alpha(1-e \cos E) \tag{A.9}
\end{equation*}
$$

Note then that the pericynthion radius is given by

$$
\begin{equation*}
r_{p}=\frac{p}{1+e}=\alpha(1-e) \tag{A.10}
\end{equation*}
$$

and apocynthion radius by

$$
\begin{equation*}
r_{a}=\frac{p}{1-e}=\alpha(1+e) \tag{A.11}
\end{equation*}
$$

In the $\underline{P}, \underline{Q}, \underline{W}$ coordinate system shom in Figure Al, the position and velocity vectors at any point 2 can be expressed as

$$
\begin{array}{r}
\underline{r}_{2}=\alpha\left(\cos E_{2}-e\right) \underline{P}+\alpha\left(1-e^{2}\right)^{\frac{1}{2}} \sin E_{2} \underline{Q} \\
\underline{V}_{2}=-\sqrt{\mu \alpha} \frac{\sin E_{2}}{r_{2}} \underline{P}+\left[\mu \alpha\left(1-e^{2}\right)\right]^{\frac{1}{2}} \frac{\cos E_{2}}{r_{2}} \quad Q \tag{A.13}
\end{array}
$$

These equetions were utilized in the derivation of the ellipse predictor equations.

The horizontal velocity of the vehicle at any redius on the orbit is given by

$$
\begin{equation*}
V_{h}=\frac{\sqrt{\mu p}}{r} \tag{A.14}
\end{equation*}
$$

and thus the radial rate by

$$
\begin{equation*}
\dot{r}=\sqrt{v^{2}-v_{h}^{2}} \tag{A.15}
\end{equation*}
$$

Redial rate can alsc be obtained from the expressions

$$
\begin{equation*}
\dot{\mathrm{r}}=\frac{\sqrt{10 \mathrm{o}}}{\mathrm{r}} e \sin \mathrm{E} \tag{A.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\mathrm{r}}=\sqrt{\frac{13}{\mathrm{p}}} \mathrm{e} \sin \theta \tag{A.17}
\end{equation*}
$$

The period of the orbit (time to travel 360°) is given by

$$
\begin{equation*}
P=2 \pi \sqrt{\frac{\alpha^{3}}{13}} \tag{A.18}
\end{equation*}
$$

and the mean orbital rate by

$$
\begin{equation*}
\mathrm{n}=\sqrt{H / \alpha^{3}} \tag{A.19}
\end{equation*}
$$

The time to travel from point 1 on en orbit to point 2 on an orbit is given by Kepler's equation

$$
\begin{equation*}
t=\frac{1}{n}\left[E_{2}-E_{1}-e \sin E_{2}+e \sin E_{1}\right] \tag{A.20}
\end{equation*}
$$

Mean Anoraly, H, of en orbit is the central engle from pericynthion transversed in time T if the vehicle were traveling at the mean orbital rate n. Thus

$$
\begin{equation*}
\mathrm{M}=\mathrm{nT} \tag{A.21}
\end{equation*}
$$

In terms of M and e, θ can be expressed in series form

$$
\begin{equation*}
0: M+2 e \sin M+\frac{5}{4} e^{2} \sin 2 M+\cdots \tag{A.22}
\end{equation*}
$$

REFERENCES

1. TRW Report No. 05952-6045-ROOO, Revision B, "LM AGS Lunar Flight Equation Document, Design Mission Computer Program," by T. S. Bettwy, M. J. Laubenstein, E. V. Avery, dated 14 November 1966. (U)
2. TRW Report No. 05952-6113-T000, "LM/AGS Lunar Flight Equations Design Mission Computer Program Equations Document Modification No. 1, " by T. S. Bettwy, dated \because January 1967. (U)
3. TRW Report No. 0595:-6040-T000, Revision A, "LM/AGS Scientific Simulation Test Results Document, Design Mission Computer Program," by T. S. Bettwy, dated November 1966. (U)
4. TRW Report No. 05952-6091-T000, "LM AGS Guidance Software, Design Report No. 3 Earth Prelaunch Gyro Calibration Program, " dated 15 December 1966. (U)
5. Fundamentals of Celestial Mechanics, by J. M. A. Danby, the Macmillan Company.
6. Orbital Dynamics of Space Vehicles, by R. Deutsch, Prentice-Hall, Inc.
