NOTES:

GENERAL REQUIREMENTS:

A. INTERPRET DRAWING IN ACCORDANCE WITH STANDARDS PRESCRIBED BY MIL-D-70327.
B. SUPPLIER SHALL CONFORM TO THE QUALITY ASSURANCE PROVISIONS CONTAINED IN MIL-STD-129, CLASS 2.
C. UNITS SHALL BE CAPABLE OF MEETING THE QUALIFICATION REQUIREMENTS AS LISTED IN TABLE I WITH REFERENCES TO MIL-T-23648 AND NO 1002057. ANY UNIT WILL BE CONSIDERED A FAILURE IF ITS
D. ZERO-POWER RESISTANCE CHANGES BY MORE THAN 0.5% AS A RESULT OF HAVING BEEN SUBMITTED TO ANY
 OF THE ENVIRONMENTAL TESTS SPECIFIED.

E. MARKING: UNIT PACKAGES SHALL BE PERMANENTLY AND LEGIBLY MARKED, PER MIL-STD-129, WITH THE MANUFACTURER'S NAME AND/OR SYMBO,
 LOT CODE OR SERIAL NUMBER, DATE OF MANUFACTURE, AND THE NASA
 PART NUMBER (DRAWING NUMBER, REVISION LETTER, AND DASH NUMBER).

F. ACCEPTANCE AND INSPECTION REQUIREMENTS (100%):

G. MECHANICAL REQUIREMENTS:
 (1) LEAD MATERIAL: NICKEL (GRADE A) PER NO PS 1015400.
 (2) PROTECTIVE VARNISH: MOISTURE AND FUNGUS PROOF VARNISH PER MIL-V-173.
 (3) MATERIAL AND FINISH CERTIFICATION: LEAD MATERIAL AND RESISTOR
 MOISTURE PROOF VARNISH COMPLIANCE SHALL BE CERTIFIED WITH
 EACH SHIPMENT.

H. ELECTRICAL CHARACTERISTICS (AT 25°C ± 0.1°C):
 (1) ZERO-POWER RESISTANCE VALUE: TABLE II VALUE 1%.
 (2) RESISTANCE-TEMPERATURE CHARACTERISTIC:

 SEE TABLE II FOR R AND TABULATED VALUES OF R.

 NOTE: BETA VALUES ARE BASED ON READINGS TAKEN AT 25°C & ± 0.1°C.

I. DESIGN REQUIREMENTS:

A. DISSIPATION CONSTANT: SEE TABLE III FOR THE AMOUNT OF POWER WHICH
 WILL RAISE THE THERMISTOR ONE DEGREE CENTIGRADE ABOVE AMBIENT.

B. TIME CONSTANT: SEE TABLE III FOR THE TIME REQUIRED FOR THE THERMISTOR
 TO REACH 63% OF THE TEMPERATURE CHARGE FOR A CERTAIN CHANGE IN
 AMBIENT TEMPERATURE, THE THERMISTOR WILL REACH 96% OF TEMPERATURE
 CHANGE IN APPRASE 5 TIMES THE CONSTANT LISTED.

C. STORAGE LIFE: 1 YEAR MINIMUM AT ROOM TEMPERATURE AND HUMIDITY
 WHEN STORED IN UOPENED CONTAINERS.

D. CONSTRUCTION: RESISTIVE WAVER MATERIAL WITH LEADS SOLDERED IN
 PLACE.

E. ENVIRONMENTAL: CAPABLE OF OPERATION OVER THE AMBIENT TEMPERATURE
 RANGE OF -55°C TO +105°C.

4. SPECIAL CONDITIONING:

A. TEMPERATURE CYCLING: RESISTORS SHALL BE TESTED PER MIL-STD-202,
 METHOD 103, CONDITION C EXCEPT TEMPERATURE EXTREMES OF -55°C AND
 +105°C. RESISTANCE, ONE HOUR AFTER TESTING, SHALL NOT VARY MORE
 THAN ± 1% FROM THE INITIAL MEASUREMENT. THERE SHALL BE NO
 MECHANICAL DAMGE.

B. BURN-IN: RESISTORS SHALL BE BURNED IN NON-OPERATING AT 50°C FOR
 100 HOURS. RESISTANCE, ONE HOUR AFTER TESTING SHALL NOT VARY
 MORE THAN ± 1% FROM THE INITIAL MEASUREMENT. THERE SHALL BE NO
 MECHANICAL DAMGE.

PROCURE ONLY FROM APPROVED SOURCES LISTED IN
NO 1002054 FOR THIS DRAWING.
TABLE I

<table>
<thead>
<tr>
<th>RESISTOR NOMINAL RESISTANCE CHARACTERISTIC</th>
<th>TEMPERATURE CHARACTERISTIC</th>
<th>DISSIPATION CONSTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURVE B</td>
<td>-2.25°F to +105°F</td>
<td>A: .09, B: .09, C: .09</td>
</tr>
<tr>
<td>CURVE D</td>
<td>-1.95°F to +105°F</td>
<td>A: .13, B: .13, C: .13</td>
</tr>
<tr>
<td>CURVE F</td>
<td>-5.20°F to +105°F</td>
<td>A: .07, B: .07, C: .07</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>TEMPERATURE CHARACTERISTIC</th>
<th>CURVE #°F</th>
<th>CURVE #°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+50°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+80°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+110°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+140°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+170°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+200°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+230°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+260°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+290°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+320°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+350°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
<tr>
<td>+380°F</td>
<td>2.15°F</td>
<td>2.15°F</td>
</tr>
</tbody>
</table>

NOTE 1

The amount of power to be applied will be that necessary to raise the thermistor temperature to 140°F under normal free-air conditions. Zero-power resistance will be measured before and after test per para. 4.5.2. of MIL-T-23648.

NOTE 2

Indicated steps (a), (d), and (f) replaced by (1), (a), and (7) respectively.