1. GENERAL:
 a. INTERPRET DRAWING IN ACCORDANCE WITH STANDARDS PRESCRIBED
 BY MIL-STD-783.
 b. UNITS SHALL MEET THE REQUIREMENTS OF MIL-STD-750C WITH
 THE EXCEPTIONS AND ADDITIONS SPECIFIED HEREIN.
 c. THE SUPPLIER SHALL CONFORM TO THE QUALITY ASSURANCE
 d. UNITS SHALL BE CAPABLE OF MEETING THE QUALIFICATION
 e. PACKAGING AND PACKING: UNIT PACKAGING AND PACKING SHALL
 BE IN ACCORDANCE WITH MIL-STD-1849 LEVEL A, IN BOTH INSTANCES.

2. ACCEPTANCE AND INSPECTION:
 a. ELECTRICAL CHARACTERISTICS: PER TABLE I.
 (1) ITEMS 1 THRU 5: 10 PERCENT INSPECTION.
 (2) ITEMS 6 AND 7: SAMPLE IN ACCORDANCE WITH MIL-STD-105.
 INSPECTION LEVEL I, AQL OF 4 PERCENT.
 b. MECHANICAL PROPERTIES:
 (1) DIMENSIONS: PER OUTLINE. SAMPLE IN ACCORDANCE
 WITH MIL-STD-105, INSPECTION LEVEL I, AQL OF 4
 PERCENT.
 (2) MARKING: DIODES SHALL BE MARKED IN ACCORDANCE
 WITH MIL-STD-1940C WITH A BLACK INK DENOTING THE CATHODE
 END AND THE THREE DIGITS 751 PER DRAWING. PACKAGES
 AND EXTERIOR SHIPPING CONTAINERS SHALL BE MARKED
 IN ACCORDANCE WITH MIL-STD-630 AND SHALL INCLUDE THE NESA DRAWING
 NUMBER, REVISION LETTER AND DASH NUMBER.
 c. LEAD MATERIAL: LEAD MATERIAL SHALL BE NICKEL REN 1015400.
 SOLID PLATING PER PARAGRAPH 3.2 IS OPTIONAL. A CERTIFICATE
 OF COMPLIANCE SHALL ACCOMPANY EACH SHIPMENT.

3. DESIGN:
 a. ABSOLUTE MAXIMUM RATINGS:
 (1) POWER DISSIPATION: 500 MILLIWATTS AT 25 DEGREES
 CENTIGRADE AMBIENT TEMPERATURE.
 (2) JUNCTION TEMPERATURE (T_J): FROM MINUS 65 DEGREES
 CENTIGRADE TO PLUS 125 DEGREES CENTIGRADE.
 (3) STORAGE TEMPERATURE (T_S): FROM MINUS 65 DEGREES
 CENTIGRADE TO PLUS 200 DEGREES CENTIGRADE.
 (4) PEAK FORWARD SURGE CURRENT ($I_{F,S}$): 1 AMPERE
 FOR 1 SECOND MINIMUM, REPETITIVE DUTY CYCLE OF 1
 PERCENT.
 b. CONSTRUCTION: CLEAR UNPAINTED GLASS, HERMETICALLY SEALED ENCLOSURE.
 c. THERMAL SHOCK: UNITS SHALL BE CAPABLE OF WITHSTANDING
 A THERMAL SHOCK IN A ZILLION OIL FROM ZERO DEGREES CENTI-
 GRADE TO 200 DEGREES CENTIGRADE FOR 5 COMPLETE CYCLES.
 TOTAL IMMERSSION TIME EACH HALF CYCLE SHALL BE 30 SECONDS,
 ELAPSED TRANSFER TIME FROM ONE TEMPERATURE EXTREME TO
 THE OTHER SHALL NOT EXCEED 3 SECONDS.
 UNITS SHALL SHOW NO PHYSICAL DAMAGE OR LACK OF ELECTRICAL
 PERFORMANCE AFTER THERMAL SHOCK.

PROCURE ONLY FROM APPROVED SOURCES LISTED IN
MIL-STD-2024 FOR THIS DRAWING.
TABLE I

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>UNITS</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REVERSE CURRENT</td>
<td>I_r</td>
<td>$V_p = 25,\text{VOLTS\ MIN}$</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>REVERSE BREAKDOWN VOLTAGE</td>
<td>V_B</td>
<td>$I_p = 100,\text{UA}$</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>REVERSE RECOVERY TIME</td>
<td>t_{rr}</td>
<td>$I_p = 10,\text{MA}$</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(SEE TEST CIRCUIT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FORWARD VOLTAGE DROP</td>
<td>V_F</td>
<td>$I_p = 40,\text{MA}$</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>MIL-STD-750</td>
<td>METHOD 4026</td>
<td>RISE TIME < 100 NANOSEC</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>5</td>
<td>FORWARD VOLTAGE DROP</td>
<td>V_F</td>
<td>$I_p = 400,\text{MA}$</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td></td>
<td>MIL-STD-750</td>
<td>METHOD 4026</td>
<td>RISE TIME < 100 NANOSEC</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>6</td>
<td>CAPACITANCE</td>
<td>C</td>
<td>$V_p = 1,\text{VDC}$</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f = 1,\text{KHZ}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>REVERSE CURRENT</td>
<td>I_r</td>
<td>AT 150°C</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

OUTPUT VOLTAGE WAVE SHAPE

FIGURE 2

F REPLACES REV.E WITH CHANGES

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

NOMENCLATURE OR DESCRIPTION

APPLICATION

INCHES

PHOTOGRAPHIC SCALE ONLY

MANNED SPACECRAFT CENTER

SEMICONDUCTOR DEVICE, DIODE

SPECIFICATION CONTROL DRAWING

NASA DRAWING NO.

NASA DRAWING NO.

NOMENCLATURE OR DESCRIPTION

INCHES

PHOTOGRAPHIC SCALE ONLY

MANNED SPACECRAFT CENTER

SEMICONDUCTOR DEVICE, DIODE

SPECIFICATION CONTROL DRAWING

NASA DRAWING NO.

NOMENCLATURE OR DESCRIPTION

INCHES

PHOTOGRAPHIC SCALE ONLY