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de INTRODUCTION

The Conic State Extrapolation Routine provides the capabil-

ity to conically extrapolate any spacecraft inertial state vector either

backwards or forwards as a function of time or as a function of

transfer angle, It is merely the coded form of two versions of the

analytic solution of the two-body differential equations of motion of

the spacecraft center of mass, Because of its relatively fast compu-

tation speed and moderate accuracy, it serves as a preliminary

navigation tool and as a method of obtaining quick solutions for tar-

geting and guidance functions. More accurate (but slower) results

are provided by the Precision State Extrapolation Routine,



2, FUNCTIONAL FLOW DIAGRAM

The Conic State Extrapolation Routine basically consists of

two parts - one for extrapolating in time and one for extrapolating in

transfer angle, Several portions of the formulation are, however,

common to the two parts, and may be arranged as subroutines on a

computer,

aot Conic State Extrapolation As A Function Of Time (Kepler

Routine )

This routine involves a single loop iterative procedure, and

hence is organized in three sections: initialization, iteration, and

final computations, as shown in Fig, 1. The variable ''x'' is the in-

dependent variable in the iteration procedure, For a given initial

state, the variable ''x'' measures the amount of transfer along the ex -
trapolated trajectory, The transfer time interval and the extrapolated

state vector are very conveniently expressed in terms of ''x'', In the

iteration procedure, ''x' is adjusted until the transfer time interval

calculated from it agrees with the specified transfer time interval

(to within a certain tolerance), Then the extrapolated state vector

is calculated from this particular value of ''x",

222 Conic State Extrapolation As A Function Of Transfer Angle

( Theta Routine Ve

This routine makes a direct calculation (i.e. does not have

an iteration scheme), as shown in Fig. 2. Again, the extrapolated

state vector is calculated from the parameter "x", The value of "x"!

however, is obtained from a direct computation in terms of the conic

parameters and the transfer angle @, It is not necessary to iterate

to determine ''x'', as was the case in the Kepler Routine,
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Figure 1 KEPLER ROUTINE FUNCTIONAL FLOW DIAGRAM
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Initialization

(Compute Various Conic Parameters )

Compute ''x'' Corresponding To The Specified

Transfer Angle 6

Compute Transfer Time Interval Corresponding

To The Variable ''x"

Final Computations

(Compute Extrapolated State Vector Corresponding

To The Variable ''x'')
|

Figure 2 THETA ROUTINE FUNCTIONAL FLOW DIAGRAM



3. ROUTINE INPUT-OUTPUT

The Conic State Extrapolation Routine has only one system

parameter input; the gravitational parameter of the earth, Its prin-

cipal real-time inputs are the inertial state vector which is to be ex-

trapolated and the transfer time interval or transfer angle through

which the extrapolation is to be made. Several optional secondary

inputs may be supplied in the transfer time case in order to speed

the computation, The principal real-time output of both cases is the

extrapolated inertial state vector,

Ales Conic State Extrapolation As A Function of Transfer Time

Interval (Kepler Routine )

System |

bp
Gravitational parameter of the earth (Product of

earth's mass and universal gravitational constant).

Real-Time (Required )

(Yo:Yq) Inertial state vector which is to be extrapolated

(corresponds to time ty).

(te ty) : Transfer time interval through which the extrapola-
tion is to be made.

Real-Time (Optional)

x : Guess of independent variable corresponding to solu-

tion in Kepler iteration scheme, (Used to speed con-

vergence),



(t= te

(x(t),v(t))

(t=t)).

Value of dependent variable (the transfer time inter-
‘

val) in the Kepler iteration scheme, which was

calculated in the last iteration of the previous call to

Kepler,

Value of the independent variable in the Kepler itera-

tion scheme, to which the last iteration of the

previous call to Kepler had converged,

Output Parameters

Extrapolated inertial state vector (corresponds to

time t),

Value of the dependent variable (the transfer time

interval) in the Kepler iteration scheme, which was

calculated in the last iteration (should agree closely
with (t -

ty)).
Value of the independent variable in the Kepler itera -
tion scheme to which the last iteration converged,

3.2 Conic State Extrapolation As A Function Of Transfer Angle

(Theta Routine )

System

Input Parameters

Gravitational parameter of the earth ( Product of

earth's mass and universal gravitational constant ).
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Real-Time

(Yp>Yq)

6

Ory)

(t-ty),

Inertial state vector which is to be extrapolated,

Transfer angle through which the extrapolation is to

be made,

Output Parameters

Extrapolated inertial state vector,

Transfer Time Interval corresponding to the conic

extrapolation through the transfer angle 6,
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4, DESCRIPTION OF EQUATIONS

4.1 Conic State Extrapolation As A Function Of Time (Kepler

Routine )

The universal formulation of Stumpff-Herrick-Battin in

terms of the universal eccentric anomaly difference is used. This

variable, usually denoted by x, is defined by the relations:

ya‘(E -

E,) for ellipse

X= p (tan f/2 - tan f5/2) for parabola

ya '(H -

Ho)for hyperbola

where a is the semi-major axis, E and H are the eccentric anomaly

and its hyperbolic analog, p is the semi-latus rectum and f the true

anomaly. The expressions for the transfer time interval (t -

ty)
and the extrapolated position and velocity vectors (r, v) in terms of

the initial position and velocity vectors (r,, Vo) as functions of x

ale:

(Universal Kepler Equation )

Py

(est yeele eV ved BeCla x y4+(1-Fa ie Sia yey x
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= C(ayx")%»



where

2

eke Yo
ot

att: pfs

205: 40. 98

and

2

si; t = a
Gli Slee Ts

2

cieyat fh See
Di Al 36|

Since the transfer time interval (t -

ty) is given, it is desired to

find the x corresponding to it in the Universal Kepler Equation, and

then to evaluate the extrapolated state vector (a, v) expression

using that value of x, Unfortunately, the Universal Kepler Equation

expresses (t -

ty) as a transcendental function of x rather than con-

versely, and no power series inversion of the equation is known which

has good convergence properties for all orbits, so it is necessary

to solve the equation iteratively for the variable x,

For this purpose, the secant method (linear inverse inter-

polation/ extrapolation) is used, It merely finds the increment in

the independent variable x which is required in order to adjust the

dependent variable (t -

tye to the desired value (t -

ty) based ona

linear interpolation/ extrapolation of the last two points calculated on

the (t -

ty le vs x curve, The method uses the formula



where (t -

ty) eu denotes the evaluation of the Universal Kepler

Equation using the value x. In order to prevent the scheme from

taking an increment back into regions in which it is known from past

iterations that the solution does not lie, it has been found convenient

to establish upper and lower bounds on the independent variable x

which are continually reset during the course of the iteration as more

and more values of x are found to be too large or too small, In ad-

dition, it has also been found expedient to damp by 10% any incre-

ment in the independent variable which would (if applied) take the

value of the independent variable past a bound.

To start the iteration scheme, some initial guess Xo of the

independent variable is required as well as a previous point (x_1>
(t -

to i
= dyon the (t -

toe vs x curve, If no previous point is

available the point (0, 0) may be used as it lies on all (t -

todo vs,

x curves, The closer the initial guess Xo is to the value of x corres-

ponding to the solution, the faster the convergence will be, One

method of obtaining such a guess XQ is to use a truncation of the

infinite series obtained by direct inversion of the Kepler Equation

(expressing x as a power series in (t -

ty). It must be pointed out

"moderate" transfer time inter -that this series diverges even for

vals (t -

ty); hence an iterative solution must be used to solve the

Kepler equation for x in the general case, A third order truncation

of the inversion of the Universal Kepler Equation is:

3

x= > yl.
n=0

where

% =

0, %
= Hp!Pp»

* elsbp (20!“0)——
?

2 ro �E

[i 3 o v, 2

X Ls |2 (A) (1 t929),
er, e220 Men

with a aoe0 O20 (on:
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4,2 Conic State Extrapolation As A Function of Transfer Angle
(Theta Routine )

As with the Kepler Routine, the universal formulation of

Stumpff-Herrick-Battin in terms of the universal eccentric anomaly

difference x is used in the Theta Routine, A completely analogous

iteration scheme could have been formulated with x again as the in-

dependent variable and the transfer angle @ as the dependent variable

using Marscher's universally valid equation:

2 2

rol
-

ax S(ayx )

g
cot 2 = ———_—__—_——_—_———.t+ cot y

2 2
0

fplx Cla, c=)

where
,. 6

De cs Sy an Yo
Te

and

AS angle from Loto Yo:

However, in contrast to the Kepler equation, it is possible

to invert the Marscher equation into a power series which can be

made to converge as rapidly as desired, by means of which x may be

calculated as a universal function of the transfer angle 9. Knowing

x, we can directly calculate the transfer time interval (t -

todo and

subsequently the extrapolated state vectors using the standard

formulae.

The sequence of computations in the inversion of the

Marscher Equation is as follows:

Let

Py
= P/To,Qn =a

and



=

Sang.
=

Wy ey
cot ¥).

1 - cos @

If

|w,|>1, let V, = 1.

Let

Waar
= tN ten

+ [| (jw,|<1)
or

iia We tan wp)? +V, ({w,|>a)
Let a,

=

Wi (jw,|<0

or

Yo, = (YW, P/V, (fw,| =i)

Let

eee
26 SO

y= 9 es =n

where n is an integer >4, Then

z (W,>0)
x/ [Fo'

=

be are Ee (WwW,<0)

The above equations have been specifically formulated to avoid certain

numerical difficulties,
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on DETAILED FLOW DIAGRAMS

See Conic State Extrapolation As A Function of Time (Kepler

Routine)

SYSTEM REAL TIME (Required) REAL TIME (Optional)

Hp Lo» Yo: Ct ty) (i too x

i = 20

ro =f
1,

= UNIT (ro)
0

_

Fy" Yo
ce =

He
Vv

=

OO

Co 5
1

Re

a = (1 - c)/ ro

Yes Ne

_ an | far

Figure 3a KEPLER ROUTINE DETAILED FLOW DIAGRAM
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x
max

x = sign (t -

ty)

Figure 3b KEPLER ROUTINE DETAILED FLOW DIAGRAM
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<0 >0

Mos So

Y

min max 3

x, =0
min

max

{

eet
Ax = => x!

c

Eza x?

Call Universal Kepler Equation

Hp fC,» Cg: ¥ §, PQ

Resume

(t- ty), SCE). C(8)

oan ‘t >

ty)
c {*= fae

ICallSECANTITERATOR

P, (t-t.),. (tty). tape:

Ro hp eesAx,X *nin? *max
Resume

AX, X

A
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Figure 3c KEPLER ROUTINE DETAILED FLOW DIAGRAM
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y
Call Extrapolated State Vector

Hw Yo. Vo» x6, S(é),

Cit), (6-13)
Resume

r(t), v(t)

OUTPUT
Y

Py, vt 4-1). ,

Figure 3d KEPLER ROUTINE DETAILED FLOW DIAGRAM
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5.2 Conic State Extrapolation As A Function of Transfer Angle

ENTER

SYSTEM REAL-TIME

By 20?Yo? 6

<0

>0

ZF
=

[Eq> = =FolTo

0 2 +v,
= YolYo

ey
=

d,
sin Jee l4r,

e

1
cot Yq

= cos Yo/sin Yo

ay =]5
=

0 06eer

an
=2- Cy

so

Py
=

CS sin Yo

{oe|< 360°

§ - sign (6) 360°

n+]

Figure 4a THETA ROUTINE DETAILED FLOW DIAGRAM
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Call Marscher Equation Inversion

6, cot Yor a oy Py

Resume

x, §, Cy, Coy

Call Universal Kepler Equation

Mp Es Xs Cys Cos FQ

Resume

(t= ty), S(E),C(E)

Call Extrapolated State Vector

pe Lor Yoo ¥» & S(E), CCE)
Resume

r(t), v(t)

207
Pp === eee

(25929)? mR
(t Spee (t-t5),+nP

Figure 4b THETA ROUTINE DETAILED FLOW DIAGRAM
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Figure 4c THETA ROUTINE DETAILED FLOW DIAGRAM
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5.3 Subroutines Used By The Transfer Time or Transfer Angle
Conic Extrapolation Routines

Oy ojeat Universal Kepler Equation

SYSTEM REAL-TIME

Cy, Cos ¥ 8, YQ

Sy aaa
2

§ jin
ar al

2

2 2k
a. 4) =o!

:
(i -4), = [eyx”C(E)+ x(Cox S(g) +29) |/ {HE

OUTPUT

(t -

too S(&), C(E)

Figure 5 UNIVERSAL KEPLER EQUATION DETAILED FLOW DIAGRAM
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5.3.2 Extrapolated State Vector

SYSTEM REAL TIME

ME Lo» Vos x» &, S(8),C(8), (t- ty),

=z" x
))r(t) = (1-2 C(E)) rg+((t- ty), -

2 8(E))vo
fo Jes Ve

BR x?
v(t) = ———x(€S(E) -1l) rj

+(1- —— C(E)) vo
Se ror(t) r(t)

OUTPUT

r(t), vit), (t- ty),

Figure 6 EXTRAPOLATED STATE VECTOR EQUATION

DETAILED FLOW DIAGRAM

5-9



5.3.5 Secant Iterator

&, (t= toe wee toe teRR? Ox, x, *min’ *max

t x Ks

2 Ax = sign (tppp)
a

4
(= et)!

Oc O°¢ 20

au !

Figure 7 SECANT ITERATOR DETAILED FLOW DIAGRAM
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5.3.4 Marscher Equation Inversion

| 8, cot Yq, Yo: %y» Pry

'
WwW

1

sin 6
=

T- cos 9
ts Yo)

Be +[w, On 1W,! 1/W,|=|sin6/ Py (1+cos 6 - sin 6cot yp)
Vy =]

Figure 8a MARSCHER EQUATION INVERSION DETAILED FLOW DIAGRAM
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Figure 8 MARSCHER EQUATION INVERSION DETAILED FLOW DIAGRAM
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Ge SUPPLEMENTARY INFORMATION

The analytic expressions for the Universal Kepler Equation

and the extrapolated position and velocity vectors are well known and

are given by Battin (1964), Battin also outlines a Newton iteration

technique for the solution of the Universal Kepler Equation; this tech-

nique converges somewhat faster than the secant technique but

requires the evaluation of the derivative. It may be shown that if the

derivative evaluation by itself takes more than 44% of the computa -
tion time used by the other calculations in one pass through the loop,

then it is more efficient timewise to use the secant method,

Marscher's universal equation for cot 6/2 was derived by

him in his report (Marscher, 1965), and is the generalization of his

"Three-Cotangent'"’ equation:

c (HAE)

cot Og ate. cot —_-—_-—- + cot v0
2  |Jpa 2

Marscher has also outlined in the report an iterative method of ex-

trapolating the state based on his universal equation, The inversion

of Marscher's universal equation was derived by Robertson (1967a),

Krause organized the details of the computation in both

routines.

A derivation of the coefficients in the inversion of the Uni-

versal Kepler Equation is given in Robertson (1967 b) and Newman

(1967).
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