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FOREWORD

This document is one of a series of candidates for inclusion
in the NASA Space Shuttle GN& C Equation Document. The enclosed
has been prepared under NAS9-10268, Task No, 26, '"GN&C Demon-
stration Software Support', and applies to function 1 of the Orbital
Coast Navigation Module (ON2) as defined in MSC-03690, 'Space
Shuttle Guidance, Navigation and Control Software Functional Require-

ments'', dated 12 October 1970,

~
Gera1\d M, Levine
Director,
APOLLO Space Guidance Analysis Division
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NOMENCLATURE

a Semi-major axis of conic

¢y First conic parameter (EO . _\;_0)/ [JE)

e, Second conic parameter (ro voz/ pg - 1)

cq Third conic parameter (ro v02 / ”E)

C(&) Power series in £ defined in text

E Eccentric anomaly

f True anomaly

H Hyperbolic analog of eccentric anomaly

i Counter

o) Semilatus rectum of conic

Py Normalized semilatus rectum (p/ ro)

P Period of conic orbit

Ty Magnitude of Ty

I Inertial position vector corresponding to initial time
tO

T Magnitude of r (t)

r(t) Inertial position vector corresponding to time t

s Switch used in Secant Iterator t§ determine whether

secant method or offsetting will be performed



NOMENCLATURE

a Semi-major axis of conic
c, First conic parameter (_I_‘0 . _.V.Q)/ ‘JE)
: 2
Cy Second conic parameter (rO vy /”E -1)
= - 2
Cy Third conic parameter (Jr0 0 [ug)
CiES) Power series in £ defined in text
E Eccentric anomaly
f True anomaly
H Hyperbolic analog of eccentric anomaly
i Counter
P Semilatus rectum of conic
Py Normalized semilatus rectum (p/ ry)
12 Period of conic orbit
ry Magnitude of Ty
k) Inertial position vector corresponding to initial time
tD
T Magnitude of r(t)
_1:(1:) Inertial position vector corresponding to time t
S Switch used in Secant Iterator to determine whether

secant method or offsetting will be performed



S(E)

vi(t)

Power series in £ defined in text

Final time ( end of time interval through which an

extrapolation is made)

Initial time (beginning of time interval through which

an extrapolation is to be made}
Specified transfer time interval

Value of the transfer time interval calculated in the
Universal Kepler Equation as a function of x and the

conic parameters

Previous value of (t - ty )c

The "i-th' value of the transfer time interval calcula-
ted in the Universal Kepler Equation as a function of

the "i-th" value X, of x and the conic parameters

Difference between specified time interval and that

calculated by Universal Kepler Equation

Magnitude of Yy

Inertial velocity vector corresponding to initial time

to
Inertial velocity vector corresponding to time t

Universal eccentric anomaly difference (independent

variable in Kepler iteration scheme)
Previous value of x

Value of x to which the Kepler iteration scheme con-

verged

Previous value of X,
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Atmax

A%

The "i-th" value of x

Lower bound on x

Upper bound on x

Reciprocal of semi-major axis at initial point T
Normalized semi-major axis reciprocal (e« rD)

Angle from ryto vy

Maximum time interval which can be used in computer

due to scaling limitations
Increment in x

Relative convergence tolerance factor on transfer

time interval

Convergence tolerance on independent variable x
Transfer angle (true anomaly increment)
Gravitational parameter of the earth

Product of @, and square of x

0

Coefticients of power series inversion of Universal
Kepler Equation

Unit vector in direction of

%o
Unit vector in direction of Yo

vii



1. INTRODUCTION

The Conic State Extrapolation Routine provides the capabil-
ity to conically extrapolate any spacecraft inertial state vector either
backwards or forwards as a function of time or as a function of
transfer angle, It is merely the coded form of two versions of the
analytic solution of the two-body differential equations of motion of
the spacecraft center of mass, Because of its relatively fast compu-
tation speed and moderate accuracy, it serves as a preliminary
navigation tool and as a method of obtaining quick solutions for tar-
geting and guidance functions, More accurate (but slower) results

are provided by the Precision State Extrapolation Routine,



21 FUNCTIONAL FLOW DIAGRAM

The Conic State Extrapolation Routine basically consists of
two parts — one for extrapolating in time and one for extrapolating in
transfer angle, Several portions of the formulation are, however,

common to the two parts, and may be arranged as subroutines on a

computer,
gort Conic State Extrapolation As A Function Of Time (Kepler
Routine)

This routine involves a single loop iterative procedure, and
hence is organized in three sections: initialization, iteration, and
final computations, as shown in Fig, 1. The variable ''x" is the in-
dependent variable in the iteration procedure, For a given initial
state, the variable "x" measures the amount of transfer along the ex-
trapolated trajectory, The transfer time interval and the extrapolated
state vector are very conveniently expressed in terms of "x'', In the
iteration procedure, 'x" is adjusted until the transfer time interval
calculated from it agrees with the specified transfer time interval
{to within a certain tolerance), Then the extrapolated state vector

is calculated from this particular value of '"x'",

2.2 Conic State Extrapcolation As A Function Of Transfer Angle
( Theta Routine)

This routine makes a direct calculation (i.e. does not have
an iteration scheme), as shown in Fig. 2. Again, the extrapolated

state vector is calculated from the parameter '"'x'". The value of "x"

however, is obtained from a direct computation in terms of the conic
parameters and the transfer angle #, It is not necessary to iterate

to determine '"x'", as was the case in the Kepler Routine.
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Figure 1| KEPLER ROUTINE FUNCTIONAL FLOW DIAGRAM
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Initialization

(Compute Various Conic Parameters)

Compute "x'" Corresponding To The Specified
Transfer Angle 6

Y

Compute Transfer Time Interval Corresponding
To The Variable ''x"

Final Computations
(Compute Extrapolated State Vector Corresponding
To The Variable "x'"')

Figure 2 THETA ROUTINE FUNCTIONAL FLOW DIAGRAM



3. ROUTINE INPUT-OUTPUT

The Conic State Extrapolation Routine has only one system
parameter input: the gravitational parameter of the earth, Its prin-
cipal real-time inputs are the inertial state vector which is to be ex-
trapolated and the transfer time interval or transfer angle through
which the extrapolation is to be made. Several optional secondary
inputs may be supplied in the transfer time case in order to speed
the computation, The principal real-time output of both cases is the

extrapolated inertial state vector,

3. 1 Conic State Extrapolation As A Function of Transfer Time

Interval (Kepler Routine)

Input Parameters

System

HE Gravitational parameter of the earth ( Product of

earth's mass and universal gravitational constant),

Real-Time (Required)

(?—O’ XO) Inertial state vector which is to be extrapolated
(corresponds to time to),
(t = to) : Transfer time interval through which the extrapola-

tion is to be made,

Real-Time { Optional)

® : Guess of independent variable corresponding to solu-
tion in Kepler iteration scheme, (Used to speed con-

vergence).



f —to)(‘:

(r(t),v(t))

(Tt

Value of dependent variable (the transfer time inter- °
val) in the Kepler iteration scheme, which was
calculated in the last iteration of the previous call to

Kepler,

Value of the independent variable in the Kepler itera-
tion scheme, to which the last iteration of the

previous call to Kepler had converged.

QOutput Parameters

Extrapolated inertial state vector (corresponds to

time t),

Value of the dependent variable (the transfer time
interval) in the Kepler iteration scheme, which was
calculated in the last iteration (should agree closely
with (t - £,)).

Value of the independent variable in the Kepler itera-

tion scheme to which the last iteration converged,

3.2 Conic State Extrapolation As A Function Of Transfer Angle

(_Theta Routine)

System

Input Parameters

Gravitational parameter of the earth ( Product of

earth's mass and universal gravitational constant),
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Real-Time

(ry, ¥p)
6

L v
(t-t5),

Inertial state vector which is to be extrapolated,

Transfer angle through which the extrapolation is to

be made,

Output Parameters

Extrapolated inertial state vector.

Transfer Time Interval corresponding to the conic

extrapolation through the transfier angle 8,
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4, DESCRIPTION OF EQUATIONS

4.1 Conic State Extrapolation As A Function Of Time (Kepler

Routine)

The universal formulation of Stumpff{-Herrick-Battin in
terms of the universal eccentric anomaly difference is used. This

variable, usually denoted by x, is defined by the relations:

Va'(E - EO) for ellipse
x =< \P(tanf/2 - tanf /2) for parabola

v-a'(H - HO) for hyperbola

where a is the semi-major axis, E and H are the eccentric anomaly
and its hyperbolic analog, p is the semi-latus rectum and { the true
anomaly. The expressions for the transfer time interval (t - tO)
and the extrapolated position and velocity vectors (r, v) in terms of
the initial position and velocity vectors (r,., '\—IO) as functions of x
are:

(Universal Kepler Equation)

Toeroar
e 0 2 3 2
e C(aox )+(1-r0a0)x S(aox YTy

(t_t0)= 0

1
JFE

= 5 =
E(t) [1-——(}(& x) £0+ (t-tO)-—XZ— S(aoxz)JXO
\l E

x2) \a

v(t) = a xBS(anz)-x £O+ 1T . Cla



where

2
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2
Cinierie solime Ba
21 4! 6!

Since the transfer time interval (t - tO) is given, it is desired to

find the x corresponding to it in the Universal Kepler Equation, and
then to evaluate the extrapolated state vector (E- y_) expression

using that value of x. Unfortunately, the Universal Kepler Equation
expresses (t - to) as a transcendental function of x rather than con-
versely, and no power series inversion of the eguation is known which
has good convergence properties for all orbits, so it is necessary

to solve the equation iteratively for the variable x,

For this purpose, the secant method (linear inverse inter-
polation/ extrapolation) is used, It merely finds the increment in
the independent variable x which is required in order to adjust the
dependent variable (t - to)c to the desired value (t - to) based on a
linear interpolation/extrapolation of the last two points calculated on

the (t - tD )C vs x curve. The method uses the formula

(n)
7 (t-to)c = At ot
n+i —Xn) e [, = Xn-l)

(n) (n-1)
(b eate) L st

(x



where (t - tO) (i) denotes the evaluation of the Universal Kepler
Equation using the value X In order to prevent the scheme from
taking an increment back into regions in which it is known from past
iterations that the solution does not lie, it has been found convenient
to establish upper and lower bounds on the independent {rariable %
which are continually reset during the course of the iteration as more
and more values of x are found to be too large or too small, In ad-
dition, it has also been found expedient to damp by 10% any incre-
ment in the independent variable which would (if applied) take the

value of the independent variable past a bound,

To start the iteration scheme, some initial guess X, of the
independent variable is required as well as a previous point (x_l,
(t - tO)c( -1 )) on the (t - tO)c vs x curve. If no previous point is
available the point (0, 0) may be used as it lies on all (t - to)c Vs,
x curves, The closer the initial guess Xy is to the value of x corres-
ponding to the solution, the faster the convergence will be. One
method of obtaining such a guess X is to use a truncation of the
infinite series obtained by direct inversion of the Kepler Equation
( expressing x as a power series in (t - to)). It must be pointed out
that this series diverges even for "moderate' transfer time inter-
vals (t - to); hence an iterative solution must be used to solve the
Kepler equation for x in the general case, A third order truncation

of the inversion of the Universal Kepler Equation is:

3
n
X = E %Lt
n=0
where
’XO = 0: Ix’lz\lME/I‘O,
%, = T (EO | =0,
-
2 ry” \ug
T d By v 2
Xy = __LI‘_E, [_3 (—0_"“__0) -{1-r5a, ],
6r, Fierads Vg
with iy 2/r0 vy [ug



4.2 Conic State Extrapolation As A Function of Transfer Angle
( Theta Routine)

As with the Kepler Routine, the universal formulation of
Stumpff-Herrick-Battin in terms of the universal eccentric anomaly
difference x is used in the Theta Routine, A completely analogous
iteration scheme could have been formulated with x again as the in-
dependent variable and the transfer angle 6 as the dependent variable

using Marscher's universally valid equation:

2 2
rOLl - anx S(aox )
2]

cot = = — + cot Yo
2 2
Jpx C(a:0 S
where
oo
= (—O 0) Sinz 'YO
[ He
and

V5 = angle from I, to Yo

However, in contrast to the Kepler equation, it is possible
to invert the Marscher equation into a power series which can be
made to converge as rapidly as desired, by means of which x may be
calculated as a universal function of the transfer angle §. Knowing
x, we can directly calculate the transfer time interval (t - tO)c and
subsequently the extrapolated state vectors using the standard

formulae.

The sequence of computations in the inversion of the

Marscher Equation is asfollows:

Tzet
Py~ P/rO, ay T ar,

and



e sind
Vul— pN(-— cot 'yO).
l1-cos @

1f
\Wll S, etV i,
Let
5 2
Wn+l = + Wn +aN + \Wnl (|W1 <1)
or
Vo = Vi oy QYW 24 (|w |1
n+l n N ]I n 1 ¢
Let w, = W (|W,| <1
or
Yo = (| yw, /v, (W] >D,
Let
e L
g - iy
4 j=0 i h

where n is an integer >4, Then
% (W, >0)

21r/\|aN‘ » B (W< 0)

The above equations have been specifically formulated to avoid certain

x/\r:?(;‘—

numerical difficulties,
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) DETAILED FLOW DIAGRAMS

el Conic State Extrapolation As A Function of Time (Kepler
Routine)
SYSTEM REAL TIME (Required) REAL TIME (Optional)
HE EO.I y_oa (t _to) X, (t "to 'ca xé
i =20
o~ ||
1. = UNIT (50)
0
el (g
e e
;)
(“E
VoW
= 0.
o R d, e 1
HE
o = (1l = c:2)/ I‘O
Yes Nc
Xmax=27r/,|a' xmax=\|—50/a'|

Figure 3a KEPLER ROUTINE DETAILED FLOW DIAGRAM
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(t-ty) = (t-ty) - sign(t-t))P

- Y

X
max

x = sign (t -tD)

Figure 3b KEPLER ROUTINE DETAILED FLOW DIAGRAM



= l
(t - t5)

min max

max

\/—D
T

Ao w il

3 "

E=aXx

:

Call Universal Kepler Equation

UED cll Cz: X.I E} ro

Resume
(t a5 to)cj S(E ):c (E)

l

tERR = (1 —tO) - (t vto)

C

Call SECANT ITERATOR
o o ]
0, (t-tg)o. (-ty)os tpRRe

S antly e
A”mm’max

Resume

X 2 X s
X, min’ “max’

A9

Figure 3¢ KEPLER ROUTINE DETAILED FLOW DIAGRAM
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<
i

Yes
No
(t : to)é = (t =% tO)C
ST V
jo=q i
No Yes
[Call Extrapolated State Vector
pp T Voo x5, S(E),
Clay (e -1,
Resume
r(t), v(t)
X iw X
QUTPUT '

Figure 3d KEPLER ROUTINE DETAILED FLOW DIAGRAM
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5.2 Conic State Extrapolation As A Function of Transfer Angle

ENTER
SYSTEM REAL-TIME
“E Lo Yoo ©
<0
>0 l
%Y

o Fd- Lo =%/%
. Yol Vo
o 15 =L " 1,
= 1= |—1r0 12 lv0|
cot v, = coS 70/ sin g
o 2/
3 80 LTE
QN =2 - Cq
=2
pN = C:3 sin 'yo

Yes
el
*No
6 =0 - sign (6) 360°
ni=n-=+tl
v

v

Figure 4a THETA ROUTINE DETAILED FLOW DIAGRAM
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Call Marscher Equation Inversion

9; cot "/O: rO: QN; PN

Resume

X, 8, ¢, Cy

;

Call Universal Kepler Equation

“‘EJ EJ X_, Cl: Czl rO

Resume

(t - ;). S(£), C(&)

l

Call Extrapolated State Vector

x, £, 5(£),C(E)

IuEJ EOJ _V_OJ

Resume

r(t), v(t)

27
Oy 1”0)3/2 5

(t -to)c= (t—tO)c+nP

Figure 4b THETA ROUTINE DETAILED FLOW DIAGRAM



<0

8 !

= v(t)= - v(t)

et vt it v

EHITPUT -

r(t), vit), (t -ty

Figure 4¢ THETA ROUTINE DETAILED FLOW DIAGRAM
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5.3 Subroutines Used By The Transfer Time or Transfer Angle

Conic Extrapolation Routines

St Universal Kepler Equation

SYSTEM REAL-TIME

Cy» Cos %8, 1,

=

2

T e
2 5l Tl
2
EE) S EL e
2 41 6!

b = [01 x® C (&) +x(cy x? S(g)+r0)]/ Ve

QUTPUT

(t - t5),, S(E), CE)

Figure 5 UNIVERSAL KEPLER EQUATION DETAILED FLOW DIAGRAM



6.3 2 Extrapolated State Vector

SYSTEM REAL TIME

VOJ X, E, S(E)J C(E): (t _to)

Hg Ine X e

Y
x x° ))
r{th= Ll o= @)y S ((t=t) - B(E)) Y
—_ I‘O =0 e \P‘E 0
Hp 2
v(t) = ———x(& S(E)—l)_ljoﬂl————C(E))gO
= T r(t) r(t)

OUTPUT | |

r(t), v(t), (¢t -t,),

Figure 6 EXTRAPOLATED STATE VECTOR EQUATION
DETAILED FLOW DIAGRAM
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5e a3 Secant Iterator

min max

S, (t _to)cs (t —to)(':.l tERR; AX; X, X .. &K

t b4 ot SR
% - ERR Ax Ax = sign (tERR) Boilim Ll
4

(b e gl

s=20

Figure 7 SECANT ITERATOR DETAILED FLOW DIAGRAM
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5.3.4 Marscher Equation Inversion

l 8, cot vy, Tys O Py

,

- 1(_85in 6 =
b e e
1

(No

Solutiaﬂ’

J///j!;\\\\
W1 <L
[7 A

e an T W 1/W1| =|sin 6/ Py (L+cos @ -sinfeoty,)

Vl:l

n=n+tl

Figure 8a MARSCHER EQUATION INVERSION DETAILED FLOW DIAGRAM
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Yw, = (| YW D/v,

R

B RO N
= {Tg *y

s
€1 = yToPN cot Yo

b
1

c —1~a/N

Y

sEob Cis Cg

Figure 8b MARSCHER EQUATION INVERSION DETAILED FLOW DIAGRAM



6. SUPPLEMENTARY INFORMATION

The analytic expressions for the Universal Kepler Equation
and the extrapolated position and velocity vectors are well known and
are given by Battin ( 1964 ), Battin also outlines a Newton iteration
technique for the solution of the Universal Kepler Equation; this tech-
nique converges somewhat faster than the secant technique but
requires the evaluation of the derivative. It may be shown that if the
derivative evaluation by itself takes more than 44% of the computa-
t{ion time used by the other calculations in one pass through the loop,

then it is more efficient timewise to use the secant method,

Marscher's universal equation for cot 6/2 was derived by
him in his report ( Marscher, 1965), and is the generalization of his
"Three-Cotangent' equation:

cot — = cot 0 + Dt

o
2 ypia 2

Marscher has also outlined in the report an iterative method of ex-
trapolating the state based on his universal equation, The inversion

of Marscher's universal equation was derived by Robertson (1367a),

Krause organized the details of the computation in both

routines.

A derivation of the coefficients in the inversion of the Uni-
versal Kepler Equation is given in Robertson (1967 b) and Newman
(1967).
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