SBAIYDIY AlISISAILN pue Suoia|o) [eRads ‘saueiqr AUSIBAUN a1elS BIYSIA

— | O -
l]:‘:,l,k: -"%Cﬁ’ t “‘/(> gm;ﬂ/(F){}k L’/ DL ’
Crror on ﬁ ’/},}r rf"._ﬁ’ >
]

e

80-/8 SN
i {

¢

LII-’;(

7OF xog

SjuaWNd0Q YSYN 0 Uoyaajjo) oxfewo) ‘3 sawep ‘i
{

9 44
¢

§

Space Shuttle
Model AP-101 C/M Principles of Operation

Prepared Under
P.O. M4J7XMA-483019

30 January 1979

IBM File No. 62461568

DATE: 12/15/74
P.O. NO.: M4J7XMA-483019
IBM NO.: 6246156

1]l

éFederal Systems Division, Owégu, New York 13827

{

/8 SlIN

|

80

|

A

el

—&% xo0g

€

SjUaWNo0Q YSYN JO LoRos|jon) oxAewo| 3 sawer -qg

T - CHANGE HISTORY SHEET 7
Sﬂﬁ’;‘ég SYM REVISION AP"F;?(VED DATE
Class II B -Nom chg -
Class II B New page
Class II B New page
Class 1I B Nom chg
Class II B Nom chg
Class II B Nom chg
Class II B Nom chg
EDCP
79-001 B Add "'double words', nom chg
Class 11 B Nom chg
Class II B Nom chg
EDCP
58-1
59-8,
59-15 Add notes
EDCP
58-1,
59-8,
59-15 Add note on BSR, DSR
EDCP
58-1 Nom chg, added info on storage protect|
EDCP '
58-1 Add note on PSW
Class II Nom chg
EDCP
79-001 Add notes on PSW, nom chg
EDCP
79-001 Add notes on interrupts
EDCP
79-001 Add notes on interrupts
EDCP
79-001 B Add notes on interrupts 2
Class1I | B 23 | Nom chg s
EDCP 25/| Add notes on system reset, IPL, m
79-001 B 26 gro“rth .
Class II B 3-1 Nom chg
Class II B 3-2 Nom chg
Class II B 4-1 Nom chg
Class II B 4-2 Nom chg
Class II B 4-3 Nom chg
Class II B 4-4 Nom chg PAGE.
Class II B 4-5 Nom chg
Class I B 4-6 Nom chg :

=

(

ot 44

SBAILDLY ANSIBAIUN pUB SUOND3||07) [e1ads ‘sauelqr) ANSIaaiun a]elS BILYDIA

iii

SaAlyoly AYsIsnun pue suoias|jo) [enads ‘seuelq] Alsisaun 9)BIS BHYIIM

SJUBWND0Q YSYN 10 UoNDa|j00) oyAewo] 3 sswep Qg

80-48 SIN

9 34

</ ©F xog

]

CHANGE HISTORY SHEET

U)"
<
=

ﬁ’a‘a’g‘ég ' | PAGE| REVISION _"‘*F'P'ZOY‘('ED DATE
‘Class 11 B | 4-7 | Nom chg
Class II B 4-8 Nom chg
Class II B 4-9 Nom chg
Class II B 4-10 | Nom chg
Class II B 4-14 '| Nom chg
Class II B 4-15 | Nom chg
Class II B 4-17 | Nom chg
Class 11 B 4-18 | Nom chg
Class II B 4-19 | Nom chg
Class II B 4-20 | Nom chg
'Class II B 4-21 | Nom chg
Class II B 4-25 | Nom chg
Class II B 4-36 | Nom chg
Class II B | 4-27/
’ 28 | Nom chg
Class II B 5-1 Nom chg
EDCP ‘ ‘ '
‘79-001 B 5-2 Chg description of BIX
| ‘Class 11 B 5-3 '| Nom chg
Class II B 5-8 Nom chg
Class II B 5-9 |- Nem 'chg
Class II B 5-10 | Nom chg
Class II B 6-1 Nom chg
EDCP ’
79-001 B 6-2 | Nom chg, add programming note
Class II B 6-8 Nom chg - :
Class II - B 6-4 Nom chg
" Class II B 6-5 | Nom chg
 Class II B 6-6 Nom chg
Class II B | 6-7 | Nom chg
Class II B 6-8 Nom chg
Class II B 7-3 Nom chg z
Class II "B -7 Nom chg %
Class II B | 7-11 | Nom chg =
EDCP o
58-1,
59-12 B 7-12 | Add programming note
Class 1I B 7-13 | Nom chg’
Class II B 7-14 | Nom chg
Class II B 7-15 | Nom chg .
Class I B 7-16 | Nom chg PAGE
Class II B 7-17 | Nom chg

iv

Lo

SOAIYDLY ANSIBAIUN pUB SUOND3||07)) [e1ads ‘sauelqr] AISISAIUN 9)e1S BUUDIM

{

80-/8 SIN

b

|

l»_@F xog
I .

{

SJUBWN20(VSN JO UOKDD|00) oxAeWwo] g sawep “Iq
)

l

9¢ 34

L

I
; IEF CHANGE HISTORY SHEET .
NOONGE | svm | page REVISION APPROVED | pare
EDCP
79-001 B 8-1 Define normalized number
} Class I B 8-2 Nom chg
j Class II B 8-3 Nom chg
] - Class I B | 8-4 | Nom chg
‘ n Z Class 1I B 8-5 Nom chg
Class II B 8-6 Clarify floating point condition code
Class II B 8-T7 |- Nom chg
Class II B 8-8 Nom chg
Class II B 8-9 Nom chg
Class IT B 8-10 | Nom chg
EDCP ;
059-1 B 8-11 | Delete compare (Long Operands)
EDCP _
059-1 B 8-12 | Delete compare (Long Operands)
EDCP '
58-1, Add programming and condition code
| 59-13 B 8-12 | note
| EDCP
. 58-1,
59-10 B 8-13 | Add programming note
Class II B 8-14 | Nom chg ‘
EDCP .
‘ 059-2 B | 8-16 | Chg description of DIVIDE
EDCP '
\ ' ©| 59-5, .
59-16 B 8-17 | Modify description of DIVIDE (SHORT)
Class IT B 8-19 | Nom chg '
Class I1 B 8-20 | Nom chg
EDCP
58-1, ‘
59-11 B 8-21 | Add programming note =
EDCP §
59-4 B 8-22 | Add programming note 1y
EDCP
59-4 B 8-23 | Chg description of Mid Value Select
EDCP ;
59-4 B 8-24 | Chg description of Mid Value Select
| Class II B 8-25 | Nom chg ']
! Class II B 8-26 | Nom chg
: EDCP PAGE
j 58-1,
I ___59-14 B 8-28 | Add programming note
L

SaIYOIY AUSIBAIUN pue SUORIS|I0)) [eads ‘seueigr) AYsIsAlUN B)elS BIYOIA

SjuaWN20(Q YSVN J0 Uoo9joy oyfewo) 3 sawep ‘i

80-/8 SIN

9F 41

& A ©F xog

1y e

CHANGE HISTORY SHEET
SHONGE | ‘svm | page REVISION FRONED ~ i
- EDCP o
58-1 B 8-30 | Add programmirg note
Class II B 8-31/
: 8-32 | Nom chg
EDCP 58 B 9-0 Add description of DETECT
Class II B 9-1 Nom chg
EDCP ' '
58-1,
59-9 B 9-3 Add programming notes
EDCP
28-1, :
' 59-9 B 9-4 Chg description of MVH
Class IT B 9-5 Add programming notes
EDCP :
79-001 B 9-6
Class II B 9-7
Class I B 9-8
EDCP }
79-001 B 9-9 | Add note on hardware anomaly
EDCP .
79-001 B 9-10 | Add note on hardware atiomaly -
EDCP i
58-1 B 9-11 | Add programming note
EDCP 58| B 10-1 | Chg description of 1/0 Channel Reset
EDCP :
58-1, ! .
59-3, Chg description and programming
59-7 B 10-2 | note
Class II B 11-V] -
2 | Nom chg
Class II B 12-1 | Nom chg
Class II B 12-3/ 2
4 | Nom chg =
Class II B 13-1 | Nom chg o
Class I1 B 13-2 | Nom chg
Class II B 14-1/ ‘ '
' 2| Nom chg
PAGE

vi

s

ymar

[

SONILDIY ASIBAILN pUE SUONDD|I0D) [e1adS 'SBLBIGI AUSISAILN S1EIS ENUYIIAM

sjuaWNo0g YSYN J0 UoioajjoD oyAewWwo| -3 sawep iq

1 l

80-28 SIN

® A ,,,@.;{ xog
|

1

]

94 34
(

t

TABLE OF CONTENTS

Section
1 INTRODUCTION 58 B . . Y T
2 AP-101 C/M STRUCTURE e B "
MAIN STORAGE, B o 5 2 ¢
INFORMATION FORMATS
ADDRESSING e S i ¥ 4 5% 3 58 8 9 S e
INFORMATION POSITIONING -y oy
CENTRAL PROCESSING UNIT v ..
PROGRAM ADDRESSABLE REGISTERS.
FIXED-POINT DATA REPRESENTATION it
INSTRUCTION FORMATSu'uuinnnn.. ..
RR FORMAT INSTRUCTIONS
SRS FORMAT INSTRUCTIONS "
SIINSTRUCTIONS.............. “Lan
RI INSTRUCTIONS
RS FORMAT INSTRUCTIONS . T T T TRER Sy
EXPANDED ADDRESSING ; .
PROGRAM EXECUTION R e ; & s
STORAGE PROTECTION FEATURES L
INSTRUCTION MONITOR FEATURE ;e
MACHINE STATUS oo .. . e e aen s
PROGRAM STATUS WORD g 2 3 i 5 5 R .3
INTERRUPTSo, o'l % 5 § & s ¥ 5
GENERAL SYSTEM OPERATION 5wt .
3 EPU IO 5% 5 5 51 5 tvrm na o e 3 it 3 e .. i

DIRECT MEMORY ACCESS OPERATION PP
PROGRAM-CONTROLLED INPUT /QOUTPUT OPERATION ‘e

PROGRAM-CONTROLLED 1/0 INSTRUCTION

vii

11
& o

IR R A T (R o
11
D

NIIQN
© 0w w D

3]
1

=

o

2-16

2-16

2-17

SBAILDLY AlIsIanlun pue suoloaj|on) eads ‘sauelqi] AUSISAILN S)Bl1S BUUIIAA

SJUBWIND0Q YSYN JO U0N09||00) oyABWO] T sawep 'Q

62461568

| G

I Table of Contents (cont)

| :

| Section ' ’ Page

4 FIXED-POINT ARITHMETIC,

(n
o

Ay s 4 A & s b 23 PR S
ADD HALFWORD 5
ADDHALFWORDIMMEDIATE.
ADD TO STORAGE .
rz S COMPARE.............
= COMPARE BETWEEN LIMITS
: COMPAREHALFWORD
P COMPARE HALFWORD IMMEDIATEvnuvein...
COMPARE IMMEDIATE WITH STORAGE L i..% Shivs
BIVIDE " T sl s T e B
EXCHANGE UPPER AND LOWER HALFWORDS Srv s 2%
INSERTADDRESSLOW..........................
INSERT HALFWORD LOW
. LORE AR TRt iy, S ‘
| LOADADDRESS...............................
LOAD ARITHMETIC COMPLLMENT wiy
LOAD FIXED IMMEDIATE ...,
! - LOADHALFWORD.........'.......
i LOAD MUTTIDLE o0, oh L il s,
j MODIFY STORAGE HALFWORD
. MULTIPLY ;
[MUETIRLY HALEWORD. . .) Ll vy .
MULTIPLY HALFWORD IMMEDIATE
MULTIPILYINTEGERHALFWORD
el hogtaiEe B SR e D
STORE HALFWORD . ST T % G e e e ahe . B
STOREMULTIPLE R P R .
SUBTRACT ;
SUBTRACT FROM STORAGE Ty
SUBTRACTHALFWORD..........................‘ 4-26
} BT DOWE v s ity w iy A T

iy at e
g¥aig . "
s 2 s
o . 283
vt ¢ i 3
- - - " s o=
B : 5
-9
T Wb B i B R B b B e
L= SO P Tl R i ChNly Wt LN B |
S=lie I B e U) B N S L T N I Y

L T TR S N S

m-n-hpf-,-h
1
o e
WewMHo

I
=
1=

(=2]

-
5
.

.
.hu:xul:-.:-x
o

w

.
n
5 e
il
A
5
= =
d g
R
Fabe
. .
o T
.o i
[SN
T i
=
© w m -a

80-/8 SIN

1 5 BRARGHING 8000y Sh 0 il 208 DA g

BRANCH AND LINK 5-1
BRANCH ANDINDEX .. . voenann . : 5-2
BRANCH ON CONDITION e, il o 1 S e 8 s B 5-3
BRANCH ON CONDITION BACKWARD. ;54
5-5
5-6
5-7

¢4 OF xog

BRANCH ON CONDITION (EXTENDED) s et
BRANCH ON CONDITION FORWARD.,......
' BRANCH ON COUNT'........ SRR 5% Tei 4 Sl R iite § g

9f 44

viii

1 U e A 2o e L Aot b N b R T et i Y

=)

=’

SaAIYaly AUSIBAIUN PUB SUOIDS||0Y [e10adg ‘saueiqr] AISISnun S1BIS BIYIIAA

[

i

4

i {

80-/8 SIN

{

©/7 @F xog
i

SjuaWN20(g YSYN JO UoRD9||0D) OxABLIO]| T sewer *I]

o %

Section

6

Table of Contents (cont)

BRANCH ON COUNT BACKWARD

BRANCH ON OVERFLOW AND CARRY
BRANCH ON OVERFLOW AND CARRY FORWARD:

SHIFT OPERATIONS. ,......... .

NORMALIZE AND COUNT

SHIFT LEFT LOGICAL
SHIFT LEFT DOUBLE LOGICAL

SHIFT RIGHT ARITHMETIC

LI

LR

)

..

SHIFT RIGHT DOUBLE ARITHMETIC . . .

SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT LOGICAL
SHIFT RIGHT AND ROTATE ...

SHIFT RIGHT DOUBLE AND ROTATE. ...

LOGICAL OPERATIONS,,....

AND' oo e v u e g
AND HALFWORD IMMEDIATE .

CRC T

LI

AND IMMEDIATE WITH STORAGE

AND TO STORAGE L RN
EXCLUSIVEOR,.....

C

L

. L]
LR . . e
DY o« s .
LI

..... v a4 s

e o0 . e

s e L I
. s e e .
T Y o e

EXCLUSIVE OR HALFWORD IMMEDIATE
EXCLUSIVE OR IMMEDIATE WITH STORAGE

EXCLUSIVE OR TO STORAGE . .
ORF i wa w8 v & s sa

OR HALFWORD IMMEDIATE ., ,

ORTOSTORAGE.
SEARCH UNDER MASK

SETBITS
SETHALFWORD

TESTBITS Ul & ¥ 5 ‘
TEST REGISTER BITS,
TEST HALFWORD
ZEROBITS
ZERO REGISTER BITS

ZERO HALFWORD.,......

FLOATING-POINT OPERATIONS .,

DATA FORMAT
NUMBER REPRESENTATION .

ix

LRI

.....

.....

L

.. ..
. LRI
T LI

.....

| | R T |
@r U1 o O Lo

DDA DD0D DD
1 1
b S 2

-3
I]
—_

RO
A =

=1 =1 -3 =]
I I 11 33 3 -3-3-31-a -
|t NN Y TR Y WY |
WO Wwom-a-3omau

1
[

~1 -1
oo
[T
[IYSNEVEN

-3
1
ot
(=3}

7-17
7-17

62461568

SaAIYDLY AlISIanuN pue suonoe||0) [e10ads ‘sauelqr] ANSIBAUN S1E1S BILDIAN

SJUBWND0Q VSN 10 UoIDa(j00) o¥ABWO] " sawep “i(]

80-/8 SW

=h OF xog

9f 44

621;3 156B

Y] AR

- Section

9

10

‘Table of Contents (cont)

NORMALIZATION.............. sae v s e sle

FLOATING-POINT SECOND OPERANDS0vvun. .. .
FLOATING-POINT REGISTERS A LS A

FLOATING-POINT INSTRUCTIONS ;

CONDITION CODE o Wt § R g 6 0% Ao 8%
INDIGATORE. 5 wos i wli s viini U3 et L s ok ey e -
FLOATING-POINT ARITHMETIC EXCEPTION S pelind St 0 ¥ e
ADD (LONG OPERANDS) § IR AN i
ADD (SHORT OPERANDS) Gitag Bl i b e
COMPARE BHORT OPERANDS). o v vs v 3'a b u'i i s s ines B

CONVERT TO FIXED-POINT . v v v v ev v vy o v a s s

CONVERT TO FLOATING-POINT v i v Vi i s av o oin s 5000 s 4 s
DIVIDE (EXTENDED OPERANDS). ..\ vvivnnnn. ... T
DIVIDE (SHORT OPERANDS) & & v %% s v s s v v s ovss e

LOAD (LONG OPERANDS) . 0% s 4 vt o v s 4 o ss s om
LOAD(SHORTOPERANDS)....-.=...._..........
LOAD COMPLEMENT (SHORT OPERANDS)
LOAD FIXED REGISTER

MID VALUE SELECT (SHORT OPERANDS)

MULTIPLY (EXTENDED OPERANDS) « + o4 v vaenenn...

MULTIPLY (SHORTOPERANDS) & s % i e toce + 40 'sn s s

SUBTRACT (LONG OPERANDS) & v v v e s a’e s n e e v s v

SUBTRACT (SHORT OPERANDS) R

STORE (LONG OPERANDS) . T
STORE (SHORT OPERANDS)u.... e se e

SPECHIL ORPORRAIENG ool sy vl G i

BETECT ..o iotie o stafoatabaiince s e w00 it s i 5oe'n
- INSERT STORAGE PROTECT BITS v oo v v v v v ve...
LOAD PROGRAM STATUS o T e
MOVE HALFWORD OPERANDS A e D .
SET PROGRAM MASK s ad a Fou e 8 5
SET SYSTEM MASK . .. v v vs v n. . U R N ol
STACK CATL v v vvs b et i R
STACK RETURN e Mt b Py
SUPERVISOR CALL L o e .
TEST ANDSBET 5 v s v sve'v s wsaed BTy e B e
TEST AND'SETIBETS o0 0 b vv oo 8w vle vou v win s ooys o
INTERNAL CONTROL OPERATIONS P A
INTERNAL CONTROL RS R R o
X

LOAD FLOATING IMMEDIATE & .t v vt eeesonsn s,
LOAD. FLOATING REGISTER .4 4 5 s i s ot we o o v s s

@ ® w w
[

d
)
wQ
o

0o 0o
I I

1 o0 o0 oo 00 @ oo o
[T T T I)
MO U ww w

® ® ® @

1

o e
> Lo N

=3

1
[
w

(R R
B DO
[o T - B SR U o R S I

1
W W N RNNDNNNN

©

mmoomcinmoommoo

w
I
i

7Y
[l

i 7
o D =3) D e o

Do =

] I 1

D W Wwew W ww
I

[}
=
(o]

10-1

s

{

i

80-/8 SI

]

©/ @F xog

SIUAWN0(WYSYN JO Uonoajj0D) oxABWwo | '3 sewer "I
1

i

9 1

i

SaAIUaLY AJISIaAIUN pue suonos||o) [eads ‘sapeiq] ANSIaAILN S181S BIYDIA

62461568

Table of Contents (cont)

Section ‘ Page

11 EFFECTIVE ADDRESS GENERATION SUMMARY CHART. 11-1

12 AP-101 C/M INSTRUCTION REPERTOIRE wwwaw D8R

13 AP-101 C/M OP CODE ASSIGNMENTS AP A S 18E

14 'AUTOMATIC INDEX ALIGNMENT DESCRIPTION S 1441
xi

| ez;-j.e 1568

80-/8 SIN

SBAIOIY AYSISAIUN puE SUORDS|I0D [e1adS ‘seueign ASISAIUN B)BIS ENUDIM

SjusawNooQ YSYN JO UoRoajj0) OyAeWwo] " ssuwrep ‘g

¢ ©F xog

9¢ 34

v
| -
|
|
s s |

| | 4 _ ' LIST OF ILLUSTRATIONS
B |
‘_ : Figure Page
2-1 Instruction and Operand Bit NUMBETINE: v aiin & S5 v o 50 i s 2-2
| 2-2 General Register Addresses RN TS S R Sue v o a s 2-3
\ 2-3 Fixed-Point Operand Formats, . , 4. .- . Chov et e i e a el 2-4
‘ 2-4 Basic Instruction Formats. B S TR s el v 3 e e : 2-5
| 2-5 TheRRInstructionFormats........................... 2-6
2-6 SRS Instruction Format .,..... Ceenias 2-6
2-7 SRS Halfword Addréssing ..,....... 1 2-7
2-8 SRS Fullword Addressing0'ivvivnnnnnnnnnnn, 2-7
, 2-9 STINBHIMOEIONE « 4 ¢ 8 vt b s we v hvd b v e e e e s i e s s 2-8
- 2-10 RI Instructions 2-8
2-11 | RSInstructlonFormats............ 2-9
2-12 Displacement Alignment for Extended Addressing 2-9
2-13 Automatic Index Alignment 2-11
1 2-14 Displacement Alignment for Indexed Addressmg H- AT I S T2-12
2-15 The Contents of Indirect Address Storage Modlf:catlon Word...... ~2-13
. 2-16 The Contents of Index Register X . & Noase, weran @ b e aeie B 8 o8 2wl
2-17 Fullword Indirect Address Pointer ..., et 5 R R e e 2-14
2-18 ExpandedAddressing................................ 2-15
! s R o R Y L e IR SR oi 218
d 2-20 Interrupt Codes............. ¢ pware AW A . awidliinis oy & ek us S0
[2-21 Preferred Storage Area Assignments PR S 2-24
3 2-22 CPU Mode Switching EVTah) 5 B W S 5 "y 2-24
6-1 BEFEICOUE 4 o 5 son o bt hes o 85 6-1
6-2 Normalize and Count Execution S g e 6-2
8-1 Floating-Point Second Operand in Main Storage P
8-2 Floating-Point Operands in Registers , .., . . G R P 8-4
8-3 Combinations of Fractional Precision for Floating-Point
. Operands 8-4
! 8-4 Condition Code Setting for Floating-Point Arithmetic - « -« « « 8-6
| .
. 9-1 Move Halfword Execution PR SR TR R Yo 9-5
[9-2 Current STACK Status — Prior to SCAL « & o A R Lo S 9-7
: -~ 9-3 STACK Status — Upon Completion of SCAL e § S 9-8
|)
} xii
|
-

SONILDIY ASIBAIUN puUB SUoND3)09) [e1oadg 'sauriqr] AUSISAILN S181S BULDIAN

9=

s O

3

% oo

m ~J.
[}

3O

300,3

[+

=

o -

o

=}

e W

5 O

:xu

2 W

< O

2 ¢

o

g)

(9]

=

3

g

a.*_n“
g
(N

62461568

Section 1

INTRODUCTION

The AP-101 C,-"M'(description is for AP-101C and AP-101, monolithic version) is
a high-speed general-purpose computer intended primarily for real-time applications
such as guidance, navigation, control, and data processing. The AP-101 C/M is a
member of the advanced System/4 Pi family of digital computers. This family shares’

and is unified by extensive design experience, proven technology base, and common
manufacturing processes,

This Principles of Operation manual provides a direct comprehensive description
of the system structure; the arithmetic, logical, branching, and status switching; and
the interruption system. This publication defines and describes features common to
all AP-101 C/M computers. These features are the basis for IBM-developed support
software and are compatible with compiler development efforts now in process.

Execution times and nonstandard features and functions are described in separate
documents. This is because aerospace computers characteristically include user de-
fined features such asg unique input/output channels, and special discretes. These will
be incorporated into the AP-101 C/M as pluggable options. Furthermore, the AP-101
C/M is microprogrammed and is designed to permit incorporation of additional instruec-

tions and operations without redesign and requalification. Such extensions are also
described separately.

1-1/1-2

SaAIyOLY ANISIBAIUN puB SUOND3|0)) [eipads ‘saueiqr) AUSIaniun 81elS BHYDIA

SjuBWINOOQ VSN JO UoRd3||00) oxABWo] g sawep “Jg

<17 OF xog

9f 44

1 80-/8 SI.

[

i

l

[

62461568

Section 2

AP-101 C/M STRUCTURE

The AP-101 C/M system structure encompasses the. functional operation of main
storage, the central processing unit (CPU), and program-controlled I/0 facilities, The
overall definition is open ended and includes all the basic facilities necessary to accom-~
modate additional specialized and/or application-dependent 1/0 channels and features.

The modular AP-101 C/M system structure can support configuration alternatives

ranging from a self-contained single processor to a full symmetrical shared-storage
multiprocessing system.

MAIN STORAGE

The functional operation of main storage is unrelated to the physical width of the
information paths or cycle time. '

INFORMATION FORMATS

The system transmits information between main storage and the CPU in units of
16 bits, or in integer multiple of 16 bits. Each 16-bit unit of information is called a
halfword. A parity bit and a storage protection bit are also associated with each half-
word, but later references in this manual to the size of data fields exclude these bits,

Halfwords may be handled separately or in pairs. A fullword is a group of two

.consecutive halfwords. Both halfword and fullword instructions and operands are used.

Their location is always specified by the address of the leftmost halfword. The instruc-
tion length is designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are consecu-
tively numbered from left to right, starting with the number 0, as shown in Figure 2-1.

ADDRESSING

Halfword loeations in storage are consecutively numbered starting with 0, Each
number is considered.the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to accommodate a maximum of 219 halfword
addresses. This set of main storage addresses includes some locations reserved for
special purposes, such as program status words; consequently, these special locations
should not be used for any purpose not implicitly defined.

SBAIYDLY AHSIBAIUN PUB SUOND3JI0Y) [e10adg 'saLelqi] ANSISAIUN S1BIS BHUDIAN

SjuBWINIOQ VSN JO UOR29|j0D) oyAeWo | "J sawep ‘ig

6246 156B

| IHaIfword
| b 2 e de e
i 0 18
Fullword
R P OB s () o) Co T ik R SR I I O e e S N i P e e |
0 15 16 a1

Figure 2-1. ‘Instruction and Operand Bit Numbering

INFORMATION POSITIONING
must always be zero. Fullword instructions may begin at any address.

CENTRAL PROCESSING UNIT

- Fullword operands must be lomted in main storage on even halfword boundaries.
That is, the least significant bit of the operand address, when expressed in bl.nary,

80-/8 SW

The central processing unit (CPU) contams facxlmes for addressing main storage,

e

/’-

for fetching or'storing :nformation, for arithmetic and logical processing of data, for
sequencing instructions in the desired order, and for initiating the communication be-

\ t,tween storage and external devices.

The control section g‘u1des the' CPU through the functions necessary to execute the

program § 5

o

PROGRAM ADDRE SSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eight floating-point
The contents of one or more of these

registers are under explicit program control.
| . registers (32 bltS) partlcipate in most CPU operations.

¢h €F xog

9tz 44

Conceptually, an additional doubleword status register, called the program status

!

word (PSW), is the focal point for machine status. The contents of the PSW are updated

during each instruction.
lowing every instruction.

Consequently, the PSW reflects current ' machine statiis fol-
The PSW participates 1mphc1t1y in status smtchmg, bra.nchmg

operatmns and address calculations.

80-/8 SIN

=4 @F xog
{

SIUBWN20(YSYN JO Uonda|jos) oyAewo] g sawep Ig
{

{

9¢z 4

t

SaMUolY Apsisniun pue suonas|jo)) |ewads ‘saueigr AISIAIUN S)B)S BIYDIAA

6246156B

In addition to the PSW and the general and floating-point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and operand storage. These registers are of no direct concern to
the programmer and are not described herein. K

The contents of the PSW specify which of the two sets of general registers is in
current use, Only the contents of the selected general register set can participate in
arithmetic operations and the contents of unselected sets of general registers can not
be altered by a program. An alternate set of general registers can be selected hy
changing the PSW. Only one set of the fixed-point, general-purpose registers and the
floating-point registers are available to the program at any one time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative addressing.
Each set of general registers is numbered from 0 through 7 and is addressed as shown
in Figure 2-2, B :

General —_— . Register Function

Register

Number Operand ~ Base Index
0 000 00 None
1 001 01 001
2 010 10 010
3 011 11 or None 011
4 100 100
5 101 101

i 6 110 110

7 111 111

Figure 2-2. General Register Addresses

NQte that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

For some operations, an even/odd pair of general registers are linked to form a
64-bit doubleword register. The most significant half of a doubleword operand is
contained in the even-numbered register; the least significant half of the doubleword in
the next higher odd-numbered register. Doubleword operands are addressed by speci-
fying the even numbered address of the register containing the most significant portion
of the operand.

80-/8 SIN

Uh eF xog

e

6246156B

; FIXED-POINT DATA REPRESENTATION

Data representation is fractional, with negative numbérs represented -in two's
complement form. A halfword operand is 15 bits‘plus sign; a fullword operand is 31
bits plus sign, as shown in Figure 2-3.

)= In fractional data representafion, the binary -point is immediately to the right of
the sign. ' g : I

Fixed-Point Halfword Operand

S Fraction -

0 R T 00 O (OO L s i s O
01 . 15

'Fixed-Point Fullword Operand -

S Fraction

I N 4 O 0) 55 0 10 N0 o ol O O S e 50 A K O A O

Figure 2-3. Fixed-Point Operand Formats

INSTRUCTION FORMATS

The length of an instruction format can be either one or two halfwords. Long
format instructions provide maximum range and extended flexibility for addressing
, storage operands. Short instructions are used to (1) specify régister—to-reg‘ister
‘ operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

| Instruction formats overlap. Programs are written so that in many instances any
i given operation can be coded using either a halfword or a fullword instruction. In such
cases, maximum use of halfword instructions results in increased storage efficiency
and performance. A ;

The three basic instruction formats are as shown in Figure 2-4, Halfword instruc-
tions are automatically selected by the assembler unless otherwise specified by the pro- .

SBAIaIY AlISIBAIUN PUB SUORDa|0Y) [BadS 'saueiqi AYsIanlun] 81.lS BIUDIAN

SjUaWN20(Q YSYN Jo uonos|jon oyfewo] "3 sawep “iqg

2fy 44

grammer.

2-4

Donald Schmidt

saAloly AISIaaun pue suonaajog |eads ‘ssueiq AlSISAILN S1elS BRUDIA

sjusWNaoQ YSYN 0 uoioa|jon oyhewo| ‘g sawer “1g

80-/8 SIN

Th e¥ xog

9f 34

I

4

1

i

{

i

RR Format <
0
Op p R2
o 1fife]olXf | |
0 4 5 7 8 111213 15
SRS Format
or Dl o *Displ h X [
isplac ts of the f 111XX t valid.
l l J I I I l I l I 15p ements o eform are not val
0 4 5 7 8 13 14 15
RS Format
' 0] A ; i 3
Op P vl B2 - Address Specification)
L] 1 ANRNERRER Ldabobd L4 -8 4 4 §.4. 05
0 4 5 7 8 1112 13 14 15 16 31
Figure 2-4. Basic Instruction Formats
The fields within the instruction formats usually are used as described below. The
exceptions are described in conjunction with the individual formats and instructions.

Op

R1

R2

B2

Disp

OPX
AM

Address
Specification

This 5-bit field defines an operation, or the class. of opera-
tion, to be performed by the CPU.

This 3-bit field designates the register containing the first
operand, Except for operations which alter main storage,
the result usually replaces the first operand.

This 3-bit field appears only in the RR format. It is used
to specify a general register containing either the second
operand or the address of the second operand.

This 2-bit field specifies the register containing the base
address.

In halfword SRS format instructions, this 6-hit field is
called the displacement. For the SRS format, the displace-
ment is added to the base address specified by the B field

to obtain a storage address. ‘

This bit is an extension of the OP field.

This field designétes one of two fullword format addressing
options.

The second halfword of a fullword instruction is specified
as either extended or indexed addressing,

62461568

S3AYDIY AisIaaun pue suonoaj|o) [ereds ‘saueiqr) AUSIBaun a1e1S BIYIIA

SJUSWIND0Q YSYN 10 UonoajjoD oyAewo) '3 sawep Ig

80-/8 SIN

t4H €F xog

9 34

62401663
‘ i
|

RR FORMAT INSTRUCTIONS I T -

. The RR format instructions (Figure 2-5) permit the specification of 6perations
that use two general registers. i) M

o]

P R2
{0 | N B L) 0 5 S S
0 4 5 7 8 17112 13 15

Figure 2-5. The RR Instruction Formats

The operation normally uses as operands the contents of two general registers,

' The R2 field specifies the second operand while the R1. field. specifies.the first operand.

The result of the operation usually replaces the first operand.

‘SRS FORMAT INSTRUCTIONS

The SRS instruction format (Figure 2-6) is a combression, of the RS format. It

provides base plus displacement storage addressing.

* Displacements of the form

Op Rl Disp* B2 11X : id.
1] g | . | ll L] 1 1 XXa(enotval
0 4 5 7 8 13 14 15
82 Register Containing Base
00 General Register O
01 General Register 1
10 General Register 2

1

General Regifster 3

Figure 2-6. SRS Instruction Fbrmgt

The R1 field specifies the first operand register address. The 19-bit effective
address (EA) of the second operand is developed as follows:

Step 1

First the positive integer contained in the displacement field is
added to the contents of the base contained in the general register
specified by B2. :gﬁj’

When addressing halfword opér_ahds', the least significa.nt bit
of the displacement field (instruction bit 13) is aligned with
base register bit 15, The 16-bit result is the sum of the
base and the displacement, aligned as shown in Figure 2-7,

When addressing fullwords operands using the SRS format,
the least significant bit of the displacement field is aligned
with base register bit 14 as shown in Figure 2-8.

2-6

o il

Sanlyly Aisisniun pue suonda||o) [eads ‘sauelq AISIaaun S)B1S BIUDIA

e
-y
=
s O
3
% oo
m ~J
- &5
o
S ®
[}
~
-
o -
(@]
o
e W
2 O
S X
2 e -
)
>
L
“"-.
S r
O
=
3
(0] .
e |
g
B
On=

62461568

A mmim
Base N \\\\:\\%‘\\\\\\\\\\\\%Q%\\%\: Base (B2)
O T R0 D A AT AR R A Y
0 7 15 16 31
Disp Halfword Displacemen;
ojojojojojojojojojol | | | | |
0 y 9 10 15
Base + Disp. 16-Bit Effective Address
Ll
0 15
] The low-order half of the general register containing
\ the base does not participate in SRS addressing,
Figure 2-7. SRS Halfword Addressing
\\\\\\\\\ \\\\‘i‘ ‘\\\\ \ Base (82)
Base N o R N ase
ISR NN DRI RN
0 ’ 1516 31
. Disp 0 Fullword Displacement
0jojojojojojojojol | | | | |
0 8 9 14 15
Base + Disp 16-Bit Effective Address
L1l L1l
4] 15

The low order half of the general register containing
the base does not participate in SRS addressing.

Figure 2-3, SRS Fullword Addressing

sanyouy Aisianun pue suonoajjo) |eiads ‘salieiqr) AusIsaiun S1EIS BIYIIM

sjuawnoog YSYN JO uooajjon oxhewo] '3 sewer iq

_80/8 SN

© 1 @F xog

il

Even though the addition of a base and the fullword displacement e
in a halfword address,. bit 15 is ignored when addressing full-
word second operands. As a result, the same fullword address
5 obtained regardless of the contents of b'lse bit posxtmn 15.
Step 2 The 16 bit result of the addltmn of the base d.nd dlsplacement
is expanded (see Expanded Addressing) to a 19-bit effective
address (EA), andthis is the address of the second operand.

Except for store instructions, the result of gperation between the first operand
(the contents of general register R1) and the sécond operand (the contents of the EA)

replace the first operand for SRS format operations. The first operand replaces the

second operand for store instructions.
SI INSTRUCTIONS

Direct initialization; modification, and testing of main storage is possible through

the use of an immediate data halfword appended to an SRS instruction. See Figure 2-9.

Op " OPX Disp” B2 Immediate Data
I OV P AT VO L) e O) 0 S 700 O O AN (S A A (0 IO
O d 4 5 7 8 13 14 15 16 N
Dnsplacements of the form 111 XXX are not valid. i ‘

Figure 2-9. SI Instructions

« The address of the halfword second operand is developed in the normal manner for
SRS instructions using halfword addressing. Except for test instructions, the result
of the operation between the hglfword second operand and the immediate data replaces
the second operand. The second operand is not altered for test instructions. The first
operand 1s never altered for SI instructions. {

RI INSTRUCTIONS

Using an immediate data halfword appended to an RR instruction (Figure 2-10) per-
mits direct initialization, modification, and testing of the most significant 16 bits con-
tained in a general register.

6] :
Op 0oPX P R? ‘Immediate Data
I O 5 W Y T N 1 (0 (OO I I O O

0 4 5 78 111213 15:186:¢ : 2 31

Figure 2-10. RI Instructions

2-8

iud

s

£

[

80-/8 SIN

L

I

©F xog

)
/

L

3

o I |

{

SJUBWN20(] YSYN JO Uonoajjo) oxkewo] 3 sawer g

9 44

saAlyaly AsIaniun pue suoios||o) ernadg ‘saLeiq] AIsIaAlun S1BlS BIUDIA

6246156B

Except for test instructions, the result of the operation between the second operand
and the immediate data replaces the second operand. The second operand is not
altered for test instructions. The immediate data first operand is never altered
for RI instructions.

RS FORMAT INSTRUCTIONS
There are two major classes of RS instructions, extended and indexed addressing

modes, differing in the techniques used to specify the second operand. See Figure
2-11,

0
A
Op R1 ‘ ; M B2 Address Specification
E L | N RN AR | el 5 S 0 [508 O O W G el I
4] 4 5 78 11 1213 1415 18 . 31
Au
Extended : 0 Dis_placement
(P I IS] . 5 O 5 O N O
16 ‘ . 31
. | -
Indexed : 1 X ‘Al Displacement
' | L1111
16 1819 2021 31

Figure 2-11. RS Instruction Formats

Extended a:idressing is specified when RS format bit 13 (AM) equals 0. This addressing l
mode provides a full 16-bit halfword displacement. The base and displacement are
aligned as shown in Figure 2-12 when base addressing is performed s

Displacement

0 e 05 T . O 5 0 Y 8
16 ' k3l

Figure 2-12. Displacement Alignment for Extended Addressing

2-9

SaAYDY AlISISAIUN pue suoioa||o) [eRadg ‘seueiqr AUSIaAIUN S1EIS BUYDIA

SJUAWIND0Q YSYN 10 Uonoa|joD oyAewo] 3 sawer “iQ

©h eF xog 80-/8 S

¢ 34

6246156

Vi

Asgide from the size and alignment of the t}iﬁsplzicemeﬁt‘.‘ RS.extended addressing .
differs from SRS addressing in two othér respects: ; :

1) The aﬁgtlment of the displacement is the same whether addressing double word

2)

Indexed addressing is specified by RS form‘atl‘bit 13 (AM) equal to.1,

il

fullword or halfword operands.

When B2 equals 11, base addressing is not performed. In this case
the displacement is instead used directly as the address. Then the
resulting 16-bit EA is expanded (See Expanded Addressing) to a
19-bit EA. Bit 15 of the operand effective address is always
treated as zero when addressing fullword operands. ‘

mode contains three additional flelds. Normally, they contribute to the effective
address generation as follows:

X

This 3-bit field specifies one of seven general registers contain-
ing the index. Indexing is not performed when X is equal to 000,
An index is contained in the upper halfword of a general register.
The index is dutomatically aligned as illustrated in Figure 2-13,
For additional information on index alignment, see Section 14.
Consistent with the restrictions that apply to register usage and
indirect addressing, general register contents can be used inter-
changeably as either a base or an index or both, When indirect
addressing is specified, indexing follows indirect addressing.

This format bit, when a one, specifies indirect addressing. In-
direct addressing is not performed when this bit is zero.

THis format bit, in conjunction with X and IA, specifies various -
address modes which are explained below:.

The development of the EA for the indexed mode of ”o'peranc.l addressing is explained
in detail in the subsequent steps:

1)

[ndexed addressing is specified by RS format bit 13 (AM) equal to 1.
_Ti{is addressing mode provides an 11-hit disp.lnccmem."The base and
displacement are aligned as shown in TFigure 2-14 when indexed address-
ing is performed.

The displacement is aligned so that it 31 corresponds to base or index
bit 15 and displacement bit.21 corresponds tobaseor index bit 5. The
displacement is expanded to 16 bits by appending five leading 7eros.

- This addressing

s,

i

Sanyoly AIsIaaun pue suoiaaljo) etoadg ‘saueiqr) AUSISAILN S1E1S BIUDIA

80-/8 SIN

th ©F xog

sjuswnooQ YSWN JO Uoioa)jon ojhewo] ‘g sawep “Iq
i

9¢f 14

[

{

{

I

62461568

Halfword {Direct from Index Register
Bits 0—15)

EA

a. Halfword Index Alignment

PEA
PE LT 40 % 8.9
15
TN
.15:
PEA + Index
O i P A 1 I OO
15
PEA
e ool O O 6 N e AN OO R
15
00 8 S O 015) ' L B O)
1B
PEA + Index
LEL A)
15
PEA ‘
LIl
E 15
Index (Xy_q5)
I T O Y Y Y O I I)
13 14 15
PEA + Index
9 N I Y O O S
15

Fullword (Index Register Bits 0—15
Shifted Left 1)

EA

Double Word (Index.Register Bits 0—15
Shifted Left 2)

EA

¢. Double Word Index Alignment

Figure 2-13. Autbmatic Index Alignment

S8AIYDIY AlISIBAIUN pue suoia)jo) [eads ‘saueiqr) AISISAIUN S1BIS BIUIIA

SJUBIND0Q YSYN JO UOND3(|0D) oxyAewwo| " sawer "I

©h ©F xog

9tz 4

1 80-/8 SI

62461568

2)

3)

4) .

Dis'pl_acemem . pe S
sjepofenal b ol otilo o) g) -
16 2021 S P L R :

Base
1B 1 e o O O o N L I O
0 5 15

Figure 2-14. Displacement Alignment_ for Indexed Addressing

If B2 is not equal to 11, the 16-bit base, contained in the higher order

half of the specified register, is added to the aligned displacement. This
results in a preliminary effective address (PEA) whereby the PEA = (B) +
Displacement. it LR ; ‘ RS Pe

~ If B2 is equal to 11, the aligned displacement is added to zero. This result

is the preliminary effective address (PEA), whereby the PEA = Displacement.
If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a zero,

then the 16-bit result of Step 2 is added to the contents of the updated
instruction couhtef'r (IC) to form the 16-bit EA whereby EA = updated IC,

+ PEA*, (This EA is then expanded to a 19-bit EA, as explained in the
Expanded Addressing section, with the exception that the Branch Sector ™
Register (BSR) bits are used instead of the Data Sector Register (DSR)

bits.)

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a one, the
16-bit result of Step 2 is subtracted from the contents of the updated IC to
form the 16+bit EA whereby EA = (updated) IC - PEA*, (This EA is then
expanded to a 19-bit EA, as explained in the Expanded Addressing section
with the exception that the Branch Sector Register (BSR) bits are used
instead of the Data Sector Register (DSR) bits.)

If the X field is all zeros, LA (bit 19) is a one and I (bit 20) is a zero,
then Indirect Addressing is performed. The 16-bit result of Step 2

is expanded to a 19-bit address and is used as the address of a main-
storage halfword. This halfwrid is then fetehed and expanded to 19-bits
by using expanded addressing to form the EA. EA MS(PEA). Func-
tional equivalency to preindexing capability can be obtained through modi-
fication of the base. ;

*Usage of B2 equal to 11 (no base) is encouraged in the relative addressing
mode. Usage of B2 not equal to 11 may be changed in future computers.

2-12

o

SBAIUDIY ANISIBAILN pUE SUOIDS|I0) [e1ads ‘sauelq] AISISAILN S1BIS BHUIIAA

2 =
g N~
3

% co
m <
457
S ®

<

Q

5
=

e
g o
S X%
2 .~
=
=

w

2 <
=]

Q

c

5

1]

= |
R
M
ryne

6)

If the X field is all zeros, IA (bit 19) is a one and I (bit 20) is a one, -
Indirect Addressing is performed as described in Step 5 with a full word
main storage pointer. Then, storage modification is automatically per-
formed. The indirect address is contained in a full word and must have
an even address. A modifier is contained in bits 16 through 31. An
address is contained in bits 0 through 15. The modifier is added to the
address and the resulting modified address replaces bits 0 through 15
of the indirect address word. (See Figure 2-15.)

Address Madifier

lllllllill[lllII[IJlIIlIIIll

)

g)

15 16 31
Modified Address = MS (PEA) =— MS (PEA) + MS (PEA + 1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word

If the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a

zero, the most significant 16-bits of the general register specified

by the X field are aligned, and then added to the 16-bit result of Step 2 (PEA)
to form the 16-bit EA (see Figure 2-13). (This EA is then expanded to

a 19-bit EA, as explained in the Expanded Addressing section.)

If the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a one,
the most significant 16 bits of the general register specified by the X

field are aligned, and then added to the 16-hit result of Step 2 (PEA) to
form the 16-bit EA (see Figure 2-13), (This EA is then expanded to a
19-bit EA, as explained in the Expanded Addressing section.) (The
modifier is added to the address and the resulting modified address
replaces bits 0 through 15 of the index register after the EA is determined.)

Figure 2-16 illustrates the address and modifier format in the index
register,

Adgress Modifier

]IIIIIIIIIIII'illf[llll[lllll

9)

15 16

Modified Address = (X)O_'ls-’--—-—-(X)O_15 + 591 '

Figure 2-16. The Contents of Index Register X

If the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a zero,
Indirect Addressing (IA) with post-indexing is performed. The 16-bit

result of Step 2 is expanded to a 19-bit address and is used to fetch a
main-storage halfword. The index contained in the general register specified
by X is aligned and then added to the fetched halfword to form the 16-bit EA
(see Figure 2-13). This EA'is then expanded to .a 19-bit EA by using
expanded addressing. Functional equivalency to preindexing ‘capability

can be obtained through modification of the base.

2-13

62461568

SaAludly ANsIaniun pue suonas|jo) |eads ‘saueiqr] AusIaaiun s1els BIYIIAA

SjUaWIN20(] YSYN JO UoRoa||0) oxkewo] ‘3 sawer -Iq

80-/8 SIN

T/ @F xog

9¢ 44

62461568

10) If the X field is not all zeros, IA (bit 19) is a one and'T (bit 20) is'aone, a .
direct addressing mode ig defined using a 32-bit fullword mdlrect addresa
pointer. as follows: 3

a) First, the PEA from Si:ep‘ 2 must Iocate a fullvéord indirect address
pointer, with the format as illustrated in Figure 2-17.
e SRy : TXTOCleT
. Address ¢ Reserved | C B|D BSR " DSR
41 Eodea] e lolololol gl ok g bl dadss
1 715 16 1920 21 2223 24 27 28 31
Field Function £
XC .. . - Index Control
(8] Contro!
CB Control BSR Usage
CcD Control DSR Usage

b)

c)

d)

Figure 2-17. Fullword Indirect Address Pointer

I£ C (bit 21) equals 0, XC (bit 20) equals 1, and the instruction'is not

a branch type instruction, the 19-bit EA equals the 4-bit DSR with the
15-bit address field appended. When C (bit 21) equals 0, XC (bit 20)
equals 0, and the instruction is not a branch type instruction, ‘the 19-bit
EA equals the 15-bit address field added to the index value in 1ndexmg
register X with the result appended to the fullword indirect address
pointer's DSR. The current PSW's DSR is not changed.

If C (bit 21) equals 0 and the instruction is a branch type instruction, the
current PSW's BSR in conjunction with bits 0 through 15 of the fullword
indirect address pointer will be used to form the BA. : If XC = 0, post-
1nde:dng will occur. When C (bit 21) equals zero, CB and CD are re-

" gerved and should be set to zero.

If C (bit 21) equals 1 and the instruction is a branch type instruction and
the branch is taken, the BSR and DSR fields selectively replace the corre-
sponding fields in the current PSW based on the CB and CD bit values

as follows: L= . e e b
CB 'CD Result
0 "~ 0 Use current PSW'S BSR to form the BA. ;
0 1 Replace the current PSW's DSR with this DSR,

‘Form the BA normally.

g 0 Replace the current PSW's BSR with this BSR
before forming the BA. '

1 1 First, replace the current PSW's DSR with
' this DSR. Then, replace the current PSW's
BSR w1th this BSR before formmg the BA.

When C (bit 21) equals 1 and XC (blt 20) equa.ls 1, postindexing is not per-
formed. When C (bit 21) equals 1 and XC (bit 20) equals;0, the BA calcu-
lation 1nc1udes a final addition of the index value in index registers X.

If C (bit 21) equals 1, XC equals 1, and the instruction is not a branch,
the 19-bit EA equals the current PSW's DSR and the 15-bit field appended.
If XC = 0, postindexing will occur.

i

k!

80-/8 SIN

t

i

Lo .i')‘_r OF X0g
I

SjUBWNA0(YSYN JO UOKD9j00) oyAeWo| "J sawep “Ig

t

9 44

t

SaAlyaly AlISIBAIUN pUEB SuoIlas|jo) [e1ads 'saueiqr AYsIaniun s1e1S BIYDIAN

62461568

The results of indexed mode RS operations normally replace the first operand ex-
cept for store operation where the first operand replaces the second operand. The
second operand is unaltered for nonstore operations, and the first operand is unaltered
for store operation.

EXPANDED ADDRESSING

The addressing philosophy accommodates 64K * halfword addresses since a full 16- |
bit address is provided. Extending the addressing range beyond 64K halfword locations
up to 512K halfword locations is provided by utilizing PSW bits,

Expanding to 19 bits is achieved by replacing the high-order bit of a 16-bit address
with 4 bits, as shown in Figure 2-18. Data operand addresses are extended to 19 bits
by specifying either a 4-bit Data Sector Register (DSR) or an implied DSR. When the
high-order bit of a 16-bit data address is 1, a 4-bit DSR (PSW bits 28 through 31) is se-
lected to replace the high-order bit. When the high-order bit of a 16-bit data address
is a 0, an implied DSR containing 0000 is selected. Note that indirect addressing lo-
cates the indirect address pointer as if the pointer weré a data operand. Branch ad-
dresses are extended to 19 bits in an equivalent manner. When the high-order bit of a
16-bit branch address is a 1, a 4-bit Branch Sector Register (BSR—PSW bits 24 through
27) is selected to replace the high-order bit. When the high-order bit is a-0, an implied

BSR containing 0000 is selected. The high-order bit of both the BSR and DSR must be |
Zero. ‘ j
16 811 Operand Address 16-Bit Branch Address
XYYYYYYYYYYYYYYY XYYYYYYYYYYYYY Yy
=0 =9
DSR BSR .
[zzzze—rpsw wa] | 7722 =— o000 % | 222z =— PSW 24’”'
ole] [okt
Y e
Expanded 19.Bit EA Expanded 19-Bit Branch Address
ZZZZYNYYYYYYYYYYYYY ZZZZYYYYYYYYYYYYYYY
Data Operand Addressing Expansion Branch Addressing Expansion

'Figure 2-18. Expanded Addressing

*K = 1024 N . i |

2-15

SanILDLY AISIaAIuN puB suoieljo] [eads ‘saueiqr] ANSISAIU S1BIS BHLUDIM

SjuBWINJ0Q YSYN JO UO0N03]j00 oxAeWwo] "3 sswep Iq

80-/8 SIN

9f 414

ThH @F xog

|
62461565

?lctorially, main storage can be visualized as follows:

? I

BA, =0

or
EAO =0
BA =1 EA=1
PSA
Operating : ; Problem : Problem
System & : Instruction . . .Data 1o ;
Common Data |. ®'® @ Area nee Area , 209
Paol
0 ¥ 32K ' BSR : : " DSR: i e R

~—PSW 24-27 : — PSW 28-31

This permits ef_ﬁcienf c_ommuﬁication from the problem program to the operating
system, the preferred storage area, (PSA) or a common data area. 1 :

It should he cautioned that instruction address incrementing or address cal¢ula-
tions used to form the EA are performed on the low 16 bits only and will not alter the
BSR and DSR. This BSR or DSR may be altered only via a PSW swap, special instruc-
tion operations (SVC, LPS) or by use of the indirect address pointer described in this
section, : ;

PROGRAM EXECUTION

The CPU prog‘ram'lconsists of instruction and control words specifying the opera-
tions to be performed. This intermation resides in main Storage and addressable
registers and may be operated on-as data. Instruction execution control is as defined
under the section on Machine Status and General System Operation. Insert Storage
Protect Bits, Load Program Status, Internal Control and Set System Mask instructions
are privileged instructions and can only be executed in the Supervisor State. The
Program Status Word determines the current state of the CPU and the Supervisor Call
instruction can be used by the problem program to enter the Supervisor State,

STORAGE PROTECTION FEATURES

The Storage protection feature prevents modification of specific main storage loca-
tions. Any location which could, for example, contain constant data or program instruc-
tions can be selectively protected from Store operations without restricting the use of
other areas. Traps on store operations to specific data words can be inserted during
program checkout. A privileged instruction, Insert Storage Protect Bits, is provided
to set or reset the protection bit associated with each halfword of main storage, Attempt-
ing to store data in a protected location will result in a program interrupt unless it is
previously masked by setting the machine check mask (PSW bit 45) to zero. In this case
the store operation does not occur.

2-16

-

S8Ry ANsianiun pue suoips|jo] [enads ‘saueiqr) AISIsAlUn S1B1S BIUDIAN

80;18 S[V\I

i

ﬁft xog

©h

{

SjuBWINI0(YSYN JO Uoloajjon oyAewo] ‘g sewer “ig

ot

62461568

INSTRUCTION MONITOR FEATURE ‘ *

The storage protection bit described can also be used to flag an inadvertent attempt
to execute, as instructions, data stored in unprotected areas. The feature will ensure
that no program will continue to execute data as program instructions. An attempt to
fetch an instruction word which is unprotected will result in an interrupt if PSW bit 34
is a one. The feature can be masked by a System Mask Bit (bit 34 of the PSW). During
program checkout, this feature permits use of special software to aid debugging.

MACHINE STATUS

System status can be altered by the occurrence of interrupts, by the program, by
manual intervention, and by external units such as another CPU. A doubleword register
within the CPU contains a program status word (PSW) and is the focal point for CPU and
system status conditions. ' ‘

PROGRAM STATUS WORD

The program status word (PSW), contains the basic information required for proper
program execution. The 64-bit PSW includes the next instruction address, the current
condition code, the carry and overflow indicators, the system mask for interrupts, and
other fields significant to CPU operations. In general, the PSW is used to control
instruction sequencing and to hold and indicate the status of the system in relation to
the program currently being executed. The active or controlling PSW is called the
"current PSW." By storing the current PSW during an interruption, the status of the
CPU can be preserved for subsequent use. By loading a new PSW or part of a PSW,
the state of the CPU can be initialized or changed. Figure 2-19 shows the PSW format.

The overall status of the CPU is presérved in thé current PSW and the contents of
the general registers. The PSW is automatically retained upon taking an interrupt. It
is the programrher's responsibility to preserve the contents of the general registers when

- necessary.

Certain other conditions that contribute to an overall system status situation are not
automatically preserved when a CPU is interrupted. These conditions involve additional

units and include the dynamic state of all other interrupts, the state of real time coun-
ters, and I/O system status.

Masking is accomplished by setting the appropriate PSW bit to zero. |

PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

1) Instruction Address — Bits 0 through 15 and 24 through 27 of the PSW
contain the information to determine the address of the next instruction
to be executed. The machine architecture makes provision to address
262, 144 fullwords. However, the space shuttle hardware implementation I
allows for addressing a maximum of 131, 072 fullwords.

62461568

2) CPU Status

.iit__ Use
16, 17 Condition code for certain arithmetic, logical and

1/0 instructions

saniyoly AIsIanun pue suoia)jo) [enads ‘seueiqi ANSISAUM S1B1S ENLDIM

sjuawnaoQ VSN 10 uonos|joD oyAewo] "J sewep “ig

80-/8 SIN

) &F xog

r}
\

9 44

I | 18 Carry status bit indicator

. 19 Overflow status bit indicator

: l 20 Fixed-point Arithmetic Overflow Mask
21 Reserved
22 Floating-Point Exponent Underflow Mask
23 Significance Mask

o e 23 2

; R EERNEE

Ynstruction Address C C|RIVIONNU|m]| BSR DSR

it e 8) T T Y 1 B W [2 s ot VA 0 50 T O et R
B EA R 1516 17 1819 2021 22 23 24 27 28 3

P ! . i
System Mask Fle\ser\hﬂ\\ SH mlw {3 Intermunt Code

lJl,tlllﬂtOJD:kO Y L L T U P W 1 0 O i O

32 T 39 40 4344 4546 47 48 63
‘t
. 015 Next Instruction Address 38 External Interrupt 1 Mask i
1617 Condition Code » 37 External Interrupt 2 Mask Systemn
18 Carry Indicator 38 External Interrupt 3 Mask, Mask
19 Ovérflow Indicator 39 - External Interrupt 4 Mask
20 Fixed-Point Arithmetic Overflow Mask 40-43 Reserved
21 Reserved) 44 Register Set (GR set 0 or 1)
22 Floating Point Exponent Underflow Mask 45 Machine. Check Mask
23 Significance Mask 46 Wait State Bit (Wait/Process)
24-27 Branch Sector Register .47 Problem/Supervisor State Control Bit
28-31 Datd Sector Register 48-63 Interrupt Code for Program Machine Check .
32 Counter 1 Mask and Special External Interrupts
33 Counter 2 Mask S stem : :
34 . Instruction Monitor Mask Mask
35 External Interrupt 0 Mask A
Figure 2-19, PSW Fields

SBAILOIY AIISISAIUN PUB SUOI0R]0D) [e1oadS 'saueiqr] ANSISAIUN S1B1S BNUDIM,

sjuswnooq YSVN JO UoIoa||o) ojAewo] "3 sawer “iQ

80-48 SIN

‘!i) @-ﬁxog

~o
g

9¢r 44

t

'

3)

4)

5)

6)

7

8)

9

10)

11)

62461568

Branch Sector Register — Bits 24 through 27 replace the high-order bit of a
branch address when that bit is a'1, Otherwise,.an implied sector register
of 0000 replaces the high-order bit.

Data Sector Register — Bits 28 fhrough 31 replace the high-order bit of a
data address when that bit is a 1. Otherwise, an implied sector register of
0000 replaces the high-order bit,

System Mask — Bits 32 through 39 are mask bits. The first two bits of the
System Mask are normally assigned to the two counters and the third to
the instruction Monitor Feature. The remaining five masks include I/0 end
conditions, other application dependent items, such as, a manual interrupt
key and timer overflow conditions. The instruction SET SYSTEM MASK is
provided for modifying this field.

Reserved — bits 40 through 43 are reserved.

Register Select Field — The register select field, bit 44, controls which of
two sets of general registers is in current use. When this bit is a zero, then
register set 0 is used; when this bit is one, then register set 1 is used. The
set of general registers in current use.can be selected when a new PSW is
loaded. This can result from the execution of the PSW load instruction or
from an interrupt.

Machine Check Mask — Bit 45 is the mask bit which is used to inhibit machine
check interrupts. (See Figure 2-20). When this bit is a one, then machine
check interrupts, store protect interrupts, or external 1 interrupts detected
by the CPU (see *note on Figure 2-20) are inhibited.

Wait State — Bit 46 determines the wait or processing (run) states. When this
bit is a zero, the CPU is in the processing state, When this bit is a one, the
CPU is in the Wait State.

Problem /Supervisor — Bit 47 determines the problem or supervisor states.
When this bit is a zero, the CPU is in the supervisor state and privileged

_instructions can be executed. When this bit is a one, the CPU is in the

problem state and attempts to execute privileged instructions are inhibited
resulting in.an interrupt.

Interrupt Code — Bits 48 through 63 are reserved for the interrupt code,
Program and machine check interrupt conditions and associated interrupt
codes are given in Figure 2-20.

INTERRUPTS

1)

Power — This interrupt occurs when primary power is removed from the
system for any reason. The current PSW, the general register set 1 & 2, the
floating point registers, the counters 1 & 2 and the operational register are
put away (stored) in main storage for future reference. Figure 2-21 shows
the PSA assignments including putaway. When primary power is restored,
operation is initiated with the "power on PSW'" (if the power-up mode is de-
fined as Run). This power-up condition is explained in General System Opera-
tion.

2-19

1

0] "3 salwer “Iq
80-/8 SIN

ey xog

-

SjusWNIo YSYN JO Uonoa|j0) oxAew
*h

9f 44

sanyoly Aisieaiun pue suonos|jo) |eeds ‘saueiq) AusIsaun a1elS BIYIIAN

i
i6246 156?

*°CPU must be in hait mode.

****Only eccurs when in. problem state: PSW 471

Interrupt} . d Interrupt Interrupt CPU/IOP/AGE ¥
Priority | Class| Old PSW| Naw PSW Code Accept Time Generated Interrup:
TA |PWR |- 0004 x* - - - Immediate CPU Power On
18 [pwR |- 0014 N z 2 Immediate cPy svstem reset
3 [mMC 10°** 0044 = 45 - 0003 End of MS cycle CPU CPU (encountered) storage parity for
% H main store {MS) access in the CPU unit
4 MC |0040°°" 0044 - a5 - 0002 End of 1/0 cycle cPY 10P (encountered) storage parity for
i 5 MS atcess n either the 10P or CPU units
5 MC |0040°"" [0044 - |45 - 0001 End ol MS cycle CPU CPEI.' extended {10P unit) memory address
: parity :
6 MC |0040°"" |0044 - 45 - 0004 End of MS cycle CPU CP\IJ extended (IOP urit) memory data
parity &
9 MC. 10040°"" |0044 = 45 - 0005 Immediate CPU CPU ROS parity
7 |PE [0048°** [o04C X - - 0003 Immediate cry CPU address specification
8 |PE [0048**" [004C = 45 - 0007 End of M5 cycle ‘CPU CPU store protection violation
11 [PE |ooss**" |oosc. X & & 4 {0000 During instr fetch cPy lllegal operation
1 PE D048 004C AT, - - 0001 During addr gtnt'-p!iun CPU Privileged instruction
1 |PE 0048 004C - 20 - 0004 During instr execution | CPU Fixed point overflow
1 PE (0048 004C - 2 - 0005 |Ouring instr execution | CPU. Significance
11 |PE o048 004C X = = 0006 During instr execution | CPU Divide or convert inputs not normalized
11 PE 0048 004C 22 - 0008 During instr execution | CPU Exponent underflow (floating paim or
ok feonvert) b
1 |FE - |oods 004C X - - 000A During instr execution | CPU Exponent overflow (canvert}
11 |PE |004B 004C X =t - 000B During inst execution | CPU Exponent overflow tilnuliw point)
1" PE 0048 004C X - - 000C Duringinstr execution - | CPU Invalid divide zerd divisor
> (floating point]
12- |sC |o0s8 005C X - - - Address generation CPU Supervisor call
14 [svs (o060 |ooe4 - 2 |x - End of instr cPu Real-time CLK. 1
15 [sys [ooss 006C - 1 X - End of instr cPU Real:time CLK 2
10 |PE |0070°"* |0074 - 34 - - Beginning of instr fetch | CPU Instruction monitor (Masking can only
4 be performed %n supervisor sl}t:.)
16A |SYS [0078 007C - 38 o |x - End of instr 10P Watchdog timer (tO_P’gmu:; 1 exception}
168 [SYS |oo7s 007C - s X - End of instr 10P. |OP voter thParou; 1 exception)
16C |SYS (0078 007C - 35 X - End of instr 1oP C/M idle (10P group 1 exception)
16D [SYS |0078 007C - 138 X - End of instr 10P IOP ROS parity (IOP group 1 exception)
16E |SYS 10078 007C - 35 X - End of instr 10P 0P fault (10P group 1 exception)
16F | SYS |o078 oo7c = 35 X - End of instr 10P Spare (10P group 1 exception)
17A |SYS (0080 0084 - 36 X 0000 End of instr | 10P PCI/PCO Channel parity (1OP group
. . 2 excefition)
178 |SYS |0080 0084 o 36 b 0000 End of instr IoP DMA instruction read parity (IOP group
= 2 exception)
17C |SYS |0080 0084 - 38 X 0000 End of instr 1oP DMA data read parity [1OP group
v . 2 exception]
170 |SYS (0080 0084 - 36 X 0000 End of instr o] Burst DMA ward count excess
¥ {10P group 2 exception)
17E° |SYS |0080 0084 - 38 x 0000 End of instr op Q overflow (IOP group 2 exception)
17F |SYS |0080 0084 = 36 X 0000 During imstr op DMA timeout (IOP group 2 exception)
176G |S¥Ys |ooso loos4 |- 136 IX. . _|0003 _|Endotinste . ___(CPU - |DMA address specification — - —
17H |5Y5 |0080 0084 - 36 X 0004 End of instr CPy DMA store protect violation
171 |sys -[ooso 0084 -0 368485 | X 0002 End of instr cPU DMA data write parity
17J |SYs |ooeo o084 - 36845 | X 0001 End of instr CcPyY PCI data parity
17L [svs jooso Jooes & 3’ [x 0005 |Endof instr cPu DMA address parity
17K |SYS - looso 0084 - 38 X 0006 End of instr AGE AGE interrupt
18A-18L |SYS |ooes 008C - 37 x - |End otinste 0P 10P programmed interrupts (1.12)
19A.190 |5Y¥S (0090 0094 - 38 x - End of instr 1oP Spare {4)
20A-200 |SYS |0098 008C - 3 X - End of instr el Soare (4}
2A |PWR (- - X - - - End of instr CcPU Power off interrupt
28 |PWR |0O10 - X - - End of instr + 10045 | CPU [Power off interrupt delayed (POID)
13 |PWR |0010 - X - - - End of instr CPU Initiate putaway
| NOTE: *CPU must not be in halt mode. 1% *Contains address of next instruction of second half of existing full-werd instruction.

Figure 2-20. Interrupt Codes

- 2-20

6246156B

{

I

80-28 SW

t

=h@F xog
|

S)usLND0(YSVN 40 Uonasjo) oxAewo] 3 sewer g

!

9 44

!

saAIyaly Asianiun pue suonas||o) [enads ‘saueiqr] AISISAILN SRS BUUDIA

2) Machine Check — When not masked, this interrupt class occurs following
the detection of a malfunction. The current instruction is then terminated
and the interrupt taken. A diagnostic procedure may then be initiated. When
masked the interrupt does not remain pending. I

3) Program — This class of interrup'tr arises from improper specification or
use of instructions or data. Bits 20, 22, and 23 in the PSW. are provided
to permit masking program interrupts due to arithmetic exceptions such as
fixed point overflow. Bit 34 in the PSW is provided to permit masking the
instruction monitor interrupt. Bit 45 of the PSW (Machine Check Mask) masks
a store protection violation, When masked, program interrupts do not l
remain pending. When invalid instruction or address detection is provided,
the resulting program interrupts cannot be masked.

4) Supervisor Call (SVC) — This interrupt results from the execution of the
SVC instruction. The 16-bit effective address is placed in the interruption
code of the old PSW. This instruction can be used to switch from the
problem to the supervisor state. i

5) System — This class of interrupt results from program counter time outs
and conditions outside the CPU. Provision is made for 7 interrupt levels
within this class, and each is provided with a unique set of PSWs and a
mask bit. Two are program counters and 5 are external interrupts,

Any number of the 5 external interrupt conditions may be grouped into a
single level by the external equipment. In the event of simultaneous exter—
nal interrupt conditions, the lowest numbered (bit within the system mask
field in the PSW) interrupt is taken first., These interrupts remain pending
when masked except when the machine check mask bit is one.]
The two program interval Himers are each 32 bits wide and decrement. The lower n
-~~~ - — — - 16 bits (least significant halfword) of each counter resides in 16-bit binary hardware ~— — -
counters that count down by one every microsecond. The high 16 bits (most significant
halfword) of each counter resides in main store. The high halfword lies in main store
location 00B0 for counter 1 and main store location 00B1 for counter 2. Every 65 ms
when the low halfword (in the hardware counter) passes from 0000 (hex) to FFFF (hex)
an interrupt occurs which can cause the high halfword in main store (via microcode)
to be decremented by one. This interrupt is transparent to the programmer until the
high halfword in main store equals 0000 (hex). When such an interrupt occurs, the
high halfword is decremented to FFFF (hex) and a PSW swap occurs, telling the pro-
grammer that the counter has timed out. Note that if the interrupt is masked the high
halfword will not be decremented by the microcode. The low halfword continues to
count down. The interrupt although remains pending and if unmasked within 65 ms, the
upper halfword will be decremented without a loss of a count.

The counters can be loaded and 'read by the Internal Control instruction, described
in Section 10. i E

2-21

sanydly Alsianlun pue suonas|o) [epads ‘seueiqr] AISIBAILN S)BIS BUUDIAA

sjuaWNI0Q YSYN JO uonoajjon oxAewo | 3 sawer 1Iq

7 ©F xog

(l

™
AN

9¢ 14

80-/8 SI

‘ 62461568

Interrupt Handling

The machine check, program, SVC, and each system interrupt have two related
PSWs called "old" and '"new' in unique main store locations. This zone of main store
is referred to as a preferred storage area (PSA), which is illustrated in Figure 2-21.

In all cases and interruption involves merely storing the current PSW in its old posi-
tion and making the PSW at the new position the current PSW. The old PSW holds all
the necessary status information in the system existing at the time of interruption. If,
at the conclusion of the interruption routine, there is an instruction to make the old PSW
the current PSW, the system is restored to the state prior to the interrupt.ipn, and the
interrupted routine continues: This means the programmer must clear the fixed point

- overflow indicator before being reloaded. Note that it is possible to switch to the alter-

nate set of general registers when the PSW swap takes place. This set of registers is
deﬂ:_:ned by bit 44 in the new PSW.

Interruptions can only be taken when-the CPU is interruptable for a given source,
The system mask, machine check mask bit, floating-point' exponent urderflow mask,

.the significance mask, and the fixed-point overflow mask bits in the PSW define the

interruptable state of the CPU with respect to those sources. When masked, system
interrupts remain Pending while machine check and program interrupts are ignored,

The power transient, certain program interrupts, and the SVC interrupt cannot he
masked. ' . _ &

Interrupt Priority

Simultaneous interrupt Tequests are honored by the CPU, The smaller the hard-
ware priority number the higher the priority. It should be noted that many of the
interrupts listed in Figure 2-20 have the same priority number, this is because these
interrupts are mutually exclusive and priority has no meaning,

When more than one unmasked interrupt requests service, the action consists of
storing the old PSW and fetching the new PSW belonging to the interruption which is
taken first. This new PSW subsequently is stored without any instruction execution
and the next interruption PSW is fetched. This process continues until no more inter-

ruptions are to be serviced. When the last interruption request has been serviged, .- - - — —

instruction execution is resumed using the PSW last fetched. The order of execution

of the interruption subroutines is, therefore, the reverse of the order in which the PSWs
are fetched, Machine check and power transient, when they occur, do not allow. any
other interrupt to be taken.

The above priority is used to resolve race conditions due to multiple interrupt
conditions. Since separate mask bits and PSW pairs are provided for each external
interrupt source, the priority in handling these interrupts is, actually determined by
the content of the new PSWs. When a PSW swap occurs, further action in regard to
sBystem (and machine check) interrupts is determined by the mask fields in the new °

PSW.

Interrupt Masking
Individual masking of several of the interrupt types is possible. When masked off,
the interruption is either-ignored or remains pending for later'execution. The mask-

ing capability for each of the interrupt types is as follows:

1) Power Transient — Cannot be masked off.

2—22.

SIUBWN20QJ VSN JO UOND3||0) OYABWIO] T SalUep “I(

S8y AlSIBAIUN puB SuonDe||0) [e1adg ‘saleIqr] ANSIaAun S1BIS BIUDIAN

i 6246156

2) Machine Check — Can be masked off by setting the machine check mask hit
45 in the PSW equal to zero. When masked off normal instruction sequencing
occurs, and the interrupts do not remain pending,

! ; 3) Program — Three of the 11 program interrupts are capable of being masked
e | off; fixed-point arithmetic overflow, exponent underflow, and significance,

3 T by setting the appropriate mask bits in the PSW equal to zero. When masked
off these interruptions do not remain pending. Also, the storage protect in-
terrupt can be masked via the machine check. mask (PSW bit 45). Note that
if a PSW with both Fixed Point Oyerflow Indicator and mask (bits 19 and 20)
set is used, the interrupt will occur.

4) Supervisor Call — Cannot he masked off,

5) System — Each level of external interrupts can individually be masked off
by setting the corresponding system mask bit in the PSW equal to zero,
; Interrupts that are masked remain pending,.

Preferred Storage Area (PSA) Assignments I

The contents of the PSA are shown in Figure 2-21 with the main store address
expressed in hexadecimal notation. The following PSA locations must not be store
protected: '

1) Power off interrupt PSW

) | _ 2) All old PSW locations

4 3) Main store location 0087 (used by mieroprogram for I/0 operations)
4) Counter 1 &2, highhalfword locations 00B0 & 00B1

5) Putaway locations (00C0 through 0103),

{

In addition, MS location 0087 must be set initially to zero for use by self test

- GENERAL SYSTEM OPERATION :

} The various states entered by the computer and their relationship to the basic
operator controls are shown in Figure 2-22." The basic controls provided for the
operator are power-on, initial program load (IPL) and the system reset key. Among
the many controls available, these functions have special significance because of their
relationship to an unconditional system reset sequence. These functions each produce
a system reset sequence which applies to the computer, 1/0 channels, and peripherals.
Further operation within the system differs, however, as explained in the following
sections.

t

80-/8 SW

i

oF xog

= h

%

Power-On

One of two modes of operation must be specified for the system at power-on. The
first results in a system reset followed by the computer entering the stop state. In
this state, instructions are not processed, interrupts ave not accepted, and system
timers are not updated. This state is termed "manual” because further operation must
be determined by the operator.

P24
(

{

2-23

SBAIYoIY ANSIBnIUN PUB SUONI9[0Y) [eads ‘saueigr AUSIaAlun S1e1S BIYDIAN

SjUBWNA0Q YSVN J0 Uoioa|o) oykewo] g sswer “1Q

c /5, €% xog 80-/8 SIN

9f 44

|
162461568

1] 1 2 3 4 5 6 7 8 9 A B c D E F
000 |<— Res. for Self-Tests Power On Reserved ._{ Reserved
Power OFf System J
| 001 Interrupt PSW Reset PSW Reserved — — .]
i 002 Reserved
Lo
i 003 | = Reserved
} 004 ; M.'m:hinul Checks | Program Checks ————— &
| <——— Qld PSW 1 New PSW Old PSW. ~——— New PSW ——»
s Heserved ._ Superwsor Call (SVC)
05 - Old PSW = - New PSW — &
006 Proglarn Counler 1 ; Program Counter 2
Old PSW New PSW Qld PSW New PSW ———
1 7 Instructlon Monitor External Interrupt 0
! 00 0ld PSW | New PSW 0Old PSW New PSW— |
; 008 | External lntnrrui}t 1 External ln[errupl 2
Qid PSW i New PSW = Old PSW ——|=—— New PSW ———+,
12 e 009 External Interrupt 3 External Interrupt 4
1= ~——0ld PSW , New PSW -Qld PSW f——— New PSW— o
< 00A Reserved
i 4
Hi Hi =
008 cer. 1 Jc. 2 l Reserved
ooc — PutAway: Locations for General Register Set 1
00D |+— Put-Away Lacations for General Register Set 2
| OQE [+ Put-Away Locations for the Floating-Point Register Set —
| .
| 0OF - Put-Away Locations for Microprogram Working Registers

| — YT

| 010 Ct. 1]Cw. 2[Op Reg. -——-——Haserw‘d for Fault Detection
ki T
01 Reserved for Fault Detection
- 012 Reserved for Fault Detection —-
013 Resérved for Fault Detection : -

Figure 2-21. Preferred Storage Area Assignments

e Power-On
& System Reset
e IPL

v

System Reset

Senuencr
- (IPL) (Powver -On Run Mode!
Pl s S s Expcute IPLT T S = T = = - S
| Sequence
L [’Svslem Reset) v
f Use
: Poweér-On
L Stop Key Continue Key RETEL) PSW
A g“‘ SY;[;:\: : Load PSW Key 7
eset |
. i
|
> +— |
I 1
| |
| (Instruction I
] or Interrupt) :
| {interrupt) @ |
! ' |
| i ¥ o] wait
l___.__._.___./ o __________|StatePSWl

Figure 2-22. CPU Mode Switching

2-24

SaAlaIy AlsIBAIun pue suoids|jo) [enads ‘sauelqr] AISIanuN S)eIS BIUIIA

SJUBWINIO([YSYN 40 UOND3J|07) OYARWO | "3 Sawer IQ

80-/8 SIN

th @F xog

9f 14

[

|

l

t

f

624615618

The second mode at power-on enters the run state after the system reset is com-
plete. The instruction stream is initiated and interrupts are processed. The com-
puter can be removed from the run state by certain instructions, interruptions, and
by manual intervention,

System Reset

The system reset function rests the computer system to a known state such that
processing can be initiated without the presence of machine checks, except for those
caused by subsequent machine malfunctions, The system reset function causes the
following:

'@ CPU pending interrupts are reset
o Internal timers are reset to all ones (1's)

e Status registers are reset

IPL

The use of the IPL function is independent of the current state of the system,
IPL first causes a system reset function. '

rating State

The run state and wait state shown in Figure 2-22 are collectively termed the
operating state for the system. When the computer.is in the run state, instructions
are executed in the normal manner. An instruction may be encountered or an inter-
rupt processed that forces the computer into the wait state, The computer does not
execute instructions in the wait state, but it is interruptable when not masked. System
timers are updated and input/output operations continue in the wait state,

The wait state may also e entered after completing IPL or by special operating

intervention via the stop state, (Dotted lines on Figure 2-22), This action is the result
~ of the wait bit being set in the controlling PSW,

Program State Alternatives

Certain other states exist within the CPU that contribute to its overall status,
These states are directly related to program operation and are

1) Masked or Interruptable State — The computer may be masked for
certain interrupt conditions at any given time. These conditions
generally remain pending within the system until the masked condi-
tion is changed by the program, Certain error conditions cannot be
masked off, while other error conditions such as program checks are
ignored when specifically masked.

2-25

sanIyoLy AisIsniun pue suoijajog [eioads ‘saueiq) AiSIaAUN S1e1S BHUDIAA

80-48 SIN

¢ h @F xog

sjuswNIeq YSYN JO U0Nos||0) oykewo] g sawer g

9f 4

‘ 62461568

t
2) Supervisor or Problem State — In the sdpervisor state all instructions
are valid. In the problem state, 1/O and certain other instructions are
invalid, and their use produces an error interrupt. This state is con-
trolled by a bit in the PSW, The SVC instruction is provided to switch
from problem to supervisor state. The LOAD PSW instructiofi is used
to switch from supervisor to problem state.

3) General Register Selection — Bit 44 in the current PSW selects the set
of general registers in current use,

ARCHITECTURAL GROWTH

) Throughout this Principles of Operation manual, architecture conventions are
defined or facilities are marked "reserved" to retain flexibility for future implemen-
tations and extensions. The computer operates in conformance to this manual when
architecture definitions are followed consistently. Hardware operation when these
rules are violated are not defined and are properly outside the scope of this manual
to retain flexibility of implementation. '"Programmer discovered" operations that
violate or go beyond the definitions described herein but produce "useful't functions
should not be used and should be considered ''reserved' because the results obtained

‘may vary from computer to computer or even release levels for one computer de-

pending upon options selected or the design release level to which the hardware is ;
ma.nufach:red._ 3 ;

2-26

[

80-/8 SW

OF xog |
o)

J
¢

Ch

SjuswNo0g YSYN J0 Uoida(j0D oyAewo] g sawep “iQ
i

t

9¢ 4
R

[

SSAIYRUY ANISIBnUN pUE SUOIDB|I0) [e10adg ‘salielqi] AISIaNIUN SIEIS BNILDIAA

62461568

Section 3

CPU IO

The transfer of infor_mafion between the channel and input/output devices occurs
in one of two modes:

1) Direct Memory Access (device initiated and controlled)

2) Program Controlled (CPU initiated and controlled),

DIRECT MEMORY ACCESS OPERATION

Direct Memory Access (DMA) operations are externally initiated. Although the
resulting cycle steal memory access preempts CPU accesses, thereby slowing pro-
gram execution, DMA operations are not under program control and are transparent to
the functional operation of the CPU,

PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION

. Program-Controlled I/0 operations transfer one fullword between a CPU general
"-__' register and an I/0 device. The operation is initiated by executing the privileged in-
|~) struction ""PC Input/Output." A control word (CW),. in a second general register speci- .

fied by the instruction, defines the specific I/0 operation and the specific module or
device associated with the operation, '

PROGRAM-CONTROLLED 1/0 INSTRUCTION

Op R1 R2 - -
e L (-1 e O R R R) K S
0 4 5 78 111213 15
Mnemonic Format
PC R1, R2
DESCRIPTION

The Input/Output instruction transfers a fullword to or from the general register
specified by R1. Direct I/0 operations are defined by a control word (CW) contained in
the general register specified by R2, The CW format is shown below:

Command-: (M)

II‘III'II‘III]JIIIIIIILI!ILIIII]I
31

o (i

3-1

SaAIYDLY ANSISAIUN PUB SUOLDa|0)) [e10adg ‘saLriq] AISISAILN,S1EIS BIUDIA

sjuawN20Q YSYN JO UoNoa(j0D oyhewo] ‘3 sawep I

80-/8 SIN

¢ h ¥ xog

62461568

The fields of the CW are defined as follows:

ID: For an input operation, bit 0 must be coded as 0. For an out-
put operation, this bit must be coded as 1.

Command (M): = Bits 1-31 specify the particular operation to be performed,
and can be used to expand the basic input and output opera-
tions, For example, they can be coded to specify sense and
‘control operations. Additionally, DMA I/0 operations can
be initialized by a Direct 1/0. In executing an input opera-
tion, the channel (1) transmits the 32-bit CW to the external
device; and (2) subsequently loads 32 bits of information,
transmitted from the addressed device, into general register
R1. In executing an output operation, the channel’ (1) trans-'
mits the CW to the external device, and (2) subsequently
transmits bits 0-31 of general register R1 tothe addressed
device. The specific definition of the command bits is des-
cribed in the Principles of Operation for PCI/PCO, MSC,

& BCE. The only restriction placed on the system design
is the definition of bit 0,

Each control unit connected to the channel is required to accept the CW, decode
the control unit and device address, and perform the input or output operation defined
by the command field. The device address field identifies, for example, the flight
control subsystem, the radar altimeter, the navigation sensors, the displays, or the
mass storage unit, The number and the types of devices connected to the channel and
their address assignments depend on the system configuration.

If the IO handshaking operation does not complete within' 9 microseconds for CW
& DATA OUT trangfers or 6 microseconds for data in transfers, the Program Con-

trolled instruction will terminate and the condition code will be set.to reflect the time-
out, ; i

RESULTING CONDITION CODE~ =

00 Operation successful J
01 Interface time-out error: operation not successful
INDICATORS

The overflow and carry indicators are not changed by this instruction.
Program'lntei'rupt — Privileged instruction

PROGRAMMING NOTE

This is a privileged instruction and can only be executed when the CPU ig in the
supervisor state. ! Ta ; :

3-2

#

i

80-/8 SIN

[i

i

€ h ©F xog

sjuswindo YSWN Jo uonoe|o) oyAewo] "3 sawer "ig

|

9¢ 414

SaILDIY AISIBAIUN PUB SUOISII0]) [e1DadS ‘seueIqi ANSISAILM 21B1S ENLDIM

62461568

Section 4
N~ FIXED-POINT ARITHMETIC
For all of the following sections, [@] [#] indicates that the use of indirect addres-
sing and/or autoindexing is optional. For example, M specifies direct addressing with-
out autoindexing, while M# specifies direct addressing with autoindexing.
« The arithmetic instruction set performs binary arithmetic on fixed-point, frac-
tional operands. Fullword operands are signed and 32 bits long. Negative quantities
are represented in twos complement form.

- Halfword operands are 16 bits long. Within the CPU, a halfword operand from
storage is developed into a fullword operand prior to instruction execution, This is
done by using the contents of the halfword second operand location as the most signi-
ficant 16 operand bits and generating 16 low-order zeros, This result is the second
operand,

ADD
- —
Op R1 R2
_ 0100 opof- 1 L:lvpniriofel: 4 i
| 0 4 5 7.8 11.1213 15
| . Mnemonic Format
: AR R1, R2
| I . m e Y et o p— o e — L - N - a B
Op R1 Disp* ‘B2 *Displacements of the form 111X XX are not valid.
o B LT L S I O O |
0 4 5 78 13 .14 15
Mnemonic Format
A R1,D2(B2)
A
Op R1 M| B2 Address Specification
| OIOIOIOIUIIHHTI‘O | lI[illllllIllll
0 . ‘4 5 78 11 1213 14 15 18 31
‘ AM Mnemonic Format
Extended: 0 A R1,D2(82) - Disp
| [7 I
| ;
| Indexed: T A@ [#]R1,D2(x2 B2) X L I Disp
| I Y Y O O T
‘.“’—d

SanILolY AsIaAIuN pue suoRds|jo) jeeds ‘saueiqr) Aisianun 2JeIS BUYDIN

SJUBWNZ0(Q VSN JO UONoa|j00) oyAewo] -3 sawepr “iq

¢/ ©F xog 80-48 SIN

9f 34

62461568

DESCRIPTION

The fullword second operand is added to the contents of general register R1, ~The

result replaces the contents of general register R1. The second operand is not changed.

" RESULTING CONDITION CODE

00 The result is zero-
11 The result is negative
01 The result is positive (=0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2731 or less than -1, If
the overflow indicator already contains a one, it is not altered by this instruction,
(Overflow can be reset by testing or by loading the PSW,) The carry indicator:is set

to indicate whether or not there is a carry out of the high-order bit position of the
general register, ' '

Program Interrupt — Fixed point overflow
ADD HALFWORD

Op R1 Disp* B2 " Displacements of the farm
1o 1°] 00 11 R o 1| | 111XXX are not valid.
0 45 78 1314 15 AT
Mremonic Format
AH R1, D2 (B2)
. Op R 1, a - B2 Address Specification
1]0j0jojof | | f1p1p111]o] 'Iilllllliillllll
1] "4 5 7" 8 ; : | -

11121314 15 16

AM Mnemonic Format Bi
—_— ~ iIsp
Fatendsd: - 0" ": AH R1.D2(B2) L1 O e Y T
Indexed: ¥ AH (@] [#] R1,D2(x2 82) X 'A | Disp
L 1| Lolede -4 bd Lo
DESCRIPTION

The halfword second operand is first developed into a fullword operand by append-
ing 16 low-order zeroes. This fullword op_efand is then added to the contents of general
register R1.. The resdlt replaces the contents of general register R1. The second
operand is not changed. ,

4-2

EZ=

6246156B

" RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (>0).

INDICATORS

The overflow indicator is set to one, if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2-31 op less than -1, If
the overflow indicator already contains a one, it is not altered by this instruction,
(Overflow can be reset by testing or by loading the PSW.) The carry-indicator is set to -

Program Interrupt — Fixed point overflow]

ADD HALFWORD IMMEDIATE

Op oPX R2 Immediate Data
‘OITI’l°°I°i°1I‘l’l°U | | l'lilillilllllil
0 4 5 78 111213 15 16 . 31 1
Mnemonic Format
AHI R2, Data
DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. The halfword im-
mediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The resulting fullword operand is then added to the contents of general regis-
ter R2. The result replaces the contents of general register R2. The immediate op-

S3AYDIY AisIanun pue suonaj|o) [eads ‘'seueign Aisieaun 31BIS BIUDIA

=
; &
<
& oo
m
-,
s o
3 ™
)
=
0 -
O
&
o
o)
3 X
o,
1
Y
o i
[=]
Q
C
5
v}
- f _
2
n
N

erand is not changed,

RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (>0).

INDICATORS

The overflow

represented in the
the overflow indica
(Overflow can be reset by testing or b

indicator is set to one if the magnitude of the sum is too large to be

indicate whether or not there is a car

register.

tor already contains a one

general register; that is, greater than 1-2-31 or less than -1, If
» it is not altered by this instruction.
y loading the PSW.) The carry indicator is set to

ry out of the high-order bit position of the general

Program Interrupt — Fixed point overflow

4-3

sanlyoly Ausianiun pue suonosjjo) [eaeds ‘saleiqr Kyissaniun selg BIYOIA

sjuswnoo YSYN 40 Uoioa|io) oyAewo] "3 sawer g

T h €% xog 80-/8 SIN

9% 34

62461568

ADD TO STORAGE

A
Op R1 m| B2 Address Specification
ojojojojof | | Jr{ijjafe | IR M T o OV o (9 0 O NI o
0 ; 4 5 78 11,1213 14 15 16 i 7 31
AM Mnemonic . Fﬁ_fmal

Extended: 0~ AST R1, D2 (B2) 3 Disp

: L YA S o e [
Indexed: 1 AST [@] [#] R1,D2(X2 B2) 1 Disp

6 T L 55 0 0 Pt O U0 180

" DESCRIPTION

The contents of general register R1 is added to the fullwofd second operand, The
result replaces the contents of the second eperand.-location; The first operand is not
changed.

RESULTING CONDITION CODE

00 The result is ZEro
11 The result is negative
01- The result is positive (>0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location, That is, greater than 1-273L or less than
-1, If the overflow indicator already contains a one, ‘it'is not altered by this instruc-
tion. (Overflow can'be reset by testing or by loading the PSW.) The carry indicator is
set to indicate whether or not there is a carry out of the high-order bit position of the
result, g

Program Interrupt — Fixed point overflow

COMPARE
Op R1 R2
ofjopojriol | J frqrfrjojof |
0 4 5 7 8 11 1213 15
\ Mnemonic Format
CR R1, R2
Op L : Disp* B2 *Displacements of the form 111X XX are not valid,
0jojojo] | | el i e |] :
0 4 5 7 8 131415
* Mnemonic Format
& R1,D2(B2)

4-4

t

4
[

80-28 SIN

I

OF xog

\ ¥l

i

SjUBWNJ0J YSYN JO Uopoajjon O)MBLLIO_L ‘3 sawer ug
F=¥}

¥

¢ 44

I

SaAIYAIY AUSISAILN puE SUODa||0) [eroads ‘sauelq AIsSIaniln a1BlS BHYDIAN

62461568

§ A 3 B X,
Op R1 m| B2 Address Specification
ojojogrjof 4 4 frpiqrgrto]) (03 1520 il P S I T e w0 O S0 . 0 (IR
0 4 5 7 8 11 12 131415 16 31
AM’ Mnemonic Format
Extended: 0. c R1, D2 (B2) Disp s
| | 1 I T I O
I)
Indexed: 1 Clel(#]rR1,02(x2,82) | x |, Disp
[i ol S S O 6 T
DESCRIPTION

The fullword second operand is algebraically compared with the contents of gen-

eral register R1. The contents of general register R1 and main storage are not charged
at the end of instruction execution.

RESULTING CONDITION CODE
00 The contents of general register R1 'equals the second operand

11 The contents of genera] register R1 are less than the second operand
01 The contents of general register Rl are greater than the second operand.

INDICATORS
The overflow and carry indicators are not changed by this instruction,

COMPARE BETWEEN LIMITS

Op R1 R2
olodojofaf | | |apal1lold L1
0 45 78 111213 15

Mnemonic Format
CBL R1, R2
DESCRIPTION

A compare between limits instruction occurs. The condition code reflects the
result of the comparison.

4-5

sanoly AsIanun pue suonoa|jo) enads ‘saueiqr] AUSIanUN S1elS EIYSIM

SJUBWIND0(YSYN JO UoRD3|j00) ojABWO | T SeWwep “Iq

©h @F xog 80-48 SIN

9 34

6246156B

(R1) Addr of Operand modifier

(R2) | Addr of Limits ‘ ' modifier -

The address.of a-16-bit two's complement integer operand is contained in bits 0
through 15 of general register R1. The address of a fullword with the following format
containing the upper and lower limits is contained in bits 0 through 15 of the general
register R2: i g

Upper Limit Lower Limit

Lo bl L Lol R o 4) b T e L L L

1516 : 31

These limits are 16-bit two's complemer.ft integers.

In bits 16 through 31 of general registers R1 and R2 are 16-hit two's complement

Integer modifiers. After the addresses in bits 0 through 15 have been used to locate
the operands, each modifier is added to the most significant 16 bits of the registers.
The result replaces.the most-significant. 16 bits. The modifier is nqi_chs)tqgle_d,' over-
flows and carry out of the most-significant address bit ate ig’z:xoéréq. iy g

RESULTING CONDITION CODE

00 Within Limits: Lower Limit < Operand < Upper Limit
01 Above Upper Limit: . Operand > Upper Limit it
11 Below Lowqr, Limit:- Operand < Lower Limit

INDICATORS

The overflow and carry indicators are not changed by this instruction.

COMPARE HALFWORD -

Op R1 Disp* B2 "Displacements of the form
1100041100 1 | R i o | 111XXX are not valid,
0 4 5 78 13 14 15
Mnemonic Format
CH R1,02 (B2)
op R1 Al B2 | . Address Specification
1[0 Jogtol | [f1prpayryo | S Sl S N OO Y O O O 55 IO |
0 45 7 8 11121314 15 16 3
1
AM . Mnemonic Format. e A
Extended: 0 CH R1, D2 (B2) Disp
L1 S Y O T Y R
Indexed: 1 CHI@] [#] R1,D2(X2,B2) - X 1A] | Disp
' | S T I O O O |

4-6

Sanyaly Ajisianiun pue suoias|jo) jeinads 'saueiqr] AusIaniun SJelS BJUSIAA

1 [, i

80-/8 S

t

Th @F xog
i

sjusWwINo0Q YSYN {0 UOKID|0D) OXABWIO|] SalWer “I(]
£

ZE
(.,

62461568

DESCRIPTION

The halfword second operand is first developed into a fullword operand by ap-
pending 16 low-order zeros. This fullword operand is then algebraically compared
with the contents of general register R1. The contents of the general register and
main storage are not changed at the end of instruction execution.,

RESULTING CONDITION CODE
00 The contents of general register R1 equals the developed fullword operand

I1 The contents of general register R1 are less than the developed fullword operand

01 The contents of general register.R1 are greater than the developed fullword
operand,

INDICATORS

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

After development, all 32 bits of the fullword operand participate in the compar-
ison,

COMPARE HALFWORD IMMEDIATE

Op OPX R2 Immediate Data
101111101|0[“i1l1l{’0ll lJllllliIlIIIll
0 4 5 7 8 111213 15 16 31

' Mnemonic Format
CHI R2, Data *
DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data., This halfword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeros. This fullword operand is then algebraically compared with the contents of
general register R2. The contents of the general register and main storage are not
changed at the end of instruction execution.

RESULTING CONDITION CODE

00 The contents of general register R2 equals the developed fullword operand
11 The contents of general register R2 are less than the developed fullword operand

01 The contents of general register R2 are greater ‘than the developed fullword
operand. '

80-/8 SIN

Th &F xog

6246156B

INDICATORS-
The overflow and earry i:idicatorjs are not éhanged by this instruction,
PROGRAMMING NOTE

After ‘devélopment,_ all 32 bits of the fullword operand participate in the comparison.

¥

COMPARE IMMEDIATE WITH STORAGE

Op 0oPX Disp*® B2 Immediate Data
A2 W3 B . o £ v 6% 0 O 0 I (085 5 i Y Y 2 O 1Y O
0 45 78 13 14 1516 ' 31
Mnemonic Format *Displacements of the form
CIST D2 (B2), Data 111X XX are invalid.
DESCRIPTION
.~ Instruction bits 16 through 31 are treated as immediate data. ‘This is algebraieally
compared with the halfword main storage operand. The immediate data and the contents of

of main storage are not changed at the end of this instruction.
RESULTING CONDITION CODE

11 The immediate data is less than the halfword main storage operand

, 00 The immediate data equals the halfword main storage operand
|
01 The immediate data is greater than the halfword main storage operand.

INDICATORS

The c;verﬂow_and'carry indicators are not changed by this 1.ns'tructio.n.
PROGRAMMING NOTE. . | ;

The Main Storage location coﬂtain.ing the-u ha.].fword operand must not be store pro-

tected. If the location is store protected, execution of this instruction will result in a
store protect violation interrupt.

Sanyoly Aisianun pue suode|o) [enadg ‘saueiqi AIsienun alers YoM

SJuUsWN20Q VSN JO UON03)100) OYABLIO | T SeWer “I(

9F 44

E:

SaAILIY AUSIanUN pue suonds|jo) |eadg ‘saueiq Aysieaun 31e1S BIYDIM

SUBWND0Q YSYN JO U0Ij93||00) oxAewo] g sawep “iq

80rZ8- SN

™
1

G @F, xog

9 34

62461568

DIVIDE

Op R1 ‘ R2 .

01401011} ¢ | RS R
(1] 4 5 78 111213 15

Mnemonic Format

DR R1, R2

Op R1 Disp* B2 “Displacements of the form
0j1j0joj1| | | O | 111XXX are not valid.
0 4 5 78 13 14 15

Mnemonic Format
D R1,D2 (B2)

Op R1 a B2 Address Specification
0‘101011II1I1I111D | Illlillllllllll
0 4 5 7 8 111213 14 15 16 31

_AM- Mnemonic Format
Extended: 0 D R1, D2 (B2) Disp ; L
N 51t (O 0 P |

Indexed: 1 . D(@] [#] R1,D2(X2 82 x || Disp
‘ L1 1A Y 2% v I 9 o o 1
DESCRIPTION

The first operand, a 64-bit, signed 2's complement dividend, is contained in the
_even/odd general register pair R1 and R1®1. The most-significant portion is in R1.

When R1 indicates an odd gene,al register, the first operand is developed by appending
32 low-order zeros to the contents of R1. The second operand is the divisor.

The first operand is d_ivided by the second operand. The unrounded quotient re-
places the contents of general register R1, The remainder is not developed, When Rl
is even, specifying an even/odd general register pair, the contents of R1®1 are inde- .

terminant at the end of instruction execution, When R1 is odd, R1()1 is never changed,.
The second operand is not changed.

When the relative magnitude of dividend and divisor is such that the quotient can-
not be expressed as a 32-bit signed fraction, an overflow is generated. In this event,

the contents of both R1 (and R1®1 when R1 is even) are indeterminant upon instruction [|
termination.

RESULTING CONDITION CODE

The code is not changed.

Sanyaly Alsianiun pue suoids|jo) [enadg ‘sauelqr] AIsIanun S18l1S BIYOIA

SUBWND0(Q SN JO UONDa[|00) OYABWO | '3 sawer "]

¢h ©F xog 80-/8 SN

9¢f 34

62461568

INDICATORS -
The overflow indicator is set to one when the quotient cantiot be represented, or
when division by zero is attempted. The dividend is destroyed inthese cases. 'If'the
overflow indicator already contains a one, it is not changed. The carry indication has
no significance following execution and is indeterminate, :

Program Interrupt — Fixed point overflow

. EXCHANGE UPPER AND LOWER HALFWORDS

Op R1 R2
Pjojojoj) { Jrprpyyolrf § |
0 4 5 7 8 1112 13 15
Mnemonic Format .
XuL 75 o TR M RO L SRV 5 S oh Wl SRR E

DESCRIPTION
The upper halfword of genéral‘r.egister R1 is exchanged with the lower halfword
of general register R2. Bits 0 through 15 of general register Rl replace bits 16 through
31.of general register R2 while simultaneously bits 16 through 31 of general register
R2 replace bits 0 through 15 of general register R1.
RESULTING CONDITION CODE
The code is notchanged.,
INDICATORS

The overflow and cari-y indicators are not changed.

4-10

INSERT ADDRESS LOW

senlyaly Ausianun pue suonos|jo) [eads ‘saueiqy Ausianiun ajels euyaipy

SjusWN20Q YSYN JO Uoia3jjoD) oyAewo] g sawer “iq

Op R1 Disp* : B2
_ t]1]1ofo] | |] T O IO
i 0 4 5 7 8 1314 15
* Displacements of the form 111XXX are not valid.
Mnemonic Format
o 1AL R1,D2 (B2)
A .
Op R1 M| B2 Address Specification
i 1I1I110Ioll1lill_l1 0 1 o O 0 O O T
: 0 4 5 7 8 11 121314 15 16 31
aM Displacement)
o 0 053 5 I I R O I T N
% - 31
s I
| X All Displacement
- 1 I 1 T T T
| : : 16 31
i _"\I_,_,, AM Mnemonic Format
‘ Extended: 0 IAL "R1,D2 (B2)
ot Indexed: 1 IAL [@)[#] R1,D2 (X2 B2)
; DESCRIPTION
= ; .
2 A 16-bit effective address is developed in the normal manner without expanding
0 to 19-bits. ' This address itself replaces the 16 low-order bits of general register R1.
~ The 16 high-order bits of general register R1 are not changed,
o {
G RESULTING CONDITION CODE
- The code is not changed.
o .
o INDICATORS
x i
2? ‘ The overflow and carry indicators are not changed by this instruction.
L=
n -~
el
L ol
O\ —
4-11

sanIyaly Alsienun pue suoioafjog [erads ‘saueiqr] AISISAIUN B1BIS BHUIIM

SjUBWNo0Q YSYN JO UoNdS|j00) oxAewo] 3 sawep “iq

80-/.8 SIN

Ch©F xog

9f 44

|
|6246 1656B

INSERT HALFWORD LOW

: A
A1 | m| B2 * Address Specification | y oid,
1lojojool | | Jalalalih | VS i A R] VG e i e |
0 45 7 8 1112 13 1415 16 o 3
AM . Displacement
AR [Dkl o L Lsvs 0k g) N G B i i KER e o
16 . 31
I
; o . Al Displacement
R B S8 e L T O O
- -AM Mnemonic Format
Extended: 0 . IHL ~ R1,D2(B2)
Indexed: 1 IHL[@][#]R1,D2(X2, B2)

DESCRIPTION

The halfword second operand replaces the confents of bits 16-31 of general register
R1. Bits 0-15 of general register R1 are not changed. The second operand is not
changed.) .
RESULTING CONDITION CODE

The code is not changed,

INDICATORS

The overflow and carry indicators are not changed by this instruction,

4-12

wadt

sanyoly Aisianun pue suoyos|jog [e10ads ‘saueiqr] AYsSIsAiun S1ElS ENYDIAN

SjUBWIND0Q YSYN JO UoNDaj|oD oyABWO] T sawer ‘i

{

80-/8 SIN

{

€ h OF xog

{

9 44

LOAD
Op R1 - R2
ogoorytl oy pJrjrynefef | g
0 4 5 7 8 111213 16
Mnemonic Format
LR R1, R2
Op R1 ; Disp* B2 *Displacements of the form
0 0]01111 | | | | [-ofi r‘l 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
L “1,D2(B2)
' A -
Op R1 m| B2 Address Specification
0Jo0joj1t] | tpryryijo | IIIIIIIIIIII‘IIJ
4 5 7 8 11121314 1516 31
AM Mnemonic Format
Disp
Extended: 0 L R1, D2 (B2) 1 1 L]t |] |
Indexed: 1 L{@] [#) R1,D2(X2 B2) X Ninn Disp
I . Iy S O O [

_ . The fullword second operand is placed in general register R1. The second operand
is not changed.

RESULTING éONDITION CODE
0C . The second operand is zero
11 The second operand is negative

01 The second operand is positive (> 0).

INDICATORS

The overflow and carry indicators are not changed by this instruction.

LOAD ADDRESS

Op R1 Disp* B2 *Displacements of the form
1119101 | | | e £ | | 111XXX are not valid.
0 45 78 1314 15 .
Mnemonic Format
LA R1, D2 (B2)
4-13

6246156 B

ister R1. The 16 low-order bits of general register R1 are zeroed.

RESULTING CONDITION CODE
The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

92461563
Op R1 A B2 Address Specitication
L2 i e 1 S Y B 0 i TR O T OO T 0 L
0 4 5 7 8 11 1213 14 15 16 31
. : AM Mnemaonic Format ‘
Extended: 0 LA " R1,D2 (B2) Disp
| | | | |
Indexed: 1~ LA[@] (#] R1LD2(x282)| x |t Disp sl
[]5 B N]| | |
L DESCRIPTION

2 l , A 16-bit effective halfword address is devéloped in the normal manner without ex-
‘ panding to 19-bits. This address itself replaces the 16 high-order bits of general reg—
|

When R1 = B2, it is possible to increment R1 by the displacement field.

ﬂ In the RS format when B2 = 11 and AM = 0, this is functionally equivalent to a
‘ LOAD HALFWORD IMMEDIATE instruction. In this case, bits 16 through 31 are
treated as immediate data. The immediate data is expanded to 32 bits by appending

sanyly Ais1anun pue suois|o) [eads ‘sauelqr] AiSIaAlun alelS BIUDIAN

SJUBWND0Q YSYN 10 Uonoa||00) oxAewo] 3 sawep “ig

80-/8 SIN

T h ¥ xog

9f 34

16 low-order zeros. This resulting fullword operand replaces the contents of general

register R1.

LOAD ARITHMETIC COMPLEMENT

Op R1 R2
. LN LT 0 o N U 1Y 2 5 O 8|
0 4 5 7 8 111213 16
Mnemonic Format
LCR R1, R2
DESCRIPTION

general register R1.

ment of the fullword second operand and a low-order one,

4-14

The two's-complement of the fullword second operand replace the contents of
Complementation is accomplished by adding the one's comple—

SjuaWwnNooQg YSVN JO Uoloaljog oxkewo] ‘g sawer Ig

samyouy Alisismun pue suonos|jo) |eads 'seueiqr] AUsIoAUn S1elS BIYDIAA

alir | ‘ 62461568

RESULTING CONDITION CODE

i 00 The result is zero

" 11 The result is negative)
b 01 The result is positive (>0},
INDICATORS

The overflow Indicator is set to one ‘when the maximum negative number is com-
plemented. If the overflow indicator already contains a one, it is not altered by this
L instruction, The carry indicator is set to indicate whether or not there is a carry out

of the high-order bit position of general register, The carry indicator will only be
set when the operand is zero,

80-/8 SI

tl @;. Xog

Program Interrupt — Fixed point overflow , B
LOAD FIXED IMMEDIATE
‘nand
= | 0
n | Op R1 %l opx
= sdolabidad 114 gl g]
0 4 5 7 8 111213 15
Mnemonic Format
- LFXI RI, Value
g DESCRIPTION
“‘\"‘*——4‘1 i
A fixed-point literal value is loaded into the general register specified by R1.
— The immediate values are =23 =150 1,2, '3, 4, 5,6, 17, 8,9, 10, 11, 12 or 13,
The immediate is loaded into bits 0 through 15 of general register R1, Bits 16 through
31 of general register R1 are set to zero,
s J -
OPX (Bits 12, 13, 14 & 15) Immediate Value —R1
(hex) (hex)
= i 0 FFFE0000
1 FFFF0000
2 00000000
i 3 00010000
4 00020000
5 00030000
— 6 00040000
7 00050000
, 8 00060000
’ 9 00070000
F= A 00080000
B 00090000
C 000A0000
n> | D 00080000
T E 000C0000
J:. 4 F 000D0000
G\-—
4-15

SaAIYDLY AISIDAIUN PUB SUOKDDJI0D [eads 'sauelqi] ASIaAIUN S1EIS BUUDIAY

SjusWND0Q YSYN JO UONI3||0D) ONABWO | " sawer “iQ

© h @F xog 80-/8 SIN

96 34

i
'?246 156B

RESULTING CONDITION CODE s Hos dgpT s 8
The code is not changed by this instruction.
INDICATORS

The overflow and carry indic':atb.rs are _'not changed by this instruction,

LOAD HALFWORD

"~ Op R1 Disp® B2 *Displacements of the form
1]ojo] 11] | | " 111XXX are not valid.
0 4 7 8 13 14 15
Mnemonic Format
LH R1, D2 (B2)
A T
. Op HT m| B2 ’ Address Specificiation .
L o L L I L LR | Y S Y U I O O 1 N
0 45 " 7 8 111213 14 15 16 .3
; AM Mnemonic Format
Extended: O LH R1, D2 (B2) Disp
=] I O Y O I Y
|
Indexed: 1 LH[@] [#) R1,D2(X2 B2 X Al l Disp
| it A e e e e s 12|
1
4-16°

sl

bl

L

Jlene

7 i

wat

i

Sanyaly Alslanun pue suonas|jo) (eioads ‘saueiqi) AISIaALN S18lS BIUIIM

SjUSWNo0Q VSN JO U0N0900 oxAewo] '3 sawer “iq

80-/8 SIN

Th eF xog

9¢ 44

DESCRIPTION

The halfword second operand is develo
low-order zeros, ' The resulting fullwerd o
register R1. The second operand is not ch

RESULTING CONDITION CODE

.00 The fullword operand is zero
11 The fullword operand is negative

01 The fullword operand is positive (>0),

INDICATORS

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

This instruction clears the low-order half of general register R1,

LOAD MULTIPLE

ped into a ‘fl'..iHW()I‘d operand by appending 16
perand replaces the contents of general
anged. .

Address Specifications

T O O T | 1)

| Disp
I 1 D O P

Op oPX G B2
1]1]ojo]1]1]0]0 1l |
0 4 5 7 8 1112131415 16
AM Mnemonic Format
Extended: 0 LM D2 (B2)
Indexed: 1 LM[@) [#] D2(X2 82
DESCRIPTION

All eight general registers are loaded from the eight fullword locations Starting at
The general registers are loaded in ascending

the fullword, second operand address,
order,

RESULTING CONDITION CODE
The code is not changed,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

This instruction will always have halfword index alignment and will be excluded

from automatic index alignment,

4-17

62461568

sy AIsIaalun pue suonoa|jog [eads 'saueiqi] AISISAILR 31EIS BHUDIA

sjuawnooQ YSVN 40 Uolosjjo) ayAewo | ‘g sawep “iq

80-28 SIN

=k _G;F xog

9% 34

6246156B

L]

MODIFY STORAGE HALFWORD PRI —
T
Op OPX Disp* | B2 |’ Immediate Data
1jojrirjojojojol | | | | | | Lkt H 4 i o R X O W |
0 4 5 7 8. 1314 15 16 [31 :
Mnemonic - Format " © “Displacements of the form B,
MSTH D2(B2), Data . 111XXX are invalid.
DESCRIPTION. . b

Instruction bits 16 through 31 are treated as immediate data representing a 2's
complement integer. This immediate data is added to the halfword main storage. . S
operand. The result replaces the halfword main storage operand, The contents of
the general registers are not changed, Only the contents of the halfword main storage
operand location is altered, '

RESULTING CONDITION CODE
00 The result is zero z “”
11 The result is negative ’
01 The result is positive (>0), 1
Yl
INDICATORS
The overflow and carry indicators are not changed by this instruction. S
PROGRAMMING NOTE
' _l T
. The MSTH immediate data (mask) is algebraically added to the halfword operand
in main storage. Tally up and tally down is thus possible.’ i
‘ Rt i
MULTIPLY
i gt
Op . R1 R2
Of' j0jojof | frprpryofof |7 . i
0 45 78 111213 15 ‘ | >
Mnemonic © © Format - ' %
MR - R1,R2
. Op R1 p Disp” .. | B2 'L'Displace‘rnents of the form 111X XX are not valid.
ofrjojojof | | s Rl o 1| | '
0 4 5 7.8 1314 15 . e
Mnemonic Format S
M R1,D02(B2) ' st
gy

4-18

Sanyply AISIOAIUN PUE SUORDSJI0Y [e10adS ‘sauelg] AJSIBAIUN S1BIS BUUDIAA

SJUBWIND0Q YSYN J0 UoND3|[07) oxABWwO] 3 sawep]

¢ h =@F xog 80-/8 SN

9f 34

6246156B

Op R1 # B2 Address Specification
0f1 jojojof | | 1) 1ptyrjo | S O e N I |
0 4 5 78 1112 1314 1516 . 31
AM Mnemonic Format
s —_— = Disp
Extended: 0 ..M R1.D2(B2) |} b Lot |] | |
2 |
Indexed: 1 M [@] (#] R1,D2{X2,B2) X All Disp
» L] 1 S
DESCRIPTION

The product of the multiplier (the second operand) and the multiplicand (the first
operand) replaces the multiplicand. Both multiplier and multiplicand are 32-bit signed
2's complement fractions. The product is a 64-bit, signed 2's complement fraction and
occupies an even/odd register pair when the R1 field references an even-numbered gen-
eral register, When R1 is odd, only the most significant 32 bits of the product is saved
in general register R1,

RESULTING CONDITION CODE '
The code is not changed.
INDICATORS

The overflow indicator is set to one when -1 is multiplied by -1. If the overflow
indicator already contains a one, it is not altered by this instruction.

Program Interrupt — Fixed point overflov}

MULTIPLY HALFWORD

Op R1 Disp* B2 *Displacements of the form 111 XXX are not valid.
110410t { Lok i 1) 2] |
0- 4 5 7 8 131415
Mnemonic Farmat
MH R1,D2(B2)
Op R1 a B2 Address Specification
1jojrjolf | f frytfrgefe] Y S o) N (0 O 8 IO O (O O
0 4 5 78 111213 14 1516 31
AM Mnemonic Format Dis
Extended: 0 MH " R1,D2(B2) | | | I T T O O I O O |
Indexed: 1 MH[@)] [#] R1,D2(X2.B2! X |}1 | Disp
1 1 3 I I Y Y I O O |

4-19

sanlyoly Alsisnun pue suonosjjo) [eads ‘saueiqr AisiaAiun 91E1S BIYDIAN

SjUaWN20Q VSN JO UOND3|[00 0NABWO] T SaWEl “I(]

¢h @F xog 80-/8 S

9f 14

i
62461568
|
|

L
- —° ;
DESCRIPTION
The product of the halfword multiplier (the halfword second operand) and the half- o
word multiplicand (the contents of bits 0 through 15 of general register R1) replaces
the multiplicand. The productis a 32-bit signed fraction. This product is saved in
general reglster R1. i
RESULTING CONDITION CODE
At
The code is not changed.
INDICATORS
The overflow indicator is set to one when -1.is multiplied by -1, If the overflow
indicator already contains a one, it is not altered by this instruction, = -,
Program Interrupt — Fixed point overflow
MULTIPLY HALFWORD IMMEDIATE ; - Uit
op oPX R2 Immediate Data Lids
; ‘ S
1lf’l‘I‘JU1I‘I1‘I1I1|00II o T B I o I e R £ OV -
4 § 7 8 11 1213 15 16 i 31 :
Mnemonic Format “
MH! R2, Data '
DESCRIPTION i
Vit

Instruction bits 16 through 31 are treated as immediate data. This halfword of
immediate data is the multiplier. The contents of bits 0 through 15 of general register
R2 are the halfword multiplicand, The product of the multiplier and the multiplicand -
is a 32-bit signed fraction. This product is saved in general register R2.

RESULTING CONDITION CODE i RS e ‘ : G

The code is not changed.

> bl

INDICATORS
The overflow indicator is set to one when -1 is multiplied by -1. If the overflow :
indicator already contains a one, it is not altered by this instruction, b
Program Interrupt — Fixed point overflow ‘ AR l

_—
4-20

wad

80-/8 SN

h ©F xog

SjUBWN20Q YSYN JO UoN0a| |00 OYABWO] ‘3 sawer Ig

VIEER

sanIyRlY AiSIBnUN puUe suoDal|o) [e1oadg ‘saueiq ANSISAIUN 31B1S BUYIIA

e 62461568

-

MULTIPLY INTEGER HALFWORD

Yo’ .

ol A ' £
Op R1 M B2 Address Specification

L2 [l LY 1) S0 Y N ST | Ll bt bed B0 L BT[]
i ; 0 45 ' 78 111213 14 1516 31
Lim) A_[;\A_ Displacement
= _ j ol % 08 e vl 10 I O K O

f 16 31
o |

1 X A | Displacement

1 | I Y N T
e 16 31
0 | AM Mnemonic Format

i |) .
L~ Extended: 0 MIH R1, D2 (B2)

I .

| Indexed: 1 MIH [@] [#] R1,D2 (X2, B2)
| DESCRIPTION

. The product of the multiplier (the two's complement signed integer halfword
- second operand) and the two's complement signed integer halfword multiplicand (the
: | g contents of bits 0 through 15 of general register R1) replaces the multiplicand. An
_ intermediate product is formed as a 31-bit signed integer. This product is algebrai-
Fra | cally shifted left 15 places, to form a two's complement signed halfword integer

: product. This halfword product replaces bits 0 through 15 of general register Ri.
Bits 16 through 31 of general register R1 are zeroed. :

i RESULTING CONDITION CODE
The code is not changed.
o INDICATORS
i Program intermpt — Fixed point overflow

The overflow indicator is set when the upper 16 bits of the intermediate product
does not equal all ones or all zeroes, If the overflow indicator already contains a one, it
it is not altered by this instruction,

I

a PROGRAMMING NOTE

If I; J, and K are halfword operands, the equation [*J+K may be solved with the
following code: :
'
LH R1,I
\| MIH R1,J
e AH R1, K
4-21
Tt

SBAILDIY AYisIanun pue suonas|jog [enads ‘sauelg) AUSISAILN BJBIS BHUIIAM

SjUaWNO0Q YSYN J0 UCIo3(loD oNABWO]| T Sawep “iq

© h OF xog 80-48 SIN

9f 34

62461568

STORE
Op R1 Disp" " B2 “Displacements of the'torm 111XXX are not valid.
ojojrjrjoe] | o P 1| | : ' '
0 4 5 7 8 1314 15
Mnemonic Format |
ST R1,D2(B2)
Op R1 ; a B2 Address Specification
ojojrjrjof | | [1q1grgtfo | AMRNENNEEE NN
0 4 5 7 8 111213 14 15 16, 31
AM Mnemonic Format
: 1 Disp
Extended: 0 ST R1,D02,(B2)
L I T O O
’ ; |
Indexed: 1 STI@| [#] R1,D2 (X282 X All Disp
11 | | e P
DESCRIPTION

The contents of general register R1 are btored at the fullword second upemml 0-
cation. The contents of general register Rl are not changed.

RESULTING CONDITION CODE -
The code is not changed.
INDICATORS _

The overflow and carry indicators are not changed b_\,"thls instruection.

STORE HALFWORD -

Op R1 Disp* B2 “Dis ;
E placements of the form 111X XX are not val:d.
1oy |] [[|
0 4 5 7 8 13 14 15
Mnemonic Format
STH R1,02(B2)
Op R1 Al B2 Address Specification
Tjojrji L Jrfrfifjo | R S T e e e SO N
0 4 5 7 8 111213 14 15 16 3
AM Mnemonic Format b
Extended: 0 STH R1,D2 (B2) i
[1 N T T T O
Indexed: 1 STH [@] (#] R1,02 (X2,B2) X 1-_\ | Disp
[] bt Tk 4 {7

4-22

A

e

SaAIYDLY AysIaniun pue suoljoaljos) [enads 'saueiq] Ausianiun a1els BUYDIA

SjUBWN0(] SN JO UOND3]|00) ONABWO] T Sallep “i(

80-28 SIN

€ lh @F xog

9¢; 4

T

62461568

DESCRIPTION

The most significant 16 bits (bits 0 through 15) of genéral register R1 are stored
at the halfword second operand location. No other storage location is altered. The
contents of general register Rl are not changed,
RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

STORE MULTIPLE

Op OPX r\An B2 | . Address Specification
1110 19110400 F 31 1)) |) 2 e 0 (X A O O O
0 45 78 111213 14 15 16 3
AM Mnemonic Format) Disp
Extended: 0 ST™M D2(B2)
L |)] N Y Ol I
Indexed: 1 STM (@l [#] D2ix282)| Al Disp
L] | | e
jl,
DESCRIPTION

All eight general registers are stored at the eight fullword locations starting at
the fullword second operand address. The general registers are stored in ascending
order.

RESULTING CONDITION CODE
The code is not changed.
INDICATORS

The overflow and carry indicators are not changed by this instruction.

¥

PROGRAMMING NOTE

This instruction is excluded from automatic index alignment. Indexes will always
specify the halfword. i
4-23

Mg

G

sanyoly Alisianun pue suonos|jo) |ewads ‘saueigr) AUSIaAun ajels BNYIIM

SJUBWN20Q YSYN JO UoNda(j07) oxAewo] "3 sawer Ig

© |l ©F xog 80-/.8 SIN

9¢ 34

82461568

‘ SUBTRACT
|
Op R1 R2
JR T I T T R) O
f~m 3] 4 5 7 8 111213 15
| Mnemonic Format
| SR R1,R2
Op R1 Disp*® B2 *Displacements of the form 111 XXX are not valid.
0104010144 4.1 0 5 |
0 4's 7 8 ! 13 1415
] Mnemonic Format
Z S R1,D2 (B2)'
0p R : Al 82 Address Specification
0jojotoj1f 4y 1 f1p1g1gfo | lllll‘l.lllllllll
0 . 4.5 78 . 1112 1314, 15.16. i 31
ﬂ Mnemonic Format s
“Extended: 0 5 R1.02 (B2) ! :
o N (A S O S G U 0 |
Indexed: 1 s(@][#) R1,D2 (X2,82) .
X 1A] | Disp
| S T A T O O O |
DESCRIPTION

The fullword second operand is subtracted from the contents of general register
R1: The result replaces the contents of general register R1. The second operand is
not changed.

Subtraction is performed by adding the one's-complement of the second operand
and a low-order one to form the two's complement for the fullword. This fullword is
added to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (> 0).

_ ‘__/ -

Eud

i

{

(

80-/8 SIN

[y

Ch ©F xog
E - -

SUBWNI0(YSYN JO UONIS|I0) oyARWO] g Sawep “ig

9¢ 14

1

saaloly Alisianiun pue suonasjog |eads 'saueiqr] Auseaun 91BIS BILIIN

62461568

INDICATORS

The overflow indicator is set to one if the magnitude of the difference is too large B
to be represented in R1; that is, greater than 1-2731 or less than -1. If the overflow
indicator already contains a one, it is not altered by this instruction. (Overflow can be
reset by testing or by loading the PSW.) The carry indicator is set to indicate whether
or not there is a carry out of the high-order bit position of R1.

Program Interrupt — Fixed point overflow ' l |

SUBTRACT FROM STORAGE

Op R1 5 :,1 92 Adldress Speaification
o XL SR S o B LNER | NN RN
0 4 5 78 1112131415 16 31
AM Mnemonic Format
Extended: 0— SST i H?,b?(B?l Disp
|| i i et O Y 0 Y
Indexed: 1 SST (@] (=] A1 D2(x2 82 ° .
| | Dispy
I s S R S S O
DESCRIPTION

The contents of general register R1 is subtracted from the fullword second oper-
and. The result replaces the contents of the second operand location. The first oper-
and is not changed. i

RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (>0,

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too large to he
represented in the second operand location. That is, greater than 1-2-31 or less than
-1. If the overflow indicator already contains a one, it is not altered by this instruc=
tion. (Overflow can be reset by testing or by loading the PSW.) The carry indicator
is set to indicate whether or not there is a carry out of the high-order hit position of
the result.

Program Interrupt — Fixed point overflow .

SaMIDlY ANsIaAIUN pue SUORo|j0D [B19adS ‘saLelqr AUSISAILN 1EIS BNUIIA

SIUBWIN20QJ YSYN JO UoNoajjon oxAewo | '3 sawer “Iqg

Ch eF xog 80-/8 SIN

9f 14

62461568

SUBTRACT HALFWORD

Op R1 Disp* 7 IR B 'Dlsblacém%ms of the form 111 XXX are nclt valid.’
vgojooptf poy o peprge e o ‘ ,
0 4 5 7 8 SREE He h I Sl ol i
o Mnemonic Format
SH R1.D2(82)
op R1 Al 82 Address Specification |
1{ojojoq1). 4 |- Jrit]ijagn | I Y o] 0 [O s o O T
0) 4 5 7 8 111213 14 1516 . 31
AM Mnemonic Format Disp
Extended 0 SH R1,D2,(B2) Ay I | E J. L Ly
ladexed: 1 SH |@] [£] R1,D2(X2,82) X 1AL Disp
Ji] I O O A O |

DESCRIPTION

‘The halfword second operand is first developed into a fullword operand by append-
ing 16 low-order zeroes. This second operand is then subtracted from the contents of
general register R1. The result replaces the contents of general register R1. The
second halfword operand is not changed.

" Subtraction is performed by adding the ones complement of the developed fullword
operand and a low-order one to form the fullword twos complement. This fullword is
added to the first operand. '

RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (> 0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in R1; that is, greater than 1-2731 or less than -1. If the aoverflow indi-
cator already contains a one, it is not altered by this instruction. (Overflow can be
reset by testing or by loading the PSW.) The carry indicator is set to indicate whether

or not there is a carry out of the high-order bit position of R1,

Program Interrupt — Fixed point overflow

4-26

80-/8 SIN
L 1 L

L

") OF xog

SJUBLINDOQ YSVYN JO UON09||0D oxAewwo] g sawer “iq

l

9f 34

SaMIYAIY AlsIaniLn pue suoio9||o) [enads 'saLelqi] ANSISAIUN 8181 BHYDIA
{

62461568

TALLY DOWN
Op OPX -~ Disp® B2 * Displacement of the form I
oo jojojoof (|| || | 111XXX are not valid
0 45 . 78 13 14 15
Mnemonic Format
TD D2 (B2)
Op oPX f’i B2 Addiess Specifications
1joj11ejojojojof1ytqry1fo | Illj!llllllllll
0 4 5 7 8 1112 13 1415 16 31
AM Mnemonic" Format
Extended: 0 TD D2 (B2) - Disp
' | Lela b
:) |
Indexed: 1 TD[@) [#] D2 (X2, 82) X al ! Disp .
| Ldal-d ded f b
DESCRIPTION
The main storage halfword operand is decremented by one, and the result replaces .

the halfword operand. The contents of the general registers are not changed. Only
the contents of the main storage operand is altered.

RESULTING CONDITION CODE
00 The result is zero
11 The result is negative
01 The result is positive (>0),

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

with an implied operand of all ones. The MSTH instruction should be used instead

This instruction is similar to the MODIFY STORAGE HALFWORD instruction . I
of TALLY DOWN when execution speed is important. '

4-27/4-28

S3AYDIY Ausiaaiun pue suonda||o) [epads ‘saueiq AisieAlun 31BIS B

SUSWNI0Q VSN JO UORD9JI00) O3ABLIO | T SaWer “I(

80-/8 SIN

€1 oF xog.

9 44

i

E-

¢

t

{

T

[

Scetion 5

BRANCHING

Instructions are executed, by the central processing unit, primarily in the sequen-
tial order of their locations, A departure from this normal sequential operation may
occur when branching is performed. The branching instructions provide a means to
make a two-way choice, to reference a subroutine, or to repeat a segment of coding.

Branching is performed by introducing a branch address as the new instruction
address. The 19-bit branch address is generated as described under Expanded Ad-
dressing., Therefore, when a branch is taken, the branch address is used as the ad-
dress of the next instruction. If Instruction Protection Monitor is enabled, an inter-
rupt will cccur, regardless of the branch address contents, should the branch be at-
tempted and the destination location is hot storage protected. [

BRANCH AND LINK

Op " R1 R2
1 S e 0 O W D R 0 O
0 4 5 7 8 111213 15
: ; Mnemonic Format
BALR R1, R2
Op R1 ﬁ B2 Address Specification
L LI L L (ol T IR R) | G W e et 0 O £ 1 R O I
0 45 7 8 111213 14 1516 31

AM Mnemonic Format

AL 1 B2) o
Extended: 0 B R1.D2 (B2 || Ve e I O 1 N
Indexéd: ~ 1 BAL[@) | =] R1,D2. (X2 82) X i Disp
: T DO e I T e
DESCRIPTION

First, the branch address is computed. Then, the first word of the current PSW
(bits 0 - 31) is loaded into general register R1. Thus, the address of the next sequen-
tial instruction is preserved in register R1 (bits 0 - 15). The remaining bits of general
register R1 (bits 16 - 31) will contain the condition code, the carry indicator, overflow
indicator, the fixed-point overflow mask, the exponent ynderflow mask, the significance
mask, and the contents of the branch and data sector registers.

6246156B

sanlaly Aisianiun pue suonoa|jos [eads ‘saueiq Ausiaaiun 91BIS BUUDIM

80-/8 SIN

©h ef xog

SuawWIN20Q YSYN 4O Uonaa|jo) oxAewo] -3 sawep ig

9 34

62461668
\

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2, if R2 / 0. This 16-bit branch address is expanded to a 19-bit branch ad-
dress. (Sce Expanded Addressing.)

RESULTING CONDITION CODE

The code is not chﬁnged.
INDICATORS ‘ '

The overflow and ca.rry indicators are not changed by this instruction,
PROGRAMMING NOTE .

The assembly instruction BALR R1, 0 cé,uses the address (instruction counter
and BSR) of the next sequential instruction to be stored-in bits 0 through 15, and 24
through 27 of general register R1. In this particular case, no branch.is taken.

BRANCH AND INDEX

Op R1 'l:I B2 Address Specification L
Hrfojrpr g frprrgtjo | I O ! [O S O T R e
0 45 7 8 11 1213 14 15 16 P DY 31

1
AM Mnemonic Format Disp
Extended: 0 BIX R1,D2 (B2) | | Ll L]t 11
I Disp ‘
Indexed: 1 BIX (@) (#) R1,D2(X2,B2) X Al l
) by ||] S Y I T Y 0 S
DESCRIPTION '

""Bits 0 through 15 of the general register specified by R1 contain an index. Bits
16 through 31 of general register R1 contain a count. An effective address is computed
in the normal manner for the extended class. (For the indexed addressing mode, the
fullword indirect address pointer must contain zero's in bit locations 22 and 23.)
Next, ,the index is incremented by one. Then the count is decremented by one. If
the count prior to update is greafer than zero, a branch to the effective address is
taken. If the count prior to update is less than or equal to zero, no branch occurs. "

RESULTING CONDITION CODE
The code is not changed.
INDICATORS

The carry and overflow indicators are not changed by thi$ instruction.

ek

b

et

80-/18 SN
[t [o

“h @F xog

SuBWINo0Q VSN JO UoKos|jo) oyAewWwo| 3 sewer "I
[

9f 44

sanyoly Alisismun pue suonos|jo) [enads ‘saueiqr] AUsIeAlun S1elS BIYSIM

6246156 B

BRANCH ON CONDITION

Op M1 R2
RS YA BN RNTRICN
0 4 5 78 1112135 18
Mnemonic Format
BCR M1, R2
: A :
Op M1 y m| B2 Address Specifications
111107010} | L g rgrgto 8| S o O G 0 O O S O
0 4 5 78 1112 13 14 15 16 31
AM Mnemonic Format
Extended: 0 BC M1, D2 (B2) Disp
| 289 BN O P T e
Indexed: 1 BCI@) [=] M1, D2 (X2 B2) X H Disp
I I I A I
DESCRIPTION

This instruction tests the PSW condition code status hits. Instruction bits 5 through

T (the M1 field) specify which condition code (hits 16 and 17 of the PSW) is to he tested,

Instruction bit 5 tests for a code equal 00, instruction bit ¢ tests for a code equal 11,

and instruction bit-7 tests for a code equal 01. Whenever the condition code test is

successful, the branch is taken. Thus, when more than one bit of the M1 field is a one,

the branch is taken for any successful test. (e.g8., MI = 111 always branches, M1 = 000

never branches.) N |
The branch address is contained in bits 0 through 15 of general register R2 for

" the RR format. This 16-bit branch address is ‘expanded to a 19-bit branch address,

(See Expanded Addressing.)

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logieal, test, and compare in-
structions, and otherwise remains unchanged unless the program status word is*altered,
The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

5-3

80-/8 SN

T hH@eF xog

SjuBWINO0Q YSYN JO UONY3Jj070) oyAewo]] sawep “ig

26 3

sanlyasy AISIsAUN pue suonoao) |enads 'saueiqi] AJSISAILN S1EIS BIUDIA

62461568

PROGRAMMING NOTE

The result and test conditions are shown as follows:

M1 Field (Test)
(5) Gy | (M
Arithmetic & Tally '
Zero 2 s A 0 0
Negative 0 1 0
; Positive (>0) | 0 | o 1
I Logical
l Zelro 1 0
Not Zero 0 1 0
"Test
Zero P S | 0 0
Mixed i 0 1
All ones 0 0 1
Comgére
Equal il 0 0
03 <09 0 . 1 - 0

It is possible to combine tests. For example, following the MSTH mstructmn an
M1 field of 1 0 1 specifies branch on non-negative (zero or positive).

BRANCH ON CONDITION BACKWARD

Op M1 Disp* : *Displacements of the form
111 I°1 1'11 | | Y 1lo 111XXX are not valid.
0 4 5 7 8 ; 13 14 15
Mnemonic Format
Bcs M1, 02
"5-4

sanlyoly Ausisniun pue suonas|o) [eads ‘sauelqr) Aisieaiun 3JB1S BUYDIAN

SJUBWND0Q YSYN JO U0ND3||00) ojfewo] 3 sawep I

© h @F xog

R

t

80-/8 SW

t

[

{

9f 4

62461568

DESCRIPTION ‘

|

This instruction tests the PSW condition code status bits. Instruction bits 5 through

7 (the M1 field) specify which condition qode (bits 16 and 17 of the PSW) is to be tested.
Instruction bit 5 tests for a code equal 00, instruction bit 6 tests for a code equal 115
and instruction bit 7 tests for a code equal 01. Whenever the condition code test is
successful, the branch is taken hy subtracting the Disp from the updated IC. Thus,
wher-l'more'than one bit of the M1 field is a one, the branch is taken for any successful
test (e.g., M1=111 always branches). '

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is nol changed by this instruction.

INDICATORS

The overflow and carry indicators are notv changed by this instruction.

BRANCH ON CONDITION (EXTENDED)

Op M1 R2
B ISR o L o0 IR O D .2 I O
0 4 5 78 11 1213 15
Mnemonic Format
BCRE M1, R2
DESCRIPTION

This instruction tests the PSW condition code status bits. Instruction bits 5 through
7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is to be tested.
Instruction bit 5 tests for a code equal 00, instruction bit 6 tests for a code equal 11,
and instruction bit-7 tests for a code equal 01. Whenever the condition code test is suc-
cesful, the branch is taken. Thus, when more than one bit of the M1 field is a one, the

branch is taken for any successful test. (e.g., M1 = 111 always branches,)

When the branch is taken, PSW bits 0 through 15 and bits 24 through 31 are replaced
by corresponding bits in general register R2.

SaAIDIY AlISIBAIUN pue suooa||o) [enads 'seueiq] AlsiaAlun S)B1S BUYIIAL

SjuBWIN20Q YSYN JO U0ND8||00) oyABWO | " SaWer "IQ

62461568

80-/8 SIN

T h ©F xog

9F 44

RESULTING CONDITION CODE

The condition code was set followmg all arithmetic, logical, test and compare
instructions, and otherwise remains unchanged unless the program ‘status word is
altered. The code is not changed by this instructlon
INDICATORS

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTE

This instruction is similar to the RR version of the BRANCH ON CONDITION in-

struction. It is provided to facilitate subroutine returns across sector boundaries after
general register R2 had been initialized by the use of the BRANCH AND LINK instruction,

BRANCH ON CONDITION FORWARD

Op M1 Disp* *Displacements of the form
111 XXX are not valid.
LELE N e I I I Y :
0 4 5 7 8 13 14 15
Mnemionic * Format
BCF M1, D2
DESCRIPTION

This instruction 'tlests the PSW condition code status bits. Instruction bits 5 through
7 (the M1 field) specify which condition code (bits. 16 and 17 of the PSW) isto be tested,
Instruction bit 5 tests for a code equal 00, instruction hil 6 tests for a code equal 11,
and instruction bit 7 tests for a code equal 01. Whenever the condition code test is
successful, the branch is taken by adding the Disp to the updated IC. Thus, when more
than one bit of the M1 field is a one, the branch is taken for any successful test (e.g.
Mi1=111 always branches).

RESULTING CONDITION CODE
The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is

altered. The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

5-6

i

]

)

sl

-

Sonlyaly Aisianiun pue suonos|jo) |enads ‘saueiqr] Aisianun sjels BIYSIAN

SHUBWNO0Q WYSYN JO Uonoa|jon) oxfewo | '3 sawer “Ig

9 44

80-/48 SIN .

l

s

©h ©F xog
{

t

l

t

BRANCH ON COUNT

Op R1 .R2
b o 00 W T T T L B
0 4 5 78 111213 15
Mnemonic Format
BCTR R1,R2
Op ‘R1 :1 B2 Address Specification
proejnol oy 11jr1jo | B T Y Y I O e Y
0 4 5 7 8 1112 1314 15 16 . 31
AM Mnemonic Format
Extended: 0 BCT R1,D2 (B2) Disp
L1 I S |
. i |
indexed: 1 BCT [@] [] R1,D2 (X2,82) X lali Disp
L1 Y I 1 O
DESCRIPTION-

First, the branch address is computed. The branch address is contained in bits
0 through 15 of general register R2 for the RR format. This 16-bit branch address is
expanded to a 19-bit branch address., (See Expanded Addressing.)

Then, the contents of bits 0 through 15 of general register R1 are reduced by one.
When the result is zero, the next sequential instruction is executed in the normal man-
ner. When the result is not zero, the instruction counter is loaded with the branch ad-
dress.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS
The overflow and carry indicators are not changed by this instruction,
PROGRAMMING NOTE

An initial count of one results in zero, and no branch takes place. An initial count
of zero results in a minus one and causes branching to be executed,

6246156B

Sanuoly AsIsaiun pue suonosjo) [eads ‘saueiqr] Alsisnun slels BIYSIAA

SUBWND0Q YSYN JO UOD3[|0D) O¥ABWO] T SeWer I]

80-/8 SIN

T/ eE xog

9f 34

62461568

BRANCH ON COUNT BACKWARD

Op R1 Disp” | *Displacements of the form 111 XXX are not valid..
b LB T Y 0 O S S S 1
o 4 5 7 8 1314 15~)
- Mnemonic Format
BCTB R1,D2
DESCRIPTION

First, the branch address is formed by subtracting the displacement from the up-
dated instruction counter. Then, the contents of bits 0 through 15 of general register
R1 are reduced by one. When the result is zero, the next sequential instruction is
executed in the normal manner. When the result is not zero, the instruction counter
is loaded with the branch address.

RESULTING CONDITION CODE

The code is not chanéecl.
INDICATORS |

The overflow und. carry indicators arc notl changed by this instruction.
PROGRAMMING NOTE

An initial count of one results in zero, and no branch takes place. An initial count
of zero results in a minus one and causes branching to be executed,

BRANCH ON OVERFLOW AND CARRY

Op M1 R2
1Jrjoqopry-g 1 fiyrqrjojol-q |
0 4 5 7 8 11 1213 15
Mnemonic Format
BVCR M1,R2
Op M1 ICI B2 Address Specification
LI S o L %) R % | R e O) I 5 0 o
0 4 5 7 8 1112 1314 15 186 ; 3
AM Mnemonic Format
. Disp
Extended: 0 BVC M1,02,(82) . g
|| O O I
Indexed: 1 BVCI[@] [=] M1,D2(X2,B2) I .
X A i Disp
1 | A Y T O O O
-5-8

Gk

s

L

futd

62461568

DESCRIPTION

This instruction tests the PSW overflow and carry indicator status bits. The M1
field, instruction bits 5 through 7 specifies the test. Instruction bit 6 is tested against
PSW bit 18 (carry); and instruction bit 7 is tested against PSW bit 19 (overflow); When-
ever a specified bit of the PSW is a one, the test is successful and the branch is taken.
Thus, when both indicators are tested by M1 = 011, the branch is taken if either indicator
contains a one. A one in instruction bit 5 inverts the logic, causing bits 6 and 7 to test
the PSW bits for zero.

For the RR format, the branch address is contained in bits 0 through 15 of general

register R2, This 16-bit branch address is expanded to a 19-bit branch address, (See
Expanded Addressing,) ; ;

RESULTING CONDITION CODE

SaAloly AlISIanun pue suolaa||o) [eiads ‘seuelqr] AiSIanun a1els BUHYIIAA

SJUBWIND0Q WSYN JO U0ND9|j00) oyABWO]| 3 sawer "IQ

/8 SW

80

h Q:f' xog

o)
‘\.
®

2f 44

The code is not changed.

INDICATORS

The overflow indicator is set 0 by this instruction. The carry indicator is not
changed by this instruction.

PROGRAMMING NOTE

The possiblé combinations of test copditions are shown as follows:

M1 Field Test Conditions
567
Qoo Branch never taken (no operation)
001 Branch on Overflow
010 Branch on Carry
011 Branch either on Overflow or on Carry
100 Branch
101 ° Branch On No Overflow
110 Branch On No Carry
111

Branch On No Overflow and No Carry

BRANCH ON OVERFLOW AND CARRY FORWARD

Op M1 Disp* *Displacements of the form
1]1|0,111 oy st g K| | 0[1 111XXX are not valid.
0 A76..:7 8 13 14 15
Mnemonic . Format
BVCF M1, D2
5-9

SaAlyoly AlIsIaniun pue suonos||o) [enads ‘saueiq Ajsiaaun 3)e1S BHUDIAA

sjuswiNoog YSYN Jo Uonaa|jo) oxAewo) ‘3 sawep “Ig

Chegxeg g0/8 SW

9 44

62461568

DESCRIPTION

This mstructmn tests the PSW overflow and carry mdlcator status blts. InBtruc-
tion bits 5 through 7 spemfy the test. Instruction bit 6 is tested against PSW bit 18,
and 1nstruct10n bit 7 is tested against PSW bit 19, Whenever a.specified bit of the PSW
is a one, the test is successful and the branch is taken by adding the Disp to the updated
IC. Thus, when both indicators are tested by Ml 011, the branch is taken if either
indicator contains a one. A one in instruction bit 5 inverts the logic, -causing bits

. 6 and 7 to test the PSW bits for zero.

The branch addreas is formed by adding the displacement to the updated instruection
counter.

RESULTING CONDITION CODE
The code is not changed.
INDICATORS

The overflow indicator is set 0 by this mstructwn The carry md:cator is not
changed by this instruction.

PROGRAMMING NOTE

' The possible combinations of test conditions are shown as follows:

M1 Field Test Conditions
567
000 4 Branch never taken (no operation)
001 Branch on Overflow
010 Branch on Carry
113 o 1 _ Branch either on Overflow or on Carry
100 5 Branch
101 Branch On.No Overflow
110 Branch On No Carry
111 Branch On No Overflow and No Carry
5-10

iy

sanyoly AUsIaniun pue suoiioaljo) [eads ‘saueiqr] AISIaAN a1e1S BUYIA

S g
5 -
3
& oo
m ~J
| s
o O
3 Q0
9] A
=
o
O et
2 .
2
g-O
g X
o amea
=N
> Q
n o~
B -
Q
c
3
[¢]
=
m-l'l"'"‘
“r
L& W

P

-_ _fﬁgl‘___. PRI

Scetion 6

SHIFT OPERATIONS

Shift instructions use the halfword format. The shift count is defined by the count

field, as shown in Figure 6-1.

Instruction Bits 8 through 13

Shift Count Determined By

000000

000001-110111

111000
111001
111010
111011

111100

111101
111110
111111

(Zero)

(1 through 55)
(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

No Operation

Instruction bits 8 through 13

Bits 10 through 15 of general register 0
Bits 10 through 15 of general register 1
Bits 10 through 15 of general register 2
Bits 10 through 15 of general register 3
Bits 10 t'hrough 15 of general register 4
Bits 10 through 15 of general register 5
Bits 10 through 15 of general register 6
Bits 10 through 15 of general register 7

)

Figure

6-1, Shift Count

If the shift count is 56 through 63, bits 10 through 15 of the corresponding general
register (0 through 7) designate the shift count. When specified using the count field,
the maximum shift count allowed for shift operations is 55. Shifts of up to 63 positions
are allowed, when general register 0 through 7 is used to specify a computed shift.

NORMALIZE AND COUNT

Op

111111010

R1

i B LA R |

R2
]

0

4 5

7

8 1112 13

Mnemonic Format

NCT R1,R2

15

62461568

sanory Alsianun pue suonaajjog [eads ‘seueiqr] AUSISAU S1EIS BHUIIM

SIUBWINDO(Q YSYN JO UoNoa|jon) oxkewo | g sawer "Iq

80-.8 S

: 62461568

DESCRIPTION
First, all bits (0 through 31) of general register R1 are set to zero. For each
position that the contents of general register R2 are shifted, to the left, the high-order
half of general register R1 bits (0 through 15) is incremented by 1. The shift terminates
when bit position 0 = bit position 1 of general register R2. If the contents of general
register R2 are initially zero, a count of zero is entered in general register R1. Zeros
are entered ihto the vacated low-order bits of gereral register R2. Upon completion
"of this instruction, the count is contained in bits 0 through 15 of general register R1.

RESULTING CONDITION CODE
The code is not changed by this instruction. -

INDICATORS .

The carry indicator will be zero at the end of the operation, . if general register R2
contains zero. The carry indicator will be one at the end of the operation, if the shift
is terminated by the detection of bit position one not equal to bit position 0 of the gen-
eral register R2, The overflow indicator is not changed by this instruction.

PROGRAMMING NOTE

If the initial condition of general register R2 was such that bit position 0 is not
equal to bit position 1, the count in the high-order bit of general register R1 is zero,
the carry indicator is one; and there is no shift, If the initial condition of R2 was all
ones, the count is 31, the carry is one and R2 contains 80000000,

This instruction is executed as shown below in Figure 6-2.

START

R2's
Reser Carry Position 0
Indicator =

Ri=— g

Positien 1

Set Carry
Indicator A Shift R2
To One = Lett One
R1=—Count ; ey

(Operation) Increment Count
Completed By One

Figure 6-2, Normalize and Count Execution

6-2

— 4

b

ikt

b

SanI2LY AlsIanun pue suoios|jo) [e0ads ‘seueigr] AISISAIUN S1BIS BUUIIAL

SJUSWIN0Q YSYN J0 LoNo3||07) oyAewo] 3 sawep ‘I

[

8?'18 ?W

h 6“? xog

-
N

I

62461568

SHIFT LEFT LOGICAL

Op R1 ~ Count
14 SR A A B | 1% 5 O I M)
0 4 5 7 8 13 14 15
‘ Mnemonic Format
SLL R1,Count
DESCRIPTION

The contents of general registér R1 are shifted left, as specified by the shift count
Figure 6-1. Zeros are entered into the vacated low-order bits of general register R1,
Bits leaving the high-order hit (bit 0 of genaral register R1) position are entered in the
carry indicator. (See indicators below.) Bits shifted out of the carry indicator are
lost. Only the contents of general register R1 are changed,

RESULTING CONDITION CODE
The code is not changed by this instruction.
INDICATORS
The carry indicator is set to one for each one, and to zero for each zero, shifted
left from the high-order position of general register R1. The overflow indicator is
not changed by this instruction. tr 3
PROGRAMMING NOTE
When the shift count n is greater than 31, then the result of the shift of general I

register R1 is zero.

SHIFT LEFT DOUBLE LOGICAL

Op R1 Count

o %

L T | R)
0 4 5 7 8 : 13 14 15

Mnemonic Format

SLOL R1,Count

6-3

SanIyRlY ANSIBNIUN PUE SUOND9J(0D [e1ads ‘seuriqr] AUSISAILN B181S BHUDIA

SjUaWN20(Q YSYN JO UoRos|jo) oxfewo) "3 sswer g

¢ h @F xog 80-/8 SIN

9F 414

62461568

DESCRIPTION

The contents of the even/odd pair of general registers (R1 and R1 @ 1) are shifted
left as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position zero, of general register R1 (® 1, are entered
into bit position 31 of general register R1. Zeros are entered .into the vacated low-order
bits of general register R1 @ 1. Bits leaving the high-order bit position (bit position 0
of general register R1) are shifted into the carry indicator. Bits shifted out of the
carry indicator are lost.

RESULTING CONDITION CODE
The code is not changed by this instruction,
INDICATORS
The carry indicator is set to one for each one, and to zero:for each zero, shifted

left from the high-order bit position of general register R1. The overflow indicator is
not changed by this instruction.

SHIFT RIGHT ARITHMETIC '

" op R1 Count

Lok o | e A] 0 e R
0 4 5 7 8B 1314 15
Mnemonic Format

i+ SRA R1,Count

DESCRIPTION

The contents of general register R1 are shifted right the number of places indi-
cated by the shift count. Bits equal to the sign are entered into vacated high-order bit
positions. Bits shifted out of bit position 31 of general register R1 are lost,
RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

6-4

[

vk

wrak

62461568

PROGRAMMING NOTE

A shift right of n' is'equivalent to dividing the.contents of general register R1 by
an. ; A g

SHIFT RIGHT DOUBLE ARITHMETIC '

{ ' Op R1 Count

RN TR | Ll 1 11 lols
0 4 5 7 8 13 141

Mnemonic . Format

SRDA R1,Count

DESCRIPTION

P i .
The contents of an even/odd pair of general registers (R1 and R1 @ 1) are shifted .
right as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31, of general register R1, are entered into bit
- position 0 of general register R1 G—) 1. Bits equal to the sign are entered into vacated
N high-order bit positions.’ Bits shifted out of bit position 31 of general register R1 @ 1
- are lost. :)

sanlyoly Ausisaiun pue suoias||og) [e10ads ‘saueliq] AISIaAUN 91e1S BIYDIAA

SJUBWN20Q YSYN JO UONID||0D) ONABLIO] ‘T SSLWE(“I(

L8 SW

=

Gh©eZxog , 80

9 33

L 2

RESULTING CONDITION CODE

The code is not changed by this instruction.
d

_ INDICATORS

SHIFT RIGHT DOUBLE LOGICAL

Op R1 Count

LI L L T O I R R [}
0 4 5 PR 13 14 15
{ Mnemonic Format

SRDL R1,Count

6-5

The overflow and carry indicators are not changed by this instruction.

SaAlaly Alisianiun pue suoias|jog [eads 'sauelqr] AlSIanun 2181 BIUDIA

SUaWN20(YSYN JO UONI3|I00) OYABWO |] Sawep "I

80-48 SIN

Tl ©F xog

9 44

6246156B

| DESCRIPTION ey AT

The contents of an even/odd pair of general registers (R1 and R1 @ 1) are shifted
right, as a 64-bit register.. The number of positions shifted is specified by the shift
count. Zeros are entered into all vacated high-order bit positions. Bits shifted out
of bit position 31, of general register R1, dre entered into bit position 0 of general
register R1 () 1. Bits shofted out of bit position 31 of general register R1 (¥) 1 are
lost.

The code is not changed by this instruction,
INDICATORS
The overflow and carry indicators are not changed by this instruction.

SHIFT RIGHT LOGICAL

Op AR coue T
L R T W Y W e O B - 7
0 I N " 1314 15
g Mnemonic Format
SRL R1,Count
DESCRIPTION

The contents of general register R1 are shifted right the number of places indi-

- cated by the shift count. Zeros are entered into all vacated high-order bit positions.

Bits shifted out of bit position 31 of general register R1 are lost.
RESULTING CONDITION CODE
The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are not éhangéﬁiby”th(i's instruction,

)

[

et

wkd

il

saAlyaly Alisiamun pue suonos|jog (e0ads ‘saueigr] Aisianiun a1els enydip

SJUSWIND0Q YSYN 40 UoNoajj0) oxAewo] g sawep “iQ

I
&

80-/8 S

©},0F xog
; {

62461568
SHIFT RIGHT AND ROTATE
Op R1 Count
L) L1 11 il
0 : 4 5 7 "13.14 15
Mnemonic . ‘Format
SRR R1.Count -
DESCRIPTION
The contents of general register R1 are shifted right the number of places indi-
cated by the shift count, Bits shifted out of bit position 31 are entered into bit posi-
tion 0, The general register thus becomes a circular register and no bits are lost,
RESULTING CONDITION CODE
The code is not changed by this iﬁstruction.
INDICATORS
The overflow and carry indicators are not changed by this instruction.
SHIFT RIGHT DOUBLE AND ROTATE
oo | Rt Count
LN RIS | L1111 11l
0 4 5 7 8 13 141
Mnemonic Format
SRDR R1,Count
DESCRIPTION
The contents of an even/odd pair of general registers (R1 and R1(@1) are shifted ‘ .

.right, as a 64-bit register. The number of positions shifted is specified by the shift

count. Bits shifted out of bit position 31 of general register R1 are entered into bit _
position 0 of general register R1(®1. Bits shifted out of bit position 31 of general

register Rl@l are entered into bit position 0 of general register R1. Thus, the two l
registers become a single, circular, 64-bit register, and no bits are lost,

.

sanILRLY Alsianiun pue suoiejog [eads ‘sauelqr] Aysianun a1e1s BHUDIAN

SjusWINIOQ YSYN 4O UOR03||0D oykeLo] g sawer g

80-/8 SIN

T h oF xog

4 dd

62461568

RESULTING CONDITION CODE

The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are 'not changed by this instriction.

PROGRAMMING NOTE

When the shift count equals 32, the contents of general register R1 and R1 @ 1

are exchanged.

6-8

wd

e

Rt

il

2wl

saAlyDly Auslanun pue suonoa|og |eoads ‘saueiqr] AlSIsMuUn S181S BIYDIA

SuBWN20Q YSYN JO UoNoajjon) oyABWO]| '3 sawer Qg

L8 SW

“

80

]

Ch @J‘xog ;

-
L
S

2f 34,

62461568

Section 7

LOGICAL OPERATIONS

A set of'instructions is provided for the logical manipulation of data, Fullword
operands consist of 32 bits. Halfword immediate and storage operands are developed

into fullword operands by appending 16 low-order zeros. - The sign position is treated
in the same manner as any other position.

There is no interdependence hetween bits for logical operations: that is, the re-
sult in position i is independent of bit j in either operand when i # j,

b

AND
Op R1 R2
0jof1]o]o] | 1ali1folol | |
0 4 5 7 8 13 15
Mnemonic Format
NR R1,R2
Op . R1 Disp* B2 * Displacements of the form
; 111X XX are not valid,
2 M T e Y R A 1 2
0 45 /7 8 111213 14 15
Mnemonic Format
N R1,D2 (B2)
Op R1 ‘I::I B2 Address Specification
ojojrjojof | | Tjirprg1jo | ||I|I[|l|l|lil|
0 4 5 7 8 1112 13 14 15 16

AM Mnemonic Format
Extended: 0 N

Indexed: 1 N [@] [#] R1,D2 (X2, B2)

LA A 0 N T

7-1

saAyoly AlsIaaiun pue suonoa|jo) [eadsg ‘seuelqi AISISAIUN S18IS BUHYIIAN

SUBIN0Q YSVYN J0 UORIS|j00) oxfewo) 3 sawep "IQ

80-/8 SIN

) ©F xog

]
¥

C"-

9 14

6246156

DESCRIPTION

The logical product (AND), of the fullword second operand and the contents of general
register R1, is formed bit-by-bit. The result replaces the contents of general register

R1. The second operand is not changed. The following table defines the AND operation.

AND
Storage 1100
R1 £ e 1 | 01 0
Result R] 0

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

INDICATORS
The overflow and carry indicators are tiot changed by this instruction.

AND HALFWORD IMMEDIATE

Op oPX R2 . " Immediate Data

LS N 1 O O O O S B I O N O
0 45 78 111213 15,16 TR ST -

Mnemonic Format

NHI R2,Data

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data, The halfword im-,
mediate data is first developed.into a fullword by appending 16 low-order: zeros, The
logical product (AND) of this fullword operand and the contents of general register R2
is formed bit-by-bit. The result replaces the contents of general register R2, The
immediate operand is not changed, The following table defines the AND operation,

AND
Immediate Data | 1100

R2 1010

Result 1000

7-2

et

sl

]

saAyoly Alsianiun pue suopoalo) [eads ‘sauelqi Aysieaun 2Je1S BHYIIAN

SjusWN20(YSYN JO UORI9||00) O3ABLIO| " Sawep “IQ

I

80-/8 SIN

-

{

¥ xog

) &

C/
<

3

(24615613

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

INDICATORS

S

The overflow and carry indicators ar"e not changed by this instruction.
PROGRAMMING NOTE
The least-significant 16 bits of the result {bits 16 through 31) will always be zero,

AND IMMEDIATE WITH STORAGE

Op oPX Disp* B2 | - Immediate Data
VIOV YEOF v 08 171 |] | Illlllillllllll
0 4 5 78 1314 16 16 31

Mnemonic Format * Displaqements of the form

NIST D2(B2), Data 111)()0(are invalid,

DESCRIPTION

Bits 16 through 31 of this-instruction are treated as halfword immediate data. The
logical product (AND) of this immediate data and the halfword main storage operand is
formed bit by bit, The result replaces the halfword main storage operand,

RESULTING CONDITION CODE

00 The result is zero
11 The rgsult is not zero.

INDICATORS
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTE

The zero bits in the immediate d#ta specify the bits of the halfword first operand
that are set to zero. Zero bits in the halfword main storage operand remain unaltered,

SaAYDIY ASIOAIUN pUB SUONDa[0Y [eioads ‘sauelq] Aysisaiun a18lS BIUDIAN

SUBWINI0Q YSYN JO UOND3||00) O¥ABWO) "] Sawep “I]

80-/8 SIN

% xog

Th
~ L

9f 44

|
62461568

AND TO STORAGE

A "
Op R1 m| B2 Address Specification

ojojrjojof | | fafafrfrfs | I 1 bade fb Al ki

0 4 5 7 8 1112 13 141516 31
y AM Mnemonic Format .

Extended: 0 NST R1,D2(B2) Disp

| S I I

Indexed: 1 NST [@] (#] R1,D2{X2,82) iV Diso

' : L S R K e
DESCRIPTION

The logical product (AND) of the fullword: second operand-and the contents of'gen-
eral register R1 is formed bit-by-bit. The result replaces the second operand. The
contents of the general register is not changed. The following table defines the AND

operation. '

AND

Storage
R
Result

1100
1010}
1000

RESULTING CONDITION CODE

i

_ 00 The result is zero
11 The result is not zero.

INDICATORS -

The overflow and carry indicators are not changed by this instruction.

7-4

e

SaAlyaly Ajsianun pue suoioa)jo) [enads ‘saueiqr] AISIaAlun s1elS BILDIA

I 3

I

80728 SN

i

__@,ﬁz,ma.__

SJUSWND0(] YSYN JO UONI3||07) OYABWO| "3 Sawep “iq

;HM({J:/J

i

EXCLUSIVE OR

Op R1 R2
opngrpnod Lo tajajojol | |
0 4 5 78 13 15
Mnemonic Format
XR R1, R2
Op " R1 Disp* B2 * Displacements of the form
0l1 l1l1.l 0 | [| I Fid | 111XXX are not valid.
0 4 5 7 8 1112 1314 15
Mnemonic Format
X R1,D2{B2)
A S
Op R1 M| B2 Address Specification
O vyt1i1of Jrytyrpryo | N A O O O I P G OO (O
0 4 5 78 - 11121314 16 16 31
AM Mnemonic ~ Format
Extended: 0 R1,D2(B2) Disp
| I |
3 X
Indexed 1 (@) (#] R1,D2(X2,B2} X o Disp
s Bl A i
DESCRIPTION

The modulo-two sum (Exclusive OR), of the fullword second operand and the con-
tents of general register R1, is formed bit-by-bit. The result replaces the contents
of general register R1. The second operand is not changed. The following table de-

fines the Exclusive OR operation.

Exclusive OR

Storage
R1
Result

1100
1010
0110

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

7-5

62461568

SaAIyolY AlSIBAIUN pUE SUORo9||0]) [eoadg ‘sauelq] Alsiaaun s1e1g BIYSIAL

SJUBWIND0Q YSYN JO UoNd8||00) ojyAewo] 3 sawep Iq -

@F xog

]

80-/8 SIN

F 2N
o

L¢

9% 44

62461568

INDICATORS

The overflow and carry indicators are not changed by thi; instruction. P
PROGRAMMING NOTE

The one's complement of the general register is obtained when the second operand
contains all ones. _— ' !

EXCLUSIVE OR HAL FWORD IMMEDIATE

Op OPX R2 Imrne;llatg Data o
R s Lk 0 2 N 1 Y 2 6
0 4 5 7 8) 111213 15 16 : o 31

“ Mnemomic' ‘Format

XHI R2,Data

" DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. The halfword of im-
mediate data is first developed into a fullword by appending 16 low-order zeros, The
‘modulo-two sum (Exclusive OR) of this fullword operand and contents of general reg-
ister R2 is formed bit-by-bit. The result replaces the contents of general register

R2. The immediate operand is not changed. The following table defines the Exclusive
OR operation, .

i

‘ Exclusive OR

Immediate Data 1100
R2 ' 1010
Result ’ 0110

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

7-6

SeAldly Alsianlun pue suonas||o) [ernads 'saueiqr] AISISAIUN S)B1S BUUDIAM

SuAWN20Q YSYN JO UoNoajjon oxAewo) ‘3 sswer Iq

o7 xoa

T/
.

=
(0 oo
oo
~J

[

80

7

767 3

o S

EXCLUSIVE OR IMMEDIATE WITH STORAGE

Op OPX Disp* B2 : Immediate Data
i 1290)y RESTLCIY O NO S P WY) e L0 e 0 e O e L O
0 45 7 8 13 14 15 16 : : 31
Mnemonic Format * Displacements of the form
111X XX are invalid.
XIST D2(B2),Data
DESCRIPTION

Bits 16 through 31 of this instruction are treated as halfword immediate data.
The modulo-two sum (Exclusive OR) of this halfword immediate data and the halfword
main storage operand is formed bit-by-bit. The result replaces the halfword main
storage operand.

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

INDICATORS
The overflow and carry indicators are not changed by this instruction.

EXCLUSIVE OR TO STORAGE

A
Op R1 g M| B2 Address Specification :
O L LRI Y g 1 162 S P R g o o e 72 O
0 4 5 78 111213 14 1516 31
: AM Mnemonic Format
Extended: [1] XST R1,D2(B2) Disp)
L1 | N T O O
Indexed: 1 XST[@] [#] R1,02(X2,82) x il Disp
- 5 7 e R W i i 06 Ny e M
7-7

62461568

Sanyaly AisIsaun pue suooaljo) [enadg ‘saueiqr AISISAIUN 81BIS BIYOIM

SJUBWIND0(] YSYN JO UORD3[|0D) oxABWO] T sawer “I]

80-/8 SIN

94 44

Che¥ xog

6246156B

DESCRIPTION

The modulo-two sum (Exclusive OR) of the fullword second operand and the con-,
tents of general register R1 is formed bit-by-bit. The result replaces the second

operand. The contents of the general register is not changed.

fines the Exclusive OR operation,

Exclusive OR

Storage

R1

Result

1100
1010

0110

RESULTING CONDITION CODE

00 The result is zero
‘1‘1 : The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

The following table de-

OR
. Op R1 : R2
010 v 1O vk o L VELLALORO) o
0 4 5 7 8 111213 15
Mnemonic Format
OR R1,R2
Op ’R1 Disp* " B2 *- Displacements of the form
0[0}1]0}1 | | L Lyl | T11XXX are not valid.
.0 4 5 7 8 1314 15
Mner;wnic Format
0 R1,02{B2)
. Al :
Op R1 M| B2) Address Specification
ofojrjojrj | J l1f1]r]rjo | A O 5 Y ol i] S0 O [R 5
0 4 5 7 8 1112 1314 15 16 31
AM Mnemonic Format
Extended: 0 0 R1,D2(B2) Disp
I | 5 S (T)) (Y (Y |
Indexed: 1 0 [@] [#] R1,D2(X2,82) X 1|1 Disp
ol I T O O

7-8

il

sl

i

SaNIYRUY ANSIoAIUN puE suoialjo) [e10adg 'saueIqr] AISISAIUN S1BIS BIYDIAL

S
{
- \'b-—"
(%
i
i
!
T
;.!
o
£
g P
3
7]
[o]
e
o O
3 o [
Q
~
.3
Q 4
®)
o_ ad
g &
S X
3
=Y\
Z Al
5 %
>L
g/ -
c |
3 [
1]
E_ |
w
LN
n
Q N
et
G
sy

62461568

DESCRIPTION

The logical sum (OR) of the fullword second operand and the contents of general
register R1 is formed bit-by-bit. The result replaces the contents of general register
R1l. The second operand is not changed. The following table defines the OR operation. ;

OR
Storage 1100
R1 1010

- | Result - 1110

RESULTING CONDITION CODE

00 The result is zero
.11 .The result is not zero. -

INDICATORS
The overflow and carry indicators dre not changed by this instruction.

OR HALFWORD IMMEDIATE

Op OPX . R2 ' Immediate Data
110 L0490 140010 Y 10104 .| S G0 N 5) (08 (G I S
0 45 7 8 111213 15 16 31

_l
Mnemonic Format
OHI R2,Data,

DESCRIPTION :

_Instruction bits 16 through 31 are treated as immediate data. The halfword of im-
mediate data is first developed into a fullword operand by appending 16 low-order zeroes.
The logical sum (OR) of the fullword operand and the contents of general register R2 is
formed bit-by-bit. The result replaces the contents of general register R2, The im-
mediate operand is not changed. The following table defines the OR operation.

OR
Immediate Data 1100
Ha 11010
Result 1110

7-9

sanIyDly AISIaAUN pUE sUoNoa|oD) [ernadg 'sauelq] AUSIaAun S1B1S BUUDIAN

SUBLUND0QJ YSYN JO U0I09Jj00) oxAeLO| ' sawep "I

Th ©F xog

8028 SW

67 44

6246156B

RESULTING CONDITION CODE

00 The result is zero . .
11 The result is not zero, .

INDICATORS
The overflow and carry indicators are not changed by this instruction:

OR TO STORAGE

Op R1 . y Y\An B2 | g Address Specification
o e LA S AR AR | Lo b bsdirds Ledadeidod 90 desgn
0 4 5 7 8 1112 13 14 15 16 : 31
AM Mnemanic Format
Extended: [} OST R1,D02(B2) . Disp _
L I T T (|
Indexed: 1 OST [@] [#] R1,D2(X2,82) ¢ R 1 R e " ‘Disp
[i N e O e L2 T

DESCRIPTION

~The logical sum (OR) of the fullword second operand and the contents of general
register Rl is formed bit-by-bit. The result replaces the second operand. The con-
tents of general register R1 are not changed.' The following table defines the OR op-
eration. y

OR)
Storage 1100
R1 1010
'| Result ‘ 1110

RESULTING CONDITION CODE ‘

00 The result is zerb
11 The result is not zero.,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

SoMalY AsIanun pue suonas|jo) [enads ‘seueigi] AisIsAiun a1elS BNUdIA

SJUSLLINJOQ YSYN JO UoNDaj|0g oxAeLIO] "J sawer "I

=y

E-

« 8048 SW .

e @F xog

9¢r 4.

62461568

SEARCH UNDER MASK

Op R1 DEPREI | S (- 1 i : 5
LIOIOPLIY 3 piping by obish iy vpgunti s £
0 v 4B LA b R R s e

Mnemonic Format
SUM R1, R2

DESCRIPTION -

A variable search of an array under control of fields in'a mask for specific bit pat-
terns is performed. A two's complement 16-bit integer count is contained in bits 0
through 15 of the general register specified by R2. (This must bé a positive number for
correct execution of this instruction). A T ; '

The address.of an array (Ai) is contained in bits 0 through 15 of the even general
register of the even/odd pair specified by R1. A two's complement integer modifier
is contained-in bits 16 through 31. 'After each Ai'has been located via bits 0 through
15, the modifier is added to the most-significant 16 bits of general register R1. This
result replaces the most-significant 16 bits. The modifier is not changed.. A 16-bit
mask (M) is contained in bits 0 through 15 of the odd general register specified by R1
(®001 while field values (FV) are contained in bits 16 through 31.

P

The following equation is solved,

(AL A M) @(FV-A My g

i=1,. .., count
A = logical AND function
@ = logical Exclusive-OR function.

AiA M extracts bits selected by the mask out of the ari'_‘ay. FVAM extracts bits
selected by the mask also, These latter bits.are compared with Ai A M. "If they are
equal, the comparison continues until the count is exhausted. The condition code re—
flects the result of this operation,

: If the comparison indicateé an inequality, the instruction is terminated with the
address of the inequality operand located in general register R1.

RESULTING CONDITION CODE

s

00 All array items matched R ay e : i 22 _
11- .. ' Anarray item miss-matched andlggénérgil register R1 has the address
where it failed: A R :

o

INDICATORS

The overflow and carry are not changed by this instr'u'ction._‘
7-11 '

SaAIyDLY AUSIBAIUN PUE SUONDR(0D) [e1oadg ‘sauelq] Ajsianiun s1elS BIUSIAA

SJUBWIND0Q YSYN JO UORI3||07D) 0xABWIO]| T sawep 'Q

80-/8 SI

h ©F xog

7=
.

9f 14

62461668

PROGRAMMING NOTE _ o ;.

This {8 a variable length instruction exacutlon. Care must be taken to msure
proper interrupt response by using sufficiently small count values. In order to.assure
proper completion of the putaway rouﬂne. the programmer must make sure that the
count values do not exceed eight.

The following nowhhnrt indicates how this instruction is executed:

Y « Aj == ==d - Ai= MS(PTR)
s R1g15 < PTR’
“PTH*'PTRHNC - ‘
i it
Yes _
(o)
No 1
SET BITS
Op oPX Disp® : B2 2 Immediate Data \
WL L L T L T e o 2] N il v O 1P i 0 e R S e e
0 4 5 78 © 13 141516) : ; 31
Mnemonic - Format * Displacements of the form
: ; " T1IXXX are invalid.
S8 . . D2(B2),Data '
- DESCRIPTION

Bits 16 through 31 of this instruction are treated as halfword immediate data.
The logical sum (OR) of the immediate data and the halfword main storage operand
is formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE
00 The result is zero
11 The result is not zero. L
fas § 7-12

sanyaly AIISIanun pue suonoa||0n Jeadg 'saueiqr Aysianiun sielg EBHYDIAA

SJUBLWIN30Q YSYN 10 UONI3Jj07D) OYABLWIO] T Salep “IQ

i
|

.‘:"‘ I

8(?:;8. : iSJN

N

{

;j,e:@ﬁxos

INDICATORS

62461568

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

The one bits'in the halfword mask specify the bits of the halfword second operand
that are set one.. The result.replaces the halfwerd second operand. The following"
table defines this instruction,

SET BITS

Mask 1100

Storage ‘ 1010

Result 1110
SET HALFWORD

Op oPX Disp* B2 * 'Displacements of the form
100]1]0]0 011!0 I [| 111XXX are not valid.
0 45 - 78 13 14 15,

Mnemonic Format
SHW D2(B2)

Op OPX :4 B2 _ Address Specification
1]0jtj0jojojtjoj1j1p1y1fo 1 iy O T 5 0o O [T O o il L
0 4 5 78 111213 14 156 16) 31

ﬂ‘ Mnemonic Farmat
Extended: 0 SHW D2(B2) Disp
: | S R I O O Y
Indexed: 1 SHW([®] [5] D2(X2,82) X il Disp
R T i S 1 e O
DESCRIPTION

The halfword main storage operand is set to all ones.

RESULTING CONDITION CODE

The condition code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction,

7-13

SaAILoLY AysIaniun pue suoijoaljo)) [elnads ‘saueig) Alsianiun 81elS BUUIIAN

SjusWINO0 YSYN JO UoNoa|on oxAewo] 3 sawepr “Iq

7l @F xog 80-/8 SIN

9 34

62461568
PROGRAMMING NOTE

; This instruction is similar to the SET BITS instruction with the mask (i.e., imme-
diate data) equal to all ones. -
TEST BITS
op 0PX Disp* B2, Immediate Data 4o
fpoftyriofojyrb 1| f | 5P 00 8 0) O o O Y R P R R Y
0 45 7 8 1314 15 16 : o 31
Mnemonic Format " Displacements of the form
i " 111IXXX are invalid.
TB D2(B2),Data Y

DESCRIPTION

Bits 16 through 31 of this instruction are treated as immediate data. This half-
word immediate data is'logically tested with the halfword main storage operand. A
one in the immediate data tests the corresponding bit in the halfword main storage
operand. The halfword main storage operand is not changed. The result of the test
is given in the condition code. :

RESULTING CONDITION CODE

00 Either the bits selected by the immediate data are ierds or the immediate -

data is all zeros

11 The bits selected by the immediate data are mixed w1th Zeros and ones

01 The bits selected by the immediate data are all ones. o
INDICATORS

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTE

l " The main storage location containing the halfword operand must not be store pro-

tected. If the location is store protected, execution of this instruction will result in
a gtore protect violation interrupt.

TEST REGISTER BITS

Op OPX R2 Immediate Data
1jojijrjojoqjijifrjrjoqof | | T G 0 o | o
0 4 5 7 B 11 1213 15 16 . 31

Mnemonic Format
TRB R2,Data
DESCRIPTION

Bits 16 through 31 of this instruction is treated as immediate data, A fullword
operand is formed by appending 16 low-order zeros,
7-14

sanioly Auslanun pue suonoalon [erads 'sauelqr] Ajsiamun s1elS BNYDIAN

L
~.‘A
-
g
—
-
=
[y

9=

& e

a

3

@

® 00

m ~J
1

e o

3 00

o

-~

a3

o

0

g -

2 @

g-O

9

SR

Z At

£ Q! \

N c~ - |

D=7
2 d

PPu

Q |

c |

3 |

@

=

T
M
LA
G_
o

A one, in this fullword, tests the corresponding bit in general register RZ The
corresponding bit position in general register R2 is not changed. The result of tHe
test is given in the condition code.

5 : SR B R ¢ - aa P

RESULTING CONDITION CODE
00 Either the bits selected by the 1mmed1ate data are all zeros or the immediate
‘data is all zeros. A
11 The bits selected by the 1mmc;dmte data are mixed with zeros and ones,
01 The bits selected by the 1mmed1ate data are all ones.
INDICATORS
The overflow and carry indicators are not changed by this instruction.

TEST HALFWORD

Op OPX ., Disp* B2 *. Displacements of the form
110 l.l i°|° °l 1] 1 | I e | . 111XXX are not valid.

0 4 5 7 8 13 14 15
: Mnemonic Formla!
TH D2(B2)

Op OPX ?4 B2 Address Specification
Tjoj1jojojo 11 1114140] O T I 4 I VY) O |
0 4 5 7 8 111213 14 1516

AM Mnemonic Format Disp
Extended: 0 TH
e ah | AR 00 I T et S
Indexed: 1 TH [@] [#] 2(X2.B2) 1 Disp:
B s) O O U 0
DESCRIPTION

All -bits‘ in the halfword main storage operand are tested. This operand is not.
changed. The result of the test is given in the'condition code.

RESULTING CONDITION COD]E_I
00 The bits are all zeros e
11 The bits are mixed with zeros and ones +°

01 The bits are all ones. 2 o .

7-15

(2461568

SaAIUDLY ANSISn|UN pue suonoalo) [eioadg 'saueiqr AUSIaAun 81elS BIYIIA

SjuaWN20(] YSYN JO UoR29jj07) oyAewo] "3 sawer “Iq

°hOFxog 80-/8 SI

9¢ 44

6246156B

INDICATORS
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTE

] This instruction is the same as the TEST BI’I‘S instruction with the mask equal to
all ones. .

ZERO BITS

op oPX Disp" 82 Immediate Data
ljofrjrjogoqogrf-f | {4 | I 5 [% 55 1 O R 6
0 4 5 7 8 1314 15 16 31

Mnemonic Format * Displacements of the form
'] 111XXX ‘are invalid.
ZB D2(B2),Data

DESCRIPTION

The logical complement of bits 16 through 31 of this instruction is ANDed to the
halfword main storage operand and is formed bit-by-bit. The result replaces the
halfword main storage operand ' :

RESULTING CONDITION CODE. ..

00 The result lis zero
11 The result'is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction,
PROGRAMMING NOTE | :

The one bits in the halfword immediate data specify the bits of the halfword main

Storage operand that are set zero. ‘The result replaces the halfword main storage op-
erand. The following table defines this instruction:

ZERO BITS
Immediate Data 1100

Storage ; 1010
Result 0010

SaAIyaly AlISIaAuN pUB SUoNoe|jo) [e1oadg 'saueiqi AlSIsAun 21B1S BUUDIAN

SjUBWN20(] YSYN 40 U0N09||00) oyAewo | "J sawer “1q

4 T f.)

9t 4
g

80
[

{

¥ xog

o
{

(

(

6246156B

ZERO RE GISTER BITS

Op OPX R2 * Immediate Data

L LR W A0y B G R0) Y 0 5[e P s 1 W o oy O A |
0 4 5 7 8 1112 13 15 16 31

Mnemonic Format

ZRB_ R2.Data
DESCRIPTION

First, the halfword immetiate data is expanded to a fullword by appending 16 low-
order zeros. The logical complement of this fullword is then ANDed to the contents of
general register R2, The result replaces general register R2.,

. RESULTING CONDITION CODE

00 The result is zero
11 The result js not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one bits in the halfword immediate data specify the bits in the general reg-
ister that are set zero. Bits 16 through 31 of general register R2 are not changed by
this instruction.

ZERO HALFWORD

Op OPX d Disp” B2 * Displacements of the form
1l0111010 0|0[1 I S i | | 111XXX are not valid,

0 4 & . 778 13 14 15

Mnemonic Format

ZH D2(B2)

Op OPX l :‘I B2 Address Specification
1J0]1j0f0jojojifrjtjiyijo] N [I O O A [S R
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format
Extended: 0 ZH D2 (B2) ! Disp
| 1 Efel Lode b d]I]
Indexed: 1 . ZH(@]|=] D2(X2,B2) X R Disp
N e 50 S Y O O A R ST K
7-17

sanyoly AiisIaaun pue suonos|jog [ewads ‘saueign Aisisaun SRl BHYDIAA

SUSWIND0(] YSYN JO UoKD3|(0) O3ABWO] T sawep "I

CHOF xog 80-/8 SN

9 34

|
62461568

DESCRIPTIéN

The halfword second operand is set'to all ‘ZeTros; -
RESULTING CONDITION CODE

The condition code is not changed by this instruction,
INDICATORS

The overflow and carry indicators are not chdngéd by this instruction.

PROGRAMMING NOTE

This instruction is similar to the ZERO BITS instruction with the rhask ecjual to
all ones.

T

saniyaly Aisieaun pue suonosjjon [enads ‘saueiqn Aysisniun s1e1S elyDIA

SjuBWNo0Q VSN 40 UoRoa||0) oyABWO] ‘3 sawep "ig

80-/8 SIN

1 @F xog

L &

9¢ 34

62461568

Section 8

FLOATING-POINT OPERATIONS

The floating-point instruction set is uéed.to fperférm calgulations on 6pera.nds with
a wide range of magnitude and to yield results scaled to preserve precision.

A floating-point number consists of a signed exponent and a signed fraction, The
quantity expressed by this number is the product of the fraction and the number 16
raised to the power of the exponent. The exponent is expressed in excess 64 binary
notation; the fraction is expressed as 4 sign-magnitude hexadecimal number having a
radix point to the left of the high order digit. '

The floating-point instruction set provides for loading, adding, subtracting, com-
paring, multiplying, dividing, and storing. Short operands generally provide faster
processing and require less storage than long operands. Onthe other hand, long oper-
ands provide greater precision in computation:; Operations may be either register to
register or storage to register. All floating-point instructions are part of the floating-
point feature including the two data conversion instructions. A normalized number is
one in which the high-order hexadecimal digit of the fraction is not zero or the fraction
is all zero and the characteristic is the smallest possible value (zero). -

Maximum precision is preserved in addition, subtraction, multiplication, and di-
vision because all results are normalized. '

The condition code is set as a result of all compare, add, subtract, and load op-
erations.

DATA FORMAT
—_—

Floating-point data occupy a fixed-length format which may be either a fullword
short format or a double word long format. Both formats may be used in main stor-

age.
Short Floating-Point Number

S Characteristic Fraction.

A ol Gl 03 U) DUV (G s C) G) e)) B 0 T o o
01" gL : E : : .31

Long Floating-Point Number

S Characteristic Fraction }z‘
A o] OO 8 1)) Nl 0 e Y O . G e I PO O 5 P O
0 1 7.8 63

8-1

sanyory Alsianun pue suonos|jo) [eoads 'saueig Kisssniun sye1s enyoipg

Sjuawnaoq YSYN JO Uoa3||09) oyABWO] g sawep “ig

80-48 SIN

CheF xog

9f

The first bit in either format is the sign bit (S). The subsequent seven bit posi-
tions are occupied by the characteristic. The fraction field may have either six or
fourteen hexadecimal digits.

Although final results have six fraction hexadecimal digits in short-precision, in-

termediate results may have one additional low-order digit. This low-order digit, the
guard digit, increases the precision of the final result.,

NUMBER REPRESENTATION |

The fraction of a floating-point number is expressed in hexadecimal digits. The
radix point of the fraction is assumed to he immediately to the left of the high-order
fraction digit. To provide the proper magnitude for the floating-point number, the
fraction is considered to be multiplied by a power of 16. The characteristic portion,
bits 1 through 7 of both floating-point formats, indicates this power., The bits within
the characteristic field can represent numbers from 0 through 127. To accommodate
large and small magnitudes, the characteristic is formed by adding 64 to the actual
exponent. The range of the exponent is thus -64 through +63, This technique produces
a characteristic in excess 64 notation. ‘

- Both positive and negative quantities have a true fraction, the differen_c,e in sign
being indicated by the sign bit. The number is positive or negative accordingly ds the
sign bit is zero or one, ’ :

- The range covered by the magnitude (M) of a normalized ﬂoating-point number is:

in short precision 16765 M (1-16-6) - 1663, andg
in long precision 16765 M (1-16-14). 1663,
or approximately 5.4 1079 M 7.2 1075,

The short and long precisions contain 6.2 and 15,5 decimal digits respectively,

A number with zero characteristic, zero fraction, and plus sign is called a true
zero. A true zero may arise as the result of an arithmetic operation because of the
particular magnitude of the operands. A true zero is forced when one or both oper-
ands of MULTIPLY or the dividend in DIVIDE has a zero fraction. The sign of a sum,
difference, product, or quotient with zero fraction is positive. The proper represen-
tation of a floating point zero when used for any of the floating point operations is the
true zero form.

8-2

ey

s

80-18 SN

H

L

QF xog

y
J

3

g

,,,
i

SJUBWNI0(] YSYN 40 UOND3||0D O3ABLIO) " Sawep Iq

H

26 A

t

sanyary Ausianun pue suonos|jog [eeds ‘ssueigr AlsIsaiun 3JE1S BHUDIM

62461568

. NORMALIZATION . PR yie

A quantity can be represented with the greatest precision by a floating-point num-
ber of given fraction length when that number is normalized. Therefore, all floating-
point arithmetic operations require normalized operands. A normalized floating-point
number has a nonzero high-order hexadecimal fraction digit. If one or more high-order
fractional hexadecimal digits are zero, the number is said to be unnormalized unless I
it is a true zero. The process of normalization consists of shifting the fraction left
until the high-order hexadecimal digit is nonzero and reducing the characteristic by
the number of hexadecimal digits shifted. A zero fraction cannot be normalized, and
its associated characteristic therefore remains unchanged when normalization is called I
for. A floating point word of all zeros is defined as a true zZero. '

Normalization usually takes place when the intermediate arithmetic result is
" changed to the final result, This function is called postnormalization, and it is per-
formed as part of instruction execution.
PROGRAMMING NOTE
It is the programmer's responsibility to ensure that floating-point operands are

normalized prior to instruction execution. Since normalization applies to hexadecimal
digits, the three high-order bits of a normalized number may be zero. :

FLOATING-POINT SECOND OPERANDS

The short 32-bit second operand has a fullword effective address. The long 64-bit
second operand must start at an even boundary halfword address. Figure 8-1 illustrates
floating-point data placement in main storage.

X00 X01 X10 l X11 I Yoo

(Y=X+1)

Short Operand |

[
I :) A Short Operand 7

Long Operand

| l Long Operand
. 1 T 7
Figure 8-1. Floating-Point Second Operand in Main Storage

FLOATING-POINT REGISTERS

The registers used for floating-point arithmetic are distinct or separate registers
from those used for fixed-point arithmetic.. Register designation may be even or odd
for short operands.

w0

Sanyaly Aisianun pue suonos|jo) (enads ‘saueiqgr] Ausianiun aels enyoips

SUBWNO0Q VSN JO UoRD3||0D) oyfewo] g sawer “iq

T /) OF xog

80-/8 SIN

9¢ 34

62?@61563

The first operand is contained in floating-point register R1 when the second oper-
and is a short 32-bit operand. If the second operand is a long or extended operand,
the first operand is contained in the pair of floating-point registers specified by R1 and
R1(3) 001, where (%) indicates the Logical OP function. See Figure 8-2.

Floating-Point Register {even or odd)

S | Characteristic . Fraction
I I I (N T Y O e O I e T T o 0 o L |
0 1 7 8 31
'Fioating-Point Register R1 Floating-Point Register R1 @ 001
S | Characteristic Fjaa{iin . :
S T Y P | S I | Y e A DO e G O e OO i T R O
01 7 8 : 63

Figure 8-2. Floating-Point Operands in Registers

A comprehensive set of floating-point instruction is available for both short and
long operands. Figure 8-3 summarizes the various combinations of fractional pre-
cision used for the floating-point operands. For further detail, see the individual in-
structions, ' :

Shert 2nd Operand Long 2nd Operand
Instructions b Operand Operand
Result 1 2 | Result 17 .2
RRs
A/S 4-—24 + 24 56«+——56+ 56
€ ; 24 24)
M ' 24/48 =—24 x 24 56 <+——31 x 31
D 24=—24 =24 31=——56 = 31
Convert to Floating 24 4—-—32
Convert to Fixed R2+—24
L 2j-—--24
SRSs
AlS 24a—241+ 24
M ; 24/48 «— 24 x 24
D’ 24— 24 24
L M- 24
ST 24— 24
RSs
A/S 24=—24+ 24 56<+— 56 + 56
c 24 24
M 24/4E=—24 x 24 56-+——31 x 31
D 24=—24 =24 31=——56 + 31
L P —— L 56 =——— 56
ST 24—»-24 56 ———— 56

Figure 8-3. Combinations of Fractional Precision
for Floating-Point Operands

- 8-4

whilt'

A

g

i

f

L

80-/8 SIN

L

&2 OF xog

{

SJUSWNI0(VSN JO UONO9[|0D) OYABWIO]| T SaWep “i]

i

9 414

seniyouy Aisianun pue suonos|jo) (ewads ‘saueiqr Asiaaun S]EIS BHYDIAA
i

62461568

FLOATING-POINT INSTRUCTIONS

_ The floating-point arithmetic instructions and their mnemonics, and descriptions
follow. The following table indicates when the condition code is set and the exceptions
in operand designations, data, or results that cause a program interruption,

Name . :::1:: . Type Exceptions
Add (Long Operands) ‘ AEDR RR C U,E,S
“Add (Long Operands) AED RS C . U,E,8
Add (Short Operands AER RR C U,E,S
Add (Short Operands) AE SRS, RS C U,E,S
Compare (Short Operands)h . CER RR C
Compare (Short Operands) CE RS C
Convert to Fixed-Point CVFX RR C 0}
Convert to Floating-Point CVFL RR C S B
Divide (Extended Operands) ‘ DEDR RR U,E, FK
Divide (Extended Operands) DED RS U,E, FK
Divide (Short Operands) ; DER RR U,E,FK
Divide (Short Operands) DE SRS, RS U,E, FK
Load (Long Operands) LED RS C
Load (Short Operands) "LE SRS,RS C
Load (Short Operands) ! LER RR C
Load Complement (Short Operands) LECR RR C
Load Fixed Register LFXR RR
Load Floating Immediate (Short
Operands) LFLI RR
Load Floating Register (Short !
Operands)) LFLR RR
Mid Value Select (Short Operands) MVS RS C
Multiply (Extended Operands) ’ MEDR RR U,E
Multiply (Extended Operands) MED RS U,E
Multiply (Short Operands) MER RR U,E
» Multiply (Short Operands) ME SRS, RS | U,E
Store (Long Operands) STED RS
Store (Short Operands) STE | SRS,RS
Subtract (Long Operands) SEDR RR C U,E,S
Subtract (Long Operands) SED RS C U,E,S
Subtract (Short Operands) SER RR C U,E,S
Subtract (Short Operands) ol SE SRS,RS,C| U,E,S
Notes
C Condition code is set
E Exponent-overflow exception -
FK Floating-point-divide exception
O Overflow
8 Significance exception
‘U

Fxponent-underflow exception

8-5

SaAILDIY AYsIaAUN pue SUoNoa||o) [elads ‘saueigr) Kisienun s1e1S BuYIIAN

SUSWIND0Q YSYN §0 Uonosjo) oyAewo] '3 sawep “ig

80-/8 SIN

T/ @F xog

9 44

624615618

CONDITION CODE

The results of floating-point add, compare, subtract, convert, load; and mid-value
select operations are used to set the condition code. Multiplication, division, and
storing leave the code unchanged. - The condition code can be used for decision-making
by subsequent branch-on condition instructions. :

The condition code can be set to reflect the type of results for floating~point arith-
metic. The states 00, 11, or 01 indicate that the result is zero, less than zero, or
greater than zero. A zero result is indicated whenever the result fraction is zero, in-
cluding a forced zero. State 10 is never set by floating-point operations. The com-
pare instruction indicates the relative arithmetic magnitude of the first operand (R1)
and the second operand (called $2). (See Figure 8-4).

00 11 01
Add S/L ‘zero <zero ¢ > zero
Compare S/L (R1)=(¢2) (R1)<(¢2) (R1)> (¢2)
Load S/L zero < zero > zero -
Subtract S/L zero < zero > zero
Converts zero < zero > zero
Mid Value Select within above below

Figure 8-4. Condition Code Setting for Floating-Point Ar;thmetic
INDICATORS '

The overflow and carry indicators are not changed by floating-point instruetions.

FLOATING- POINT ARITHMETIC EXCEPTIONS

Invalid operation codes, operand designations, data, or results cause a program
interruption. When the interruption occurs, the current PSW-is stored as an old PSW,
and a new PSW is obtained. The interruption code inthe old PSW identifies the cause
of the interruption. The following exceptions cause a program interruption in floating-
point arithmetic.

Protection: Each halfword in main storage can he protected with a storage pro-
tection bit. The operation is terminated on a store violation,

Addressing: An address designates an operand location outside the available
storage for the installed system. In most cases, the operation is terminated. The
result data and the condition code, if affected, arc unpredictable and should not be
used for further computation.

Exponent Overflow: The result exponent in addition, subtraction, multiplication,
or division exceeds 127 (1663), and the result fraction is not zero. The operation is

terminated and a program interrupt occurs.

8-6

e

T

T

80-/8 SIN

|4

©h oF xog

SjUBWINDO(] YSVN 40 U0Roaj0D oyAewo] g sawep ig
-

9fz 4

sanjyaly Alisianun pue suonos|jog [enads ‘saueiqr Kjsieniun syelg euyoIp
&

62461568

Exponent Underflow: The result exponent in addition, subtraction, mult;_‘tplication,
or division is less than zero (16-64), and the result fraction is not zero. The operation

is terminated, and a program interruption oceurs if the exponent-un
(PSW bit 22) is one.

derflow mask bit

The setting of the exponent-underflow mask also affects the result of the operation.
When the mask bit is zero, the sign, exponent, and fraction are set to zero, thus mak-
ing the result a true zero. When the mask bit is one, the fraction and exponent results

are unpredictable,

Significance: The result fraction of an addition, subtraction, certain multiplies l

by zero or convert to floating-point is zero. A program interruption occurs if the

significance mask bit (PSW bit 23) is one. The mask bit affects also the result of the

operation. When the significance mask bit is a zero, the operation is completed by

replacing the result with a true zero. When the significance mask bit is one, the opera-
tion is completed without further change to the characteristic of the result. In either
case, the condition code is set to 00. |

Floating-Point Divide: When division by a true zero is attempted, the division is
suppressed. The condition code and data in registers and storage remain unchanged.

Un-normalized Inputs for Divide: When division is performed with un-normalized
inputs, the un-normalized inputs interrupt will occur. The exception to this rule occurs
when the divisor is un-normalized and the final ‘quotient characteristic exceeds 127. In
this case, the exponent overflow interrupt will occur in lieu of the un-normalized input

interrupt,

ADD (LONG OPERANDS)

Op R2
0j1jojijo 1 grjofr] g |
0 11 1213 15
Mnemonic
AEDR
A g oy
Op M B2 Address Specification
0}i]oj1|o L8 (L (L8 L) | B2 R el
[V 1112 1314 15 186 : 31
oMy Displacement
0
Y 1
16 : e 31
1 X ‘Disp!acement
| R 1] I | i 4 RS
16 31
AM Mnemonic ‘Format
Extended: -0 AED R1, D2 (B2)
Indexed: 1 AED [@] [#] R1,D2 (X2, B2)
8=7

sanyoly Ajsianiun pue suooe|jo) [enads ‘saueign Ausianiun sjelg EHUDIA

sjuswNoQg YSYN JO Uonaajos) oxAewo] g sawer “iq

80-/8 SIN

©/heF xog

162461568

DESCRIPTION

The second operand is added to the first operand, and the normalized sum is
placed in the first operand locatlon.

The long 64-bit second operand is added with the contents of the even/odd floating-
point-register pair specified by the even register R1. The normalized result is placed
into even/odd floating- pomt register R1,

Addition of two floating-point numbers consists of a characteristic compamson and
a fraction addition. The characteristics of the two operands are compared, and the
fraction characteristics of the two operands are compared, and the fraction with the
smaller characteristic is right-shifted; its characteristic is increased by one for each
hexadecimal digit of shift, until the two characteristics agree. The fractions are then
added algebraically to form an intermediate sum. If an overflow carry occurs, the
intermediate sum is right-shifted one hexadecimal digit, and the characteristic is in-
creased by one.. If this increase causes a characteristic overflow, an exponent-overflow
exception is signaled, and a program interruption occurs.

The long intermediate sum consists of 15 hexadecimal digits and a possible carry.

After the addition, the intermediate sum is left-shifted as necessary to form a

‘ normalized fraction; vacated low-order digit positions are filled w1th zeros and the

charactenstlc is reduced by the amount of shift.

If normalization causes the characteristic to underflow, characteristic and fraction
are made zero, an exponent-underflow exception exists, and a program interruption
occurs if the corresponding mask bit is one. If no left shift takes place the intermediate
sum is truncated to the proper fraction length.

When the intermediate sum is zero and the significance mask bit is one, a signifi-
cance exception exists, and a program interruption takes place. No normalization
occurs; the intermediate sum characteristic remains unchanged, When the intermediate
sum is zero and the significance mask bit is zero, the program interruption for the
significance exception does not oceur; rather, the characteristic is made zero, yielding
a true zero result. Exponent underflow does not occur for a zero fraction.

First, the least-significant part of the intermediate sum replaces the contents of
floating-point register R1 € 001. Then, the most significant part of the intermediate
sum replaces the contents of floating-point register R1

The sign of the sum is derived by the rules of algebra. The sign of a sum with
zero result fraction is always positive.

8-8

Sanlyaly Ausisniun pue suoljoa)jo) [eadg 'saueigr Kysianiun sielg epyoip

-\

g

8p-L8 SN

h ﬁ:? Xog -

/
o 4

e
L

SjuBWN0(Q YSYN JO U0N23|[00) 0NABWO] T Sallep “iq

e
(2_

RESULTING CONDITION CODE

00 - . - Result fraction is zero - !
11 Result is less than zero

01 Result is greater than zero
PROGRAM INTERRUPTIONS
- Significance
Exponent Overflow
Exponent Underflow

PROGRAMMING NOTE

Interchanging the two operands in a floating-point addition does not affect the value

of the sum,

ADD (SHORT OPERANDS)

Op R1 e R
ofrjofjrjof | | frjafrjofo] | |
0 4 5 7 8 111213 15
Mnemonic Format
AER R1,R2
Op R1 Disp* B2 " . Displacements of the form
0l1]0]1]0 [)] 153 | | T1IXXX arel not valid,
0 4 5 7 8 13 14 15
Mnemonic Format :
AE R1,D2(82)
A
Op R1 m| B2 Address Specification
olijofajol | { |11 y1y1]o] | 1 R I L 1O B (P o Tl
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format
Extended: 0 AE R1,D2(B2) 1|
: Indexed: 1 AE [@] [=] R1.D2(x2.82) X

9
8

Saniyoly Aisianiun pue suoios|jog [eleds ‘saueiq Aisisaiup 3JEIS BUUDIM

SjUBWINIO(] YSWN 4O Uonoajio) oxAewo] 3 sawer iq

© /) OF xog 80-/8 SI

9f 44

6246156B

DESCRIPTION

The short second operand is added to the short first operand, and the six digit
normalized sum is placed in the first operand location. :

Addition of two floating-point numbers consists of a characteristic comparison
and a fraction addition. The characteristics of the two operands are compared, and
the fraction with the smaller characteristic is right-shifted; its characteristic is in-
creased by one for each hexadecimal digit of shift, until the two characteristics agree,
The fractions are then added algebraically to form an intermediate sum. If an over-
flow carry occurs, the intermediate sum is right-shifted one digit, and the character-
istic is increased by one. If this increase causes a characteristic overflow, an ex-
ponent-overflow exception is signaled, and a program interruption occurs.

The short intermediate sum consists of seven hexadecimal digits and a possible carry.

The low-order digit is a guard digit retained from the fraction which is shifted right.
Only one guard digit participates in the fraction addition. The guard digit is zero if no
shift occurs.

_ After the addition, the intermediate sum is left-shifted as necessary to form a norm-
alized fraction, vacated low-order digit positions are filled with zeros and the character-
istic is reduced by the amount of shift. :

If normalization causes the characteristic to underflow, characteristic and fraction
are made zero, an exponent-underflow exception exists, and a program interruption oc-
curs if the corresponding mask bit is one. If no left shift takes place, the intermediate
sum is truncated to the proper fraction length.

When the intermediate sum is zero and the significance mask bit is one, a signifi-
cance exception exists, and a program interruption takes place. No normalization oc- -
curs; the intermediate sum characteristic remains unchanged. When the intermediate
sum is zero and the significance mask bit is zero, the program interruption for the sig-
nificance exception does not occur; rather, the characteristic is made zero, yielding a
true zero result. Exponent underflow does not oceur for a zero fraction.

The sign of the sum is derived by the rules of algebra. The sign of a sum with
zero result fraction is always positive. ? : " : :

RESULTING CONDITION CODE
00 Result fraction is zero

11 Result is less than zero
01 Result is greater than zero

8-10

 ud

Saniyaly AsIaAiLN pue suoRds|jo) [enads ‘seueiq ANSISAUN S1BIS BHUIIM

SJUSWNJ0(YSVYN JO UORI9(j09 oyhewo] g sawer “iq

!

) @F xog |

|
-

“
t

8078 S

624615618

PROGRAM INTERRUPTIONS
Significance
Exponent Overflow
Exponent Underflow
PROGRAMMING NOTE:

Interchanging the two operands in a floating-point addition does not affect the value
of the sum. ’

COMPARE (SHORT OPERANDS)

Op R1 R2
ofjrjojoprf | | Jrrprgofr [|
0 4 5 7 8 11 1213 15
Mnemonic _Format
CER R1, R2
Op R1 ; B2 : Address Specification
Ofvfoqofrf J g qrqrqug | e N s i R0 Wi e g 7 o PO
0 4 5 7 8 11 1213 14 15 16 31
AM) ; :
0 { Displacement
6 8 I s ER] o B G O |
16 . 31
1 X /.:\ 1 Displacement
| e R I O TN [P
16 3
1
AM. Mnemonic Format
Extended: 0 - hACE R1,D2 (B2)
Indexed: 1 : . CE [@][#) R1, D2 (X2, B2)

DESCRIPTION)

The first operand is compared with the second operand, and the condition code
indicates the result. ‘ -

Comparison is algebraic, taking into account the sign, fraction, and exponent of
each number. In short-precision, the low-order halves of the floating-point registers
are ignored. An equality is established by following the rules for normalized floating-
point subtraction. When the intermediate sum, including a possible guard digit, is.
zero, the operands are equal. Neither operand is changed as a result of the operation.

Exponent ¢verflow, exponent underflow, or lost significance cannot occur.

8-11

S3AIYDIY AlSISnUn pue suoial|o)) [eads ‘saueIq AISISAIUN 218IS BUUDIA

SIUBINO0Q YSVYN 10 LoNos|j0) oxkewo] g sawer g

80-/8 SIN

¢ [, ©F xog

9f 34

6246156B

RESULTING CONDITION CODE

00 Operands are equal
11 First operand is low

01 First operand is high

PROGRAMMING NOTE

Numbers with zero fraction compare equal even when they differ in sigh or charac-

teristic.

In comparing very small numbers (characteristic of 00 hexadecimal) which would
result in an exponent underflow in a subtract instruction, the condition code will be set
to 00 (equal) even though the number is visually not equal. For example, a comparision
of 00100000 and 001FFFFF would yield a condition code of 00 (equal),

CONVERT TO FIXED-POINT

op | mi R2
ojoprfryrf § 1 frfryrjojol | |
! 0 4 5 7 8 11 1213 15
Mnemonic Format
CVFX R1, R2
|
DESCRIPTION

The second operand is normalized short 32-bit floating-point operand using the
sign magnitude ﬂoaﬁng-point representation. The second operand is converted to
fixed-point by an unnormalization operation in order to have its characteristic equal
to a hexadecimal 44 [1000100 (2)] . Its sign bit is placed into the sign bit of general
register R1. Next, bits 8 through 39 of the intermediate value are converted from
sign-magnitude representation to two's complement and placed into bits 1 through 31
of general register R1.

A convert overflow occurs when a floating-point second operand is not properly
converted to fixed-point, This occurs when the characteristic is larger than 44 hexa-
decimal 1000100 (2) or when bit 8 of the intermediate value is a 1 unless the number
is negative and bits 9 through 31 are zero. The value of R1 is unchanged.

CONDITION CODE

00 Bits 0 fhrough 15 of tﬁe reéult. in general register R1 is zero.

11 Bits 0 through 15 of the result in general register R1 is negative
01 Bits 0 through 15 of the result in general register R1 is positive,.

ANOMALY NOTE

A floating-point value of 41100000 is converted to a fixed-point 00010000 but gives
a condition code of 00.

8-12

SBAIUDIY AYsIaniun pue suonaal|o) [eroadg 'saueiqr] AISISAIUN B1elS BUUDIAA

SpuBWINO0Q VSN JO UORD9|0D) ojAeWwo | "3 sawep “ig

©h eF xog

{

9F 44

80-48 SIN

{

[

{

l

£

INDICATORS ‘ |)
The overﬂo.w and carry indicators are not changed.

PROGRAM INTERRUPTS
Convert ovgrﬂow.

PROGRAMMING NOTE
Refer to the CONVERT TO FLOATING instruction.

CONVERT TO FLOATING-POINT

Op R1 R2
ojqoqrp gty | foqrgrprgoqr] |
0 4 5 7 8 11 1213 15

Mnemonic Format
CVFL R1, R2
DESCRIPTION

The second operand is a 32-bit two's complement number_with its binary point
considered to be between bits 15 and 16. It is converted to sign magnitude floating-

point representation and placed into floating-point register R1."

First, the sign bit of the fixed-point number is placed into the sign bit of the

intermediate result shown below. Then, bits 0 through 31 of the fixed-point number -

are converted from two's complement representation to the magnitude of a sign-
magnitude representation, and then placed into bits 8 through 39 of the intermediate
result. The chiracteristic in bits 1 through 7 of the intermediate result is set to
1000100 (2). Finally, the resulting intermediate number is normalized and only a
short floating-point representation {bits 0 through 31) is developed and placed into
the floating point register R1. '

CONDITION CODE

00 The floating-point result is zero.

11 The floating-point result is negative.

01 The floating-point result is positive (>0).
INDICATORS

The overflow and carry indicators are not changed by this instruction.

8-13

6248156B

SaAILDIY ANSISAIUN puB SUOND3||0]) [epads ‘saueiqr AUSISAIUN S1BIS BIUDIA

SJUBWND0Q YSYN JO UOND3||0D) oyABWO | T Sawer]

© hh @F xog 80-.8 SIN

9f 44

62461568

PROGRAM INTERRUPT

Significance
I Fixed Point Halfword Operand (R2)
S Integer Fraction
P 5 150 Y) A o A O | Tl 1 [15 S 1580 B
0~1 15416 i 31
R \ 7
~ \ s
\ 7z
\\ \ /
~ ‘\ 7/
\\ \ //
Floating Point Number «, : \ o
S Characteristic Integer {(.. Fraction ,
l rjojojoyrqjoqof | | 1 141 1d T O) ofjJlojojojo]
) 01 78 9 2324 ' 39 40 63
Intermediate Result Béfore Normalization i T Binary Puint-

PROGRAMMING NOTE

Since the significance interrupt will occur when convertmg a zero, the programmer
may want to mask this lnterrupt before doing a CVFL by setting the significance mask
(bit 23 of the PSW) to zero. Thus, the significahce interrupt would occur only for add -
or subtract floating, if not masked during the execut:lon of those instructions.

DIVIDE (EXTENDED OPERANDS)

Op K R1 R2
ojogoq1jof ¢ 4 fryryrgoqty 1oy J
0 4 5 7 8 11 1213 15
g Mnemonic Format
DEDR R1, R2
Op R1 :‘4 B2 Address Specification
ojojojrjof | | Jrgryryry? O S Yl o L e OO N O
0 4 5 7 B 11'12 13 1415 16 3
Lo Displacement
0
i i o O et R] LB Tt R b 0
r 16 - ; 3
1 X :\ | Displacement
| A Y I
16 g 31
AM Mnemonic Format
Extended: 0 DED R1,D2 (B2
Indexed: 1 DED [@] [#] R1, D2 (X2, B2)
8-14

_—

SanIoly AllsIanun pue suoiaalo) [e19ads 'sauelq] AISIaAIUN S)BIS BUUJIAA

S
5 O°
3

5 oo
m
—|(':,'
g ®
11}

<

-

(=)

N -
o

g o
5 X
[«]
2B
a@
> -5
gV’
(9]

c

3

(0]

= ‘
Ul_na
—l-l‘.
O

" S

62461568

DESCRIPTION

The dividend (the long first operand) is divided by the divisor {the quasi-extended
second operand) and replaced by the quotient, No remainder is preserved, =
The first operand is located in bits 0 through 63 of the even/odd pair of floating

point registers specified by R1, The first operand is divided by the divisor. This
quasi-extended divisor is limited to 31 fraction bits. This quasi-extended divisor is
formed from a long floating-point operand by truncating the fraction portion of the sec-
ond operand to 31 bits and then rounding into the 31st bit based upon the 32nd bit. The
quasi-extended quotient replaces the dividend. This quotient replaces bits 0 through

38 of the even/odd pair of floating-point registers specified by R1. (Bits 39 through
63 are set to zero.)

A floating-point division consists of a characteristic subtraction and a fraction
division.. The difference between the dividend and divisor characteristics plus 64 is

used as an intermediate quotient «characteristic.’ The sign of the quotient is deter-
mined by the rules of algebra. p

Postnormalizing the intermediate quotient is never necessary with both dividend
and divisor being normalized, but a right-shift may be called for. The intermediate
quotient characteristic is adjusted for the shifts. All dividend fraction digits partici-
pate in forming the quotient, even if the normalized dividend fraction is larger than
the normalized divisor fraction. The quotient fraction is truncated to.31 bhits,

A program interruption for exponent ove‘rﬂpw :ébcurs when the final quotient char-
acteristic exceeds 127 and the operation’is terminated. This interruption will take
precedence over all other program interruptions for this instruction.

A program interruption for exponent underflow occurs if the final-quotient charac-
teristic is less than zero. The characteristic, sign, and fraction are made zero, and
the interruption occurs if the corresponding mask bit is one. Underflow is not signaled
for the intermediate quotient or for the operand characteristics during prenormalization,

When divisiqn by a true zero divisor is attempted, the nperation is suppressed.
The dividend remains unchanged, and a program interruption for floating-point divide

‘occurs. When the dividend is a true zero, the quotient fraction will be zero. The

quotient sign and characteristic are made zero, yielding a true zero result without
taking the program interruptions for exponent underflow and exponent overflow. The
program interruption for significance is never taken for division.

When division is performed with un-normalized inputs, the un-normalized inputs
interrupt will occur,

8-15

SaMUDIY AjISIOAIUN pUE SUOND8|[07) [e1oads ‘saLelq] AYSIsAlun S1EIS BILDIAL

sjuawnoQ YSYN JO UoNoa[j0) ojAewo] 3 sawep iq

T h @F xog 80-/8 SIN

¢ 41

- 6246156B

CONDITION CODE

The code remains unchénged. b

- PROGRAM INTERRUPTIONS

Exponent Overflow

Exponent Underflow -
Floating~Point Divide Exception
Unnormalized inputs

PROGRAMMING NOTES

Fraction division proceeds as in fullword fixed-point division with formation of a
32-bit signed quotient using a 32-bit signed divisor and a 64-bit signed dividend. The
magnitude of the dividend fraction is adjusted to ensure that the magnitude of the divisor
exceeds the magnitude of the dividend. The quotient is converted to a normal extended
precision floating point operand with low-order fraction bits set to Zero.

Rounding of the quasi-extended divisor means adding the 32nd bit in the fraction
part of the floating-point operand to the 31st bit and propagating all possible carries,

There are several cases when the quotient fraction may exceed 31 bits. These
situations occur with specific data patterns. The quotient will be correct but the low-
order fraction bits (39-63) will not be set to zero as stated in paragraph two of-the
desecription. '

- HARDWARE ANOMALY

1. Due to an anomaly in the microcode implementation of this instruction whereby
internal status bit 21 is not cleared when there is a zero dividend, the pro-
grammer must take steps to correct or avoid that condition. Usually, the
best way to do this is to test the dividend before executing the Divide and if
it is zero, do not perform the Divide. Thus, status bit 21 will never be left
set equal to one. Another alternative would be to calculate the reciprocal of
the divisor, then multiply by the reciprocal instead of dividing.

sanyory Alisianun pue suonos|iog |enads 'saueiq] ANSISALN S1BIS BHUIIM

SjUBWINDO(YSYN JO UORIS[00) 03ARWO | "] Sewer “Iq

{

{

80-/8 SIN

i

¢ h ©F xog
[

f

9¢ 44
(

2.

6246156 B

The extended form of the floating point divide (DED, DEDR) does not always
produce a quotient which is accurate to 31 bifs. The operands which would

produce an incorrect result cannot be precisely defined; however, the following
observations can be made: . :

a. If the divisor's fraction is less than hexadecimal . 8000 0000, then the
quotient will be correct. '

b. If the divisor's fraction is greater than or equal to . 8000 0000, then
there exists a possibility of an inacourate quotient.

¢. The value of the dividend does not affect the accuracy of the result.

d. The inaccuracy can occur as early as bit 25 in the fraction (origin 0)
and may be in any of the last seven bits, 25-31.

e. The short precision divide (DE, DER) does not have this problem.

For those situations where accuracy to the full 31 bit precision is required,
it is recommended that reciprocals of constants be stored and the extended
form of the floating point multiply be used instead of the divide. For those
conditions where the divisor is a variable, it will be necessary to use a work-
around to preserve the accuracy.

The divide instruction interrupt hierarchy for both long and short operands
is given in the diagram below:

START

Exponent Overflow (initial exponents test)
Code B

Divisor ot Normal Floating Point Divide Exception

" (divisor is true zero)
[:
8 \ i ‘Code C -
Dividend Not Normal !

4 o< Code 6 . ;
: i . Exponent Underflow
Exponent Overflow (final Quotient) (Not masked)
{' Code B i Code 9 -
Good Divide

DIVIDE (SHORT OPERANDS)

Oj1Jtjoftf | | l1yry1y0fo ||

Op

R1 R2

0

4767 78 e 411293 518

Mnemonic Format -
'DER R1,R2
8-17

SaAIaIY Alsianun pue suoidsjjo] [e1adg ‘saueqr] Alsianun S1BIS BIYIIA

SIUBWIND0(Q YSYN JO UoRoa|j00) oyAeWo | ‘g sawer "Iq

80-.8 SW

C 1 @F xog

91’7 44

62461668

Op R1 Disp® B2 * Displacements of the form N
; z 1T1XXX are not valid.
O o1t || I |
0 4 5 7 8 13 14 15
Mnemonic Format
DE R1,D2(B2)
Op - R1 ‘I:\A B2 Address Specification)
OfrJrjoy st § | f1ypryrgprje | o %) Y Y o o e O B |
0 4 5 7 8 11121314 15 16) Tk 31

AM Mnemonic Format

flallid [i Disp
Extended: 0 DE R1,D2(B2)
X L1 il 1 G 1 v 1l 0 O
Indexed: 1 DE [@] (=] R1,02(X2,82) X)\' r Disp
| | Y O O O O
DESCRIPTION

The dividend (the short first operand) is divided by the'divisor (the short second
nperand) and replaced by the quotient. No remainder is preserved.

A floating-point division consists of a characteristic subtraction and a fraction di-
vision. The difference between the dividend and divisor characteristics plus 64 is used
as an intermediate quotient characteristic. The sign of the quotient is determined by
the rules of algebra, '

Postnormalizing the intermediate quotient is never necessary when both operands
are normalized, but.a right-shift may be called for. The intermediate-quotient char-
acteristic is adjusted for the shifts. All dividend fraction digits participate in forming
the quotient, even if the normalized dividend fraction is larger than the normalized
divisor fraction. The quotient fraction is truncated to 24 bits.

A program 1nterrupti£m for exponent overflow oceurs when the final-quotient char-
acteristic exceeds 127. The operation is terminated. This interruption will take pre-
cedence over all other program interruptions for this instruction. :

A program interruption for exponent underflow occurs if the final-quotient charac-
teristic is less than zero. The characteristic, sign, and fraction are made zero, and
the interruption occurs if the corresponding mask bit is one, Underflow is not signaled
for the intermediate quotient or for the operand characteristics during prenormaliza-
tion.

When division by a true zero divisor is attempted, the operation is suppressed,
The dividend remains unchanged, and a program interruption for floating-point divide
exception occurs. When the dividend is a true zero, the quotient fraction will be zero.

- The quotient sign and characteristic are made zero, yielding a true zero result without

taking the program interruptions for exponent underflow and exponent overflow. The
program interruption for significance is never taken for division.,

8-18

e

sanyaly Alislanun pue suonoa|jo) eeds 'sauelgr] ASIBAUN a1E1S BIYIIM

g =Z
< -
3
& oo
m
o O~
3 0o
[0}
=
=
o
@] —
=X
g &
S X
3
O Yy
=By
> Ql
n o~
>
ok
2] O
(2]
=
3
(1)
3
g
m
LN
L

6246156 B

When division is performed with un-norma
interrupt will occur,

lized inputs, the un-normalized inputs
CONDITION CODE
The code remains unchanged.
PROGRAM INTERRUPTS
| Exponent Overflow
Exponent Underflow

Floating-Point Divide Exception
Un-normalized Inputs

LOAD (LONG OPERANDS)

Op R1 AR L o s Spadifgation
ol I T el O e i AR |)) O O O T R O
0 4 5. -7 8. 111213 1415 16- ' ‘ 31
AGM-V . Displacement
0 sl O O
16 31
| s
1 X A | Displacement
| o O
16 -3
) AM Mnemanic =~ Format
Extended: 0 | LED R1, D2 (B2)
!ndexed: 1 LED [@] [#] 'R1, D2 (X2, B2)
DESCRIPTION
The long second operand is placed in the long first operand regléter. Thé second I
operand is not changed. ;
First, bits 32 through 63 of the doubleword main storage operand are loaded into
floating-point register R16 001. Then, bits 0 through 31 of the doubleword main ‘
storage operand are loaded into floating-point reglster R1. Exponent overflow, ex-

ponent underflow, or lost significance cannot occur.

CONDITION CODE

00 The second operand is a true zero " l
11 The second operand is negative
01 The second operand is positive (>0)

8-19

saAlyouy Alsisnun pue suopos||o)) [eads ‘seueiqr AlSIsAun 211S BUYIIA

7 eF xog

sjuswnNooQ YSYN 40 Loloa)0) oxkewo] g sawep iq

80-/8 SIN

e

.6246156B

LOAD (SHORT OPERANDS)

Op R1 R2
Olrgringtt L bajtprjotol |-
0 4 5 7 8 1112 13 15
Mnemonic Format
LER R1,R2
Op R1 Disp* B2 * Displacements of the form-
TTIXXX not valid.
oprygtgt) bbb Ao iie
0 4 5 7 8 13 14 15
Mnemonic Format
LE R1,02(B2)

Op) R1 ﬁ‘l B2 Address Specification :
v rgap e o grprgajel™ g S V5 IS N T 0 O |
0 45 7 8 11121314 15 16 a

AM Mnemonic Format Disp
Extended: 0 LE R1,02(B2)
L I Y I O I
I‘ndexed: 1 LE [@] [5] R1,D2(X2,B2) X il Disp
[dB N
DESCRIPTION

The second operand is placed in floating-point register R1. The second operand
is not changed. The overflow, underflow, and carry indicators are not changed by this
instruction, f

RESULTING CONDITION CODE
I ; 00 The second operand is a true zero

11 The second operand is negative -
01 The second operand is positive (> 0)

LOAD COMPLEMENT (SHORT OPERANDS)

Op R1 R2'
Oftvrfjagrf || Jagaprjofii | |
0 45 7 8 1213 1L
Mnemonic. _Format
LECR R1,R2
8-20

-

SaAIYLY Apsiealun pue suonoajio) |eads 'saueiq AlsIaniun 81elS BUUDIA

sjuawINo0Q YSYN 40 Uondajjo) oxAewo] 3 sawer “iq

8Q-/48 SIN

/1 ©F xog |

>
\
t

94 4

62461568

DESCRIPTION

The arithmetic complement of the fullword second‘opcrand replaces the contents of
floating-point register R1. The sign bit of the second operand is inverted, while the

characteristic, the fraction, and register R1 @ 001, are not changed. Indicators are
unchanged by this instruction. ’ >

RESULTING CONDITION CODE

00 ' The result ls'Ja true zero
11 The result is negative
01 The result is positive { >0)

PROGRAMMING NOTE

If this instruction is used to load a true zero, the condition code is set to 11 indi-
cating a negative result and the result will equal hexadecimal 80000000. To avoid this
condition, a test for zero operand should be made prior to the LECR and if the operand
is zero, branch around the LECR.

LOAD FIXED REGISTER

Op R1 R2
ojoyrqol | g fryryryef] |
0 4 5 7 8 11 1213 15

Mnemonic Format
LFXR R1, R2
DESCRIPTION

The fullword contents of the floating-point register specified by R2 is loaded into

' the general register specified by R1.

'RESULTING CONDITION CODE 4%
The code is not changed by this iﬁstruction. ‘

INDICATORS

The overflow and carry indicators are not changed by this instruction.

LOAD FLOATING IMMEDIA TE

o]

Op R1 P OoPX
1qoqojoyt | g Jrprgigol® g
0 4 5 7 8 11 1213 15

Monemonic Format
LFLI R1, Value

DESCRIPTION

A floating-point immediate value is loaded into‘th'ie ﬂoatingwp(_)int register specified
by R1. 8-21 '

saniyoly Ausianun pue suooaog [enads ‘seueiqr] ANSIaAUn S1EIS BULDIA

SUAWN20Q YSYN JO UORD3|j00) oyABWO) g sawep ig

80-/8 SIN

U eF xog

9F 34

62461568

The immediate values are 0., 1., 2., 3., 4,, 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., and 15.

OPX (bits 12,13, 14, 15)

(hex)

HMETOmE > 0w -390 ;i 0~ o

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

Immediate Values —-R1
(hex)

4100 0000
41100000
4120 0000
4130 0000
4140 0000

4150 0000
4160 0000
4170 0000
4180 0000
4190 0000
41A0 0000
41B0 0000
41C0 0000

. '41D0 0000
41E0 0000
41F0 0000

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The result of a LFLZ with zero imm

result.

LOAD FLOATING REGISTER

Op R1 R2
0j0pmnjo)ry y g Jrgp1qrgofs 1 |
0 4 5 7 8 111213 15

Mnemonic Format
LFLR R1, R2
DESCRIPTION

The fullword contents of the

floating-point register specified by R1.

8-22-

ediate value does not produce a true zero

general register specified by R2 are loaded into the

SaAIYaIY AISIBAIUN pUB SUOND3||0]) [eRads ‘saueIq AlISIsAuN 2181S BUUDIAM

SJUBWND0(YSYN JO UOND3|[07) ONABWIO] *J SawWep “I(

—

8Q-.8 SN

R OE X0d .

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The overflow and car:_‘yliﬁdj_cator.é are not .cha:nged by this instruction..

MID—V;Q.LUE SELECT (SHORT OPERANDS)

Op | R1° P\Aﬂ B2 Address Specification
o S L G0 O I O 0 L 0 g | HARNEEEDEEERERE
0 4 5 78 111213 1415 16 ; kil
% i Displacement) '
alab bbbl L bbb L
16 f 3 31
1 x |4 Displacement
| 1 I T T I Y O
16 1819 20 21 31
AM Mnemonic Format
Extended: 0 MVS R1,D2(B2)
Indexed: 1 MVS (@) (# R1, D2 (X2, B2)
' DESCRIPTION .

The floating point registers specified by R1 and R1 @ 001 each contain a short
(8/24) floating point operand. The third short floating point operand is located

the main storage effective address. The three operands are compared, and the mid-

value operand is selected such that it is less than or equal to the maximum value
operand. This mid-value operand is then placed in the floating. point register speci-

fied by'R1. Both the main storage operand and the contents of Register R1 @ 001 are

not changed.)

RESULTING CONDITION CODE

The condition code is set as a result of executing this instruction, but its value

is, in general, meaningless when this instruction is used for mid-value selection.
However, see the Programming Note for condition code settings when used as a limi-

ter.

INDICATORS

0

The overflow and carry indicators are not changed by this instruction.

8-23

62461568

Sanlyaly AlsIanun pue suonoao) [eadg ‘saueIqr] ASISAIUN S1EIS BIUDIAA

SIUBWND0Q WSYN JO UoD9|j00) oxAewo] 3 sawep g

80-48 SIN

), ©F xog

9¢ 34

6246156B

PROGRAMMING NOTES

This instruction can also be used as a limiter. The upper limit must be placed
in R1 (# 001; the lower imit must be placed in the main store location. The input
value to be tested must be placed in R1. The condition code will reflect the result of
the instruction and, if the input vaiue is outside the limit values, the appropriate
limit value will be placed in R1.

When this instruction is used as a Hnﬁter, the condition code will be set as follows:

00 Within Limits: Lower Limit (Main Storage Operand) < Operand
(Initial Contents of Register R1) < Upper: Limit
(Contents of Register R1 & 001) = ‘
01 Above Upper Limit: Initial R1 Operand > Upper Limit (R1 @ 001)
11 Below Lower Limit: Initial R1 Operand < Lower Limit (Main Storage
: Operand)

As with all floating-point operations, normalized floating-point numbers are re-
quired prior to execution. Also, the programmer is responsible to Insure that the
upper limit is not equal to or less than the lower limit. If these conditions are in-
advertently setup, the result is predictable in that the instruction will perform a
mid-value select. ‘ ;

MULTIPLY (EXTENDED OPERANDS)

op R1 : R2
ejojrijo] f . Jifrvirjoly]:| |

0 4 5 78 11 1213 15

h A
Mnemonic Format

MEDR R1, R2
N A Sty
Op R1 P M B2 Address Specification
L L L L S R e N A A R | I o ke, A) i L () K) O i 2
0 - 4 5 7 8 11 1213 141516~ e iy : 31
oM _ Displacement
0 : ;
| 0 I e 0 S e v R e R
16 31
g 1 - X] ‘IA 1 . i3 Displacement
s s i e Mol T 3] i [l B 8|
16 31
AM Mnemonic Format
Extended: 0 MED " R1,D2(B2)
Indexed: - © ¢ 'MED[@] [#] Ri,D2(X2 B2)
8-24

SayalY AYsaniup) pue suonos|jo) [enads ‘saueiqr] AUSIaAIUN 91815 BIYDIAA

D oxAewo] ‘3 sawep "Iq

@;i: xog |

SJUSWIND0(] YSYN JO L0230

8Q-28 SN

)

i

gt 44
(

62461568

DESCRIPTION

The normalized product of multiplier (a quasi-extended second operand)and multi-
plicand (a quasi-extended first operand) replaces the multiplicand. ST

The first operand is located in bits 0 through 38 of the even/odd.pair of floating-
point register specified, by the even register R1." This operand is mliltiplied by the
second operand, For tﬁe' RR format,. the second operand is located 'in bits 0 through
38 of the even/odd pair of floating-point registers specified by R2. (Bits 39 through
63 do not participate except during rounding.. See Programming' Notes.) For the RS
format, the second operand is located in bits 0:through 38 of the main'storage extended
operand. The extended product replaces bits'0-through 63 of the even/odd pair of
floating-point registers specified by R1 and Rl ® oo1.

The multiplication of two floating~-point numbers consists of a characteristic addi-
tion and a fraction multiplication. (Participation of multiplicand ‘and multiplier fraction
bits is limited to 31 bits, except as used for. rounding. See Programming Notes. Frac-
tion multiplication proceeds as in fixed point full word multiplication, but produces: only
a 62-bit fraction product.) The sum of thie characteristic less 64 is used as the char-
acteristic of an intermediate product,

The sign of the product is determined by the rules of algebra,
The product fraction is normalized by post-normalizing the 62-hit 'ihtermediate ¢

product, if necessary, then truncating the product to 56 bits. The intermediate product
characteristic is reduced by the number of left-shifts, :

Exponent overflow oceurs if the final product characteristic exceeds 127. The op-
eration is terminated, and a program interruption occurs. The overflow exception
does not occur for an intermediate product characteristic exceeding 127 when the final
characteristic is brought within range because of normalization, - !

Exponent underflow occurs if the final broduct' characteristic is less than zero. If
the floating-point .exponent underflow mask is a one, a program interruption occurs.
If the mask bit is zero, the result is made a true zero.

When all digits of the intermediate product fraction are zero, the product sign and

- characteristic are made zero, yielding a true zero result, No interruption for ex-

ponent underflow or exponent overflow can occur when the result fraction is zero. The
program interruption for lost significance is never taken for multiplication,

CONDITION CODE
The code remains unchanged.
PROGRAM INTERRUPTION

Exponent Overflow
Exponent Underflow {oceurs prior to zero operand test)

8-25

sanlyary Aisianiun pue suonoa|jo) |enads ‘seueigr] AlsIanun slelS BNUDIM

sjuawnaoq YSYN JO UoRaa|j0D oxAewo] 3 sawer Iq

80-/8 SIN

Ch @F xog

9 4

6246156 B

PROGRAMMING NOTES

When either the multiplicand or multiplier is a true zero, the‘r'esult_is normally
forced to a true zero without requiring the hardware to enter the longer multiply-algor-
ithm,

Rounding of both the multiplicand and multiplier occurs prior to entering the actual
multiply algorithm. - The quasi-extended operands are formed from a long floating-point
operand by truncating the fraction portion to 31 bits and then rounding into the 31st bit
based upon the 32nd bit. (Rounding means adding the 32nd bit to the 31st bit and propa-
gating all possible carries.) Note that exponent overflow will be caused by rounding a
floating point number like 7FFFFFFFFF000000. : ‘

MULTIPLY (SHORT OPERANDS)

Op R1 R2
ajrjijojof [| Jrgrjrjofol
0 4 5 7 8 111213 15

Mnemonic Format
E R1,R2
Op R1 « Disp* B2 * Displacements of the form
TTIXXX t valid.
8) N) R i o s | ek
0] 4 5 7 8 1314°15
Mnemonic Format
R1,D27B2)

Op R1 ﬁ B2 Address Specification
oj1jrjojol | | d1pagpatalo] I O S T S I T
) 4 5 7 8 11121314 15 16 31
- : AM Mnemonic Format D
Extended: 0 ME Ri1,02,(82) ‘ 1+

L1 I I O
Indexed: 1 ME (@] (#] R1,D2(X2,82) X e Disp

T S T 28 0 I
DESCRIPTION

The normalized product of multiplier (the short second operénci) and multiplicand
(the short first operand) replaces the multiplicand.

8-26

Sanlyoly Ausianjun pue suonds|io) [epads ‘seueiqr] ANISISAIUN S1EIS EHUDIA

f

SHUBWNI0(YSYN JO UONJ3||00) ONABWIO] "J Sawep “I(]

n

T

9f 34

80-.8 SN

OF xog

I

|

i

£

62461568

The multiplieation of two floating-point numbers consists 6f a characteristic addi-
tion and a fraction multiplication. The sum of the characteristics less (4 is used as
the characteristic of an intermediate product. The sign of the product is determined
by the rules of algebra. y :

The product fraction is normalized by postnormalizing the intermediate product,
if necessary. The intermediate product characteristic is reduced by the number of
left-shifts. For short operands (six-digit fractions), the product fraction. has the full

14 digits of the long format with the two low-order fraction digits accordingly always
zero,

Exponent overflow occurs if the final product characteristic exceeds 127. The op-
eration is terminated, and a program interruption occurs. The overflow exception .-
does not occur for an intermediate product characteristic exceeding 127 when the final
characteristic is brought within range because of normalization.

Exponent underflow occurs if the final product characteristic is less than zero,
If the floating-point exponent underflow mask is a one, a program interrupt occurs,
If the mask bit is zero, the result is made a true zero,

and characteristic are made zero, yielding a true zero result. No interruption for ex-
ponent underflow or exponent overflow can occur when the result fraction is zero. The
program interruption for lost significance js never taken for multiplication.

When all 14 digits of the intermediate product fraction are zero, the product sign

The least sighificant part of the product fraction replaces the contents.of floating-

point register R1 (® 001. Then, the most significant part of the intermediateprodulct
fraction replaces the contents of floating-point register R1. -

CONDITION CODE

The code remains unchanged.
PROGRAM INTERRUPTIONS

Exponent Overflow .
Exponent Underflow (occurs prior to zero operand tests) ' i !

PROGRAMMING NOTES

Interchanging the two operands in a floating-point multiplication does not affect the
value of the product.

When either the multiplicand or multiplier is a true zero, the result is normally -
forced to a true zero without requiring the hardware to enter the longer 'multiply algor-
ithm. When multiplying a true zero by another true zero or a true zero by any number
with a characteristic less than 64 (hexadecimal 40), the exponent underflow interrupt

will occur (if not masked) and the product is not computed. Masking the interrupt will
generate a true zero product.

Notice that the MULTIPLY (short) instruction uses two registers for its result
if R1was even. This allows the programmer to use the'additional precision without
going to the extended form of the MULTIPLY, : '

8-27

SaAIYDly Ausianiun pue suonoajo) |ernadg ‘'sauelq AjIs1salun alels BUYDIAL

sjuaWNoOQ YSYN J0 UoRoe|joD oyfewo] g sawer “iq

80-/8 SIN

OF xog

J
~)

¢

9 dd

6246156B

SUBTRACT (LONG OPERANDS)

Op R1 R2 ' ' ¢ T <
ofrjofifal || Jajajajefe] | |
0 4 5 7 8 1112 13 15
' Mnemonic Format
SEDR R1, R2
A
Op ‘ R1 M |2 Address Specification
oltfojafal § | baprpagafs 5 TN N Y o I PO I O
o 4 5 7 8 1112 1314 15 16 31
AM Displacement
by 6 I e O 1O B G B
16 . 31
: g
1 X All Displacement
N 10 (551 528 S [A
16 31
AM Mnemonic - Format
Extended: 0 SED R1, D2 (B2)
Indexed: 1 SED [@‘] [#] R1, D2 (X2, B2)

DESCRIPTION

The long second operand is subtracted from the long first operand, and the normal-
ized difference is placed in the first operand location,

The long 64-bit second operand is subtracted from the contents of floating-point
register pair specified by the even register R1 and R1 ()001. The normalized result
15 placed into floating-point registers R1 and R1(%)001.

The SUBTRACT (long operand) is similar to ADD (long operand), except that the
sign of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a dif-
ference with zero result fraction is always positive.

RESULTING CONDITION CODE

00 Result fraction is zero
11 Result is less than zero
01 Result is greater than zero

PROGRAM INTERRUPTIONS
. Significance

Exponent Overflow . . .
Exponent Underflow

8-28

s

-y

s

sanyoy Alislsnjun pue suonos|jo) [eioads 'seLelqr] ASIsAun S18lS ENUIIM

SjUaWIN20(YSVN JO UoNI3||07) ojhewo] "3 sawer “IQg

80718 %IN

e L=

76 3

SUBTRACT (SHORT OPERANDS)

Op R1 e W R2. -
ofrjgojryrd | | {ryprqryofof | |
0 4.5 7 8 11213 15

* Mnemonic Format
SER R1,R2
op R1 . Digg™ U me-PA | o pispisesrients 6 the farm
T11XXX are not valid.
o I L L8 211 00 00 L e s i e
1] 4 5 7 8 1314 15
Mnemonic¢ -~ Format
SE R1,D2(B2)

Op R1 I\Af'l B2 Address Specification
Ogvjoqryry | 4 fryrgryrfo] S 8 T TN Y Y S PO o O T S 1
0 4 5 7 8 11 121314 15 16

AM Mnemonic Format Disp
Extended: 0 SE) R1,D2{B2} 1| Ll Lt |] |
Indexed: 1 SE (@] [=] R1,02(X2.B82) % N Disp
0 B 0 I O
DESCRIPTION

. The short second operand is subtracted from the short first operand, and the
normalized difference is placed in the first operand location.)

The SUBTRACT (short operands) is similar to ADD (short operands), except that
the sign of the second operand is inverted before addition,

The sign of tllw difference is derived by the rules of algebra. The sign of a differ-

-ence with zero result fraction is always positive,

RESULTING CONDITION CODE

00 Result fraction is zero
11 Result is less than zero
01 Result is greater than zero

PROGRAM INTERRUPTIONS

Significance
Exponent Overflow
Exponent Underflow

PROGRAMMING NOTE

The technique used to clear a register by subtracting a floating-point register
from itself will work even though unnormalized numbers are used in the subtract
operation. The reason this works is that the characteristics are compared and found
to be equal. Thus, no shifting takes place, the fractions are subtracted, and the
result will be a true zero provided that the significance mask bit is zero.

8-29

62461568

SBAILDIY AsIsniun pue suonos|jog [erads 'saueiqi AISIBAIUN B1BlS BHYIAA

80-/8 SIN

Cl, ©F xog

SjuswWIND0Q YSYN JO UORIS||07) O3ABWO| g Salep ']

2 &4

6246156B

STORE (LONG OPERANDS)

A AT,
© Op R1 M[B2 |Address Specification - ‘
oJor Jafr) | | lapapal s | 'llIIIlIIIIfIIII
0 45 78 1112131415 16 ' i 31
i, =
*2— : Displacement
LBl b bl)k
16 ' ool :) 3
R
1 K All Displacement
| . o i P) Y e i ol G
16 ; 3
AM Mnemonic Format
Extended: 0 STED R1, D2 (B2)
Indexed: 1 STED [@][#]) ' R1,D2 (X2, B2)

DESCRIPTION

The long first operand is stored at the long second operand location. The first
operand is nmot changed.

* The first operand is located in the even/odd pair of floating-point registers speci-
fied by the even register R1. First, bits 0 through 31 of floating-point register R1®1
are stored into the second fullword of the doubleword storage area starting with the
second operand fullword address. Bits 0 through 31 of floating-point register R1 are
stored in the fullword specified by the second operand fullword address.

CONDITION CODE

The code remains unchanged.

8-30

Donald Schmidt

l

<

l 80-/8 SIN

L

CH O xog

SJUBWNJ0Q YSYN 4O UORD3|[0D) o3AewWwo] " sawer “Ig

,ih 44

SaAYaly Alislanun pue suonas|jog [eads ‘saueiqi] AISIsAun a1elS BHUSIA
4

6246156p

STORE (SHORT OPERANDS)

Op R1 Disp* B2 Displacements of the form
00 1[1]1 11| | | fe b | 111X XX are not valid.

0 4 5 7 8 _ 13 14 15

Mnemonic Format

STE R1,D2(B2)

Op ‘ R1 ' :1 B2 Address Specification
ojoifiaf || Iyipple I 8 0 D 0 0 8 R N S |
0 4 5 7 8 1112 13 1415 15 31
AM Mnemonic Format Dig
Extended: 0 STE R1.D2(82)
en L A 1 O o ol P |
Indexed: L STEI@] [=] R1,D2(X2,82) X ity Disp
[e S 1 O T
DESCRIPTION

The contents of floating-point register R1 is stored at the second operand location.

The contents of R1 is not changed. The overflow and carry indicators are not changed
" by this instruction. i

RESULTING CONDITION CODE

The code is not changed.
A

8-31/8-32

Sanyoly Ayslaniun pue suonds|jo) [epads ‘ssueign) Ayusienun a1l BIUOIM

Sjusuinooq YSyN 1o uoios|jo) oxkewo) g satwep ig

B0-/8 1 SIN L

T L xog

dd

(Z

62461568

Section 9

SPECIAL OPERATIONS

This section describes the special instructions.. These instructions make possible
the use of efficient pseudo subroutines, permit the specification of storage protection,
perform status switching, and control 1/0.

DETECT

Op R1 a B? Address Specification
1[1jojojojojojojtfrrj1jijo| | |ojojojojojojofo]o]0[0[0[0]0{0 0
0 4 5 7 8 1112 13 14 15 16 : 31
DESCRIPTION

The B2 field uniquely selects one of four special microprogram routines, The
selected micro-routine is executed. These routines are used to perform built-in
diagnostic functions to verify the proper functioning of the CPU hardware.

Since the instruction is not intended for normal program usage, DETECT has
no mnemonic. This is a privileged operation and can only be executed when the CPU
is in the Supervisor state,

PROGRAM INTERRUPTION

Privileged operation

INSERT STORAGE PROTECT BITS

~

Op M1 a B2 Address Specification
1prgrjogg o frrgags | Lt
0 4 5 7 8 11121314 1516 31
AM Mnemanic Format
Extended: 0 ISPB M1,D2(B2) Disp
| I Y O O O
Indexed: 1 ISP8 (@] [#] M1,D2(x2,B2) X i Disp
i L LAV A LT d:F |
9-1
&

ssielqn Aysieniun sjels enyoin

d VSYN Jo uoposjjo) oyAewo] -3 sawer ‘i

SaAIY2IY Ausisalun pue Suonogo) |eadg

SIUSWIND0

Z tr 44

80-/8 SIN

T /> xog

62461568

DESCRIPTION

Bits 5 through 7, the M1 field, are decoded to set or reset the protection bit as-
sociated with each halfword in main-storage as Speclﬂed by the EA, The contents of
the specified location, however, are not changed.

1

The following defines the combinations of the M1 field and the correspoﬁding re-
sult: ‘ .

M1 Field . Result

000 Reset the storage protectlon bit for the halfword second
operand,

001 Reset the storage protection bits for both halfwords in the =
fullword second operand.

010 Set the storage protection bit for the halfword second
operand.

011 Set the storage protection bits for both halfwords in the
fullword second operand.

100 Ilegal = v ;

101 Tlegal

110 Illegal

111 Illegal

This is a privileged operation and can only be executed when the CPU is in the
supervisor state.

hESULTING CONDI'i‘ION CODE
The code is not changed by this instruction.
INDICATORS
'The carry and overflow indicators are not changed by this instruction.
PROGRAM INTERRUPTIONS
Illegal operation
PROGRAMMING NOTES

The low-order bit in the EA is used to specify the halfword when M1 is 000 or 010
When M1 is 001 or 011, the low-order bhit of the EA should be 0 and will be ignored.

9-2

[

SBAILALY AysIsnun pue suonos|iog jepads ‘saueIqn Ausieniun s1elg BJIYoIAA

{

(%) 0)1)(2;01 3 sau.imr g
0-28 SIN

- f’,@xo:;l

sjuswnNoo YSYN Jo Uojy

44
(

24

62461568

s

This instruction will always have halfword alignment and will be exciuded from
automatic index alignment,

The illegal M1 field patterns (100, 101, 110, and 111) leave the storage protect
override bit set on which means that storage protected locations can be written into
without getting a store protect violation. The condition will occur until the next valid
ISPB is executed.

LOAD PROGRAM STATUS .

Op OPX A B2 . Address Specif?cation
S A A LTS8 LTI T L O R W W 5 O W
0 4 5 7 8 11121314 15 16
AM Mnemonic Format
Extended: 1] LPS D2(B2) Disp
| I O | [T IO O
Indexed: 1 LPS[@] [=] D2ix2.B2)
X 11 Disp
1]4 o R T S O 5
DESCRIPTION

Two fullwords starting at the location designated by the fullword operand address
replace the contents of the program status registers on the CPU, as described under
Program Status word. (Section 2, Figure 2-19).

RESULTING CONDITION CODE |

The code is s:et or defined by the new PSW,
INDICATORS

The carry and overflow indicators are set or defined by the new PSW.
PROGRAMMING NOTE ‘

This is a privileged operation and can only be executed when the CPU is in the

supervisor state. This instruction will always have halfword index alignment and will
be excluded from automatic index alignment.

PSW bits 40 through 43 are not changed by the load operation.

PROGRAM INTERRUPT

If PSW bits 19 and 20 are both set, a fixed-point overflow will occur.

SanyaIy Ausisniun pue suoisiion [eads ‘saueiqr Aysianun 9B} BHYDIAL

SUSWIND0Q VSN 4O UoIo8||0) ojABILO | g sawer “1q

80-/8 SI

T L xog

=

Zp 4

62461568

MOVE HALFWORD OPERANDS

Op R1 R2
ogryrgort] y g frgryrgofif)| | , I

0 4 5 7.8 111213 15

-

Mnemonic Format
MVH . R1,R2

DESCRIPTION

Bits 0 through 15 of the general register specified by R1 contain the destination
address. (This is analogous to the RR Format Branch Instructions except when bit 0
of general register R1 is a one; in that case the DSR in the current PSW is used.)
Bits 16 through 31 of R1 contain a count of halfwords to be moved which must be greater -
than zero. Since its representation uses a signed 2's complement integer format, bit
16 (the sign bit) should be zero. A negative count (bit 16 equals 1) indicates no data
will be moved.

The content of the general register specified by R2 is as follows:

Source Address Reserved : Ignored DSR

P 5 O e e 1 R 0 Kl T T T O O O T R
0 1 15 16 27 28 31

When bit 0 in R2 is zero, the source address uses an implied DSR of all zeros.
When bit 0 in R2 is one, the source address uses the DSR contained in bits 28-31.

Data (a block of contiguous halfwords) is moved a halfword at a time from a gource
whose address is determined by concentrating the value of the DSR in R2 with the Source
Address in R2 and adding to it the value of the count in bits 16 through 31 of R1 which
is decremented by one for each halfword moved. The data is moved to the destination
whose address is determined by adding to the operand address (Bits 0 through 15 of R1)
the current value of the count. The move is completed when the count becomes zero.

See Figure 9-1.
RESULTING CONDITION CODE
The code is not changed.

INDICATORS

The overflow and carry indicators are not changed.

PROGRAMMING NOTES

As in all instructions, main store addresses (for source and destination) must
not be expected to cross 32K sector boundaries, because this instruction will not
modify the DSR's. If this is ever attempted, the result is quite predictable in that
operands will be used from the first 32K main storage locations,

9-4

—r

SaAloly Alisianiun pue suonos|jo [enadg ‘salteiq) Ausisaiun sjels epyoIA)

80-28 ‘s !

T A xod

{

SIUSWN20Q YSYN 10 U0Re|I0D oxABWO] “J Sawep i

Z g 4

=

o

(

6246156 B

Start
where

1C = Instruction Counter
S = Source Address

D = Destmation
5 R g Address
D "'H'u 15 == ——— C = Count of
CQ—RI'531 . Hallwords >0
MS{X] = Coments of e
Main Store
B Location at X

Yes

Ce—C-
MS (D+Cle=MS(54Ci

Interrupt
Pending
>

Interrupt Service
Routine Will
IC #+—IC-1 = = — — Restart This

Instruction
at its Beginning

_L. e —

Rle-C .
16-31

To Next Instruction
or Interrupt
(It Pending)

Figure 9-1. Move Halfword Execution

Because the MOVE HALFWORD instruction can execute for a long time, it has been
designed to be interruptible. The following interrupts are typical of those interrupts

* which may break into the sequence of moves before the instruction is finished:

1. Initial power off signal (POI) from power supply.
2, Counter 1or 2 interrupts.

When MOVE HALFWORD ends prematurely due to any of the above pending interrupts,
the instruction counter will be decremented such that when the interrupt is taken the

old PSW contains the instruction address of the move instruction. Also, when this
instruction is interrupted, the count in R1 is modified to reflect the number of halfwords
remaining to be moved. This will allow returning to the move instruction so that it

can continue to be executed from where it was interrupted.

The programmer is encouraged to have both source and destination address low-
order bits set the same. This will enable the instruction to accelerate execution by
using fullword transfers for the majority of the move.

HARDWARE ANOMALY

External 1 interrupt '"Old-PSW'" can be invalid when any of the following interrupts
oceur:

1. 1/O Interface Address Parity
9-5

S8AIYOIY AlisIaaun pue suoaa)jo) [eoads 'saueIqr) Ausienun a1els BIyDIAN

SJUSWN20Q YSYN Jo Uonos|jon oxkewo] -3 sewep Blel

T £ xog

4

2oy

o

61568

2. DMA Data Parity
3. ' PCI Data Parity

SET PROGRAM MASK

111]00] 1foForod1{1]1]0]1] |

4 5 G5 B R IE 48

Mnemonic Format

SPM R2

DESCRIPTION

The contents of bits 16 through 23 of general register R2 replace the correspondmg
contents of the current program status registers on the CPU as follows

Bits 16 and 17 become the new condition code.
Bit 18 becomes the new carry indicator.

Bit 19 becomes the new overflow indicator.
Bit 20 becomes the fixed-point overflow mask.

Bit 21 (reserved)
Bit 22 becomes the floating-point exponent underflow mask.
Bit 23 becomes the significance mask

RESULTING CONDITION CODE
The code is changed as defined above.

INDICATORS

The carry, overflow, underflow, and s1gn1fxcance indicators are changed as defined
above.

1

PROGRAM INTERRUPT

If both bits 19 and 20 are set, the fixed—poin"t overflow interrupt will occur.

PROGRAMMING NOTE

Bits 5 through 7 are not used by this mstructmn. It is réecommended that these
bits be set to zero. ; : :)
.SET SYSTEM MASK

Op /// :a B2 Y " Address Specification) y
1jojojo)1pofogoqt|1j1]1]1 | R0 504 R it o) FEOS (I B 0 [el i
0 4 5 7 B 11121314 1516 § i : 31

AM Mnemonic Format
Extended: 0 SSM D2(B2) Disp
L1 1 Pocliod loslead obs foofend
Indexed: 1 SSM[@] [#] D2(X2,B2) X 1 Disp
S i 50 T 0 A Y O 1 A 099 I |
9-6

S8MYaIY AYsIanlun pue suoioaj|o) (enadg ‘saueiq) Ausianiun 93elg BjUDIA

8028 ‘s "

SiUSWNo0g YSYN Jo UoRoe|j0) oxhewo] -3 seuwrep “Iig

‘\’_' .

i

sz?}:{:‘k E \C)/L]X()el

62461568

DESCRIPTION

The halfword second operand replaces bits 32 to 47 of the PSW. This is a privi-
leged operation and can only be executed when the CPU is in the supervisor state.

RESULTING CONDITION CODE

The code is not changed by this instruction,
INDICATORS

The carry and overflow indicators are not changed by this instruction.
PROGRAMMING NOTE :

Bits 5 through 7 are not used by this instruction. It is recommended that these
bits be set to zero. : v

STACK CALL

Op R1 | 82 | _ Address Specification
tjrjojrjol | Jrjrgrgpge | e N T O e
0 45 7 8 11 1213 14 1516 31
AM
E— Displacement)
S 21 s e O Gl W R R T I R O |
16 : : 3
I . “
1 X Al Displacement
I | I O O
A 16 18 1920 21 N
AM Mnemonic Format
Extended: 0 SCAL R1,D2(B2)
Indexed: 1 SCAL (@] [#] R1,D2 (X2, B2)

DESCRIPTION

This instruction for calling subroutines automatically controls saving bits 0 through
31 of the current PSW, the 8 general registers and programmer's temporary work
space in main storage. When the Stack Call (SCAL) instruction is to be used, or the
corresponding Stack Return (SRET), general register R1 must contain a Stack Status
Descriptor word (SSD), as follows:

INC SSD

Lr Lt et e ettt

0 15 16 ; 3

9-7

SaAYaIY Ajisianun pue suonasjio) [ewads ‘salieigin Ausisaiun aleig eiyaIAA

SjuslunaoQ VSN Jo uonoe|jo) oxAewo] 3 sawer “ig

80-/8 SIN

T 4/ xog

- X

f‘_/‘l;_:;

I
|
|
|
|
|
:
|
|
|
|

| 6246156B

First a branch address is computed. A save area address on the stack is com-
puted from values in the 8SD in R1 as: it o

SA = PTR + INC : e e -
(This save area address must be an even boundary halfword address.) Then the flrst
two halfwords of the current PSW, and eight GPRs are automatically stored in the 18
halfwords beginning at location SA,

The SSD in R1 is now updated, as:

PTR = SA;
INC = 18,

Finally, the next instruction is taken from the branch address. This is essentially

a BAL instruction which provides an automatic call stack function,

PROGRAMMING NOTE

PTR is a normal 16-bit address which is the location of a particular place in the
stack. (The stack utilizes a variable-length portion of contiguous storage.) INC -
represents the number of halfwords which have currently been used in the stack beyond
PTR. Since its representatlon uses a signed 2's complement integer format, its sign -
bit should be zero. See Figure 9-2, -

(Beginning)

/\/\;/

PTR -

: AN

Figure 9-2. Current STACK Status — Prior to SCAL

""When SCAL is executed, the new stack save address is calculated from PTR + INC,
(SA), and then the current PSW and eight general registers are automatically saved in
the new stack save area pointed to by SA, so that the stack now appears as in Figure 9-3.
Then the PTR in R1 is updated to the value in SA and INC set at 18.

(Beginning)

PTR —

Linkage andj
IGPR. . |'INC = 18 Halfwords ‘-
[Save Area

Figure 9-3. STACK Status — Upon Completion of SCAL

9-8

o

SaAIaIY AisIanun pue suoios)o) [eadg 'ssueIq) Ausieniun ajelg epyoipg

wna0Qg VSN J0 uonos|jo) oykewo -3 sswer 'ig

sjua

(Z fr e

L

BO-/8' gy ¢

€ & xog

62461568

The programmer is free to use additional space in the stack, by simply using R1
as a base, and an offset which is greater than 18 (to avoid destroying the saved GPR
contents). However, this additional information will be lost if he issues another SCAL

without specifically adjusting INC in R1 to include this new space.

-

When SRET is executed, the first 2 halfwords of the PSW and the eight GPRs are

automatically loaded from the save area at location PTR (in R1).

Note that this restores

R1 to contain the SSD it had just prior to the last SCAL, which means that the stack is

automatically restored to the state of Figure 9-2.

Refer to STACK RETURN,

HARDWARE ANOMALY

External 1 interrupt "Old PSW' can be invalid when any of the following interrupts

occur:

1. I/0 Interface Address Parity
2, DMA Data Parity

3. PCI Data Parity

PROGRAM INTERRUPTION

Specification

Protection

STACK RETURN

Op M1 R2
1 0[0]110 1 | IIT]'I'D'I [I
0 4 5 7 8 111213 15
Mnemonic Format
SRET M1, R2
_l
- DESCRIPTION

When SCAL is used to call a subroutine, the complementary branch instruction SRET
is used to leave the calling subroutine and return to the conditions prior to the last SCAL,
This is a conditional branch instruction in the RR format which provides the first two
halfwords of the PSW and restores the re
the time of the SCAL.

gisters (GPR's) to the same state as existed at

The instruction execution first matches the M1 field against the condition code to
determine if the branch should be takén, If the branch should not be taken, the instruc-

tion terminates at this point.

should occur,

The remaining description applies when the branch

The stack pointer address, PTR, is located in bits 0 th rough 15 of the general
register specified by R2, (This address must be an even boundary halfword address.)
The first two halfwords of the stack are moved into the active PSW. Next, all eight
general purpose registers are loaded from the current stack save beginning at location
PTR +2 as specified in R2. Finally, instruction execution continues from the address
indicated by the active PSW,

SeAIYaIY Alsiaalun pue suonaejo) enads ‘ssleIq) Ajsisnun a1els BJydIAn

Sjuawindoq VSN 4o uopda|jo) oyAewo] 3 sawer g

80-/8 SIN

T / xog

=

Ld

62461668

CONDITION CODE

The value in the corresponding field is loaded from the stack.

INDICATORS

The value in the corresponding field is loaded from the stack. |

PROGRAMMING NOTES

The following notes are intended to amplify and clarify the use‘of the stack and
extended call facility. y

Since the stack is located in main store, any area of the stack can be
accessed by standard addressing techniques (i.e. , using R1 as a base),

While the primary purpose of the stack is automatic register saving and
restoring, it also prpvides automatic allocation and de-aliocation of tem-
porary work space, a function often required for efficient use.of storage,
and for use of reentrant programs. Note that the INC value in the SSD
does not have to be modified to use this work space; simply addressing
relative to the base in R1 allows this. The INC value only needs to be
adjusted if the information in the stack space needs to be preserved during
a subsequent SCAL. Py

The total stack space (i.e., the space taken up by the total stack at any given
time) is variable. It grows and shrinks as a function of the depth of the call-
tree and the amount of workspace used by the various programs. However,
in the overall data structure of the total application, there must inevitably
be a fixed limit on the amount of main store which can be allocated to the
stack. Such limit would presumably be based on either statistics of usage
plus a safety factor, or else on a detailed analysis of the usage of all possible
call chains, In both cases (the latter as an error detection mechanism) it'is
important to have some mechanism to 'stop the call chain if through some
peculiar circumstances the stack should exceed its allocated space. Un-
fortunately, there does not appear to be any fool-proof scheme. However,

. most such situations would be caught by appending a few words at the end

of the allocated space which have the store protect bit.on.” Any attempt to
store into the stack beyond its limit would result in a protection violation
and interrupt,

Since the PSW and the eight general purpose registers are automatically
restored on SRET, it is not possible to return results directly to the calling
program in the registers. Rather, the value to be returned in a register.
must be stored into the appropriate slot in the general purpose register save
area in the stack. Then, when the registers are restored, the calling pro-
gram will, in fact, find the value in the register, At the same time, addi-
tional values can be returned to the calling program in the work space in
the stack, since the calling program can access that space by addressing
relative.to the base in R1 (SCAL). (There must, of course, be an agreed-
upon convention as to the specific locations in the work space.) Note — the
floating-point registers are not affected by SCAL and SRET so variables can

be passed in these registers. b
-10

SBAILDIY Aisianun pue suonas)og [epads ‘sauieign Aussenun alels enyoin

do-z8 ‘s !

‘T4 xog

SjUsWNo0q YSWN Jo UoRos|jo) oxAewo] '3 sawep 1q

44
(

lgﬁ

62461568

HARDWARE ANOMALY

External 1 interrupt ""Old PSW" can be invalid when any of the following interrupts
oceur: ‘

1. DMA Store Protect

2. DMA Address Specification

8. 1/0 Interface Address Parity

4. DMA Data Parity

5. PCI Data Parity

SUPERVISOR CALL

Op OPX I\Afl B2 Address Specification
1jrjojojrfojojtfijifififs | bl obid st b dles ol i foodiad o4
0 4 5 7 8 111213 141516 i 31

AM Mnemonic Format)
Extended: 0 SVC D2(82) Disp
L1 1] o Tl &0 o |
Indexed: 1 svC (@] [=] D2(X2,B2) X R Disp
O 3 3 1 I L S
DESCRIPTION

This instruction causes an Interruption and a program status word switch. As a
result of this instruction, the interrupt code for the stored program status is equal to
the 16-bit effective address. This is the only way to enter the supervisor state from
the program state.

RESULTING CONDITION CODE
The condition code in the stored PSW is not changed by this instruction.
INDICATORS

The overflow and carry indicators in the stored PSW are not changed by this
instruction. :

PROGRAMMING NOTE

The new PSW sets or defines the condition code, overflow indicator, and carry
indicator as well as all other bits in the new PSW.

9-11

Sanyaly Aysiaaiun pue suondale] [ewads ‘saueign Kyssenun syeig BHLDIAN

Sjuswnooq YSYN Jo uonos|jo) oxAewo) '3 sawep g

80-/8 SIN

T / xog

4

24

6246156B

TEST AND SET - i :

7 ' —
//// :.! B2 Address Specification :
. 1 N 5 o 5 e 0% G e d

Op
1]0j1}1] 1¥0

11111 |] !
0 4 5 7 8. 11121314 15 16 31
AM Mnemonic’ Format 3 : i
Extended: 0 TS D2(B2) Disp
| I S Y
Indexed: 1 TS(@] [#] D2(x2,B2) X 1] Disp i
P PEER O I P
DESCRIPTION ' i b Pt . il

Bits in the halfword second operand are tested to set the gqnglition code, and the
second operand is set to all ones. No other access to this location is permitted between T
the fetch and the storing of all ones. 3

RESULTING CONDITION CODE
we A o a
00 The bits are all zeros B
11 The bits are mixed with zeros and ones 3
01 The bits are all ones. "y
INDICATORS
i

The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTES _ :
= L

TS can be used for the controlling and sharing of a common storage area by more
than one program. To accomplish this, a halfword can he designated as control. The
desired interlock can be athieved by establishing a program convention in which a zero
halfword indicates that the common area is available, but a one means that the area is
being used, Each using program then must examine this halfword by means of a Test
and Set hefore making access to the common area. If the test sets the condition code il
to 00, the area is available for use; if it sets the condition cede either 01 or to 11, the
area cannot be used. Because Test and Set permits no access to the test halfword be-
tween the moment of fetching (for testing) and the moment of storing all ones (setting), s

9-12

aud

SaAYaly Ajisianun pue suonoe|jo) emadg ‘SsueIqn) AusisAiun 918)S BlIYDIAA

{

do-/8 ‘sp

[f/L& xogl

SjusLn20Q YSYN Jo uoyos)io) oxhewo) ‘3 sawer -iq

=

Z 4 5

(.

the possibility is eliminated of a second program testing the halfword before the first
program is able to reset it. Selective bits can be tested by using the TEST AND SET
BITS instruction, -

Bits 5 through 7 are not used by this instruction. It is recommended that these
bits be set to zero.

TEST AND SET BITS

Op oPX Disp* B2 Immediate Data .
Jdojrijolrgegef | 11 (] | Ll 3Lt
0 4 5 78 13 14 15 16 31
Mnemonic Format *Displacements of the form

TSB D2(B2).Data 111 XXX are invalid.
DESCRIPTION

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
immediate data is logically tested with the halfword second operand. The logical sum
(OR) of the immediate data and the halfword second operand is formed bit-by-hit, The
result replaces the halfword second operand. No other access to this location is per-
mitted between the fetching of the operand and the storing of the result,

RESULTING CONDITION CODE

00 Either the bits selected by the immediate data are zeros or the
immediate data is all zeros
11 The bits selected by the immediate data are mixed with zeros and
ones
01 Thel bits selected by the immediate data are all ones,
"INDICATORS

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTE

The one bits in the halfword mask specify the bits of the halfword second operand
that are set one. The result replaces the halfword second operand. The following ta-
ble defines this instruction.

TEST AND SET
BITS
Mask 1100
Storage 1010 |
Result 1110
9-13/9-14

62461568

S3AILLY ASISAILN pUB Suonos|jog jeads ‘sslieiqn) Ausieniun a1e)S BpyoIAA

r4a

028 ‘s !

:

I f’,% xog‘f‘

SjuBLINIeq YSYN JO Uolos|jon oykewo] ‘g sawe

=3
-
(

Section 10

INTERNAL CONTROL OPERATIONS

A CPU instruction will initiate an Internal Control operation that will perform the
following functions, depending on the control word (CW) coding:

¢ A fullword will be transferred between general register R1 and counter
1 or 2. The high halfword of general register R1 (the most significant half-
word) is transferred to or from the main store halfword location 00B0 for
counter 1 or 00B1 for counter 2. The low halfword of general register R1
(the least significant halfword) is transferred to or from a 16-bit hardware
binary counter 1 or counter 2. Section 2 contains a description of counter

operations.

® An AGE command word, specified by bits 16 through 31 of the CW (R2),
will be transferred to the AGE interface, and a halfword will be trans—
ferred to or from bits 0 through 15 of a general register (R1) and the
AGE interface.

® Four discretes will be transferred from bits 0 through 3 of a general
register (R1) to the I/0 interface.

0 - XMIT Disable
1 - BCE Disable
2 - Spare 1

3 - Spare 2

® I/0 channel reset. The channel reset operation issues a reset to the IO.
The IO and CPU uses the signal to reset the IO/CPU interface logic. If an
external interrupt 0 has occurred, this command must not be executed until
IOP level A interrupt register has been read.

INTERNAL CONTROL

oP R1 . R2

L L O E S N1)
0 45 78 111213 15

Mnemonic Format
ICR R1,R2

DESCRIPTION

This instruction transfers a fullword to or from the general register specified by
R1. Operations are further defined by a control word contained in bits 0 through 31 of
the general register specified by R2. The CW format is shown below.

.

10-1

6246156B

S8Alaly Asianiun pue suopas)jon [eroads ‘ssueiqr Ausieaiun 21BIS BUYDIA

T L xog

SjuslinaoQ VSN Jo uonoejjo) oxkewo] 3 sawer g

|

.

80-/8 SI

6246 156B

CONTROL WORD (CW)

D) " Reserved forAGE.Cén-n_m,andWofd e
1 N S e o L o R e O 5 R v I D Il
0 4 5 ; 16 16] . 31
Legal D
Command Meaning -
00000 Read Counter 1
00001 Read Counter 2
00101 Read AGE
01000 Write Counter 1
01001 Write Counter 2
01100 Write Discretes
01101 Write AGE
10000 Channel Reset

No data transfer is associated with the Channel Reset operation.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAM INTERRUPTIONS

Illegal operation

PROGRAMMING NOTES

Thisis a privileged operation and can only be executed when the CPU is in the.
supervisor state.

The illegal operation program interruption will.occur. if the following illegal

commands are used: 00010, 00011, 00100, 00110, 00111, 01010, 01011, 01110, and

01111.

Commands of the form 1XXXX other than 10000 are reserved and should not be
used. The illegal operation program interruption does not occur; instead a channel

reset is performed.

When using either Counter 1 of Counter 2asa counter (rather than as an incre-
mental timer), a posslbi].ity exists that the counter could be. 1n error during a single
read by 65.536 microseconds (low order bit of location 00B0 or 00B1).

This problem

can be avoided by doing two consecutive reads and making comhparisons to pick the
correct reading.

10-2

SaAYaIy Ajisianun pue suonos)jo) [ewads ‘ssilelq) Aysieniun a1els BlYDIAN

SjusWwn20Q YSYN Jo Uoyos|io) oxhewo] -3 sawer g

Bo-28t sy ¢

T | xog

4 4

tZ 4

(

62461568

Section 11

EFFECTIVE ADDRESS GENERATION SUMMARY CHART

RS Format .
SR8, 8l Extended Indexed Addressing (AM=1)
Formats :
Addressing
(AM=0) IA |1 X=000 X=000
PEA=(B)+DISP
B2711 | EA=(B)*DISP | EA=(B)+DISP | 00 | EA=IC-PEA EA=(X)y_15"PEA
01 EA=IC-PEA EA= (}()6_15+ PEA
10 EA=MS(PEA) EA=MS(PEA)*(X)0_15
11 | EA=MS(PEA)**| EA=MS(PEA)***+X)q_;5
PEA=DISP
B2=11 | EA=(B)+DISP | EA=DISP 00 EA=IC+PEA EA=(X)g_q 5*PEA
01 EA=IC-PEA EA=(X)6_15*"PEA
10 | EA=MS(PEA) | EA=MS(PEA)+(X)q_;5
11 EA=MS(PEA)** EA=MS(PEA)***+X)q_;5
Definitions
EA Effective address, main storage address of second operand
PEA Preliminary effective address '
(RN) Contents of bits 0-15 of general register specified by B2 or X
RN General register ""N'', where N=0to 7 '
®B) Contents of bits 0-15 of general register specified by the B2 field
B2 B field of SRS, SI, or RS format instruction
MS() Contents of the main storage location specified by the contents of the parenthesis
DISP Displacement field of instruction
X X field of RS format instruction with indexed mode of addressing
(X)p-15 Most significant halfword (bits 0-15) of the content of index register X automatic-
) ally aligned. °
AM AM (addressing mode) field of RS format instruction
1A IA (indirect address) field of RS format instruction with the indexed mode of
addressing
I I field of RS format instruction with indexed mode of addressing
IC Updated Instruction Counter
* Automatic Index Modification
wE Automatic Storage Modification
E® Direct Storage Addressing with/without Post Indexing
X INDEX VALUE X INDEX VALUE
000 ‘ Zero 100 (R4)
001 R1) 101 (R5)
010 R2) 110 (R6)
011 ®R3) 111 R
11-1/11-2

SIMLDIY AlIsIsMUn pue suonos)jo) jewads ‘Sslieign) Ausieniun aielg enyaIAn

Nl 62461568

Section 12
. AP-101 C/M INSTRUCTION REPERTOIRE
\U_ N
= Name Sl Mnemonics Format
Fixed-Point Operations
= Add AR, A RR, SRS, RS
Add Halfword. AH SRS, RS
Add Halfword Immediate AHI RI
i Add to Storage AST . RS
Compare CR,C RR, SRS,RS
Compare Between Limits CBL RR
(o Compare Halfword CH SRS, RS
Compare Halfword Immediate CHI - RI
Compare Immediate with Storage CIST S8I
g Divide DR,D RR, SRS, RS
Exchange Upper and Lower Halfwords XUL RR
7 Insert Address Low IAL SRS,RS
) Insert Halfword Low IHL RS
s Load LR, L RR, SRS, RS
Load Address ' LA SRS, RS
Load Arithmetic Complement LCR RR
- Load Fixed Immediate LFXI RR
- Load Halfword LH SRS, RS
i Load Multiple , LM RS
““;_ Modify Storage Halfword MSTH SI
Multiply ~ MR,M RR, SRS, RS
’ Multiply Halfword MH SRS, RS
: 2 Multiply Halfword Immediate MHI RI
= Multiply Integer Halfword MIH RS
Store ST SRS, RS
Store Halfword STH SRS, RS
— Store Multiple STM RS
o= Subtract - SR, 8 RR, SRS, RS
< o0 Subtract from Storage SST RS
S e Subtract Halfword SH SRS, RS
& oo Tally Down ; TD SRS, RS
-
'54 3 Branch Operations
g & Branch and Link BALR, BAL RR,RS
g Branch and Index BIX RS
g Branch on Condition BCR, BC RR,RS
<lves Branch on Condition Backward BCB SRS
58 Branch on Condition (Extended) BCRE RR
e Branch on Condition Forward BCF SRS
z iy Branch on Count BCTR, BCT RR,RS
& 0 Branch on Count Backward BCTB SRS
o Branch on Overflow and Carry BVCR,BVC RR,RS
g o Branch on Overflow and Carry Forward BVCF SRS
fm o 12-1

Z tr d

SaAIYDLY Ajisianiun pue Suone||o) |eineds ‘saueign) Rusianiun aelg BHUDIAN

SjusWINo0Q YSYN 40 UoRos)io) oyAewWo] ‘g sawer 1

6246156 B

80-/8 SIN

T L xog

=

Name

Shift Operations

Normalize and Count

Shift Left Logical

Shift Left Double Logical
Shift Right Arithmetic

Shift Right Double Arithmetic
Shift Right Logical

Shift Right Double Logical
Shift Right and Rotate

Shift Right Double and Rotate

Logical Operations

AND

AND Halfword Immediate

AND Immediate with Storage

AND to Storage

Exclusive-OR

Exclusive-OR Halfword Immediate
Exclusive-OR Immediate with Storage
Exclusive~-OR to Storage

OR '

OR Halfword Immediate

“ OR to Storage

Search Under Mask
Set Bits

Set Halfword

Test Bits

' Test Register Bits
- Test Halfword

Zero Bits .
Zero Register Bits
Zero Halfword .

12-2

NCT
SLL
SLDL
SRA
SRDA
SRL
SRDL
SRR
SRDR

NR, N
NHI
NIST

. NST
XR.%.

XHI
XISsT
XST

OR,O

OHI
OST

SB
SHW
TB
TRB
TH
ZB
ZRB
ZH

Mnemonics

Formats

RR
SRS -
SRS
SRS
SRS
SRS
SRS

SRS

SRS

RR, SRS, RS
RI

st

RS

RR, SRS, RS
RI

ST

RS

RR, SRS, RS
RI

RS

RR

SI

SRS, RS

st

RI

SRS, RS

ST

RI

SRS, RS

!

SaNILALY Ajs1sniun pue suonos|jog jepads ‘ssiteiqn) Ausianun slels epyaip

Sjuswna0Qg YSYN Jo Uoioe|j00 oykewo] -3 sawer -iq

Name

Floating-Point Operations

Add (Long Operand)
Add Short Opéerands)
Compare (Short Operand)
Convert to Fixed-Point
Convert to Floating-Point
- O Divide (Extended Operand)
= Divide (Short Operand)
- Load (Long Operand)
Load (Short Operand)
o Load Complement (Short Operand)
Load Fixed Register
Load Floating Immediate
Load Floating Register
Mid Value Select (Short Operands)
5 Multiply (Extended Operand)
Ly Multiply (Short Operand)

- Subtract (Long Operand)
Subtract (Short Operand)
| ¥ Store (Long Operand)
b Store (Short Operand)
. Special Operations
w Detect ©
Insert Storage Protect BitsP
Load Program Status?
- Move Halfword Operands
‘ Set Program Mask
= Set System MaskP ’
w Stack Call
0:3- Stack Return
- Supervisor Call
('3 Test and Set
. Test and Set Bits
Internal Control Operations
P
o ® Internal Control
2 _ I/O Operations
t Program Controlled Input/OutputP
o
s P: Privileged Instruction
T
Tl
2 12-3/12-4
AN}

Mnemonics

AEDR, AED
AER, AE
CER, CE
CVFX
CVFL
DEDR, DED
DER, DE
LED

LER, LE
LECR
LFXR
LFLI
LFLR

MVS
MEDR, MED
MER,ME
SEDR, SED
SER, SE
STED

STE

ISPB
LPS
MVH
SPM
SSM
SCAL
SRET
SvC
TS
TSB

ICR

PC

Formats

RR, RS

RR, SRS, RS
RR,RS

RR

RR

RR,RS

RR, SRS, RS
RS

RR, SRS, RS
RR

RR

RR

RR

RS

RR,RS
RR, SRS, RS
RR,RS
RR, SRS, RS
RS

SRS, RS

RS
RS
RS
RR
RR
RS
RS
RR
RS
RS
81

RR

RR

SaAIory Asiaaiun pue suonoajjo) jenadg ‘sslieIg ANsisniun alels enyan

{

80-/8 BN

t T 4 xogi

Sjuswna0Q YSYN Jo uonds|jon oykewo | ‘3 sswer g

Z 7 4

(/'_

Section 13

AP-101 C/M OP CODE ASSIGNMENTS

62461568

OPO, 011

oP
4 00 01 11 10
OP 04 =1
00 | SRS SUBTRACT SRS DIVIDE . SRS BROV & CRY SBS SUB HW
RR SUBTRACT . RR DIVIDE RR BROV & CRY RR LOAD FL IMM
RRy COMP BTWN RR, COMP FL ST RR, SET PROG MSK RRy LOAD FL IMM
LMTS RS DIVIDE RS BROV & CRY "RS SUB HW
RS SUBTRACT RSy COMP FL ST RS, LM, STP, LPS, RSy SET SYST MASK
RSy SUB FRM STO SM, SVC
01 | SRS LOAD SRS SUBTRACT FL ST | SRS BR RELATIVE SRS LOAD HW
RR LOAD RR SUBTRACT FL ST | RRICR 10 RR, SUM
RRy SUBTRACT FL LN | RRz PC RS LOAD HW
RS LOAD RS SUBTRACT FL ST RS BIX RS, MIH
RS, SUBTRACT FL LN | RS2 []
11 | SRS STORE FL ST SRS LOAD FL ST SRS REG SH DBL SRS §TO HW
RR CONV TO FXD RR LOAD FL ST SRS COMP SH DBL RR LOAD FX IM
RRy; LOAD COMP FL RRp LOAD FX IMM [|
RS STORE FL ST ST RS STO HW
RS LOAD FL ST RS, TST & SET B
RSy LOAD FL LN
10 SRS OR SRS DIVIDE FL ST SRS LOAD ADDRESS SRS MULTPLY HW B
RR OR RR DIVIDE FL ST RR5 LOAD ARITH TEST 3 (RR,)
RR2 LOAD FLTG REG |RR MOVE HALFWORD OPS COMP RS MULTIPLY
RS OR RS DIVIDE F1, ST RS LOAD ADDRESS
RS, OR TO STORE TEST 2 (LRS) RSy INSTR PROT BITS
OP 04 = 0
00 | SRS ADD SRS MULTIPLY SRS BR ON COND SRS ADD HW
RR ADD RR MULTIPLY RR BR ON COND RR,
RR, XU&L HW RS MULTIPLY RRp BR ON COND EXT | RS ADD HW
RS ADD ! RS BR ON COND
RS, ADD TO STORE _ RSy DETECT B
01 | SRS COMP DVD FL SRS ADD FL ST SRS BR ON CT SRS COMP HW
LN RR ADD FL ST RR BR ON CT RRg2 STACK RTRN
RR COMP RRy ADD FL LN TEST 4 (RR) RS COMP HW
RR, RS ADD FL ST RS BR ON CT
RS COMP RSy ADD FL LN RSy STACK CALL
RS, DVD FL LN ‘
11 | SRS STORE SRS XOR SRS RG SH SING IEXP
RRy MPY FL LN RR XOR SRS COMP SH SING RR, RS
RS STORE RS XOR R1 = OPX
RSy; MPY FL LN RS XOR TO STORE
10 | SRS AND SRS MULTIPLY FLST | SRS INSRT ADD LO IMPL
RR AND RR MULTIPLY FL ST | RR BR & LNK SRS, RS
RR, LOAD FX RG TEST 1 (RR) RRy NORM & CNT R1=OPX i
RS AND RS MULTIPLY FL ST RSy INSRT ADD LO TEST 3 (LRS)

RSy AND TO STORE

RSy MID VALUE SLCT

Notes: OPI12 = 1 Causes either RR,, or RS, Operations
FL ST — Floating-Point (Short Operands)

Op Code 00011 with OP12 = 1 is reserved

FL LN — Floating-Point (Long Operands)

HW — Halfwords

Sanyaly Aysianun pue suonas|o) jeadg ‘sslieiq) Ausieniun s1elg epysing

SjuaWnoog YSYN Jo uoios|jo) oyAewo] ‘g sawep g

‘ :
6246156B

T L xog

=

Z 4 A

80-/8 SN

et

\.h-/
AP-101 C/M OP Code Assignments (cont) = pagiigels s
! opP R1=OPX RRy . : RS,
11001 . 000 Set Program Mask Store Multiple i
: 11001 001 Reserved Supervisor Call |
11001 010 Reserved Reserved !
i 11001 011 Reserved Reserved ' ; b
11001 100 Reserved Load Multiple
i 11001 101 Reserved i Load Program Status
1 11001 110 Reserved " Reserved it
} 11001 111 Reserved Reserved :
[] IMPLIED IMMEDIATE fi2
10100 000 Tally Down SRS, RS
| 10100 001 Zero Halfword SRS, RS :
| 10100 010 Set Halfword SRS, RS ; no
| 10100 011 Test Halfword SRS,RS
| 10100 100 Reserved
| 10100 101 Reserved
| 10100 110 Reserved
] 10100 111 Reserved
B EXPLICIT IMMEDIATE P
| OP. R1=OPX RR RR2 SRS | '
| 10110 ' 000 Add Half Immediate Reserved Modify Storage Halfword w
‘» 10110 001 Zero Register Bits Reserved Zero Bits
? 10110 010 OR Half Immediate ~ Reserved Set Bits
! 10110 011 Test Register Bits Reserved Test Bits
| 10110 100 "XOR Half Immediate Reserved XOR Immediate With Store -
10110 101 Comp Half Immediate Reserved Compare Immediate With Store
\ 10110 110 AND Half Immediate Reserved AND Immediate With Store :
! 10110 111 Mult Half Immediate Reserved Test and Set Bits i
‘ N .
|
i
I
, w
| S
|
! 13-2
i

SaAYoIY Alisianiun pue suonos|jo) [enadg ‘ssiteiq Ausieniun alels epyoipn

SjusLunI0Qg YSYN 4o uoioe|io) oxkewo | ‘g sawer -iq

{

q0-48 (SIN

(T A xog

o

42{'/7 3

-

62461568

Section 14

AUTOMATIC INDEX ALIGNMENT DESCRIPTION

Index alignment occurs automatical
register specified by X specify entities,
by the particular operation being execut

Halfword operations align index val

PEA (described in Section 2) or the ADDR

(described in Section 2),

ly. That is, bits 0 through 15 of the general
The identity of this entity is explicitly defined

ed.

ue bit 15 with the least-significant bit of the

ESS portion of an indirect address pointer,
It should be noted that the LOAD MULTIPLE, STORE MUL-

TIPLE, LOAD PROGRAM STATUS, and INSERT STORAGE PROTECT BITS instructions
are excluded from automatic index alignment and have a halfword index alignment,

PEA or Address
L4 L
0 15
Index Value
IIIJIIIIIJIIIII
0 15

Likewise, fullword. operations functionally shift the index valu
prior to alignment. Note that bit 0 of the index value is lost,

. PEAor Address
LAEL LT L A4 b2 T 11 g

0 14

15

Index Value

LUl L

1 15

Likewise, doubleword operations functiona

left prior to alignment,

PEA or Address

L L1111

0 1314

Index Value

NN NEENEE

2 16

15

14-1/14-2

€ one position to the left,

lly shift the index value two positions to the
Note that bits 0 and 1 of the index value arelost. :

NASA-JSC

	Table Of Contents
	Section 1 - INTRODUCTION
	Section 2 - AP-101 C/M STRUCTURE
	Main Storage
	Central Processing Unit
	Program Execution
	Storage Protection Features
	Machine Status
	PSW Fields

	Section 3 - CPU I/O
	Section 4 - FIXED-POINT ARITHMETIC
	Section 5 - BRANCHING
	Section 6 - SHIFT OPERATIONS
	Section 7 - LOGICAL OPERATIONS
	Section 8 - FLOATING-POINT OPERATIONS
	Section 9 - SPECIAL OPERATIONS
	Section 10 - INTERNAL CONTROL OPERATIONS
	Section 11 - EFFECTIVE ADDRESS SUMMARY CHART
	Section 12 - AP-101 C/M INSTRUCTION REPERTOIRE
	Section 13 - AP-101 C/M OP CODE ASSIGNMENTS
	Section 14 - AUTOMATIC INDEX ALIGNMENT DESCRIPTION

