
NASA
NATIONAL AERONAUTICS and SPACE ADMINISTRATION

Lyndon B. Johnson Space Center
Houston, Texas 77058

SPACE SHUTTLE PROGRAMS

ORBITER AVIONICS SOFTWARE 2

STENOAROS “
PROGRAMMING*DOCUMENT

Revision 4

PREPARED BY IBM UNDER

NAS9-14444

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Contract: NAS 9-14444

SPACE SHUTTLE PROGRAMS

ORBITER AVIONICS SOFTWARE

PROGRAMMING STANDARDS. DOCUMENT

Revision 4

= == == Federal Systems Division
= = = =F= Houston, Texas

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

SPACE SHUTTLE

& ORBITER AVIONICS SOFTWARE

— NAS 9-14444

PROGRAMMING STANDARDS DOCUMENT

SHUTTLE FLIGHT SOFTWARE

REVISION 4

Technical Content Approval:

lie LE 2 <- Con.

J. F.UClemons, Manager R. C. McCain, Chairman

Avionics Software Development/ Software Architecture Review Board

Verification

R. B. Ingenthron, Manager W. M. Beene, Project Manager

Systems Engineering Onboard Space Systems

IBM FEDERAL SYSTEMS DIVISION

1322 Space Park Drive
Houston, Texas 77058

82-SS-4556 TYPE IIT

IRD No. 9a 02/15/83

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

PREFACE

This document constitutes a complete replacement for the "Orbiter Avionics

Software Programming Standards Document (Revision 3), published 2/2/82.

All changes from that document are indicated with vertical bars in the

right margin.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

DP
N
H
H
N
H

H
E

o
e

«
e©

©
H
R
P

Re
e

8
P
r
e
e

r
R

—

°

W
N

Fr
o
e

W
h

°
N
N
N

R

R
e
e

°
°

8
e

N
r

N
e
e

Re

p
e

W
N
N
Y
N
N
N
N
N
N
N
N
N
R
F
P
R
K

RF
R
e

°
°

e
e

e
8

e

2
8

©
.

°
2

©
e

M
U
O

R
w
W
N
e

eo
28

e
°

W
N
r
F

N
r

2
.

e
e

ee

eo
2

e
.

D
A
D
N
P
W
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
H
R
F
P
R
R
P

R
F
R

F
e

e
e

e
8

e
°

°
eo

8
e

eo
eo

8
©

B
M
N
N
Y
N
Y
N
M
N
M
N
M
N
N
N
N
N
N
M
M
N
N
M
N
N
M
N
N
N
N
M
N
M
N

N
M

N
H
N

NHL

LH

LY
°

eo
28

@
ec
©
 e@

ee

e
e

°
e

°
.

1
O
E

e
l

TABLE OF CONTENTS

INTRODUCTION

NAMING CONVENTIONS

HAL/S IDENTIFIERS (M)

Label Names (M)

Code Block Labels (M)

PROGRAM, External Procedure and External FUNCTION
Blocks (M)

COMPOOL Blocks (M) ©
Nested PROCEDURE, and FUNCTION Blocks (G)

Template Labels (M)

Executable Statement Labels (M)

Data Names (M)

Functional Data (M)

Local Non-Functional Data (G) -

ASSEMBLER LANGUAGE IDENTIFIERS (M)

Label Names (M)

Code Block Labels (M)

' CSECT and External Procedure Blocks (M)

Nested PROCEDURE and TASK Blocks (M)
Executable Statement Labels (G)

Data Names (M)

Functional Data (M)

Register Save Areas (M)
Local Non-Functional Data (G)
DSECTS (M)

DSECT Names (M)

Data Names In DSECTS (M)

HAL/S Data References (M)

Assembler COMPOOL Labels (M)

Assembler HAL/S Defined Data Entry Points (G)

Assembler I/O Buffer Entry Points (M)
Title Cards (G)

HAL/S INCLUDE SEGMENTS (M)

ASSEMBLER LANGUAGE COPY SEGMENTS (M)

DATA SET NAMES

DATA SET MEMBER NAMES (M)

HAL/S Generated Data Names (M)
Preprocessor and MACRO Generated Names (G)

li

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

om

Ww
W
W
W
w
W
w
w

N
N
N
N
r
F

o
w

W
W

WH

W
W

WwW

U
P
R

R
R
R

R
W
W
W
W
W
W
W
W
W
W
W
W
W

W
w
W

Ww

W
w
W

Wo

o
w

&

W
W

WD

Ww

Ww

W
w
W

W
w
W

Ww

w
w
w

Ww

Ww

TABLE OF CONTENTS (Cont'd)

PROGRAMMING CONVENTIONS

TOP-DOWN PROGRAMMING (G)

CODE STRUCTURING (M)

Control Logic (M)

Code Block Size Limitation (G)

Flow Diagramming Standards for Crew Interface Grammar

Statements (M)

SOFTWARE ANOMALIES (M)

Coding Restrictions (M)

Data Exchanges Between Processes

Data Exchanges Between Processes —- Redundant

Configurations (G)

Data Exchanges Between Processes - All Con-

figurations (G) C

Restrictions on EVENT Variables in Non R/T Statements (M)

FSW Process Priorities, Dates and Phase Off-Sets (M)

Redundant GPC Calculations (M)

Time Contraints on Software Sequences (M)

Restricted Use of HAL/S Real-Time Features
Characteristics of HAL/S SCHEDULE Statements (M)

Assembly Language Usage (M)

Constraints When Writing Disable Blocks/Exclusive

Procedures (M/G)
Constraints When Writing Disable Blocks (M)

Constraints When Writing Exclusive Procedures (G)

Use of ON ERROR For I/O Operations (M)
Protected I/O Transactions (M)
Interprocess Variables Not Protected By Disable

Blocks (M)
Processes Execution Over OPS Transitions (M)

Checksums (M)

RIGID COMPOOLS/STRUCTURES (M)

Local Data ZCOPY (M)

FSW Error Protection (M)

Coding Guidelines (G)

Removal of Unnecessary Diagnostic Messages (G)
Source Macro Definition Considerations (G)

FSW Data Referencing Considerations (G)

Optimization Considerations

Reliability Considerations

Restricted HAL Statements (G)

Data Initialization (G)

DOCUMENTATION

SOURCE LISTINGS (M)

Prologue Comments (M)

Authorization ID Correlation Comments (M)
Statement Comments (G)

FSW Source Resequencing (M)

DESIGN SPECIFICATION FORMAT (M)

REFERENCE MATERIAL

W
w
n
N
r
e

.
e
e
e

e
e

e
R
e

° —

Ww we - tS

P
e
e

R
P
E

eR

O
O
A
N

D
U
F
F

W
D

N
e

. °
a
 .

.
e
e

r
P
r
E
r
O
o
O
W

N
F
O
:

:
R
R
R

r
e
e

N
D

S
W

.

N
N
N
O
N
N
N
N
N
R
F
P
R
P
B
R

B
H

N
r

° .

l
o

W
W

W
W
W

W
W
W

W
W
W

Ww

O
P
W
W
W
N
r
e

N
P
P

rP
rE

Re

P
w
W
N
r

1d,

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
BOOK: Programming Standards Page 1-1

1. INTRODUCTION

The Programming Standards Document For Shuttle Flight Software is
provided to assist software development and verification personnel, at

IBM FSD-Houston, in delivering a software package to NASA for the AP-101
computers onboard the Space Shuttle Orbiter Vehicle. This is accomplished
by prescribing standards for the components of flight software development
including naming conventions, program design, documentation, and program

updating. References are made to documents that contain reference
material for flight software personnel.

The flight software will largely be coded with the HAL/S language.

Flight software development personnel coding in any other language will

still be expected to follow the standards of this manual as closely as
possible. These standards and additional data and: baseline information

provided in Software Awareness Memos (SAMs) are either Mandatory (M) or

Guidelines (G). Each document or paragraph will be so designated and
each element will be assumed to be the designated level unless explicitly

stated.

Exceptions to mandatory standards/SAMs must be approved by the Software

Architecture Review Board (SARB) and will be documented as part of SAM

2. Exceptions to guidelines may be approved by the design/code inspection

team only if a superior alternative is demonstrated. Guideline exceptions

will be documented as part of the retained design/code review package.

. Changes to this document, or to’ SAM documentation, may be requested by

submitting a FAIR (see Attachment A) to a SARB member. Appropriate

updates will be made after review and disposition by the SARB.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards Page 2-1

2. NAMING CONVENTIONS

The naming conventions for identifiers, include segments, data sets, and
data set members, are documented in this section. These standards are
designed to enable generation of unique identifiers and data set names
for each area with little interfacing. Standards relating to HAL/S and
Assembler language are discussed in separate subparagraphs. Mandatory
(M) or Guidelines (G) is indicated on each paragraph.

2.1 HAL/S IDENTIFIERS (M)

The naming conventions for the HAL/S identifiers are specified in
the following paragraphs for either label or data names. In generating
label and data names the following rules must be adhered to:

oO The total number of characters in a single name must not
exceed 32. The total number of characters in a fully
qualified name may not exceed 50. It is recommended
however, that all symbol names be defined concisely for
readability and to maximize processing and storage
efficiency. :

oO The first character must be alphabetic and any character
after the first may be alphabetic or numeric.

oO Any character except the first or the last may be a
"break character' (_) .(except explicit formats stated in
subparagraphs).

o Control Segment Grammar Keywords cannot be used as identi-
fiers (See Table 2-1).

oO HAL/S keywords and built-in function names cannot be used
as identifiers (See HAL/S-FC User's Guide).

2.1.1 Label Names (M)

This section specifies the naming conventions established for
labels on HAL/S code blocks, templates, and executable statements.
The formats for assigning names to these labels are discussed in
detail in the following paragraphs.

Variations of the conventions are presented in Section 2.2 for the
AP101 Assembly Language code and data blocks.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards Page 2-2 eC

2.1.1.1 Code Block Labels (M)

Three formats were established for assigning names to labels on

code blocks. These formats are defined for the different types of
code blocks which can be generated by HAL/S. The first format
defined is for labels on PROGRAM, external, FUNCTION and external

PROCEDURE code blocks. The second format is for labels on COMPOOL
code blocks. The third format is for labels on nested PROCEDURE ,
FUNCTION, UPDATE and TASK code blocks.

Downlist units should start with a 'DCD' prefix and display units
names must start with a 'C' and the fourth character must not be an

underscore. This standard is defined to accommodate automatic

determination of display/downlist units by the IPV Analysis PGM,

Macro-defined and preprocessor generated labels may include additional

prefixes (paragraph 2.6.2.4). The linkage editor requires that the
first six characters (not counting break characters) be a unique C

combination for'all unit of compilation labels relative to each 3
code block type. This constraint is met since uniqueness is maintained

‘for the first three characters, according to the definitions presented

in the following sub-paragraphs.

2.1,.1.1.1 PROGRAM, External PROCEDURE and External FUNCTION Blocks (M) Ee

The format for PROGRAM, external PROCEDURE and external FUNCTION

Block label is:

ABB -C...C

Where: A- Flight Software Subsystem ID (Functional
Area)

G (Guidance, Navigation, & Control (GN&C))
A (System Control (SC))
D (User Interface (UI))

= P (Payload (PL))

S (Systems Management (SM))

V (Vehicle Checkout (VCO))

R (Remote Manipulator System)

BB —- Unique (relative to the subsystem) alphanumeric

ID assigned by the designated programmer (s)
for each software subsystem

= Break character

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
& BOOK: Programming Standards Page 2-3

C...C - Alphanumeric ID descriptive of the purpose
of the code block. This ID must be coordinated

with the designated programmer(s) prior to
assignment (maximum of 28 characters).

2.1.1.1.2 COMPOOL Blocks (M)

The format for COMPOOL Block labels is:

BAD C...C

Where: B - C for Flight Software Subsystems other
‘ than FCOS

A -. Flight Software Subsystem ID described in
paragraph 2.1.1.1.1. In addition, 'Z' may
be used for COMPOOLS that are associated with

multiple flight software subsystems.

D -— Alphanumeric ID assigned by the designated

C programmer(s) for each software subsystem.

Break character

C...C - Alphanumeric ID assigned by the designated

. programmer(s) (maximum of 28 characters).

2.1.1.1.3 Nested PROCEDURE and FUNCTION Blocks (G)

The format for nested PROCEDURE, FUNCTION, and TASK Block labels

is:

ABB _C...C

Where: A- Flight Software Subsystem ID, assigned in

paragraph 2.1.1.1.1.

BB - A unique or same "BB" as defined in paragraph

Zu Mla Yl.

Break character

C...C — Alphanumeric ID descriptive of the purpose

of the code block. This ID must be unique
within a program, external function or

external procedure code block (maximum of
ez 28 characters).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards . «(Page 2-4 ec

2.1.1.2 Template Labels (M)

There are four kinds of code templates: PROGRAM, PROCEDURE, FUNCTION
and COMPOOL. The label of each template is the same as the label
of the corresponding code block.

2.1.1.3 Executable Statement Labels (M)

No specific naming conventions are specified for Executable State-
ment Labels. However, for ease of testing, the CLOSE statement for
code blocks must be labeled with the same three-character ID described
in section 2.1.1.1.1 followed by an underscore and the word CLOSE
as shown below:

ABB_CLOSE

2.1.2 Data Names (M)

There are two types of data which will be used in the Flight Software c Oo
programs: =

oO Functional Data 7

The availability of the HALSTAT listing from the HAL/S €
compiler makes it unnecessary to define a separate con-
vention of COMPOOL data as in the past. Therefore, to
aid in design flexibility (i.e., the flexibility to move
data from local store to COMPOOL and vice versa), a
convention for Functional Data is established.

oO Functional Data is data which is controlled by a func-
tional area (reference 2.1.1.1.1) and can be DECLARED
locally or as COMPOOL data. Functional Data must be in a
COMPOOL if it is shared by two or more compilation units,
otherwise it can be DECLARED locally. Items passed as
CALL arguments need not be in a COMPOOL. Replace names,
Structure templates, and all levels of qualified names
need not have a prefix (reference 2.1.2.1). Only one
qualification level must have a prefix. Filler data and
data defined in a display or AMT COMPOOL need not adhere
to functional data naming standards.

oO Local Data

Local Data is data which is truly local and will never be
shared by two or more compilation units (e.g., loop
counters, indices, subscripts, intermediate storage,
etc.). No conventions are established for this data.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

&

Date: 11/15/82

Rev: 4

Page 2-5

BOOK: Programming Standards

2.1.2.1 Functional Data (M)

The format for Functional Data is:

BADN_Y...Y

Where:

YoueXd =

C for Flight Software Subsystems other

than FCOS

Flight Software Subsystem id, described in

paragraph 2.1.1.1.1. Same as corresponding
ID for the defining compilation unit.

Alphanumeric character assigned by the

designated programmer(s) for each software
subsystem describing the function respon-

sible for the parameter. As a guideline,
same as corresponding alphanumeric character

for defining COMPOOL if data item within

COMPOOL.

The standard for this character is a

guideline. One of the following characters
should be used as the fourth character.

Only an applicable identifier should be
selected and they should be selected in

the priority indicated if multiple options

apply:

K = declared CONSTANT

E -— declared EVENT variable

B- declared BOOLEAN, BIT variable

V - declared VARIABLE but not BIT,

BOOLEAN, EVENT

Break character

Alphanumeric ID which must be unique

within the Functional area. This field

should be descriptive and, as a goal,
should be limited to approximately ten

characters.

Qele2e2 Local Non-Functional Data (G)

No conventions are established for naming of local data; however,

these labels should not be a form that would be confused with the

functional data.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
BOOK: Programming Standards Page 2-6 @

202

2.2 -l Label Names (M)

ASSEMBLER LANGUAGE IDENTIFIERS (M)

The naming conventions for the AP101 Assembler identifiers are
specified in the following paragraphs for either label or data
names. In generating label and data names the following rules must
be adhered to:

oO The total number of characters must not exceed 8.

oO The first character must be alphabetic except for the
special characters required to match the names of compila-
tion units of HAL/S (Section 2.6.1 and 2.6.2), and those
generated by the structured programming macro statements.
Any character after the first may be alphabetic or numeric.

This section specifies the naming conventions established for 2
labels on Assembler code blocks and executable statements. The O. t5
formats for assigning names to these labels are discussed in detail
in the following paragraphs.

All labels of application (i.e., non-FCOS) control sections (CSECTs)
must have two special characters preceding the unique prefix discussed =
under HAL/S. These characters must correspond to those generated €
by HAL/S (Section 2.6.1 and 2.6.2).

In addition, the building of similar language library routines
require the following prefix:

Library - AB; where A = (A-Z), B = (A-Z)
Library ZCONs - #Q
Sector Zero - #0
Library Data - #L

2.2.1.1 Code Block Labels (M)

Two formats were established for assigning names to labels on code
blocks, These formats are defined for the different types of code
blocks which can be generated. The first format defined is for
labels on CSECT and external PROCEDURE code blocks. The second
format is for labels on nested PROCEDURE and task code blocks.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
BOOK: Programming Standards Page 2-7

2.2.1.1.1 CSECT and External PROCEDURE Blocks (M)

The format for CSECT and external PROCEDURE block labels is:

FAABBBBB

Where: F = Flight Computer Operating System
. (FCOS)

AA = CM (Configuration Management)
= IO (I/O Management) S
= PM (Process Management) 3am

B...B = Alphanumeric ID descriptive of the
purpose of the code block. This ID
must be coordinated with the desig-
nated programmer(s) prior to assign-
ment (maximum of 5 characters)

2.2.1,1.2 Nested PROCEDURE and Task Blocks (M)

The format for nested PROCEDURE and task block label is:

FAABBBBB |

Where: F = Flight Computer Operating System (FCOS)

AA = Same AA as defined in paragraph 2.2.1.1.1

B...B = Alphanumeric ID descriptive of the purpose
of the code block, This ID must be unique
within a program or external procedure
code block (maximum of 5 characters).

2.2.1.2 Executable Statement Labels (G)

No specific naming conventions are specified for Executable Statement
Labels,

2.2.2 Data Names (M)

There are two types of data which will be used in the Flight Soft-
ware programs:

oO Functional Data

Functional data is data which is controlled by a
functional area.and is declared in a general data
CSECT designed to gather this data in one place.
Normally the data field is required for use by more
than one executable CSECT and is referenced by name
rather than passed as a parameter. This data also
shares the need to be defined in a data sector.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3 .

BOOK: Programming Standards Page 2-8 | e

° Local Data

Local Data is data which is truly local and will
never be shared by two or more compilation units
(e.g., loop counters, indices, subscripts, inter- z < ©
mediate storage, etc.). No conventions are estab- 5 G woe
lished for this data. ; AZ%2

2.2.2.1 Functional Data (M)

The format for Functional Data is:

FAAB...B

Where: F = FCOS

AA = CM (Configuration Management)

= I0 (I/0 Management)
= PM (Process Management)

B...B - Alphanumeric ID which must be unique
within the Functional area. This field :
should be descriptive and must be limited E \
to five characters,

2.2.2.2 Register Save Areas (M)

The format. for areas reserved to save a set of registers upon entry
to an FCOS CSECT is:

FAAB,..B

Where: F = FCOS

AA = C$ (Configuration Management)
= IS (1/0 Management)

= PS (Process Management)

B...B = Alphanumeric ID which is normally the same
, as the CSECT the save area is reserved for

(limited to five characters).

2.2.2.3 Local Non-Functional Data (G)

No conventions are established for naming of local data.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

92 AA VE XOG 80-28 SW ‘UO!Da||0D OMABWO] “FZ Sawer 4G

BOOK: Programming Standards

Date: 02/02/82
Rev: 3

~Page 2-10

2.2.2.5 HAL/S Data References (M)

2.2.2.5.1 Assembler Compool Labels (M)

The format of Compool block labels in compools generated for assembler
language program to HAL/S program interface (e.g., FCMCOM data) is:

TFAAB...B

Where: TF

AA =

B...B =

ITE?

CM (Configuration Management)
IO (1/0 Management)

PM (Process Management)

Alphanumeric ID descriptive of the purpose

of the data value. This ID must be coordinated

with the designated programmer(s) prior to

assignment (maximum of 4 characters).

2.2.2.5.2 Assembler HAL/S Defined Data Entry Points (G)

The format for assembler required HAL/S data entry points other
than I/O buffers is:

AAAAB,..B

Where: u AAAA

B,..B =

The first four characters of the HAL/S

data name

Alphanumeric ID assigned by the designated

programmer(s) (maximum of 4 characters).

2.2.2.5.3 Assembler I/O Buffer Entry Points (M)

The format for assembler entry points for I/O buffers is:

TFAAB...B

Where: TF

AA =

B...B =

Fixed characters indicating an FCOS

referenced label

IV (Input I/O buffer)
OV (Output 1/0 buffer)

Alphanumeric ID assigned by the designated

programmer(s) (maximum of 4 characters)

92 AA VE XO 80-28 SW ‘UO!Da]|0D OyABWIO] "Fy saluer VQ

Date: 02/02/82

Rev; 3
2 BOOK: Programming Standards i Page 2-9

2.2.2.4 DSECTS (M)

2.2.2.4.1 DSECT Names (M)

DSECT names are in the following format:

2 TAX...X

; Where: cs 'T!

A = An optional field which if present is an F
for FCOS

X...X = one to four characters that uniquely
identify the table

2.2.2.4.2 Data Names in DSECTS (M)

The names of data fields in DSECTS are in the following format:

Xs oe XY ws a

° @ Where: T= ‘tT!

X...X = The first three characters of the

X...X field in the DSECT name

Y...Y¥ one to four characters which uniquely

identify the data field

Date: 02/02/82
Rev: 3

BOOK: Programming Standards Page 2-11

2.2.3 Title Cards (G)

Each block of code will include a TITLE card which provides the
name (eight character limit) and a longer descriptive name for the
block. The form is:

name TITLE ‘complete name or title of block’

2.3 HAL/S INCLUDE SEGMENTS (M)

Include segments are blocks of application source code stored as i ~2ar |

PDS (partitioned data set) members. These segments can be included at E> OL
compile time as part of a program, external procedure, or external

function by using the INCLUDE compiler directive. The include segment

will be compiled as if the segment had been coded in line. The following
format will be used for naming all include segments, except system level
macro sequences:

ABBC...C ae

Where: A- Flight Software Subsystem ID described in
paragraph 2.1.1.1. ;

BB - A same or unique 'BB' as defined in paragraph
2 led. de 1s

C...C - Alphanumeric ID descriptive of the purpose

of the code block. This ID must be coordinated

with the designated programmer(s) prior to
assignment (maximum of five characters).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Revi 3
BOOK: Programming Standards 4 ~ Page 2-12 e

2.4 ASSEMBLER LANGUAGE COPY SEGMENTS (M)

COPY segments are blocks of source code stored as partitioned data S
set (PDS) members. These segments can be copied by using the COPY wo Oe
assembler directive at assembly time. The copied segments will be ce OF
assembled as if the segments had been'coded in line. © Zs

The following is the format for naming all copy segments:

FAAB...B

Where: F = Flight Computer Operating System (FCOS)

A= CM (Configuration Management)
IO (I/O Management)

=" PM (Process Management)

B...B = Alphanumeric ID descriptive of the purpose nce
of the code block. This ID must be.coordinated
with the designated programmer(s) prior to
assignment (maximum of five characters),

2.5 DATA SET NAMES
—

FSW data set naming conventions.are a joint responsibility of the E
Flight Software Integration Team (FIT) and build group.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 2-13
BOOK: Programming Standards

2.

2

6

6.

DATA SET MEMBER NAMES (M)

The names for data set members will be generated for flight soft-
ware by either the HAL/S Compiler or the programmer creating the

member. The HAL/S Compiler will generate member names of object

code, templates and simulation data files for the compilation

units. The programmer will assign member names for the source data

sets. Names must be registered with the build coordinator, and

certain information supplied before the member can become part of

the system.

FSW source member names will be precisely the same as the cor-

responding non-underscore characters of the code block name. As a
guideline, non-FCOS member names should be constrained to the first
6 non-underscore characters of the code block name.

1 HAL/S Generated Names (M)

The HAL/S Compiler will generate the member name for the object
code, template and simulation data file for a compilation unit in

the following manner:

HAL/S compilation unit names are transferred to the emitted object

code, by using only the first six characters of the HAL/S name.
Any occurrence of the underscore character (_) in the first six

characters of a TASK, PROGRAM, PROCEDURE, FUNCTION, or COMPOOL name
is eliminated. The resulting characters are joined together to
produce the name of the compilation unit (e.g., A_B C becomes ABC).

An additional two characters are placed on the front of the resul-

tant name to form a unique control section name for each of the
individual situations in which the name is used. CSECT naming con-

ventions are shown in Figure 2.6.1-1.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK: Programming Standards

CSECT Type

CODE CSECTs:

Program

Tasks

COMSUBs

Internal Procedures

Libraries

Patch-User defined

Patch-from MM Build

DATA CSECTS:

Stack

DECLARE Data

REMOTE Data

COMPOOL Data

Patch-User defined

Patch-From MM build

OTHER CSECTS:

ZCON to COMSUB
ZCON for library routine
Bank Zero

Process Directory Entry
Data for Library Routine

EXCLUSIVE Data
Pad Space for ZCONs/QCONs

OTHER NAMES:

Support Data Files

Templates

Date: 11/15/82
Rev: 4

Page 2-13a

Primary Name Overflow Name

SONNNNNN

ScNNNNNN c=(1-F)

for a limit of 15 tasks
#CNNNNNN SWNNNNNN

anNNNNNN a=(A-M) bnNNNNNN b=(N-Z)

n=(0-9) for a limit of 130
_ procedures

aaNNNNNN a=(A-Z)

$Yaab000 aa=phase, b=sector
$Yaab001
$Yaabnnn aa=phase, b=sector, nnn > 1.

SVNNNNNN

ScNNNNNN c=(G-U)

@cNNNNNN c=(0-9, A-F)
#DNNNNNN #SNNNNNN

#RNNNNNN #UNNNNNN

#PNNNNNN #VNNNNNN

#Yaab000 aa=phase, b=sector
#Yaab001
#YaaBnnn aa=phase, b=sector, nnn > 1.

ZNNNNNN

ONNNNNN
#ONNNNNN

#ENNNNNN

#LNNNNNN

#XNNNNNN #WNNNNNN

$Xaannnn aa=PhaSe nnnn=Pad no.

##NNNNNN
@@NNNNNN

Figure 2.6.1-1 CSECT Naming Conventions

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards Page 2-14

In addition to control section names, the name of a compilation

unit may appear in certain external contexts preceded by the following

characters:

@e@ ~ the member name of the template created for a compilation unit.

tHE - the member name of the simulation data file created for a
compilation unit.

2.6.2 Preprocessor and MACRO Generated Names (G)

Symbols may be generated that follow the conventions of the functional

area involved (i.e., subsystem ID defined in section 2.1) or have one of

the following prefix characters:

- DFG Preprocessor (Displays)
- System Level Source Macro (e.g., Disable/Enable)

M

Z uw
XX... - Any prefix that corresponds to prefix of source member™ ~ '

(e.g., XX..-.MACS)

Additional symbols may be reserved if they increase readability

(see Table 2-1 as an example). User's Guides will define additional

sets of symbols, unique to a particular Macro Source Member and function.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
BOOK: Programming Standards Page 2-15 &

TABLE 2-1

CREW INTERFACE GRAMMAR KEYWORDS

ADVANCE ON ITEM EXEC

BLOCK ITEM I

BLOCK_CLEAN UP ITEM NO

BLOCK_END ITEM_0O

CHANGE ITEM S

CLEAN UP KEY

CLEAN UP MODE MODE

CLEAN_UP_OPS MODE CLEAN UP

CLEAN _UP_SPEC MODE END
D_BLOCK_NUMBER NO_AUTO_ ADVANCE

D_DEU_NUMBER NO_CLEAN_UP

D_IND

DISPLAY

D_ MODE NUMBER

D_NEW_MODE NUMBER

N_NEW_OPS NUMBER

D_OPS_ NUMBER

DS

D_SPEC_NUMBER

EXEC

INIT BLOCK

ITEM ENTER

NO_CLEAN UP_MODE

NO_CLEAN_UP_OPS

NO_CLEAN UP_SPEC

OPS

OPS_CLEAN UP

OPS_END

PRO

RESUME

SPEC

SPEC_CLEAN UP

SPEC: END

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards Page 3-1

3. PROGRAMMING CONVENTIONS

Program implementation will follow the rules of top-down, structured

programming (see Reference Material) in order to optimize the ability of

programmers to develop and modify flight software. It is assumed that

the flight software will be coded in the HAL/S language which is designed

to implement the features of top-down, structured programming. Mandatory

(M) or Guideline (G) is indicated on each paragraph.

3.1 TOP-DOWN PROGRAMMING (G)

The top-down programming technique is applicable to. software develop-

ment at the system level and at the module level.

At the system level, the basic control modules are coded first,

then the first level of application modules is coded while the basic

level is checked out, invoking dummy first level application modules.

Each level is developed in this manner, according to successive levels

of functional detail, down to the most detailed modules.

Within each module, the top-down approach is used by coding the

nucleus, or top level, of control code first and adding sections of

functional code in the order of their level of detail. If possible, the

nucleus should be simply a string of references to external (FUNCTIONs,

PROCEDUREs, PROGRAMs, and include-segments) and internal (TASKs, FUNCTIONs

and PROCEDUREs) code blocks which at first need only to return immediately

to the module's nucleus. While the nucleus is being verified, the first

level of referenced code blocks should then be coded even though it may

also reference dummy code blocks at first. Thus each successively more

detailed level of referenced code blocks is developed until the entire

module satisfies all of its detailed specifications.

 Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3
BOOK: Programming Standards Page 3-2

3.2 CODE STRUCTURING (M)

Code structuring standards in a structured programming environment
include provisions for:

1. Single entry and single exit point for each code block
(not applicable to FCOS).

2. Return to the next executable statement following the
calling statement when a procedure or function is invoked
(not applicable to FCOS).

3. Simplified control logic.

The standards for items 1 and 2 are controlled by the HAL/S restric-
tions for code blocks. Each code block may have only one header
statement and one CLOSE statement. The CLOSE statement terminates
the code block and returns execution to the first executable state-
ment after the calling statement. Exceptions can be made to items
1 and 2, to provide efficient handling of abnormal code block
termination situations. These exceptions must be approved by the
SARB.

The standards for item 3 are programmer controlled and will be E&
discussed in the following paragraphs.

3.2.1 Control Logic (M)

Structured programming enhances readability and maintainability of
code, and the control logic should reflect these attributes. Thus,
the flight software will use only the following structured constructs
for code sequencing:

 Vv

¥
Inline Sequence : lf Then-Else

| D0-WHILE.

Do-Until Do-While

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

Date: 02/02/82
Rev: 3

Programming Standards Page 3-3

Do-Case .

vane

. | Do-For

The Inline Sequence represents contiguous statements being executed

sequentially. The If-Then-Else logic chooses one of two paths
based on the result of a binary comparison. The Do-While logic

repeats execution of a statement or group of statements as long as

the test condition is true (i.e., the test precedes each cycle of
execution). The Do-Until logic repeats execution of a statement or
group of statements until the test condition becomes true (i.e.,

the test follows each cycle of execution). The Do-Case logic

chooses one of at least three possible paths based on the result of
a sequential search through an index list. The Do-For repeats the

process block according to the user specification. Any code that
does not adhere to the above structured constructs, including usage
of GO TO or assembler language explicit branches, must be approved
by the SARB. An approved exception is for the HAL/S EXIT statement.

The following NONHAL exceptions are approved:

° Macro library (MLIB80) code segments used to implement the

structured macros.

oO Sync routines (for efficiency in main loop timing).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4
Rage 3-4

BOOK: Programming Standards

oO IOP code (BCEs can execute only sequential code and uncon-

ditional branches; MSC execution is so slow that time is

critical).

oO Explicit branch instructions when needed to cross sector

boundaries.

oO (BALR Rx, 0), (BAL Rx, *+2), (BCTB Rx, *+1), etc. which do not

branch but perform some special function.

oO Set System Mask (SSM) into WAIT State.

oO Load Program Status Word (LPS).

3.2.2 Code Block Size Limitation (G)

Each HAL/S source code block (PROCEDURE, FUNCTION, PROGRAM) will be

limited to approximately 100 statements exclusive of those contained in

nested code blocks and comments. Each nested code block will also be

limited to approximately 100 statements.

3.2.3 Flow Diagramming Standards for Crew Interface Grammar State
ments (M)

Standard flow forms (Figures 3.2.3-3 through -8) are to be used in

documenting all control segments generated using the Crew Interface

Grammar Statements. This is to insure the proper level of documentation

occurs and is universally used and understood by all Flight Software
programmers.

Figures 3.2.3-1 and 3.2.3-2 denote the generic forms for the UI
grammer statements for operational sequences and specialist functions

respectively. The circled references are for presentation purposes

only. These references correlate the generic form of the grammar state-

ment and the figure and block where the standard form is denoted.

Figures 3.2.3-3, 5 and 7 are overviews of OPS, MODE and BLOCK

selection logic. The decisions and sequencing portrayed in these fig-
ures are largely controlled by the System Services transition matrices

as well as crew selection through the MCDS, sequencing events and CHANGE

grammar statements. All blocks not explicitly representative of appli-

cations code are to be indicated by an asterisk.

Figure 3.2.3-3 is to identify all SPEC's valid in the major func-
tion (via the standardized table form) as well as all OPS and associated

OPS sequencing. All blocks in this overview will be flagged as repre-

sentative by an asterisk.

Figure 3.2.3-5 identifies mode within an OPS and associated mode
sequencing. Again an asterisk will appear in each block.

Figure 3.2.3-7 similarly depicts the block sequencing within a
mode. Each block would contain an asterisk.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev: 3

BOOK: Programming Standards : Page 3-5

The following are to be followed:

dee Flow standards are denoted via capital letters, unique text is wn
- denoted via script. : = a i

Example: IF condition_k

2. Optional code inclusions are bracketed.

Example: IF NEW MODE OR event_1l

3. Lower level flows may be included within a higher level so CE mM@h £e

long as the upper level doesn't get too cluttered. ISO > a

4. The DO UNTIL form within a BLOCK may be eliminated providing:

oO The BLOCK MODE nor OPS statement had automatic advancement

event specified.

oO There is always a CHANGE statement executed following the
processing of any MCDS input passed to the control segment.

Die “The DO UNTIL form within a MODE may be eliminated providing:

oO There is only one MODE within the OPS.

oO No automatic advancement on events was specified for the
MODE.

6. Transitions from/to Systems Services OPS-O should not be shown

in application flows. This will be shown in a level above the

major function overview.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rev : 3

BOOK: Programming Standards Page 3-6 a

o= program-name: PROGRAM;

INCLUDE macro-library-name;

({control-segment-statements]

- ‘ ADVANCE _ON event i
(«© }}» operational-sequence-number, | NO_AUTO_ADVANCE | /'

ADVANCE _ON event -
(ss) ‘MODE \mode-name, |NO_AUTO_ADVANCE J } '

. ADVANCE_ON event INIT_
| BLOCK (block-name, eae! |

fone-initialization-control-segment-statement] ;

[control-segment-statements]

: display-number
DISPLAY 0 ;

x (control-segment-statements]

'{ display- “number
a———=- CHANGE 0

CB ({control-segment- “statements] Ee

BLOCK_CLEAN_UP (block-name); .
ey control-segment-statements -.

CLEAN_UP .
BLOCK_END | block-name, NO_CLEAN_UP

ADVANCE_ON event)\-
NO_AUTO_ADVANCE)

. \ CLEAN_UP .
BLOCK_END (block-name, } NO_CLEAN_UP

BLOCK (block-name,

{additional blocks}

6C ane —CLEAN_UP (mode-name);
pane -segment-statements

CLEAN_UP_MODE ‘
MODE_END (mode-name, NO_CLEAN _UP_MODE)

(additional modes}

4D OPS_CLEAN_ UP; ;
contro!l-segment-statements

CLEAN _UP_OPS \.
OPS_€ND NO: CLEAN_UP_OPS)

(42) CLOSE program-name; &

Figure 3.2.3-1 Control Segment Grammar For OPS

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3

& BOOK: Programming Standards Page 3-7

(48)-srosam name PROGRAM;

INCLUDE macro-library-name;

(48) ———teontnomeostaens

5 ADVANCE_ON event):
SPEC (specialist-number, { NO_AUTO_ADVANCE

ADVANCE_ON event <j 3H
BLOCK (bike NO_AUTO_ADVANCE ‘

{control-segment-statements]}

| display-number aC
8B fF DISPLAY ({ 0 : 5 nS

Oe ({control-segment-statements]} ‘ ‘e cn ~ f=

. (display-number)i o, - = a

CHANGE 0 ' LE OES

[control-segment-statements]

BLOCK_CLEAN _UP (block-name);

control-segment-statements .

CLEAN_UP_. ‘
BLOCK_END (btock-name, NO_CLEAN_UP) ‘

[additional blocks}

SPEC_CLEAN_UP;
control-segment-statements

CLEAN_UP_SPEC .
SPEC_END (NO_CLEAN_uP_sPEc }) '

CLOSE program-name;

; Figure 3.2.3-2 Control Segment Grammar For SPEC

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

9Z

AA

VE

X
O

80
-2
8

SW

‘Y
O!
Da
}|
0D

O
M
A
R
]

“Fy

Sa
we
r

sq

_ Stare
Major Function |

Name

Note. SPECs
May Be Invoked

_As Shown By
Table n

DO UNTIL
Condition 1

*

PERFORM
OPS f

 IF
Condition-2

; nd Of

Major Function

Valid In OPS
Flow T

SPEC Function Page | a b c d e f g

Name- 1 9 Y N N N Y N Y

Name-2 q N iy N N IY Y

Name-3 r N N Y N Y Y N

Name-4 s N ¥ ¥ Y Y Y Y

Name-5 t N Yay. N Y N Y

Name-6 u N Y Y Y Y Y ¥

- System Service Specs | v | y |yY |y ly ly ly | y
PERFORM PERFORM
OPS-e OPS-g Table n

*

PERFORM

OPS-d
*

PERFORM

OPS-a

*

iF
Condition-3

PERFORM PERFORM
OPS-b OPS-c

* *

Figure 3.2.3-3

Major Function Name Overview

sp
ie

pu
ey

s
B
u
l
w
w
e
s
b
o
1
g

> y
O
O
S

uD YU
8 m
S<ec

©

re bo o”’S
Tas:

°
NS

ey

9
wS

Date: 02/02/82

Rev: 3

€ =) . BOOK: Programming Standards Page 3-9

PROGRAM
OPS-SPEC-Name |

Initialization

Logic

DO UNTIL
TNEW OPS SELEC. ae
TED) (SPEC tog
RESUMED] [Or gic

 Event 1]

Cleanup —

Logic

CLOSE

OPS-SPEC- Narne

Figure: 3.2.3-4 OPS/SPEC Name Overview

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3

BOOK: Programming Standards _ Page 3-10... &

BEGIN . . -
OPS Name :

PERFORM
a

Mode-e

*

PERFORM

Mode-f

*

IF PERFORM
Condition-1 Mode-c

* *

¥ L = a

Condition-2 : x

PERFORM PERFORM

Mode-b : Mode-d
PERFORM e ig

Mode-g =

*

END
OPS- Name

Figure 3.2.3-5 OPS Name SEQUENCING

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

J

BOOK: Programming Standards

BEGIN
Mode-Name

Initialization
Logic

DO UNTIL [NEW
OPS SELECTED OR
NEW MODE SELECTED]

[RESUME] [OR Event-1
(OR Event-2] |

Cleanup

Logic [

| END

Made- Name

Figure 3.2.3-6 MODE Name OVERVIEW

Date: 02/02/82
Rev: 3
Page 3-11

Block

Selection
Logic

 Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

: Rev: 3
BOOK: Programming Standards - Page’ 3-12 &

IH N

Mode-Name .

EQ : of

PERFORM
Block-d

*

PERFORM PERFORM
Block-b Block-c

* *

IF
Condition-1 C

- oO
PERFORM = 2
Block-a E

* ce

PERFORM E
Block

*

(Mode-Name)

Figure 3.2.3-7 MODE Name SEQUENCING

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

92

AA

VE

XO
G

80
-2
8

SW

‘Y
OI

Da
||

OD

OM
AB
WO
L

“Fy

Sa

we
r

VQ

BEGIN
Btock-Name .

Block
Processing

Logic

DISPLAY

Display-Name

 20 UNTIL [OFS OR
MODE ADVANCEMENT
CONDITIONS: ‘RESUME;

x [CHANGE | (OR Event;

WAIT FOR
CREW INPUT
iOR ADVANCE

- EVENTS]
*

1F NOT { ADVANCE.
MENT CONDITIONS}
RESUME] [OR Event]

* -

Biock
Processing

Logic

IF
Condition-3

,

Cleanup
Logic

END

. Block-Name

Figure 3.2.3-8 BLOCK Name SEQUENCING

Then

__
]

Else

o
Oo
Oo
x

70 x
9
3
o

3

~ 3.
3
a

on
-

» .
3
Qo
o S
a
w

CHANGE
To BLOCK
Block-Name

Block
Processing
Logic

uD

Qe

wo
be
le

a7
e¢

7
8
/
2
0
/
2
0

Date: 11/15/82 -
Rev: 4 e 4

Page 3-14 oe

BOOK: Programming Standards

3.3 SOFTWARE ANOMALIES (M)

When developing large software systems, it becomes evident that the Lt
general rules or guidelines set up at the beginning of these ef- -
forts are not completely sufficient within themselves to give the
development personnel the greatest advantages in approaching the
development problem. This section of the Programming Standards
Document will attempt to clarify some of the more difficult areas
of the standards, present restrictions to coding procedures and
provide guidelines to identify methods the programmer may use in
the development activity. Much of the following information has
been previously reflected in Flight Software Awareness Memos.

3.3.1 Coding Restrictions (M)

3.3.1.1 Data Exchanges Between Processes

3.3.1.1.1 Data Exchanges Between Processes - Redundant Configurations (G) !

All data, including data not contributing to redundant outputs, E
passed between processes within the same redundant memory configu-
ration executing at different priority levels, must be explicitly
protected via the disable block. The following exceptions apply to
the above standard: ,

- Data that is referenced but never assigned need not be ex-
plicitly protected.

- The highest priority process referencing or modifying the
variable does not need to disable.

- Event references within a HAL/S real-time statement need not
be disable protected since a HAL/S real-time statement provides
implicit disable protection.

- Downlist interfaces do not need to be disable-protected unless
the downlist variables are required to be homogeneous.

- Display interfaces need not be protected by the DFG DMDUPD
mechanism unless the display variable is used in a TEST command
that can result in significant path divergence (reference STDS
3.3.1.5-4). All display-related interfaces external to the DFG
code itself must be explicitly protected unless contained within
the highest priority referencing or assigning process. An attempt should be made to minimize the total number of disable C

blocks required for a given process. Adjacent disable blocks =
should be combined whenever appropriate. Shadow variables should

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

€ BOOK:

Date: 11/15/82
Rev: 4
Page 3-15

Programming Standards

also be used to reduce the total number of disable blocks required.
As a goal, cyclic processes should be restricted to no more than
two disable blocks - one for inputs and one for outputs. All other
communication should be performed by shadow variables.

The practice of using subscripting as a means of IPV protection or
partitioning subscripts differently for different processes within
the same data aggregate shall be avoided. An attempt should be
made to ensure that similar referencing considerations exist for
all subscripted elements of a data aggregate (e.g., array elements,
structure copies, bits in bit string).

3.1.1.1.2 Data Exchanges Between Processes - All Configurations (G)

All data passed between processes executing concurrently at dif-

ferent priority levels must be protected via the disable block if

any of the following conditions exist:

- Multiple variables are explicitly or implicitly (by design)
required to be homogenous. The entire set of references to

the homogenous set of data shall be enclosed in a common

disable block for all processes except the highest priority

referencing or assigning process.

- An intermediate assignment of a variable could result in

incorrect usage of the data by a higher priority process. The
intermediate assignment shall be enclosed within a common

disable block with the final assignment by the process to

prevent a higher priority interrupt between the two assign-
ments.

- Multiple assignments to the same variable by different pro-

cesses could result in invalidation of the higher priority
assignment. This usually results when the lower priority

assignment is determined by referencing other variables that

are computed elsewhere within the same process. If an in-

validation of the higher priority assignment can occur, the

lower priority assignment shall be enclosed within a common

disable block with any dependent variables used in the com-
putations of the lower priority value.

3.3.1.2 Restrictions dn EVENT Variables in Non-R/T Statements (M)

To ensure that all processes in the Redundant Set (RS) execute with

identical data, EVENT variables shall not be tested by any process

or used in any bit expression unless it adheres to the same rules

as stated in paragraph 3.3.1.1 above. The restricted forms of

testing are 1) IF, 2) WHILE, and 3) UNTIL except when they appear

on a Realtime Statement (i.e., SCHEDULE and WAIT).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 3-16 —
BOOK: Programming Standards ~

Examples of restricted forms of bit expressions are:

1) BITVAR=EVENTVAR;
2) BITVAR=EVENTVAR and BITVAR;

3) IF (EVENTVAR) THEN...
4) DO WHILE EVENTVAR; z
5) DO UNTIL EVENTVAR;

Note that these forms do not result in a SVC; therefore, FCOS
cannot supply an implicit sync.

3.3.1.3 FSW Process Priorities, Rates and Phase Off-Sets (M)

The SARB will control via SAM 10 the assignment of priorities, O68
phases and execution rates to all processes executed in the GPC _ a
during Shuttle missions. Any changes to SCHEDULE Statements,
related logic, or this baseline are to be requested by submitting
FAIRs and reviewed for impact to the I/O profile (SAM 20).

transactions and the availability of BCE programs in each memory
configuration. Changes to this baseline are requested by sub-
mitting a FAIR to the SARB after insuring the FAIR'S consistency
with the I/O Profile (SAM 20).

The SARB will control the assignment of priorities to the I/O (:

Applications programs are to use predefined names when designating
process priorities, phasing, and rates. No actual numbers are to
be coded in applications programs. Actual numbers will be defined
at the system level and are included into the compilation via
compiler directive (D INCLUDE ZPRIOTIM). The ZPRIOTIM source
library will contain a REPLACE statement for each program name
using the standard name conventions with the character string
"PRIO ABB' for priorities "PHASE ABB' for phasing, and "TIME ABB'
for rates as a prefix to ensure uniqueness. ABB will be equal to
the first three characters of the program name. If multiple
SCHEDULE statements are defined with different user parameters, a
fourth character shall be added to make the REPLACE statement
unique (i.e., 'PRIO_VAA', 'PRIO VAAL').

Process dynamics for SCHEDULE statements shall be specified as
follows:

SCHEDULE ABB_C...C AT PHASE ABB PRIORITY (PRIO_ABB) ,
REPEAT EVERY TIME ABB;

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 3-17
BOOK: Programming Standards

3.3.1.4 Redundant GPC Calculations (M)

The GPC redundancy management approach is to assure that the sev-

eral GPC's comprising the redundant set compute identical results.

For the most part this is accomplished by the Systems Software
setting COMMFAULT indicators for applications code.

The Systems Software does require cooperation from the applications

programmers in adherence to the following rules:

1. All data (including event variables) passed between
processes executing concurrently at different priority
levels must be protected via the disable block unless

accompanied by HAL/S Real-Time statements (see para-

graph 3.3.1.1).

Lis Don't use time values derived from the GPC's internal
oscillator, since such values are not identical in all

computers. The restricted application names are RUNTIME

and MET SVC. The restricted FCOS internal names are
FPMGMTIM, TCVISWCH, and TCVTSWCM.

3% Don't make the code dependent upon the timing of external

devices. For example, one might execute a processing

loop until an I/O operation on Mass Memory was completed.

Again this would result in the computers executing the
loop a different number of times with subsequent diver-

gence.

Ass Don't use GPC discretes or PCMMU data in redundant set
processing without exchange of the data (i.e., ICC) and
the execution of a common redundancy management algo-

rithm. This includes, but is not limited to, MMU status

discretes.

There are certain cases where the requirements or hardware design

dictate that the GPC's take different processing paths. These will

each have to be closely scrutinized to assure that synchronization

is not comprised. As each such instance is discovered a FAIR is to

be written to the SARB requesting that this violation be examined
and documented in SAM 2.

3.3.1.5 Time Constraints on Software Sequences (M)

To ensure reasonably responsive software, the following time con-

straints are to be adhered to:

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 3-18
BOOK: Programming Standards

ds The maximum execution time within an EXCLUSIVE procedure
will be constrained to be less than two milliseconds.
Application disable periods should be less than 550
microseconds. These constraints are intended to assure
that higher priority processes are not overly impacted by
sharing data and programs with lower priority work. This _
timing constraint also assumes approximately 250 micro-- a
seconds disable time in FCOS. Application disable periods
greater than 550 microseconds shall be reviewed by the

SARB for possible violation of Level A jitter require-
ments. Application disable periods shall not exceed 550
microseconds in the redundant set and 3.0 milliseconds in
the common set (non-redundant), in order to prevent
combinations of disable periods and GPC-unique effects
(e.g., unique I/O errors, memory interference) from wn) “Sf 4
approaching the sync time-out tolerance. TOreC

2s No application process, except control segments, shall

execute:for more than 1/2 second without executing a

CLOSE or checking for a termination request. Note that a
continuation of processing can be attained by cyclic

reactivations of the process. This constraint is in-

tended to assure that the process CANCEL can be effected

to allow sequencing such as SPEC deactivation and OPS

transitions.

3. Control segments shall not execute for more than 25
milliseconds without presenting a display and accepting

keyboard inputs. This constraint is to ensure reasonable

response to keyboard inputs. The only exception is the

DEU Self-test SPEC where the control is relinquished by
Flight Software.

Ly For software which can execute in a redundant set, the |

sum of the differences in timing on all different paths

which can be taken based on unprotected data bewteen

two sync points must be used to determine whether the
process can miss sync. In order to ensure not exceeding

the sync tolerance, the design goal for the timing

differences between paths leading to a common execution

point is less than 500 microseconds - composite path

skew for a process should not exceed 1500 microseconds.

This time difference permits other non-universal effects

(such as I/O error processing in only some of the computers,

and memory contention by the CPU and IOP) from reaching the

sync time-out tolerance by an accumulation of such effects.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

D

© BOOK:

5.

Date: 11/15/82
Rev: 4

Page 3-18a
Programming Standards

For software which can execute in a redundant set,

no process shall execute more than 100 milliseconds between

statements that issue an SVC with sync. This value assumes

identical processing paths between the sync points. With the
maximum processing difference of 1.5 msec (above), the in-

terval between sync points is reduced to 60 msec. For pro-
cessing differences between 0 and 1.5 msec, a linear inter-
polation from 100 to 60 msec provides the maximum interval

between sync points.

The 60 to 100 msec interval is based on a slow-down in CPU
processing speed caused by contention for memory by the CPU

and the IOP. In particular, when most data buses are com-

manded by one GPC, that command GPC has many more I/O in-

struction and data memory accesses for outputs than do the
non-commanding GPCs (which make no memory accesses for output

I/0). The specified interval permits the unbalanced I/0 to
occur during any process without the cumulative effect ap-
proaching the sync time-out tolerance.

To accommodate natural variation of normal processing and

error conditions, the HFE output data homogeneity margin shall

be 500 microseconds, i.e., flight critical processing shall
complete at least 500 microseconds prior to the point in the
HFE output transaction which sends the computed data to the
MDMs.

The above times are not to consider interruptions by FCOS or higher

priority work.

Exceptions are to be requested by submitting FAIRs to the SARB.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

3.3.

3.3.1.7 Characteristics of HAL/S SCHEDULE Statements (M)

Date: 02/02/82
Rev: 3

Programming Standards Page 3-19 e

1.6 Restricted Use of HAL/S. Real-Time Features (M)

Since ON ERROR IGNORE may be used to "mask" or bypass software
and/or hardware failures, any use must be approved by the SARB.
Any use of the TERMINATE statement must also be approved by the <
SARB. =

FCOS is designed such that when the SCHEDULE statement is used with
both the AT and REPEAT EVERY option, special phasing occurs. That
is, when the AT time is less than current time, the AT is projected
by integral repeat interval times to determine the time of initial
execution.

It should be recognized that when the initial execution is keyed Y f
upon an event expression that this phasing does not occur. Indis-— 0
criminate use of the EVENT scheduling HAL/S option or default (no
AT expression) could introduce jitter into other processes.

event expressions and REPEAT EVERY and assume this happens auto-
matically. Phasing can be accomplished by activating another —
process upon event’ occurrence which in turn executes a cyclic
SCHEDULE using the AT and REPEAT EVERY time options,

If process phasing with other processes is desired, do not use E

3.3.1.8 Assembly Language Usage (M)

Each new use of assembly language is to be reviewed by the SARB
(via an FAIR form) prior to NASA presentation. This procedure is
being established to have a coordinated FSW approach in the use of
assembly language, and to ensure alternative workaround solutions
have been examined. The existing approved exceptions are FCOS and
Cyclic Display Updating.

When assembly language is to be used, the development groups will
employ the structured programming macros. Exceptions may be requested
by submitting a FSW Action Item Request (FAIR) to the SARB.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

—, Page 3-20
eS BOOK: Programming Standards

3.3.1.9 Constraints When Writing Exclusive Disable/Procedures Blocks (M/G)

3.3.1.9.1 Constraints When Writing Disable Blocks (M)

Disable blocks define regions of code during the execution of which
neither timer nor I/O interrupts should be accepted. The purpose
of the disable block can be defeated in subtle ways by most HAL
real-time statements and macros which invoke FCOS services. Be-
cause the effects are not obvious and can be difficult to analyze,
and because alternate program constructs are usually possible, the

following types of statements should not be used within disable

blocks (all necessary uses are to be documentated in SAM 2 after

approval by the SARB):

ls All HAL real-time statements

2. All macros which invoke FCOS services

3% External procedure or function invocations.

3.3.1.9.2 Constraints When Writing Exclusive Procedures (G)

of the procedure. They, therefore, allow one process to block
execution of higher priority processes which share that procedure.

The users of exclusive procedures must assure that such delays of

higher priority processes are acceptable. The following statements

contain potentially hidden delays which must be considered in

addition to normal processing.

= Exclusive procedures are dedicated to one process until the CLOSE

dive Explicit WAITs and WAITs embedded in input/output

2% Any statement which changes an EVENT that may initiate a

higher priority process (i.e., SET, RESET, SIGNAL, SCHEDULE,

CANCEL, TERMINATE)

35 SCHEDULE of a higher priority process

4. CALLS to other procedures (internal or external) which contain

any of these statements.

Exclusive procedures are not to be shared with flight control,

since a time-out at the related sync point could violate flight

critical I/O data homogeneity requirements.

 Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3

BOOK: Programming Standards Page 3-21 =

3.3.1.10 Use of ON ERROR for I/O Operations (M)

The use of ON ERROR is controlled by the SARB for flight software.

In the event such approval is requested, then the organization

described in the following paragraphs must be followed.

The ON ERROR should always be issued before and maintained during

any I/O operations, associated with the process, that could set the :

specified error. Otherwise the ON ERROR environment may not be te

established when the actual error conditions are met. This is not

desirable in a simplex system because of the increased complexity

and restrictions on I/O timing. In a redundant set, different

sequences could be taken and sync points missed or reordered in

some members of the set thus breaking up the redundant set.

Specifically, the ON ERROR statement should be placed before the O

I/O request statement. The WAIT option should be used on I/O or an "

explicit WAIT coded prior to another ON ERROR statement with the

same error number. The WAIT should also be used prior to any

RETURN or CLOSE statement that completes processing of the program

or procedure that. issued the ON ERROR.

The ON ERROR statement, establishes an error processing environment C

that is inhibited by a subsequent ON ERROR for the same error. The 7

original environment or override environment is automatically

deleted when processing is completed for the level that contains

the corresponding ON ERROR. Again, a WAIT must be placed prior to

any statement that can change the error environment.

3.3.1.11 Protected 1/0 Transactions (M)

The concept of protected I/O transactions allows the status of 1/0

operations (specifically inputs) to be determined in all GPC's of a

redundant set via an I/O parameter list specification.

Protected transactions are necessary because GPC's in the redundant

set must receive bit-for-bit identical input data. Since this is a

requirement for our redundancy management approach, the same safeguards

as for nonidentical processing are to be employed. Specifically,

all input transactions are to be "protected" unless all processes

using the data have been identified and accepted as non-identical

computations (e.g., PCMMU).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4
Page 3-22

BOOK: Programming Standards

3.3.1.12 Interprocess Variables Not Protected by Disable Blocks (M)

In general, paragraphs 3.3.1.1.1, 3.3.1.1.2 require explicit dis-
able protection for IPVs. In cases where exceptions are permitted,
adherence to several restrictions on the usage of unprotected data
is required. These restrictions can be divided into two cate-
gories: those which apply only to programs which must run in a

redundant set and those which apply to all programs.

a. Restrictions which apply only to programs which must run in a

redundant set.

1) Do not test unprotected variables to decide whether to

take a path resulting in a sync point. All I/O and many

SVCs, such as UPDATE, SCHEDULE, CANCEL, SET, WAIT result
in a sync in a redundant set.

2) Do not make tests on unprotected data where the paths to
be taken can differ in CPU utilization enough to miss the

next sync point in the process. Since the close of a

process is a sync point, there is always a next sync

point in the process. The sum of the differences in
timing on all different paths which can be taken based on
unprotected data between two sync points must be used to

determine whether the process can miss sync. In order to

ensure not exceeding the sync tolerance, the design goal

for the timing differences between paths is less than 500
microseconds.

3) Do not use unprotected data to set flags or compute data

on which other program segments make decisions which
violate restriction 1 or 2. If unprotected data is used

to compute other data, the computed data is also unpro-

tected, even if it is stored and read under update pro-

tection. This restriction means that any areas which use

data received from display processors, SM, or downlist
must observe restrictions 1 and 2 in their use of that
data if they reside in the redundant set.

b. Restrictions which apply to all programs.

1) Interprocess data which must be time homogenous must be

disable protected. Except for non-homogenous data for

downlist and display, do not change the contents of an
output buffer while output is in progress.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

Date: 02/02/82
Rev: 3
Page 3-23

Programming Standards ;

2) A word packed with bits or bit strings by different
processes must not be picked up, updated, and replaced by
one process without disable protection in every process,

except the highest, updating the word. Otherwise, one

- process could destroy another's update of other bits in

the word. Either the bits must be updated without re-
moving the word from its location in storage or a disable
block must be placed around the whole operation (from

before the word is read until after it is stored). The

following are examples of HAL statements which may be

expanded by the compiler into a load, bit manipulation,

and a store.

(a) AL =B,;3 I j (b) Aisdy = OFF:

where A and B are bit strings and A; and A. are contained

in the same word. J

3) Unprotected interprocess data should not contain inter-
mediate values not truly reflective of the variable.

This requirement is mandatory except for data interfacing

with displays and/or downlist. Prohibition of inter-

mediate assign interfaces will be mandatory for dis-
play/downlist interfaces upon approval of an appropriate

authorization change request. It is recommended, how-

ever, that intermediate values associated with these

interfaces be avoided whenever possible.

Example sequences that illustrate the problem are as

follows:

(a) Y = A+B;

Y = Y+C3

(b) A=03

IF B THEN

A= 1;

In the first example, Y takes on an intermediate value

that may be misleading if sampled between the first and
second statements. Between the first and second stste-

ment of the second example, A contains a value not

indicative of state B. If downlist, SM, or display

update captured the value of A between the statements,

confusion could result.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4
Page 3-24

BOOK: Programming Standards

The proper way to code such sequences are:

(a) Y = AtBtC;

(b) IF B THEN A 1
ELSE A = 0 we

we

Similarly, avoid using such variables as temporary storage or
to contain intermediate results.

Note that this restriction applies to any processes storing

unprotected variables rather than to the programs accessing

the data.

3.3.1.13 Processes Executing Over OPS Transitions (M)

System Software cancels all application processes if a transition

involves adding a GPC to the Redundant set that was not previously

in the set executing the function. Function Base data is trans-

ferred to the new GPC but the application is responsible for re-

scheduling the processes that were to execute across the transition

and for the initialization of other redundant data.

3.3.1.14 Checksums (M)

Checksums shall be generated and written to mass memory for each
individually selected set of data or code. Each read of these sets
will be followed by a test for correct checksum if a loss of data
can affect performance.

3.3.1.15 RIGID COMPOOLS/STRUCTURES (M)

All COMPOOLS/STRUCTURES shall be defined with the RIGID attribute.

If not specified, the compiler will determine data allocation based

on its optimization algorithm. This lack of predictability could

result in a code generation problem in cases where code sequences

assume a specific data ordering (ex., use of %COPY statements).

3.3.1.16 Local Data %ZCOPY (M)

ZCOPY operations involving local data shall not be used unless the
- copy range is totally contained within a single local variable.

This is to preclude unpredictable effects due to compiler data

allocation optimization.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82

Rev: 3

Page 3-25
BOOK: Programming Standards &

3.3.1.17 FSW Error Protection (M)

Ensure that the software implementation will preclude the possi- 7
bility of software error conditions (i.e., program checks, in-
struction monitor, fail to sync, GPC error log, out of range case, - _]
etc.). To evaluate the need for protection, consider the potential WW
risk due to future changes, not just the current need for protec- Oe
tion. Unless memory/CPU resource costs are prohibitive, provide
appropriate (as defined in SAM 28) error prevention protection even
if it is not currently required:

- If any reasonable possibility exists that future changes to
external constraints (ex., ILOADS, crew inputs, limit checks,
other external code changes) could go undetected.

- If it will be difficult or time-consuming to establish that no
error prevention protection is needed even with well-documented
source code, other documentation.

If memory or CPU costs are prohibitive, commenting sufficient to
preclude. problems from future changes should be added to all re- :
lated code for which future changes could cause a problem. EE

3.3.2 Coding Guidelines (G)

3.3.2.1 Removal of Unnecessary Diagnostic Messages (G)

Diagnostic messages generated by the language processors and the
linkage editor are intended to indicate a problem or potential
problem that requires review/correction by the programmer. When
diagnostic messages become standard or 'expected', actual problems
are often not noticed.

It is required that assemblies/compilation of all software con-
tained on the FSW master system produce no diagnostic messages.
Furthermore, load modules on the master system must be produced by
the linkage editor with messages that can be readily reviewed.

3.3.2.2 Source Macro Definition Considerations (G)

The maximum total size for all Replace statement text in a HAL/S
compilation is limited only by the region size in the current
compiler. Currently a significant amount of space is lost through
the following coding practices:

Live Excessive or extraneous blanks (e.g., multiple card input).

2s Embedded comment fields (most INCLUDEs are NO-LIST). (

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

353.42

3,32

Date: =: 12/7/82
Rev: 5

Page 3-26

Programming Standards

3 Non-functional grouping (resulting in many unreferenced

symbols).

4. Use of Numeric Replace rather than declared constants.

5. Long names for parametric and global symbols (e.g., use more

"oe" catenations).

6. Non-essential use of replace symbols, replace levels, or

grouping.

Before new macro statement source members are defined, examine the

overall impact to programs that are expected to INCLUDE the member.

When updating existing members consider reduction in one or more of:

the listed areas.

.3. FSW Data Referencing Considerations (G)

.3.1 Optimization Considerations (G)

Three programming practices result in unreferenced FSW code or data

residing in most memory configurations. The capacity of the AP101

memory is 106,496 fullwords (32 bit words) and, very often,. we are
approaching this limit in several configurations. The three prac-
tices are explained below. Steps should be taken to avoid occur-

rences in the flight software.

1. Unused Template INCLUDE Statements - a Template INCLUDE state-

ment is adequate by itself to cause the linkage editor to

AUTO-CALL the referenced compilation unit. This is indepen-

dent of whether or not the included compilation unit is

referenced otherwise by the including compilation unit. The

result is that COMPOOLS, or other compilation units, are AUTO-

CALLED into memory configurations for which they are never

used resulting in a memory penalty.

For example - If module A contains an INCLUDE statement for

module B, B will always reside in the same memory configu-

ration as A regardless of whether or not A references B. To

eliminate memory penalties associated with this situation,

unused template INCLUDE statements should be avoided.

Otherwise, a manual effort is-required during each build to

locate such entries and to override AUTO-CALL.

2. Improper COMPOOL Utilization - a single reference to a COMPOOL

data item is adequate to effect placement of the entire COMPOOL

in the memory configuration associated with the reference. In

many cases, the memory penalty is significant. To avoid this

penalty, care should be exercised in placement of COMPOOL

variables to ensure that most of the data contained in the

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 3-27 ~
BOOK: Programming Standards C

COMPOOL is actually used in the memory configuration(s) con-
taining the COMPOOL. For example - suppose COMPOOIL CGZR13 is a
initially intended to contain only data for OPS1 and OPS3. If uw 36
an OPS2 module references a piece of data (say parameter C) in 2 a &

CGZR13, the whole COMPOOL is brought into the OPS2 configu-

ration by the linkage editor. The correct procedure is for
the programmer to define the desired piece of data (parameter
C) in another COMPOOL that is intended for OPS2 usage.

36 Unreferenced COMPOOL Data - there is a significant number of

declared data variables that are either never referenced in
any memory configuration (totally unreferenced) or are refer-

enced in only some of the memory configurations in which they

reside (selectively unreferenced). This is primarily due to

development fallout when requirements or design changes O'

eliminate the need for referencing certain variables. Se =

Caution: HAL/S name scoping rules will result in the COMPOOL

variable not being referenced by a module that redefines or

uses the same name as a COMPOOL variable.

Totally Unreferenced Data — COMPOOL data that is never refer- | E
enced in any memory configuration. Unless used for buffer -
pad, totally unreferenced data should be avoided. This data

should be identified at the time the data becomes unrefer-

enced. It should either be removed from the COMPOOL or the
data name changed to include an appropriate identifier (i.e.,

UNUSED) to designate the data item as a future scrub candi-
date.

Selectively Unreferenced -— COMPOOL data which exist in more

than one memory configuration but is unreferenced in some but

not all of those configurations. For example - COMPOOL CGZ123
contains parameters D, E, F and is contained in OPS1, 2, 3.

Parameters D and E are referenced in OPS1, 2, 3, but F is only

referenced in OPS 1 and 2. Selectively unreferenced data is

caused by improper COMPOOL utilization practices described in

(2) above and such practices should be avoided.

Note that FSW analysis utilities can be used to assist in assessing

optimization potential due to improper COMPOOL data referencing

considerations. Utility, TMPL, will provide a listing of all

unused Template INCLUDE statements. Utility, CMPL, will provide a

detailed summary of totally unreferenced and selectively unrefer-

enced data.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 12/7/82

Rev:
_ Page: 3-27a

& BOOK: Programming Standards

3.3.2.3.2 Reliability Considerations (G)

CONCARDS updates are required to suppress the autocall of data or

code CSECTS that are referenced by a compilation unit but are ©

precluded by the design from being used within a memory configuration.

A FSW problem could result if future design changes eliminate the

referencing protection. The following guidelines are intended to
minimize such exposures.

1. COMPOOL data referenced by code outside of FCOS should be

memory resident even if the data is precluded by the design

from being used within a memory configuration. In general

this will eliminate the need for CONCARDS to suppress COMPOOL

AUTOCALLS.

2. For code blocks referenced but not contained within the same

memory configuration, it should be obvious from the context of

the code block invocation (CALL, SCHEDULE) how the invocation

is protected from execution. If an explicit memory configura-

tion check is not defined, appropriate commenting should be

defined to indicate the protection rationale.

is Appropriate CONCARDS updates (change/include, not LIBRARY*)
will be made to ensure any reference to a non-existing code

~ block will result in an error message being logged.

Compilation unit structuring should be used that allows adherence to
the above standards. Code segments that have different memory
configuration residency requirements than the invoking compilation

unit should be partitioned into separate compilation units. This

will permit adherence to (1) above. CONCARDS may then be used to

define a different memory configuration residency for the invoked
compilation unit as long as compliance with (2) above exists.

Re

Ry

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

Date: 11/15/82
Rev: 4

Page 3-27b —
Programming Standards E>)

3.3.2.4 Restricted HAL Statements (G)

HAL/S constructs that result in hidden XREF information that cannot
be resolved automatically will be avoided unless it can be demon-
strated that their usage clearly results in significant efficiency
or other improvements over an alternative approach. This will: ;
reduce analysis costs required to compensate for interface defi- S|
ciencies. FSW reliability will be enhanced accordingly. The
following are HAL/S constructs to be avoided:

- %ZNAMEADD
- 7% NAMECOPY
= ZCOPY with variable count
- CARDTYPE

= Integers as address pointers

- Nested structures

- NAME operands in ZCOPY 0
- EQUATE HAL name same as NONHAL name S

Usage of all ZMACROS should be avoided when reasonable alternative
language constructs exist. Not only may hidden XREFs result, but _
other undesirable effects my be created. For example, manual >
procedures are required for the spill compiler to properly process
COMPOOLS containing data referenced by ZCOPY statements.

In addition, the following restrictions apply to HAL/S INCLUDE
statements:

- Included code segments will be listed (i.e., NOLIST will
not be specified.

- Macro include segments will be defined within a COMPOOL
rather than locally.

- Except for HAL-compatible interfaces to FCOS modules
defined in the FCOS User's Guide, non-compiler generated
templates will not be used (i.e., except as noted, the
EXTERNAL attribute should not be used on any block header
statement).

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 02/02/82
Rey: 3

som Page 3-28

E> BOOK: Programming Standards

3.3.2.5. Data Initialization (GC)

All HAL/S DECLARE statements except for stack variables (Temporary,
Automatic, calling arguments) will have an appropriate initial
value defined with the INITIAL or CONSTANT attribute. This stan-
dard is primarily intended to ensure that predictable values result
that are not effected by changes beyond the programmer's control
(e.g., compiler, linkage editor, mass memory build). =

The programmer should also ensure that other initialization tech-
niques are used as appropriate. The programmer should not rely on
DECLARE initialization as the only method of initialization unless As Ss
the OPS will always be initiated by an overlay from mass memory. . ~134°8
The only OPS satisfying this constraint is G1/6. OO ZC

For other initialization considerations, reference SAM 26 (Ensuring
Data Integrity at OPS Transitions or OPS Mode Recall) and the
initialization design/code inspection checklist item description in
SAM 31.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82

.
Rev 4

e_ Page: 4-1

oy BOOK: Programming Standards

4, DOCUMENTATION

This section will discuss documentation standards and requirements

that are applicable to flight software. Two types are considered

here. Documentation in the listing shall be used to assure read-

ability of the flight software code. Mandatory (M) and Guideline

(G) paragraphs will be marked.

Control documentation through the usage of pre-defined forms will

serve to communicate information concerning flight software changes,

problems, updates, etc., to the appropriate sources.

4,1 SOURCE LISTINGS (M)

The listing of flight software source code is generated by the

output writer of the HAL/S compiler and the AP-101 assembler.

Although these listings are largely self-documenting, each module

will be prefaced with a set of summary comments. Also, the source

code will be annotated throughout with comment statements and/or waar

inline comments.
C So

C 4.1.1 Prologue Comments (M)

Prologue comments will be included within every programmer generated

or preprocessor generated FSW source member. This includes programmer

created preprocessor input source members. In general, the prologue

comments will appear at the beginning of the source member immediately

after the header statements. To prevent source code resequencing, it

is acceptable to provide a reference to the update history provided

at some other point in the source code within that member (i.e.,

end of member). Prologue comments will comply with the following

format:

MODULE NAME = HAL or NONHAL name of the code block

(e.g., GEA_ASC_RTLS HFE)

DESCRIPTIVE - Brief English title of the code block

NAME (e.g., Ascent/RILS High Frequency

Executive)

PURPOSE = Brief summary of purpose of the module

CHANGE - Update history of all authorized changes

ACTIVITY made to the program to include the fol-

lowing:

aa - Authorization ID-a CR, PCR, or DR
number is required for all programmer

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

Other prologue comments
but are not required:

Programming Standards

INPUTS

OUTPUT

NESTED
CODE BLOCKS

EXTERNAL

REFERENCES

ERROR

CHECKS

Date: 11/15/82
Rev: 4

Page 4-2 &

created changes. Alternate authori-

zations (e.g., ICD number) may be
specified for preprocessor created

source members if change traceability

is enhanced.

- Date of change

- Programmer identification (preferably
programmer initials)

- Title or description of change

- Two-character revision level asso-

ciated with the update (should
correlate with the PMF~generated
revision level for the update)

Optional information, such as the build to

which the change is applied, other modules

changed for this authorization, ID, re-

lated authorization IDs, etc. may be
included. &

such as the following may also be included —

Name and description of each parameter
externally provided to the module as a
CALL argument.

Names and description of each CALL argu-

ment that may be altered by the module
even if they are also inputs (COMPOOL
parameters are included but local data is

excluded).

Description of each code block internal

to this module including name and type.

External modules invoked by this module.

Brief description of any error conditions

checking performed, and associated return

codes.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82

Rev: 4
Page 4-3

BOOK: Programming Standards

4.1.2 Authorization ID Correlation Comments (M)

Information must be included in each source member update to
precisely correlate each source statement changed, added, or de-
leted to all applicable change authorizations. The method used to
accomplish this shall not significantly decrease the readability of
the program code and comments.

If a single change authorization provides the basis for all changes
to a member for a revision level and no statements are deleted, the
update history entry for the change will provide adequate correla- >
tion via the source line revision level information. In other Ee
cases, additional comments must be used to provide the necessary . A
information. Comments may be included with the change history to = ©
indicate Statement Reference Numbers (SRNs) or SRN ranges asso- - 25 <=
ciated with the change or comments may be included on or near the = ¢
statements changed. If any statements were deleted, comments must
indicate their SRN's and specify that they were deleted.

Enforcement of this Standard shall be provided by the Code Inspec-
tion process. In order for a code change to be considered com-
plete, the update history must be properly updated and all source
statements changed must be properly correlated to all applicable
change authorizations. In the case of overlapping changes or
updates to statements previously changed, the authorization ID's
for all changes must be identified in an unambiguous and easily
understood manner. Comments included in source members in order to
comply with this Standard are considered part of the source member
source and therefore may be changed or deleted only with proper
authorization (CR, PCR or DR). Any authorization to change a
member may be used as a basis for (1) minor changes, additions, or
deletions to comments describing prior code, (2) minor program
label updates, (3) deleting unnecessary template include direc-
tives, or (4) similar changes to compiler/assembler directives
(e.g., non HAL TITLE CARDS, EJECT, SPACE) that do not produce
object code provided that they are reviewed as part of the code
inspection and that the resulting source program comments comply
with this Standard. Change authorization ID comments should
identify the change authorization for which the source member was
opened as authorizing the comment/label/directive changes. If any
comment/label/directive changes are made beyond the scope of the
authorizing document, the DR closure or. PCA (for CRs and nee? must
reference those comment? label fai reerlee changes.

This standard is not applicable to source members wholly created

by a preprocessor. Compliance is required, however, for any manual

updates to preprocessor created source members as well as for pro-

grammer created preprocessor input source members.
Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

Page 4-4 :

BOOK: Programming Standards EE

4.1.3 Statement Comments (G)

The HAL/S compiler generates a great deal of self-documenting

source code. However, the programmer must supply comment statements

and/or inline comments (i.e., on applicable source codeline itself), h
wherever the purpose or effect of a source statement or set of =
statements may not be self-documenting. Comments must be provided

for the following situations: :

oO When efficiency requirements preclude straightforward
coding, comments must be included to clarify the function
of such code. Assembly language code shall include suffi-
cient comments to place it on a par with HAL/S code with

respect to readability.

oO Instructions that may cause branching must have comments HP eoSss

to explain the branch test conditions and the signifi- ryt

cance or nature of each possible branch, if not obvious. oO

oO Statements invoking a procedure or function must be

accompanied by comments stating the reason for invocation

unless the procedure/function name identifies its purpose.

Reference SAM 15 for HAL/S output writer considerations that in-) é

fluence the placement of comments. . : —

4.1.4 FSW Source Resequencing (M)

FSW source members, except those created by a preprocessor, will

not be resequenced unless significant changes are required for the
source member. Resequencing of an entire source member must also

be approved by the OBS FSW development manager (i.e., third line

manager). If whole or partial resequencing is necessary, the author-

ization closure associated with the updates (DR or PCA) will reflect
that resequencing was performed. In addition, the authorization

comments (required by Standards paragraph 4.1.2) will properly
reflect the fact that a resequencing has occurred. Explicit ref-

erences to Statement Reference Numbers (SRNs) in the module change

history will be updated as appropriate to maintain the integrity

of the change history.

This standard is defined due to the high utilization of Statement
Reference Numbers (SRNs) in test decks and FSW analysis tasks.
Also, SRNs are used as a key in determining FSW source and XREF

deltas between systems.

Compliance with this standard shall be enforced by the code in-
spection team for both partially and wholly resequenced source

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

Date: 11/15/82
Rev: 4

< Page 4-5

CG 7 BOOK: Programming Standards

members. No SARB review is required. The code inspection team

will establish the following:

- Resequencing is necessary or highly desirable

- Appropriate management authorization has been obtained if

any entire source member is resequenced

- Impacts to existing IPV, Statement Level Data Base, and

other analysis inputs have been properly considered and

appropriate action taken

- Authorization ID correlation comments properly reflect

the fact that a resequencing has occurred and explicit

SRN references are correct

4,2 DESIGN SPECIFICATION FORMAT (M)

The format for FSW design documentation will be as described in

SAM 13.

C
T

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

BOOK:

Date: 02/02/82
/ Rev: 3

Programming Standards Page 5-1

5. REFERENCE MATERIAL

Interface Control Document: HAL/SDL (IBM No. SS-81-4465) - Rev. 7

defines interfaces specific to HAL/S and SDL software systems,

HAL/S-360 Compiler System Specification (Intermetrics Incorporated) -
specifies the informational interfaces within the HAL/S-360 compiler,
and between the compiler and the external environment.

HAL/S Language Specification (Intermetrics Incorporated) - format

description of the HAL/S language.

Structured Programming (H. D. Mills, 1970) - formal description of

structured programming.

"Chief Programmer Team Management of Production Programming' by
F. T. Baker (IBM Systems Journal, Volume XI, No. 1, 1972, pp. 56-73) -
includes discussion of chief programmer, program production librarian,
top-down programming, and structured programming.

"Chief Programmer Teams' by F. Terry Baker and Harlan D. Mills
(Datamation, Volume 19, No. 12, December 1973, pp. 58-61) —- brief
discussion of chief programmer, top-down development, structured
programming, and development support library.

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

ATTACHMENT A

FSW ACTION ITEM REQUEST

Assignee:

Response

Signature:

Comments

Signature: Ciginator Completes Darkened Fields
NASA-JSC

Dr. James E. Tomayko Collection, MS 87-08 Box 34 FF 26

