
NASA CR-

DETAILED REQUIREMENTS DOCUMENT

FOR

COMMON SOFTWARE

Of

Shuttle Program Information Management System
Job Order 88-019

(NASA-CR-141709) DETAILED REQUIREENTS75-2001
DOCUMENT FOR COMMON SOFTWARE OF SHUTTLE
PROGRAM INFORMATION MANAGEMENT SYPTEM
(Lockheed Electronics Co.) Unclas

14314

Prepared By

Lockheed Electronics Company, Inc.

Aerospace Systems Division

Houston, Texas

Contract NAS 9-12200

For

INSTITUTIONAL DATA SYSTEMS DIVISIONI

JOPRICES SC ETa T

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER
Houston, Texas
February 1975

Reproduced by

NATIONAL TECHNICAL LEC-5479
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

ISC Form 20266A (Rev Apr 73)
NASA-JSC

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

DETAILED REQUIREMENTS DOCUMENT JSC-09380

FOR

COMMON SOFTWARE

Of
Shuttle Program Information Management System

Job Order 88-019

PREPARED BY

J. . Everette, Sclentific Programming Specialist

L. D. Bradfie P, Data System Programming Analyst

C. L. Horton, Data System Programming Analyst

APPROVED BY

W. B. Hopkins, Supervisor B. L. Brady. IDSD Project Manager
SPIMS, System Design and Shuttle Program Information

Integration Section Management System
Institutional Data System Division

R . Re d, Man 'ger .R. R elbrugg, Chief /FD6
Shuttle Informat n Management Data Systems Development Branch
Department

H F. Thompsdn, Director J4 aRue W. Burbank, Project Manager
Applicatio/s Branch l Shuttle Program Information

Management System
Data Systems & Analysis Directorate

CR. Huss, Chie f

Institutional Data Systems Division

Produced By:

.LOCKHEED ELECTRONICS COMPANY, INC.
For

Institutional Data Systems Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS

I LEC-5479

FOREWORD

Common software was concoved as a method for

minimizing development and maintenance cost of the Shuttle

Program Information Manaqement System (SPIMS) applications

while reducing the time-frame of their development. This

document identifies those requirements satisfying these

criteria and also describes those stand-alone modules which

may be used directly by applications.

The SPIMS applications operating on the CYER 74

computer, are specialized information management systems

which use System 2000 as a data base manager. Common

software will provide the features to support user

interactions on a CRT terminal using form input and command

response capabilities. These features will be available as

subroutines to the applications.

iii

- Preceding page blank

CONTENTS

Section Page

1.0 SYSTEM OVERVIEW 1-1

1. 1 IDENTIFICATION 1-1

1.2 BACKGROUND 1-1

1.3 GENERAL DESCRIPTION 1-3

1.4 ASSUMPTIONS AND CONSTRAINTS 1-3

1.5 SPIMS SYSTEM DESCRIPTION 1-5

1.5.1 Hardware Confiqguration 1-6

1.5.2 CYBER 74 Equipment List 1-11

1.5.3 Software Configuration 1-12

1.5.3.1 Operatinq System 1-12

1.5.3.2 Communications System 1-12

1.5.3.3 bata Base ianhagement

System 1-14

1.5.3.4 Applications Software 1-15

1.5.3.5 Common Software 1-16

2.0 FUNCTIONAL REQUIREMENTS 2-1

2.1 REQUIREMENT SOURCES 2-1

2.2 COMMON SOFTWARE FUNCTIONAL REQUIREMENTS 2-2

2.2.1 Communications Interface

Requirements 2-2

2.2.1.1 Simplification- of I/O 2-3

2.2.1.2 Utilization of Terminal

Capabilities 2-4

2.2.1.3 Terminal Independence 2-5.

2.2.2 Input/Output Processinq 2-5

2.2.2.1 I/O Translation 2-5

2.2.2.2 I/O Conversion 2-6

2.2.2.3 Input Validation 2-6

2.2.2.4 Parameter Editing 2-6

iv

Section Page

3.3.3.6 Real Number Validation 3-15

3.3.3.7 Alpi'aabetic Validation q 3-15

3.3.3.8 Date Validation 3-16

3.3.4 Table Processing Routines 3-16

3.3.4.1 Table Retrieval 3-16

3.3.4.2 Data Base Load 3-17

3.3.5 Input/Output Editing 3-17

3.3.5.1 Limited Editing Function 3-17

3.3.5.2 Input Editing. Routine 3-18

3.3.5.3 Output Editing Routine 3-18

3.3.6 Construct String Arguments 3-19

3.4 UTILITY PROCESSING 3-19

3.4.1 String Manipulation Functions 3-20

3.4.2 File Input/Output 3-20

3.4.3 Forms Construction Utility .3-21

3.4.4 Table Handling Utility 3-21

3.4.5 Character Set Translation Routine 3-22

4. 0 TESTING 4-1

4.1 TEST DATA SOURCES 4-1

4.2 GENERAL TEST APPROACH 4-1

4.3 ACCEPTANCE CRITERIA 4-1

5.0 PRODUCTION IMPLEMENTATION 5-1

5.1 SUBROUTINE PRIORITIES 5-1

5.2 OPERATIONAL STAGES 5-2

5.3 OPERATIONAL REQUIREMENTS 5-2

5.3.1 General Operational Aspects 5-2

5.3.2 Performance Considerations 5-3

5.3.3 Resource Utilization Assumptions 5-3

APPENDIX A A-1

vi

Section Page

2.2.2.5 Limited Text Editing

of Input Data 2-7

2.2.3 Terminal Interface Support Routines 2-7

2.2.4 Support Programs for Generating

Forms 2-9

2.2.5' Common Software Utility Routines 2-10
3.0 DESIGN REQUIREMENTS 3-1

3.1 COMMUNICATIONS INTERFACE ROUTINES 3-1
3.1.1 Input Processor 3-2
3.1.2 Output Processor • 3-3

3.2 TERMINAL INTERFACE SUPPORT ROUTINES 3-5
.3.2.1 Page 3-5
3.2.2 Retrieve Page 3-6
3.2.3 Store Page 3-6
3.2.4 Get Block 3-6
3.2.5 Store Block 3-7
3.2.6 Initialize Form 3-7
3.2.7 Initialize Form Function 3-8
3.2.8 Convert to Word-Boundary Format 3-9
3.2.9 Convert to Matrix Format 3-10
3.2.10 Advisory Message Handler 3-11

3.2.11 Special Message Routine 3-11

3.3 INPUT/OUTPUT PROCESSING ROUTINES 3-12

3.3.1 Translation 3-12

3.3.2 Conversion 3-12

3.3.3 Input Validation Routines 3-13

3.3.3.1 Table Validation 3-13

3.3.3.2 Limits Validation 3-13
3.3.3.3 S2K Table Look Up 3-14

3.3.3.4 Integer Validation 3-14
3.3.3.5 Exponential Validation 3-15

V

FIGURES

Fiqgue Page

1-1 Hardware required to support SPIMS. 1-7
1-2 Software configuration for SPIMS. 1-13

vii

ABBREVIATIONS AND ACRONYMS

ASCII American Standard Code for Information Interchange

CDC Control Data Corporation

CMA Configuration Management Accounting

COSMOS Communications-Oriented Switching Monitor and

Operating System

CPU. Central Processing Unit

CRT Cathode Ray Tube

CS Common Software

CTM Communication Terminal Module

CTMC Communication Terminal Modular Controller

DBMS Data Base Management System

DMS Data Management System

DRD Detailed Requirements Document

ECS Extended Core Storage

FDS Functional Design Specification

GDSD Ground Data Systems Division

HS High Speed

H2K Hazeltine 2000 Terminal

H4K Hazeltine 4000 Terminal

ICE Interface Control Executive

IDSD Institutional Data Systems Division

I/O Input/Output

JSC Johnson Space Center

Kbs Kilobits per second

LDP Logical Data Path

LEC Lockheed Electronics Corporation-

LEC/ASD Lockheed Electronics Corporation/Aerospace Systems

Division

LS Low Speed

MML Master Measurement List

viii

HOPS Mission Operational Planning System
MRI 'MRI Systems Incorporated
NASA National Aeronautics'- and Space Administration
PDS Problem Data System

PICRS Program Information Coordination and Review Service

PLI Programming Language Interface
PPU Peripheral Processing Unit

RG Repeating Group
RSPI Resources, Scheduling and Procurement Integration
SIS Shuttle Information Service
SLAHTS Stowage List and Hardware Tracking System
SPIMS Shuttle Program Information Management System
SSPO Space Shuttle Program Office

S2K System 2000

TCS Terminal Control System

TTY Teletype

ix

LIST OF APPLICABLE DOCUMENTS

1. Im21ementation Feasibilit Study fogr Sace Shuttle

gEamEMnDagement SXsteM sApplication FinalReport,

LEC-1787, Lockheed Electronics Company, Inc.,

March 1974.

2. Terminal _Control__Syate _TC_unctionaSpecif ica t ions.

Revision 2, SP-378-77, Sperry UNIVAC Systems

Programming, November 1, 1973.

3. Terminal Control SSstem JTCS1_S euence of Evyents

Specifications _eisio_n_2, SP-380-78, Sperry

UNIVAC Systems Programming, November 1, 1973.

4. Control Data CYBER 70, Model 7__ComuterSte _System

Description and ProEramminq Information Reference

Manual, Vol. 1-3, Revision F, Publication No. 60347400,

1974.

5. Worker Interface with COSMOS, UM-338-65, Sperry UNIVAC

Systems Support Division, Revision 2, June, 1972.

6. System 20_00 Refrence Manual, MRI Systems Corporation,

Revision A, July, 1973.

7. "Minutes of CYBER/494 I/F Software Meeting of 18

December 1974", Memorandum 74CLKA-668, Control Data

Corporation, December 30. 1974.

8. CE9Functional Specification, Control Data Corporation,

To Be Published.

x

9. ICE Functional Design_ necification, 90CLKA0020-1,

Control Data Corporatip7n, To Be Published.

10. CRT Terminal _Sstem Software Interface Specification,
SI-09637, EO 030E, Philco-Ford Corporation,

October'29, 1971.

11. HaZeltine 2000-g Operatinq Manual, HI1004, Hazeltine

Corporation, August 1973.

12. Detailed Pequirsemenets Document for Stowaqe Lst and

Hardware Trackin_S.ystem, LEC-5362, Lockheed

Electronics Company, January 1975.

13. Detailed Reluirements Document for Problem Data_System,

Lockheed Electronics Company, Inc., To Be Published.

14. Detailed Reu irements Document for Shuttle Inf ormatin

.Sericg, Lockheed Electronics Company, Inc., To Be

Published.

15. Detailed Re iirements Document for Confiuration

lanagement Accountin, Lockheed Electronics

Company, Inc., To Be Published.

16. SPISZgCYBZE Interface Control Document, Control Data

Corporation, To Be Published.

xi

1.0 SYSTE OVERVIEW

1.1 IDENTIFICATION

The Common Software for the Shuttle Program Information

Management System .(SIMS) is being developed. in response to

Job Order 88-019, initiated by the Data Systems Development

Branch of the Institutional Data Systems Division, Johnson

Space Center. Mr. B. L. Brady is the Job Order Technical

Monitor. Project number 6400 has been assigned to the task

for the fiscal year 1975.

1.2 BACKGROUND

The long-term, multi-organizational nature of the Space

Shuttle Program has presented the Space. Shuttle Program

Office (SSPO) with a monumental information management

problem. Numerous areas of responsibility have been defined

by SSPO for the management of information. To date, JSC has

been assigned responsibility to support the following

application areas: loose equipment tracking, reliability,

quality assurance, problem tracking, configuration
accounting, documentation accession, and requirements

traceability. The SPIMS project was established in order to

automate the storage and retrieval of the massive volumes of

data needed to fulfill these management responsibilities.

SPIMS is the outgrowth of a feasibility study performed

during the second quarter of fiscal year 1974. The results

of the study can be found in ImElementation_easibijitX

StuRyfo_s acQShuttle_Proq2_amManagement SXstems

kEA2lication _Fina_Repot (see Reference 1). *That study

1-1

concluded that an automated data management system could be

implemented at JSC. SPIMS was formally inaugurated .in July

of 1974.

Six (6) specific applications are being addressed by

SPIMS to date:

* Problem Data System (PDS)

* Configuration Management Accounting (CMA)

* Shuttle Information Service (SIS)

* Stowage List and Hardware Tracking System (SLAHTS)

* Master Measurements Data Base (MMDB)

* Resources, Scheduling, and Procurement Integration

(RSPI)

Preliminary requirements surveys of four (4) of these

applications (PDS, CMA, SIS, SLAHTS) revealed that a number

of functional capabilities were required by two or more of

the applications. The aggregate of these shared functional

requirements came to be known as the Common Software for

SPIMS applications. The premise on which the Common

Software concept was based was that a single development of

software to fulfill the common requirements would permit its

cost to be amortized over all of
the utilizing applications,

yielding a significant overall cost-savings for the SPIMS

application software. Further, the development cost
of

additional applications that are anticipated in the future

would be greatly reduced.

This Common Software Requirements Document identifies

those applications requirements which have been firmly

established as being common to multiple applications.

1-2

1.3 GENERAL DESCRIPTION

The principal source of all SPIMS requirements is the
applications: PDS, CMA, SIS and SLAHTS. The PICRS
feasibility study synthesized a system, both hardware and
software, to satisfy the different applications. Different
functions were'allocated to the system components. One of
these components is common software.

The current SPIMS development effort consists of only
four of the six original applications. These are PDS, CNA,
SLAHTS and SIS. This requirements development effort
further refines the PICRS feasibility study definition of
common software. The study indicates that the primary need
for common-software is to facilitate terminal
communications.

When using forms (see section 2.2 for a description of
forms) it is necessary to transmit large quantities of data
to and from the terminal in a sinqle transmission. This
capability is not supported by KRONOS/TELEX; therefore, it
will be accomplished via common software. Functions common
to several applications will be supplied by common software.

The PICRS feasiblity study rated System 2000 weak in
such areas as input validation and input/output translation.
Common software will provide these and other input/output
processing capabilities.

1.4 ASSUMPTIONS AND CONSTRAINTS

1-3

The following list enumerates those assumptions and

constraints that currently guide the implementation -of

common software as it is described in this document:

* It is assumed that a multi-thread version of System

2000 will be delivered to the JSC CYBER 74

installation by June 15, 1975.

* It is assumed that the CYBER 74/TCS interface will

be operational by August 19, 1975 and that testing

of that interface will begin approximately August 1,

1975.

* The implementation of common software is constrained

to the development of a sub-program library from

which each application can extract those functional

units that are applicable to its own needs.

* The implementation of common software input and

output processing functions; validation,

translation, editing, etc. is constrained to be

subroutines which operate on only one parameter and

perform one function.

* The implementation of common software is constrained

from providing responses to the terminal when an

error is reccqnized except as indicated in paragraph

3.2.10. Error indicators will be returned to the

applications program.

* Certain of the functional capabilities of common

software are required earlier than others. The

development is constrained to deliver these items in

accordance with the need dates negotiated with the

applications developers. (Section 5 outlines the

current priorities for the common software

development.)

1-4

* The requirements and priorities contained in this
-document are based on current knowledge of .the
applications listed in paragraph 1.2. Addition of
new applications or major changes in the
requirements of the initital applications may cause
impact to be experienced in the common software
development effort.

* It is assumed that the communications mode described
in references 7 and 8 exists in that form. (This
mode prescribes the use of mass storage files for
passing terminal input/output messages to
applications programs.)

* Subroutine calls, common software table formats, and
other interface procedures between applications
programs and common software will be defined in the
Common Software Design Document.

1.5 SPIMS SYSTEM DESCRIPTION

SPIMS is a multi-dimensional development effort
involving many facets of classic system development:

o Hardware procurement

* Special hardware design and fabrication
* Communications and message switching
* Operating system modification and extension

Applications development

In addition, SPIMS encompasses two additional software
items: a data base management system, and common software.
The sections that follow present an overview of the nature

1-S

and function of all of the components with special emphasis

on the common software.

1.5.1 Hardware Configuration

Figure 1-1 illustrates the hardware components required

to support SPIMS. SPIMS is primarily a terminal oriented

system. The end-user will normally have access to one or

both of two types of terminal devices: a Hazeltine 2000 CRT

or a Hazeltine 4000G CRT. Both types are capable of

buffered operation, that is, local screen editing can be

performed without computer intervention. When a complete

display has been prepared, the user may transmit the

buffered data to the computer. Some users may access SPIMS

via TTY compatible terminals operating in line mode. TCS

(described below) will be configured to handle such

terminals.

Communications and message switching capabilities are

provided through the facilities of the Terminal Control

System (TCS). Terminals may be located at JSC or at sites

remote from the Center. Communications are transmitted over

standard telephone lines in some cases and over dedicated

communications circuits in others. TCS comprises a UNIVAC

494 computer and all of the communications lines and

associated equipment required to effect terminal input and

output. As currently configured, TCS will support up to 64

SPIMS interactive terminals logically connected to the SPIMS

application computer in addition to providing computer to

computer, computer to terminal, and terminal to terminal

communication functions. (TCS is capable of supporting more

1-6

CYBER 74-t2COPUTER SYSTEM WORDS
T TNDED
CORI:

7030-4

".,S R I R STPt .1 ROCESOR ST'1. ST 'ST R98K WORnS

CONTINTERFACET

STORAGE RADE
CONT. STORAG

DISK Isx DISK DI SK DISK DISK DISK DISK
STIOR. STOR. STOR. STOR. STOR. STOR. STOR. STOR.

Figure 1-1 C nt.

SPIMS Hardware Configuration

C.I

SPIMS Hardware Configuration

4 DEDI -
T B CELL ATED

SM O P S- V F S E M

1BELL
S T CAifD

L M INH .

S

.0 DEDI-

TI:R- DkIVERL CATED DRIV ERS CnfC I

S I L pA SYSTE TERINAL 38 H IGH SPEED CIRCUITS

E IS. SYST 2 4 LO SPEED CIRCUITS

, I 1AY [OE DGTADI

4 ED1 NS/0 DDCWED

L MINAL

SSYSM TERMINAL 8)119 SPEED CIRCUITS CTC

4 ST PATS. SYSTEM 4 LOW SPEED CIRCUITS
HI.S.L MM -l ODEMDIGITAL

PATCI
BAYS

S TR- LO ONSITE/OFF-SITE DEDCATED PATC --
MINA. OmLDEI MODEM LINES BAY MODEMC

R CTMC S
S R T 28 HIi SPEED CIRCUITS

LV V LOW LE 4 LOW SPEED CIRCUITS

D TRS DIAL NETWIRK CENTREX PATCH SIaPEED

2 IAL0 PAY MO ICET 4 .S.PICR V!, AB1
L TER- ACOUSIc DITDEA P CENTREX VPATCH MODEM L

VOICE F VC:/DATA CIRCU8ITS FOR PICRSCIRCUITS

14 LOW SPEED CIRCUITS

CUPATCAT

O

- - - - - - - - - - - - - - - - - - S W I T C A R D

Figure 1-1
SPIMS Hardware Configuration

FlH 880 FH43Z
CTC CONTROL CONTROL

1
CONTROL

CONSOLE

CTC 494 CENTRAL TO SIU
PROCESSOR

CES ATION CONFIGURATION D
"ROCSO -;; UNIT T NSFER MODEM J 1

FOUR-WAY T SWITCH (303)
TRANSFER 4s

.4

CMC TO OTHER
1 494'S

. S VIII TAPE UNITS

Figure 1-1 Cont.
SPIMS Hardware Configuration

than 64 terminals but the communications software in the

CYBER 74 is being developed with that limit.)

The TCS message switching computer is linked to the

SPIMS application computer, a Control Data Corporation,

CYBER 74, by means of an 81.6 Kbs bi-directional, full-

duplex, synchronous line. The CYBER 74 has an adapter which

converts the TCS transmissions into 12-bit parallel signals

that may be transmitted to its Peripheral Processing Unit

(PPU). Each of these 12-bit PPU bytes will contain 1-1/2 8-

bit TCS characters. Each character consists of 7 data bits

and a parity bit.

The CYBER 74 is the host compqter for most of the SPIMS

applications. It is a distributive processinq machine in

which user programs perform their processinq in mainframe

memory. This particular CYBER 74 is a unit-processor, i.e.,

it is configured with only one Central Processing Unit.

However, it contains 14 Peripheral Processing Units (PPU's)

which perform a myriad of functions such as disc and tape

access, communications interface and unit record device

interface. Each of the PPU's is in essence a mini-computer

slaved to the user's mainframe program, performing such

peripheral service functions as it might be called upon to

do.

The peripheral equipment on the CYBER 74 includes:

. Card reader/punch

* Line printer

* Mass storage - 16 disc units (110 million characters

each)

1-10

* Extended core storage (503,000 words)

* Magnetic tape drives (four 9-track, two 7-track)

A complete equipment list is contained in section 1.5.2 of
this document.

For additional detail regarding the Terminal Control
System, References 2 and 3 should be consulted. Reference 4
provides a more detailed description of the CDC CYBER 74
computer system.

1.5.2 CYBER 74 Equipment List

The following list identifies the hardware components
designated for SPIMS use of the CYBER 74. Starred (*) items
are currently leased. Purchase of these. may occur at some
future date.

Descr ip t ion Model Quantity

Central Processor 74-16 1
Memory Option 10265-3 1

PPU and I/O Extension 10269-1

ECS (503K) 7030-4 1
Data Channel Converter 6681 1

Line Printer Controller 3555-1 1

Card Reader Controller - 3447-1 1

Magnetic Tape Controller 3528-3 1*

Line Printer 512-1 1

'Card Reader 405 1.
Magnetic Tape Unit - 9 Track 659-4 4*
Magnetic Tape Unit - 7 Track 657-4 2*

Disk Controller 7054-2 4

1-11

Disk Unit 844-2 16,

Card Punch Controller 3446 1

Card Punch 415 1

Interface Control Unit 10276 5

Print Train Cartridge 595=1 1*

1.5.3 Software Configuration

The software configuration of concern is the CYBER 74

resident software. The Terminal Control System computer

operates under the COSMOS operating system and i. mentioned

here only for completeness. (See Reference 5 for a

description of COSMOS.) Figure 1-2 is a diagram of the

software configuration for SPIMS.

1.5.3.1 Operatinq System. The CYBER 74 operating

system to be used for SPIMS is KRONOS. KRONOS is a product

of the Control Data Corporation. It is a time-sharing

system and is oriented toward interactive terminal

operations. However, it also supports local and remote

batch processing concurrent with terminal users. It

provides facilities for high-level programming language

programs to be created as well as an assembly language.

Languages include FORTRAN, COBOL, BASIC, ALGOL, and COMPASS

(assembly). (Not all of these are currently install-ed at

the JSC.)

1.5.3.2 Communications System. Control Data

Corporation is developing a communications processor for the

CYBER 74/TCS interface. This processor consists of a' PPU

program called ICE and a mainframe program called the

Interface Control Executive (ICE). ICE and 1CE working in

1-12

CYBER 74
RESIDENT
SOFTWARE

-.UNIVAC 494
RESIDENT KRONOS OPERATING SYSTEM
SOFTWARE

COSIOS INTERFACE CONTROL EXECUTIVE

OPERATING TELEX
SYSTEM _TELEX

SYSTEM 2000 MULTI-THREAD

T SC
C 0' . Y CO.MMON SOFTWARE
S-F E APPLICATION #1

'w . R COIMMON SOFTWARE

A APPLICATION #2
'R IE/

COMMON SOFTWARE

APPLICATION #N

Figure 1-2, - SPIMS softwarc configuration..

concert will support all of the Terminal Control.System

protocol required to accomplish the two-way communications

between terminals and the CYBER 74. 1CE is responsible for

interfacing with the CYBER Adaptor in order to read and

write TCS transmissions over the 81.6 Kbs line. ICE is

responsible for accepting data from (or sending data to)

ICE. ICE must pass input data to the requesting application

and obtain output data from an application. ICE also has

responsibilities in the area of message loqqing. ICE must

interface with the data base management system and those

applications runninq under control of the DBMS add it must

interface with normal time-sharing runs. The latter may be

KRONOS products such as compilers, or a user program that

does not operate under the control 'of the DBMS.

1.5.3.3 Data BaseManaqeiSent System. System 2000, a

product of MRI Systems Corporation, will function as the

Data Base Management System for SPIMS. System 2000 was

recommended as the DBMS in the feasibility study final

report. A development effort is in progress by MRI Systems

Corporation to provide extensions to the functional

capabilities of the system. Also, a multi-thread version, a

single copy of which will support concurrent updates on a

data base, of System 2000 is scheduled to-be delivered to

the JSC CYBER 74 facili.ty.

System 2000 will be responsible for all data base

activity for SPIMS. It provides a self-contained Natural

Language that permits a terminal or batch user to interact

with a data base without the necessity for generating source

language programs. It also provides a FORTRAN or COBOL

Programming Language Interface which permits a user program

1-14

to manipulate the data in a more conventional manner.

(Actual data base references are made via calls to System

2000 entry points which permit it to exercise the required

controls on the data base.)

Reference 6 provides a detailed description of System

2000 and its fuhctional capabilities.

1.5.3.4 AEElications Software. Applications may be

configured in several different ways:

* System 2000 Natural Language with no user code

invoked

* System 2000 Programming Language Interface with user

code

* System 2000 Natural Lanquaqe and/or PLI with user

code and Common Software

Note that a requested extension to System 2000 is an
interface between a user program and the Natural Languaqe

capability of System 2000. It is currently anticipated that

no application will operate in a pure Natural Language mode

although that option remains open should it be required by

some future application.

An application may have need for multiple users to

interact with the same data base concurrently. Two

considerations supportinq this likelihood are: 1) an

extension to System 2000 has been identified (called the

multi-user capability) ; 2) multiple copies of an application

may be resident and processing in the CYBER 74 concurrently.

System 2000 has the responsibility to resolve any data base

1-15

deadlocks that might result from multi-user access (in
particular update access) to a data base. Each application

can function as though it were the only user of that data

base.

1.5.3.5 Common Software. Common software is the name

applied to application software used by more than one

application system. For example, all of the SPIMS

applications must have the ability to read and write a user

terminal. Since the nature of the terminals to be used by

SPIMS requires the introduction of a variety of control

sequences into a data transmission, a simple FORTRAN or

COBOL read function is not sufficient to interpret the data

stream. Hence, it falls to the common software to perform

the interface to terminal input and output. In this manner,

the software to perform a given function can be generated

once, tested, and then integrated into the various

applications requiring the capability.

Just as use of a data base management system reduces

the development costs of the applications, common software

reduces costs. Instead of designing, coding, and testing a

piece of software several times for several applications,

those functions are performed only once and the cost is

amortized over the seve.ral applications.

Common software requirements are presented in detail in

sections 2.0 and 3.0 of this document.

1-16

2.1 REQUIREMENT SOURCES

The SPIMS applications PDS (see reference 13), SLAHTS

(see reference 12), CMA (see reference 15), and SIS (see

reference 14) were the principal sources for the derivation
of common software requirements. An analysis of the

applications led to the identification of certain common
functions. A system was synthesized to identify the

components of the different applications which would be
common.

This system included the Terminal Control System, the
CYBER using- KRONOS as the operating system and System 2000
as the DMS, a set of common software, and the SPIMS

applications. The Terminal Control System, the operating

system, and the DMS satisfied many common application

requirements. Common software was identified to satisfy
common requirements not handled by other systems software.

This section define's the common functional requirements
which were deemed to be more economically satisfied with the
development of common software rather than by independent
development of each application.

Common software not being an operational system, has no
operational requirements itself; but it must be constructed

in such a manner that the application's operational

requirements can be satisfied. Section 5.3 discusses

operational requirements considerations.

2-1

2.2 COMMON SOFTWARE FUNCTIONAL REQUIREMENTS

The four currently identified SPIMS applications to be

run on the CYBER are oriented toward large data bases using

System 2000 as a data base manager. All systems

applications are required to provide a simple user interface

geared to their'specific users.* The interface selected was

that of form mode input.

A form will consist of headings, titles, and other

labeling and tutorial data, and of parameter areas into

which the user enters those data needed to describe his

query or update. Use of the foreground/background intensity

capabilities of the Hazeltine 2000 and 4000G terminals will

enhance the-usability of form mode input. The parametric

areas of the form can be displayed in foreground while the

tutorial data are displayed in background. Under this

configuration, the TAB key on the terminal keyboard can be

used to position the cursor to the beginning of the next

parametric area on the form, thus eliminating the necessity

for manually moving the cursor character by character until

the desired position is achieved.

Many of the common software requirements are either

indirectly or directly introduced by the need of forms.

TELEX/ICE, the KRONOS Communications Software Subsystem,

suffices for transmitting one line of data at a time to the

computer, but additional software is needed to support full

page transmissions and allow for the use of specific

capabilities of the MOPS and Hazeltine 2000 terminals which

are needed for forms.

2-2

Common software requirements have been grouped for
discussion in the-following categories:

* Communications interface

* Input/Output processing

* Terminal Interface Support

* Programmer support programs for constructing forms
* Utility routines

The following subsections discuss these requirements.

2.2.1 Communications Interface Requirements

The common software communications interface

requirements are to:

* simplify I/O for applications, reduce it to a form

comparable to FORTRAN or COBOL I/O;

* allow utilization of specific terminal capabilities;
* provide terminal independence for applications.

2.2.1.1 S~_mpejfication of I 0. In order to simplify

I/O for applications, common software must make transparent

the following:

* TCS conventions - TCS blocks all data into 360

character or less blocks which contain control data.

This interface is described in detail in references

2 and 3.

* TELEX/ICE System 2000 interface conventions -

Terminal data communications between ICE and

applications, when using System 2000, are via an

2-3

interface file. The Normal INPUT and OUTPUT files
are used to communicate information with ICE/TELEX

concerning when and how much data is being

transmitted. The details of TELEX/ICE interface

requirements are described in the SPIfSZCYBER

Interface Control Document (reference 16), to be

published.

Terminal control information - Both the MOPS and

Hazeltine 2000 terminals have control characters to

indicate the beginning and ending of information,

.headers, foreground indicators, and background

indicators as well as normal text data which is in a

.modified ASCII character set. In addition, the MOPS

terminal distinguishes between a normal and

selective transmit by control indicator.. Position

data exists to indicate locations for character

sequences. Function keys may also be transmitted

from MOPS terminals.

Common software must process the control information

on both input and output, making them transparent to

applications, except as noted in the remainder of

this section. References 10 and 11 describe the

detailed characteristics of the MOPS and Hazeltine

2000 terminals.

2.2.1.2 Utilization of Terminal Capabilities. In

order to allow utilization of specific MOPS and Hazeltine

2000 terminals capabilities, common software is required to

provide for an application to distinguish whether data is

foreground or background. It also is required to provide

for transmitting selected data to and from a terminal.

2-4

Also, common software must identify function key data on a
MOPS terminal.

2.2.1.3 Terminal Independence. Some applications
require the ability to interface with more than one type of
terminal. Common software will be required to support
terminal independence by obtaining the type of terminal from
ICE and processing control information in the form necessary
for that terminal. In addition, a blocking convention will
be defined for multiple page displays.

This blockinq convention will be defined to allow
optimal breaking of display data depending on the size. of
the terminal. Applications will identify to common software
the specific lines in a block and the organization of blocks
on specific pages.

Current requirements specify only the use of the MOPS
and azeltine 2000 terminals. But, common software must be
be constructed to incorporate other types of terminals with
minimal effort at a later date.

2.2.2 Input/Output Processing

This section identifies specific input and output
processing requirements which are needed to enhance the data
management capabilities of System 2000.

2.2.2.1 I/LOTranslation. This is the requirement to
provide the capability to replace on input and/or output a
corresponding table value for the specified input or output
value.

2-5

2.2.2.2 IZ/O Conversion. This requirement is similar

to the translation process except that the replacement is to
be from a specific row in an N,,imension table. An example

of usage would be to convert from different center

terminology to that used at JSC on input and to perform the

converse operation on output.

2.2.2.3 Input Validation. System 2000 performs

certain types of input validation. Common software is

required to perform these validations to provide better
control of error processing and provide additional input
validation. The requirements are:

* Limits validation - The determination if value is
between a pair of specified values.

* Table validation - The determination if a value is
in a specific table.

* Date validation - The determination if a value is a
legal date.

* Integer validation - The determination if a .value is
an integer.

* Alphabetic validation - The determination if a value
contains only alphabetic or blank characters.

* Real/Exponential validation - The determination if

the value is a legal floating point arithmetic

value.

2.2.2.4 Parameter_ Editin. FORTRAN performs input and

output parameter editing via format statements in
conjunction with Read and Write statements. FORTRAN also

has Encode and Decode statements which function like core to
core Read and Write statements. The parameter editing

2-6

requirements could be satisfied with the Encode and Decode
statement except their use requires considerable core
overhead.

In order to eliminate this core overhead, it is

required that parameter edit routines be developed; they
will perform the following conversions for parameters:

* Display Code to real

* Display Code to integer

* Display Code in scientific notation to real
* Real to Display Code

* Integer to Display Code
* Real to Display Code via scientific notation

2.2.2.5 Limited Text Editing of Input Data The
ability to perform a specific text editing operation on

input data is required. This operation requires elimination

of more than one contiguous blank except at the end of
lines. Sufficient blanks would be inserted at the end of
the line to cause the next line to start with a complete

word rather than splitting a word between lines.

2.2.3 Terminal Interface Support Routines

The SPIMS applications share requirements for several
functional capabilities in the area of terminal interface.
Common software will provide support routines to assist in
the fulfillment of these requirements. The functional areas
are listed below and are followed by a brief discussion of

each:

2-7

* Preparation for form processing
* Page storage and retrieval

* Block storage and retrf~val

* Mapping of external and internal formats to one

another

* Advisory message handling

* Command interpretation

When a user references a given form for the first time, the

application may not be prepared to process the data

contained on the form. In particular, the variods tables

describing the form and its contents are not likely to be

loaded into core. The Initialize Form routine will permit

the application to load those data 'required to recognize and

properly process the form.

Terminal users will be page-oriented when using a SPIMS
application. Their operations will in general be restricted

to a single displayed page on the terminal. The

applications, however, will orient their processing to a

subset of a display page (that subset known as a block).

Display blocks have been identified to simplify the

requirement for interacting with two types of terminals

(Hazeltine 2000 and 4000G). A page displayed at the user

terminal might consist of several blocks; for example, a

heading block, followed by one or more user parameter

blocks. When considering input from the terminal, the user

transmission might include all or parts of several blocks,

although the user thinks in terms of transmitting a "page"

to the application. Support routines will exist to aid the

application in manipulating terminal data in its two

formats. Routines to store and retrieve blocks and pages

2-8

will be provided. In addition, the capability to combine

blocks together to-form a page will be provided."

Parametric data associated with a form will normally be

transmitted to the application in the form of a string of
characters. In general, this string will not be directly
usable by a PLI application program because parameters sent

to System 2000 PLI must be properly oriented on word
boundaries. Conversely, data to be displayed to the user

terminal needs to be restructured as a character string.
Routines will be provided as part of common software to
facilitate these mapping processes.

Support routines to aid in the construction and display

of advisory-messages will be included in the common software
library. One such routine would cause an advisory td be

displayed from a table of messages. It would also permit

object-time parameters to be inserted into an advisory prior
to display. Another routine would provide an interface to
permit a message formatted independent of the advisory
tables to be displayed. (Such a message would already

conform to all of the communications standards and

conventions.)

Finally, common software support in the area of command
interpretation will be provided.

2.2.4 Support Programs for Generating Forms

In order to facilitate development of applications, a

program is required to be developed to store new blank forms

(a form with tutorial data but no parameter data) on

2-9

permanent file for later access. This program will fill out
certain table data to describe where parameters exist on the

form. This table data is used .by common software in the

processing of the form.

All tables used by common software may be maintained by

the KRONOS Text Editor.

2.2.5 Common Software Utility Routines

All common software are required to be developed in a

modular method. All levels of routines will be made

available to applications programs for their use. Lower

level routines will include a string package for

manipulating character strings, a table handling package for

manipulating data tables, a character set conversion

routine, file I/O routines, and error display routines. The

availability of these modules will facilitate application

development. The need for file I/O routines arises because

of the overhead resulting from FORTRAN and/or COBOL I/O.

2-10

3.0 DEIGNRjPBQf 1ETS

This section identifies specific, required common

software subroutines. The identification of these

subroutines was performed in conjunction with SPIMS

applications representatives from both IDSD and LEC.

The intent of the subroutine definitions is to allow

application development to proceed concurrently with the

development of common software.

The routines in this section are grouped into the

followinqglogical groups:

* Communications Interface Routines

* Terminal Interface Support Routines

* Input/Output Processing Routines

* Utility Routines

All subroutines will be required to return error

indicator. Appendix A contains a description of the

"tables" referenced in this section.

3.1 COMMUNICATIONS INTERFACE ROUTINES

There will be two sets of communications interface

routines. These routines perform the following functions:

* Receive data from a terminal.

* Transmit data to a terminal.

3- 1

All terminal I/O will conform to the interface
conventions described in reference 16.

3.1.1 Input Processor

The Input Processor will cause transfer of an entire
terminal transmission into the applications buffer. It is
analogous to a FORTRAN binary read.

Terminal input: (1) Communications data from TELEX/

ICE.

(2) Terminal data from ICE.
Program input: (1) Form Description Table (descrip-

tion of foreground and back-

ground usage).

(2) Terminal Description Table (type

of terminal, length of command
line, length of display area).

(3) Command Interpretation Table.

Processing. In order to input terminal data, a read
request will be sent to TELEX. When a response is received
from TELEX, data will be transferred from.a mass storage
file. Then this routine will process the input data
according to the MOPS or Hazeltine 2000 terminal conventions
depending on the type of terminal in use. - TCS, Terminal,
and TELEX/ICE control information will be eliminated. The
terminal characters will be converted to CYBER 74 Display
Code and stored in a specified buffer.

3-2

Data will be placed in the command buffer or the data

buffer corresponding to the location of the information on

the terminal screen. The locations of the first and last

display characters transmitted are stored. A function key

command transmitted from a MOPS terminal is placed in a

function key buffer. If a command has been transmitted,

command interpretation will take place using the Command

Interpretation Table. An advisory will be transmitted to

the terminal for invalid commands. Control then will be

passed to the application.

(1) Character matrix corresponding to the display

terminal.

(2) Begin and End Transmit locations.

(3) Command/Data Indicator

(4) Command Type.

(5) Command line buffer.

(6) Invalid command Advisory (to terminal).

(7) Error Status Indicator.

3.1.2 Output Processor

The Output Processor moves data to a display terminal

in foreground or background mode as specified.

(1) Character matrix corresponding to display

terminal.

(2) Form Description Table (description of foreground

and background usage).

3-3

(3) Form Description Override table.

(4) Begin and end location of characters to be trans-
ferred from character matrix.

(5) Transfer location to terminal.
(6) Terminal Description Table (Type of terminal,

command line length, display area length,
advisory area length).

(7) Type of Transfer (foreground only, background
only, both foreground and background, or no
character conversion).

.r2cesing. Information to be transferred is selected
from the data buffer and converted to the terminal display
code. Control information conforming to terminal and TCS
conventions is supplied. Data is transferred to the
terminal according to TELEX/ICE and System 2000 interface
conventions. The program will use either MOPS or Hazeltine
2000 terminal conventions depending on the type of receiving
terminal.

During the transfer process characters are converted
from 6 to 8 bits code, skipped, or moved directly as 8 bit
characters depending on the type of transfer code and the
description of foreground information which is contained in
the Form Description Table. The items indicated in the Form
Description Override Table are treated as if they were
indicated as background data in the Form Description Table.

Data is sent to ICE by first writing the data to a mass
storage file, then writing a message to the Output File (to
TELEX) indicating to ICE that the data file is ready.

3-4

OUtPUt. :

(1) Terminal display characters to terminal.

(2) Error status indicator.

3.2 TERMINAL INTERFACE SUPPORT ROUTINES

This section describes those routines currently defined

to support terminal input and output. Availability of these

routines allow for most application code to be developed

independent of the terminal type. For example, application

code may be block oriented despite that the blocking of a

terminal is terminal type dependent. The first six of these

routines facilitate translating from blocks to pages and

pages to blocks.

3.2.1 Page

This function displays a specified page on the

terminal. It may be used for responding to an application

pageing command and/or displaying the results of a query

type command.

Input. Paging instruction, number forward, number

backward or specific page number, Block Description Table.

Progcessing. The page number is determined and the

specific blocks comprising the page are retrieved using the

Retrieve Page routine, then it is displayed using the Output

Processor.

Outt. Specific page to display area on the terminal.

3-5

3.2.2 Retrieve Page

This function retrieves hfe blocks for a specified
page. This routine is used by the Page routine.

ILJ2ut. Page Identification, Block Description Table
(table describing blocking for paqe, blocks, and address of
blocks for form), and buffer to hold page.

_Prcessing. This program determines the blocks used
for a specified page and retrieves them using thle GET Block
Routine.

Output. Page data in buffer.

3.2.3 Store Page

This function stores the blocks comprising a page of
data on mass 'storage.

Inputs. Block Description Table (table describing
blocking for page, describing blocks, and identifying
address for storing blocks on mass storage), buffer
containing page of data.

Processing. This program determines the data for each
specific block of the page; then writes the block on mass
storage using the Put Block routine.

OutIut. Specific page blocks to mass storage.

3.2.4 GET Block

3-6

This function retrieves a specified block. This

routine will be used by the retrieve page and. application

routines.

Inut. Block ID, Block Description Table, location for

block.

Procgssing. The address of the specified block is

determined, the block is read into core.

O9ut ut. Contents of block.

3.2.5 STORE Block

This function stores a specified block on mass storage.

This routine provides for applications to store blocks of

data which may later be retrieved by the retrieve page

routine or application routines.

Input. Block identification, Block Description Table,

block of data.

Processinq. If a mass storage locat.ion exists for the

specified block, the block is stored at that location.

Otherwise, a block mass storage address is determined, the

block is stored at that address, and the Block Description

Table is updated to reflect the address.

OutP._. Content of block is stored on mass storage.

3.2.6 Initialize Form

3-7

nxL-u rjunction establishes the specified form as the
current active form and displays the first page of the blank
form.

Input. Form identification from application, table
containing mass storage address for forms and Form
Description Table.

Erocessing. The specified form is copied from
permanent files to temporary files using the Initialize Form
Function in order that the form may be updated. , The first
page of the form is displayed using the Page routine. Also,
the Form Description and Block Description Tables are
retrieved.

Output. Display of first page of form, Block
Description Tables, and Form Description Table.

3.2.7 Initialize Ford Function

This function copies a blank form and makes it
available for processing. This routine is a subroutine for
Initialize Form.

nEput. Form identification, table containing mass
storage address for forms and Form Description Table.

rocessggsi. The specified form is copied from
permanent storage to temporary storage. The Form
Description tables are retrieved. The Block Description
tables are updated to reflect the block addresses.

3-8

Out ut. Form Description Table, Block Description

Table.

3.2.8 Convert to Word-Boundary Format

It is the purpose of this routine to facilitate the

transformation 6f an input character string from the display

matrix format to a word-boundary format. It can be called

to convert only one or a series of contiguous parameter

fields-during an entry into the routine.

1. Input matrix containing terminal display

character string.

2. -Item number of first parameter to be converted.

3. Item number of last parameter to be converted.

4. Address (core) of first word in the word-

boundary list to be generated.

5. Form Description Table for the form.

6. Block Description Table.

Processing. The Form Description Table is used to

extract the location (in the display matrix) and length of

the first and each succeeding parameter (through the last

item specified in (3)). Each parameter in turn is extracted

from the display matrix and placed in the next available

word in the word-boundary list. The transfer is treated as

a character transfer with left justification resulting in

the output list. Cognizance is maintained of the position

of the next available word in the output list and

termination of a parameter field causes a pointer into that

list to be incremented unless the transfer ended at the

3-9

right hand boundary of a word. (In that case, the pointer

would already have been incremented.)

Qgapuits.
1. Word-boundary list with the converted input

parameters stored.

3.2.9 Convert to Matrix Format

This routine is required to move character strings from

a list into the proper parametric display areas of a form.

ILuts.

1. Core address of a list of character strings to

be converted.

2. Core address of the display matrix to receive

converted strings.

3. Item number of first parameter to receive a

string.

4. Item number of last parameter to receive a

string.

5. Form Description Table for the form.

Processing. The length of each parameter along with

its location in the destination form is extracted from the

Form Description Table for the form. The length of the

parameter field is used initially to determine how many

characters (and by implication how many words) in the input

list are to be used while moving that parameter. Each

change of parameter field will cause the routine to proceed

to the next word-boundary in the list. Any excess of

character space in the precedihq word will be ignored. All

3-10

succeeding parameters will be handled in an identical
fashion until the last parameter (specified in (4) above)
has been converted into the matrix format.

1. Display matrix with the requested parameter
fields entered.

3.2.10 Advisory Message Handler

The Advisory Message Handler routine displays the
indicated error message.

Input. Error number, Advisory Message Table.

Processing. This routine retrieves the indicated error
message from the Advisory Message Table, then using the
output processor sends it to the advisory area of the user's
terminal.

Output. Advisory message to the terminal.

3.2.11 Special Message Routine

This routine provides for "bit strings" to be
transmitted to the user's terminal. Its purpose is to allow
special cursor positioning and ringing the terminal bell.

1. Core address of the "bit string".
2. Length of the "bit string".

3-11

Processing. Control information for TCS, TELEX/ICE,

and the terminal (message header,STX, and ETX) are generated

for the "bit string" via a call to the Output Processor,

which also routes the message on to the desired terminal.

O utut. Transmission of the data to the terminal.

3.3 INPUT/OUTPUT PROCESSING ROUTINES

This section defines subroutines which perform input

and output processing functions on the Display Area.

3.3.1 Translation

The Translation Routine performs translation of input

and output parameters usinq a table.

Input. Value, translation table, flag indicating

whether input or output translation is to be performed.

Proces sing. The routine performs a table look-up on

the translation table using the input value, translates the

input value, if it is in the table, and sets the error

indicator if the input value is not found.

Output. Translated value, error indicator.

3.3.2 Conversion

The Conversion Routine performs input and output

conversion for parametric values using a two dimensional

conversion table.

3-12

Ipt. Value, column indices for conversion table.

Processing. The routine performs a table "look-up" on
the conversion table for the given parameter using the
column indices specified. The error indicator is set if the

input value is not-found.

O9utut. Converted value, error indicator.

3.3.3 Input Validation Routines.

The following set of validation routines will be
developed.

3.3.3.1 Table Validation. The Table Validation
Routine determines if the input value matches any of the
values in the table.

Input. Value, Validation Table.

Processing. The routine matches the.input value
against the values in the table and sets an indicator
showing the results.

Output. Success/failure indicator.

3.3.3.2 Limits Validation. The Limits Validation

RoUtine determines if the input value is within the limits.

Injut. Value, Limits.

3-13

Processing. The routine determines if the input value

is equal to or greater than the lower limit and equal to or-

less than the upper limit. mi

OutRut. Success/failure indicator.

3.3.3.3 S2K Table Look Up. The S2K Table Look Up

Routine determines if an input value is defined in an S2K

table.

In9t. Value, S2K File.

Processing. The routine determines the input value is

defined in the S2K file and sets a success/ failure

indicator.

O _tut. Success/failure indicator.

3.3.3.4 Integer Validation. The Integer Validation

Routine examines a string of characters to determine if they

represent an integer.

InEut. Character array.

Processing. The routine checks the array for numeric

characters; any alphabetic character or special character

except a leading minus sign is considered an error.

COutpiu. Success/failure indicator.

3-14

3.3.3.5: Exonential Validation. The Exponential
Validation Routin- examines an array of characters t.o
determine if-'they represent a valid exponential expression.

nut. Character array.

Erocessing'. The routine checks the array for a valid
exponential expression as defined by ASCII FORTRAN; any
other combination of characters is considered an error.

Outut. Success/failure indicator.

3.3.3.6 Real Number Validation. The Real Number

Validation Routine examines an array of characters to

determine if they represent a valid real number expression.

Input. Character array.

Processing. The routine checks the array for a valid
real number expression as defined by ASCII FORTRAN; any
other combination of characters is considered an error.

Output. Success/failure indicator.

3.3.3.7 Alphabetjic Validation. The alphabetic

validation routine examines an array of characters to

determine if they are all alphabetic characters.

Input. Character array.

Processing. The routine checks each character in the
array; any non-alphabetic character is considered an error.

3-15

Outut. Success/failure indicator.

.3 33. 8 Date Validation. The Date Validation Routine

examines an array of characters to determine if they form a

valid date.

Inptj. Character array.

Processing. The routine checks the characters of the

array for a one or two digit month not greater than twelve,

a one or two digit day of maximum magnitude determined by

the month and a two or four digit year. Any other

combination of characters is-considered an error.

Out2 ut Success/failure indicator.

3.3.4 Table Processing Routines

The following routines will be available for

initializing ECS tables and retrieving tables from ECS. The

ECS tables will include such tables as validation tables

which are maintained as part of the Applications System 2000

data base.

3.3.4.1 Table Retrieval. The Table Retrieval Routine

moves a specified table from ECS files to core.

InPut. File name, Table name, core address.

Proessging. The routine locates the table in the file

and moves it to core.

3-16

utut. Table.

3.3.4.2 Data Base Load. The Data Base Load-Routine
moves tables from S2K Files and permanent mass storage files
to temporary files (on ECS) to be accessed by the
applications.

Input. S2K Files and permanent file.

Processing. The routine moves the tables in the S2K
files and permanent files to ECS files. A table, used for
locating the particular tables, is constructed in the

process. Note: Application must supply subroutines or S2K
commands for retrieving the application unique tables.

Output. Table location of the various tables, all
files on temporary files (on ECS).

3.3.5 Input/Output Editing

This section defines functions for editing parameter
data. One of the functions performs limited text editing on
input. The other two capabilities are similar to those of
the FORTRAN Format statements for input and output.

3..3.5.1 1imited Editinq Function. This function

performs a text edit on the specified text string.

Inut. Text string, display line length.

rocesgsing. The text string is processed one character

at a time from the first character to the last. Multiple

3-17

contiguous blanks are eliminated except when the last word

on a display line would be split between two lines. .When a

word would be split between tw?/ lines during processing,

enough blanks are inserted to cause the entire word to be

moved to the next line. A word is defined here as any

string of non-blank characters preceded and followed by

blank characters. (Note that the end character on a line is

defined to be the last character of a word if it is non-

blank.)

3.3.5.2 Input Editinq Routine. This routine provides

editing capabilities similar to those of a FORTRAN formatted

read statement.

Inut. (1) character data to be edited, (2) location

for edited data, (3) type of edit (no editing, convert to

integer form, convert to real or exponential form).

Processing. The specified conversion is performed. If

an error is found in conversion, the error flag is set. The

no editing function may be used to place data on word

boundaries.

Output. (1) converted data item, (2) error status

word.

3.3.5.3 Outet_Editin _Rouine. This routine provides

editing capabilities similar to a FORTRAN formatted write

statement.

3-18

In2It. : (1) data item to be edited, (2) type of edit
(no edit, convert from inteqer, convert from real), .(3)
location for'resulting characters.

roces§sin& . The specified conversion is performed. If
an error occurs, a blank is substituted and an error flag is
se t.

Ot1ut. Edited data characters.

3.3.6 Construct String Arguments

This function constructs arguments for a System 2000
string reference.

InEut. Argument value, System 2000 parameter number,
.System 2000 String.

Processing. The System 2000 string is searched for the
location where the argument is to be inserted. The location
in the string is identified by a parameter identifier. The
parameter identifier is replaced by the input argument
value.

Output. Updated System 2000 string.

3.4 UTILITY PROCESSING

A requirement of common software is to provide the
applications developers with a package of subroutines that
perform utility functions. The components of this utility
package are described below.

3-19

3.4.1 String Manipulation Functions.

A large portion of the da'ia to be processed b.y the

SPIMS applications and common software can be represented by

character strings. A family of string handlingq routines

will be provided to accomplish the following:

* Locate the first occurrence of a specified string

within another string.

* Insert one string into another string.

* Delete one string from within another stzinqg.

* Replace one string with another string.

* Convert a string from one character set to another

character set.

* Slide a subset of a string to the right or left.

* Extract one or more characters from a string.

Each of these functions must be capable of operating on

characters of varying size with the size to be specified by

the routine reguesting the function.

3.4.2 File Input/Output

It is expected that normal FORTRAN input and output

commands will prove to be too expensive in core utilization

to be used in the SPIMS applications. (Such statements call

a large Control Data Product, the Record Manager, into

play.) Instead, file input/output operations will be

performed in the COMPASS assembly language using the KRONOS

RA+1 mechanism. A utility routine will be provided to the

applications to accomplish such I/O needs as:

3-20

* Sequential reads and writes

*o andom reads and writes

* SBMITting of batch runs

* SAVE, GET, APPEND, ATTACH, etc. (permanent files)

3.4.3 Forms Construction Utility

An independent common software program will be provided
to assist the applications developer in the construction of
the forms required for his application. This program will
aid in the construction of the tables needed to Ilescribe the
form and will provide for permanent storage of the form.

The programmer will construct a new form on a MOPS or
Hazeltine 2000 terminal. All headings, titles, and other

tutorial information are positioned in the desired
.locations. Parametric fields are delimited (by special

characters on Hazeltine 2000, by "selective transmits" on

MOPS). The form would then be transmitted to the program in

block-sized segments, each of which requires a block-
identification. The program will reassemble these blocks

into the form, construct the Form Description and Blocking

Tables, and provide permanent storage for the blocks and

tables. (Note that the terminal dependent aspects, i.e.,
which blocks are combined to display the form to a

particular type of terminal, must be supplied in a separate
operation.)

3.4.4 Table Handling Utility

This feature of the common software will provide the

application developer with tools to manipulate the various

3-21

tables required. These tools may be called directly by the

application program. They will provide the capability to

search the N x M dimensional matrices that comprise the

tables.

3.4.5 Character Set Translation Routine

This routine converts a string of data in a given

character set to another specified character set. This

requirement will be satisfied with "off the shelf" CDC

supplied software if possible.

Input. Translation table, character string,

translation type indicator.

Processing. Depending on the type of translation to be

performed, each character is translated from display code or

from the specified code to display code.

Output. Translated character string.

3-22

4.0 TESTING

Individual subroutines will be developed and -tested as

a unit. When a subroutine has been tested as a unit, it

will be made available to applications for development.

4.1 TEST DATA SOURCES

Subroutines will be tested using 1) trivial input

(counts of 0, etc.), 2) input known to be in error (neqative

counts, counts less than specified minimums, counts greater

than specified maximum, invalid formats where applicable,

etc.) to verify that such errors are detected and 3) input

known to be valid. The results will be verified to show

that the unit performs as projected.

4.2 GENERAL TEST APPROACH

Drivers will be written to exercise each subroutine and

print out the results of the exercise. Memory dumps may be

required in some cases.

4.3 ACCEPTANCE CRITERIA

The developed drivers and their test results shall be

made available to IDSD for inspection. Successful exercise

of subroutines on an individual basis shall constitute

criteria for acceptance of the individual subroutine.

A Type 1 test report document will be published for

TELEX/ICE and common software interface testing.

4-1

5.0 PRODUCTION IMPLEMENTATION

This section identifies c6Asiderations for implementing

an operational set of common software. First, priorities

for individual routines are defined, then the different

stages of implementation are :discussed, and finally

operational requirements are discussed.

5.1 SUBROUTINE PRIORITIES

Routines defined in Section 3 have been grouped in

terms of priority for implementation. There are two groups,

where group 1 is the highest priority. The groups and the

routines comprising the groups are as follows:

PRIORITY GROUP 1 - This priority group includes those

routines necessary to perform terminal input and output, and

to manipulate ECS tables. The existence of these routines

are essential to checkout of any application. They are as

follows:

* Input processor

* Output processor

* Table Retrieval Routine

* Data Base Load Program

PRIORIT _G GRUP 2 - This priority group contains the

remainder of common software.

The group priority reflects the importance of a

specific routine in terms of early SPIMS application

development. The order of implementation should consider

the priorities.

5-1

5.2 OPERATIONAL STAGES

There will be only one official release .of commonsoftware. It will contain all of the subroutines identified
in Section 3. It is scheduled to be released on September
19, 1975, contingent upon assumptions identified in Section
1.

As unit testing is completed on individual subroutines,
they will be made available to applications for
developmental purposes. During the period prior' to the
official release, error correction will be made on an
informal basis without the necessity of formal Discrepancy
Reports.

5.3 OPERATIONAL REQUIREMENTS

5.3.1 General Operational Aspects

Common software will be used with System 2000 in both
batch and online modes to maintain data bases. The
frequency of utilization of common software is expected to.be very high because all SPIMS CYBER applications are
currently expected to use common software. Applications
will require tape usage. Because of System 2000 multi-
thread limitations for tape usage, they may require staging
to disc.

Because applications govern the use of common software,
common software has no real operational requirements.
Common software must not prevent applications from
satisfying their own requirements. The following sections

5-2

discuss performance considerations and resource utilization

assumptions. o~

5.3.2 performance Considerations

The following performance information should be

considered during the development of common software:

Response time - applications will require very rapid

response, generally from 5 to 30 seconds. Common

Software should be developed in such a manner as to

have minimal impact on applications response time.

* Accuracy - common software 'should provide exact

answers, except for conversions involvinq real

numbers where common software is restricted to

machine accuracy.

* Reliability - in order to maximize system

reliability common software will use disc files to

back up ECS files.

* File security - security is a function of the

application. System 2000 security features will

also be available to the application.

5.3.3 Resource Utilization Assumptions

A crude system modeling effort was performed as part of

the PICRS's feasibility study. This effort indicated system

utilization as follows:

5-3

-VL= - very high

4 Disk Accesses - high

* Storage (on M.S. devices) - hiqh
* Computation - very low

The order of criticality of the above resources are
assumed to be: ' (1) core, (2) disc accessability, (3) mass
storage, (4) CPU computation. This order of criticality
should be assumed in desiqn trade-offs. But the system
should also be constructed in a manner that optimization
based on real data may be easily accomplished.

5-4

APPENDIX A

This appendix describes the tables identified durinq

the development of the SPIMS common software requirements.

Terinal Description Table. This table identifies the

types of terminals which may interface the application

defining the table. It describes the standards for dividing

the viewing area of the,terminal into the Command Area,

Display Area, and Advisory Area. At present, two types of

terminals have been defined for SPIMS support: Hazeltine

2000, and Hazeltine 4000G (also known as MOPS). The data in

these tables are used by common software to determine the

type of data included in a transmission from a user.

Command Interpretation Table. This table contains a

list of all legal commands that may be executed by a user of

the application. When command data are received from the

terminal, this table is referenced to determine the nature

of the command. In addition, MOPS terminals may utilize

function keys to identify.a command and this table would

contain entries to establish the type of command based on

the function key value.

Forms. A form represents a pseudo-table for the

system; that is, forms are treated as a table for the

purposes of storage and retrieval, but they do not contain

the normal tabular data. Rather, a form contains the

skeleton of a user display. Conventionally, a form will

consist of a set of structured tutorial information such as

titles, headings, and commentary, and of "fill-in-the-blank"

fields for the entry of parametric data. There may be as

A-i

many forms defined for the application as required to
support all of the application functions. Forms may.be

defined to be more than one display (page) long. (Note that

page size is partially dependent on the type of terminal
being used.) Finally, forms are used for output as well as
input. The response to a user query may be displayed on a
form. That same form might then be modified and
retransmitted as an update request.

orm Description Table. This table describes the
structure of a given form the system to facilitate

processinq of the form. There must exist a form description

table for every form known to the system. Such a table

defines the location of parametric data fields on the form.

Blocking Tables. Because forms may be multi-paged and
because at least two different types of terminals must be
interfaced, a given form may be divided into small units
called blocks. Upon output of the form, these blocks. must
be combined in a predefined sequence to create a page for
display. This table describes the make-up of a form in
terms of the size and composition of individual blocks, the
order in which the blocks are to be displayed, and the
combination of blocks comprising a display on a particular
terminal type.

Advisory Table. This table contains a list of

application user advisory messages that mi-qht be issued

during the course of a run. These are messages that are

normally displayed in the Advisory Area of a user's

terminal.

A-2

Table Location Table. This table serves as a master

Idirectory for all of the tables known to the system. . It

1,,,.be used to locate a specific table when required so

!:W, the table can be retrieved. There will be a single

copy of this table for each application.

A-3 ORIGIAL P
OPi QAGE IS

UtALzry

