
00

rf

%JS4U (0 U F OY Re

26
'R-4EL.V.
CsmIm

PROGRAMMING IN HAL/S

MICHAEL J. RYER
Intermetrics Inc

This document was prepared under NASA Contract NAS9-13864

PREFACE

This manual is intended as an introduction to programming in HAL/S The reader is
presumed to have some experience using one or more procedure-oriented languages such as
FORTRAN or PL/I The book may be used either as part of a self-study program or in con
junction with a course of twenty to forty classroom hours over a period of one to two
weeks

The material is organized as a tutorial rather than as a reference book Furthermore, it
is intended as an introduction to HAL/S rather than as a definitive exposition After com
pleting the course, the reader should refer to the HAL/S Language Specification or the
HAL/S Programmer'sGuide for a more detailed and complete description of the language

It is impossible to give proper credit to all the people at NASA, IBM, and Intermetrics
who have contributed to this book Special recognition must go to Josephine Jue, John
Schwartz, and Al MandeLin for their detailed review of several drafts of the manuscript, to
Gary Singer for performing the final editing and page layout, and to Valene Censabella who
typed all of the manuscripts and got the majority of the exercises through the HAL/S-360
compiler

Support of the HAL/S language, compilers, and documentation is an ongoing effort of
NASA and Intermetnes Comments on this manual will be appreciated and will be incor
porated into subsequent editions All comments or inquiries should be addressed to

HAL/S Language Group
NASA- Johnson Space Center
FR/Spacecraft Software Division
Houston, Texas 77058
1713) 483-2151

Michael J Ryer
September 1978

Preceding page -hlanjk
.///

TABLE OF CONTENTS

Section 	 Page

1 0 	 INTRODUCTION 1-1

II Learning HAL/S After FORTRAN 1-]

I 2 HAL/S Contrasted With Other High Order Languages 1-2

1 3 HAL/S Contrasted With the Assembly Language 1-4

1 4 Introduction to the Main Text 1-5

20 READING, WRITING, AND ARITHMETIC 2-I

2 1 Writing a HAL/S Program 2-1

2 2 Arithmetic Expressions 2-5

221 A Compiled Example 2-9

23 Declaring Data 2-11

24 Executable Statements 2-15

3 0 	 MORE BASICS 3-1

3 1 Built-In Functions 3-1

32 Subscnpts 3-7

3 3 The REPLACE Statement 3-12

3 4 The Precision Attributes 3-15

35 Summary of the Arithmetic Expression 3-19

40 	 CONDITIONAL EXECUTION 4-1

4 1 IF THEN ELSE 4-1

4 2 The DO END Group 4-9

43 Booleans 4-16

44 DO CASE and GO TO 4-20

50 	 LOOPS 5-1

5 I The Iterative DO FOR Statement 5-1

52 The Discrete DO FOR Statement 5-6

5 3 The WHILE Clause 5-7

5 4 The UNTIL Clause 5-8

55 EXIT and REPEAT 5-11

60 ARRAYS 6-1

6 1 Arrays of Integers and Scalars 6-1

6 1 1 Additional Examples 6-6

62 Operations on Entire Arrays 6-10

63 Arrays of Other Data Types 6-15

63 1 Arrays of BOOLEANs 6-19

64 Functions of Arrays 6-22

6 4 1 Shaping Functions 6-23

Pr..Odfl pge blank

TABLE OF CONTENTS (Continued)

Section 	 Page

7 0 PROCEDURES AND FUNCTIONS 7-1

7 1 User Defined Functions 7-1

7 2 Arguments and Parameters 7-7

7 3 Procedures 7-9

7 4 Scoping Rules 7-13

7 5 ARRAY(*),,AUTOMATIC, and NONHAL 7-14

7 5 1 Automatic Initialization 7-15

7 5 2 The NONHAL Attribute 7-15

8 0 I/O AND CHARACTER STRINGS 8-1

8 1 The WRITE Statement 8-1

8 2 1/0 Control Functions 8-6

83 The READ Statement - 8-9

84 Character Strings 8-12

8 5 Other HAL/S I/0 Constructs 8-18

8 5 1 The READALL Statement 8-19

852 The FILE Statement 8-21

8 5 3 Avionics I/O 8-22

9 0 STRUCTURES 9-1

9 1 Declanng and'Referencing Structures 9-3

9 2 The Structure Template 9-6

9 2 1 Template Matching 9-11

93 Multi-Copied Structures 9-12

94 DENSE, RIGID, and "Unqualified" 9-18

9 4 1 The DENSE Attribute 9-18

9 4 2 The RIGID Attnbute 9-20

9 43 Unqualified Structures 9-21

100 	 ERROR RECOVERY 10-1

10 1 The ON ERROR Statement 10-2

102 Deactivating Error Handlers 10-8

103 Other Error Control Constructs 10-12

11 0 	 STRUCTURING LARGE APPLICATIONS 11-1

I1I1 The Unit of Compilation 11-1

11 2 Building a Program Complex 11-6

113 Multi-Programming Considerations 11-13

120 'REAL-TIME STATEMENTS 12-I

12 1 The SCHEDULE Statement 12-2

122 Event Variables 12-8

12 3 Other Real-Time Statements 12-16

vil

TABLE OF CONTENTS (Continued)

Section Page

13 0 SYSTEM PROGRAMMING AIDS 13-1

APPENDIX A A-I

APPENDIX C C-I

13 1 Bit Stnngs 13-1

13 2 Name Vanables 13-11

13 3 Lists and Queues 13-15

APPENDIX B B-1

APPENDIX D D-1

INDEX 1-1

LearningHAL/S afterFORTrRAN 1-1

1 0 INTRODUCTION

HAL/S is a computer programming language, it is a representation for algorithms which
can be interpreted by either a person or a computer HAL/S compilers transform blocks of
HAL/S code into machine language winch can then be directly executed by a computer
When the machine language is executed, the algorithm specified by the HAL/S code (source)
is performed This document describes how to read and write HAL/S source

HAL/S was developed principally for real-time aerospace programming Its most signifi
cant use to date has been the production of the NASA Space Shuttle Flight software This
intended application imposed three major constraints on the language design reliability,
efficiency, and maclne-independence Reliability and efficiency are obvious requirements
of flight software The machine-independence requirement stems from a desire to minimize
programmer training, to transfer blocks of proven code between distinct NASA projects,
and to reduce the dependence on flight hardware availability

Within these constraints, the language provides simple and intuitive constructs for func
tions commonly performed by aerospace applications, such as vector/matrix arithmetic
More generally, HAL/S is suitable for real-time process control applications, particularly
where mathematically-onented algorithms are involved While the language is "tuned" for
aerospace, the machine-independence and reliability aspects of HAL/S make it attractive for
a variety of applications which do not perfectly match the original intent

It may seem strange to some readers to attribute reliability to a programming language
rather than to programs written in that language This viewpoint is an outgrowth of the
study of structured programming A reliable program produces correct results for all pos
sible combinations of inputs Since it is usually impractical to exercise the program on all
possible inputs, programs must be verified by induction The assertion is made that if the
program passes a particularset of tests, then the program will produce correct results for
any set of inputs This assertion is always based on an understanding of the program's
internal workings If the logic of a program is misunderstood, the results of venfication
cannot be relied upon

Although it is difficult to assess the psychological nphcations, certain high order lan
guage constructs (e g, the GOTO) are known to be symptomatic of unreliable programs
These constructs have been eliminated or highly restricted in HAL/S

11 LEARNING HAL/S AFTER FORTRAN

HAL/S is similar to FORTRAN in many ways The assignment statement is essentially
the same m both languages The FORTRAN concepts of subroutines, arrays, common
blocks, and library routines all have analogues in HAL/S Some concepts have been ex
tended, for example, the FORTRAN statement A=B+C, can be used to add either integers
or reals The compiler generates instructions appropriate to the types of A, B, and C In
HALIS, the same concept applies, but A, B, and C may also be vectors, matrices, or arrays
of any type HAL/S has many more data types than FORTRAN

Every variable used in a HAL/S program must be explicity declared before it is refer
enced This is done via the DECLARE statement, which specifies the name of the variable
and its attributes (including its data type or "mode") The need to declare variables results

1-2 Introduction

from the wide variety of data types in HAL/S It also allows the Compiler to check for mis
use of data and to enforce certain programming standards For example, a FORTRAN pro
grammer might divide a variable containing alphanumeric character data by the number 256
in order to access the leftmost byte HAL/S does not allow any arithmetic operations on
character data since such operations usually depend on the particular character code in use
and are thus machine-dependent Instead, individual characters may be extracted from a
character variable by explicit subscnpting Similarly, binary (logical) data is a distinct data
type The AND, OR, and NOT operators may be used with BOOLEANS or BIT strings, but
not with arithmetic data

These restrictions may seem awkward at first, but with experience it will become quite
natural to select the appropriate type for each variable in advance HAL/S includes con
structs for data type conversions, but these conversions are needed less frequently than an
expenenced FORTRAN programmer might expect

Another major difference between HAL/S and FORTRAN is in the flow-control (branch
mng) statements Structured programming research has had a major impact in this area In
essence, the various forms of GOTO statement have been replaced with more reliable con
structs The distinction may be characterized as "flow control by nesting of statements"
rather than "flow control by branching" While this difference of philosophy may make
the transition to HAL/S from FORTRAN more difficult, it can be argued that the HAL/S
form is more Enghsh-like and thus move intuitive Furthermore, using the HAL/S flow-con
trol constructs instead of GOTOs tends to result in a program which can be read sequentially
(from top to bottom) Loops and decisions are expressed explicitly in HAL/S rather than
implied by a convoluted arrangement of forward and backward branches In any case, most
modem programming languages (including FORTRAN '77) have flow control statements of
the type found in HAL/S

While the treatment of data types and flow control are the most fundamental differences
between HAL/S and FORTRAN, the differences in source and listing formats are the most
noticeable The source format is somewhat freer than in FORTRAN The output listing
format, however, is not under programmer control at all Every HAL/S listing is put in a
standard format by the compiler Each HAL/S statement is placed on a new line and auto
matically indented to show its relationship to other neighborng statements Exponents and
subscripts are raised and lowered (respectively) in the listing, and various additional informa
tion (compiler-generated annotation) is added Thus, the %ork of the programmer is reduced,
the indenting is always correct (since the compiler re-computes it every time), and reading a
listing requires no knowledge of the individual programmer's style

Other major differences between HAL/S and FORTRAN are m the areas of Real-time
interacons, and the interfacing of separately compiled units These advanced topics are
thoroughly discussed in chapters eleven and twelve of the text

1 2 HAL/S CONTRASTED WITH OTHER HIGH ORDER LANGUAGES

The differences between HAL/S and other high order languages arise from the charac
teristics of aerospace applications, and the time-frame in which HAL/S was designed HAL/S
was developed between 1970 and 1972 Since that time, changes which would invalidate
existing HAL/S code have been resisted Thus, some recent advances in language design have
not been incorporated Note, however, that the language did evolve from a thorough study

HALlS Contrastedwith Other High OrderLanguages 1-3

of the existing languages Most of the concepts which have been developed since that time
have not been implemented in any operational (rather than experimental) language When
these concepts (e g , data abstraction) have been proven outside of the university environ
ment, they may be incorporated in HAL/S There is an established language control board
which continuously reviews the state of the art and suggests and/or approves changes to
HAL/S

Some features which were in common use at the time were excluded due to efficiency
considerations These include recursion and dynamic storage allocation In addition to the
overhead normally associated with these facilities, a reliability problem is avoided by their
exclusion Because of these and other exclusions, the total storage requirement of a HAL/S
application can be exactly determined before execution starts Consequently, HAL/S pro
grams can never run out of storage during execution This safety feature is essential in
aerospace applications

Other constructs, such as the full generality of the PL/l error recovery system, have also
been omitted for reasons of efficiency

HAL/S also lacks sophisticated facilities for dealing with ground-based peripheral devices
(printers, plotters, etc) Character-oriented 1/O statements are provided for testing and
development, but many I/O facilities provided by ground-based operating systems are in
accessible from HAL/S This is due to the design emphasis on flight software, and the lack
of standardization of the concepts and facilities of ground-based operating systems

HAL/S stresses readability rather than "writablity" This approach acknowledges the
fact that a program is written once (generally by one person), but is read many limes (and
often by many people) For instance, there are no abbreviations for HAL/S keywords
Furthermore, all of the keywords are "reserved" No confusion can anse from variable
names which duplicate keywords, because no such re-use of a keyword is allowed

On the other hand, HAL/S includes some facilities which other languages lack Vector/
matrix arithmetic has already been mentioned HALJS vectors and matrices are distinct
from arrays, and are supported by a full set of operations These include cross and dot
product, as well as addition, subtraction, multiplication, division, and exponentiation All
are defined according to the usual rules of mathematics

Although HAL/S contains features abstracted from a variety of languages, it exhibits a
considerable uniformity For instance, a portion of a variable is always selected by subscript
ing, whether the variable is a 3-vector, a character string, or a set of bits comprising a
computer word

Finally, there is one difference which is not exhibited in the language per se This may
be termed the "system" aspect of HAL/S In addition to the listing and a maclune-language
"object module", the compiler generates a machine-readable random access file containing
information about every variable and statement in the program This file is then used by
various stitistics and diagnostic packages Furthermore, some compilers can optionally in
sert "hooks" (diagnostic package interfaces) in the generated code These interfaces are used
in a functional simulation (PSIM) execution mode

1-4 Introduction

FSIM is a tool which allows flight code to be developed and tested on ground-based
computers It includes a model of the flight operating system, and simulates the timing of
the flight computer It also includes provisions for the simulation of avionics I/O This is
done in such a way that flight code can be executed on a ground-based computer without
any source-level changes whatsoever Debugging commands are entirely based on the HAL/S
source, the program can be debugged without knowing any details of the ground computer
hardware More information regarding the compiler and related software can be found in
Appendix B of tis manual

1 3 HAL/S CONTRASTED WITH THE ASSEMBLY LANGUAGE

This manual is primarily intended for experienced high order language programmers, this
section presents some brief background information for programmers whose expenence has
been primarily in assembly language

The term "hugh order language" refers to languages in which a line of source produces a
variable number of machine instructions Some readers may initially view HAL/S as a tool
for specifying machine instructions more compactly

Many assemblers allow expressions, such as "A+B/C" in certain contexts where a num
ber is needed The symbols used in these expressions must have values known to the assem
bler, i e, A, B, and C must be equated to constants in some way or must be macros which
expand to constants or literals The computation is done at assembly time and the output of
the assembler contains just the value of the expression

This facihty is present in HAL/S There is, however, an important distinction if the
values of the symbols used in a HAL/S expression are not known at compile-time, then ma
chme instructions are generated to perform the computation at run-time Most of the com
putation in a HAL/S program is specified by means of expressions There are no ADD or
SUBTRACT HAL/S statements, all arithmetic is done with operators (e g, "+", "-", etc)
The -+"operator will add integers, scalars, vectors, matrices or arrays of any of these basic
types The same operator performs both single and double precision anthmetic Thus, the
compiler "decides" what particular machine instructions are appropriate to add the specified
operands together This is one type of bookkeeping that is automated by the compiler

This approach illustrates another meaning of "high order language" the programmer
is farther removed from the details of the computer hardware The programmer specifies
a function (e g, addition) and the compiler maps it into the computer's repertoire (e g,
LOAD, ADD, STORE) All addressing and instruction usage decisions are also the province
of the compiler

Unlike a macro assembler, the compiler does not always generate the same instruction
sequence for a given source statement It can "remember" whether a variable is still in a
register from some prior statement, and, if so, avoid re-loading it The compiler may also
move an entire computation out of a loop if none of the varables referenced are modified
within the loop Generally, the compiler is free to make any re-arrangement of the program,
provided that the same results will be produced from its execution This means that it is
nearly impossible to predict what machine instructions will be generated when a particular
HAL/S statement is compiled Hence, the best policy is to specify the desired function in
the most intuitive way and ignore the mapping into machine instructions

Introducrion to the Main Text 1-5

There is no way to reference a particular machine register or word of memory in a
HAL/S program Operations are performed on variables and constants rather than addresses
and registers All such assignments are made by the compiler A large class of potential
programmer errors (e g , use of the wrong register) is avoided by this approach

14 INTRODUCTION TO THE MAIN TEXT

The following chapters describe the HAL/S Language, a few advanced features are
omitted, but most of the language is covered, including all of the frequently used con
structs This manual is intended for sequential reading The HAL/S Language Specification
is more appropriate for use as a reference, since it is concise, complete, and fully cross
referenced This manual, being tutonal in nature, describes each facet of the language in
terms of the material presented in previous chapters interactions between separate con
structs are not discussed until each consitruct has been described separately Each chapter
is a prerequisite to the next, but no other knowledge of HALlS is assumed

Another document, the HAL/S Programmer's Guide, is also tutorial in nature, but
each chapter is self contained material is repeated instead of referenced Hence, the
programmer's guide may be the best choice for "brusung up" on some particular aspect
of the language

The information needed to compile (link, run and debug) a HAL/S program, once it
is written, can be found in the HAL/S User's Manual for the particular compiler in use
These documents also describe variations among compilers (i e, implementation
dependencies)

The chapters which follow explain HAL/S primarily by example The form of each
construct is always shown by example, the examples are so constructed that the meanings
of new forms can be deduced Those who learn easily from examples may find portions of
the English explanation redundant In every case, the examples are intended to be read from
top to bottom when they are first referenced, rather than after the new constructs have
been explained

The occasional tables and hsts need not be memorized If the exercises can be done
after one reading, further study is not needed The most important constructs are used
freely in subsequent chapters, thus providing a continuous review of earlier material It
would be difficult to learn HAL/S without writing any HAL/S programs, about one-half of
the exercises require programming Answers to all are given in Appendix C

Computer words which are not defined herein (e g, algorithm, program) may be taken
at their conventional meanings In some cases, a more precise HAL/S meaning is given later
Definitions are denoted by italics as m "the form and meamng of a language construct are
generally termed its syntax and semantics,respectively"

Chapter Two contains enough information to write a HAL/S program that really does
something Chapter Three completes the topics introduced in Chapter Two, primarily addi
tional forms of the arithmetic expression The remaining chapters discuss flow control, addi
tional data types, and advanced topics such as real-time programming

Writing aHAL/S Program 2-1

2 0 READING, WRITING, AND ARITHMETIC

The basic rules for wnting a HALlS program are shown in the example below,

C
SIMPLE PROGRAM,
CODE IN THIS TYPEFACE IS

C HAL/S SOURCE

DECLARE
DECLARE

PI CONSTANT
R SCALAR,

(3 14159266),

READ(5) R,

WRITE(6) PI R--2,

CLOSE SIMPLE,

2 1 WRITING A HAL/S PROGRAM

The example above consists of six HAL/S statements and two comments The first state
ment serves to illustrate several conventions used throughout the language

I. Every program begins with a labeled PROGRAM statement

2 HAL/S statements are labeled by preceding them with an identifierand a colon

3 All HAL/S statements end with a semi-colon

The two lines following the PROGRAM statement are comments For further clanfica
tion, additional lines could be used Any line containing a C in column one is a comment
Comment lines may be placed anywhere in a program

The next statements are DECLARE statements These statements form the declare
group, winch precedes the executable statements in every program variables are created va
the DECLARE statement Variables must always be declared before they are used READ
and WRITE are executable statements The numbers 5 and 6 in parentheses are channel
numbers They control the routing to and from an external device Many other executable
statements will be introduced in later chapters CLOSE, like PROGRAM, is a delimiting
statement It is the last line of every program The block delimiting statements are further
discussed in chapter seven This chapter stresses the DECLARE statement and the assignment
statement (not shown above)

In this simple example each statement could be punched onto a card just as shown
HAL/S source is free format There are no rules about particularcard columns except
column one Column one must contain one of the characters E, M, S,C, D or blank Normal
statements are wntten with a blank in column one "C" is used for comments, the use of
the other characters will be discussed later

When a program is stored on disk or tape the format is the same Column one is defined
as the first character of a record or the character following an end of line code With this
exception, the arrangement of HAL/S source on cards or records does not affect its inter
pretation by the compiler The example above could also be put as

2-2 Reading, Wrnmg,andArithmetic

SIMPLE PROGRAM,
C THIS IS HAL/S SOURCE

DECLARE PI CONSTANT (3 14159266), DECLARE
R SCALAR, READ(S) R, WRITE(6)
PI R**2, CLOSE SIMPLE,

Longer programs are not always written correctly the first time Placing only one state
ment on a line makes later modifications much easier "

Since every statement ends with a semi-colon, no additional convention is needed for
long §tatements It is the semicolon rather than the end of a line that marks the end of a
statement To put a comment after a statement on the same line, the "/1" form can be used
For instance

READ(5)R, /-OBTAIN RADIUS*/
WRITE(6) PI R**2, /* ** MEANS EXPONENTIATION *1

This type of comment may be placed anywhere a blank is allowed (except in column
one) It consists of any string of characters beginning with "/" and ending with "['I" As
the example shows, ""' and "/"may be used within the string'in any combination other
than "'I"

The WRITE statement could also be coded as

column 1

E
,
M WRITE(6) PI R2

Here, column one is used to distinguish between main and exponent lines Some implemen
tations of HAL/S accept a two dimensional input format in which exponents and subscripts
are indicated by their positions Multi-line input is generally not used however, since enter
ing and maintaining source in this form is cumbersome under common editors or on cards
The compiler produces listings in the multi-line format but all source inthis book will be
shown in the single-line form

The preceding paragraphs describe the placement of statements in a file or on cards
Next we will discuss the format of individual statements

The PROGRAM and CLOSE statements contain the two keywords, an identifier, and
punctuation Keywords are the "verbs" in HAL/S Each has a predefined meaning, and so
cannot be used as a variable name A complete list of keywords is given in Appendix D
All of the HAL/S keywords are made up of the letters A through Z Except for ARCTAN2
function, no numerals are used The underscore, or,"break character" (_)is notused in
any HAL/S keyword

*Some debugging systems allow a breakpoint to be set at the statemenron a particular card (specified by
sequence number) Placing onypne satementper leialsosimphfies this, usae

Writingci HAL/S Program 2-3

Blanks, or spaces, are significant in HAL/S For instance, DECLARER is a valid identi
fier It would nevet be interpreted as DECLARE R Blanks must be coded between key
words and identifiers m any combination Except in comments and character strings,
however, there ts no difference between one blank and many blanks

The compiler sees its input as a continuous stream of characters, e, the concatenation
of columns 2 through n of the entire input file This input is split into words at the punctua
tion blanks, commas, semi-colons, etc The punctuation is in two categones delimiters
such as , ,, and blank, and operators such as +, -, blank, and I When a blank appears
between two identifiers or expressions it serves as the multiplication operator Otherwise,
it is a delimiter

Using the punctuation, the compiler breaks its input into a senes of tokens Tokens are
of four types

1 Keywords such as DECLARE

2 Identifiers such as R

3 Operators such ag ** or blank
4 Literals such as 3,44159265

Each HAL/S statement is defined in terms of these token types For instance, the basic
DECLARE statement consists of the keyword DECLARE followed by an identifier
followed by attributes The attributes consist of keywords and literals Like all statements,
DECLARE ends with a sem-colon

Identifiers consist of variable names and labels The identifiers in the sample program
are SIMPLE, PI, and R Identifiers may be from one to thirty-two characters in length,
and composed from the letters A-Z, the numerals 0-9 and the underscore. The first character
must be a letter, the last may not be an underscore Selection of names is entirely up to
the user

DECLARE SIGMA CONSTANT (3 14159),

is syntactically correct The underscore may be used in an identifier to write an identifier
composed on more than one word DELTAV and TIMETOGO are valid identifiers

There is a trade-off in identifier lengths Very short identifiers, such as RLNGL, make
for cryptic code, whereas very long identifiers, such as CURRENTVEHICLEROLL_
ANGLE, make it hard to find operators and match up parentheses in expressions Identifiers
may not be started on one card and continued on the next Since the card boundary serves
as a delimiter equivalent to a space, long names can be awkward

HAL/S does encourage self-documenting programs through meaningful identifier names
This author's preference for a mixture of long and short names Is generally displayed
throughout this manual Sometimes this text uses underscores and numerals in identifiers
to distinguish them from keywords The HAL/S keywords cannot be used as identifiers A
few to be careful of are SUM, IN, SET, LINE and TRACE None of the keywords are less
than two characters

2-4 Reading, Wrinng,andAruthmere

The third type of token is an operator HAL/S includes logical and character operators
as well as the arithmetic operators listed in Section 2 2

The fourth type of token is a literal There are anthmetic, character, and bit literals,
though only arithmetic literals are of concern now Throughout this book, anthmetic
literals are called simply numbers

While HAL/S has both integer and scalar datatypes, it does not distinguish between
integer and-scalar numbers "3" is completely-eqmvalent-to "3 0" '-3 141-59" is completely
equivalent to "314159/100000", and to "314159E-5", "31415 9E-4" and so forth The
character E is used in numbers to indicate scientific notation The form "3 14159E-5" is
interpreted as

- 5314159 x 10

or

(314159)10-*(-5)

Thus, numbers can be written as a sequence of digits with or without a decimal point,
optionally followed by the letter E and one or more digits The minus sign (-) is used for
negative numbers and exponents The HAL/S Language Specification describes the use of
other exponent letters to specify powers of two or sixteen instead of ten

No blanks may appear in a number Blanks must separate numbers from adjacent key
words, identifiers and literals

The statement,

DECLARE PI CONSTANT(3+l/7),

is completely valid "3 + 1/7" is considered a number rather than an expression An ex
pression which contains only numbers, CONSTANTS, and the basic anthmetc operators is
said to be computable at compile-time Instead of generating code to evaluate such an
expression at runtime, the compiler will convert the expression to a simple number Only
the value is kept at runtime, the addition and division in "3 + 1/7" are performed dunng
compilation When this manual refers to numbers, any expression wich can be reduced to
a number dunng compilation is included

in summary, a HAL/S program begins with a labeled PROGRAM statement and ends
with a CLOSE statement In between is a declare group followed by executable statements
These statements may be arranged in any convenient way on successive cards or lines, pro
viding that column one is blank Declaration and executable statements must end with a
semi-colon Both comment lines and comments within statements are allowed Statements
consist of a sequence of tokens separated by blanks or other punctuation, the tokens are of
four types keywords, identifiers, operators, and literals Most of the HAL/S keywords and
operators will be described later The rules for forming and recognizing tokens of each type
have been presented here

Arithmetic Expressions 2-5

Exercises

2 3A 	 Some of the following are valid HAL/S tokens, some are not Identify the valid
tokens, and state the type of each

Note Appendix D contains a complete list of HAL/S keywords

a) TEST-TIME

b) CHARACTER

c) TRY AGAIN

d) 7 1E-14

e) X

0 IABC

g) DECLARE

h) INITIAL

1) ALTITUDE_

j) TRUE

k) 421

1) QUITE_A_LONGSTRING

m) 10000000

2 2 ARITHMETIC EXPRESSIONS

Like most high order languages, HAL/S allows numeric computations to be specified
in a form very similar to ordinary mathematical notation For instance, the equations below
should be quite recognizable in their HAL/S forms

AREACIRCLE = PI R*t2, /*CIRCLE-C/

AREATRIANGLE = 1/2 B H, /*TRIANGLE-/

AREAPYTHEGORUS = (H*"2 - B**2)-*(1/2), /*PYTHAGORUSn/

AREATRAPEZOID = H(A+B)/2, /*TRAPEZOID*/

This example illustrates the forms of some familiar equations in HAL/&S As in other lan
guages, the successive assignments to AREA are not functional

This example shows four assignment statements as well as a number of arithmetic ex
pressions The assignment statement is much as in other languages The value of the expres
sion on the right of the equals sign is assigned into the variable on the left This section is
primarily concerned with the evaluation of the expression on the right hand side

The example shows addition, subtraction, multiplication, division and exponentiation
operators As in mathematical notation, multiplicaton is indicatedby adjacentfactors No
special character is used to stand for multiplication Sometimes the blank is referred to as a
multiplication operator, since adjacent identifiers must always be separated by a blank
However, it is the adjacency not the blank that indicates multiplication For instance,

' ' ' "PI R**2" can be written without a blank as "PI(R**2) " or "(PI)R*A2 or "R(PI)R"

2-6 Reading, Writng and Anthmetzc

The other basic operators contain no surprises The hyphen or minus sign is used for
both subtraction and negation Parentheses control the order of valuation n the usual way
The table below shows the major differences between HAL/S and mathematical conventions

Mathematical Notation HALlS Expression

ab a b

2x 2 x

nxn - 1 n x**(n-1)

-(c+d) -(c+d)

a+b 2 5 ((a+b)/(c-d))**2 5_cd)
xy

-2:ab (x y)/(-2 a b)

a(x-l) (a(x+l)

Mathematics defines several conventions to reduce the need for parenthesis inexpres
sions For example,

AX + BY

is always interpreted as the sum of two terms, (A X) + (B Y) rather than as the product of
three factors A(X+B)Y These conventions are stated in terms of the orderof evatuition of
various constructs In particular, multiplication and division are performed before addition
and subtraction HAL/S incorporates these rules by defining a precedence for each operator,
as shown below

Precedence of Operators

*A exponentiation first

rmultlplcation

Sdivision
+, - addition last

subtraction

Note that multiplication is done before division rather-than at the same time as in some
languages

Given this precedence, the expression

AX2 + BX - C,

is evaluated correctly when written in HAL/S without parenthesis

A X**2 + BX -C

Arzthnetjc Expressons 2-7

The equivalent form with parenthesis is

((A(X'2)) + (B X)) - C

If strict left-to-right evaluation was desired, this could only be indicated by parentheses, as
shown below

((A X)*'2 + B)X - C

When an expression contains several operators of the same precedence, they are
evaluated from left to right for all operators except for exponentiation and division These
are evaluated right to left To see why this is true, consider the definitions below

XY Z = x(YZ)

A

O B

The first expression is wntten

X*fl/.cZ

If X = 4, Y = 3,and Z = 2,this is

4--3--2 = 4--(3--2) 49

if the natural sequence was overrdden via (4--3)--2, 162 would be produced Likewise,
A/B/C is naturally interpreted as A / (B/C), which is indeed equal to A(C/B)

Other operators of equal precedence are evaluated from left to right Addition and
multiplication are commutative and associative, so the order does not matter except for pre
cision analysis Subtraction, however, is neither, and the order of evaluation does affect the
results The HAL/S expression,

A-B-C

Is interpreted as (A7 1) -C

The distinction between numbers and expressions is somewhat blurred in HAL/S As
already stated, any expression that can be computed in advance (during compilation) can
be used wherever a number is required Furthermore, a negative number (e g , -1) is
actually an expression, containing the number 1 and the negation operator The presenceof
a blank between a minus sign and a literal is irrelevant "-2A" is the product of A and -2,
but "A -2" is a subtraction even though there is no space between the minus sign and the 2

The construct, "A/-2" is illegal The minus sign is seen as an operator, and HAL/S
never allows two operators in succession This division could be written as "A/(-2)" or
more sensibly as "-A/2"

http:X*fl/.cZ

2-8 Reading, Wamng, and ArJthmeic

To summanze precedence rules,

HALIS has defined the precedence of each operator to correspond to the usual

mathematical conventions, BUT WHEN IN DOUBT, PARENTHESIZE

Anthmetic expressions may contain a variety of arithmetic types Integers, scalars,
vectors, and matrices If one variable of each type is created as follows

DECLARE S SCALAR,
DECLARE I INTEGER,

DECLARE V VECTOR,

DECLARE M MATRIX,

The following multiplications and assignments are legal

S =VV,

V = V'

V V M,

M=VV,
M=MM,

V = VS,

SM S,
=

They are, respectively the dot (inner) product, the cross product, the vector matrix prod
uct, the vector outer product, the matrix product, and the scaling of a vector and a matrix
They produce results of the types indicated by the target variable (left hand side) of these
assignments This is a necessity rather than a coincidence Every expression has a datatype
and assignments can only be made between like types

Identical data types are not required Since integers and scalars may be used inter
changeably, the following combinations are also legal

I=VV,

V=VI,

M M I,

as are all eight combinations of integers and scalars alone This, however, exhausts the
combinations that can be written with the four variables declared above Not all operators
apply to every combination of datatypes For instance, the addition of a vector to a matrix
is not permitted In general, operations which are undefined in mathematics are illegal in
HAL/S

By default, vectors and matrices are of size 3 and 3x3 Section 2 3 explores other pos
sibilities and defines the operators in more detail At this point it suffices to say that
wherever a vanable of a given type is allowed in an expression, a parenthesized expression of
the same type is also allowed, e g,

V = V'((V S)M),

M = M(V V),

Arzthmenec Expressions 2-9

2 21 A Compiled Example

With the names (I, S, M, and V) used in the previous section, the type of each vanable is
apparent Most applications would require a better notation This is provided by the com
piler as shown below

M 	 DATATYPES-

H PROSPAM,

H DECLARE S SCALAR,

H DECLARE I INTEGER,

?I DECLAPE V VECTOR,

1 DOCLAPE f MATRIX,

E- -

M S:V V,
E - -

n V=V V,

E - -*
H V=V MI
E * - -

M M VV,
E * * K

M MHMl
E - -
M V VS;

H CLOSE DATATYPES;

This hsting was automatically produced from the preceding HAL/S statements by a
HAL/S compiler No changes to the source were made The astensk and hyphen overmarks
appear only in the listing, they are not coded by the programmer The compiler indicates
the type of each variable in a compilation via the overmarks shown below

Integer and Scalar none

Vector

Matrix

Character

Bit and Boolean

Structure 	 +

Other differences between the source and the listing are

I 	 The compiler controls spacing, indenting, and the arrangement of statements on
lines in the listing The source format is irrelevant

2 	 Statements in the listing always appear m multi-line format, with raised exponents
and lowered subscripts

The compiler marks each line of the listing with an E, M, or S to indicate exponent,
main, and subscript lines These characters, as well as "C" for comments, appear outside the
box in the examples Some blank lines have been removed, and DECLARE statements are
sometimes used in sexeral examples without being repeated Any HALlS code which appears
in a box like the one preceding is extracted from an actual listing It has not been re-typed
and is therefore free of any syntax errors

2-10 Reading. Wtrzng. andAnthmetc

The standardized listing format produced by HAL/S compilers isolates the reader of
a program from the style of its author The same listing will result whether the source was
entered with minimum spacing on as few lines as possible, or was entered one token per line
As a result, the listing format isa reliable source of information about a program's structure,
independent of individual programmers Since the indenting in the listing is re-computed at
each compilation based at the flow control statements in the source, it is always up to date,
and changes to the source can be made without undue concern over spacing

This completes the discussion oLHAL/S source and listing formats More-nformation
about arithmetic data will be needed to proceed with the topic of arithmetic operations

Exercises

2 2A 	 Write HAL/S expressions equivalent to the following mathematical expressions

a) 	 ax+by+cz

b) a+b +-d

c e+f

1

c) 	 2 n

2n_

d) x3-3x2+3x-I

3

e) (x- 1)

f) lox
Y

g) 	 (lox)Y

h) 	 V W V (V, W are vectors,' 'means dot product)

VV

2 2B 	 The left-hand column contains mathematical expressionsthat areincorrectlycoded in
HAL/S in the right-hand column Find the errors and rewrite each expression
correctly

a) 	 mx+b M*X+B

b) 2(x+l) 2X+l

e) X- 2 5n X--(-2 SN)

5
d) 	 e- Cl -5

e)dac

bd	 AC/BD

DeclaringData 2-11

2 3 DECLARING DATA

The example below is a declare group which shows the three different forms of DE-
CLARE statements

* DECLARE3

*i PROGRAM,

M DECLARE COUNTER INTEGER,

M DECLAR.E VECTOR,

M POSITION, VELOCITY, TORUE;

M DECLARE NEW CO OROS MATRIX,

K SPEED SCALAP,

H N INTEGER,

ff HWDFOPCE VECTOR,

M CLOSE DECLARP3,

The first formis the simple DECLARE statement used previously The next two forms are for
convenience in declaring many variables The effect is the same as a number of simple
declare statements The second form is a factored declare statement It is distinguished by
the appearance of a data type before the variable names The data type applies to all of the
identifiers in the list Tis example creates three 3-vectors

The third statement in DECLARE3 is a compound declarestatement This form is used
either to avoid re-typing the word DECLARE, or to show that a group of variables are re
lated This grouping capability can aid in the attempt to document a program in the code as
well as in the comments

Like all HAL/S statements, declarations may be entered in free format The example
above shows how the compiler arranges the tokens in the listing

The simple declare statement consists of DECLARE, a variable name, and the attributes
of that variable The factored declare statement consists of DECLARE, a set of attributes, a
comma, and a list of identifiers to which the attributes apply The compound declare state
ment consists of DECLARE and a list of identifier-attnbutes pairs, separated by commas

The three forms of DECLARE are for convenience and documentation A variable of
any type can be created using any form, and the type of declaration used does not affect
the way the data is allocated or referenced

The attributes of an identifier consist of its data type, precision, dimensionality, initiali
zation, lock group, and so on The only attribute that isteqused in a declare statement is
the data type Several other attributes are described in Chapters three and six

The INTEGER type is used for counters, mdexe,, status indicators, and other applica
tions where a variable's domain is limited to the whole numbers Integers generally occupy
less storage than scalars and can be operated on more efficiently

SCALARS correspond to the real numbers They are generally stored in floating point
format although this is not a language requirement In any case, they can represent numbers
to "n" digits of precision, where n is constant for a given implementation In a floating
point implementation, scalars may trade-off precision for a greater range by representing the
number as a fraction (mantissa) and an exponent (characteristic)

2-12 Reading, Writing, and Arithmetic

VECTORs have scalar components They generally represent quantities in 3-space, such
as position in cartesian coordinates Vectors can be of any length from 2 to an implementa
tion-dependent limit The VECTOR keyword may be followed by a parenthesized number
VECTOR(2) is a vector with two components VECTOR alone is an abbreviation for
VECTOR(3) No distinction is made between row and column vectors

The MATRIX keyword by itself is equivalent to MATRIX(3,3) Matrices also have
scalar components, but are generally viewed as linear operators on vectors, rather than as
a collection of scalar or vector components

A VECTOR(n) can be multiplied by a MATRIX(xn) yielding a VECTOR(x) When
x = n = 3, tis can serve as a coordinate transformation since each component of the result
ing vector is equal to the dot product of the onginal vector and one column of the matrix
A projection of the vector onto one axis

A MATRIX(x,y) can be multiplied by a MATRIX(y,z) yielding a MATRIX(x,z) The
inner dimensions must match The exponentiation operator can be used to invert or trans
pose a matrix or to generate the identity matrix The cross product (*) only applies to 3
vectors The dot product () applies only to vectors of equal lengths Addition, subtraction,
and assignment require identical dimensions

These definitions of the four anthmetic data types are consistent with standard mathe
matical conventions Data type is the most important attribute because it determines which
operations may be performed on the vanable

Another unportant attribute of variables is initialization The INITIAL attribute speci
fies the value a variable will have when the program is first loaded into computer memory
Its form is shown below

H IITIAL_AnD_CONSAAT-
M PROGRAM,
11 DECLARL"X SCALAR INITIALCO);
N DECLARE MAX SPEED SCALAR INYTTAL O4000);
H DECLARE FEET..TOhILES SCALAR CONSTANTI / 5250);

H DECLARE SEC_TOuR CONSTANT(60 160)),
M DECLARE IAXJIPX I'ITIAL(14000 FEET TO_HILES / SEC_TOHR),
H CLOSE;

The CONSTANT attribute also causes initialization When an identifier has the CON-
STANT attribute, its value cannot be changed Any attempt to assign into it results in an
error message

In other respectS;INITIAL and CONSTANT are the same Both are followed by a paren
thesized value to which the identifier is initially set Variables of any type may be initialized
For integers and scalars the value must be a number As the example indicates, tis includes
both arithmetic literals, and expressions wich can be evaluated at compile time Since the
value of a CONSTANT cannot be changed, compile-tune expressions may contain references
to previously declared integers and scalars with the CONSTANT attribute

Declarng Data 2-13

This example shows two new abbreviated forms SCALAR is the default data type It
can be omitted, as in the fourth declaration of the example Another omission is in the
CLOSE statement The program name is optional, although good reasons for keeping it will
be seen when nested code blocks are introduced in Chapter Seven

A vector or matrix is imtialized m much the same way as an integer or scalar The
essential difference is that a value for each of the vector or matrix components is specified
in parentheses following the word INITIAL or CONSTANT The values are separated by
commas and are sometimes referred to as the initiallist

For example, the declaration

DECLARE VECT5 VECTOR(5) INITIAL(2 8,1 3,3 7,0,0),

created a vector with the following initial value

1 3

37
0

Each element of the vector is initialized to the corresponding value in the initial list The
first element receives the first value, the second element the second value, etc

For a matrix, the elements are initialized to the values in the initial list as follows the
first row is initialized to the first values in the list (using enough of them to fill one row),
then the second row is initialized, and so on The declaration,

DECLARE COORDMAT MATRIX(3,3) INITIAL(I 7,2,0 9,8 2,6 1.1 1,-8,7 3,8 6),

creates

7------o-1 - -- 1

L8 3 - P-8 61

The arrows indicate the order in which the matrix components are assigned from the linear
series of values in the imtial list

The important fact to remember about MATRIX initialization is that the order in which
values are assigned is by rows andnot by columns This row-by-row order also applies to the
way matrix components are read and printed with READ and WRITE statements, and to
arrays and the MATRIX shaping function, as will be shown later. This convention is com
monly called row-major order

2-14 Reading, Writing, andAnthmetrc

Writing an initial list as in the above examples can be cumbersome if the vector or
matrix is large HAL/S offers some shortcuts

If only one value is specified in the initialization attribute, all of the components
of the vector or matrix are initialized to that same value For exalmple

DECLARE 	 V VECTOR(3) INITIAL(10),
M MATRIX(3,4) Inital(0),

I00 0
10 0

1101 0 0 0
2 	 If several successive values in the initial list are identical, the programmer can specify

a repetition factor and write the common component-values just once The repel
tion factor is a number indicating how many times the value is to be repeated, and it
is separated from the value by a # symbol Using repetition factors, the initialization
attribute,

INITIAL(l 5,1 5,1 5,2 7,2 7)

may be written more succinctly as,

INITIAL(3#1 5,2#2 7)

wMch is entirely equivalent to the longer form The repetition factor may also

precede a parenthesized, comma-separated list of values, in which case the whole

list is repeated Repetition factors may be nested to form a variety of patterns For

example, a 3x3 matrix may be initialized to the identity matrix by the initialization

attribute,

INITIAL(1,2#(3#0, I))

3 	 If only some components are to be initialized there are two ways to achieve the
desired affect

a) 	 A repetition factor may be specified without an accompanying value, in which
case the specified number of components are passed over and left uninitialized,
Or

b) the last item in the initial list may be an asterisk, which indicates that the re
maining components are not to be initialized

For example, the statement,

DECLARE A MATRIX(3,5) INITIAL (1,2,3,4#,8,6,3# 09,7),

creates the matrix

x X 809 09 x 6x x
9n

where x indicates an unmlhtahzed component

Executable Statements 2-15

The symbols # and - are used in vector and matrix initial lists as well as in other con
structs They can also be used in the initial list in the declaration of an array or structure and
in shapingfunctions As described later shaping functions allow the creation of vector and
matrix quantities as in the following statement

M = MATRIX(1,2#(3#0,1)),

All HAL/S variables must be defined before they are referenced The DECLARE
statement is the most common means of defining an identifier, but other possibilities
such as use of the TEMPORARY statement wll,be introduced in later chapters While there
are additional data types and attributes, all of the forms of the DECLARE statement have
been presented

Exercises

2 3A Write declare statements corresponding to the table below

IDENTIFIER TYPE INITIAL/CONSTANT

X_DELTA SCALAR INITIALIZED TO I

YDELTA SCALAR INITIALIZED TO I

TIMEDELTA CONSTANT VALUE 1

DELAYFACTOR CONSTANT VALUE 5

TEMPI SCALAR

TEMP2 SCALAR

TEMP3 SCALAR

COUNT INTEGER INITIALIZED TO 1

POINTA VECTOR

ORIGIN CONSTANT VALUE (0,0,0)

TRANSFORM

VECTOR

MATRIX INITIALIZED TO
/1

0
0
1

ci
0

0 0

2A EXECUTABLE STATEMENTS

Tis chapter stresses the HAL/S source and listing formats and the arithmetic operators
and data types Enough executable statements have been introduced to write simple pro
grams The information about executable statements which will be assumed m later chapters
appears below

The assignment statement consists of one or more target variables, an = sign, and an ex
pression To store the value of an expression into several variables at once the multiple as
signment is used, as in

I, J, K =0,
A, B, C = (A+B+C)/3,

2-16 Reading, Writing, andAnthmen¢c

Each target variable must be of the same type as the expression on the right Conversions
between integer and scalar, and single and double precision are automatically performed,
however

The operands to the READ statement are a parenthesized channel number and a list of
variables, e g,

READ(5) ALPHA, BETA, GAMMA,

The channel number selects one of several external devices from which the variables are to
read The data must be in a standard character format, so no additional control parameters
need be given Chapter eight describes other options in the READ statement

The IWRITE statement also includes an integer channel number Its remaining operands
may be expressionsof any type In the statement,

WRITE(6) M, V, M*-(-I), M**(-I)V,

two matrix and two vector expressions appear Matrices can be raised to any integral power
Minus one results in the "inverse" operation The output format is described in Chapter
Eight along with more details of the READ, READALL, WRITE and FILE statements

The PROGRAM and CLOSE statementshave been described in this chapter

Most of the remaining HAL/S statements alter the sequential flow of control These in
clude statements for conditional execution (Chapter 4), looping (Chapter 5), and subrou
tines (Chapter 7) Error control (Chapter 10) and'real-time (Chapters 11 and 12) statements
complete the set

Chapter three describes additional forms of the anthmetic expression

Executable Statements 2-17

End of Chapter Problems

2A 	 The following program will compute the roots of the polynomial 3X 2 +4X-10 and
print them out

ROOTS PROGRAM,

DECLARE SCALAR

ROOT], ROOT2,

ROOTI = (-4+(4-2-4 3 (-10)*05)/2,

ROOT2 = (-4-(4 2-4 3 (-10))"'f 5)/2,

WRITE(6) ROOT], ROOT2,

CLOSE ROOTS,

Modify the program to read in three scalar values A, B, and C from channel 5, and
compute the roots of AX2 +BX+C

Note Assume the input values will yield real roots

2B 	 A ball is tossed straight outward from a height of 110 feet with a horizontal velocity
of 4 ft/sec Each time it hits the ground, it rebounds to 35% of its previous height

Write a HAL/S program to compute the time until the ball Juts the ground for the
third tune, and how far it has traveled honzontally in that interval

The applicable equations of motion are

i For an object dropping from height H to the ground or bouncing from the
ground to height H, in time T,

H =lgT2

where g = 32 ft/sec2 is the gravitational acceleration

2 Honzontal motion is independent of vertical motion,
tance traveled in time T at velocity V,

D=VT

so if D is horizontal dis

2C 	 An artificial satellite moves in a circular orbit of radius 4000 miles Write a HALlS
program to compute how tong it takes to make 1 revolution and write the result on
channel 6

4r2 R3

Remember, P = /(MASSOF-EARTH) 6 670 x I0- i CGS umts

102 7 Say the MASSOFEARTH is 5 983 x grams One mile equals 160934 4 cm

2-18 Reading, IInting,andAnrthmetc

2D Let ax+by- e,

cx+ dy = f,

be a system of 2 equations m 2 unknowns

Write a HAL/S program to compute the solution of the system

The inputs a, b, c, d, e, and f are available on channel 5, and the solution x, y,
should be wntten-on channelP6

We are guaranteed that a solution does exist

Remember, Cramers Rule states

ed-bf af-ec
x ad-b ad-be

1 40, k Built-in Functions 3-1

30 MORE BASICS

This chapter describes additional aspects of the anthmetic expression, including sub
scripting and function invocation One new non-executable statement is also presented, so
that only new data types,, and executable statements other~than assignment are left to later
chapters

3-1 BUILT-IN FUNCTIONS

In addition to the anthmetic operators, HAL/S provides a set of built-in functions
When the name of one of these functions occurs inan expression, code is generated to in
voke the corresponding library routine Built-in function names are HAL/S keywords and
the run-time library routines are supplied with the compiler Examples of several useful
built-in functions can be given with the aid of a parallelogram

D

aR

B
The size and shape of a parallelogram are uniquely determined by the lengths of two ad

jacent sides and the angle between These scalar quantities will be called LONG, SHORT and
ALPHA

Taking the lower left corner as the ongin of a coordinate system with an X axis ex
tending along B, the following program computes the coordinates of the corner points

H COWUERS
H PROGRAM,
M OECLARE SCALAR,
I LONG, SHORT, ALPHA,
M DECLAPE VECTOr(t),
M AB, SC, CD, DA,
ii READ(5) LOiG, SHORT, ALPHA,
E -
M Alnm 01
E -
I BC = VECTOR (LONG, 0),

E -
M DA = VECTOR (SHORT COS(ALPHAI, SHORT SIN(ALPHAII;

E

M CO = BC 4 DA;

E - - - -

M WRITE(6I As, BC, CD, DA.

H CLOSE CORNERS;

3-2 Alore Basics

The first assignment sets both components of the vector AB to zero Any arithmetic
variable may be assigned from the literal zero Zero is the only such special case, it may be
considered a typeless literal

The second assignment illustrates use of the VECTOR shaping function The expression
VECTORS (2) (LONG,O) represents a 2-vector whose components have the values LONG
and zero

In the third assignment, the arguments to the VECTOR functibn afi arithmtic ex
pressions As a result, the first component of DA is set to the product of the length of the
short side and the cosine of the angle ALPHA The "Y" component of tins vector is com
puted similarly, except that the sine function is used,

The fourth assignment merely illustrates the "parallelogram rule" for vector addition

SIN and COS are algebraic built-in functions, listed in Appendix A This category in
cludes SIN, COS, TAN and their inverses (e g, ARCSIN) and the hyperbolic-forms (e g,
SINH, ARCCOSH) Also included are LOG, EXP, and SQRT For argument X, the latter
functions are equivalent to Loge (X), eX , andvx"

Each algebraic function returns a scalar value The arguments may be any integer or
scaler expression An algebraic function name with its parenthesized argument is itself a
scalar expression Thus, function invocations may be nested, as in

ARCTAN(SIN(X)/SQRT(I-SIN(X)y*2))

A function's arguments are always enclosed in parenthesis As usual, the evaluation of an
expression always starts at the mner-most parenthesis In the expression above, "l

' SIN(X)**2" is evaluated as "I-((SIN(X))**2)" The function invocation may be viewed as
of higher precedence than exponentiation Another interpretation of the same rule is that
the value passed to a function is completely specified within the parenthesis Operators out
side the parentheses apply to the value returned.

Before continuing tdother classes of built-i functiofls, consider some general rules

1 No built-in function modifies any of its arguments

2 A function name and its argument list together comprise an expression of some data
type

3 A function argument may be any expression of the specified data type

4 All trigonometric functions receive and return angles in radians

5 Invalid arguments (e g , SQRT(- 1)) are indicated via runtime errors, as described in
chapter ten

The-parallelogram example also used the VECTOR shaping function Shaping functions
perform conversions One function per data type is provided The anthmetic shaping func
tions are VECTOR, MATRIX, INTEGER and SCALAR The VECTOR and MATRIX func
tions will accept any nurmber of arguments, each of which may be of any arithmetic type

Built-in Functions 3-3

The second assignment statement of the example might be entered as

BC = VECTORS2(LONG,O),

This statement contains the first subscript used so far Whenever the'VECTOR function pro
duces a vector of dimension other than three, the dimensionahty of the result must be speci
fied as a subscript to the function HAL/S uses the dollar sign (s) to indicate a subscript,
when the subscnptis a single token (2), no parentheses are needed "VECTOR$2" is the
HAL/S notation for "2-vector"

The MATRIX shaping function may also be subscnpted A 3x2 matrix can be produced
from the numbers 1-6 by

MATRIXS (3,2) (1,2,3,4,5,6)

A three-by-three matrix can be produced without a subscript, as m

MATRIX (1,3#0,1,3#0,1)

The number of values in the argument list of a shaping function must match the sub
script if one is supplied Othenvise, the number of values must be three (for a vector) or
nine (for a matrix) If supplied, the subscript must be either a single compile-time expression
indicating the length of a vector or two expressions, indicating a pair of matrix dimensions
The product of these numbers is the number of components in the matrix The dimensions
of any vector or matrix expression must be known at compile-time

It is the total number of components in a shaping function argument list that must
match the subscript For instance, given,

DECLARE M MATRIX,
V4 VECTOR (4),
V2 VECTOR (2),
M22 MATRIX (2,2),

All of the following are legal (since each list has 9 components)

M = MATRIX (V4,M22,O),
M = MATRIX (V4,0V2,V2),
M - MATRIX$ (3,3) (M22,2#V2,O),

Whenever a data aggregate appears in the argument list of a shaping function, it is "un
raveled" in the natural sequence (1e, the same order as in initial lists, row-major) The
VECTOR and MATRIX functions see their argument lists as a linear stream of scalars Thus,
if for example X, Y and Z are three 3-vectors, then MATRIX(X,Y,Z) is a 3x3 matrix in
which the first row equals X, the second equals Y and the last contains the values from Z

3.4 More Basics

Shaping functions are the only class of built-ms which accept a variable length argument
list Others have a fi.ed number of arguments, each of a specified data type As stated
above, the functions m the "algebraic" class all take one scalar argument and return a scalar
result However, one basic rule in HAL/S is that wherever a scalar is expected an integer may
be used, and vice-versa. In the assignment below,

DECLARE I INTEGER INITIAL (4),
I = TAN (I),

first I is converted to a scalar, then the tangent is taken and finally the result is rounded to
the nearest integer before assignment into I

Rounding is defined in the usual way INTEGER (3 5) = 4, INTEGER (-1.4) = -1,
and INTEGER (4999) = 0 As indicated, there are INTEGER and SCALAR shaping func
tions analogous to the VECTOR and MATRIX functions Since integer and scalar literals
are written straightforwardly, and integer/scalar conversions are automatically performed,
the INTEGER and SCALAR functions are less often needed than VECTOR and MATRIX
More applications of these functions will arise after arrays and non-arithmetic data types
have been introduced

Rounding can also be performed by the ROUND function, this function allows explicit
rounding without using an integer variable, as in

DECLARE SCALAR, OLD, NEW,
WRITE(6) 'CHANGE IS" ROUND(100(NEW-OLD)/OLD),

'PER CENT',

Character stnngs are described in chapter eight, character literals, such as 'per cent',,are out
put unchanged by the WRITE statement IfOLD=3 and NEW-5, the statement above would
produce

CHANGE IS 67 PER CENT

The arithmetic functions include ROUND, TRUNCATE, FLOOR, and CEILING, The
distinctions are shown in the following table

X = 3 5 -1.7 -13 16

ROUND (X)

TRUNCATE (X)

FLOOR (X)

CEILING (X)

0

0

0

I

1

0

0

1

-2

-1

-2

-1

-1

-1

-2

-1

2

1

1

2

In words, TRUNCATE ignores the fraction, FLOOR always rounds down, and CEILING
always rounds up These functions always return an integer result

Budrt-n Funcnons 3-5

The arithmetic class also includes ABS (absolute value) and MOD (modulus) The re
sult returned by these functions is of the same type as their argument(s) If the two argu
ments to MOD are of different types, the result is scalar

The remaining functions in tis category, DIV,MIDVAL, ODD, REMAINDER, SIGN
and SIGNUM, are described in Appendix A It should be noted here that the DIV function
causes an integer division The remainder is discarded and the quotient is returned No
rounding is performed When integers appear in a quotient written with "'", they are con
verted to scalars pnor to the division

The only remaining category of functions to be discussed in this chapter is vector/matrix
built-in functions

Name Argument Result Comments

ABVAL Vector Scalar Magnitude, length

;2

Z iV

UNIT Vector Vector Vector of length I in the
same direction

V/ABVAL(V)

INVERSE nxn Matrix nxn Matrix Same as M"(-I)

TRANSPOSE nxm Matrix mxn Matrix Same as M**T

DET nxn Matrix Scalar Determinant

TRACE nxn Matrix Scalar Sum of diagonal elements
Ii

i= 1

The program below illustrates some of the power and convenience of HAL/S vector/
matrix facilities It first reads in four 3-vectors, X, Y, Z and V, and determines whether X, Y
and Z span 3-space Then it constructs an orthonormal set from X, Y, and Z yielding vectors
Al, A2 and A3 Finally, these vectors are taken as the axes of a coordinate system, and V
(the fourth input vector) is expressed in them

In tis program, the determinant is used to find out whether X, Y and Z are linearly
independent If they are not, the second assignment statement (after La Gram-Schmidt)
may result in a runtime error, since unit of the zero vector is undefined Since the problem
is in 3-space, A3 can be computed by a trick AI*A2 is orthogonal to both Al and A2, A2
(AI*A2)=O), and of the length I (ABVAL(AI) 2 times ABVAL(A2) times sine(90°)) The
transformation of V m the last assignment is conveniently done with a matrix, if, as in this
program, the matrix is not saved, it may be more efficient to use the equivalent form

V = VECTOR(V Al,V A2,V A3),

36 More Basics

The remaining built-n funchons are much the same as those presented here Each is
an expression of some data type, the arguments to each are of specified types, may be any
expression, and so forth They will be discussed after the appropriate concepts and data
types have been defined.

M ORTHONORMAL

M PROGRAM.

C THIS PROGRAI CONSTRUCTS AM ORTHONoRMAL
C SET FRoM XY AND Z AND THEN EXPRESSES
C V IN IT

M DEC.ARE VECTOR,

M X, Y, Z, V, Al,A2 A3,

E --

i WRITE(6) DET(NATRIXIX, Y, Z7],

C IF RESULT IS ZERO, X, Y AND Z 00 NOT FORM

C BASIS ... EXPECT ERROR BELOW

E - -

M Al = U1iIT(X);

E

n A2 = UNITCY - (Y . A1) Ali,

E - - -

M AS = A1 * A2,

E

M1 V = NATRIXCA., A2, A33 V;

M CLOSE;

Exercises

3 IA What are the types of values of the following expressions

a) ROUND (ABVAL(VECTORS2(SIN(O 5), COS(O 5))))

b) TRANSPOSE (MATRIX(I,3#2,3,3,4,5,6))

c) MATRIX$ (2,3) (1,0,0,1,1,) VECTOR(],2,3)

3 1B Write a HAL/S program to multiply the 3x3 matrix

by i2
by its transpose and Write the result On channel 6.

Subscripts 3-7

3 1C 	 Translate these mathematical expressions into HAL/S

a) l+cos2x2

b) tan-(X (trig function is arctangent (inverse tangent))

c) m(rz-zr)lan -mrzcos

(use names like RDOT, PHI, PHIDOT, etc)
cosrV m/r-maln

2 n
e) In(tan(X + H))

2 4

(in = natural logarithm, use PI for r)

3 2 SUBSCRIPTS

Subscripts are used to operate on components of larger entities If V is a vector, VSI
refers to the first component

Any vector or matrix varable or constant may be subscripted This is done by ap
pending a dollar sign (S) and a subscript expression If the subscript expression is a single
token, as in X$3, no parentheses or other punctuation is needed Any expression may be
parenthesized X$ (((3))) is equivalent Parentheses are required if the subscript involves any
operators, e g , V$(I+1)

Since matrix subscripts are written with a comma (and thus are not a single token), they
are always parenthesized, as in

M$(lJ) - M2$(I,1) M3S(J,l) + M25(I,2) M35(J,2) +

M2$(I,3) M3 $(J,3),

Subscripting may be viewed as of higher precedence than the operators (+,-,*,**,etc)
Thus, V$I**2 is the square of the Ith component Tis precedence is natural, since subscript
computations seldom involve exponentiation

If a subscript expression is of scalar type it is rounded The result must be in the range I
to N, where N is the declared dimension. Any integer or scalar valued expression may be
used as a subscript

A single component of a vector or matrix is a scalar, and may be used in any context
where a scalar variable is alldwed

When an exponent contains a subscript, as in E**(V$1), the subscripted variable appears
in the single line (source) format on the exponent line of the output listing

Evs I

3-8 Afore BasIcs

In all other cases, a subscript is indicated naturally by its position in the listing rather than a
dollar sign When a subscript (or exponent) is lowered (or raised) in the ltsting, the outer
parentheses (ifany) are removed In A$(B$C)**(N-1), all of the parentheses are removed

B N-i
M A
S B
S C

A position in 3-space can be represented by a 3-vector in a variety of ways The program

below uses subscripting to convert Cartesian to polar coordinates. The results consist of
bearing (angle from X axis in horizontal plane), elevation (angle from x axis in vertical
plane), and total distance Angles are in radians, distance is in the original units

M
N
M
E
i

XYZ..TOPOLAR
PROGRAM,

DECLARE P VECTOR,

REA(S) P;

M
s

WRITE(6) ARCTAN(P / P), ARCTAI(P
3

/ ABVALtP
2 AT

), ABVAL(P,,
I

M CLOSE XYZ_TOPOLAR;

This program assumes that the direction of P is in the same hemisphere as the Positive x
axis A more general solution can be wrtten using the ARCTAN2 function

One new construct appears in, the example P$(2 AT 1) is equal to VECTOR$2
(PS1,P$2) A 2-vector, consisting of the X and Y components of P ABVAL(FS(2 AT 1)) is
the distance from the origin to a point in the horizontal plane directly beneath P

"2 AT 1" is one type of partitionsubscript It can be used to specify a slice of a vector
in terms of the partition width and the number of the first included component The general
form is number AT expression "Number" is any integer-scalar compile-time expression,
greater than one and less than the corresponding declared dimension While partition widths
must be known at compile-time, the starting component number may be any integer or
scalar expression

Any partition of a vector is a vector A partition of length N can be used in any con
struct where a declaredVECTOR(N) is allowed

P$(2 AT 1) can also be written as P$(1 TO 2) Here, the indices of the first and last
components to be included are given, instead of the width and the first component

The dimension of PS(x TOy) is l+y-x Since the dinensionality of every vector-matrix
expression must be pre-determinable, both x and y must be known, neither may be an ex
pression involving a vanable

Subscrnpts 3-9

Given V --VECTOR(l,20,30,40,50,60,70),

V$2 = 20,

VS(2 TO 4) (20,30,40),

V$(3 AT 2) (20,30,40),

V$(3 AT VS3/10) --(30,40,50),

V$(4 TO #) (40,50,60,70), and

V$(2 AT #-l) (60,70)

The sharp character (#) which appears in the last two partitions means "the last" VS
(4 TO #) can be read as "the fourth through last components" "2 AT #-I" is a way of
specifying the last two components For the 7-vector above, any occurrence of # can be
replaced by 7

A subscripted vector is either a scalar or a vector, depending on the type of subscript A
subscripted matrix may be a scalar, a vector, or a matrix If both subscripts are simple (1,J)
the result is scalar If one is simple and the other a partition (1,1 TO #), the result is a
vector If both are partitions (2 AT 1, 1 TO 2), the result is a matrix Output listing over
marks indicate the resultant of type after subscripting

As usual, a matrix that has been subscripted down to type andtdumension "X" can be
used in any context where a variable of type and dimension "X" is allowed

The 1th row of a matrix M is M$(1, 1 TO #) This can also be written as M$(I,*) The
Ith column is MS(,I) The astensk means "all of a dimension" In every case, it is equiva
lent to "1 TO #"

Using this form of partition subscript, the elementary row operations used in reducing
matrices can be expressed compactly

H ROWS

Hi PROGRM,.

H DECLARE M MATRIX.

it C SCALAR,

K TEMP VECTOR,

M I INTEGER)

11 J INTEGER,

c KULTiPLT A ROW BY A (NONZERO) CONSTANT!

-E -
II II =C ;

S I,* I'*

C ADD A CONSTANT MILTIPLE OF RON J TO ROW I

E - -

M 'N +iCH

S I.* Isue

Continued

3-10 More Baswsi

c EXCHAIGE ROWS I AND Jt

E
H
5

-
TEMP =

-

116
;

E
ti

-
N

_
-- n ;

E
K
$

-

M
J.*

- TEMP,

H CLOSE POWS,

Before leaving the topic of subscripting, one caution is in order HAL/S stores matrices
in row-major order This means that a row of matnx is stored in a contiguous block of
memory The scalars in a column of a matrix do not occupy consecutive locations This may
make operations on matrix columns less efficient than correspondingoperations on rows
A few restrictions on the use of matrix columns (ASSIGN parameters, the input FILE state
ment and NAME variables) are described later Matrix columns are acceptable in all con
structs presented so far

Tins section has described component subscripting Most of the material also applies to
array and structure subscripts, but there are some differences These topics are discussed in
chapters 6 and 9 Component subscripting applies to vectors, matrices, character stnngs and
bit strings

The term subscriptexpressionhas been used to stress the fact that there are forms which
can occur only in subscripts These are partitions The forms A TO B, A AT B, *, and #±N
are used only in subscriptexpressions

An important point to remember from this section is that the set of contexts in wich
a variable may be used does not depend on the presence of subscripting, but on the data
type which results after the subscript has been applied

Subscripts 3-11

Exercises

3 2A For the following vectors and matnces,

0 10!

Vi=[2 V2 =[12 M22= [M3 = 6 3 0 -3 -63 13 17 85 2 1 -4 -7
4 14
-5 15

a) Gave the values of VI$(2), M22$(2,l), and M35$(2,3)

b) Give the values of V25(3 AT 4), M22$(*,1), and M35S(2 TO 3, 4 AT 2)

c) Write the necessary declarations and initializations to produce V1 , V2, M22, and

M35

3 2B Wnite a HAL/S program that will compute the dot products of

with each of the columns of

leave the results in a vector, RESULTX, and write the results on channel 6

3-12 	 More Bastcs

3.2C 	 The diagrams below represent the values of various vectors and matrices

V31 = V32= V33= [12] M22 23 241

V41 = VECTOR$4(M22),

M22 = MATRIX$(2,2) (M33$(2 AT 2, 2 AT 2)),

WRITE(6) V41,

WRITE(6) M22,

M33 = MATRIXS(3,3)(V31,V32,V33),

WRITE(6) M33,

M22 = MATRIX+(2,2)(V31,V32$2),

WRITE(6) M22,

3 3 THE REPLACE STATEMENT

The REPLACE statement provides a capability similar to the macros of other languages
The REPLACE statement contains an identifier (termed the replace name or macro name)
and a sequence of characters, termed the macro text The REPLACE statement instructs
the compiler to substitute the macro text for every subsequent occurrence of the macro
name

The REPLACE statement is not executable, it may only occur in the declare group
The following represents one common use of REPLACE

REPLACE PRINT BY "WRITE(6)",
REPLACE PUNCH BY "WRITE(7)",
REPLACE CARDS BY "5",

The REPLACE Statement 3-13

Any occurrence of PRINT subsequent to these statements will be converted to WRITE(6)
by the compiler The REPLACE statement causes the compiler to substitute the replace text
for the replace or macro name wherever it occurs as a token in the following source Using
the replace macros defined above,

READ(CARDS) X, becomes READ(5) X,

PRINT X, Y, Z, becomesWRITE(6) X, Y, Z,

and

PUNCH X, Y, becomes WRITE(7) X, 7,

The ilacro is not expanded in the listing Only the macro name appears Each-reference
to a macro is automatically underlined, however, this informs the reader that a replacement
was done in order to avoid a possible mis-interpretation

The replace text is enclosed in double quotes (") This is the only use of the double
quote character in HALlS The replace text may be any sequence of charactersnot con
taming " The replace name or macro name is an identifier and follows the conventions
described in chapter two Since REPLACE is a HALlS statement, it ends with a semi-colon

The macro name is only recognized when it appears as a token Given,

REPLACE A BY "1",

and

DECLARE ABLE SCALAR CONSTANT(A),

only one replacement is performed The other A's are part of keywords and an identifier,
not complete tokens

Replace macros are commonly used to parameterize I/O channels, as indicated above,
and the dimensions of variables, as in

REPLACE UNKNOWNS BY "6",
DECLARE AUGMENTED MATRIX(UNKNOWNS,UNKNOWNS+I),

HAL/S does not allow variables to be used for either channel numbers or dimensions,
but since REPLACEments are done at compile-time, macro names may be used where
numbers are required, provided the replace text is an expression computable at compile
time

The compiler will process the DECLARE statement above as if DECLARE AUG-
MENTED MATRIX(G,6+1), had been coded

3-14 More Rasjs

Replace text is commonly a single number, but may be any string For example,

REPLACE DUMP BY "WRITE(6) XY,Z,GAMMA",

could be a useful abbreviation wile debugging The use of replace macros to abbreviate
HALlS keywords is strongly discouraged HALfS was designed to maximize readability
rather than "wnteability". It can be very difficult to decipher a program in which macros
are used mappropnately. The time spent actually typing a program is generally insignifi
cant-compared to the time spent reading it

The program below illustrates a parameterized replace statement Here the macro is
used to generate a table (for section 3 4) without writing a loop

II TABLE'

M PROGRAM,

It REPLACE LG02(X) BY "LO(GX)/LOG 2)";

ii
E

REPLACE ENTRY(l) BY "WRITE(6 H, 2 *(N-1i,H/LOG2(i0)",

M EMTRYri;n

ii
E

ExTflflif;

M ENTRY(16),
E
M ENTRY(U1),
E
M
E

ENTRY(24);

M EumY(35e);?
E

S ERTRY(36);
M CLOSE TABLE',

In this example, X and N are macro arguments Wherever N appears in the replace text of
the ENTRY macro, the actual parameter (8, 12, et) is substituted Whenever the para
motor, X, of the Log2 macrooccurs in the text, the value 10 issubstituted

The 1ENTRY macro generates an entire- statement Note that no final semi-colon was
placed inside the ending quote This produces a better listing since a semi-colon must
termnate each reference to the macro, triggering a now listing line

The names of previously defined macros may be used in the replace text, as in LOG2
above The cbmpiler will continue to make substitutions until no macro names remain,
before any other processing An infinite expansion results if a macro's own name is used
in its replace text Statements like,

REPLACE X BY "X+I",

not only cause error messages, but may about the rest of the compilation

The above is a brief introduction to the HAL/S macro capabilty Additional features
and more detail can be found in the Language Specification

The PreczsionAttributes 3-15

3 4 THE PRECISION ATTRIBUTES

Most of the matenal so far has been concerned with the arithmetic expression Rules
for forming expressions from identifiers, operators, literals, and keywords have been pre
sented Every expression has a data type, the type is determined by the types of the identi
fiers and functions used, the operators which combine them, and the order of evaluation
Each expression also has a precision

Arithmetic identifiers and expressions are of either SINGLE or DOUBLE precision
All previous examples have been single precision Double precision variables represent
values to more significant digits than single precision variables

Any arithmetic operation involving a double precision operand is done in double pre
cision The result is also of double precision Thus, the usual method for specifying that a
computation should be earned out to more digits is by declaring some or alt of the variables
to be double precision

The computation in the write statement below is performed in double precision

M PARALLAX

11 PROGRAM,

11 DECLARE EARTH ORBIT COHSTANT(92.9E6;

M DECLAPE VECTOR("),

1 SPRIGREAIHG FALLREADING,1
H DECLARE DEVIATIDq SCALAR DOUBLE;

E
H READ(S) SPRINGREADING. FALL_READING;
E
[1 DEVIATION ASVAL(SFRINGREADING - FALL READING) / Z;
H RRITE(6. DISTAICE= ', EARTHORBIT / TANCOEVIATION), 'MILES',
M CLOSE PARALLAX;

Tis program could be used to compute the distance to a star based on its apparent
change of position as the earth moves 180' in its orbit (93 million miles) The input data is
a pair of angles in radians representing the star's direction in the Fall, and another set taken
in the Spring The diagram below illustrates the algorithm in 2-space

SI
2

*fa spring

fai " ... r"i"fl9

3-16 More Basics

Double precision is used in the example because a very large number is computed from
a very small number using the tangent function near a zero The double precision tangent
routine is invoked, and the division of 93 milhon by the result is performed in double pre
cision Thus, the expression, "EARTHORBIT/TAN(DEVIATION)" is of type double
precision scalar The WRITE statement outputs all the digits of its operands

The anthmetic in the preceding assignment statement is done in single precision
Whether or not tis is adequate depends on the provision of the measurements and the
number of digits in a SCALAR SINGLE One radian is approximately 2 x 105 are-seconds
If the physical measurements are accurate to the nearest half second, then six decimal
digits of precision would be enough * The value of the expression is converted to double
precision before it is stored into deviation

The number of digits in the representation of a scalar (of either precision) is imple
mentation-dependent These numbers are specified in the User's Guide A rule of thumb
for scalars is one decimal digit for every 3 1/3 bits of mantissa

If the measurements have more significant digits than can be contained in a single pre
cision scalar, the whole program could be done in double precision

DECLARE VECTOR(2) DOUBLE,S,F,

READ(5) S,F,

WRITE(6) EARTHORBIT/TAN(ABVAL(S-F)/2),

This version is written less mnemonically, and the assignment and write statements are
combined These simplifications have no effect on precision

All of the computations in tis form are done in double precision This is triggered
entirely by the DOUBLE keyword in the declaration of S and F Note that there is only
one name each for the tangent and absolute value functions, whether single or double
precision The double precision form of a built-in function is automatically invoked when
one or more arguments are of double precision The value returnedby a built-in function
is of the same precision as its argument Since ABVAL(S-F)/2 is a double precision ex
pression, the double precision version of TAN is selected

Double precision expressions are formed under exactly the same rules given for single
precision No restnictions apply to double precision variables that do not apply to single
precision variables of the same type Precision is normally specified in declarations rather
than expressions

•This 	 program also assumes that the eaxth's orbit is exactly 92 966 miles, and that the readings are made
at exactly the same time of day

The PrecisionAttributes 3-17

The variables I, S,V, and M used in previous sections could have been declared as

DECLARE 	 I INTEGER DOUBLE,

S SCALAR DOUBLE,

V VECTOR DOUBLE,

M MATRIX DOUBLE,

This would not necessitate any changes to the expressions used

The DOUBLE attribute follows the data type in an attribute list It may be either
before or after the other minor attributes such as initialization, LOCK, and AUTOMATIC,
eg,

DECLARE 	 COVAR MATRIX(5,5) INITIAL(O) DOUBLE,

DECLARE 	 V VECTOR(S) DOUBLE INITIAL(S#I),

Precision applies to all four arithmetic types Either SINGLE or DOUBLE may be
specified in the attribute list of any integer, scalar, vector, or matrix Since single precision
is the default, itneed not be specified in declarations

Double precision vectors and matrices are composed of double precision scalars All
of the vector-matrix operators and functions have both single and double precision imple
mentations As before, double precision routines are selected when either operand is
double, or when any built-in function argument is double

Since integers, double integers, single scalars and double scalars may be freely mixed
and substituted for each other, these four combinations typically correspond to different
sets of computer registers or machne instructions Conversions of integer to scalar and
single to double are made automatically when operand types are incompatible Since in
teger and single precision operations are generally more efficient, data is left in the simpler
forms whenever possible

The type and precision of an expression are determined solely from the expression
itself Neither attribute depends on the context in which the expression is used The pre
cision of the expression in an assignment statement is not determined by the precision
of the target variable on the left hand side In the following, "10000 N" is a single pre
cision expression, since neither operand of the multiplication is double

DECLARE 	 D SCALAR DOUBLE,
DECLARE 	 N INTEGER INITIAL(20),
D m 10000 N,

The right-hand side is of type single precision integer It will be converted to scalar double
before assignment to D, but the multiplication is done in single integer mode.

3-18 More Basics

Table I shows the range of integers with various word sizes If the code above is ex
ecuted on a computer wich represents single integers in 16 bits, the wrong answer will
be produced The code can be corrected by adding an explicit precision specifier

D = 10000 N$(@DOUBLE),

The forms "@SINGLE" and "@DOUBLE" may be attached as subscnpts to any anth
metic variable In the example abov0, "N$(@DOUBLE)" is of type integer double Thus,
the multiplication is done in double precision and no accuracy is lost

The precision specifier may also be attached to shaping functions, as in

DECLARE VECTOR, Vt, V2, V3,
DECLARE M MATRIX DOUBLE,
M = MATREX$(@DOUBLE,3,3)(V1,V2,V3),

The precision specifierprecedes any subscripts inashaping function

Table I

Range of
of Bits Integer # of Digits

8 128 24082393
12 2048 36123590
16 32768 48164796
18 131072 54185390
24 8388608 72247190
32 214748360 9 6329593
37 3435973800 10837079

Empirically, double precision algebraic routines give better performance near zeros
and singularities than their single precision counterparts These routines are generally
implemented via polynomials, prefaced with code to identify the quadrant or other range
of the argument The tangent routine, for an argument 0 < X < zr/2, might use a poly
nomial of the form

Tan x = A + Bx + CX 2 + DX 3 + EX4 + FX 5

If the value DEVIATION in the parallax example has the value IE-6 then the tangent
will be

- - 18 - - 3 0
A + Bxl0 6 + Cxl0- 12 + Dx10 + Ex10 24 + Fxl0

The operation X = X + 1 0 -N X, where n isgreater than the number of digits contained in
a scalar, does not change X

Summary of the Arthmetic Expre son 3-19

-When two floating point numbers are added, the exponents are first equalized by
shifting one of the mantissas It is this shifting that causes the loss of significant digits When
two floating point numbers are multiplied, no shifting is required The same situation holds
in fixed point, though any shifts required for addition and subtraction must be explicitly
coded

In the parallax example, double precision allows the addition of more terms of the poly
nomial used to approximate the tangent function Double precision generally is needed
when numbers of greatly different magnitudes are added or subtracted, and when a large
number of output digits are needed The latter case is less common, since naither humans
nor digLtial-analog converters can use more than a few digits directly

The arithmetic expression is summarized in the next section All of the statements made
apply equally to single precision, double precision, and mixed Operations which reference
one or more double precision values are done in double precision More digits are obtained,
at greater expense in memory and execution time Some implementations have fixed point
scalars, the Language Specification describes the explicit scaling (shifting) operators which
are used in these implementations More details can be found in the appropnate User's
Manual

3 5 SUMMARY OF THE ARITHMETIC EXPRESSION

An arithmetic expression has one of the following forms

1 An identifier This may be an integer, scalar, vector, or matrix variable or constant
of either precision

2 A literal No sub-classes of numeric hiterals are defined.

3 A subscripted identifier Partition and simple subscripts are allowed, as well as ex
plicit precision specifiers and scaling operators

4 A function invocation Both built-in and user functions may have zero or more
arguments, wich are themselves anthmetic expressions Shaping functions may also
have subscripts

5 A further expression prefixed by a minus sign Any arithmetic type may be negated
An expression preceeded by "+" is allowed, but functionless

6 A further expression in parentheses The parentheses overmde precedence rules, and
allow scaling operators and precision specifiers to be attached to expressions

7 Two expressions separated by an operator Only certain combinations of operand
types are allowed for each operator-

The list above is a recursive definition of the syntax of the arithmetic expression
Expressions may be nested via forms three through seven

The compiler evaluates an expression outward from the most deeply-nested parentheses
Within a set of parentheses, the compiler first evaluates any subscripts Operators are applied
to the components selected by the subscripting

3-20 MoreBastes

The table below shows the anthmetic operators in the order in which they are evaluated

when not ovemdden by parentheses

Operators in Decreasing Precedence

** 	 Exponentiation Apphes to integers and scalars For matrices,
the exponent must be either an integer or the character "'T"
Raising a matrix to the "T" power always indicates trans
position of rows and columns Integer powers apply only to
square matrices If I is negative, M**(I) is equal to INVERSE
(M)*(-I)

multiplication 	 Indicated by a blank Multiplication is allowed between any
two types, provided the "inner dimensions" match Resulting
type given by outer dimensions

Cross product Applies only to 3-vectors The result is a

3-vector, given by

Result = Vector(X2 Y3 -X 3 Y 2 ,X3 YI-X 1 Y3 ,X1Y2 -X 2 Y1)

The resulting vector is orthogonal to X and Y, and of magni
tude (ABVAL(X)ABVAL(Y)SIN(G)), where 0 = the angle
between X and Y

Dot, scalar, or inner product Applies to vectors of equal
dimension The result is a scalar equal to the sum of the
products of corresponding components It also equals the
product of the magnitudes of the vectors and cosine of the
angle between

Division The left operand may be integer, scalar, or vector
The right must be integer or scalar The result has the same
dimension as the left operand, but is never integer

- Addition and Subtraction If one operand is scalar, the
other may be either integer or scalar Otherwise, the two
operands must be of the same type and dimension

Negation Applies to any data type The result is of the same
type

Operators of equal precedence are evaluated left to right, except for exponentiation and
division which are evaluated right to left

Before non-anthmetic expressions are introduced, a number of statements which alter
the sequential flow of control will be presented in chapters four and five

Summary of the Anthmetc Expression 3-21

Exercises

3 SA 	 HAL/S has seven infix operators

+,-,<>', 1,,,**

Which infix operators are legal for the following pairs of data types? The characters
< > represent a blank, meaning multiplication

Of what datatype is the result for each legal operation 9

1) SCALAR SCALAR

ii) SCALAR INTEGER

in) INTEGER SCALAR

iv) INTEGER INTEGER

v) VECTOR VECTOR

vi) VECTOR MATRIX

vii) VECTOR INTEGER/SCALAR

vii) INTEGER/SCAL'AR VECTOR

ix) MATRIX MATRIX

x) MATRIX INTEGER/SCALAR

End Of Chapter Problems

3A 	 Write a HAL/S program that will read 2 vectors from channel 5 and write the angle
between them on channel 6.

Remember, V V2 =I VI I V2 1 cos0

where B is angle between V1 and V2

3B 	 There are occasions when it is necessary or advantageous to shift one's frame of ref
erence These occasions call for a translation and/or rotation of the coordinate sys
tem Say the old axis (x, y) is shifted to the new axis (x', y') in the following
manner, the x, y ongin is slurfted to (xo, yo) and rotated by a degrees as shown

3-22 More Basics

y 3

Y 	 ',

(Xo, yo)

x

The resulting translation equations are

X' = (x - X.) cosa + (y - yo) sma

y, = -(X - X.) sina + (y - yo) cosa

Write a HAL/S program that will translate 2 coordinates in the x, y system to new
coordinates in x', y' where x = 54000, yo = 118000, a = 170 The two coordinates
are available on channel 5 and should be written on channel 6

Remember that HAL/S trigonometric built-ins require angles an radians

3C 	 Write the right half of the following 4 assignments for the partitions in matrix M
below

a) V4 where V4 is a 4 vector

b) M22 = M22 is a 2x2 matrix

c) M34 = M34 is a 3x4 matrix

d) VIO = V10 is a 10 vector

1 2 	 3 4 5 6 7 8 9 10
1 	 b
2 	 X a
3 Xx
4 	 cS 	 xX-XX-X
6 	 XCXX

7 	 X XX

8 d

9 XXXXxX xVx

10

IF THEN 5LSE 4-1

4 0 CONDITIONAL EXECUTION

The statements in a ,program are executed sequentially, except when a flow control
statement is executed The flow control statements can be loosely categonzed by their use
for decisions, loops, and subroutines These groups are described in chapters four, five, and
seven

Although ,the HAL/S assignment statement is quite flexible, only a limited set of pro
,grams cart be written without flow control statements The ability of digital computers to
evaluate conditions and select alternatives is the essence of their power

41 IF THEN ELSE

A choice between two alternatives can be written with the HAL/S IF statement

=IF A 0 THEN WRITE(6) 'ZERO',
ELSE WRITE(6) A,

In this instance, the two alternatives are executable statements and the test is,a comparison
The first alternative is called the then clause, the second the else clause

IF is a compound statement, i e it is composed of further statements The concept of
a statement containing "sub-statements" is common in HAL/S It will be useful to define
the entire sequence, "IF comparison THEN statement ELSE statement" as a single state
ment, thereby

Unless the then or else clauses contain furtherflow control statements*, controlpasses
to the next sequentialstatement afteran IF statement

There are two equivalentgraphicalrepresentationsof the IF statement

Standard Flow Structured Flow

TRUE FALSECODT N

CONDITION CAS

I tCLAUSE

*And only from the set EXIT, REPEAT, RETUIR and GO TO

a
pAGE BLANK NOT-F &

4-2 Conditionat Execution

The form on the left illustrates the rule above by the explicit joning of two arrows at
the bottom The system illustrated on the right is appropnate to structured programming
languages in which complex decisions are represented through nesting of compound state
ments, all of which have one path in and one path out AN of the HAL/S flow control
statements (except GO TO) can be represented in structured flowcharts

The directions of the lines in a structured flowchart are implied Vertical lines are always
traversed top to'bottom Horzontal lines are always followed left to right and back Lines
may intersect only at the points of IF and DO CASE statements There is no provis-on for
ovemdmg the natural direction

The above rules obviously limit the class of programs that can be represented However,
the forms that have been ruled out have been shown to be symptomatic of programs that
are difficult to read and maintain Any algorithm which can be expressed by a standard
flowchart (where square boxes contain HAL/S assignments) is equivalent to some HAL/S
program, without GO TO statements, which can be represented by a structured flowchart

The IF statement can select an alternative based on the results of a boolean combination
of several comparisons A comparison consists of two expressions separated by a relational
operator, as in

IFA=0THEN

IF N > 12 THEN

IF B**2 < 4 A C THEN

The complete list of.-relational operators is

exact equality

2 = not exactly equal

NOT

> greater than
> = greater than or equal

< less than
< = less than or equal

2 > not greater than (same as <=)
NOT >

-I < not less than (same as >=)
NOT <

Since the character '-" does not have a standard graphic across all systems, the keyword
"NOT" may be freely substituted for it

All of the operators above may be used between any combination of integer or scalar
single or double expressions When necessary, integers are automatically converted to
scalars, and single precision is raised to double before the comparison

IF THEN ELSE 4-3

However, only the first two relational operators (= and =) can be used between vectors,
and matnces Two vectors or matrices may be compared for equality or inequality if they
have the same dimension They are equal if each pair of components is exactly equal, and
unequal otherwise

It is not generally useful to compare scalars, vectors, or matrices for equality In the
statement,

IF A = B THEN WRITE(6) 'PURE COINCIDENCE',

where A and B are scalars, the WRITE statement is executed only if every digit in A is the
same as in B Due to the finite precision of scalars and roundoff problems, if B had been set
by

B = A/3,

B = B + 2 A13, 1-113 A + 213. A- /

B would probably not be equal to A Scalars can be tested for approximate equality as in

IF ABS(A-B) < EPSILON THEN

where EPSILON is "sufficiently small", e g,

DECLARE EPSILON CONSTANT(000001),

or

EPSILON = (A+B)/16**(25 MANTISSALENGTH),

etc

The keywords AND, OR, and NOT (or their equivalents, &, I, and -) may be used to
combine several comparisons in one IF statement Parentheses are generally required around
each simple comparison For example,

IF (A>0) AND (A<100) THEN

IF NOT((A<=0) OR (A>=100)) THEN

Both of these forms will result in the execution of the then clause if (and only if)
0 < A < 100 The first test checks whether A is in the given range The second test is
equivalent since it checks whether A is not outside the range The sense of any comparison
or combination thereof can be reversed using the NOT keyword as shown in the second
test This use of NOT requiresa parenthesized argument

4-4 Condihonal Execution

Suppose a number is divided into one of three ranges, as shown

IF N < 10 THEN R 1,

ELSE IF N < 20 THEN R = 2,

ELSE R = 3,

Here, the else clause of an IF statement is an entire IF THEN ELSE group It may
be diagrammed as follows

IFN<10R=
T E SIF N<20

TH

N<ELSE R=3

The THEN clause of an IF statement may not be an IF THEN ELSE group'
A four way branch can be written with a DO END group, as described in the next
section

The IF statement allows the selection of one or two alternatives based on the evaluation
of a comparison When no action is required unless the test succeeds, the else clause may be
omitted entirely

IF A > 0 THEN B = SQRT(A),

This statement is functionally equivalent to

IF A NOT > 0 THEN,
ELSE B = SQRT(A),

Here the then clause is just a semicolon, which is the HAL/S equivalent of a no-op or null
statement

IF. THEN ELSE may be viewed as a single statement The then and else clauses
each contain a further single statement Any executable statement as allowed in the else
clause, the then clause may contain any executable statement except a further IF THEN

-ELSE The else clause may also be omitted entirely

*Tlus rule avoids the "dangling else" problem common to ALGOL-hke languages

IF THEN ELSE 4-5

Exercises

4 IA What is wrong with the following HAL/S conditional statements (in which all van
ables are of SCALAR type)

a) IF A < B < C THEN MIDDLE - B,

b) IF B < C THEN
IF C < D THEN B = D,
ELSE B = C,

ELSE C = B,

c) IF RADIUS > 0 & NOT RADIUS > I THEN
WRITE(6) PF RADIUS**2,

4 1B Where possible, convert these standard flowcharts to structured flowcharts, without
dupheating or eliminating boxes Indicate why the others cannot be converted

a)

TR. FALAS

AlA2A

TRf FAS

4-6 Conditonal Execution

b)

c)

IF THEN ELSE 4-7

d)

TRUE FALSE

4 1C 	 Tell whether the following conditions are satisfied, not satisfied, or illegal Assume
that

A, B, C, D are scalars

V, S are3-vectors

A=70 C=120

B 40 D =32

V=(246) S=(34 12),

a) Ac<B
b) C > (NOT B)

=
G) "(A --- -B) -&,r- (C > D)

d)(S 	 Th=V) OR (B-I > C

e) v < S'

f) V V-< C) &8(NOT(VS <C)

4-8, XConditjonal Execution

Write the following descriptions in relational expressions

g) 	 A is greater than B but less than C

h) 	 The vector V is not equal to the vector S and C not less than D unless D is
equal to 4

4 1D Write HAL/S code implementing this flowchart

W 	< LS

ELE IF THEN SQ - 0

W > L

AREA 	 SQARL

SAEA0ML = HEAR 'N QAE

ELSESI 	 TE WRITE (6)

E WRITE (6)

'LARGE SQUARE '

The DO END Group 4-9

4 2 THE DO. END GROUP

A senes of executable statements may be combined into a do group, which may then
be used anywhere a single statement is required, e g, in the then clause

This allows, for example, the following coding of a four way decision

IF X < 0 THEN M = 0,

ELSE DO,

IF 	X < 100 THEN DO,

IF X > 10 THEN M = 2,

ELSE M = 1,

END,

ELSE M = 3,

END,

This example, winch sets M to the order of magnitude of X, can be diagramed

Since it is only one statement, the entire sequence above could be further nested in IF or
other compound statements

A do group consists of a DO statement, any number of executable statements* and an
END statement, e g

DO,
I,

J= 2,

END,

rM=2

*'Or TEMPORARY statements

4-10 Condtional Execunon

The example below computes PT by an inefficient but illustrative algorithm

j. 2-...'*

ISST+MISS HIT

E6=HT(IFT*+ Y** TENII=Hs

I

Here it can be seen that loops are shown with the same shaped symbol as IF statements
HAL/S has several types of loops, all of which use the DO and END keywords The simplest
type is shown above, and in the following compiled listing

The DO END Group 4-1i

N DARTBOARD APPROXIMATION'

M PROGRAM,

N DECLARE SCALAR,

M X, Y;

H OECLAR INTEGSER,

H 1, HIT, MISS;

M 00 FOR I = 1 TO 1000,

H X z RANDOM,

M Y = RANDOM,
E 2 2
H IF X + Y <= I THEN
SHIT = HIT + l,

II ELSE

It iISS = MISS + 1,

N END,

H WRITEC4) 4 HIT / MISS,

K CLOSE,

Since the compiler used in preparing listings for this manual automatically indents pro
grams to correspond to a structured flow, diagrams will not be provided for subsequent
examples The same information is contained in the indenting as in the flow

The simple do group (without iteration) is classified as an executable statement No
additional machine code is generated however An extra do group, like an extra set of paren
theses, is sometimes used for clanty In the order of magnitude example, the else clause of
the outer 'IF statement is bracketed by an unnecessary DO END pair It is common
practice to use a do group as a then or else clause even when it is not required by the syntax
Tis allows for the possibility of later insertions

There is no way to branch into any part of a compound statement from outside the
statement HAL/S has a GO TO statement, and any executable statement may be labelled,
but restrictions are imposed A label inside a do group, a then clause or an else clause canl
only be used in GO TO statements which are themselves in the same group or clause

The do group has two uses Primarily, it allows the nesting of statements In tests and
loops The secondary purpose is to define the scope of temporary data

The TEMPORARY statement is similar to the DECLARE statement It allows a tem
porary variable of any type to be created, as shown on the following page

4-12 ConditionalExecution

M EXAMPLE 2

N PROGqRAM,

M DECLARE VEL VECTOR.

M MTFRAtE MATRIX,

N DECLARE VECTOR,

H RESULTI, RESJLT2. E,

C

M DO.

M TEMPORARY VPRINE VECTOR;

E--

M VJPRIME = MYFRAME VEL;

E
I RESULTI = UNIT(VPRIIE);
E
M RESULT2 = V_PRIME * E,

M END,

M CLOSE EXAPLE2,

The vector, VPRIME, exists only for the duration of the do group If the next do

group contained

TEMPORARY S SCALAR,

S would probably occupy one of the storage locations that had just been used for
V_PRIME

Temporary variables may be of any type and precision They may not, however, be
initialized or given other minor attributes TEMPORARY statements can only be used
within do groups Storage is allocated to temporary variables for the duration of the
execution of the immediately enclosing do group The TEMPORARY statement informs the
compiler of the range over wich a variable will be needed The actual allocation and freeing
of storage is done m an implementation-dependent manner

Very few restrictions are made on the use of temporary variables They may not be ref
erenced at all from outside of the containing do group, otherwise, they are usable in all of
the constructs introduced so far Proper use of the TEMPORARY statement can reduce
a program's size without substantially increasing its execution time

The DO END Group 4-13

Exercises

4 2A 	 Q A standard means of flowcharting is to use a system where

THEN ELSE
means a conditional execution along one of
the paths (but not both') depending on the
condition represented by 'CX'

represents a DO END group without

any conditional branches in the group

Consider the following flowheart

A & 7 	 represent DO END

groups each 5 state- AB

ments long

W represents a DO END

group 150 statements long

Rewrite this flowchart in a way to represent a shorter program

Can this change be made in a valid HAL/S program9

4 2B 	 Write a HAL/S program that will solve a system of 2 equations in 2 unknowns
as in problem 2-0

However, do not assume a solution exists, incorporate a test to insure that the
denominator is not zero

4 2C 	 Implement the following structured flowchart segment in HALlS, using a few
DO END groups as possible

4-14 ConditionalExecuton

S IF THN IF - k THEN =Y+i

Y < XY < X

ELSE g - 1

i>Y=Y++]I

ELSE X X + 1

4 2D Consider the following flowcharr on the next page

6means a conditional execution on CX

[m- means a single statement represented by M

a) 	 There is a construct in the flowchart that is not legal in HAL/S What is it7

b) 	 Rewrite the flowchart to eliminate the illegal construct, and write a code frag
ment corresponding to this structure Do not introduce or eliminate any
conditions

c) 	 How would a structured flowchart have made this mistake more easily
available'?

The DO END Group 4-15

C1 THEN

ELI E 2 HN ELSE C3 THEN

4 2E 	 In problem 4 21), we have seen that if the branches are to be preserved as shown,
the code corresponding to

had to be, repeated

Lets say that

is 250 statements long, whereas all the other

F-1

are still a single statement Rewnte the flowchart and the code to allow the code for

t l]

to appear only once

4-16 Conditional Execution

4 3 BOOLEANS

The test between IF and THEN'in the IF statement is either a comparison or a booledn
expression A boolean expression is a boolean variable or a combination thereof Both types
of tests can be.compounded using AND, OR, and NOT, but they cannot be mixed in one IF
statement A boolean expression always can be converted to a comparison as ji

M
1
H
E
Mi

EXAMPiLE_3"
PROGRAtM,

DECLARE QL BO

IF QU = TRUE

OLEAN,

THEN

M no,

C
Cc

.

.

C

M
M CLOSE

END,
EXaiPLE_3;

The IFstatement can also be written IF QJ THEN

TRUE is a boolean.literal It is equivalent to BIN'1' or ON Booleans can take on one
of only two possible values The other is written FALSE3, BIN'O' or OFF The three differ
ent representations for each value allow mnemonic comparisons and assignments as in

DECLARE BOOLEAN INITIAL(OFF),
POWER, READY,

IF READY = FALSE THEN POWER = OFF,

As the example shows, the form of the declare and assignment statements is the same for
booleans as for other data types Booleans are annotated by the compiler with a" "on the
E line

Booleans are used for flags, signal states and to optimize complex comparisons The
keyword BOOLEAN is interchangable with BIT(l) Bit stnngs of,length greater than one
are discussed in chapter 13 Since the concept of a "flag" is so common, the BOOLEAN
keyword is included in the language and the applicable subset of BIT operations is'pre'
sented here.

The preceding IF statement would normally be written,

IF NOT READY THEN POWER = OFF,

Booleans 4-17

NOT READY is a boolean expression, which can also be wntten -1 READY Boolean -ex-
pressions are composed of boolean vanables, the operators AND, OR, and NOT, and
boolean functions The operators are defined via their truth tables below

AAND B
B

TRUE FALSE

A OR B

TRUE
B

FALSE T

NOT
A

A

FALSE

TRUE
A

TRUE FALSE TRUE
A

TRUE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE TRUE FALSE

OR is the nclusive or operator- Exclusive or is provided as a built-in function,

IF XOR(A,B) THEN

but the equivalent statement,

IF A -1= B THEN

is preferred

There are sixteen possible distinct binary operators oh booleans These include AND,
OR, and NOT as well as exclusive or, the bi-conditional, etc Any of them can be expressed
by a combination of AND, OR and NOT Any boolean expression can be converted to an
equivalent boolean expression using only NOT and one of the other two One such trans
formation is expressed by DeMorgan's rules

A AND B = NOT(NOT A OR NOT B)

and

A OR B = NOT(NOT A AND NOT B)

For another example, XOR(A,B) could also be written "A AND(NOT B) OR (NOT A) AND
B"

The expression A&(C1 B)'I (-I A)&B is the same as "A exclusive-or B", or "A is not equal
to B" Because AND has higher precedence than OR, the expression is interpreted as

(A&(-I B)) OR (C1A)&B)

The boolean operators, AND, OR, and NOT, have considerable'similanties to the anth
metic operators, multiplication, addition and negation, respectively This results in the con
vention that A&B I C&D is interpreted as the OR logical sum) of two ANDs (logical pro
ducts)

4-18, ConditionalExecut on

Consider, th following example of the translation from an English statement of a con
dition-to a boolean expression -

English 	 If the power is on and either it is not overheated ,ortthe override is set, and
either switch 6 is on or it is off and switch 7 is set

HAL/S 	 Power & (not overheated or override) & (switch 6 or (not switch 6 and switch

Careful study of the English form may fail to reveal how the precedence is communicated,
but most readers will see the, correspondence between the two forms Symbolic logic shows
that while there are a number of reliable rules for translation, much rests on the readers
understanding of the situation to whichan assertion applies

The boolean expression above is written with the minimum number of parentheses,
taking advantage of the precedence of NOT over OR and AND The expression, (NOT
SWITCH 6 and SWITCH 7), has the truth table

SWITCH 6

SWITCH 7 ON FALSE TRUE

OFF FALSE FALSE

and is equivalent-to

,((NOT SWITCH #6) AND SWITCH 7)

In summary,

Precedence of boolean operators

First NOT

AND

Last OR

In addition to the test in an IF statement, boolean expressions may be used in assign
ment statements (the left hand, side must also be boolean), in compansons with other
boolean expresstons, and m WHILE and UNTIL loops (as described in the next chapter)
Boolean expressions may appear in WRITE statements, boolean variables may be read

No other data type is automatically converted to boolean, and boolean is not auto
matically converted to any other type Booleans cannot be used in anthmetic expressions,
and anthmetic variables cannot be used in boolean expressions The concept of precision
does not apply. to boolans,.jbut bit strings may be viewed as set of booleans on which
operations'an be performed in parallel

Booleans 4-19

Both types of test in the IF statement can be written using the AND, OR, and NOT
operators These operators combine either comipansons or booleans via precedence rules
like those of arithmetic Parentheses can be used to override the normal precedence When
comparisons are combined, each should be parenthesized

IF(I < 	 0) OR (I > 9) THEN

In boolean expressions, the precedence rules make most parentheses unnecessary, an ex
ception is as in

IF A OR (NOT B) THEN

It is not possible to combine comparisons and booleans in a single expression If a statement
(or group) is to be executed based on both a boolean and a comparison, the test should be
written

IF (CHECKING = TRUE) AND (I < 0) THEN I = -I,

or as

IF CHECKING THEN IF I < 0 THEN I = -I,

Exercises

4 3A 	 For each of the following, tell whether it is a boolean expression, a relational ex
pression, or illegal For the boolean expressions, tell whether the value is TRUE
or FALSE, for the relational expression, tell whether or not the condition is satis
fied Assume that

A, B are INTEGER

V, S are 3-vectors

UPFLG, TRFLG are booleans

A=12 B=6

V= (2 4 6) S=(3 4 7)

UPFLG = TRUE TRFLG = FALSE

a) UPFLG = TRFLG

b) NOT UPFLG

c) NOT(V = S)

d) NOT TRFLG OR A > B

e) (A < B) = TRUE

f) VPFLG = TRUE

g) TRFLG & (- UPFLG)

4-20 Cond;tonalExecuton

4 4 DO CASE AND GO TO

The most basic flow control constructs-are loops, the IF statement, and the DO group
These may be combined and compounded to implement complex structures of decisions
The remaining flow control statements fill m a few gaps They are not as heavily used as

the various forms of IF and DO

The IF statement allows a two-way decision based on a coinpanson ,or boolean An

n-way branch based on an integer can be written with the DO CASE statement, for
example

1 EXAMPLE_4
H PROGRAMI

I DECLARE SCALAR.
M A, B, C, 0,

H DECLARE NUMGOOD THTEGER'

K DECLARE SCALAR,

K VALUE, OLD-VALUE,

C

M DO CASE HUlLGOD,

M ELSE

1 DO,

M VALUE = ODVAtUE,

H RETURN,

M END,

K VALUE m A;

K VALUE = (A + Bl / 2,

M1 VALUE = tIDVAL(A, a, C),

ti DO.

C

M END,

M END,

I1 OLD-VALUE = VALUE,
1 CLOSE EXAMPLE_,

This code sets VALUE to some combination of the vanables A, B, C, and D It could

be part of an algorithm for combining redundant values from a set of sensors The code is
diagrammed

DO CASE and GO TO 4-21

CAE -ES VALUE41
A

2[VALUE

w
ment oOL VAU

NUMGOODNUislsGhn OneODrae hnfutees luea xctdOhrie
MIDVALAC

4

Any integer or scalar expression may appear after the word,CASE The expression is eval

uated and rounded to the nearest integer if necessary. In thls example, Ifthe expression,
NUMEGOOD, is less than one or greater than four, the else clause is executed Otheoise,
one of the four statements between the end of the else clause and the end of tie DO CASE
statement s executed The -fourth statement (fourth case) s a DO group This is anotherinstance of fhe use of DO END to combine several statements where one is required

Only one off the cases is executed After the selected case is done, control passes to the
statement after'the END statement which matches DO CASE (in this example, to the assign
ment of OLD_VALUE)

Each case may be any executable statement This includes assignment, IF THEN
ELSE, 1/0, a DO group, a loop, or a further DO CASE statement The only way to pass

control to one of these nested statements is by executing the DO CASE header with an
appropriate value of the expression

4-22 Conditional Execution

The compiler counts the cases and prints a case number to the extreme right of each in
the hsting If an else clause is supplied, code is generated to compare the value of the case
expression against the bounds, one, and the number of cases If the expression is out of
range, the else clause executes and control then continues after the END of the DO CASE
The else clause may be omitted entirely, in which case no checking is performed Omission
of the else clause may be risky, as under some circumstances, control can be passed com
pletely out of the HAL/S program if the expression selects a missing case and no else clause
is supplied

In the example above, a RETURN statement appears in the else clause When RETURN
is used in a program, it is equivalent to transferring control to the close statement It exits
the program

In chapter five, the EXIT and REPEAT statements are described They are drawn in the
same way

(T 	 EXIT) REPEAT)

Each is an unconditional transfer of control to a point defined by the structure of the pro
gram rather than to a user label This completes the set of symbols used in a structured flow
diagram

The flow control statements include those described in this chapter, loops, and (in a
sense) the statements for defining and invoking procedures and functions Some of the
real-time statements of chapter 12 may be thought of as transferring control, though there
are conceptual differences

The only other flow control statement in HAL/S is GO TO The experience of a number
of large HAL/S programming projects has shown that the GO TO statement is not neces
sary It is provided chiefly for mechamcal translations from other languages

Once a degree of familiarity with the use of compound statements for flow control is
achieved, it can be seen that the concept of a "conditional transfer" or branch instruction
is merely a free form notation for flow diagrams a line with an arrowhead The restrictions
on the use of GOTO correspond to the rules for a structured flow diagram presented in
Section 9 1 GOTO's are not allowed at all in a proper structured flow, but HAL/S permits
some exceptions

1) 	 between unnested statements in the same program or other block,

2) 	 between statements nested at the same level in the same compound statement,

3) 	 to a less deeply nested statement in the same block, provided that the target state
ment is not contained in any compound statement which does not also contain the
GO TO statement

DO CASE and-00 TO 4-23

Exercises

44A Rewrite the followig.code segment using iheD0 CASE statement

IF I = 0 THEN SCRAMBLE = 4,

]ELSE IF I = 1 THEN SCRAMBLE'- 0

ELSE IF I = 2 THEN SCRAMBLE = 5,

ELSE IF I = 4 THEN SCRAMBLE = 1,

ELSE IF I = 5 THEN SCRAMBLE = 2,

ELSE SCRAMBLE = 3

,The Iterative DO FOR Statement 5-1

5.0 LOOPS

A loop is a construct which causes a set of statements to be executed repetitively In
HALlS, a loop is a compound statement The statements to be iterated are nested within
the loop Four types of loop are provided, so that the need for explicit backward branches
(GO TO's) is virtually eliminated.

A loop is created in HAL/S by attaching one or more iteration control phrases to the
simple DO END construct which was described in the previous chapter These iteration
control phrases govern the number of times the loop is executed and may provide a counter
or "loop control variable" wich can be referenced from within the loop

The example below uses the most common type of loop, the iterative DO FOR, to
compute the factorial of a number The number, N MAX, is read from channel 5 and
(N MAX)' is written to channel six

M FACTORIAL

M PROGRAM,

11 DECLAPE INTEGER.

Ii RESULT, HJIAX, I,

1i READ(5S HNMAX,

Ii RESULT = 1

S OO FOR I 2TO NiMAX BY 1;

11 RESULT I RESULT,

I I'qITE(6) RESULT,
tt CLOSE FACTORIAL,

Note that the body of the loop is executed repetitively until the control variable exceeds the
final value specified after the keyword "TO" The example shown computes factorial
(NMAX) by doing N MAX-1 multiplies by the control variable, which takes on the
values 2, 3, 4, , NMAX on successive iterations

In, addition to the iterative DO FOR, other forms of iteration control are The discrete
DO FOR, the WHILE phrase and the UNTIL phrase

These constructs probably are familiar to the reader who has used other algebraic pro
gramming languages, therefore, the remainder of the discussion in this chapter is primarily
concerned with the limitations and restnctions of HAL/S loops, and the ways in which
these constructs-may be combined with each other and with other features of the language

5 1 THE ITERATIVE DO FOR STATEMENT

In the preceding example, the loop body is a single statement.

RESULT = I RESULT,

In general, the loop body may contain any number of executable statements Since the loop
is constructed from a simple do group, the TEMPORARY statement may also occur in
the loop body

5-2 Loops

In the phrase,

FOR I = 2 TO NMAX BY 1,

I is termed the loop control vanable, 2 is the initialvalue, NMAX is the final value, and 1
is the increment

HAL/S places very fev restrictions on these' four parameters In particular, the ioop
cohtrol variable may be any single or double precision integer or scalar variable * For
example, given the declaration

DECLARE 	 A INTEGER,

B INTEGER DOUBLE,

C SCALAR,

D SCALAR DOUBLE,

all four of the following combinations are permissable

DO FOR A = B TO C BY D,
DO FOR B = D TO C BY -I,

DO FOR C = D TO B/A,
DO FOR D = A-B TO A+B BY D,

There is one additional variation on thi control variable, it may be either previously
declared as in the previous example', or it may be "declared" within the DO FOR statement
itself The latter is accomplished by placing the word TEMPORARY before the name of the
loop control variable, as in

DO FOR TEMPORARY I = 2 TO NMAX BY 1,

A TEMPORARY loop control variable created in this way may be used within the body of
the loop in any way that a declared variable could be used, but outside of the loop the TEM-
PORARY vanable does not exist Since the TEMPORARY control variable is effectively
unDECLARED at the end of the loop, the memory locations occupied by the variable may
be re-used, thus reducing the storage requiement of the program containing the DO FOR
TEMPORARY 'Under 'some versions of the compiler a speed advantage may also result
TEMPORARY control varables created in a loop are always single precision itegers, their
names must not duplicate declared data or other TEMPORARY variables in the same loop

The initial and final values and the increment used in an iterative DO FOR loop may be
any arithmetic expression That is, each may be any 4x'pression which evaluates to a positive
or negative, single or double precision integer or scalar value Each expression is evaluated
only once, at entry to the loop Thus;'if variables used in the expressions are modified
within the loop, the iteration parameters of the loop are not affected

*Sinle precision integers are generally the most efficient

The IterativeDO FOR Statement .- 3

Note that in HAL/S the loop control variable may be a scalar, e g

DECLARE SCALAR, X, PI CONSTANT (3 14159),

DO FOR X = -PI TO PI BY 001,

WRITE(6) X, SIN(X), COS(X), TAN(X),

END,

This code will produce a set of trigonemetric tables, giving sine, cosine, and tangent values
for 2000 ?r different angles

The operation of the loop is the same as for integers On each iteration, the increment is
added to the loop control variable, and if the final value is not exceeded, the loop body is
executed The values taken on by X are -7r, -7r+ 001, -7r+ 002, , etc The last value
will not exactly equal 7r, because it is generated by a sequence of additions of 001

In the event that the result produced by adding the increment to the current value of the
loop vanable is not of the same type or precision as the loop variable, the usual rules-for
mixed mode assignment statements govern the conversion For instance, if the loop variable
is an integer and the increment is less than one, rounding will occur on each pass through
the loop In this case, if the increment is positive but less than 5, the value of the loop con
trol variable would never be changed and the loop would never terminate

As previously stated, any or all of initial value, final value, and increment may be negative
For instance, the loop below is functionally equivalent to the one in the onginal form of
FACTORIAL

DO FOR I = NMAX TO 2 BY -1,
RESULT = I RESULT,

END,

When a negative increment is specified, the termination condition becomes "is the loop
variable algebraically less than the final value9 "

The only way that the body of a HAL/S loop may be entered is by execution of the DO
statement which heads the loop, however, control may leave the loop by a variety of means
other than the control variable exceeding the final value (e g, RETURN, EXIT, and GO TO
statements, error conditions, etc) Since the increment has been added to the loop variable
befote the test against the final value is made, at normal exit from an Iterative DO FOR
loop the loop variable will be greater than the specified final value (if the increment is posi
tive) or less than the final value (if the increment is negative) This fact may be used to
determine whether or not the loop was exited prematurely Use of this feature is illustrated
in the sample below, which sets the variable NEG PART to the number of the first negative
component in a vector, or to zero if there is no negative component

DECLARE V VECTOR(5),
DECLARE NEGPART INTEGER,
DO FOR NEG PART = I TO 5,

IF VSNEGPART < 0 THEN EXIT,
END,
IFNEGPART > 5 THEN NEGPART = 0,

5-4 Loops

The EXIT statement is not fully described until later in this chapter, but in tis case the
meaning is intuitive If component number NEGPART of V is less than zero, control exits
from the loop (to the second IF test) Thus, NEGPART will be greater than the 5 if only
if the entire vector was examined without finding a negative value

Since it is necessary to test NEG PART outside of the loop, a temporary loop control
variable would not be appropriate in this example

To find the second negative component in a vector, the following loop could be added
after the one above

DO FOR NEGPART = NEGPART TO 5,

IF VSNEGPART < 0 THEN EXIT,

END,

Since the imtial and final values and the increment specified in an iterative DO FOR
loop are evaluated only once (pnor to the first iteration), there is no conflict in using
NEGPART both as a loop control value and as the initial value This new ioop will con
tmue where the first stopped

The "BY 1" cluase has been omitted above, since 1 is the most commonly used incre
ment, it is the default and need not be specified

In summary, the iterative DO FOR takes four parameters, the first, the control van
able, may be any previously declared arithmetic identifier or may be a TEMPORARY
integer created within the DO FOR statement The initial value, final value and incre
ment may be any arithmetic expression, the increment may be allowed to default to one
by omitting the BY clause These expressions are evaluated prior to the first pass through
the loop, and the results determine whether the loop is executed once, many times or not
at all The loop terminates when the value of the control variable passes the final value
specified in the TO clause Later in this chapter, we will see how the addition of a WHILE
or UNTIL clause can modify the execution of a loop, but first we will examine another
form of the DO FOR construct

Exercises

5 IA 	 Consider the following code fragment where

I & N are integers,
S is scalar

N = 10,
S= I,

=DOFORI 1702 BYS,

N-N+I,

END,

What is the value of N on exit from the loop'

5 11B 	 Consider the example where NEG_PART was set to the number of the first ex
ponent of a vector less than zero, or zero if no elements were negative

lhe Dtscere DO #OR Staiement 5-4

Change the code given in the example to leave the number of the last negativeceom
ponent instead of the first

5 IC Consider the following code fragment where

N &Iare ntegers

N=9,

DO FOR I = I TO N BY 2,

N=N+I 1

END,

What is the value of N on exit from the loop9

5 ID Consider the following code fragment where

A is a 5x5 matrix,

X and Y are integers

X= 1,
ROWS Y= 1,

LOOP AS (X,Y) = 2,

IF Y = 5 THEN GOTO OUT,

Y=Y+1,

GOTO LOOP,

OUT 	 IF X = 5 THEN GOTO DONE,

X=X+l,

GOTO ROWS,

DONE

a) What does this do 9

b) Rewnte this using HAL/S iterative do for loops

3.6 Loops

5 2 THE DISCRETE DO FOR STATEMENT

In order to understand the utility of another type of DO FOR statement, consider the

problem of recognizing prime numbers The code below sets a boolean variable, PRIME, to

TRUE if NUM is prime and to FALSE otherwise (for simplicity, NUM is assumed to he
between one and one-hundred)

DECLARE PRIME BOOLEAN INITIAL(ON),
DECLARE INTEGER, NUM, I,
READ(5) NUM,
DO FOR I = 2 TO 10,

IF REMAINDER(NUM,I) = 0 THEN PRIME = FALSE,
END,

This code produces the correct answer over the range 10 to 100, but is inefficient A
better algorithm is to test the divisibility of NUM only by numbers which are themselves
prime This can be conveniently expressed using the discrete DO FOR

DO FOR I = 2, 3, 5, 7,

IF REMAINDER(NUM,I) - 0 THEN PRIME = FALSE,

END,

In this case, the loop is executed only four times, with the loop control variable, I, equal
to two on the first pass, three on the second, five on the third and seven on the final itera
tion The reader may note that both programs contain a logical error in that the wrong
result is obtained when NUM is equal to 2, 3, 5, or 7 This error will be fixed when the
WHILE phrase is introduced in the next section of this chapter

The form of the discrete DO FOR is similar to the iterative version The discrete form
specifies a list of values (expressions) to be assigned to the loop control variable rather than
an algorithm (mitial value, final value, and increment) for computing successive values

On each pass through the loop, the control variable is set to the value of one of the
expression to the right of the equal sign The expressions are used from left to right on
successive iterations of the loop, each one must evaluate to an integer or scalar value If
the type or precision of any expression is different from that of the control variable, the
usual rules for mixed code assignments are applied

Unlike the expressions in the iterative DO FOR, the expressions in the discrete DO
FOR are not evaluated until the iteration of he loop on wich they are to be assigned into
the control variable This means that the value of the control variable on future passes
through the loop can be changed by storing into variables referenced in the expressions from
the body ofthe loop, e g

DO FOR I 1, I, 21, 31,

At exit from a discrete DO FOR loop, the control variable retains the value of the last
expression, unless the variable was TEMPORARY, m which case it is undefined

The WHILE Clause 5-7

The remaining iteration control phrases, WHILE and UNTIL, provide for looping with
out the use of a control variable The next two sections of this chapter describe how to
create a loop with these phrases, and show how they may be used to modify the effect of a
DO FOR

53 THE WHILE CLAUSE

The WHILE clause may be appended to a simple DO END group to create a loop, or
itmay be appended to either form of the DO FOR to introduce an additional condition for
continuation of a loop The general form of the WHILE clause is

WHILE boolean expression

or

WHILE relational expression

The boolean or relational expression represents a condition for continuationof the loop, as
long as it evaluates to the TRUE state, the loop continues Eor example

DO WHILE TRUE,
END,

is an infinite loop, whereas

DO WHILE X < 2
END,

continues until X>2

The expression in the WHILE clause is evaluated prior to each execution of the first
statement of the loop body If on any pass the expression evaluates to FALSE, the loop
body is skipped and execution continues at the statement after the END of the DO WHILE
or DO FOR. WHILE loop The DO WHILE loop isparticularly useful when the number
of iterations that should be made through a loop is not known inadvance Consider, for
example, Newton's method for computing the square root of a number, X. The method
generates closer and closer approxinations until the current approximation is "good
enough" "Good enough" is defined as the point where the gain inaccuracy from the last
iteration was negligible (less than EPSILON) The example below illustrates the point

M NE14TOf SQRTt

11 PROGRAM,

" DECLARE X SCALAR;

"I DELCARE EPSILON COHSTANT(.D01).

"i DECLARE SCALAR, OLDfAPPROX, HEW APPROX,

Ki READ[51 X,
11 NEWAPPROX z X / e;
H OLD APPROX - 0,

I DO 14HLE ASS(NEWAPPROX - OLDAPPROX) > EPSILDN;
M OLfDAPPROX = NE.,APPROX;

M HEW.APPROX w (OLD APPRO + X / OLO_A POX) / 2;
1 END;

M WRITE(63 'SQRT OF -, X, * 15 ', NEUAPPROX;
H1 CLOSE NEWTONSQRT;

5-8 Loops

Note that this program can be made toproduce more accurate results (at the expense of
greater execution tume) merely by decreasing the constant EPSILON Note also that if
X is equal to zero, the WHILE test will fail on the first evaluation and the correct answer
Will be produced but no division by zero will occur

When the WHILE clause is added to a DO FOR, a new loop is not created, but an
additional condition for continuation of the existing loop is imposed Tis combination
can be used to correct the deficiency in the PRIME program of Section 5 2 as shown
below

DECLARE PRIME BOOLEAN INITIAL (TRUE), I INTEGER, NUM INTEGER,
READ(5) NUM,
DO FOR I = 2, 3, 5, 7 WHILE I < = SQRT (NUM),

IF REMAINDER (NUMI) = 0 THEN PRIME = FALSE,
END,

To see how the WHILE clause corrects the bug in the old version suppose X equals 3
Under the old version, REMAINDER (3,3) would be computed on the second pass through
the loop, the result would be zero, and PRIME would be set to FALSE Now, however,
pnor to each execution of the loop body, the test "is I <= SQRT (NUM)7" is made On the
first execution of the DO FOR statement, I is set to two Then I is compared with SQRT
(NUM), which here is SQRT (3) or I 732 Since it is not the case that 2 <= 1 732, the loop
body is not executed and PRIME remains TRUE Adding the WHILE clause in this example
also has the effect of determinung the primeness of most numbers in fewer iterations For
example, when X = 17 the loop is iterated only twice since 2 is less than or equal to SQRT
(17) and 3 is less than or equal to SQRT (17), but the next number in the DO FOR, 5, is
greater than SQRT (17)

EXERCISES

5 3A 	 Change the code in the last example in Section 5 1 that finds the number of the first
component < 0, eliminating the need for the line

IF VSNEGPART < THEN EXIT

by using a WHILE clause

S 4 THE UNTIL CLAUSE

The general form of the UNTIL clause is

UNTIL boolean expression

or

UNTIL relational expression

The UNTIL Clause 5-9

it may be used in the same contexts as the WHILE clause with the simple DO END
group or with either form of the DO FOR statement Unlike the WHILE clause, however,
the UNTIL clause specifies a condition under which iteration of the loop is to terminate
When it evalutes to TRUE, the loop terminates For example,

DO UNTIL 3 = 4,

END,

is an infinite loop, whereas

DO WHILE 3 4,

END,

is effectively a NO-OP (never executes) UNTIL is not, however, simply an inverse of
WHILE for the following reason An UNTIL clause never terminatesaloop before the first
pass through the loop body This property of the UNTIL clause may be used to avoid the
need to initiahze variables used m the termination condition of a loop Suppose, for instance,
that a program is to read vectors from channel 5 When a zero vector is read, the sum of the
previous vectors is printed and another set is read The program is to run indefinitely

This could be expressed via two WHILE loops

DECLARE VECTOR, TOTAL, V,

DO WHILE TRUE,

TOTAL = 0,

V = VECTOR (1, 1, 1),

DO WHILE V > = 0,

READ(5) V,
TOTAL = TOTAL + V,

END,

WRITE(6) TOTAL,

END,

In this example, the assignment

V = VECTOR (1, 1, 1),

is used to force V to be non-zero before the inner loop executes If this statement were not
provided, the inner loop would not execute after the first iteration of the outer

The essential difficulty is that the inner loop written with WHILE will test the value of
V before it has been read

5-10 Loops

If the UNTIL form is used for the inner loop, the initialization of V is not needed

DO WHILE TRUE,
TOTAL = 0,
DO UNTIL V = 0

READ(5) V,
TOTAL = TOTAL + V,

END,
WRITE(6) TOTAL,

END,

Since the UNTIL clause cannot terminate the loop before the first iteration, the initial
value of V is unimportant

When, as in this case, the UNTIL clause is used with a simple DO END group, it is
useful to conceive of the termination test as being done at the end of the loop (after the last
statement of the loop body)

Like the WHILE clause, UNTIL may also be used as an additional condition on either
type of DO FOR statement, as in

DO FOR I = I TO 10 UNTIL ASI = 0,
END,

This example is a loop (with no loop body) which sets I to the index of thje first zero
component in a vector, A However, since the UNTIL cannot terminate the loop on its first
iteration, ifAS 1=0, the loop will continue to look for an additional zero

When used with a DO FOR statement, the UNTIL clause causes a test for termination
on the second and all subsequent iterations of the loop, on the second through last iteration,
the test is performed after the (DO FOR) loop control variable has been updated, but
before the first statement of the loop body is executed

Exercises

5 4A Consider the problem of exercise 5 3A A proposed solution is shown below

DECLARE V VECTOR(S),
DECLARE NEGPART INTEGER,
DO FOR NEG.PART = I TO S UNTIL V$NEG PART < 0,
END,
IF NEGPART < 5 THEN NEGPART = 0,

Why is this not an acceptable solution9

EXITand REPEAT 5-Il

5 5 EXIT AND REPEAT

The constructs already introduced in this chapter provide for the repeated execution of
a loop body, and for a condition to be specified under which control is to exit from a loop
These language features, however, only govern the execution of an entire loop body, the
statements to be introduced in this section allow a portion of a loop to be repeated and for
a termination test to be made at any point in the loop body rather than only at the begin
ning or end To see how these statements, EXIT and REPEAT, augment the other loop
control statements, consider the following program

/* THIS PROGRAM READS A SERIES OF ANGLES EXPRESSED IN DEGREES,
CONVERTS THEM TO RADIANS, AND KEEPS A RUNNING TOTAL ON EACH CYCLE
IT PRINTS THE CURRENT TOTAL (IN RADIANS) AND THE TANGENT OF THE
TOTAL ANGLE PRODUCED IT AUTOMATICALLY STOPS WHEN THE RUNNING
TOTAL EXCEEDS 5 ir, OR IF THE COMPUTATION OF THE TANGENT COMES TOO
CLOSE TO'A SINGULARITY */

M TA-53UHS
H
M
M

PROGRAM,
REPLACE CARDS BY "S"
PEPLACE LIST BY "b",

/*CARD READER IS DEVICE 5W/
/*FRINTER IS DEVICE 6*1

M DECLARE SCALAR,
M X,
H TOTAL INITIAL(0),
31
11

P CONSTANTI3 14159261,
RADER_ DEGREE CONSTANT(PI / 180),

M
M

SHIFT CONSTANT(PI
;DOUNTIL TOTAL > 5 P1,

/ 2),

M READICAROS) X,
11 TOTAL + TOTAL + X RAD PER DEGREE;
31 IF MOD(TOTAL - SHIFT, PI) < .001 THEN
Ii EXIT.
31 WRITE(LIs) TOTAL, TANfTOTAL];
1 END,
M CLOSE TAN SUMS,

In this example, the statement

"IF MOD(TOTAL-SHIFT,PI) < 001 THEN EXIT,"

causes the loop to terminate if TOTAL gets within 001 of 7r/2, 31r/2, etc If the EXIT
statement is executed, control passes to the statement after the END of the loop (i e to
the CLOSE statement)

The program might be more useful, however, if instead of termimating at a singularity,
it allowed the user to enter another value and continued This can be accomplished by
changing the EXIT statement to REPEAT as follows

IF MOD(TOTAL-SHIFTPI) < 001 THEN REPEAT,

5-12 Loops

If the REPEAT statement is executed, control will return to the top of the loop, where
TOTAL will be compared with 5 PI If this test fails (TOTAL is not greater than 5 PI), the
loop body will be re-executed

This example shows how EXIT may be used to insert a completion test at any point in
the loop body, and how REPEAT may be used. to cause iteration of a portion of the loop
body

The general form of the EXIT statement is

EXIT,

or

EXIT label,

When used without a label, EXIT causes an unconditional' transfer of control out of the
nearest enclosing DO END group (i e to the statement following the END of the imme
diately enclosing loop or simple DO END group) If a label is supplied, it must match
the label on some DO END group in which the EXIT statement is nested, this form
causes transfer of control out of the corresponding loop or simple DO END group
Similarly, the general form of the REPEAT statement is

REPEAT,

or

REPEAT label,

Unlike the EXIT statement, however, REPEAT applies only to loops When used without a
label it causes repetition of the nearest enclosing DO WHILE, DO UNTIL, or DO FOR loop
Repetition, in this sense, means that the loop control variable (if any) is updated, the ter
mination condition (if any) is re-evaluated, and if the conditions for termination are not met
then control is passed to the first statement of the loop body Thus, the presence of a
REPEAT statement in a loop does not change the number of iterations of the loop, but
does determine which portion of the loop body is executed on each iteration

EXIT and REPEAT are controlled forms of GO TO The location to wich control is
transferred is defined by the structure of the program Thus, wheffever these statements are
used, their fiuctions are what their names imply EXIT always "gets out of" a compound
statement REPEAT always repeats a loop GO TO, on the other hand, has a variety of
functional uses When GO TO is used, the reader must find the corresponding label to gain
any idea of the effect of the GO TO

The following code fragment uses arrows to illustrate the transfer of control caused by
EXIT and REPEAT

EXITand REPEAT .5-13

M SAMPLEFLOJI
M 	 PPOGRA11,

M DECLARE INTEGER.
H 1, J, K, L, M,

M
M

-DO UNTL FALSE,
IF I = 0 THN

H K REPEAT,

END,IIHK 00P2 OOOR=TOO
M ELSE

M1 rt_0P2:
M 00 FOR K =1 TO 10,

S LOOP3 DO FOR L -- M. N, h + N,
M EXIT,i'l IF J = 0 THEN
ri : REPEAT LOOP::;
M EtSE
rm 	 EXIT,

H END,

M ENE).

H CLOSE SAMPLE FLOW,

Since REPEAT applies only to loops, its effect is not changed by placing it in a simple
DO END group This fact can be used to make the TANSUM program more informa
tiv€ as shown below

IF 	MOD(TOTAL-SHIFT,PI) < 001 THEN DO,

WRITE(LIST) 'TANGENT UNDEFINED',

REPEAT, /- READ ANOTHER ANGLE *]

END,

Exercises

5 5A Given

a) 	 DO FOR X = I TO 100,

EXIT,

END,

5-14 Loops

and,

b) DO FOR X = I TO 100,

REPEAT,

END,

Assume that the EXIT and REPEAT are executed in some conditional branch some
tme dunng the execution of the loop These are the only EXIT's and REPEAT's in
the loops and there are no branches out of the loops

What can be said about the value of the control variable 'X' in a) and b) above when
the first statement after the END is executed?

End Of Chapter Problems

SA 	 Write a HAL/S program to use Smipson's rule to approximate the area under the
curve y = -"X-usmgsmaller and smaller segments, delta The process continues until
the area resulting from (delta/2) size segments differs from the result obtained using
delta by less than (100 EPSILON) percent

Read the limits of integration from channel 5 in scalar form, and write the resulting
area out on channel 6

Remember, Simpson's Rule is

J FINAL delta
f(x)dx- 2L[f(ntial)+2f(INITIAL+DELTA)+

INITIAL +2f(FINAL-DELTA)+f(FINAL)]

Include any assumptions you make

5B 	 Consider the following code

PROBLEMIROG PROGRAM,
DECLARE INTEGER,

NUMBER INITIAL(3),

DIVIDER,

TESTINIT DIVIDER = 2,
TEST 	 IF MOD (NUMBER, DIVIDER) = 0 THEN GO TO LOSE,

DIVIDER = DIVIDER + 1,
IF DIVIDER = NUMBER THEN GO TO WIN,

LOSE 	 NUMBER = NUMBER + 1,

IF NUMBER = 500 THEN GO TO DONE,

GO TO TEST,

EXITand REPEAT 5-I5

WIN WRITE(6) NUMBER,
NUMBER - NUMBER + 1,
IF NUMBER = 500 THEN GO TO TESTJINIT,

DONE CLOSE PROBLEM PROG,

MOD(a,b) yields a(mod b), the remainder when the greatest integral multiple of b
less than a is subtracted from a

a) What does this program do9

b) Rewrite it using do for end loops so that the program is easier to read

Arrays ofIntegersand Scalars 6-1

6 0 ARRAYS

An ARRAY is an ordered set of variables of identical type which are accessed by a single
name Arrays are completely distinct from vectors and matrices The primary uses of
ARRAYs in HAL/S are

I) For performing identical operations on similar data as in

DECLARE IMU_ STATUS ARRAY(4) INTEGER,

DO FOR I = I TO 4,

IF IMUSTATUSSI NOT = 0 THEN CALL RINGBELLS,

END,

2) For maintaining a history ofprevious data values as in

DECLARE ALTHISTORY ARRAY(100) SCALAR DOUBLE,

CYCLE = CYCLE+I,
ALTHISTORYSCYCLE = NEW-ALTITUDE,

and

3) For maintaining tables of all sorts, as in

DECLARE DAYSPER MONTH ARRAY(12)

INTER INITIAL(31,28,31,30,31,30,31,31,30,31,30,31),

HAL/S allows arrays of any data type, however, the most frequently used are single
dimensioned arrays of INTEGERs and SCALARs like those in the examples above There
fore, the basic concepts of declanng and subscnpting arrays will be thoroughly examined
in this context before arrays of other datatypes and more advanced array operations are
discussed

6 1 ARRAYS OF INTEGERS AND SCALARS

Arrays are created using the ARRAY keyword m the DECLARE statement, a parenthe
sized compile-time expression or list of expressions must follow the ARRAY keyword to
denote the size of the array. Arrayness is an attributeof a variable of some data type rather
than a new type Hence, given the statements

DECLARE A ARRAY(3) SCALAR,
DECLARE V VECTOR(3),

the datatype of A is SCALAR and the type of V is VECTOR even though both consist of
three single precision SCALAR elements

Following the word ARRAY is a parenthesized list of dimensions Each dimension is
described by a compile-time expression, which is the size of the dimension and the index
of the last element X, Y, and Z in the next figure could be REPLACEd with any integral
value up to an implementation-dependent limit

6-2 Arrays

ARRAY (X) ARRAY (X,Y)

1 x 1 Y

. .I

ARRAY (X,Y,Z)

I =

XIII I I 1

Arrays are initialized in the same mannr as VECTORs and MATRIXs, a list of values is
provided imparenthesis following the keyword INITIAL or CONSTANT The special charac
ters * and # may be used for partial initiahzation and repetition as before. Thus,

DECLARE A ARRAY(5) INTEGER INITIAL(3,5,14,2,0),

creates

A 0 (3,5,14,2,0)

and,

DECLARE B ARRAY(12) SCALAR INITIAL(0,1,-I,SQRT(2),
-SQRT(2),4#2,*),

creates

B (0,1,-lvJi, -/4,2,2,2,P)

Arrays ofIntegers and Scalars 6-3

Since it is often desirable to initialize an entire array to the same value, HAL/S also allows an
initial (or constant) list to consist of only one value, in this case every element of the array
is set to the value provided Thus the forms

DECLARE X ARRAY(5) INTEGER INITIAL(5#0),

and

DECLARE X ARRAY(S) INTEGER INITIAL(0),

are equivalent Finally, the ARRAY attribute may also be "factored" or specified only
once m a DECLARE statement which creates multiple arrays as shown below

DECLARE ARRAY(3),
GYRO INPUT INTEGER,
ATT RATE SCALAR DOUBLE,
SCALE CONSTANT(.O13, 026, 013),

The arrays declared above might serve as the inputs and outputs of a simple program
which does linear scaling of data read from an accelerometer assembly Assume that
GYROINPUT contains three values which represent the rates of vehicle rotation along the
pitch, roll, and yaw axes A simple routine to convert the data to more convenient units and
data representation might be

DECLARE N INTEGER,
DECLARE BIAS SCALAR INITIAL(57 296),
DO FOR N = I TO 3,

ATTRATESN = SCALESN GYROINPUTSN + BIAS,
END,

In this example, the various arrays are subscripted in the same fashion as VECTORs, and
in general, the same rules apply The subscript of a one-dimensional array may be any
anthmetic expression which evaluates to a number between one and the size of the array
If the expression does not produce an integral result, it is rounded to the nearest integer
An array element, such as ATTRATESI * or SCALES(N+2), may be used in any context
m which a simple vanable of the same data type can be used For instance, given two
SCALAR ARRAY(lO)'s, A and B, the following statements are all legal

AS1,A$2 = SIN(AS3),
AS(BS(AS3)) = 29,
DO UNTIL ASI = A$2,
IF A$N < A$(N+!) THEN

*Some readers may wash to review the discussion of smngle and multi-line formats in Chapter 2

6 4 Arrays

Another example of the use of arrays appears in example I This program determines
the minimum, maximum, and average time required to invert a 5x5 MATRIX containing
random data

"
 H EXAMPLE_ '

M PROGRAM,

H DECLARE M IATRIXS, S);

H DECLARE-N-ATRIX(S,5I;

H DECLARE TIME ARRAYCI0])SCALAR INITIALCO);

H DECLARE SCALAR,

SmIN, TMAX, THEANI

H DECLARE INTEGER,

H 1, J, K,

H 0O FOR I = 1 TO 100,

M DO FORJ = I TO 5;

H DO FOR K 1 TO 5;

H = RANMH;
S JK

N END.

M END,

H TIME RUNTIME,

S I

M N =-M.

M TIE =.RUNTIME - TIME;

C NOW PROCESS THE HUNDRED-SAMPLES IN THE ARRAY [TIME]

H TIAX, TEAH. THIN = TIME

S

H DO FOR I = 2 TO 1o;

H TMEAM = TMEAN + TIME

S 1

M IF TI E > TMAX THEN

S I

11 TAX = TIME

S I

M IF TIMlE < THIN THEN

S I"

K THIN TIME

H END,

M THEAR = ThEAN / 100;

M CLOSE EXAMPLE_1,

In this example, two previously undefined functions, RANDOM and RUNTIME are invoked
RANDOM is used to set the matrix to a set of pseudo-random numbers, and RUNTIME
returns the value of the system's real time clock

Airaysof Integersand Scalars 6-5

It may be noted that the mi, max, and mean could have been computed within the
main loop without saving all of the values in an array. Saving the data allows additional
statistics, such as the median to be computed (see exercises) This method of obtaining
timing data may be inaccurate if the time required to read the clock is significant

HAL/S provides for multi-dinensional arrays These are typically used for ease of
subscripting and to contribute to the readability of a program by logical grouping of data
For example, suppose that instead of one accelerometer assembly as described earlier,
there were four of them, for reasons of fault-tolerance Then, we might declare the input
data as a two-dimensional array

DECLARE GYRO-INPUT ARRAY(4,3) INTEGER,

Now, GYROINPUTS$(3,2) is the second measurement from the third unit,
GYROINPUT$(I,1) is the first measurement from the first umt, and GYRO_INPUTS(l)
is all the data from unit one, 1e the same three measurements we had before The use of
an asterisk to indicate "all of a particular dimension" is the same as in VECTOR/MATRIX
subscrpting, the #, TO, and AT forms also apply Thus, GYROINPUTS(',I) is an array
containing the first neasurement from each of the four accelerometer units, and
GYROINPUTS(2 AT #-l,") is a 2x3 array containing three measurements from each of
the last two units In the next section we will see how these complex subscripts are used,
but first we shall examine the general form of multi-dimensional arrays (and finish process
ing the redundant accelerometer data along the way)

The maximum number of dimensions in an array depends on the particular HAL/S
compiler m use. All present HAL/S compilers allow from one to three dimensions In
declaring an array, the number of dimensions is denoted by the number of expressions
in parenthesis following the keyword ARRAY Thus,

DECLARE A ARRAY(5,9,4) SCALAR,

B ARRAY(IS0) SCALAR,

creates two arrays of 180 scalars, but A is 3-dimensional while B is linear The first element
of B is BS1, whereas the first element of A is AS(,1,l) Initialization works the same as in
single dimensional arrays Either a list of values containing one value per array element may
be provided, or a single value may be assigned to all elements Thus, the array A may be
initialized as

DECLARE A ARRAY(5,9,4) INITIAL(0),

or

DECLARE A ARRAY(5,9,4) INITIAL(180#0),

If we want A to be all zero except that AS(,*,3) = -1,-the following initial list can be
used

INITIAL(5#(9#(0,,- 1,0)))

6-6 Arrays

To understand why tins is correct, it is necessary to know that HAL/S stores arrays m
"Row-major order" This means that the values in the inital list are assigned m the follow
ing order

AS(l,1,1) = value 1
A$(1,1,2) = value 2
AS(1,1,3) = value 3
A$(1,1,4) = value 4
M$(1,2,I) = value 5
A$(1,2,2) = value 6

et cetera

The way to remember this fact is by noting that the right-most index isincremented the
most rapidly

Now, to illustrate the usefulness of multi-dinensional arrays, we will return to the
examples of four accelerometer assemblies The entire set of twelve measurements could
be processed as shown below

M EXA IPLE -
M PROGRAM,

M DECLARE GYRO INPUT APRAY(4, 3I INTEGER,

M DECLARE ATT.RATE ARPAYC4. 3) SCALAR,

M DECLARE SCALE ARRAYt3) CONSTANT.013, .026, 013);

M DECLARE 5IAS SCALAR INITIALJS7 296);

H DD FOR TEMPORARY I = 1 TO 4,

M DO FOR TEMPORARY J = I TO 3,

M ATT.RATE GYRO INPUT SCALE + BIAS,

S ,J Ili, J

M END,

M END.

M CLOSE EXAIPLE-2,

In thts code, SCALE is still declared as a array of three Since the four instruments are
identical, there is no need to keep four sets of scale factors Note, however, that if
GYRO INPUT had been declared as a linear ARRAY(12), we would have to either make
the SCALE array also of size twelve, or introduce more complex code to associate the
right scale factor with each of the twelve measurements Thus, a two dimensional array
may be a mechanism for performing identical operations on a set of similar linear arrays
just as a linear array may be used to perform identical operations on a set of similar integers
or scalars

6 1 1 Additional Examples

1) 	 Do a matrix multiply, M1 m M2 M3, with Ml, M2 and M3 declared as ARRAYs
rather than as matrices

I

Arrays of Integersand Scalars 6-7

" EYAMPLE_3-
PROGRAM;

" DECLARE ARRAY(3, 31,

m il, Me, M3,

m DECLAPE INTEGER,

K ROW, COL,
M DO FOR ROW= 1 TO 3,

m 00 FOR COL = 1 TO 3;
K Hi l2 M3 + 112 M3 + M2 Mt3

S RCWCOL ROW,1 iCOL ROW,2 ZCOL ROW,3 3,COL

M END;

M CLOSE EXAMPLE3,

2) Rotate the contents of an array of five scalars as shown by the illustration

M EXAMPLE_4"
M PROGRAM,

M1 DECLARE A ARRAY(5 SCALAR DOUBLE;

II DECLARE TEMP SCALAR DOUBLE,

M TEMP = A-

S 1

N lO FOR TEMPORARY T 1 TO 4,

M A z"A ;

S T T+1

M END,

N A =TElPI

S S

MI CLOSE EXAMPLE_4;

6-8 	 Arrays

3) 	 Find the square root of the mean of the squares of all the values in an array of
100 scalars

H 	 EXAMPLE S!
M 	 PROGRAM;

M DECLARE A ARRAY 100)

II DECLARE RiS SCALAR,

M DECLARE TOTAL SCALAR DOUBL TNITIALO],

M DO FOP TEHPORARY N 1I TO 100,

E
M TOTAL = TOTAL " A

S N

M END,

M RMS = SORT(TOTAL 1 o00;

C CLOSE EXAIPLE_5;

Exercises

6.IA Whioh of the following declarations lists are legal9

If they are legal, what do they create9

If not legal, why not9

a) 	 DECLARE X INTEGER INITIAL(3),
DECLARE LIST-ONE ARRAY(X) SCALAR INITIAL(6# 1),

b) 	 DECLARE X CONSTANT(4),
DECLARE ARRAY(X),

LISTONE SCALAR INITIAL(4# 2),

LISTTWO INTEGER,

c) 	 DECLARE LISTTHREE ARRAY(18) SCALAR INITIAL(10#.I,*),

d) 	 DECLARE LISTFOUR ARRAY(9,3) SCALAR INITIAL (3# 1,
3#(3#.2),D)N

e) 	 DECLARE LIST-FIVE INTEGER ARRAY(6),

Arrays of Jntegersand Scalar 6-9

6 1B a) In example I in the text, the minimum, maximum, and mean times required to
invert a 5x5 matrix are computed Modify the code of the example to include a
computation of the standard deviation, defined as follows

b)

where Yis the mean value of the time, and n is the number of samples

An alternate definition for standard deviation, easily shown to be equivalent
to the above, is

= x?_ (i)
11n

Using this formulation, it is possible to compute the standard deviation without
saving all the tune values in an array Rewrite the program of part a), eliminating the
array of time values Is it possible to compute the median value without saving all
the values2

6 IC In example_2, GYROINPUT and AlT_RATE are declared ARRAY(4,3)

The text states that if these variables were declared ARRAY(12) either SCALE
would have to be declared ARRAY(12) or more complex code would be needed

Keeping SCALE declared an ARRAY(3), modify the code given for example_2
such that GYROINPUT and ATT RATE are declared ARRAY(12), wule still
keeping the basic structure of the code given.

6 ID Instead of the modification of the array shown in EXAMPLE
will perform the following modificathonof array A

4, write code that

(- _.

6-10 Arrays

6.2 OPERATIONS ON ENTIRE ARRAYS

Most of the examples m this chapter have relied upon the iterative DO FOR loop to
sequence through the elements of an array Commonly, the loop has been used to apply
one statement to each array element, i.e

DO FOR I = 1 TO ARRAYSIZE BY 1,

(statement)

END,

Since this type of operation is so common, HAL/S provides a mechanism for combining
these three statements into one For example, to add one to each element of an array
could be coded as follows

DECLARE A ARRAY(1O) INTEGER,
DECLARE]INTEGER,

DO FOR I = 1 TO 10,

AV = ASt + 1,

END,

or, by eliminating the subscnpt and the loop, could be recoded as shown below

DECLARE A ARRAY(l0) INTEGER,
A = A+l,

This assignment is an example of an arrayedstatement A statement which operates on all
the elements of an array Here the effect is the same as in the form with a loop, i e each
element of A is incremented In general, an arrayed assignment statement results whenever
the target (left-hand side) of the assignment is an array There are two possibilities for the
expression to the right of the = sign It may be either a simple expression (eg "' or
"SQRT(3)") or it may be an anayedexpiesston (e g "[A] + 1" or "[A]/2") In the former
case, every element of the target array is set to the value of the expression In the latter case,
one additional rule applies The arrayness (number and size of dimensions) of an arrayed
expression must be exactly the same as the arrayness of the variable to which it is assigned.
Tlus must be true because each element of the target array is set to the corresponding
element of the arrayed expression An arrayed expression follows the same rules as an
unarrayed expression except that some or all of the variables are arrays (of identical
dimensions) Thus, if

A - CX 2 + DX + 5,

is a legal HAL/S statement involving sample variables A, C, D, and X of any data type,
then

[Al = [C] [X12 + D[XI + 5,"

*The HAL/S compiler annotates arrays with square brackets m the output listing Thus, the assgnment
statement would appear as [A] = [A] +],

Operationson EntireArrays 6-11

where A, C and X are identical arrays of the same data types, is also legal In general, all of
the anthmetic operators (e g +, -, /, ete) will accept either two simple variables, a sample
variable and an array, or two arrays of identical dimensions

Note, however, that the machine code generated to correspond to an arrayed statement
still contains a loop, this fact is important when assessing the efficiency of a computation

The following shows how the partition form of array subscripting is used Given

DECLARE GRID ARRAY(6,6) SCALAR,

a variety of re-arrangements of the array can be done in a very few statements

1) Set the top half to the bottori half

GRID1 TO 3,w = GRID4 TO 6,'

2) Set the upper left quarter to the lower right comer

GRID1 TO 3, 1 TO 3 = GRID 3 AT 4, 3 AT 4

3) Set the first row to the sum of the other five

GRID 1 .* GRID 2 - + GRID3 ,* + GRID4 ,. +

GRIDs,. + GRID 6 , ,

4) Set the border to zero

GRID1 A , GRID., 6 , GRID6 ,. , GRID*,I = 0,

This last example is a multiple assignment statement, to which one additional rule
applies If one or more of the target variables in a multiple assignment statement is an
army, then all of the target variables must be arrays and of identical dimensions

One caution is in order regarding assignments like these Consider the assignment,

GRIDS(I,2, TO #) = GRIDS(,1 TO #-1),

This statement might be intended to shift the top row one position to the right Instead, it
sets GRIDS(1,2 TO #) to GRIDS(,1), the first element is propagated throughout the row
The reason can be seen when the arrayed assignment is unravelled

GRIDS(l,2) = GRIDS(I,l),
GRIDS(l,3) = GRIDS(l,2),

This adverse effect can occur whenever a partition of an array is set from an intersecting
partition of itself Such assignments should always be checked by partially expanding them
by hand

IALA PAGE IS

OF R QUALITY

6-12 Arrays

Using the feature introduced intls section, we can make the redundant accelerometer
example of Section 6 1 more compact

1 IEXAHPLE-6

Mi PfO5RAM,

M DECLARE ARRAY(4, 3),

H GYROIHPUT INTEGER,

H AT _RATE SCALAR;

I' DECLARE SCALE ARRAY(31 SCALAR CONSTANT(.Of3l .026,- 013),

M DECLARE BIAS SCALAR CCNSTANV(S7 296).

M1 1O FOR TEMPORARY DEVICE = I TO 4

K [ATT RATE] [GYROINPUT] [SCALE) 4 BIAS;

S OEVICE,* DEVICE,*

M E.D,

M CLOSE EXAr'PLE .6;

Here, we have converted an unarrayed statement in double loops to an arrayed state
ment in a single loop Since the SCALE array is of size 3 and the other arrays are 4x3, we
cannot eliminate both loops without getting an arrayness mismatch in the assignment
statement But it ispossible to have an assignment statement with more than one dimension
of arrayness as long as all of the variables match Thus, we could compute a set of four
attitude arrays

DECLARE ATTITUDE ARRAY(4,3) SCALAR,

DECLARE ATTRATE ARRAY(4,3) SCALAR,

from the attitude rates in a single statement merely by

[ATTITUDE] = (ATTITUDE] + (ATT_RATE] DELTAT,

where DELTAT is a SCALAR representing the time between samples This one state
ment is functionally the same as

ATTITUDE$(I,I) = ATTITUDE$(l,l) + ATT RATES(I1,I) DELTA_T,

ATTITUDES(I,2) = ATTITUDES(I,2) + ATT RATES(1,2) DELTAT,

ATTITUDESCI,3) = ATTITUDES(1,3) + ATT_RATES(l,3) DELTAT,

ATTITUDES(2,1) = ATTITUDES(2,1) + ATTRATE$(2,I) DELTA_7,

ATTITUDES(4,3) = ATTITUDES(4,3) + ATrRATES(4,3) DELTAT,

(a total of twelve sunple assignments)

In addition to arrayed assignments, HAL/S also allows arrayed comparisons It is
possible to compare an entire array or arrayed expression, either with a simple variable
or with an identically dimensioned array or arrayed expression For example, we could
create a 4 by 4 array showing mismatches between the four sets of ATTITUDE data (each
an ARRAY(3) partition) as shown I

Operationson Entire Arrays 6-13

" EXAMPLE 7-
H PROGRA;
"
N
"

DECLARE ATTITUDE
DECLARE MISMATCH
DECLARE INTEGER,

ARRAY(4.
ARRAY(4,

3)
4)

SCALAR,
IITEGER;

M 1, J.
H DO FOR I n1 TO 4,
M NISMATCH 0;
S IlI

H DO FOR J = I + I1 TO 4,
H IF [ATTITUDE] [ATTITUDE1 THEN
S I,*Al

M MISMATCH MMISMATCH = 1;

s, I,J

ELSE

M MISMATCH MISMATCH = 0;

ii END,

M CLOSE EXAMPLE_7,

In this example, the statement

"IF ATTITUDE$(I,-) -1 = ATTITUDES(J,-) THEN

is an arrayed comparison Each element of ATTITUDES(I,() is compared with the corre
sponding element of ATTITUDES(J,-) If any of the pairs of elements is unequal, then the
comparison succeeds and MISMATCH(IJ) is set to 1 Thus, tis statement is functionally
equivalent to

IF 	(ATTITUDE$(I,1) 1 = ATTITUDE$(JI)) OR

(ATTITUDES(I,2) -1 ATTITUDES(I,2)) OR
(ATTIDUDE$(I,3) -1 = ATTITUDE$(33,)) THEN

Two arrays are considered unequal if they differ in any element, they are equal if they do
not differ in any element (ie they are equal if all elements are the same)

It is also possible to compare an array with an arrayed expression, for instance the
statement

"IF ATTITUDES(I,*) = (ATTITUDES(2,*) + ATTITUDES(3,')) /2 THEN

would determine whether or not the firt set of readings was equal to the average of the
second two. Finally, an array may be compared with a simple variable or expression, e g

IF 	 [MISMATCH] -1 = 0 THEN

or

IF ATTITUDE$(2TO4,1) = ATTITUDES(l,1) THEN

DR"roN-AM PAG IS
OP POOR QUALITy

6-14 Anrays

Regardless of the data types involved, the only comparisons wich may be made between
arrayed operands are equal (-)and unequal (-=) Tis restriction is made for the same

reason as in VECTOR/MATRIX comparisons The question, "Is A - (1, 57, 3) greater than
B M(2,4,3)9" has no clear answer

Exercises

6.2A 	 Which of the following are legal arrayed statements (expressions).

Where

A ARRAY(5) D ARRAY(5,5)
B ARRAY(5) E ARRAY(l0,10)
C ARRAY(0)
X INTEGER
Y SCALAR

a) A B,

b) A C,

o) A X,

d) D$(4,5) = B,

e) D$(5,") =Y,

o ES(5,-) = B,

g) E$(5 AT 2, 3TO 7) D,

h) A, B X,

) A,Y X,

j) C$(5AT3) = A + B,
k) C(5AT4) A + X,

1) C$(B) = X,

m) DO WHILE A > X,

n) DO UNTIL A = B,

o) DO UNTIL A -1= C,

p) DO WHILE DS(2 AT 2,2 AT 3) E$(2 TO 3, 3 TO 4),

q) DO WHILE D$(*,3) = A,

r) DO WHILE A$(1,1) = X,

s) DO UNTIL A = CS(5 AT 4),

t) DO UNTIL B = E$(7,6 TO #),

6 2B 	What are the major benefits of the ability to do operations on entire arrays in one
line of code9

Arrays of Other Data Types 6-15

6 3 ARRAYS OF OTHER DATA TYPES

So far in this book, five data types have been introduced INTEGER, SCALAR, VEC-
TOR, MATRIX, and BOOLEAN An array of any of these types can be created in a manner
completely analogous to tlie INTEGER/SCALAR arrays already descnbed For instance,
one array of each type can be created in a single DECLARE statement

DECLARE ARRAY(I0),
I INTEGER,

S SCALAR,

V VECTOR,

M MATRIX,

B BOOLEAN,

Each of these arrays consists of ten array elements, each element behaves in the same way
as a simple variable of the same data type In the case of an array of VECTORs (e g V
above), each array element m turn consists of several components (in this case, three
scalars) Hence, if V were to be completely initialized, 10 x 3 = 30 values would be re
quired As m INTEGERISCALAR arrays, the INITIAL list may contain either a value for
every array element or a "single" value (i e initialization for one VECTOR or for one
MATRIX) For example

DECLARE A ARRAY(2) VECTOR INITIAL(i,0,0,1,0,0),

creates

as does \ [)
DECLARE A ARRAY(2) VECTOR INITIAL(l,0,0),

and,

DECLARE M ARRAY(3) MATRIX(2,2) INITIAL(I,2,3,4,5,6,7,8,9,10,11,12),

creates

6 Jj[9 10jM.=([l3= 42],[57 8 1 12

The same initial list could also be used to intialze a three by two array of 2-VECTORS

DECLARE X ARRAY(3,2) VECTOR(2) INITIAL(1,2,3,4,5,6,7,8,9,10,11,12),

6-16 Arrays

But in this case, the layout of the data is sigmficantly different

X2E5
This is not merely a distinction of graphical representation The concepts of data type

and arrayness are completely independent Thus given

DECLARE M MATRIX(2,2) INITIAL(ab,cd),
DECLARE N MATRIX(2,2) INITIAL (e,f,g,h),
DECLARE A ARRAY(2) VECTOR(2) INITIAL(e,fg,h),

the assignment statements,

* *ANN=MN,

and

[A] 	 = M (A],

perform very different operations "N = M N" is a sample matrix multiplication as described
in Chapter 2, but "A = M A," is an arrayed statement, it does two (the arrayness) multiplica
tions of a vector by a matrix The results would be

* 	 [ae + bg af+bhl

N e + dg ef + d]

[Al 	 = ai I ag +bh~'I(e+ bfl [g 	+ dhj
\e 	 + df '

As indicated above, arrayed statements may be formulated from arrays of VECTORs
and/or MATRIXes according to the usual rules All of the VECTOR/MATRIX operations
may be applied to two simple variables (or expressions), to an array and a simple variable,
or to two arrays of identical dimensions To see how arrayed operations on these data
types _might be used, consider the following situation An aircraft has a position VECTOR,
MYPOSN, and access to an array of five other vectors, [POSITIONS], which gives the
locations of five other aircraft The code below, which executes every DELTAT seconds,
computes the velocity of each aircraft, the distance between each aircraft and MYPOSN,
and the rate of approach of each toward MYPOSN

Arrays of OtherData Types 6-17

H EXAMPLE 8:
M PROGRAM,
11 DECLARE POSITIONS ARRAY($) VECTOR,
M DECLARE OLD_POSH ARRAY(5) VECTOR,

DECLARE ARRAY(S),
M VELOCITY VECTOR,
M DISTANCE SCALAR,
H APrROAC RATE SCALAR, /*THE ANSWERS*/
N DECLARE MY-POSH VECTOR,
II DECLARE DELTA.T SCALAR,

C oTAIH POSITIONS FROl OUTSIDE

II (VELOCITY] = ([POSITIONS] - (OLDPOSH!] / fELTAT;

E-
M (DISTANCEJ = ABVAL(rPOSITIONSI - KYPOSNh;
E
N LAPPFROACRRATE! = VELOCI . UNfT([POSITXONS? - MY POSH);
E - -

M [0La OSN] = [POSITIONS];

El CLOSE EXAMPLE.;

Each of these assignment statements has an arrayness of five The second one, for
from each of the five VECTORS in POSITIONS, proinstance, first subtracts MY_POSN

onducing an array of five "distance" VECTORS Then the ABVAL function operates

each VECTOR in turn producing a scalar distance which is stored into the corresponding

element of DISTANCE

So far we have been deliberately avoiding any subscripts of arrays of VECTORs and

MATRIXes This is because a long list of subscripts can be rather confusing For instance,

a three dimensional array of MATRIXes could have up to five subscripts, Given

"DECLARE M ARRAY(2,3,4) MAThIX(5,5),"

one imght expect the first MATRIX to be referenced as "M$(I,1,.l,, ')" which is fairly

complicated, though more comprehensible than "MS(J+1,2 AT J-1,",3 AT #-4,2) " To

aid in dealing with these difficulties, HAL/S makes a distinction between array subscripts

and component subscripts The first three subscripts of M are array subscripts and the last

two are component subscripts, To make subscript expressions more readable, HAL/S en

forces the following rule' Whenever both array and component subscripts are applied to a

variable, they are separated by a colon instead of a comma Thus, the first MATRIX in the

array M is actually "M$(I,1,l *,*)" Using this syntax, we can re-write the second assign

ment statement from the example above the hard way, that is

[Distance] = ABVAL([POSITIONSI -MY P-OSN),

is equivalent to

PAGE ISOPIGTNA

OF POOR QUALITY

618 ArraYs

DISTANCE1 = SQRT((POSLTIONSS(t 1)-MY_POSNI)**2

+ (POSITIONSS(I 2)-MYPOSN2)*t 2

+ (POSITIONS$(1 3)-MYPOSN)"*2),

DISTANCE 2 = SQRT((POSITIONSS(2 1)-MYPOSN)*2

+ POSITIONSS(2 2)-MYPOSN2)**2

+ POSITIONS$(2 3)-MYPOSN3)"-2),

DISTANCE 5 = SQRT((POSITIONS$(5 i)-MYPOSNI)**2
+ POSITIONS$(5 2)-MY_POSN2)**2

+ POSITIONS$(5 3)-MYPOSN3)'2),

Aside from the use of the colon, all of the possibilities for subscripting still apply All
of the TO, AT, and partitions may be used on either side of the colon, any arithmetic
expression may be used as a subscript, and a subscripted variable may be used in any con
text in which a simple variable of the same data type could be used

The data type of a subscripted array is not necessarily the same as the data type of the
entire array For instance, given

DECLARE A ARRAY(3,2) MATRIX,,

A is a two-dimensional array of type MATRIX,*

AS(1,-" -,*) is a one-dimensional array of type MATRIX,*

A$(I,* 1,*) isa one-dimensional array of type VECTOR,*

and

A$(I,1 1,1) isa single SCALAR

It is more common to reference an entire array element or sub-array than it is to refer
ence a component of an array element or some sub-array of partitions, etc Therefore,
HAL/S provides a more compact form for referencing an entire element of an array to
which component subscripting could also apply When an entire array element is selected,
the asterisks (component subscripts) to the right of the colon may be omitted Hence,
the first MATRIX in the array A above can be referenced as "AS(l,l)" The convenience
of this form of subscript is illustrated by the program below which processes an array of
"N" 3-VECTORs and saves the three having the greatest magnitudes m a second array

*Each occurrence of A in the hsting will automatically be annotated with an overpunch reflecting the effect
of subscripting on A,

i

Arrays of OtherData Types 619

M EXAMPLE 9;

N PPOGRAM;

DECLARE V APPAY(9991 VECTOP(31,
H DECLAE BIGTHREE ARRAYI3J VECTOR3) INITIALIO);
M DECLARE 11INTEGER, /NUNBER OF ACTUAL ENTRIES IN V.
H O FOR TEMPORARY I = I TO N,
M INNER
N DO FOR TENPORARY J = I TO 3;
E
M IF ABVAL(V) > AVAIJBIGTHREE) THEN
S I: j

M DO,

N DO FOR TEPORAY K J + 1 TO 3;

E - -

N aBGTHREE BIGTHREF

S K: K-i.

E - -

M
S

SIGTHREE
.J"

V p

H EXIT INNER, /* TRY NEW I /

M
N
N
H

END,
END INNER,

END,
CLOSE EXAiPLE9,

6 3 1 Arrays of BOOLEANs

BOOLEAN arrays are not substantially different from arrays of other data types The
only attribute of BOOLEAN arrays that does not directly follow from the previous discus
sion is Whenever a BOOLEAN array is subscripted, the subscript must end with a colon
The reason for this restncton is that BOOLEAN is actually a special case of BIT strings '-

Like VECTORs and MATRIXes, bit strings may possess component subscripts Thus, even
though a BOOLEAN has only one component (a single bit), the colon must be supplied
to indicate that the subscript is an arraysubscript rather than a component subscript

Aside from this restnction, BOOLEAN arrays are used in the same way as arrays of
other types, declaration and initialization take the same forms

DECLARE ARRAY(12) BOOLEAN,
A,
B INITIAL(OFF),
C IN1TIAL(OFFON,9#ON,OFF),

and arrayed assignments and comparisons also function as before

[A]S(I TO 6.) = [B]1$(1 TO6) & (AS(1) OR [B]$(7TO 12),
IF A] = TRUE THEN

One typical use of BOOLEAN arrays is for maintaining status tables For instance, if
we had a set of redundant altimeters producing an array of altitude values

**Bit strings are fully described m Chapter 13 The word BOOLEAN is exactly equivalent to "BIT(l)"

6-20 Arrays

DECLARE ALT ARRAY(4) SCALAR,,

and a "parallel" array containing the tume at winch each value was read

DECLARE TIMETAG ARRAY(4) SCALAR,,

then it might be useful to define a boolean array of the same size

DECLARE DATAVAL-ID-ARRA-Y(4) BOOLEAN,,

each element of wich indicates the validity of the corresponding altitude value Ore pos
sible form of this reasonableness check isshown below

M EXAHPLEA-

I POGRAM;

N DECLARE ARRAY(41,

M. ALT SCALAR,
hi T11ETAG SCALAR,

I DATA VALID BOOLEAN,

M DECLARE SCALAR ZNITIAL(O),

H TOTAL. NUMBEIGOoD;

H DECLARE AVERAGE SCALAR;

M DO FOR TEHPORARY J = 1 To 4;

M IF RUNTIME - TIHETAG
> .1 OR ALT = 0 OR ALT > 50000 THEN

H DATAVALID = FALSE;

s j-

M ELSE

M DO,

E

K DATA-VALID = TRUE,

S J

N NUMBER GOOD =IJHUBEI GOOD + 1;

ii TOTAL = TOTAL . ALT

S 3

M END;

M END,

IM AVERAGE = TOTAL / N1hMBEPGOOD,

M DO FOR TEMPORARY I1 1 TO 4;

E
M IF DATA-VALID THEN

S I:

K IF ABSIALT - AVERAGE) > 1 AVERAGE THEN

S I

H DATAVALID - FALSE;

S I

MI END;

NOW WE HAVE SCREENED OUT DATA WHICH IS NEGATLYE OR ZERO,

C OR TOO LARGE OR TOO OLD

t
OR TOO FAR FROM THE AVERAGE

H CLOSE EXAtPLEAM

C

Arrays of OtherDataTypes 6-21

Exercises

6 3A 	 Wnte out graphically the results of the following intializations

1) DECLARE X ARRAY(3) MATRIX(3,3) INITIAL(9# 1,*)

a) DECLARE Y ARRAY(3,3) VECTOR(3) INITIAL(9# 1,)

m) DECLARE Z ARRAY(9) VECTOR(3) INITIAL(9# 1,*)

iv) DECLARE A ARRAY(27) SCALAR INITIAL(9# 1,*)

6 3B 	 In the previous problem, the imtiahizations lists were transformed into their graphi
cal interpretations Using this data, assign the twenty-first element of the lmeariza
tion of X, Y, Z, and A to a scalar variable, S

6 3C 	 Given a variable M, declared MATRIX(3,9)

Assign the 16th through 22nd elements of the linearization of X, Y, Z, and A to
the 2nd through 8th elements in the hneanzation of M

6 3 IA 	The Sieve of Eratosthenes is an ancient Greek method for computing prime num
bers, but it still works today and is quite suitable for a computer The algorithm
works as follows

Start with a list of integers from 2 to the largest number of interest Cross out all
multiples of 2, then all multiples of 3, and so on The remaining numbers are then
all prime

Write a HAL/S program to print out all primes less than 1000, using the Sieve of
Eratosthenes (Hint Use an ARRAY of BOOLEAN type to indicate if a number
is pnme or not)

Pah-'G

OQuL 0 4

6-22 Arrays

6 4 FUNCIONS OF ARRAYS

In Section 6 2 we saw that the statement

= [B] 1/2,."[A]

where A and B are identically dimensioned arrays, results in each element of A being set to
the square root of the corresponding element of B As the reader might expect, the same
result may be obtained by the statement

"[A] = SQRT([B]),".

Whenever any of the built-in functions introduced so far is applied to an array, the result
is an identically dimensioned array where each element is the result of applying the function
to the corresponding element of the arrayed operand Similarly, the rules for functions of
two arguments, such as MOD or DIV, are the same as for infix operators (e g +, -, I-, etc),
both arguments may be unarrayed, or one may be arrayed and the other unarrayed, or both
may be arrayed (and of identical dimensions) This usage, the arrayedinvocation of a func
tion, has been amply illustrated in the previous section, HAL/S also provides a set of func
tions that will only accept arrayed arguments

One of the examples in Section 6 1 gathered some statistics on the execution time of
the matrx inverse operation A SCALAR ARRAY(I 00), TIME, was filled with 100 samples
of the execution time of an assignment statement Then the variables TMIN, T9MAX,
and TMEAN were set to the mumnum, maximum and mean values from the array by
means of a loop More compact code for the same function is shown below

TMIN = MIN([TIMB]),

T_MAX = MAX([TIME]),

TMEAN = SUM([TIME])/100,

Here, the built-in functions, MIN, MAX, and SUM, reduce an array to a single unarrayed
value Each of these functions (and a fourth, PROD) requires an arrayed operand The
array may be either INTEGER or SCALAR (of either precision), and the result is an unar
rayed value of the same data type and precision

The SUM function simply adds all of the array elements together

"SUM([A])"

is equivalent to

"AS1 + A52 + t- A$n"

The PROD function multiplies all of the elements together m a similar manner (ASI)
(A$2) (A$3) (A$n) MIN and MAX both search through the array, and return the
value of the array element which is algebraically smallest (MIN) or largest (MAX) All
of these functions will accept a multi-dinensional array, but the result returned is always
unarrayed Thus, given

FunctiDnsof Arrays 6-23

[A] (5,17,-3,21),

MIN([A]) = -3,

MAX([A]) = 21,

SUM([A]) = 40, and

PROD([A]) = -5355

The results will be exactly the same whether A is declared as

DECLARE A ARRAY(2,2) INITIAL(5,17,-3,21),

or as a liner ARRAY(4)

6 4 1 Shaping Functions

Throughout this chapter we have stressed the fact that a linear array is not the same
type as a VECTOR, and that a two dimensional array is not the same type as a MATRIX
Sometimes, however, it is useful to be able to convert one type to the other For instance,
we might want to use arrayed statements to compute the x, y,and z components of t
vehicle's position from some complex sensor, and then to treat the results as a 3-VECTOR
for further computations We already know from Chapter 2 that given

"DECLARE A ARRAY(3) SCALAR,

V VECTOR,"

the conversion can be made by

"V = VECTOR(ASI,A$2,AS3),"

In fact, the form, "V = VECTOR([A])," is completely equivalent Both the VECTOR
and MATRIX conversion functions will accept any mixture of arrays and simple variables
as operands, provided the total number of elements is correct When an array is specified
as an operand to one of these functions, it is "unraveled", ie it is effectively replaced with
a list of its elements In the same way, an array of vectors can be unraveled for assignment
to a larger vector

DECLARE AV ARRAY(2) VECTOR(3),
DECLARE VEC6 VECTOR(6),
VEC6 = 	 VECTOR 6 ([AV]),

The statement above is functionally equivalent to

V3 AT I	= AV,

=
V3 AT 4 AV2

SPOOR QUALITY

6-24 Arrays

The MATRIX function works in much the same way, a 3 by 3 MATRIX, M, can be assigned
as

M = MATRIX([AV] ,[A]),

yielding

AV$(I 1), AVS(I 2), AVS(I 3)

M AVS(2 1), AV$(2 2), AVS(2 3)

AS1, AS2 , A$3

To perform the reverse conversion, the INTEGER and SCALAR functions are used
These functions have already been introduced as explicit type conversions, when they are
used with multiple simple arguments or any type of data aggregate (arrays, VECTORs,
etc) they return an arrayed result. Thus, using the previous declaration, we can set an array
to a VECTOR as

[A] = SCALAR 3 (V),

The SCALAR (or INTEGER) function will accept any number of arguments of any anth
metic type so long as the total number of SCALAR or INTEGER values agrees with the
subscript of the function

These functions have a number of uses They may be used to convert the type of data as
shown above, to Initialize an array, as in

[SMALLPRIMES] = INTEGER 5 (I,2,3,$,7),

or, to re-arrange the elements of an array (hence the term "shaping functions")

DECLARE A12 ARRAY(12) INTEGER,
DECLARE A4X3 ARRAY(4,3) INTEGER,
DECLARE A3X4 ARRAY(3,4) INTEGER,

[A12] = INTEGER 1 2)([A4X3]),

[A4X3] = INTEGER 4 ,3 (LAI2]),

[A3X4] = INTEGER 3 ,4 ([A4X3]) ,

When, as in the last two statements above, the INTEGER or SCALAR functions possess
multiple subscripts, the result is a multi-dimensional array Each subscript denotes the size
of one dimension of the array

Each subscript of the INTEGER or SCALAR function must be computable at compile
time (i e each must be an arithmetic expression involving only literals and CONSTANTs)
In addition to the subscript, the precision specifiers, @SINGLE and @DOUBLE may be used
to change the precision of the operand Just as in the VECTOR and MATRIX functions,
the precision specifier is used as a subicript and must precede the arraydimensions Thus, an
ARRAY(12) SCALAR, S, can be converted to a 2x6 INTEGER DOUBLE array, I by

[I] = INTEGER@DOUBLE,2,6([S]),

FunctronsofArrays 625

Exercises

6 4A 	 Change the solution of the 3rd exercise in Section 6 3 from the rather unwieldy and
hard to read assignments to simpler ones using the vector shaping functions

6 4B 	 Assuming the following declarations

DECLARE X ARRAY(2,3) SCALAR INITIAL(2#(IA,2 2,3 3)),

DECLARE V VECTOR(3) INITIAL(3# 1),

Depict graphically the resalts of the following shaping functions applied to X and V

i) INTEGER(X)

ii) INTEGER(X,X)

ni) SCALAR(V)

iv) INTEGERSS(2,6) (2#X)

v) MATRIX(3#V)

vi) VECTORS(6)(X)

6 4 1A Use vector shaping functions to provide a clearer solution to exercise 6 3-C

(Note This problem requires that the reader see Section 6 5 1 of the Language
Specification)

6 4 1B 	Given the following declarations

DECLARE X ARRAY(2,3) SCALAR INITIAL(2#(l 1,2 2,3 3)),

DECLARE V VECTOR INITLAL(1)

State the types and depict graphically the values of the following expressions

a) INTEGER(X)

b) INTEGER(X,X)

c) SCALAR(V)

d) INTEGERS(2,6) (2#X)

e) MATRIX(3#V)

6-26 Arrays

End of Chapter Problems

6A 	 The median value of the elements of an array of odd dimension may be computed
by sorting the elements in increasing order The middle element of a sorted array is,
an fact, the median value Write a program to find the median value of an array of
25 integers A simple, though not very efficient, sort algorithm may be described
as follows

Find the smalleot element of the array If it is not the first element, exchange it with
the first Then find the smallest of the remaining elements If it is not the second
element, exchange it with the second Continue until the entire array is sorted

An advantage of this algorithm for the median-value problem is that it is not neces
sary to sort the entire array, finding the 13th smallest element is sufficient

6B 	 We have made many timings of 3 processes A, B, and C The results of our timings

are in an array TIM-VALUES declared,

TIMVALUES ARRAY(3,25) INTEGER

We now wash to process this information, finding the sum for all 25 timings of each
process A, B, and C, and the sums of the times for each set of timings for A, B, and
C (i e, row and column totals) This information is to be put in an array together
with the raw data, and this array is to be called TIMING-DATA

Write a segment of code that will create this new array and do the necessary infor
mation processing

Include any assumptions made and any new vanables declared

UserDefined Functwns 7-1

7.0 PROCEDURES AND FUNCTIONS

In HALlS, the concept of a subroutine is realized in two forms PROCEDURES and
FUNCTIONS Each is a block of code delimited by a block header and a CLOSE statement
These code blocks may be nested within PROGRAMS or within each other to any degree,
scoprng rules restrict the variables each block may reference, thus avoiding a large class of
potential programming errors HAL/S PROCEDUREs and FUNCTIONs have two basic
uses to share a sequence of statements among different paths through an algorithm, and to
segment a programming problem into manageable parts

7 1 USER DEFINED FUNCTIONS

HAL/S includes a large assortment of built-in functions These include trigonometric
routines (SIN, ARCTAN), algebraic routines (SQRT, EXP), conversion functions (INTE-
GER, VECTOR) and many others These functions may be used in expressions along with
variables, constants and operators, they add to the power of the language by eliminating
much low level coding and allowing sophisticated operations to be expressed very com
pactly The set of built-in functions is a part of the language, but HAL/S also allows the user
to define new functions which may then be used in exactly the same way as the built-ins

One type of operation which occurs frequently in flight software is the limiting of a van
able to a given range A FUNCTION to perform this operation is Shown below

m LfHIt"

n FUNC-ioN(VALUE, BOUND) SCALAR,

M DECLARE SCALAR,

H VALUE, BOUND,

M IF VALUE > BOUND THEN
M RETURN BOUND,

H IF VALUE < -BOUND THEN

M RETURN -BOUND;

i RETUIRN VALUE,

M CLOSE LIMIT,

The function block is delimited by FUNCTION and CLOSE statements The CLOSE state
ment is tile same as in PROGRAMs, it consists of the word CLOSE and an optional block
name The FUNCTION statement contains three pieces of information the label on the
statement, which defines the name of the function, the names of the formal parameters
(sometimes called dummy arguments), and the return-type of the function

LIMIT is a scalar valued function of scalars This fact is denoted by the word SCALARt
on the FUNCTION statement and the declaration of the formal parameters In general, a
function's parameters and return value may be of any data type, hence the return type must
always be specified on the FUNCTION statement and the formal parameters must always be
declared Declaring the formal parameters prior to any local data is good programming prac
tice and should be treated as a requirement

The operation of the LIMIT function may be seen from the following illustration, which
isa graph of Y=LIMIT(SIN(X), 1/2), for dk x < 5 p/2

EXRGMtAJ PAGE IS

QEQOR QUALITY

7-2 procadures and Functions

10

n/2 3w/2

71X

Limit Function

Functions must always end by executing a RETURN statement The RETURN state
ment always has one operand which represents the value of the function The value returned
may be a variable, as in LIMIT, or any expression of the appropriate data type Sometimes
the executable code of a function consists of only the RETURN statement, for instance

K MASS-
M FUNCTIONR!STNASS, SPEED) SCALAR;

I ' DECLARE SCALAR,
ft RE5T.MASS, SPEED;
N TAU

M FUNCTION(V1 SCALAR;

M DECLARE V SCALAR,

M DECLARE C CONSTANT429800001,
E 2
N RETURN SQRT(I - V / C 1;
ii* CLOSE TAU;
* RETURN RESTHASS / TAU(SPEED,;
* CLOSE MASS;

Using these functions, the apparent mass of a 100-ton vehicle moving at 20 kilometers
per second can be computed by

APPARENTMASS = MASS(I00,2'0),

UserDefined Functions 7-3

As it turns out, the MASS function is not going to be very useful Twenty kilometers
per second is so slow (compared with the speed of light) that the relativistic mass increase
will be lost in the round-off errors inherent in the computation To find the range over
wlnch this effect can safely be ignored, we could execute the following code

DECLARE V SCALAR,
DO FOR V = 250000 TO 0 BY -100 UNTIL

ALMOST EQUAL(1,MASS(I,V)),
END,
WRITE(6) 'THE ANSWER IS ', V,

This code references an additional user function, ALMOSTEQUAL, which could be
written as shown below

1I ALIOSTEQUAL,
II FUNCTIONCA, B) BOOtEAN;

H DECLARE SCALAR,

hi A. B;
11 DECLARE TOLERANCE SCALAR,
M IF B -= O THEN
H TOLERANCE = 000001 AS(8).
M ELSE
M TOLERANCE = 000001,

ri IF ABSCA - B) > TOLERANCE THEN
M RETUPN FALSE,

N ELSE
I RETURN TRUE;

M CLOSE AUIOST.EQUAL;

ALMOST EQUAL is a BOOLEAN-valued function of scalars, as denoted by the word BOO-
LEAN on the function header and the declaration of the formal parameters Hence the RE-
TURN statements have BOOLEAN operands TRUE and FALSE

Since no other data type is automatically converted to BOOLEAN, a BOOLEAN expres
sion is the only permissable operand to the RETURN statement of a BOOLEAN function

Likewise, the RETURN statement of a VECTOR or MATRIX function must be supplied
with a VECTOR or MATRIX expression, respectively Exact matching of data type is not
always required, however, the same implicit conversions that can be performed in an assign
ment statement can also result from a RETURN statement These conversions are

I Single to double precision

2 Double to single precision

3 Integer to scalar

4 Scalar tointeger

5 Integer or scalar to character

7-4 Proceduresand Funcuons

Aside from these exceptions, the value returned by a function must be of exactly the same

type as that specified on the function header

The function header serves as a declaration of the function Variables must always be
declared before they are used in expressions, the same rule applies to functions as well
Therefore, function bodies are usually placed before their first invocation in a program

However, in the previous example, ALMOSTEQUAL was defined after it had been
used in an UNTIL phrase In this caseit is-possible to make a valid HAL/S program-without
moving the function body, by DECLARING the function before it is used, as shown in the
example below

II EXA1WRLEJIl
II P2UOGtPAM

M DECLARE V SCALAR;
H DECLARE AL[IOST EQUAL FUNCTION BOOLEAN; /<--w
H MASS
H FUNCTIOH(PESTIASS, SPEED) SCALAR;
[DECLARE SCALAR,

MI RESTMASS, SPEED;

H TAU-

M FUIltTIOH(V) SCALAR,

Ii DECLARE V SCALAR,

C

C
C

M CLOSE TAU;

c
C

C

M CLOSE ASS,

E

iH DO FOR V 250000 TO 0 BY -100 UNTIL ALNOSTEQUAL(l, MASSIl. Vfl;

H END,
M WRITE(62 'THE ANSWER IS-, V;

M ALMOSTECUAL

M FUlCTION(A. 51 BOOLEAN,

M DECLARE SCALAR,

H A, B,

C
C
C

H CLOSE ALOST.-EqUAL;

H CLOSE EXAIPLE14;

The FUNCTION DECLARE statement has the same general form as a variable declaration
except that the word FUNCTION (with no argument list) precedes the type specification
Of course it is always possible to place a function body before its first invocation as was
done with MASS and TAU above, in which case the DECLARE statement is unnecessary

User Defined Functions 7-S

Exercises

7 1A What values will be written by the following HAL/S program9

PROBLEM PROGRAM,

DECLARE I INTEGER INITIAL(I),

PROCI PROCEDURE,

DECLARE I INTEGER INITIAL(1),

CALL PROC2,

I = I + 1,

WRITE(6) 1,

CLOSE,

PROC2 PROCEDURE,

I I + I,

CLOSE,

CALL PROCI,

CALL PROC2,

I = I + 1,

WRITE(6) I,

CLOSE PROBLEM,

7-6 Proceduresand Functions

97 lB 	 What are the syntax errors in the following HAL/S program (Line numbers are for
reference only)

1) PROB2 PROGRAM,

2) DECLARE X INTEGER,

3) CALL PROCI,

4) CALL PROC2,

5) 	 Y=Y+i,

6) PROCI PROCEDURE,

7) DECLARE Y INTEGER,

8) CALL PROC1,

9) CALL PROC2,

10) X = X + 1,

11) PROC2 PROCEDURE,

12) X--X+ 1,

13) Y = Y + 1,

14) CLOSE,

15) CLOSE,

16) CLOSE PROB2

71C

00

Arguments and Parameters 7-7

Consider the above nesting diagram that depicts the soping of blocks

For each of the procedure blocks numbered 2-6, write the numbers of the blocks from
which that procedure may be invoked

7.2 ARGUMENTS AND PARAMETERS

The types of the arguments passed to a function must agree with the declaration of the
formal parameters The formal parameters (which some languages term "dummy argu
ments") are declared in the function body, the function arguments are those expressions
specified in the function invocation For example in the invocation

UNTIL ALMOSTEQUAL(IMASS(1,V)),

The two arguments are scalar expressions The formal parameters are declared in the func
tion body

ALMOST EQUAL FUNCTION(AB BOOLEAN,

DECLARE SCALAR,A,B,

DECLARE TOLERANCE SCALAR,

CLOSE,

Formal parameters

Local variable

Formal parameters in the functions discussed so far have all been scalars, but it is possi
ble for them to be of any basic data type Integer, Scalar, Vector, Matrix, Boolean, Charac
ter, Structure or Bit The type of a formal parameter is determined solely by its declaration
The actual arguments supplied when a function is invoked must be of the same data types as
the formal parameters The exception to this rule is that under some circumstances the
actual argument will be automatically (implicitly) converted to the type required by the
function The conversions that are permitted are the same set that are allowed in an assign
ment statement Those that were listed earlier as allowable type conversions in the
RETURN statement

The declaration of a formal parameter takes exactly the same form as any other
DECLARE statement The INITIAL and CONSTANT attributes may not be used, but
otherwise, any attribute is acceptable A function may have any number of formal param
eters, including zero The following is an example of a function in which no arguments
appear

GACV

7-8 Proceduresand Functions

1 ROLL
h FU1CT!ON IiTEGEFR;
H RETUPN 5 RAIDO + 1,
M CLOSE ROLL;

The ROLL function returns an integer in the range I to 6* It may he invoked as

DO UNTIL ROLL + ROLL = 7,

Functions without parameters usually either access global data or perform some sort of in
put ROLL gets its "input" from the RANDOM function, though reading cards or sensors is
actually more typical

A function has only a data type, but formal parameters may have other attributes In
particular, a formal parameter may be arrayed The following example is a matnx-valued
function of arrays of vectors The resulting matrix consists of the dot products of each pair
of vectors

H DOTS

11 FU'CTICINAI, A2) NATRIXIlO, 10)

H DECLARE ARRAYfIO) VECTORI3),

H Al, AZ;

M DECLARE RESULT MATRIX(10, 10),

Ni DO FOR TEHFCRARY I = 1 TO 10-

H DO FOR TEHPOARY J = I TO 10,

E - .

H RESULT Al A2
5 i.J J :

M END;
H
E

END;

H RETURN RESULT,
H CLOSE DOTS;

Before leaving the subject of functions, one more very important point must be made
No function may modify any of its formal parameters That is, parameters are viewed as
constants within the function body As a consequence, for example a formal parameter can
not be used as a loop control variable since a loop control variable is modified on each itera
tion

*but not uniformly distributed See exercises

Procedures 7-9

The primary intent of this rule is to make HAL/S code easier to read and maintain In
languages which do not have this restriction, it is not possible to determine which variables
are being modified by inspection of a statement like "A = USERFUNC(B,C,D)," In any
language, it is reasonable to assume that A is the only variable modified In HALLS, tihs
assumption will always be correct

Exercises

7.2A 	 In example 6, ALMOSTEQUAL is declared a function in the declare group of the
main-program block

With a minor modification to the program, this declaration is unnecessary What is
the change?

7 2B 	 In example 7, it is stated that while ROLL returns an integer in the range 1-6, it is
not uniformly distributed

a) 	 Why 9

b) 	 Modify the function ROLL so that it is uniformly distributed and incorporate it
into a program that will count how many times a pair of "dice" must be rolled
to have 7 come up 5 times

7 2C 	 Write a HAL/S program that will read from channel 5 two arrays of 5 integers
apiece, then check if corresponding elements of the two arrays are relatively prime
(i e, their greatest common divisor, or GCD, is 1) If they are not relatively prime,
print out the pair and their GCD

A standard algorithm for computing the GCD of two numbers is called the
Euclidean algorithm, and may be described as follows

Start with integers m and n, whose GCD is desired If n = 0, then GCD(m,n) abso
lute value of m Otherwise, let r be the remainder resulting from dividing m by n If
r - 0, then GCD(m,n) absolute value of n Otherwise, it is the case that GCD(m,n)
= GCD(n,r) Since, by the definition of the remainder, r will decrease in absolute
value on each iteration, it will eventually become zero The algonthm is thus guaran
teed to terminate

Note The algorithm will work for any pair of integers, positive, negative, or zero
The HAL/S built-in function REMAINDER (MN) gives the remainder when M is
divided by N, as required by the algorithm

7 3 PROCEDURES

A procedure is a code block similar to a function The primary distinction is that proce
dures do not return values The RETURN statement can be used in a procedure, but no
operand may be provided When the RETURN statement is executed in a procedure, control
is returned to the caller The RETURN statement is not required in a procedure, as proce
dures (unlike functions) will return if the flow of control reaches the CLOSE statement

7-10 Proceduresand Functions

The only way to invoke a procedure isvia the call statement Procedureinvocations are
not used in expressions

The CALL statement consists of the keyword CALL followed by a procedure name and
a list of arguments (if the procedure has defined any parameters), e g

CALL PROCI (X,Y,Z),

X, Y, and-Z are the arguments, the procedure defines its formal parameters Just as in func
tions

PROCI PROCEDURE (A,B,C),
DECLARE SCALAR,A,B,C,
DECLARE Q VECTOR,

Formal parameters

RETURN, Local varable
CLOSE PROCI,

Formal parameters to procedures are like function parameters in all regards, and may
not be modified within the procedure Procedures also have ASSIGN parameter, described
below

Suppose that the DOTS function of section 7 2 was typically used in statements like

LOCALVAR=DOTS([V1] ,[V2]),

In this statement, the DOTS function is not used in an expression, but is directly assigned
into LOCALVAR In such a case, some mefficiency results from coding DOTS as a func
tion This is because when the RETURN statement is executed, the 100 scalar components
of RESULT are copied into LOCAL-VAR A better arrangement would be to code DOTS
as a procedure and invoke it by

CALL DOTS([V1] ,[V2]) ASSIGN(LOCALVAR),

The DOTS procedure could be coded as shown below

" OTe"

H PROCEDtmE(A1, A2) ASSIGN(PESULT)i

M DECLAPE ARPAY1IO) VECTtRh3),

H1 All A2;

Mi DECLAPE PESULT HIATRX(I10, 10);

"
H DO ,FO TEhPORAPY I = 1.TO 10,

M 00 FOP TEHPORARY J = I TO 10;

r - -

Mi RESULT Al. A2 3
5 IJ I J

M ENO;
ii END,
II CLOSE DOTS,

Procedures 7-11

Here we see an example of an assignparameter, RESULT The statement, "DECLARE RE-
SULT MATRIX(10,10)," does not create a variable as it did in the function DOTS, but
merely defines the data type of the assign parameter Each assignment into RESULT
directly modifies LOCALVAR Thus, no copying of data is needed

Since vanables used as assign parameters to procedures can be directly modified from
the procedure body, no conversions whatsoever are permitted The type of the Variable
passed as an assign parametermust agree exactly with the declarationof the assign param
eter In the program segment below, A is the only variable which may be passed to P

DECLARE A INTEGER,

B INTEGER DOUBLE,

C SCALAR,

D ARRAY(2) INTEGER,

P PROCEDURE ASSIGN(X),

DECLARE X INTEGER,

X =-,

CLOSE P,

A procedure may have any number of formal and assign parameters in any combination
Thus, several values can be computed m a single procedure, as shown below

M STATISTICS

K PROCUPE(DATA) ASSIGH(LOLVAL, HIVAL, MEAN),

ii DECLARE DATA ARRAY1iOI)SCALAR,

K DECLARE SCALAR,

K LOVAL, HI_.VAL, MEAN
M LOVAL = MIkhWfATA]),

[I HIVAL mHAXIEDATAI),

II HEAH = SUM(IDATAIJ / 100,

K CLOSE STATISTICS,

This procedure could then be used as in

DECLARE SAMPLES ARRAY(100) SCALAR,

DECLARE SUMMARY ARRAY(3) SCALAR,

CALL STATISTICS(SAMPLES)

ASSIGN(SUMMARYS 1,SUMMARY$2,SUMMARYS3),

WRITE(6) 'Mm, max and mean are ',SUMMARY,

- Unlike formal parameters, assign parameters may also be modified, as in the following
procedure which sets "AUGLAST4" to the average of the four most recent values of
INPUT

£'PAC QU".',ASJ-_~

7-12 Procedures and Functions

n 	 FILTER
it 	PROCEOURE(INIJT ASSIGH(AUGLAST4, BUFFi;

P1 DECLARE SCALAR,

M INPUT, AUG LAST4,

H DECLAPE BUrr ARPAY(43 SCALAR,

]

H 	 [BUFF] = [BUFI ,

S 1T03 ZTO4

I 	 BUFF ; INPUT.

$ 4

II AUG LAST4 = SUl (EBUFF]) /-4;
H CLOSE rILTER;

In this example, components of BUFF appear on the left and right sides of assignment state
ments BUFF is probably not used by the code winch invokes FILTER It is passed as an
assign parameter because a separate version must be maintained for each user of FILTER

The rules concerning arguments and parameters are summarized below

L 	 Arguments may be expressions of any complexity, but their types must match those
specified in the formal parameter declarations The automatic conversions of preci
sion and between integers and scalars are performed, however

2 Assign arguments must be variables (possibly subscnpted, but not expressions m gen
eral) They must match the types of the corresponding assign parameters exactly

3 Formal parameters may not be modified by the procedure or function which
declares them Assign parameters may be both referenced and modified

4 	 Copying of aggregate data (such as vectors or arrays) occurs only as a result of func
tion returns If an argument (of any type) will not fit in a machine register or accu
mulator, its address is passed to the procedure or function Thus HAL/S uses "call
by name" for aggregate formal parameters as well as for assign parameters, even
though the restriction on modification of formal parameters gives the appearance of
"call by value"

Exercises

7 3A 	 Rewrite the improved ROLL function of exercise 7 23 as a procedure, and modify
the surrounding program to invoke it properly This provides an alternate solution
to 7 2B

Which of the two solutions is preferable 9 What general observations does this suggest
about the choice between procedure and function forms, when both are possible9

Scoping Rules 7-13

7 4 SCOPING RULES

The HAL/S seeping rules for variables may be summarized as follows

I A variable may be refer~enced throughout the block in which it is declared and
throughout any blocks nested in that block, provided that the nested blocks do not
declare another vanable of the same name

2 A vanable declared in a nested block cannot be referenced from an outer block

3 If variables of a given name are declared in several blocks, each reference selects the
version in the nearest enclosing block

HAL/S procedures and functions may be nested within programs, or within their proce
dures and functions to any degree

This block structuring capability in conjunction with the scoping rules above enables a
measure of functional modulanty in the development of software In other words, HAL/S
allows the collection of related procedures (and functions) into functional entities (them
selves procedures or functions) The local resources within these entities, viz declared vari
ables and nested procedures become unavailable, actually unseen, to 'outsiders' Communi
cation takes place only on the highest, most visible levels

Procedure and function names are also affected by scoping rules in that a procedure or
function may be invoked from the immediately enclosing block and from any other blocks
which are nested in the immediately enclosing block An exception is that a procedure or
function may not be referenced from within itself HAL/S does not allow recursion

The following diagrams illustrate the seeping of block names In each diagram, the
shaded area indicates the region from which the block marked with an asterisk may be in
voked

H LI

I

7-14 Procedures and Functions

7 5 ARRAY(*), AUTOMATIC, AND NONHAL

In the previous section, a procedure was written to find the minimum, maximum and
mean of an array of 100 scalars The STATISTICS procedure would be more general if it
would accept an array of any size- The routine is rewritten as follows

" STATISTICS
" PROCEDUREtDATAI ASSIGN(LO VAL, HI VAL, MEAN);

"i DECLARE DATA ARRAY(*) SCALAR;

11 DECLARE SCALAR,
M LOVAL, HIVAL, MEAN,
M LOVAL = MINIDATAI;

H HI_VAL = MANC[DATA 11;
M MEAN = SL,1(TIDTA]3 / SIZEI[DATA]3;

M CLOSE STATISTICS;

Two changes have been made First, the formal parameter, DATA, has been declared as an
ARRAY(*) DATA is still a linear array, but its size may now vary from invocation to invo
cation Second, the constant 100 in the computation of MEAN has been changed to the ex
pression SIZE(DATA) SIZE is a built-in function which returns an integer denoting the
number of actual elements in an ARRAY(*)

The asterisk may be used as an array dimension only in the declaration of a formal pa
rameter An array of any data type may possess this attribute, but all such arrays must be
linear (single-dimensional)

Even though a procedure or function may be written to accept an array of arbitrary size,
the size of each actual argument must still be known at compile-time Thus, given the
STATISTICS procedure above and the declarations

DECLARE A ARRAY(1000) SCALAR,
DECLARE SCALAR,X,Y,Z,
DECLARE J INTEGER INITIAL(60),

The statements,

CALL STATISTICS(A$(I TO 60)) ASSIGN(X,Y,Z),

and

CALL STATISTICS(A$(61 TO #)) ASSIGN(X,Y,Z),

are both legal

Arrvy("), Automatc.andNONHAL 7-1.

But,

CALL STATISTICS(A$(I TO J)) ASSIGN(X,Y,Z),

is not legal because J is not a constant, 1e the width of the partition (I TO J)is not known
until runtime

7 5 1 Automatic Initialization

The following function will correctly sum the array of vectors, V, only on its first invo
cation

M VSUM
N
M

FlCTION(V) VECTOR,
DECLAPE V ARRAY(*) VECTOR;

M DECLARE TOTAL VECTOR INITIALC0',
E
M D0 FOR TEMPORARY H = I TO 5IZEItV]D,

OJME -A -
TOTAL = TOTAL * VN

QUAij E - N

ii RETURN TOTAL,

M CLOSE VSU,

The problem is that TOTAL is initialized to zero only on the first invocation of VSUM One
way of correcting the problem is to add the statement, "TOTAL = 0," before the loop.A
more convenient means of attaining the same result is to replace the declaration of TOTAL
with

DECLARE TOTAL VECTOR INITIAL(0) AUTOMATIC,

The AUTOMATIC attnibute controls the manner of initialization of a vaniable An
AUTOMATIC variable is set to its INITIAL value on each entry to the containingcode
block In effect, the compiler generates an assignment statement for each automatically
initialized variable immediately after the declare group of the containing block

It is important to remember that by default, initialization is STATIC (the opposite of
AUTOMATIC) If the AUTOMATIC attribute is not specified, initialization occurs only
once, at the time when the program is first loaded

7 5 2 The NONHAL Attribute

Sometimes it is desirable to program an application in a mixture of HAL/S and non-
HAL/S code, either to capitalize on existing software or to make machine-dependent
operating system interfaces which are not available m HAL/S When the non-HAL code
consists of subroutines (procedures and/or functions) there is a convenient way of making
them accessible to HAL/S This is the NONHAL attribute, used in a declare statement An
example is

DECLARE CPU-COST FUNCTION SCALAR NONHAL(l),

7-16 ProceduresandFunctions

The form of this statement is essentially the same as the declaration of a HAL/S function
that will be referenced before it is defined The only difference is the NONHAL attribute,
which indicates that the function body is not included in this compilation Note that the
data type of a NONHAL function must still be supplied

A similar form may be used to define a procedure written in some other language, e g

DECLARE PEARSONCORRELATIONS PROCEDURE NONHAL(2),

Since a procedure has no data type, none is supplied in the declaration NONHAL proce
dures and functions may have formal parameters (though no assign parameters), the number
and types of these parameters is not specified in the declaration, and in fact, may vary from
call to call No type checking is performed on the arguments to a NONHAL procedure or
function, and these blocks may even modify their input parameters Hence, great care
should be taken when using the NONHAL attribute

The operand to the NONHAL attribute, which consists of a positive integer, indicates
the particular language in which the subroutine was written The association of each number
with a particular language is implementation dependent, and some compilers may not,sup
port NONHAL at all , A

These statement may not be used to interface separately compiled HAL/S modules A
means of sharing HAL/S subroutines between separate HAL/S programs will be presented in
Chapter II

End of Chapter Problems

7A 	 As in exercise 2B, a ball is thrown from a height of 110 feet with a horizontal veloc
ity of 4 ft/sec Suppose that it now rebounds to 75% of its previous height on each
of 10 bounces, and consider the following skeleton of a program to compute the
time until the tenth bounce

DO FOR I = I TO NUMBER OF BOUNCES,
DROPTIME = TIMETODROP (HEIGHT),
CALL HORIZMOTION (DROP TIME) ASSIGN (HORIZ_DIST),
TIME = TIME + DROP TIME,
WRITE(6) 'BOUNCE', 1, 'TIME', TIME, 'HORIZONTAL

DISPLACEMENT', HORIZ_DIST,
CALL BOUNCE ASSIGN (HEIGHT, BOUNCE-TIME),

CALL HORIZMOTION (BOUNCE TIME) ASSIGN (HORIZDIST),

TIME = TIME + BOUNCETIME,

END
CLOSE DROP,

Complete the program by writing all necessary declarations, mitializations, proce
dures, and functions

Array[*],Automatic, and NONHAL 7-17

7B 	 In exercise 5A, a program was Written to compute the value of a definite integral of
the SQRT function using Simpson's rule Modify that program to compute the value

3of a definite integral of a function of the form f(x) = ax + bx2 + cx + d Assume
that the quantities a, b, c, d, initial, final, and epsilon are available in that order on
channel 5

7C 	 The increased modularity and readability brought about by the use of procedures
and functions is not without cost Procedure and function calls are typically some
what expensive in terms of computer time, and their over-usc can unnecessarily slow
down a program

For example, in problem 7A, the function HORIZ_MOTION could easily be elimi
nated Furthermore, on the last bounce, the height and time of the next bounce are
computed, even though they will never be used Assuming that efficient use of com
puter time is here of pnmary importance, rewrite the solution so as to eliminate
these two sources of inefficiency

A&tW

The WRITE Statement 81

8 0 1/0 AND CHARACTER STRINGS

The HAL/S I/O statements, READ, READALL, WRITE and FILE, are designed to pro
vide a convenient interface to external devices used for software checkout and non-flight
applications The READ, READALL, and WRITE statements perform sequential character
I/O to such devices as card readers and line pnnters The file statement transfers binary
(unformatted) data to and from random-access devices such as drums and disks These
statements are all designed to provide the basic capability of getting data in and out of a
HAL/S program with a minimum of programmer effort

For sophisticated ground applications, the simplicity of these statements can be a dis
advantage when highly formatted output is required To give the programmer complete
control over input and output formats for those applications that require it, HALlS provides
a comprehensive set of character manipulation facilities Any data type may be converted
to a character string, operations on the resulting string can produce any desired representa
tion of the onginal data

Although most flight computers do not have interfaces to character devices such as ine
pinters, it Is common practice to use ground based computers for early checkout of HAL/S
code HALIS I/O statements can then be used to address the wide range of external devices
(peripherals) found on such computers

8. THE WRITE STATEMENT

The WRITE statement has already been used m the examples of the previous chapters
A typical instance was

WRITE(6) 'THE ANSWER IS', V,

Although tins statement was not fully described at the time, the assumption was made that
the string "the answer is" and the value of V (a scalar) would come out on some sort of
printer The following paragraphs describe the manner in winch the output is sent to a
particular device and the format in which it is printed

The routing of output to a particular device is controlled from outside of the HAL/S
program Each WRITE statement specifies a channel number (in tis case, channel 6)
Achannel may be thought of as a virtual device or as a port between the HAL/S program and
some peripheral HAL/S defines ten channels, numbered zero through nine, which are
used in READ and READALL statements, as well as in the WRITE statement At the
HAL/S level, all channels are equivalent, it is only at execution-time that the channels are
associated with actual devices Tins association is made in an implementation dependent
manner It is usually done through some type of "job control language" or through com
mands at an interactive terminal The appropriate HAL/S User's Manual must be consulted
for details In most systems, however, channel 6 is automatically associated with a ine
printer

Q0
0o4 0

8-2 I/O and Character Strings

The channel number used m HAL/S I/O statements must be an integer expression which
is computable at compile time (i e., composed entirely of literals, constants, and the basic
arithmetic operators). It is good practice to give a name to each channel via the REPLACE
statement, as shown below

REPLACE PRINT BY "6",
REPLACE CARDS BY "5",
REPLACE TERMINAL BY "7",
DECLARE I INTEGER, S SCALAR, D SCALAR'DOUBLE,

READ(CARDS) 1, S, D,

WRITE(PRINT) I, S,D,

etc

Naming channels in this way has several advantages First, if the channels are well named
the program will be more readable Second, it is easier to change the number m one
REPLACE statement than the channel numbers m a collection of WRITE statements
Finally, it is possible to find all of the IfO statements which use a particular channel by
looking up the cross reference for the channel name The naming could alternately be done
by declanng integer CONSTANTs

After the channel number, the remainder of the WRITE statement consists of a series of
expressions There may be any number of expressions of any datatype Any construct
which has been tented an expression in this book may be used in a WRITE statement. In
the previous examples, the expressions have all been simple variables, but they may be of
any complexity Thus, values that are needed only for output need not be stored in a
variable A program to compute one of the roots of a quadratic equation given scalar
coefficients A, B and C, might consist only of

READ(S) A, B, C,
WRITE(6) (-B + SQRT(B*2-4 A C))/2 A,

When any type of data aggregate (eg , VECTOR, ARRAY) is written, it is first unraveled
into its individual integer, scalar, character, or bit components These components or array
elements are then transmitted to the external device The sequence is the same as was
described in conjunction with shaping functions in chapter six For instance

DECLARE M ARRAY(2) MATRIX,

WRITE(6) M,

results in the components of M being transmitted in the sequence

MS(1 1,l),MS(1,2),M$(I 1,3),M$(1 2,l),M$(2,2). M$(I 3,3),

M$(2 1,1) M$(2 3,3)

The WRITE Statement 8-3

When a data aggregate is unraveled in a WRITE statement, the original structure may not
be retained * In the absence of the I/O control functions (discussed in the next section),
all of the output from a single WRITE statement is placed on as few lines as possible, with
only spaces separating the operands and the elements of each operand The number of
spaces placed by default between successive values (termed the default tab) is implementa
tion dependent

After the operands of the WRITE statement are reduced to a sequence of Integer, Scalar,
Character, or Bit components, each component is converted to its standardexternal format,
wich is a character representation of its value. Each of the four basic data types above has
its own format

The standard external format of an integer is a string of decimal digits, preceded by a
minus sign if the integer is negative Enough leading blanks are appended to make the length
of the resulting string constant for all integers of a given precision- This standard length
vanes from compiler to compiler, but is always large enough to contain any possible integer
value Leading zeros are never included in the representation of an integer The following
table shows the output format of a few integer values for a compiler which assumes an
integer field width of 6

Value Standard External Format

0 0

256 256

-32,768 -32768

-2 -2

Double precision integers have the same format, except that the field width is approxi
mately twice as large.

The standard external format of scalars is scientific notation in a fixed-width field
Scalars always take the form "bd dddE±dd" or "-d dddE±dd", where each "d" represents
a decimal numeral Exactly one non-zero digit always appears to the left of the decimal
point and positive numbers are always presented with a leading blank The number of digits
to the right of the decimal point and the number of digits in the exponent are constant for
any particular version of the compiler These numbers are always chosen so that all of the
precision contained in the scalar can be presented The fixed field width simplifies the
wnting of code to re-format scalar values as will be seen in subsequent sections The fol
lowing table illustrates the output representation of various scalar values on a computer
with an eight digit mantissa and a two digit exponent

Value Standard External Format

In 3.1415927E+00
1/2 5 OOOOOOOE-0l
-3 1/8 -3 1250000E+00
0001 1 OOOOOOOE-04

-1,000,000 -1 OOOOOOE+06

0 00

*Some implementations will punt matrices one row per line automatically, but this js not a language
requirement

pk

8-4 1/O and CharacterStrings

Note in the table above that zero is treated as a special case Double precision scalars are
presented identically except that the standard width of the mantissa is greater

The remaining data types, character and bit (including BOOLEAN), each have two
standard external formats These formats are very similar, but one is more suitable for
printed listings and the other is more suitable for output that is to be read back in by
another HAL/S program

The programmer specifies which format is to be used for character and bit output by
means of the device directive The device directive is not a HAL/S statement, it is a com
mand to the compiler which affects the way that subsequent WRITE (and READ) state
ments are interpreted The device directive specifies whether the output on a particular
channel is paged (the format suitable for panting) or unpaged (the machine-readable
format)

Paged output is orgamzed into lines and pages Since the WRITE statement is most
frequently used to obtain pnnted diagnostics and results, paged output is generally the
default

Unpaged output is simply a stream of data values in a format compatible with the
READ statement To designate a particular channel as unpaged, the device directive is used,
as shown below

column I channel number 0-9

D DEVICE CHANNEL=6 UNPAGED
t
no semicolon

Compiler directives may vary from implementation to implementation All present
compilers include the device directive as shown above Other directives are described in
HAL/S Users Manuals These directives should not be considered as executable statements
The presence of a device directive anywhere in a compilation governs all uses of the speci
fled channel

The standard external format of character strngs on a paged file is simply the content
of the string, with no conversions or padding On an unpaged file, the character string is
enclosed in single quotes (') The output from the statement

WRITE(6) 'The answer is', V,

will be

THE ANSWER IS 7 5836210E+05

on a paged file, but will be

'THE ANSWER IS' 7 5836210E+05

on an unpaged file

The IVRITE Statement 8-4

The standard external format for bit strings is a series of ones and zeros As in character
stnngs, bit output is enclosed in quotes on an unpaged file A BOOLEAN consists of a single
bit, so there are only four possible outputs as shown below

Boolean Value Paged Output 	 Unpaged Output

'1'TRUE/ON 	 1
'0'FALSE/OFF 	 0

Longer bit stnngs (see Chapter 13) are output with a blank between every set of four bits to
enhance readability The value HEX'1234' would be output as 0001 0010 0011 0100 on a
paged file, and as '0001 0010 0011 0100' on an unpaged file

For character and bit types, only the unpaged format is compatible with the READ
statement Since these types are of a vanable length and may contain embedded blanks,
the quotes are needed to indicate the end of one value and the start of the next

In summary, the WRITE statement will evaluate a list of expressions of any data type,
convert the resulting values to their standard external formats, and transmit these to the
device which has been associated with the specified channel There are no restnctions on
the expressions in a WRITE statement, and in no case will any data be lost in the transla
tion to the standard external form As a result, the WRITE statement is extremely easy
to use if the format of the output is of little concern, this makes it convenient for diagnos
tics, but less appropriate for report generation

Exercises

8 IA 	 Why is it generally considered good programming practice to give a name to each
channel for 110 functions and use the HAL/S REPLACE statement to assign the
channel number 9

8 lB 	 What happens when an executing program encounters a HAL/S WRITE statement
followed by a list of expressions ? What limitations are there on the expressions
that are legal in a WRITE statement 9

8 IC 	 Given the following declarations

DECLARE S SCALAR,
I INTEGER,

V VECTOR,

M MATRIX,

B BOOLEAN,

C CHARACTER,

_ NO,
,

8-6 1/0 and Character Strings

Which of these WRITE statements will produce output compatible with the HAL/S
READ statement

a) On aPAGED device?

b) On aUNPAGED device 9

1) WRITE(6) S,I, V, M,

2) WRITE(6) 'I = ', I, ', V = ', V,

3) WRITE(6) VI, V3, V$2, B,

4) WRITE(6) B, C,
5) WRITE(6) S,M, VS(2 TO 3), I,

8 2'1/0 CONTROL FUNCTIONS

When the statement

WRITE(6), M,

where M is a matrix, is executed, the three-by-three structure of Mis lost The arrangement
of the components of M depends only on the field width of a scalar, the amount of the
default tab, and the maximum number of characters per pnnted line If the width of a
scalar is 13, the default tab is 5 and a line is 132 characters, then seven components will
be printed on the first line, and the remaining two on a second line To obtain a better
arrangement, the following WRITE statement may be used

WRITE(6) MS(1,*), SKIP(I), COLUMN(1), M$(2,"), SKIP(l), COLUMN(I),
M$(3,*),

This statement will cause one row of the matrix to be printed on each output line

SKIP and COLUMN are 110 control functions Syntactically, they resemble other
functions, but they may only be used as arguments to the sequential I/O statements, WRITE,
READ, and READALL Each has a single argument wich may be any integer or scalar
expression, if the expression is scalar-valued, it is rounded to the nearest integer These
functions do not return a value, but only control the location in a file where subsequent
data will be read or written.

The I/O control functions may be thought of as movng a read/write mechanism across
a two dinensional medium The SKIP, LINE, and PAGE functions cause vertical movement
and the COLUMN and TAB functions cause horizontal movement ,In the example above,
"SKIP(l), COLUMN(1)" moves the write mechanism to the beginning of a new line The
SKIP function causes relative movement (down one line), and the COLUMN function
causes absolute positioning (to the first column of the new line)

The sequence, "SKIP(l), COLUMN(l)", is implied at the beginning of each WRITE
statement This automatic positioning will be overridden if the WRITE statement has
explicit horizontal and vertical positioning functions prior to the first data operand If only
horizontal or vertical positioning is specified, then the default movement is partially over
ridden In the statement

I/0 ControlFunctions 67

WRITE (6) COLUMN(10), MS(I,"),

the default honzontal positioning to column one is overridden, but the default vertical
positioning to the next line is not Likewise, the statement

WRITE(6) M$(I,l), TAB(12), MS(l,2), TAB(12), M$(1,3),

would leave twelve blanks between the end of one component and the start of the next
Unless ovemdden by explicit honzontal motion commands, a TAB function is implied
between each pair of data operands to the WRITE statement The amount of the default
TAB is implementation dependent

Using these functions, an array of matrices

DECLARE AM ARRAY(2) MATRIX(3,3),

can be output in a readable form by

WRITE(6), SKIP(2), COLUMN(10), AM$(I 1,-), TAB(20), AM$(2 1,-), SKIP(l),
COLUMN(l), 'AM = ', COLUMN(10), AM$(I 2,*), TAB(20), AM$(2 2,-), SKIP(1),
COLUMN(10), AM$(I 3,*), TAB(20), AM$(2 3,*), SKIP(2),

yielding

AM=

AM$(I) AM(2

The effect of the remaimng I10 control functions, LINE and PAGE, depends on whether
they are used on a paged or an unpaged channel On a paged channel, the LINE function's
argument must be in the range one to the maximum number of lines per page The device
mechanism is moved forward until the current line number is the same as that specified in
the LINE function This may cause the device mechanism to cross a page boundary The
most common use of the LINE function is to advance to the top of the next page, as in

WRITE(6) LINE(l), 'Tins is a page header',

When used on an unpaged channel, the LINE function causes movement to an absolute
line number within the entire file

The PAGE function may only be used on paged files PAGE(n) results in relative move
ment by "n" pages The current column and line numbers are not affected A typical use of
the PAGE function is to skip over unwanted pages of header on input

8-8 1/0 and Character Stnngs

The preceding paragraphs apply equally to all implementations of the HAL/S language.
The principal vanations between implementations are the number of columns per line
(and lines per page) and the result of requesting backward movement of the read/write
mechanism

The statement

WR1TE(6) !results follow', TAB(-14),'

may have any of several results, depending on the compiler in use On some systems, the
two character strings may both be printed in the same columns of the same line, yielding
RESULTS FOLIOW On other systems, the second character string may overlay the first,
yielding just the underscores Similarly, backwards line movement may or may not be
supported and may be device dependent the effect of executing SKIP(-I) may vary from
system to system The relevant User's Manual should always be consulted before requesting
negative column or line movement

The following table summarizes the I/0 control functions

I/O Control Function 	 Operation

SKIP(K) 	 Relative line movement
Line = (Line + K) mod page size

LINE(K) 	 Absolute line movement

Line = K

TAB(K) 	 Relative column movement

Col = Col + K

COLUMN(K) Absolute column movement

Col = K

PAGE(K) Relative page movement

Page = Page + K

Exercises

8 2A Consider the following HAL/S statements

DECLARE ARRAY(3) MATRIX, MATARRi, MATARR2,

WRITE(6) MATARRI, MAT ARR2,

The READ Statement 89

a) 	 Describe what the resulting output would look like

b) 	 Change the WRITE statement such that the resulting output will be formatted
as thus

[MATARRI I I [MAT ARR2 1]

(MATARRI 2] (MATARR22 I

[MAT ARR1 3] [MAT ARR2 3 1

8 2B 	 For each of the I/O control functions below, which of the following statements
apply to its use in HAL/S WRITE statements9

a) 	 default characteristics (implied unless overridden)

b) 	 causes absolute vertical movement

c) 	 causes relative vertical movement

d) causes relative horizontal movement

e) causes absolute horizontal movement

1) 	 LINE(I) 5) COLUMN(I)

2) 	 SKIP(l) 6) SKIP(O)

3) 	 TAB(20) 7) SKIP(5)

4) 	 PAGE(2)

8 3 THE READ STATEMENT

The syntax of the HAL/S READ statement is also quite simple Some examples (e g,
"READ(S) A, B, C,") have already appeared in this manual, the general form is not much
more elaborate The READ statement consists of the word READ and a channel number
followed by a list of variables and/or I/O control functions There are no restrictions on the
variables, and the I/O control functions work the same way as in the WRITE statement

When any type of data aggregate appears in a READ statement, the components are
filled m the "natural sequence", i e, in the same order in winch they would be written
In the code

DECLARE A SCALAR, V VECTOR, I ARRAY(2) INTEGER DOUBLE,

READ(5) A, V, I,

data from the external file will be assigned in the sequence

A, 	 V$1, V$2, V$3, I1S, 132

If the fife was originally produced (stored on disk, punched on cards, etc), by a HAL/S
WRITE statement, its contents will be in the appropriate format for the READ statement
Except for character and bit strings on paged tiles, the standard forms produced by the
WRITE statement are all acceptable on input

Input data prepared manually may be written in free format, all of the following lines
are acceptable input for the READ statement above

4'c)4 P4GA
*QUr

8-10 110 and CharacterStrng:

a) 0, 0, 0, 0, 0, 0
b) 1 3E5 3271E+06 001 24 -2

c) 1, 2 3 4,5 6

The examples illustrate several points First, it is not necessary to distinguish between
integer and calar values Any sequence of characters which comprise a valid integer or
scalar literal (as described in chapter two) is suitable to be read into either an integer or a
scalar, nofi-mitegtal values read into an integer will be rounded

Individual values (in this case, numbers) m the input file must be separated by blanks
or other dehmiters One or more blanks, a single comma, or a single comma and any number
of blanks are all equivalent. Multiple commas are a special case, which indicate "missing
data" If the input file contained

1, , 2, 3, 4, 5

then the value of the svcond scalar in the READ statement above (V$1) would not be
changed

When a semicolon is encountered in the input stream, the current READ statement is
terminated If the input consisted of

15, 26,

then only two values would be read, regardless of subsequent values and punctuation in
the file This fact can be useful when a program must process a variable number of input
values For instance, a program to sum a sequence of numbers could be coded as

H ADD:
M PROGRAM,
H DECLARE TOTAL 5CALAR INITIALUO) AUJTOMATIC;
M DECLARE A ARRAY(00) SCALAR INITIALIO);
M
K

REAO(51 [A];
DO FOR TEMIPORARY I = I TO 100 IJNTIL A =0;

a 1

H TOTAL = TOTAL + A
5z

M EN4D;
M WRITE6) 'TOTAL 15 " TOTAL;
M CLOSE ADD,

One valid input to tlus program could be

-3 95, -17 31, -9 93, 572 35, -250, +1 10, -45, +7 50,

In this case, the READ statement would terminate when the semicolon was reached, leaving
the rest of the array (AS (9 TO 100)) equal to zero

The READ Statement ,-11

As illustrated above, a READ statement may take data from many lines of a file Lines
will be processed until either a semicolon is reached or values are found for all of the oper
ands of the READ statement The end of each line of input (e g, card column 80) serves
as a delimtter equivalent to a blank Hence, individual values may not be split across lines

As in the other sequential IO statements, WRITE and READALL, a SKIP(I),
COLUMN(I) operation is implied at the beginning of each READ statement This may be
overridden by the same means used m the WRITE statement, e g,

READ(5) SKIP(0), TAB(0), X,

can be used to read data to the nght of a semicolon winch terminated the previous READ
statement If the input data happens to be stored in fixed card columns, then the TAB and
COLUMN functions can be used to skip over unwanted data

Any attempt to read past the end of a file will result in a runtime error Chapter ten
describes a mechanism for recovering from this and other errors

EXERCISES

8 3A Let the program ECHO begin as follows

ECHO PROGRAM,

DELCARE INTS ARRAY(3) INTEGER, INITIAL(l),

SCALS ARRAY(3) SCALAR, INITIAL(O),

READ(5) INTS, SCALS,

What will INTS and SCALS contain given the following inputs9

a) 8, 7, 655, -1, 225E2, 4,

b) -IE-1,,.7 2,

c) 2 49,,2 51,2 49,,2 51.

8 3B 	 Suppose input intended for the program ECHO of problem 8 3A has been formatted
as follows

Cot I Col. 8 	 Col 78

INTS 3 4 5 	 00000001

SCALS 61 72 83 	 00000002

Modify the READ statement in ECHO to ignore the labels on the left and the
sequence numbers on the right, and read in the values for INTS and SCALS
properly.

UG4A?

812 [/0 and Character Strings

8 4 CHARACTER STRINGS

A HAL/S character variable may contain a string of characters, the number of charac
ters is allowed to vary at runtime from zero up to a maximum specified in the declaration
of the variable The character datatype is declared in the same general way as other data
types, e g,

DECLARE STARS CHARACTER(5) INITIAL('***'),

The variable STARS is a character string of maximum length five and initially con
taming five asterisks Each character variable has both a maximum length and a current
length The current length is adjusted every time the variable is assigned, though it can never
become greater than the declared maximum If the length of the string on the right-hand
side of an assignment exceeds the maximum length of the target variable, characters are
truncated from the right before assignment In the code below, RATING starts with a
length of zero (it is initialized to the null stnng), but after the assignment the current
length becomes three

DECLARE RATING CHARACTER(S) INITIAL("),
DECLARE QUALITY INTEGER INITIAL(3),
RATING = STARSS(1 TO QUALITY),

As shown, the general form of character subscnpting is the same as vector subscripting,
except that the width of a partition does not have to be known at compile-time

In addition to subscripting a character stnng to pick out a single character or a sub
string, HAL/S provides an operator for putting two strings together This is the catenation
operator, denoted by the keyword "CAT" or by the sign "I V" The effect of tlus operator
is to append the right-hand operand to the end of the left-hand operand

'ABC' II 'DEF'

yields

'ABCDEF'

Character strings may also be compared with each other, as in

IF RATING NOT = '**' THEN EXIT,

and may be compared for "greater than" or "less than" in order to sort them alphabetically
The latter capability is affected by the collating sequence and is therefore implementation
dependent More details can be found in the appropriate Users Manual

HALIS also provides a set of built-in character functions (listed in Appendix A) The
following paragraphs describe some of these functions as well as providing some practical
examples of character operations

Character Strings 8-13

One of the major uses of character vanables and operatons in HAL/S is formatting out
put In the WRITE statement below, the value of the integer variable N will be inserted
in a line of output

DECLARE N INTERGER,

WRITE(6) 'the answer is 'I IN I ' fps',

If N is six, the output from this statement will look like

THE ANSWER IS 6 FPS

This statement illustrates an important rule Whenever an integer or scalar is used in a
character expression it is converted to its standard external format (a character string)
The standard external format of an integer includes leading blanks These blanks can be
removed by means of the TRIM built-in function, as shown below

WRITE(6) 'the answer is 'I ITRIM(N) I ' Fps',

Tis statement will produce

THE ANSWER IS 6 FPS

The TRIM function removes all leading and trailing blanks from a character stnng Its argu
ment must be a character expression, thus N is converted to character before the invocation
on TRIM in the statement above

Similar character functions are RJUST and LJUST, which add leading and trailing
blanks, respectively Each of these functions takes two arguments, a character expression
and a field width These functions right or left-justify the value of the character expres

=sion m a field of specified width With N 6, RJUST(N,2) yields ' 6' and IJUST ('XYZ',4)
yields 'XYZ'

Note that within the quotes of a character hteral, blanks are treated the same as any
other character Any character may be used in a quoted strng

8-14 11O and ClhrocterStnngs

Like variables of any data type, character strings may be arrayed The following func
tion could be used to display the value of a boolean (B) in the format specified by an
integer (TYPE)

H STATE:

M .FUNCTZON(B. TYPE) CHARACTER(S);

11 DECLARE B BOOLEAN,

11 TYPE IHTEGER
 ,

I1 DECLAPE YES ARRAY(4) CHARACTER(S) IHITIAL('TRUE' 'Oh', 'OPEN', 'VALID');
H DECLARE 10 ARRAY(41 CHARACTER(S) flITIALFALSE', 'OFF', 'SHUT', 'ERROR');
E

H IF B THEN

E

M RETURN YES

S TYPE:

H ELSE
E
H RETURN NO
S TYPE'

H CLOSE STATE;

This function could be invoked as shown below

DECLARE BOOLEAN INITIAL(OFF), VALVE, POWER,
WRITE(6) 'VALVE=',STATE(VALVE,3),POWER=',STATE(POWER,2),

Tins example would produce

VALVE=SHUT POWER=OFF

The concepts of maximum length and current length apply to each element of an array,
and to the value returned by a character function The maximum lengths of all elements of
a character array are equal, but the current lengths may vary Thus, the length of the value
returned by STATE can vary from two to five The maximum length on the function
header can never be exceeded, however, if "RETURN 'ABCDEFH'," was executed, the
strig would be truncated at the right yielding 'ABCDE'

It should be noted in the example above that the nth element of a character array such
as YES is represented by "YES$(N)" and not "YESSN" The trading colon must be sup
plied to indicate the absence of component subscnptingjust as in arrays of vectors, matrices
and Bit Strings (Booleans) As before, both array and component subscripts may be supplied
if needed YES$(3 2) is the second character of the third element of YES 'P'

A few examples of automatic conversion to character type have appeared above It is
also possible to explicitly convert to character type via the CHARACTER shaping function
Tus function is syntactically identical to the INTEGER, SCALAR, VECTOR, and MATRIX

Character Strings 8-15

shaping functions described previously It converts its argument or arguments to their
standard external formats It has an additional form that allows conversions to octal or
hexadecimal as shown below

WRITE(6) CHARACTER$(@oCT)(BIT(N)),

If the integer N is equal to 29, this statement will produce the output

'0000000035'

When the CHARACTER function is subscripted with a radix (@OCT or RHEX), its oper
and must be a bit string The BIT function above is not fully described until Chapter 13,
but in this case it merely returns a bit pattern equivalent to its argument

Another use of the character manipulation facilities is reading data that is not in the
standard HAL/S format Integer data that has been punched on cards in the format shown
by the table below could be read in by the HAL/S statements which follow it

Input Format

Columns Description

1-3 case number
4-5 age
6 1=male, 2=female

7-10 X factor

Example of Input

1152612781

M AGE

M PROGRAM,

M DECLAPE C CHARACTER(e0).

M DECLARE INTEGER,
ii CASENUM, AGE, SEX, X,
E
ii REAOALL(S) C;

ii CA$EYUM =INiTEGER(C I;

ii AGE = "INTECER(C 3.
E

M SEX =
5

INTEG!P(C
6

,

E
M
s

X = INTEGERC
7 TO 10

];

H CLOSE AGE,

8-16 1/0 and CharaecerStnngs

This would yield the following values

CASE NUM = 115

AGE = 26

SEX = 1

X = 2781

When the argument to the INTEGER shaping function isa character stnng, all of the
characters must-be in-the range-0-9 (i e, comipnse-a vahd integer) Thus, tis code would
not work if the CASE_ NUM field (for instance) was coded with leading blanks instead of
leading zeros The TRIM function can be used to make the program more tolerant as in

CASENUM = INTEGER(TRIM(CS(I TO 3))),

The READALL statement used to obtain C fron channel 5 (probably a card reader) will
be fully descnbed in the next section of this chapter

Since the standard external format for scalars is not always convenient, a character func
tion like the one below can be used to write a more readable XX YYY notation

M REFORMAT
11 FUNCTION(X, DECIMALS, WIDTH) CHAPACTEIt20),

11 DECLARE X SCALAR,

K DECIIALS INTEGER,

K1 WIDTH INTEGER,

C X IS THE HUMBER TO BE CONVERTED, DECIMLALS IS THE NUMBER OF

C DIGITS TO BE PRINTED AFTER THE DECIMAL POINT, AN4DWIDTH IS

C TOE TOTAL LENGTH OF TIIE STRIHG RETLNED

H1 DECLARE Y SCALAR;

II OSCLARE C CHARACtER(202;

H DECLARE 5 CHAOACtER(1;

H1 DECLAPE ZEROS CHARACTER(20) CONSTANT(CHAR(20)'O');

H IF X < 0 THEN

ii Do.

IM Y -X;
E
M S -- -'

II END,
IH ELSE

I DO.

MI Y=X;

E

]1 END;

E D
DECIMALS

M C = CHARACTER(INTEGER (10 Y),

S aDOUBLE

E
H IF LENGTr(C) < DECIMALS THEN
E I, I I

M C Z ZEPOS ii C.

S 1 TO DECIMALS-LENGTH(C)

E Iw

"l RETURN RJUST(S II C I II ' CWIDTH;

S 1 TO #-DECITALS U-DECIMALS-1

Ii CLOSE REFOR1AT,

Character Strings 8-17

With the function before,

WRITE(6) REFORMAT(SQRT(2), 3, 5),

would yield

'1414', 1e , a five character field with three decimal places

Two new features are introduced in this example First, the expression "CHAR(20)'0"'
is a shorthand notation for the stnng consisting of twenty zeros It is a character literal
which may also be used in an assignment statement such as

C = CHAR(80)' ', /-blank card*/

An additional built-in function, LENGTH, is also used LENGTH takes a character variable
or expression as an argument and returns an integer representing its current length

The REFORMAT function shown here has one deficiency It does not check X for
being too large for a field of width WIDTH A good fixup would be to return part of X in
scientific notation if it is too large for the field This improvement is left as an exercise

Exercises

84A Which of the following expressions are legal character subscripts' Which are legal
vector subscnpts? (Assume all variables are of integer type

a) (4)

b) (1+1)

c) (7 AT 3)

d) (2 TO 1-2)

e) (6 AT J+J)

f) (I TO J)

g) (K TO K-I)

84B What will the output be from the following program?

PROG_B PROGRAM,

DECLARE CH CHARACTER(15) INITIAL('ABC'),
REPLACE PRINT BY "WRITE(6)",
PRINT CH, CH I ICH,
CH = '123' I ICH 11'456',
PRINT CH$(I TO 5), CH$(5 TO #),
CH = CH$(I TO 2)l ICHS(3 AT #-5),
PRINT CH,CH(#-2 TO #),

CLOSE PROBB,

8.18 1/0 and CharacterStrings

8 4C 	 Given the following declarations and assignments, which of the following compari
sons are true9 Assume the 'A' < 'B' < < 'Z'

DECLARE C15. CHARACTER(I5)

DECLARE CHARACTER(1)

ClI, C12,

C 5 = 	 'A',
ClI = 	 'A',
C12 = 	'B',

a) 'A' 	= GI

b) C15 ='A'

c) C15 = C11

d) C15 -1= C12

e) 'A' < C12

f) 'A' < 'AB'

g) ClI < 'AB'

h) C15 < Cl1 CAT C12

J) 'I'll" < '

8 5 THER HAL/S I/O CONSTRUCTS

The READ and WRITE statements already described allow data to be transferred
between a HAL/S program and a sequential character oriented file The data is always
transferred m a standard format according to its type, though I/O control functions allow
arbitrary positioning of the data Since character operations allow output reformatting, the
addition of an unformatted read (READALL) gives the programmer complete control
over sequential character files

HAL/S also supports random-access files, which do not necessarily contain charac
ter data, via the FILE statement, and provides some features which aid in transfemng data
to and from special purpose sensors and effectors

OtherHAL S I/O Constructs 8-19

Exercises

8 5A What HAL/S data types may be read using the READALL statement

8 5B How are character stnngs suitable for input via the READALL statement different
from those suitable for input via the READ statement?

8 5 1 The READALL Statement

One example of the READALL statement,

DECLARE C CHARACTER(80),
READALL(5) C,

was used in the previous section Aside from the READALL keyword, the format of this
statement is exactly that of the READ statement, although a restriction is made that all var
iables be of character type

The READALL statement can input up to one line of characters from a HAL/S channel,
the characters read are placed directly in the character variable or variables without any
special interpretation of the delimters blank, comma, and semicolon Characters are trans
ferred until either all of the variables have been filled to their declared maximum lengths, or
the entire line has been read, whichever comes tirst Unless the READALL statement begins
with I/O control functions (e g SKIP, LINE) the device mechanism is advanced to the be
ginning of a new line before the first character is transferred

When a list of variables or a character array is specified, each variable or element is filled
in turn There is no automatic movement of the device nechamsm between variables This
allows a line of data to be broken into fields, a card could be read as eight 10-character
fields by

DECLARE CARD ARRAY(S) CHARACTER(10),
READALL(5) CARD,

110 control functions may also be used with READALL Using the declaration above,
just the first and last fields could be read by

READALL(S) CARDS(I), COLUMN(71), CARDS(8),

READALL uses the same set of channels as READ and WRITE Input and output
should not be mixed on the same channel, but READ and READALL may both be used
on the same input file or even the same card as in the following example

8-20 I/O and Character Strngs

M OUTER:

M PROGRAM;

DECLARE SCALAR,

M PHI, ALPHA,

H DECLARE INITIAL POSH VECTOR DDULE;

M DECLAPE MODE INTEGER,

M PRINT BOOLEAN,

C-

C

* INITIALIZE*
* PROCEDURE,

1 DECLARE V NAHE CHARACTER(8};

1 REPLACE INFILE BY "5",

H DO WHILE TRUE,

H READALL(INFILEI VNAME,

H VNAME = TRhIVNIAIEI,

H IF VNAME = 'PHI' THEN READ(INFLE) SKIP(O), COLUMN(9), PHI;

H IF VZ4AIE z'ALPHA' THEN READ(INFILE) SXIP(01, COLUiIN(9), ALPHA;

H IF VHAME = 'rFosH THEN REAOIIN ILE) SKIPCO), COLUII(9), ZNITZAL POSH,

M IF VHAE = MODE' THEN READ(NFILE) SKIP(O), COLUN(9), HOnE,

M IF VNAhIE = 'PRINT' THEN READ(INFILE) SLIP (0), COLUHF9I, PRINT,

M IF VHAIE = 'END' THEN EXIT;

Ii END
E

H IF PRINT THEN

E

H WRITE(6) PHI, ALPHA. IHTIALOSH, NODE;

H CLOSE INITIALIZE,

C
C

1 CLOSE OUTER;

The INITIALIZE procedure above could be used to read initial values for a simulation
run. The input lines would consist of a variable name inthe first eight columns followed by
an intial value in the standard external formatfor thatdata type, e g

PHI 00137

PRINT '11

IPOSN !, 1,I

END

This type of initialization module takes little memory and is fairly efficient if there are
not too many variables Its main advantage is that it is very easy to code, particularly if a
parameterized REPLACE macro is used to abbreviate the repeated code

Other HAL/S ilO Constructs 8-21

REPLACE TEST(ID, VAR) BY
IF VNAME = ID THEN READ(S)
SKIP(C), COLUMN(9), VAR",

TESTQALPHA', ALPHA),

TEST('I POSN', INITIAL POSN),

etc

8 5.2 The FILE Statement

The FILE statement is used to read and write random access files These files (which are
numbered separately from channels) are organized into records which may be accessed in
any sequence Generally speaking, any record may be read or written in the same amount
of tines as any other (hence the term "random access")

The FILE statement has two forms

FILE(number, address expression,
and

variable = FILE(number, address),

The construct FILE(number, address) is called a file expression When the file expression is
used on the left of the equals sign (the output file statement), the value of "expression" is
wntten to the record specified by "address" on the file specified by "number" When the
file expression is used on the right hand side (the input file statement), the record denoted
by the file expression is read into "variable"

The FILE statement is highly implementation-dependent The appropnate User's
Manual should be consulted before it is used

The "number" and ,"address" operands of the file expression may be any integer or
scalar arithmetic expression "Number" must be computable at compile-time If the ex
pression is scalar, at will be rounded to the nearest integer The legitimate ranges of these
integers are implementation dependent

There are no restrictons on "expression" in the output file statement All of the fol
lowing statements are legal

8-22 1/0 and CharacterStrings

DECLARE MATRIX(10,10), MI, M2,

DECLARE A ARRAY(99) INTEGER,

DECLARE C CHARACTER(20),

DECLARE I INTEGER INITIAL(17),

REPLACE HIST BY "5",

FILE(HIST, 12) = MI,

FILE(5, 1+1) = M1 + M2**T,

FILE(IIST,8) = Ml$(2 TO 7,*),

FILE(HIST,9) = A+I,

FILE(HIST,10) = C 1I I,

There are, however, some restnctions on "variable" in the input file statement These
are the same restrictions that apply to assign parameters of procedures "variable" must be
one of the following

I An unsubscnpted variable

2 An entire array element

3 A contiguous partition of a single vector or matnx

The following input file statements are all legal

M1 = FILE(HIST,2),
C = FILE(3,3),
ASI = FILE(4,4),
MI(I,*) = FILE(5,6),

It is not possible to read into a non-contguous partition of a MATRIX (MI$(*,1)) or an
array partition (A$(5 TO 10)) or a partition of a character string (C$(3 TO #))

Both versions of the file statement cause the transfer of unformatted binary data Thus,
if the file statements are to be used reliably, a record should always be readinto a variable
of the same type and organization as the expression that was written Since the compiler
cannot know how a file was originally written, it is up to the programmer to ensure
compatability

8 5 3 Avionics I/O

HAL/S does not include any specific aviomcs I/O statements, prunapally due to the fact
that there ascurrently no standardization of airborne I/0 systems Some flight computers
have one or more independent I/O processors or channels with their own unique instruction
sets Other computers either have CPU instructions for I/O or have a section of memory
that is "hard wired" to external devices (e g storing into location 5432 [octal] might lower
the landing gear)

Operating systems also vary widely in this regard In some systems I/0 is requested by
application programs, while in others it is all done "automatically" on a periodic basis
Finally, every system will have a different complement of sensors, displays, effectors, etc,
each of which may have its own umque formatting and protocol requirements

Other HAL/S I/O Constructs 8.23

Although there is presently no way to implement generalized avionics 1/0 as a HAL/S
statement, the language does provide a number of features that allow individual systems to
be tailored

I Structure (chapter 9) and compool (chapter 11) templates allow
memory to be mapped into a collection of variables of assorted types

a section of

2 Procedures and functions can be coded in assembly language and interfaced
HAL/S program (see chapter 11)

to a

3 Bit strings (chapter 13) allow
operators (AND, NOT, etc)

low-level formatting via subscnpting and logical

4 I/0 errors may be handled via the ON ERROR statement described in chapter 10
5 Event variables (chapter 12) allows waiting for 1/0 completion, and may trigger

transactions when signalled

The following code illustrates some of the ways that 1/0 might be performed in alter
nate systems

M A$SORTCDIO
M PPOGRAI
H PELACE GEAqDtt14 BY "IY|TEGEAOCT'S'32),
1 DECL.PE DVtAVPEAD EVENT,
f DECLAPE IEI IHAE AqRAY(3f768) BI(L6) INITALHAhE(NULL)),
M STRUCTLCE IortiH
II I DEVICE IhTEGEP.
I 1 STA-US BIT1i63.

I BUFFER HfAHEAPPAY(IOt INTEGER.
1 i L-G&S ILITEGEP,
M CECLARE FDZSEI SCRS IOPARa-STRUCTIUPE ItIITIAL(16. HEX'O ' NULL, Zfl,
B CECLAFE 10 FRCCEDL.TE NCc'mAL(1.
M PEPLUCE OPSYS BY '1",
B DO CASE QO-SI,
M /SC(9 . /-PERCENT ACRO*/
E
H
11

CALL IO([FWSEKSOS).
MEM = ON.

/*ASSEMBLY LANGUAGEW/

S GEAPOHIN

M SIGNAL OCXAVREAD. /-EVENI VARIABLE-/
M , /1 ,D-OP*/

N CLOSE ASSORTEOIO,

This program only indicates a few alternatives, there are many other possibilities

24%4C
04'P o 9 c z

8-24 l[Oand CharacterStnngs

End Of Chapter Problems

8A 	 Write a HAL/S program that will read, from channel 5, 2 arrays of character strings
(5 elements per array, maximum 5 characters per string), remove leading and trailing
blanks from each string, reverse each string, and write the results on channel 6 in the
form

Column 5 	 Column 15

CHARARR11 	 CHAR_ARR2j

CHARARR1 2 	 CHARARR22

CHAR_ARR1 5 	 CHAR-ARR2 5

8B 	 Write a HAL/S program to perform the following task

Input on channel 5 contains the names of 50 people, each consisting of a first name,
one blank, and a last name Names are separated by commas, the maximum length
of any name is 25 characters, and there are no blanks m the input except those fol
lowing the last comma in a]me (no name is broken across two hnes) The final
name is not followed by a comma

The program should read in all 50 names into an array, and wnte on channel 6 all

names whose last name begins with 'S'

An example of possible program input is

SAMUEL COLERIDGECHARLES BAVOELAIREEMMY NOETHER,
WILLIAM SHAKESPEARETYCHO BRAHE,DAVID HILBERT, etc.

8C 	 Write a HAL/S program that will read from channel 5 a I- to 3- digit integer, and
write on channel 6 the English equivalent, e g,

173 --ONE HUNDRED SEVENTY-THREE

0 - ZERO

15 - FIFTEEN etc

Declaringand ReferencingStructures 9-1

9 0 STRUCTURES

HALlS structures provide a means of collecting a group of vanables under a single name
This grouping capability has a number of uses, one of which is illustrated below Suppose a
utility function which requires many parameters is defined at the outer level of a program
and invoked from lower level code as shown below

M OUTER

ii PRPGPAN,
M DECLARE SCALAR,

M G, Ga2,

H UTIL-

M FU1hCTIOMA. B, C, 0, E) VECTOR;

M DECLARE A VECTOR;

11 DECLARE SCALAR,

M B,0.
M DECLARE C IHTEGER,

M E BOOLEAN,

C
C-

C

E
M RETUPN A,
H CLOSE UTIL,
" NESTED
" PROCEDURE,

C A PROCEDURE UNICH INVOXES UTIL

" DECLARE RESULT VECTOR,

M PECLAPE V VECTOR INITrAL(O, ., 01,

M DECLARE SCALAR,

11 Si, 52,
H DECLARE C INTEGER INITIALCO3,
h E BOOLEAN INITIALCOF),

C
c
C-

H ei - C1 / 3,

M 52 SINCGI 4 G21.
E
H RESULT = UTIL(V. Si, C, S2, E);

C;

C:

C

t CLOSE NESTED,

CI

It is advantageous to keep the actual arguments passed to UTIL (i e V, Si, S2, etc)
declared at the lowest possible level because of the protection afforded by scoping rules, and
to show that these variables "belong" with the NESTED code block On the other hand,
some inefficiency results from passing all five parameters separately The code in the next
figure shows how structures can be used to reduce the number of UTIL parameters to one

OPJroIZt
.04Q" PA

9-2 Structures

M OUTER:
M PROGRAM,
M
M

DECLARE SCALAR,
GL G62

,

IM STRUCTURE UTIL_PARI:
M I V VECTOR,
M I Si SCALAR,
I 1 C INTEGER,
I1
M

1 32 SCALAR,
I E BOOLEAN;

MI UTIL:
H FUNCTION(X3 VECTOR;
11 DECLARE X UTIL-PAR-STRUTI. EI

c
C
C

E

II RETURH X.V;

M CLOSE UTIL.

M NESTED
II PROCVOURE,
I DECLARE RESULT VECTOR;
M DECLARE LOCAL UTIL,.PARK-STRUCTURE IHITIAL(O,

C NOTE THAT THE TEMIpLATE IS NOT REPEATED

M LOCAL.S1 = G1 / 3,

M LOCAL $2 w SINWG1 + G21,

C

C

E -+

M RESULT = UTIL(LOCAL),

c
C

c

M CLOSE NESTED,

C

C

C
M CLOSE OUTER,

1, 0, 0, 83, 0, OFF];

Several new language constructs are used in this example First is the statement begin
ring with "STRUCTURE UTIL_PA.RM " This statement creates a structure template
named UTIL PARM which defines the layout of the UTILPARM-STRUCTUREs declared
later In addition to structure declaration and initialization, the example shows references
to the components of a structure, structure terminals, such as "LOCAL SI" and an entire
structure, LOCAL

The next section describes all of the constructs used in the example, although some of
the more complex forms are deferred to the end of the chapter

http:LOCAL.S1

DelartngandReferencing Structures 9-3

9.1 DECLARING AND REFERENCING STRUCTURES

In the statement

DECLARE LOCAL UTILPARM-STRUCTURE INITIAL(0,100,83,0,OFF),

the phrase "UTIL PARM-STRUCTURE" takes the position usually occupied by a data
type This is actually consistent syntax because X-STRUCTURE, where X is a template
name, is a data type Hence, a template name with the word STRUCTURE attached by a
hyphen can be used in most of the constructs from previous chapters which require a data
type or "type specification" Examples include factored declare statements such as

DECLARE UTILPARM-STRUCTURE,
LOCAL,
X,

Y INITIAL(1,2,3,4,5,6,True),
ZERO CONSTANT(0,0,0,0,0,0,Off),

and function type specification, as in

SHAPE FUNCTION(A,BC,D) UTIL.PARM-STRUCTURE,

It is important to note that STRUCTURE by itself is not a data type The type of a
structure is entirely defined by the layout of its template From this rule, and the descnp
tion of parameter passage in chapter seven it follows that when astructure ispassed to a
procedure or function, the template of the actualargumentpassedmust be identical to the
template of the formal parameter

The conditions under which two templates are identical for purposes of data type
matching (in parameter passage, assignments, etc) will be discussed in Section 9.2 However,
the easiest way of assurng that two structures are of the same data type is to use the same
template in their declarations In the example, the STRUCTURE statement which defines
the UTIL_PARM template is part of the program level declare group It can be used in the
declarations of X and LOCAL in nested routines because the scopmg rulesfor structure tem
plates are the same asfordeclaredvariables Thus, a template defined at the program level is
global and may be used in declarations anywhere in the program

In addition to parameter passage, entire structures may be used in assignment statements
and in the vanous 1/9 statements For example, a set of ten test cases could be run through
the UTIL function by executing the following code

94 Structures

H OUTER

MI PROGRAM1

M DECLARE SCALAR,

M Gi. Ga;

M STRUCTURE UTIL PARM:

L 1 V VECTOR,

M 1 51 SCAL ,

ri I C INTEGER.

H I S2 SCALAR,

N I E BOOLEAN,

i1 DECLARE ARC UTILS I-sTRIUCTJRE,
K UTE1L-

M FUNCTIO(Xl VECTOR,

M DECLARE X UTIL._PAI'-STRIJCTURE,

C
C
C

E
H RETURN X.V,

H CLOSE UTIL;

11 OD FOR TEMPORARY I = 1 TO 10;

E +
H REAODIS ARG,

E +

M ImrTE(6) *UTL OF', ARG '=', UTIL(AR),
M END;

H CLOSE OUTER;

The statement "READ(S) ARG," is functionally equivalent to

READ(5) ARG V, ARG SI, ARG C, ARG S2, ARG E,

In other words, the components of the structure are read in the "natural sequence", which
is the order in which they appear in the structure template The components are output in
this same sequence when ARG appears in a WRITE statement

The Structure Template 9-5

Similarly, given

DECLARE UTILPARM-STRUCTURE, A, B,

the statement

A=B

is equivalent to the sequence

AV = BV,

AS1 = BSI,

AC = BC,

A S2 = B S2,

AE = BE,

Structure components, such as LOCAL V and A SI, follow exactly the same rules as
simple variables of the corresponding data type No restrictions whatsoever are imposed on a
structure component that would not also apply to a simple variable of that type Thus, the
vector component, V, of a UTILPARM-STRUCTURE, A, can be subscripted

AVS1 = AVS2,

used in a comparison,

DO UNTIL AVS(2 AT 1) 0,,

passed to a built-in function,

A SI = ABVAL(A V),

read, written, or filed, or used in any other construct in which a vector is allowed Further
more, there is no additional runtime overhead (either time or space) involved in referencing
a component of a structure rather than a simple variable

Structure initialization is essentially the same as array initialization The initial list con
sists of a value or set of values for each component of the structure, separated by commas
The CONSTANT attribute is also acceptable There is no way to write a structure literal, but
the CONSTANT attribute may be used to obtain the same effect For example, a convenient
way of setting all of the components of a structure to zero is

DECLARE UTILPARMS-STRUCTURE,

A,

B,

ZERO CONSTANT(0.0,0,0,0,0Of),

A = ZERO,

OQIGINv
4-gQQ AC

9-6 	 Sfructures

In addition to assignment statements, parameter passage, and I/O statements, compari
son of entire structures is permitted As was the case with arrays, the only comparisons that
can be made between structure operands are equal (-) and not equal (1=)

In this section we have discussed all of the ways that entire structures can be used in
executable statements and made the assertion that components of a structure may be used
in any way that simple variables of the same types can be used We have discussed declara
ton and initialization of structures using the template names as a data type All of the ex
amples have used the same template (UTIL PARM), but the rules for creating templates
have been omitted and the namng of structure components has only been implied by exam
ple In section 9 2 we will clear up these points and show additional examples of the use of
structures This chapter concludes with the presentation of two additional attributes "Copi
ness", which is analogous to arrayness of other data types, and unqualified structures, which
are easier to reference but more limited in capability

92 THE STRUCTURE TEMPLATE

A structure template describes the layout of a structure in terms of the order and data
types of its components A structure template is created via the STRUCTURE statement
This statement begins with the word STRUCTURE followed by the name of the template
being defined and a colon The remainder of the statement is a list of component descrip
tions separated by commas Each component is described by a level number, a name, and a
data type The statement below creates a template named SUPERVECTOR which has
three components

STRUCTURE SUPER-VECTOR

I V VECTOR,

I STATUS BOOLEAN,

I TIMETAG SCALAR,

The phrase "1 V VECTOR" defines a component named V of type VECTOR at level one
These level numbers require some explanation, but first we will state the rules about names
and data types

I) 	 The name of a structure component may be any valid HAL/S identifier

2) 	 The names of structure components need not be unique, provided they can be un
ambiguously referenced (i e. structures A and B may both have a Component named
X since they can be distinguished by referencing A X and B X)

3) 	 The components of a structure may be of any data type They may be of single or
double precision and they may be arrayed

Since SUPER VECTOR-STRUCTURE is a data type by the definition in this chapter,
le three above makes the following template legal

STRUCTURE STATEVEC

1 POSITION SUPERVECTOR-STRUCTURE,

1 VELOCITY SUPER_VECTOR-STRUCTURE,

I ACCEL SUPERVECTOR-STRUCTURE,

The Structure Template 9-7

Given the following structure declaration

DECLARE STATE STATEVEC-STRUCTURE,

how are the low-level components referenced The answer follows from the information al
ready presented Since the V component of POSITION is named "POSITION V", the POSI-
TION V component of STATE may be referenced as "STATE POSITION V" This process
may be carried to any level Given,

STRUCTURE S2

I STATE STATEVEC-STRUCTURE,

I ATTITUDE INFO ARRAY(3) VECTOR DOUBLE,

DECLARE STATE2 S2-STRUCTURE,

the components are named

STATE2 STATE POSITION V,
STATE2 STATE POSITION STATUS,

STATE2 STATE ACCEL TIMETAG,
STATE2 ATTITUDE INFO$(l),

and so forth The components listed above are called structureterminals A structure termi
nal is any component of a structure which itself is not a structure. Structure components
which are also structures are termed structure nodes, this terminology stems from viewing a
structure as an inverted tree, as shown below

VTIME- V STATUS T SA

STATUSTA~ ~ ~SAU-~ TcA

9 8 Structures

In this diagram, rounded boxes are used to represent nodes, or forks in the tree The

square boxes represent structure terminals which are the leaves of the tree

In Section 9 1 it was stated that a component of a structure may be used in any context

in which a simple variable of the same type can be used This statement applies to both

structure terminals and to entire nodes of a structure Since the nodes STATE2 STATE PO

are of type SUPERVECTOR-STRUCTURE, theySITION and STATE2 STATE ACCEL
may be read, written, filed, assigned to each other, compared, or passed as parameters to a

procedure or function which expects a SUPERVECTOR-STRUCTURE as an argument

Thus, these components of STATE2 STATE might be manipulated as shown below

H P

H FPOSRAII,

n STPUCTL'PE SUPEP3VECTOR
ii 1 V VECTOR.

e1 I STATUS BOOLEANI,

ii 1 TIMETAS SCALAR,

M STFUCTU'E STATEVEC

K 1 POSITION SUFER VECTOR-STRUCTURE,
H. I %ELOCITY SUPER-VZCTO-ST;UCTURE,

H 1 ACCEL SUPERVECTOR-STRUCTIUQE,

H DECLAPE STATE STATEVEC-$TRUCTURE,

H STRUCTURE S

M 1 STATE STATEVEC-STRUCTUPE,

H I ATTITU3E IMFOARPAYI3i VECTOR DOUBLE,

M DECLARE STATE2 S2-STRUCTU4E,

H PEPLACE TEST DATA BY "1•
M DECLARE CYCLE IMTEGER IflTIAL(OJ,

I DECLARE DELTA T CONSTAHT(1 / 103. /.TIME BETWEEN SAHPLESW%

I STATEZ STATE ACCEL - READACCC17

C ASSMiE TIAT?17 SELECTS THE CORRECT ACCELEROMETER

E ". +
1 CALL ITECPAT9(S(ATEZ STATE ACCELI ASSIGIIISTATEZ STATE VELOCITY 1.

H CALL ITEGATE(STAYE2 STATE VELOCITY) ASSIGH(ETATE2 STATE POSITION).

t CYCLE = CYCLE + 1.

E
" FILECTESTDATA, CYCLE) - STATE2 STATE. /SAVE FOR POST PROCESSING-/

" IFTECPATE

it PPCCEOUAEINIPUT) A5SICI(OUTPUT).

H DECLARE SUPEP VECTOR-STRUCTURE,

d INJPUT. OUTPOT,
E

H IF INPUT STATUS = FALSE THEN
H 00.

I

H OUTPUT STATUS w FALSE.

I RETUP8,

END,M
H OUTPUT TIIETAG = INPIT TIMETAG,
E - -

" OUTPUT V * OUTPUT V + INPUT V DELTAT,

" CLOSE IJITEURATE,

H CLOSE P,

The Structure Tenplate 9-9

An alternate way of coding the S2 template used in declaring STATE2 appears in the
following figure This example should make the use of level numbers clear Level numbers
provide the capability of creating nodes m a template without referencing other templates
No change whatsoever would be required to the previous program if this S2 template was
substituted for the earlier formulation

M P -
N PROGRAM;
" STRUCTUPE SUPEP VECTOR:

I V VECTOR,
S I STATUS B0OLEAN,
H 1 TI1ETAG SCALAR,
M STRUCTUE SZ-

M I STATE,

M 2 POSITICN,

N 3 V VECTOR,

M 3 STATUS BOOLEAN,

N 3 TIMETAG SCALAR,

M 2 VELOCITY,

1 3 V VECTOR,

K 3 STATUS BOOLEAN,

H 3 TIMETAG SCALAR,

M 2 ACCEL SUPERVECTOR-STRUCTURE.

M I ATTITUDE_INFO ARRAY(3) VECTOR COUBLE;

H CLOSE P,

By refernng back to the tree diagram of the STATE2 structure, it con be seen that the
level numbers represent the distances between the top of the structure and each component
Another illustration of this correspondence appears below

STRUCTURE X Level X

I A,
2 B INTEGER, A F

2 C,
3 D INTEGER, 2 B C

I
3 E INTEGER,

F INTEGER, 3

In these examples, the structure templates have been indented to show the contents of
each node This indenting is supphed by the compiler based on the level numbers Since the
HAL/S language is written in free format, the number of blanks coded on source cards is
irrelevant Hence, the previous example could also be wrntten as

STRUCTURE X 1 A, 2 B INTEGER, 2
C, 3 D INTEGER, 3 E INTEGER, I F INTEGER,

and the same output listing would result

ADZ Zn u PAG-8

~QQ&4QJ i

9 10 Structures

Coding structure templates in the above form is not recommended, however Properly in
dented source code generally makes desk checking and subsequent modification much
easier

Exercises

9 2A 	 Wnte-structure templates for the following trees

X 	 X//N
AI BI 	 A2 B2 C2

CI Di El FI 	 D2 E2

where

CI, El are 3-vectors,

D2, FI 	are 3x3 matrices,

D2, E2 are arrays of length 5 of 3-vectors,

All other terminals are scalar

9 2B

a) 	 For the following sequence of structure templates and the single declaration below,
draw the tree for the declared structure TEST-DATA

STRUCTURE X

I A INTEGER,

I B,

2 VI VECTOR,

2 V2 VECTOR,

STRUCTURE Y

IA,

2 B INTEGER,

2 VI VECTOR,

1 C SCALAR,

STRUCTURE DATA

1 L,

2 M X-STRUCTURE,

2 N Y-STRUCTURE,

I I,

2 J Y-STRUCTURE,

2 K Y-STRUCTURE,

DECLARE TEST_DATA DATA-STRUCTURE,

The Structure Template 9-I

b) 	 Write, in the natural sequence, the expressions used to reference each terminal of
TEST-DATA

c) 	 Wnte an alternate structure template for DATA that allows the terminals to be ref
erenced exactly as in part (b), but does not use structures X and Y

d) 	 Call the structure template of part (c) DATAPRIME, and make the following
declarations

DECLARE 	 STRUCI DATA-STRUCTURE,

STRUC2 DATAPRIME-STRUCTURE,

Which of these assignments are legal

1) STRUCI LMA = STRUC2LMA,

2) STRUC1 = STRUC2,

3) STRUCI I K = STRUC2 1K,

4) STRUCI.L M = STRUC2 IJ,

5) STRUC2 L = STRUC2 1,

9 2C 	 Rewrite the following segment of HAL/S code, using structures to eliminate the DO
FOR loop How must the procedure PROCESS be changed to allow this Be sure the
data can be read in the same order as before

DECLARE 	VECARR ARRAY(5) VECTOR,
DECLARE 	TIMARR ARRAY(5) SCALAR,
DO FOR I 	= I TO 5,

READ(5) VEC_ARR$(I),TIMARRSI,
END,
CALL 	PROCESS(VECARRTIM_ARR),

9 2 1 Template Matching

Throughout this chapter, the data type of a structure has been named by referring to the
template used in its declaration The statement has been made that two structures are of the
same data type if their templates are identical For the purpose of matching data types, two
structure templates are identical if and only if the order and data types of all of their com
ponents are exactly the same For structure terminals, all of the attnbutes including preci
sion and arrayness must match The term "components" used above also includes structure
nodes, Two nodes are of the same type if and only if their components are of the same data
types and in the same order

RI&~1~Jd 	 AGR 1,3C)R'NA.,v

9-12 Stmctures

This rule can be stated in two different ways

1) 	Two structure templates are identical if and only if the order, data types, and

hierarchicalarrangementof their terminals are the same

2) 	 Two structure templates are identical if the only differences between them are the
names of terminals and nodes

Most of the information about structures has already been presented We have seen how
to declare and reference structures and their components, and how to code structure tem
plates The use of structures to group data for parameter passage, assignment as a block, and
the simplification of I/0 statements has been illustrated Subsequent sections will add a few
mom capabilities to structure declaration and referencing by building on the basic concepts
of templates, nodes, terminals, and user-defined data types presented here

9 3 	MULTI-COPIED STRUCTURES

Multi-copied structures provide a capability similar to arrays of simpler data-types The
uses of structure copmess are much the same as the uses of arrayness described in chapter
six If several structures are to be processed identically, it is convenient to reference them by
number within a loop An example of this usage is descnbed below

The SUPERVECTOR template from Section 9 1 (repeated below) might be used to
contain sensed velocity data from an inertial measurement unit Since these devices are
usually redundant, it is useful to define a multi-copied SUPERVECTOR to contain the
data The following figure shows how such an entity can be declared and referenced

" 	 EXAMPLE N-

N 	 PROGRAM,
" STPUCTURE SUPERVECTOR

N 1 V VECTOR,

M I STATUS BOOLEAN,
M I TINETAG SCALAR,

"1 DECLARE VEL SUPEPVECTOR-STRUCTURE(33,
t DECLARE BEST INTEGER,

II 00 FOR TEMPORARY I = 'I TO 3,
E 	 +
K CALL REA0 "MUCh) ASSIGN(VEL)

S I.e

H END,

E 	 +
M CALL SELECT BEST(IVELI) ASSIGN(BEST);

E 	 +
M CALL GUIDANCErVEL 1;

S BEST;

E 	 +
H CALL OTHERSWeCVEL I;

S BEST;

MjuU Copied Sin atures 9-13

M SELECT.BEST

K PROCEDURE(V) AS$IG(SELECTEO);

N DECLARE V SUPER VECTER-STRUCTURE(3),

N SELECTED INTEGER,

M DECLARE N INTEGER;

m DECLARE MOST RECENT SCALAR INITIAL(O) AUTOMATIC;

1 DO FOR H 1 TO 3,
E
S IF V STATJS z OFF THEN
5 N;

M REPEAT,

11 IF V.TIMETAG > MOST RECENT THEN

S N;

M DO,

M SELECTED = NH,

M HOST.RECENT = V TIMETAG

S N,

M
H
M
M
M
11
M

END;
ENO;
IF MOST RECENT = 0 THEN

SELECTED V 1,
CLOSE SELECT BEST,
GUIDAHCE
PROCEOIUgE(BEST VEL);

/*ALL EQUALLY BAg'/

M DECLARE BEST VEL SUPER VECTOR-STRUCTURE;

C

H CLOSE GUIDANCE;

" OTHER-SW

H PROCEOURE(V),

" DECLARE V SUPERVECTOR-STRUCTURE,

C

" CLOSE OTHER SW,

" READIMU

" PROCEDUPE(UNITlJU) ASSGH[STRUCI,

A-~ DECLARE UNITNUH INTEBER,

M STRUC SUPER_VECTOR-STRUCTURE;

C..

" CLOSE REAUIMU;

M CLOSE EXAMPLE N;

9-14 Structures

Several points are illustrated by this example First, a multi-copied structure is created
simply by appending a copiness specifier to the structure declaration The copiness specifier
is a parenthesized integer which immediately follows the word STRUCTURE As with
VECTOR or ARRAY dimensions, the number of copies may be specified by any arithmetic
expression which can be computed at compile time"

The next new construct in the example appears in the statement

CALL READ_IMUj(I) ASSIGN(VELS(I,)),

This statement is intended to obtain the Ith copy of [VELI from an external device
VELS(I,) is a SUPERVECTOR-STRUCTURE with no copmess, the fact that it is con
tained in a multi-copted structure does not by itself impose any restrictions on its use The
semicolon in the subscript separates structure subscripts from the other types of subscripts
for the same reason that the colon is used to set off array froth component subscripts Struc
ture subscripts may of course be combined with the other types For instance, the second
component of V within the third copy of VEL can be referenced as VEL VS(3,2) Some of
the many combinations are illustrated below Given,

STRUCTURE X

I M ARRAY(10) MATRIX,

I I ARRAY(3,2) INTEGER,

DECLARE BIG X-STRUCTURE(100),

the very first scalar component is

BIGM$(Ii 1,1)

and the last scalar is

BIG MS(100,10 3,3)

'The first four integers are

BIG I$(I,l TO 2,-),

which is a two-by-two integer array

BIG MS(I,* 1,)

is an array of ten 3-vectors composed of the first rows of all the matrices in the first copy of
BIG

There is also an equivalent to ARRAY() which will be described later

Multi Copied Siructurex 9-15

Partitions are also allowed in structure subscripts, the statement

BIG$ (I TO 50) = BIGS(51 TO #,),

would set the first fifty copies of BIG to the values contained in the last fifty

The data type of BIGS(I TO 50,) is "multi-copied X-structure" When the structure sub
script is applied to a terminal(e g BIG 1), the result is no longer a structure In this case, the
copiness is converted to arrayness BIG M$(I TO 50,),behaves like a 50 x lanay of matri
ces Likewise, BIG I$(1 TO 50,1,1) behaves like an ARRAY(50) INTEGER even though all
of the actual arrayness was subscripted away With respect to terminals (but not nodes),
arrayness and copmess are interchangeable

Returning to the original example in which VEL was declared as a three-copied
SUPERVECTOR structure, we can see how the conversion to arrayness is used The fol
lowing are arrayed statements which functions exactly as descrbed in Section 6 2

[VEL STATUS] = ON, /*set all three status booleans to TRUE*/
MOSTRECENT MAX([VELTIMETAGI),
AVG Z COMPONENT = SUM(VELV$(*,3))/3,
AVG_Y_COMPONENT = SUM(VELV$(t ,2))/3,
VELV = VECTOR(1,l,1),

In many ways, multi-copied structures are like arrays of other data types We have al
ready seen that subscnptmg is essentially the same except for the use of a semicolon instead
of a colon, and that terminals of multi-copied structures can participate in arrayed state
ments One copy of a multi-copied structure may be used in any context where a simple
variable of the same structure type can be used Tins rule is also the same as stated previ
ously for arrays and their elements This section has also shown that the uses of copiness are
roughly the same as the uses of arrayness Identical operations on similar data, saving a set
of structures in a list, and maintaining tables

Another way in which multi-copied structures resemble arrays is in initialization A
multi-copied structure can be initialized by listing the initial values for each copy separated
by commas, as shown

STRUCTURE MONTH

I NAMEOF CHARACTER(5),
I DAYS INTEGER,
I COLD BOOLEAN,

DECLARE YEAR MONTH-STRUCTURE(12) INITIAL('JAN', 31, TRUE, 'FEB',

28, TRUE, 'MARCH', 31, TRUE, 'APRIL', 30, FALSE, -),

Here, the asterisk (*)is used to indicate that only part of the structure is to be initialized
The initial values of copies five through twelve are indeterminate The use of a multi-copied
structure for this type of diverse table instead of a set of parallel arrays (shown below) is
largely a matter of style The referencing of entries is about equally convenient, but the

- .o ' Z

9-16 Strctures

initial list groups al of the information about edch entry in the case of a structure whereas

the information for arrays must be grouped by type as shown in the alternative below

DECLARE NAMEOF ARRAY(12) CHARACTER(5) INITIAL('JAN', 'FEB',
'MARCH', 'APRIL', *),

DECLARE DAYS ARRAY(12) INTEGER INITIAL(31, 28, 31, 30, *),

DECLARE COLD ARRAY(12) BOOLEAN CONSTANT(TRUE, TRUE, TRUE,
PAUSE, -),

Finally, procedures may be written to accept a structure with a variable number of

copies The syntax is the same as for arrays, as shown below, which is a re-work of the

example before

II EXADPLEm

H PRO6RAH,
1 STRUCTURE SU)PER_VECTOR
H 1 V VECTOR.
H I STATUS BOOLEAN,

H 1 TI ETAG SCALAR,

H DECLARE VEL SUPER VECTOR-STRUCTURE(3);

H DECLARE BEST INTEGER,
H DO FOR TEMPOPARY I = I TO 3,

H CALL READ_IU(I) ASSIGHiVEL),

H END;

E +
N CALL SELECT.BEST({VEL)) ASSIGN(BEST),

E +
hi CALL GUIDANCE(VEL 3,
S BEST,

E +
M CALL OTHER SW VEL 1;

S BEST;

N SELEC, BESTt

N PROCEDURE(V) ASSIGUNSELECTED),

N DECLAPE V SUPERVECTOP-STRUCTUREIMi;

" DECLARE SELECTED INTEGER,

E +
M DO FOR TEPOPART N z I TO SYZE({V}M ,

E
N IF V.STATUS OFF THEN

S

M REPEAT,

C

K END.

K CLOSE SELECTBEST;

K GUIDANCE

K PROCEDUPE(BESTVEL);

2 DECLARE BESTVEL SUPERVECTOR-STRUCTURE,

Multf CopiedStruciures 9-17

C

M CLOSE GUIDANCE,

i OTHER_SWI
" PROCEOURE(V),

" DECLARE V SUPERVECTOR-STRUCTURE,

C..

" CLOSE OTER SM,

" READ IhU

K PROCEOURECJTLrNUM) ASSIGN! STRUC);

M DECLARE UNIT NUll INTEGER,

M STRUC SUPERVECTOR-STRUCTURE,

C

M CLOSE READIMIU;

iH CLOSE EXAMPLE N;

Note, however, that there are a few ways in which multi-copied structures are different
from arrays

1) Only one dimension of structure copmess is allowed

2) Arrays may be used as structure components, but multi-copied structures may not
3) There are no operators or built-in functions for processing structures

Exercises

9 3A Rewrite the solution of problem 9 2C using multi-copied structures

9 3B Consider the following structure template and declaration

STRUCTURE At

1 3 ARRAY(5) INTEGER,

I C SCALAR,

1 D VECTOR(6),

DECLARE A AI-STRUCTURE(100),

Write a HAL/S expression to reference the following data items, and indicate their type and
arrayness/copiiess

a) Tho25thcopyofA

b) The 3rd component of B from all copies ofA

c) C from the 10th through 20th copies of A

d) D from 75th to 85th copies of A

e) The 1st element oflD from the first copy ofA

Op Qt

9-18 Structures

9 3C The following information about a company's 1a0 employees is available

a) SS number (integer)

b) salary (scalar) (scalar)

c) job code (integer)

d) name (character)

Wnte a HAL/S program to read in all the data from channel 5 and compute the average
salary Create a structure to hold all of the available information

94 DENSE, RIGID, AND "UNQUALIFIED"

DENSE and RIGID are minor attributes that can be applied to structures and their
nodes to give the user more control over the layout of structure data in storage The term
"unqualified" refers to a type of structure in which it is not necessary to qualify each refer
ence to a terminal by the name of the containing structure These features may not be fre
quently used, but they do provide additional capabilities required by some applicatilons

9.4 1 The DENSE Attribute

The DENSE attribute instructs the compiler to pack portions of a structure into as little
storage as possible, generally at the expense of efficient references to the data The DENSE
attribute is specified on a structure template or a node of a template as shown in the figure
below

M P
M PROGRAM;

M STRUCTU E FLAGS DENSE'

II .181 BOOLEAN,

II I.aa BOOLEAN,

M 1 HODE INTEGER,

M 1 B3 BOOLEAN,

M 1 C CHARACTER(5);

II DECLARE STATUS FLAGS-STRUCTURE IMITIALEOFF, OFF, 0. OFF, '1);

Mi CLOSE P,

DENSE, RIGID,tnd "Unqualified" 9-19

The effect of the DENSE attribute is implementation dependent This is because the
mapping of HAL/S data types into bits, bytes, words, double words, etc, varies according to
the storage formats of individual target machines Most computers have operand alignment
requirements, for instance requiring that floating point numbers be stored at an address
which is a multiple oftwo or four The HALlS programmer is normally isolated from these
considerations Since variables are only referenced by their symbolic names, the compiler is
free to re-arrange declared data to meet the requirements of the machine

Unless the DENSE attribute is specified, all data is ALIGNED (ie placed on appropriate
storage boundaries) DENSE data is packed whenever there is a reasonably efficient means
of bypassing the computer's operand alignment requirements Thus, the only genera! state
ment that can be made about DENSE structures is that they tend to require less storage but
more time to access than ALIGNED structures

It turns out, though, that most compilers will pack booleans and bit strings in DENSE
structures Inthe example above, Bi,B2and B3 would occupy the same amount of storage
that would be allocated to a single ALIGNED boolean Note that B3 is placed in the same
byte, word or other addressable unit as B1 and B2 even though an integer is between them
in the template Whether or not DENSE is specified, the compiler is free to rearrange the
order of structure components to minnimze the number of alignment gaps or to optimize
the addressmng of certain components In fact, all declared data is subject to the rearrange
merit unless the RIGID attribute is specified (see Section 9 4 2)

Components of a DENSE structure are referenced in the usual way, some additional re
stnctions on their use apply, but where they are allowed, they behave exactly like compo
nents of a corresponding ALIGNED structure Thus, statements like

STATUS BI = ON,

STATUS B2, STATUS B3 = FALSE,

IF STATUS BI AND STATUS B2 THEN STATUS MODE = 9,

work as described previously The additional restnctions* imposed on terminals of dense
structures are

1)	Bit or boolean terminals of a dense structure may not be passed as ASSIGN param
eters to procedures

2) 	 Bit or boolean terminals of dense structures may not be used on the left hand side of
a FILE statement

3) 	 Bit or boolean terminals of dense structures may not be used in NAME expressions
See Chapter 13

*These resictions avoid the need to pass both an address and starting bit number to Library or OSEV
supplied routines

9-20 Strucures

These are the only restrictions imposed on the DENSE attribute, note that they apply
only to bit and boolean types and do not apply to entire structures with the DENSE attri
bute even if these structures contain bit or boolean terminals Thus,

[STATUS] = FILE(I,I),

is legal, but

STATUS B1 = FIHE(1,1),

is not legal

9.4 2 The RIGID Attribute

Consider the following structure

STRUCTURE INTEGERLIST
1 S1 INTEGER,
I DI INTEGER DOUBLE,
I S2 INTEGER,
I D2 INTEGER DOUBLE,

DECLARE IOTA INTEGERLIST-STRUCTURE,

On a computer which requires that double precision integers be stored on even ad
dresses, the compiler would probably rearrange the data as follows

word 0 FY7
1

2 D2
3
4 S1

5 S2

If the data was kept in the natural sequence, the following would be needed

word 0 SI

2 2 DI
3
4 S2
5 2
6 D2
7

The shaded areas indicate alignment gaps which are effectively wasted storage These dia
grams show how allowing the compiler to re-arrange data can result in a substantial savings
of memory

DENSE, RIGID, and "Unqualified" 9-21

Occasionally, however, it is necessary to prevent this rearrangement, generally to inter
face with external devices or NONHAL routines The RIGID attribute is'supplied for this
purpose The second diagram shows the storage assignments that would be made if the
word RIGID appeared immediately before the colon of the STRUCTURE statement An
appropriate use of the RIGID attribute appears below

STRUCTURE IMU DATA RIGID
I DELTA V ARRAY(3) INTEGER DOUBLE,
I ATTITUDE ARRAY(3) INTEGER,
I TIME BIT(32),
1 STAT DENSE,

2 F1 BOOLEAN,
2 F2 BOOLEAN,
2 F3 BOOLEAN,
2 UNUSED BIT(13),

I OP_MODE INTEGER,
DECLARE IMUDATA IMU-DATA-STRUCTURE,
CALL ASMTOROUTINE ASSIGN(IMUDATA),

In addition to the syntax for declaring a RIGID structure, this example shows the
DENSE attribute applied to the STAT node IMUDATA STAT is both RIGID and
DENSE The RIGID attribute on the structure-is inherited by all of its nodes If any addi
tional nodes were defined below STAT, they would also be. RIGID andDENSE, unless the
ALIGNED keyword was specified The RIGID attribute is always inherited (cannot be
turned off) since there is no "non rigid" keyword

The RIGID attribute allows any data layout to be mapped into HALlS data types It
does not impose any restrictions on the use of a structure or its components However, two
structures cannot be of the same data type unless neither is RIGID or both are.

In the example above, note that "IMU DATA" is the name of the template and the
name of the declared structure This fact makes IMU_DATA an unqualified structure

9 4 3 Unqualified Structures

When a structure template is to be used in only one declaration, it is convenient to give
the structure the same name as the template This permits the name of the structure to be
omitted when referencing its nodes and terminals Again referring to the structure above,
the statement,

DO CASE IMU_DATA OPMODE,

is legal, but the more convenient form,

DO CASE OPMODE,

is also permitted

~Ace 8-0

9-22 Smautures

Unqualfied structures differ from qualified structures (all previous examples) only in
the form of references to their components It has already been stated that there is no exe
cution-time penalty involved in using a structure terminal instead of a simple variable If an
unqualified structure is used, no distinction has to be made in the source code either Thus,
there is no disadvantage to using a rigid unqualified structure to force a collection of van
ables to be allocated in a particular sequence, except for possible alignment gaps

Sometimes it is useful to convert a set of declared variables to the components of an un
qualified struature, since all of the variables (now structure terminals) can be transferred to
or from a random-access device in a single FILE statement Variables are also sometimes col
lected in an unqualified structure for documentation purposes since this allows them to be
discussed as a group under an "official" name which appears in the source code

Now that structures and their uses have been fully described, only two data types re
main Bit strings, which are the general case of booleans, are discussed in Chapter 13, and
event variables, which may be thought of as "real-time booleans", in Chapter 12 The mate
rial covered thus far in the text should allow most applications to be coded in HAL/S The
handling of errors and exceptional conditions will be discussed in the next chapter Then we
will proceed to put a collection of programs together and execute them as an integrated sys
tem in Chapters II and 12 Chapter 12 describes how the user may control execution rates
and inter-process communication and synchronization The book concludes by discussing
several constructs that are provided for writing "system programs" such as I/O device drivers
and memory management routines

DENSE, RIGID, andd'Unquahfied" 9-23

Exercises

9 4A Given

STRUCTURE A RIGID
I B,

2 C INTEGER,

2 D VECTOR,

1 E,

2 F,

3 G MATRIX(4,5),

3 H ARRAY(2,3) INTEGER DOUBLE,

2 I INTEGER,

STRUCTURE AF

I G MATRIX(4,5),

I H ARRAY(2,3) INTEGER DOUBLE,

STRUCTURE RAF RIGID

I G MATRIX(4,5),

1 H ARRAY(2,3) INTEGER DOUBLE,

DECLARE X A-STRUCTURE,

Y AF STRUCTURE,

Z RAF-STRUCTURE,

DECLARE INTARR ARRAY(2,3) INTEGER DOUBLE,

Are the following assignments legall

a) XEF = Y,

b) Z = XEF,

c) XEFH = YH+ZH,

d) YG = ZG,

e) XBC = YHS(l,1),

9 4B Consider the following structure template and declaration

STRUCTURE A

I B SCALAR,

I C INTEGER,

1 D VECTOR(6),

DECLARE A A-STRUCTURE(20),

.ORIGIIa/ r

9-24 Structres

What do the following HAL/S subscripted variables reference, and what are their types and
arraynoss/copmness

a) AS(20,)

b) A$(2 AT 10,)

c) CS(I,)

d) DS(4 TO 6,)

P) DS(*, 4 TO 6)

End of Chapter Problems

9A 	 What are some of the capabilities that HAL/S structures give the program that would
otherwise be unavailable9

9B 	 Write a HAL/S program that will read simulated data from 3 redundant sensors on
channel 5 and compute the middle value of the 3 redundant pieces of data

Read an acceleration, velocity, attitudd (3-vectors), and a scalar time tag.after each
from each measurement umt First read from unit 1, then 2 and 3 in that order
Compute the middle value of th three heaiured va'lu6s for each quantity (using the
MIDVAL built-in function or any equivalent code), and store these values with their
associated time-tags in a structure with the following template

I BESTACCEL,

2 ACCEL VECTOR,

2 ACCELTIM SCALAR,

I BESTVEL,

2 VEL VECTOR,

2i VELTIM SCALAR,

I BESTATTITUDE,

2 PITCH VECTOR,

2 PITCHTIM SCALAR,

The ONERROR Statement 10-1

10 0 ERROR RECOVERY

Each implementation of the HAL/S language defines a set of runtime errors These
errors, or exeepttons, include

1) 	 invalid arguments to built-in functions, such as SQRT (-1),

2) 	 1/0 errors, suchas reading past the end of a file,

3) 	 hardware detected errors, such as attempting to divide by zero,

4) 	 and other conditions which may arise while executing certain HAL/S statements,
e g inverting a singular matrix and using invalid character subscripts

By 	default, when one of these errors occurs, a standardfixup is performed, on ground
based systems, an error message may be generated as well In some cases, the standard fixup
is to print diagnostic information and terminate the program, but usually some innocuous
value is substituted for the offending expression and execution continues For instance, if
SQRT(X) is invoked with a negative X, the standard fixup is to return SQRT(ABS(X)) The
standard fixups for all errors defined in a compiler are listed in the corresponding Users
Guide

The standard fixup may not be appropriate for all applications Hence, HAL/S provides
a mechanism that allows user-supphed HAL/S statements to gain control when an error
occurs In this figure, an ON ERROR statement'is used to handle an end of file error

" PROGRA ,
H REPLACE 10 BY "10",
" DECLARE SCALAR,

I 	 INPUT, OUTPUT, EXPECTED;
I DECLARE INTEGER INrTIAL(O),

-
M RIGHT, WRONG ,

M ON ERROR

M GO TO DONE;
H 00 WHILE TRUE,
It READ(S) INPUT, EXPECTED,
M CALL XCINPUT) ASSIGNIOUTFUT),
11 IF OUTPUT EXPECTED THEN
M RIGHT - RIGHT + 1,
M ELSE
M WRONG WRONG + 1;
I E*
" DONE:

" WRITE(63 'RESULTS OF TESTING X',
h
M X,

WRITEI61 RIGHT, ' SAMPLES COPRECT , WRONG. * SAMPLES INCORRECT';

H PROCEDURE(I) ASSIGN(O];
M
K

DECLARE SCALAR,
I, 0.

C

c
C
1 CLOSE x;

H CLOSE TESTX;

C

e -_r

OFRocG01?J

102 ErrorReovery

Only one new construct is used in this example

ON ERRORS (EOF 5) GO TO DONE,

This is an executable statement which establishes "GO TO DONE," as a handler for the end
of file error When the ON ERROR statement is executed, the default error handling (i e
standard fixup) for the end of file error is replaced, by the GO TO statement supplied The
function of the ON ERROR statement is to selectively replace the standard error handlers
under program control

10 1 THE ON ERROR STATEMENT

Like the IF statement, ON ERROR is a compound statement (i e a statement which
contans another statement) It specifies an action to be performed when an error occurs
This action may be an executable statement, but GO TO is the most commonly used in this
context In fact, the action portion of an ON ERROR statement should be the most fre
quent use of GO TO HAL/S The example above, however, can be re-written without a
GO TO, as in this figure

M PROGRAM,
H
1

REPLACE
DECLARE

10 BY "10',
IHTEGER -HITIAL(),

M
C

RIGHT, WON;

C

M ON ERROR
S 10 5

I lWRITE(6)'TEST RESULTS FOLLOW';

Ii NRITE(61 RIGHT, WaNG;

H RETURN.

M END,

N bO WHILE TRUE,

C
C

It END;
K CLOSE,

In this example, a DO . END group serves as the action of the ON ERROR statement
Note that in making this change it was necessary to add a RETURN statement after the
WRITE statements This is because after the action of an ON ERR OR statement' has been
executed, controlfalls through to the followingstatement If the RETURN were not coded,
the DO WHILE TRUE loop would be re-executed after the WRITE statements and the
error probably would recur, resulting in an infinite loop The next figure illustrates the flow
of control around an ON ERROR DO END group

The ON ERROR Statement 10-3

A =1;

B =2,

E

END;t

1,

-erro ex'i

onerrorexit n

onerorcmpun

saemn

taemn

10-4 Error Recovery

After an error occurs and a user-specified action is taken, there is no way to resume
execution at the point that the error was detected, for efficiency reasons, the state of the
program immediately after the error is not saved, and hence cannot be restored

The end of file example illustrates one difference between the HAL/S ON ERROR sys
tem and the system of alternate returns or "END= " used in many languages The ON
ERROR statement was coded outside of the DO WHILE loop, thus the overhead associated
with defining an end of file handler is paid only once, rather than at each READ statement

The subscript in the ON ERROR statement consists of two numbers separated by a
colon The left number is an errorgroup, the right number is an error code within that
group Denoting errors by both a group and a code allows entire groups of errors to be
handled identically (see later) The group and code assignments of a particular error are gen
erally the same among various implementations of the language, though this is not guaran
teed by the HAL/S language Specification The User's Manual which corresponds to the
compiler in use should be consulted before using ON ERROR statements

The compiler used in producing the listings for this book follows the same convention as
several HAL/S compilers All I/O errors are assigned to group 10, and codes 0-9 in this
group represent end of file errors on channels 0-9 Thus, ON ERRORS (10 5) sets up a
handler for end of file on channel five Use of the macro

REPLACE EOF BY "10",

is used to improve readability

If a program reads data from several devices, an end of file handler can be created for
each, e g

ON ERRORS (EOF 4) GO TO NOMORE_CARDS,
ON ERRORS (EOF 5) GO TO ENDOFTAPE,
etc

It may be more convenient to write one handler for any I/O error, this can be easily done
by omitting the error code as in

ON ERRORS (EOF) GO TO DONE,

or

ON ERRORS (EOF) GO TO DONE,

These forms both specify "any error code with the given group" Finally, the statement

ON ERROR GO TO DONE,

sets up "GO TO DONE," as the handler for all errors (including end of file)

The ON ERROR Statement 10-5

M P.
H PRORAH1

M DECLARE H HATRIX;
C
C
cM 04 i RPOR

s 4:97

M Do.

E

Mi M10;
M GO TO LI;

n END,
E E *-i.
K M1M ;

E
M IRITE(6) M;
C
C

MI CLOSE P;

ON ERROR is the standard means of handling exceptions which arise from operations
on invalid data For example, a runtime error will result from attempting to invert a singular
matrix The standard fixup for this error is to print a message, return the identity matrix,
and continue execution In the program segment above an ON ERROR statement is used
to substitute a zero for the identity matrix

It should be noted that use of this form of the ON ERROR statement replaces the
standard fixup Hence it prevents the generation of an error message Many implementations
impose a limit on the number of errors that may occur before the program is terminated by
the system When a user-supplied. handler is invoked, the error is not counted toward this
limit

Once an ON ERROR statement is executed, the specified error handler remains in effect
until it is deactivated One mecans of deactivating an error handler is shown below

ONEROs h sadadmen o anln exceon whc rs rmoeaan

H PROIGRAMU
MI DECLARE M MATRIX,
h I INTEGER;
MI V0 FORI ITOI10,
c
c
C

' DloE

106 ErrorRecov'ery

1 ON ERROR

s 4!27

H DO;

E

GGOTO L1,
H
E *

END;
' -1

E N=H

E
UU VRITE(6) K,

c
C

H ON ERROR SYSTEM,
S V'27

C
C
C

H CLOSE P;

Here, the keyword SYSTEM is used in place of an executable statement as the action of the
ON ERROR This statement has the effect of restoring the standard fixup for ERRORS
(4 27) To see why this statement is needed, suppose that additional inverse operations were
coded later m the program, and this statement was omitted If one of these operations
caused an error, control would be transferred to the user handler in the middle of a loop
This would be disasterous, since the compiler assumes that a loop can only be entered by
execution of the DO statement at its head Thus, if an errorhandleris coded in a loop,
it should always be deactivatedat exit from the loop In general, it is good practice to de
activate error handlers as soon as they are no longer needed

The statement

ON ERRORS (X Y) SYSTEM,

restores the default (system) recovery action for error X Y (group X, code Y) In addition
to SYSTEM and an executable statement, IGNORE can be used as the action of an ON
ERROR statement, as ija

ON ERRORS (4 27) IGNORE,

Tlus statement informs the error recovery system that inverting a singular matrix is not to
be considered an error, i e that the standard fixup (returning identity) is appropriate and
that execution should continue without an error message or other notification Depending
on the compiler m use, IGNORE may not be permitted for certain errors

The ON ERROR Statement 10-7

When an ON ERROR statement is executed, an error recovery action is established for
an error or group of errors Three recovery actions are possible

1) an executable statement to receive control, (in lieu of the standard fixup and an
error message),

2) SYSTEM, which is the initial state and includes both the standard fixup and an error
message,and

3) IGNORE, which requests the standard fixup without an error message

Any number of recovery actions may be in effect at one time In a sense, the actions are
cumulative If the code below were executed, four recovery actions would be in effect

K P
H PROSRAH,

M DEC1AFPE SCALAP,

Hl A, 13, C,
H DECLARE INTEGER,
l1 X, Y, Z.
H OH EROR

II00,
t WRiTEt6) A. D, C, X, Y, Z,

tLi RETUtN,

N END,

N ON EPROP
s 10 5

h IE1UPI;
H OH EPPeR IGNORE,

s 10

H ON EPPOR SYSTEM

S 4 2

C

C

c

II LASTrCARD

H CLOSE P.

The net effect of these Statements is Any end of file error, except on charnel five, will
be ignored, and any other error, except 4 2, will cause the WRITE and RETURN statements
to be executed If error 4 2 occurs, the system action will be taken, and when 10 5 occurs,
P will close This shows that the handler for error S (10 5) takes precedence over the
handler for error $ (10) The general rule that applies is Whien the errorspecifications in
several active ON ERROR statements in a single block apply to a particularerror, the most
specific takes precedence Thus, as each of the last three ON ERROR statements in P is
executed, the number of errors handled by the first and most general one is reduced

Note that the rule above applies only to ON ERROR statements in a single block
(program, procedure, function, etc) The effect of ON ERROR statements in nested blocks
will be discussed in the next section Note also that an ON ERROR statement has no effect
until it is executed

ORcQNAL

OP Poo 7jGJz.

'09z

108 ErrorRecovery

Exercises

10 IA 	Where does the flow of control go after the action of an ON ERROR statement has
been executed 9

10 1B 	 Why is it good programming practice to deactivate any error handler that is coded
inside a loop when that loop is exited9

10 IC 	 What are the three possible recovery actions in the event of a runtime error9

10 ID 	 Write the precedence relations for the 3 general forms of subscripting for the ON
ERROR statement when they occur in the same code block

10 2 DEACTIVATING ERROR HANDLERS

An error handler can be deactivated in three ways

1) by overriding it with a new handler,

2) by exiting from the containing block,

3) by using the OFF ERROR statement

All of these methods are affected by the HAL/S block structure A procedure or function
cannot make any permanent change to the errorenvironment of its caller This statement is
a consequence of several rules which will be described with reference to the figure below

M A-
H PROGRAt,

H ON ERROR IGNORE,

s 12

M CALL B,
M CALL C;
M a
ti PROCIUIE,

M ON EPPO

S 1-2

M1 GO TO X,
K CALL C;
H X WRITE(6) 'GOT AN ERROR',

K CLOSE 8,

H C:
M PROCEDUPE,

H CLOSE C;

M CLOSE A;

DeactivatangErrorHandles 10-9

None of the statements shown can produce an error, however we will discuss what
would happen if ERRORS (1 2) were caused by an additional statement inserted at various
points

If the error occurs in block A proper (i e outside of B and C), the IGNORE action will
be taken, even after B is called and returns This is because any error handlerdefined in a
block is cancelled when that block RETURNs or executes its CLOSE statement When B
returns, the error environment reverts to that in effect when B was called In this case, the
IGNORE action is re-instated

When the ON ERROR statement in B is executed, the IGNORE action is temporarily
overridden by the GO TO action This action then remains in effect until B returns If the
error occurs in B, but before the GO TO action is set up, the IGNORE action is taken
Merely invoking a block does not change the error environment When B calls C, the GO TO
action is stll in force, if ERRORS (1 2) occurs in block C, control wil be passed to the
label X in block B In effect, C returns to X instead of to the point of invocation When this
happens, the error environment is restored to that wich prevailed before Cwas called, just
as if C had returned normally

In the example, block C is also called directly from block A In this case, of course, the
ON ERROR statement in B has no effect If the error occurs in C when it has been called
from A, the IGNORE action is taken Thus, we see that the range over which an ON
ERROR statement is active is not determined by the static block structure, but by the
actual sequence of CALLs and RETURNs

The left-hand diagram below shows the static block structure of a program A, which
is suitable for describing the scoping rules for variables

A A

B C

CC

Block Structure Cal Tree
"outer" variable can be "upper" blocks affect error

referenced environment

ORIGMJAfL PAGR

0 Qo u

10-10 ErrorRecovery

The right-hand diagram illustrates the range of ON ERROR statements within A, B and C C
occurs twice in the diagram, at the ends of different limbs Since all intervening blocks
between a given block and the top of the tree may be scanned for handlers when an error
occurs, a block's error environment depends not only on local ON ERROR statements, but
those in the calling block, and in the caller's caller, and so forth Block C may be affected by
B's error environment even though it cannot access B's variables

Now that the basic. concepts have been illustrated, the rules for deactivation of error
handlers can be stated precisely

1) 	 When a code block exits (by RETURN, CLOSE, or due to an error) the error envi
ronment is restored to that in effect when the block was entered

2) An error handler may be replaced by execution of an identically subscripted ON
ERROR statementzn the same block

3) An error handler may be temporarily overnden by creating another handler in a
"lesser" block (i e. lower in the call tree) which applies to the same error(s)

4) An error handler may be completely erased by execution of an identically sub
scriptedOFF ERROR statement in the same block

These are the only ways that an error handler may be deactivated Note that there is no
limit to how far up the call tree the system will search for a handler when an error occurs
As stated previously, when a particular block contains several handlers that could apply to
the same error, the most specific is selected Other active blocks are searched only if no
handler at all for this error is found in the current block

The OFF ERROR statement may be used to cancel the error handler created by a cor
responding ON ERROR statement There are only four possible forms

OFF ERROR,

OFF ERRORS (nI n2),

OFF ERRORS (nl),

OFF ERRORSnl,

and of these, the last two are equivalent The effect is simply to cancel an identically sub
scripted ON ERROR statement in the same block If no such ON ERROR statement has
been executed, the OFF ERROR statement has no effect

The primary use of the OFF ERROR statement is to re-instate an error handler in the
calling block which had been overridden by a local ON ERROR statement An example of
this usage appears in the following figure

DeactivatngErrorHandles 10-11

Mt A:

h PROGRAM;

C

C

C-

H OH ERROR

H GOTO X;

Klc CALL B;

ii PRQCEDURE.
c

C

M ON EROR IGNORE;
C --

C

C-
M OFFc EPROR,
CC-
C

X CLOSE B,

C
C
C

1t CLOSE A;

It should be noted that the handler cancelled by an OFF ERROR statement must not
only be in the same block, but it must describe exactly the same error(s) For instance, the
sequence

ON ERRORS1 IGNORE,

ON ERRORS2 IGNORE,

OFF ERROR,

would leave two handlers active, since the OFF statement is more general than the ON
statements To cancel them both would require two statements

OFF ERRORS(I),

OFF ERRORS2,

Likewise, the sequence

ON ERROR$(l) IGNORE,

OFF ERROR$(l 2),

does not exclude ERRORS(1 2) from the handler Unless there is an identically (plus or
minus a trailing colon) subscripted ON ERROR statement an the same block, OFF ERROR
will do nothing

10-12 ErrorRecovery

Exercises

10 2A 	 In what ways is it possible for an error handler to be deactivated9

10 2B 	 In the following examples of sequences of ON ERROR and OFF ERROR state
ments, wich handlers are left active after the sequence 9

a) 	 ON ERRORSI IGNORE,

ON ERROg$(1 2) IGNORE,

ON ERROR$(2 1) IGNORE,

OFF ERROR,

OFF ERRORS(1 3)

b) 	 ON ERRORSI IGNORE,

ON ERROR$(1 1) IGNORE,

ON ERRORS(2.) IGNORE,

OFF ERRORS(1-),

OFF ERRORS(2 1),

10 3 OTHER ERROR CONTROL CONSTRUCTS

In addition to ON and OFF ERROR, winch activate and deactivate error handlers,
HAL/S provides the SEND ERROR statement, winch annunciates an error condition, and
a pair of bult-m functions which allow information to be obtained from the recovery
system

The SEND ERROR statement has two uses To simulate the occurrence of system
defined errors for testing and other purposes, and to allow the user to define additional
error types It has only one form

SEND 	 ERROR$(nl n2),

where nl and n2 are integers computable at compile-tme and in the valid range of error
groups and codes specified by the appropnate HAL/S User's Manual The effect of the
SEND ERROR statement is merely to trigger whatever handler has been set up for the
specified error

When a SEND ERROR is executed, the error environment is searched for an applicable
ON ERROR handler If the action is an executable statement, control is passed to it and
execution continues without an error message If the IGNORE option was specified, execu
hon continues at the statement following the SEND ERROR, also without a message If
the action is SYSTEM, or no error handler is found, then an error message is generated,

Other Error Control Consructs 10-13

and either the run is terminated, or execution continues at the statement following the SEND
ERROR The User's Manual states whether execution will continue' after an error of each
system-defined type Generally, if the group and code are not system-defined (ie not hsted
in the User's Manual) the SYSTEM action allows execution to continue Thus, itis possible
to write a "standard fixup" for a user-defined error, as shown below.

M L0G10"
I FUNCTONtxI SCALAR,

N1 DECLARE X SCALAR;
I IF X > 0 THEN

M RETURN LO$(x) / LOG[IO0;
11 ELSE

H SEND ERROR

S 9:1

H RETURN LOG(ABSMX]) / LOGC1O),

M END;

M CLOSE LOI0;

Now, when LOGI 0 is invoked with a negative argument, error 9 1 will result This error
may be handled by the calling routine in the usual way, e g

DECLARE N SCALAR INITIAL(-I),

ON ERROR$(9 1) DO,

N = 100,

END,

WRITE(6) LOGIO(N),

This code will wnte log, 0 (100) If the next two statements were

OFF ERROR$(9 I),

WRITE(6) LOGIO(-99),

there would be no active handier for error 9 1, so an error message would be printed and
execution would continue at the second RETURN statement in LO0G. This RETURN
statement serves as a "standard fixup" for a negative argument to LOGIC, in this case,
logi 0 (99) would be returned by the function

*Some implementations may allow an error to occur (or be simulated) a given number of times before ter.
mnatmg Others may always continue or always terminate

OR'cINAV 2AC
n~O1 QUrIS

1014 ErrorRecovery

SEND ERROR is a relatively expensive statement, when an error is sent, many machine
instructions may be needed to search the error environment for an appropriate handler
Hence, it should be used only to indicate exceptional conditions, or "errors", not condi
tions winch are expected to occur frequently The SEND ERROR statement is most
appropriately used m utility routines (procedures and functions that are invoked from many
places) to indicate invalid arguments, and in instances where a "catastrophic" condition as
detected by very low level code but can only be handled in an outer block, perhaps by some
sort of controlled restart

In addition to the ON, OFF, and SEND error statements, HAL/S provides two built-in
functions, ERRGRP and ERRNUM, which provide information about previous errors
These functions do not require any arguments, they return ntegers which represent the
group and code, respectively, of the last error that occurred in the process* that invokes
them If no errors have occurred, they return zero

These functions are used primarily when a number of errors are handled by a single
ON ERROR statement, as illustrated below

ON ERROR DO,

WRITE(6) 'RUN STOPPED DUE TO ERROR'

I [JRRORPI I '-' I I ERRNUM,

RETURN,

END,

One additional form of ON ERROR statement is provided This form allows event
variables to be manipulated when an error occurs The form of this type of error recovery
action is described in the language specification Event variables are discussed in Chapter
Twelve

Exercises

10 3A 	What are the two uses for the HAL/S SEND ERROR construct9

10 3B 	 Say we enter a program block, P, which calls some procedure A, which in turn
calls procedure B In the code block for B, there is an ON ERROR$(1) IGNORE
statement and no other error handlers Now say error (1 3) occurs during the
execution of the program Does the program need to search code blocks A and P
for the error handlers for error (1 3) or will it automatically ignore the error because
the statement ON ERRORS 1 was found in that blocky

*The term process is defined in Chapter 11 Here itmay be taken to mean a program and all of its internal
blocks

Other Error Control Constructs i0-15

End of Chapter Problems

10A Consider a HAL[S program with 	the following lexical structure

P PROGRAM 	 Say the execution of the program
procedes as follows

A 	 - D executed
ON ERRORSI IGNORE, P calls A

ON ERROR$2 IGNORE,

A 	 - executed

A calls B

A PROCEDURE, B - executed

0 	 B Q executed

B returns to AON ERROR$(I 2) IGNORE,

OFF ERRORS(1), A -* executed

@ 	 A - executed

A returns to PB 	 PROCEDURE,
OFF ERRORS(1 2), P -* executed
ON ERRORS(2 1) IGNORE,
ON ERRORS(2 1) IGNORE, execution stops
ON ERRORS(3S) IGNORE, What happens if the following

ierrors occur at these times (i e,
error message or no error message) 9

OFF ERRORS(2), a) ERROR$(1 1) at

0 b) ERRORS(3 1) at E
CLOSE B, c) ERRORS(2 I) at

d) ERRORS(2 2) at

CLS Ae) ERROR$(1 2) at @

CLOSE A, f) ERRORS(2 1) at 0

S g) ERRORS(2 1)at @

CLOSE P, 	 h) ERROR$(I 1) at

i) ERRORS(I 2) at

j) ERRORS(l 3) at

k) ERRORS(3 3) at 1
I) ERRORS(l 1) at i

0 IC1No
DO~o i PG 18

-QUA4

The Unt of"Comrpdatron 11-1

11 0 STRUCTURING LARGE APPLICATIONS

In this chapter the discussion of the HAL/S facilities for building a program complex
consisting of many separately compiled pieces is presented First, we will describe the unit
of compilation, which has been a PROGRAM in previous chapters but is not restricted to
this type Then we will discuss means of putting these umts together in a way that is suit
able for a particular application Finally, we will introduce the concept of multi-program
ming and discuss some of the methods of safely sharing code and data between programs that
execute "simultaneously" This discussion will lead into the real-time control statements to
be presented in chapter twelve

11-1 THE UNIT OF COMPILATION

A unit of compilation is a sequence of HAL/S statements which comprise a complete,
valid input to the compiler It must be either a program, a procedure, a function or a com
pool (common data pool) Programs have already been discussed at length, though no means
of invoking them has yet been presented This is because programs receive control directly
from an operating system, not from other HAL/S code

Procedures and functions can be compiled independently so they can be shared among
programs, a compooI is a block of data that can be shared among separately compiled units
Thus, programs are the primary compilation units while the others provide global code and
data

There are two major reasons for dividing a software system into separately compilable
units Obviously, when several programmers collaborate on a system, it is convenient if they
can compile their own work independently A more important reason stems from the way
program units receive control The capabilities of the operating system in use may determine
the appropnate structure for an appphcation

Under an operating system which supports the full HAL/S real-time syntax (described in
chapter 12), many programs may be "simultaneously" active and compete for the use of the
computer hardware based on a user specified priority Provision is made for programs to be
run cyclicly, to wait for given occurrences and to receive control when interrupts occur The
operating system provides these capabilities for the invocation of PROGRAMs and TASKS
(collectively called processes) Thus, a software system may be divided into programs to
implement a desired dynamic (real-time) structure

Unlike procedures, functions and tasks, programs and compools may not be nested in
any other blocks

The following figure shows how these blocks might be used m a simple flight application

02?rcfl4V

n QttAZLZI,

11-2 StructuringLarge Applfcatmns

conon coiiiion
data subroutines

__ rTION

GHC POOL

infoation flow) F ER

position PROCEDURE

velocity

piteb comand

roll co.and

* INTERPOLATE

* ; PROCEDURE

CONTROL GUIDANCE NAVIGATION

PROr'RAM, PROGRAM PROGRAM

COMPUTE_ INTERNAL
PIT~C2f. FUNiCTION,[]

PRROCEDURE,

~DPRCEDURE,

sensors cnrl esr

The Unit of Compilation 11-3

This diagram shows the software divided into three programs, each with internal pro
cedures and functions, and a compool and three independently compiled subroutines All
together, there are seven compilable units which must be compiled in an appropriate se
quence and linked together In the remainder of this section we will discuss the rules for
writing the components of a program complex

The LIMIT function and the procedures, FILTER and INTERPOLATE, are compiled
separately so that they can be called from any of the programs Such procedures and func
tions are called comsubs (from "common subroutines") A comsub may be coded exactly as
if it were contained in some program For instance, the LIMIT function might be exactly as
it appeared in chapter seven

" LIMIT

I" FU 'CTION1(VALUE, EOUND) SCALAR,

I DECL4PE SCALAP,

IH VALUE, BOU',

M1 IF VALUE > EOL'.D THEN
N PET'13N Bc'oD,

M IF VALUE < -BOUND THEN

N RETURH -oUhD ;
M RE'7U lI VALUE,
M CLOSE LIMILT,

Aside from the fact that a comsub is not contained in any block, and thus cannot reference
outer variables via home scoping rules, all of the statements about procedures and functions
made in previous chapters also apply to comsubs

Some of the consequences of this general statement may not be immediately obvious
For one, comsubs may have additional procedures and functions nested within them Scop
ing rules apply to blocks contained in a comsub just as they would to blocks contained in a
program In fact, the only significant difference between an independently compiled proce
dure without parameters and a program is the manner of invocation Programs are never
CALLed and procedures nornally do not receive control directly from the operating sys
tem

It is also worth noting that the error recovery system does not distinguish between corn
subs and internal proceduresand functions If an error occurs in a comsub and no local ON
ERROR statement applies, the error environment of the calling block is searched, whether
that block is a program, another comsub, or an internal procedure of some program or
comsub

Comsubs are also referenced in the same way as corresponding internal blocks There is
no way to tell by inspection of a CALL statement or function invocation whether the refer
enced block is internal to the compilation unit or external (a comsub) Comsubs may have
any number of arguments of any type, exactly as described in chapter seven. The various

11-4 StracftlngLargeApplications

rules about matching data types, restrictions on ASSIGN parameters, automatic conversions,
etc, still apply In order to enforce these rules the compiler needs to know the declared
types of comsub's formal parameters This information is communicated via the block tem
plate

Under most implementations of the HAL/S compiler, a block template is automatically
generated whenever a program, comsub, or compool is compiled The block template con
tains all the information needed to reference that block from another compilation unit In
the case of a eomsub, this information consists of its name, the sequence and types of its
formal parameters, and the type of its return value, if any A comsub is made accessible to
a compilation by including its template For instance, a program which uses the LIMIT corn
sub is shown below

D INCLUDE TEMPLATE LIMIT
P PROGRAM,

DECLARE X SCALAR INITIAL(12),

X -LIMIT(X,10),

CLOSE P,

INCLUDE is a compiler directive, as denoted by the character D in column one It in
structs the compiler to merge the template for block LIMIT into the compilation at the
point of the INCLUDE directive Any number of templates may be so included, the NAVI-
GATION program might be compiled as

column I

D INCLUDE TEMPLATE GNCPOOL

D INCLUDE TEMPLATE LIMIT

D INCLUDE TEMPLATE FILTER

NAVIGATION PROGRAM,

CLOSE NAVIGATION,

Note that these templates are included prior to the program statement This syntax
emphasizes the fact that the blocks GNCPOOL, LIMIT, and FILTER are external to NAV-
IGATION The pnnted output from the compiler contains a listing of each template that
was included The template for LIMIT appears below

LIMIT EXTERNAL FUNCTION(VALJE,BOUND) SCALAR,

DECLARE SCALAR, VALUE, BOUND,

CLOSE LIMIT,

The template for a comsub consists of the header line with the word EXTERNAL inserted,
the declarations of any formal and assign parameters, and the CLOSE statement These are
the only portions of a procedure or function block that are relevant outside that block*

*Scopng rules make other data items irrelevant, and no way of branching into the middle of a block is
provided

The Unit of Compilation 11-5

The format of a block template is unimportant when a compiler with automatic tem
plate generation and the include directive is used These features are present in all current
compilers, but they are not included in the HAL/S Language Specification and thus are not
guaranteed to be present in all implementations The format of a template is specified, how
ever Hence, if the template cannot be INCLUDED, it-may be hand-coded as.part of the
source prior to the program statement

A program may invoke a comsb if it includes the template for that comsub pnor to the
program statement This mechanism provides for executable code to be shared among sepa
rate compilation units

Programs generally need to share data as well The only way to pass information from
one program to another is via a compool A compool is a named block of DECLARE, RE-
PLACE, and STRUCTURE statements, the variables in a compool are accessible to any com
pilation unit which INCLUDEs the compool's template

The diagram at the beginning of this section shows how a compool is used to interface
the Guidance, Navigation, and Control programs This compool could be coded as shown
below

M GNCPOOL.

M1 COPOFOL;

C FOLLOW=N DECLARES ARE HAV T0 GUIDANCE INTERFACES

M DECLARE POSITION VECTOR;
M DECLARE VELOCITY VECTOR,

C FOLLONING DECLARES ARE GUIDANCE TO CONTROL COHXANDS

I1 DECLARE PITCHCOMIIANO SCALAR;
11 DECLARE POLLCOHiIAND SCALAR INITIALfDb;
H CLOSE GFNCPCOL,

As this indicates, a compool is delimited by a block header and a CLOSE statement
much like the other block types Unlike other HAL/S blocks, however, a compool consists
only of a DECLARE group, no executable statements or nested blocks are allowed It may
contain DECLARE and REPLACE statements and structure templates Generally, any
DECLARE statement which may appear in a program may appear in a compool There are
only two exceptions, both resulting from the lack of executable code in a compool No
AUTOMATIC data is allowed in a compool, and no.label (e g function and NONHAL pro
cedure) declarations are allowed in a compool It should be noted from the example that
static initialization is allowed, and takes the same form as in other blocks

OF PoohAjq

11-6 Structurng Large Apphcations

Compiling a compool serves two purposes To reserve a block of storage containing any
specified initial values, and to generate the compool template A compool template contains
all of the information present in the compool source In fact, if automatic template genera
tion is not available, the template may be constructed from the source merely by inserting
"EXTERNAL" before "COMPOOL" in the block header Normally, however, only an IN-
CLUDE directive is needed to make compool variables accessible to another compilation
unit

When a program includes a compool template, the vanales in that compool may be ref
erenced, assigned, and used in any way appropriate to their data types Placing a variable in
a compool rather than at the program level does not, by itself impose any restrictions on the
way that variables may be used by the program This includes references to the variable
from nested blocks We will discuss the application of scoping rules to compool variables
and comsubs in the next section

Exercises

11 IA 	 What are the major reasons for building a program complex with comsubs and corn
pools, as opposed to a single large program9

II lIB 	 Say an error occurs in some comsub, and no ON ERROR statement that applies to
9the error is found In the comsub What determines the error handler in this case

11 IC a) 	 Since a compool contains no executable statements, why must it be compiled at
al'9

b) What is the purpose of a compool template 9

11 2 BUILDING A PROGRAM COMPLEX

From the viewpoint of soping rules, the templates included in a compilation comprise
an outermost block in which the main compilation unit (i e. the program, comsub, or com
pool being compiled) is nested

Chapter seven described the HAL/S seoping rules in terms of block diagrams like the one
following From these rules it follows that

1) The comsub S can be called from anywhere within blocks P and Q

2) The variables A and B can be referenced from anywhere in blocks P and Q

3) The variable X can be referenced only from block S

This example illustrates the position of template with regard to the main compilation
unit

BuildingA ProgramComplex 11-7

Compilation Block Structure for Scoping Rules

C EXTERNAL COMPOOL,
DECLARE SCALAR,AB, COPOOL DATA

CLOSE C,
S EXTERNAL PROCEDURE(X), DECLARE SCALAR, A,B.

DECLARE X SCALAR, S PROCEflURE,
CLOSE S, DECLARE X,
P PROGRAM,

Q PROCEDURE,
CLOSE Q,

P PROGRAM,

CLOSE P, REDURE;

From the diagram, one might conclude that A and B can be referenced from block S
This is true if and only if the template C is included when S is compied Thus, the "outer
most block" is not universal, its contents may appear different to each compilation unit,
depending on which templates are included This mechanism support "private" compools
and comsubs, as we shall see

Returning to the example of communicating Guidance, Navigation, and Control pro
grams, suppose that the templates included by each of the seven compilation units are as in
dicated below

Compilation Unit Type Templates Included

NAVIGATION PROGRAM GNCPOOL, LIMIT, FILTER

GUIDANCE PROGRAM GNCPOOL

CONTROL PROGRAM GNC_POOL, FILTER, INTERPOLATE
GNCPOOL COMPOOL NONE

LIMIT FUNCTION NONE

FILTER PROCEDURE LIMIT

INTERPOLATE PROCEDURE GNC_POOL

With this structure, the contents of the "outermost block" vary considerably from compila
tion to compilation, as shown

ORIGINAL PAGE
OF Zoor

11-8 strctunngLarge Applications

POSITION. VELOCITY POSITION, VELOCITY

PITCH_CMD, ROLLClID LIMIT DITCH CMiD, ROLLID

{ LIMIT *

FILTER . E I GUIDANCE
FILTE

*GNAVONAWI__

*indicates the module being compiled

As the previous table implies, any type of compilation unit may include the template of
any other compilation unit Thus, comsubs may access compool variables or call other cor
subs, compools may include the templates of other compools, for instance to utilize global
REPLACE statements defining array sizes Program blocks alsohave templates which may be
included by any type of compilation unit We will see the utility of program templates in
later sections

From this discussionjt can be seen that access to consubs and compool variables is con
trolled by the inclusion of templates In building a particular program complex it may be
desirable to set up managerial rules concerning which modules may access which data and
subroutines Comsub templates are included one at a time, but when a compooI template is

included, all df the variables in that compool become accessible If it is desirable to partition
compool data, either of two approaches may be taken The ACCESS system may be used or
multiple compools may be created

ACCESS is a HAL/S keyword Under some versions of the compiler, an externally main
tained data base of access-rights information can augment the normal scoping rules to
further restrict (not expand) the visibility of comsubs and compool data This system is im
plementation dependent, somewhat complicated, and will not be discussed further in this
book However, further details are contained in the Language Specification

The simplest method of restricting access to compool variables is via multiple compools
For instance, the following structure might be a better arrangement of the compool data for
the example program complex

BuildingA Program Complex 11-9

G TO C COMPOOL N TO G- CONPOOL
PITCHCMD, ROLL._CMD TSTION, VELOCITY

CONTROLGUIDANCE NAVIGATION

Here, the interfaces between Guidance and Control are in one compool, and the inter
faces between Navigation and Guidance are in another The Navigation and Control pro
grams would include only one compool each, in this way multiple compools tend to limit
the possible influences of one compilation unit on another- In this case, no data is shared be
tween Navigation and Control

The Guidance program would have to include the templates for both compools The
order in which these templates are included is irrelevant All conpools are included at the
same level Thus, the previous diagram of scoping rules while compiling Guidance still holds
Since there- is always only one scope level outside of the main unit of compilation, the
names of variables in one compool must not duplicate the names of variables in another
compool if both are included by a single compilation unit

There are, of course, other considerations in structuring an application as a set of com
pilation units For instance, it may be convenient to use only one compool so that all global
data can be found in a single listing or so it will be contiguous in memory for telemetry pur
poses The addressing modes of some computers may create an efficiency trade-off between
the number of compools and their average sizes Finally, in the next section, we will see that
compools can be eliminated through the use of TASK blocks, this decision involves addi
tional trade-offs

Suppose, however, that the original configuration of three programs, one compool, and
three comsubs, has been chosen In this and the previous section we have described how the
various compilation units are coded The remaining problem is to compile them in the
appropriate order Since templates are automatically generated* when each block is com
piled, the "lowest level" compilation units must be compiled first Given the table of tem
plates included per compilation presented earlier, an appropriate sequence for this program
complex is

*If automatic template genration is not available, the order of compilation is irrelevant

Po PA'Gg

11-10 StructunngLorgeAppltcatzons

GNCPOOL, LIMIT, FILTER, INTERPOLATE, GUIDANCE,

NAVIGATION, CONTROL

Generally, the necessary order of compilation can be determined by inspection Starting
with compools, then proceeding to "utility" comsubs, other comsubs, application programs,
and finally "control" programs is usually adequate However, the following algorithm will
always produce an acceptable sequence if one exists

1) 	 Produce-a-ist of templates included by each compilation (like the one given here)

2) 	 Compile each module which requires no templates (except for those templates al
ready generated)

3) 	 Remove the modules that have been compiled from each list

4) 	 If not done, repeat step two

It is possible that a point will be reached where every module requires at least one template
If so, then there is no suitable sequence This can happen for three reasons, all of which are
rare

I) 	 Recursion If A calls B and B then Calls A, no sequence is appropriate Solution
Change the structure, recursion will not work anyway

2) 	 A pair of programs schedule or wait for each other Solution Hand-code one tem
plate or re-structure

3) 	 Trouble with initialized NAME variables Solution Break the loop of circular refer
ences (see Chapter 13)

These difficulties almost never occur in well designed program complexes

The constructs we have discussed in this chapter are intended for putting a collection of
HALlS modules together A means of invoking NONHAL procedures and functions was pre
sented in chapter seven If part of a program complex (eg special-purpose'hardware inter
faces) must be written in assembly language, a few additional constructs are helpful These
are

1)RIGID compools, which are similar in concept to RIGID structures,
2) EQUATE EXTERNAL statements, which can make HAL/S variables accessible from

assembly language, and,

3) the ability to write comsubs in assembly language A set of macros for this purpose
is generally supplied with the compiler system

More detail on these features may be found in the Language Specification and the appropn
ate HAL/S User's Manual

Another option in designing a program complex is the use of TASK blocks instead of
programs The software we have been discussing could be written as the single compilation
unit shown inthe figure on the next page

Bulding A ProgramComplex l-l

M PROGRAM,

I OECLARE VECTOR.
M. POSITION, VELOCITY;

HM OECLARE SCALAR,

H PITCH_CI, ROLLCiM;
IN LIMIT'
H FUNCTION SCALAR,

C -

H CLOSE LIMIT;

H FILTER-

II 'PROCEDURE;

C

H CLOSE FILTER;

H' INTERPOLATE:

M PRfCEO~r E,

C

H CLOSE INTERPOLATE,

H GUIDACE:

H TASK;

C -CONTENTS OF GUIDANCE PROGRAM UNIMOIFIEO

H CLOSE GUIDANCE,

n NAVIGATION :

11 TASK;

C

I CLOSE NAVIGATION,

H CONTROL:

M TASK;

C

H 'CLOSE CONTROL;

[I CLOSE'P,

Like programs, tasks-are code-blocks that ,receive control directly from the-operating
system Tasks cannot be CALLed, they are used to implement real-time requirements inthe
same way as programs In fact, the only distinction between programs and tasks is that tasks
must always be nested in programs, and may not themselves contain further program or task
blocks Thus, the only change needed to, convert a program, to a task is in the header state
ment, the declare group, executable statements, and any nested procedures and functions
remain exactly the same

11-12 StructunngLarge Applcaizons

HAL/S allows one level of nested real-time processes Tasks within programs Scoping
rules treat all blocks the same Thus, a task and all of its internal procedures and functions
may access data declared at the program level

Task blocks allow any real-time structure to be implemented within a single compilation
unit In chapter twelve, a set of real-time control statements will be presented These state
ments instruct the operating system to start executing a program or task at some rate and
priority, to stop cycling a process, and so forth The use of tasks as well as programs to im
plement-a-real-time structure tends to minimize the amount of compool data, and allows re
lated processes to be consolidated in a single compilation umt One disadvantage of using
task blocks is that they can only be SCHEDULEd, CANCELLed, etc , from within the con
taining program If a system consists of several programs, each containing tasks, then the
"control" code which activates and de-activates the various processes must be distributed
among the several programs

Exercises

S1I2A Consider the following block structure of a program complex

DECLARE SCALAR, A, B,

P PROGRAM,

F FUNCTION,

DECLARE INTEGER, A, B

P PROCEDURE ,
DECLARE I INTEGER

From.wluch blocks can the scalars A and B be referenced?

11 2B 	 In the figure on page 11-2, it is shown that the compool GNCPOOL is not included
in the compilation of the unit FILTER Why not9

Multt-ProgrammangConsiderations 11-13

11 2C 	 Why is it desirable that the names of variables in a compool be unique with respect
to the names of vanables in other compools9

11 2D 	 The text states that a reasonable order for compiling the vanous units for the exam
ple on page 11-00 is

GNCPOOL, LIMIT, FILTER, INTERPOLATE, GUIDANCE,

NAVIGATION, CONTROL

For each of the following possible orders of compilation, state whether they will
necessitate the hand coding of one or more templates, and why

a) 	 GNCPOOL, INTERPOLATE, GUIDANCE, LIMIT, NAVIGATION, FILTER,
CONTROL

b) 	 GNCPOOL, INTERPOLATE, LIMIT, CONTROL, FILTER, GUIDANCE,
NAVIGATION

c) 	 GNCPOOL, INTERPOLATE, GUIDANCE, LIMIT, FILTER, CONTROL,
NAVIGATION

d) 	 NAVIGATION, CONTROL, GUIDANCE, LIMIT, FILTER, INTERPOLATE,
GNCPOOL

11 3 MULTI-PROGRAMMING CONSIDERATIONS

We have used the term "process" to refer to either a program or a task, this terminology
is used throughout the HAL/S documentation The term multi-processing, however, has
come to refer to the execution of software on a computer or set of-linked computers which
can literally execute more than one piece of code at a time, e g programming multiple
physical processors The term "multi-programming" xefers to the appearanceof this situa
tion The use of either actual multiple processors or simulated multiple processors In the
latter case, the computer's central processing unit is "time-shared" or allocated to each
active process for a brief interval in succession Reallocation of the CPU may result from
initiation or completion of I/O, expiration of a time limit, or other factors Since it is not
possible to predict which HAL/S statement will be executing when a "process-swap"
occurs", programs must be designed so that a swap can safely occur at any point

*In fact, the timig may not be repeatable

DRIGINAL PAGE IS
GEiOoR QUALITY

11-14 .structunngLarge Applications

MULTI:

M PROGRAM;

M DECLARE SCALAR,

M, A, B. C,

C

C

C

N IF A NOT =OTHE

M DO;

M B=C/A,

C

C

C

K EMD;
M T:
H TASK*,

IM A 0,.
* CLOSE T,

* CLOSE MULTI;

Consider the above code Suppose that MULTI receives control and executes the IF
statement, finding A not equal to zero, then, for some reason, the processor is reallocated
to task T When T completes, MULTI will resume where it left off, and divide by zero
The problem is that two processes share data (viz A) without any protection- from an un
timely process-swap If we could guarantee that the, swap would never occur between the
test for A=O and the division by A, the problem would be solved This can be done by
means of the UPDATE block and locked data, as shown below

N BETTER:
M PRCGRAH;

S DECLARE A SCALAR LOCK(I);
di DECLARE SCALAR,

C
c
C

M UPDATE,
N IF A NOT 0 THEN
M Do,
M B C/A,
M END,
M CLOSE,
M T
M TAsK,.
H UPDATE;
M AzO;
H CLOSE.
M CLOSE T;
H CLOSE BETTER;

Aultn-PrograminigConsiderations 11-I5

Three changes have been made in the J3BETTER program The variable A has been de
clared with the attnbute LOCK(l), and both uses of A have been enclosed in UPDATE
blocks The parenthesized "I" indicates the assignment of A to lock group one The use of
other lock groups is discussed later in this section

Data which is used by more than one process should normally be locked Locked data
can only be referenced from within an update block, the system ensures that only one up
date block which uses a given lock group is active at any instant of tune Thus, this capabil
ity is as good as preventing process swaps over a sequence of statements A swap may occur,
but the new process will not be permitted to execute an update block that pertains to the
same lock group An update blockallows a process to obtainexclusive access to one or more
locked variables When an update block finishes, the locked variables become available to
other processes, which also must access them via update blocks

An update block is executed when the sequential flow of control reaches it In this re
gard it,behaves like a simple DO END group. However, from the viewpoint of scoping
rules, an update block as equivalent to any of the other block types, it may even have its
own DECLARE group- An update block behaves like a procedure with respect to error re
covery, except that the "calling" block is defined to be the immediately containing block
An update block may be nested iha block of any other type (except compool), and may
contain further procedure or function blocks There are some restrictions on the executable
statements that may be used in an update block The following are prohibited

1) I/O statements,

2) 	 Calls to procedures or invocation of functions, except for those nested in the update
block, and

3) 	 Real-time statements except for SET, RESET, and SIGNAL (see chapter twelve)

These statements are not allowed in update blocks, primarily because they potentially take g
long time to execute It as desirable to minimize the time spent in an update block because
while an update block is executing, other processes may be stalled even if those processes
are more cntical (of a higher prionty)

It is almost always necessary to LOCK data which is used by more than one process The
compiler does not enforce this rule, and there are cases (e g read only data) in which the
protection offered by locked data is not required These cases are the exception rather than
the rule For instance, the GNC POOL compool from the earlier example should be coded
as

GNC POOL COMPOOL,
DECLARE POSITION VECTOR LOCK(l),
DECLARE VEL6CITY VECTOR LOCK(l),
DECLARE PITCH CMD SCALAR LOCK(2),
DECLARE ROLL CMD SCALAR LOCK(2),

CLOSE GNCPOOL,

11-16 StructunnglargeAplphcations

Here,.two lock groups (I and 2) are used Group I is used for the Navigation to Guid
ance interface, and group 2 is used for the Guidance to Control interface The selection of
lock groups is entirely up to the user, the only constraint imposed by the HAL/S system is
an implementation-dependent maximum number of lock groups It would be possible to use
the same group for all locked data, and this may be convenient during initial development
An appropriate assignment of lock groups, however, can lead to improved throughput This
is,because several update blocks can be active simultaneously provided that each uses a dif
ferent lock group, or set of groups, with no overlap Hence, the overhead associated with a
number of process swaps may be avoided Furthermore, the amount of jitter in cyclic proc
esses may be reduced, since the chances of being stalled or suspended due to update block
conflicts are lessened In our example, Control will never have to wait for Navigation since
their update blocks reference varables from different lock groups

The Guidance program might begin as in the figure below As this code implies, it is
sometimes preferable to copy a small amount of data (POSITION and VELOCITY) rather
than extend the update block to include all of the computations involving these variables
Tis minimizes the impact to other processes while still affording the protection against, for
instance, processing a vector that has been only partially updated

r GNC_POOL

INLUED
HIH EXTERN"L COMPOOL,D5CLA PE rOSITION vEeToR(3),-

INCLUDED i DECLAPE VELOCITY VECTOR(31,
TEMPLATE H DECLARE PITCH COMMAID SCALAR,

H
H

DECLARE ROLTONAND SCALAR INITIALCOI,
CLOSE,

D VERSION 1

H GUIDANCE-

H PRORAMI,

M DECLARE VECTOR,

H VEL2, P0SN2,

S DECLARE XC Y, Z, OTHERS;

K COPyINPUTS

M UPDATE.

E -
N VEL2 = VELOCITY,
E -

H POSIIZ = POSITIONJ,
m CLOSE COPY ."NP'JT,

C
C

C

H CLOSE GUIDANCE;

This example also shows a labelled update block The laoel is optional, and is used here
only for self-documentation

There isone exception to the general rule that locked data may only be referenced from
within an update block A locked variable may be passed as an assign parameter to a proce
dure. This does not defeat the protection, however, since the corresponding parameter
declaration must also specify the LOCK attribute, thus it in turn can only be referenced
from within an update block or passed to further procedures

Mult ProgrammingConsiderations 11-17

The update block and locked data provide a means of safely sharing data among inde
pendent real-time processes, a similar mechamsm for shared code is provided via EXCLU-
SIVE procedures and functions This type of protection is specified more simply Just the
appearance of the word EXCLUSIVE on a procedure or function header makes that block
accessible to only one process at a time To see how and why this feature is used, consider
this function

H MEAN

M FUNCTIONCAI SCALAR EXCLUSIVE;

M 1ECLARE A ARRAY(*) SCALAR;

H DECLARE TOTAL SCALAR I|ITIAL[0) AUTOMATIC,
H DO FR TEHFORARY 1 0 1 TO SIZECIA]D,

M TOTAL = TOTAL * A
S I

M END,

11 RETURN TOTAL / SIZECAI,

M CLOSE MEAN3

Suppose the MEAN function was not exclusive If two processes invoked it, there could
be a conflict in the use of TOTAL, even though it is only assigned from within MEAN If
one process had executed part of the loop when the other invoked MEAN and AUTO-
MATICally re-initialized TOTAL, the first process would get an invalid result Thus, the
problem with shanng procedures and functions among processes is a shared.dataconflict on
the local data declared in the shared block This problem can be avoided by making shared
code blocks EXCLUSIVE No new construct is needed when an exclusive procedure or func
tion is invoked, but the system will prevent multiple simultaneous users of the block by
stalling the second process that tries to invoke it Exclusive routines are sometimes used for
operational reasons having nothing to do with shared data For instance, a procedure to do
inertial measurement unit (IMU) calibration might be made exclusive simply to avoid the
risk of calibrating more than one at a time

Another keyword that can be specified instead of EXCLUSIVE is REENTRANT
Neither one is the default If a procedure or function is not EXCLUSIVE or REENTRANT
then it cannot safely be invoked from multiple processes, but no protection mechanim is
present

A REENTRANT procedure or function may be executed "simultaneously" by several
processes That is, if program A is executing a reentrant procedure, R, when it is interrupted
by program B which also invokes R, when B completes and A resumes, there will be no ad
verse affect

Simply coding the keyword REENTRANT is not sufficient to make a block safely "re
enterable" The following rules must also be obeyed

I) Any block invoked by the reentrant block must also be reentrant, and

2) Any local data must be declared to be AUTOMATIC whether it is initialized or not

11-18 	 StruczunngLarge ApplIcations

We have already stated that the difficulty in sharing a code block is really a conflict in

the use of local data Inside a procedure orfunction with the REENTRANT attribute,the

effect of the AUTOMATIC attribute is expanded Each user of a reentrant procedure ac
cesses a separate copy of the local variables if they are automatic Thus, any conflict is pre

vented Parameters and TEMPORARY data cannot and need not be automatic The MEAN

function can be made reentrant simply by changing the EXCLUSIVE keyword to RE-

ENTRANT The necessary conditions for successful re-entrancy are described more fully
in the HAL/S Language Specification

This chapter has defined the unit of compilation, and introduced the idea of a program
complex, consisting of several real-time processes It has described how global code and data
can be made accessible to these processes, and how the adverse effects of "simultaneous"
access can be avoided In chapter twelve, we will describe the HAL/S statements for creating
and controlling these processes and further discuss multi-programming concepts and their
application to aerospace systems

Exercises

11.3A 	 A bank runs several programs to modify savings and checking accounts in a multi
programming environment The procedure MOVESAVE TOCHECK, used to
move money from a savings account to a checking account, is shared by all the pro
grams, and looks like this

MOVESAVETOCHECK, PROCEDURE(ID, AMOUNT),

SAVINGSSID = SAVINGSSID-AMOUNT,

CHECKINGSID = CHECKING$ID+AMOUNT,

CLOSE,

SAVINGS and CHECKING are compool variables shared by all the programs

a) What potential error is present in this system9

b) How can it be fixed 9

11 3B 	 The bank in exercise 11 3A awards interest periodically and records each interest
transaction for later printing on the customer's statement The shared procedure
AWARD-INTEREST performs this task

AWARDINTEREST PROCEDURE(ID),

DECLARE INTEREST INTEGER,

Multt ProgranmingConsiderations 11-19

INTEREST = SAVINGS$ID INTEREST-RATE,
SAVINGS$ID = SAVINGSSID+INTEREST,
CALL LOGINTEREST(ID, INTEREST),

CLOSE,

a) What potential error is present'

b) How can it be fixed9

ORIGINAS PAGr Is

OF POOR. QUAr2M

The SCHEDULEStatement 12-1

12 0 REAL-TIME STATEMENTS

Most aerospace applications have a set of timing constraints which comprise a major
facet of the entire problem definition Meeting these constraints generally requires interac
tions with an operating system

Real-time operating systems for flight or process control applications can vary in many
ways Nonetheless, certain capabilities, such as invoking a code block at a specified fre
quency, are almost always provided By examining several operating systems, it is possible
to abstract a set of primitives (i e conceptual operating system functions) in which the van
ous facilities can be expressed Then the real-time requirements of an application can be
described without referencing any particularoperating system The HAL/S statements de
scribed in this chapter are such a set of primitives, through which real-time requirements can
be expressed in a machime-independent manner

HAL/S suggests the point of view that real-time constraints are an intrinsic part of the
application, i e that timing is part of the algorithm rather than something to resolve "later"
As a result, real-time statements are integral to the language, and allow the programmer to
express the entire algorithm directly and in one place

Real-time statements isolate the programmer from operating system details in the same
way that arithmetic expressions isolate the programmer from details of machine instructions
and data formats A standard syntax for real-time operating system interactions greatly en
hances the portability of application programs In particular, it allows flight programs to be
simulated on ground-based computers, since the timing interactions are expressed in HALLS,
rec-compilng is sufficient to translate the entire algorithm

The mechanisms for communication among real-time processes were described in
chapter 11, this chapter will discuss the set of HAL/S statements which control the initia
hen, termination and synchronization of processes These statements are all executable,
each implementation includes some technique outside of the HAL/S language for specifying
one or more initial processes which can then use the real-time statements to create and con
trol additional processes

The figure on the next page shows the use of SCHEDULE statements to create new
processes As the syntax implies, these statements create cyclic processes winch will receive
control from the operating system at the specified intervals The intervals may be specified
by any arithmetic expression in the REPEAT EVERY clause, the units are implementation
dependent but generally these values are expressed in seconds In any case, the units of time
values throughout any particular implementation wilt be consistent Seconds will be
assumed in the rest of this chapter Hence, the three processes scheduled by STARTUP
would repeat at the rates of once, six times, and twenty times per second

OR~oPooKO() LTg

C

12-2 Real-Ttme Statements

I STARTUP

H PROGRAM,

M1 GUIDANCE-

M TASK,

C ..

1 CLOSE GUIDANCE,
H NAVIGATIOC"

M TASK;

M CLOSE NAVIGATION,

M CONTROL.

M TASK;

C

N CLOSE CONTROL;

M1 SCHEDULE NAVIGATION PRIORITY(6OJ, REPEAT EVERY 1 0;

H SCHEOULE GUIDANCE FRIORITYI7O), REPEAT EVERY 1 / 6,

M SCHEDULE CONTROL PRIOfITY80), REPEAT EVERY 1 / 20,

H1 CLOSE STARTUP,

HAL/S does not impose any restrictions on the penods of cyclic processes created in
this way, however, it may not be practical to provide complete generality in a flight oper
ating system Simplifications such as rounding all time values to the nearest millisecond are
to be expected in flight systems The appropriate HAL/S User's Manual and any operating
system documentation should be consulted It has become common practice, however, to
develop and test HAL/S software on large ground-based computers (host computers)'before
executing on flight (target) equipment These ground-based implementations generally do
not impose any restrictions on real-time statements other than those described in the Lan
guage Specification, thus allowing a large range of operating system types to be simulated
In this chapter, a complete implementation will be assumed, but the reader should not ex
pect to find all of these capabilities in any particular flight operating system

12 1 THE SCHEDULE STATEMENT

Suppose that the average execution times of the Guidance, Navigation and Control tasks
are as shown in the table below

Task Rate Average Time Total Time

Guidance 6 50 ms 3 see
Navigation I too ms 1 see
Control 20 25 ms 5 sec

f Total Time, 9 sec

The SCHEDULEStatement 12-3

Since these tasks together occupy only 9/10 of a second per second, it is clear that the speci
fied rates are attainable However, it would be extremely difficult to implement this struc
ture using CALL and DO CASE statements as was done in chapter seven The difficulty can
be seen by examining a time-line of these tasks' execution

NAVIGATION E I

GUIDANCE L I l I L I] L
CONTROL IUUIUHUEHUUU

. _ __. _ 1second -

The trouble is that no matter how the initiation of these processes isphased, a time will
occur when more than one process is due to execute If only CALL statements were used, it
would be necessary to either tolerate a substantial jitter in the execution frequency of each
task, or to break each task into many small procedures which would be called in a very com
plex sequence

By the use of SCHEDULES statements, as shown in the example STARTUP, the timing
conflicts can be automatically resolved As we have already stated, the operating system can
re-allocate the central processor at any point in the execution of a process, subject to the re
strictions resulting from update blocks and exclusive procedures If two piocesses are due
simultaneously. the highest priority process receives control The purpose of the priority
clause in the SCHEDULE statement is to allow the system to resolve conflicting requests
for the hardware resources In the example, Guidance becomes ready while Control is ex
ecuting about half the time Since its priority is less than that of Control, Guidance is stalled
until Control completes Every time Guidance executes, Control comes due in the middle
Here again, the priorities govern the situation, and Guidance is stalled (interrupted) while
Control runs When Control completes, Guidance resumes at the point of interruption As
long as the shared data protection features of chapter eleven are used, this system action has
no impact on the coding of either task, although some overhead is associated with the
process swap.

Since Control can interrupt either of the other two processes, the jitter in its period of
execution will be very small Aside from the system overhead involved in swapping proc
esses, delays in the execution of Control can result only from awaiting the release of locked
data or an exclusive procedure by one of the other processes Guidance can be delayed by
the unavailability of a shared resource or by the execution of Control, Navigation can be in
terrupted by either of the others Consequently, Navigation will generally run in very short
bursts spread out through the entire second

12-4 Real-Tlme Statements

The example actually consists of four processes The three tasks and the STARTUP pro
gram The priority and other charactenstics of STARTUP are determined externally, either
through a SCHEDULE statement in another compilation unit or by default dunng system
startup. Usually a HAL/S real-time executive will start a single program as a non-cyclic,
process, this program must then schedule all other programs and tasks The pnonty of the
STARTUP program affects the sequence in which the tasks are initiated If STARTUP is at
prionty fifty, when it schedules Navigation at priority sixty, Navigation becomes the highest
priority ready process and therefore receives control immediately STARTUP is stalled until
Navigation relinguishes the processor This happens when Navigation reaches its CLOSE
statement, since it was scheduled to run only once per second, it enters an inter-cycle wait
and ceases to be a ready process This makes STARTUP again the highest priorty ready
process, so it receives control-and executes the second SCHEDULBstatement The-same sit
uation is repeated with Guidance and Control

The effect of thbse SCHEDULE statements, then, seems very much like a set of CALL
statements One major difference is that the Guidance, Navigation and Control tasks will
continue to execute at the specified rates after STARTUP reaches its CLOSE statement,
even though STARTUP executes only once Furthermore, each HAL/S realtnie processhas
its own errorenvironment Any error handlers in STARTUP have no effect whatsoever on
the action taken if an error occurs in one of the tasks Finally, the situation would be dif
ferent if STARTUP had a higher priority

With STARTUP at priority fifty, the following time-line describes the first few cycles-

STARTUP

NAVIGATION

GUIDANCE iiE~I II
CONTROL I I I

That is, Navigation and Guidance each complete a full execution uninterrupted before the
higher priority task(s) are scheduled This may well simplify the system If STARTUP was at
priority one hundred, however, the time-line would be completely different

The SCHEDULEStatemenz 12-5

STARTUP L
NAVIGATION L I
GUIDANCE 1111L 1121

CONTROL E D D U E]11:
D 1

In this case, STARTUP executes all three SCHEDULE statements before any other process
receives control Hence, the first cycle is not substantially different from any other

When STARTUP reaches its CLOSE statement, it enters the wait state This is similar to
an inter-cycle wait, but does not result from timing considerations A program remains
active as long as any of its tasks arc active, due to the possibility of shared data and utility
routines at the program level It is said to be "waiting for dependent processes" The mem
ory allocated to the program cannot be released If the tasks are subsequently cancelled (i e
cease to cycle), the program completes as well It is neither ready nor waiting, but simply
done and forgotten In the terminology of the Language Specification, it is no longer "in the
process queues"

The minimum form of the SCHEDULE statement contains only a process name and a
priority, as in

SCHEDULE STARTUP PRIORITY(llO),

If no repetition option is specified, the program or task executes only once The REPEAT
EVERY specifies cyclic execution with a fixed interval between the beginnings of the
cycles The REPEAT AFTER option is very similar, but the fixed interval is between the
end of one cycle and the start of the next, as illustrated in this figure

I--- DT --)H--- OT)- I-- LT *N-v D-T--)r-I

A E

1 DT-m-I -,---DT--- 14- DT--I 1.-, DT--I

,0 - 1 HU 0I

12.6 Real-TmeStatements

The REPEAT AFTER form specifies the length of the inter-cycle period of waiting If RE-
PEAT AFTER is specified, the average time between executions is the sum of DT and the
average execution time whereas it is simply DT in the case of REPEAT EVERY The primary
advantage of the REPEAT AFTER form is that a cycle overlap error cannot occur If proc
ess A in the previous example executes more than DT seconds in a particular cycle, it will
come due again before it completes This results in a runtime error for which no ON ERROR
handler can be wntten Process B above can execute for any length of time without an over
lap, since the start of the next cycle is delayed until DT after the previous cycle completes

The primary disadvantage of the REPEAT AFTER option is that it may make system
verification more difficult Use of this option tends to make the time-line of the entire sys
tem unrepeatable If the outputs of a control system depend on the sequence in which van
ous processes are executed, a huge number of runs may be required to show that no unac
ceptable transients are introduced by timing fluctuations On the other hand, if REPEAT
AFTER is used for less critical processes, the entire system may respond better to overload
conditions

If REPEAT is specified without either AFTER or EVERY and a time

SCHEDULE X PRIORITY(17), REPEAT,

the process is immediately restarted at the end of each cycle This is equivalent to ",RE-
PEAT AFTER 0,". This option is generally used for processes intended to use "left over"
time for self-test, etc , and for processes which issue WAIT statements Use of the simple
REPEAT option is not substantially different from coding an infinite loop around the task
body and scheduling it as a "one-shot" The effect of the CANCEL statement is different,
and under some implementations error recovery may differ as well

The SCHEDULE statement has several other options in addition to the three REPEAT
forms These options allow the start of a process to be delayed until a specific condition is
met, and allow cancellation criteria to be specified at the time a process isscheduled Both
begin and end conditions and a repetition option may be used in a single SCHEDULE state
ment, as shown below

M1 X:

M PROGRAM;

M P:

" TASK;

" CLOSE P;

" SCHEDULE P IN 5-4 PRIORITY(W)), REPEAT EVERY 03 UNTIL RUNTIHE 100,

" CLOSE X;

The SCHEDULE Statement 12-7

This statement will cause the program or task P to be initiated at priority 49 five point
four seconds after the execution of the SCHEDULE statement Subsequently, it wilt be ex
ecuted every 03 seconds for 94 6 seconds and then be terminated

The IN and UNTIL options allow any arithmetic expression This expression is a time
value in the same units as in the repeat options, generally seconds The IN option requires an
interval of time whereas UNTIL expects an absolute time This is the same as the normal
English usage of these words Since the RUNTIME function returns the current value of the
system clock, "IN 5 4" is equivalent to "AT RUNTIME+5 4", a form which is also accept
able to the compiler

All of the arithmetic expressions in a SCHEDULE statement are evaluated only once,
when the statement itself is executed Subsequent changes to the variables used in these ex
pressions do not affect the scheduled process

The various scheduling options must be specified in the correct sequence, and only one
of a given type is allowed in a single statement The sequence of phrases in a SCHEDULE
statement is

1) SCHEDULE and a process name,

2) An optional begin condition IN, AT or ON,

3) A priority,

4) An optional REPEAT clause,
5) An optional end condition UNTIL or WHILE

The ON and WHILE conditions reference event variables, which will be described in Section
12 2 First a few special cases of the time options need mention

Normally, the IN or AT tame used in a schedule statement is in the future If the speci
fied time has already passed, the process is readied immediately There is one exception If
AT is used with the REPEAT EVERY option and the time has already passed, phased sched
uling is performed The first execution of the process occurs at the time given by the sum of
the "AT" time and the period (REPEAT EVERY delta) of the process This allows a "syn
chronous" real-time structure, which is further described in the Language Specification
Phased scheduling tends to minimize the number of processes that are ready at any one
time

Normally, the UNTIL time specified is in the future If it is already passed, then the
SCHEDULE statement has no effect The UNTIL clause can never stop a process in mid
execution, If the UNTIL time arrives while the process is executing, it is allowed to finish its
current cycle The UNTIL and WHILE clauses can only stop a process before its first execu
tion or during an inter-cycle wait When the end condition specified in a SCHEDULE state
ment is satisfied, the process is CANCELled rather than TERMINATEd, a distinction which
will be explained in Section 12 3

*Assuming that its priority is sufficient to obtain necessary resources

ORINAL PAGE IS-
O POoR Qrj4

128 Real-TItM Statements

Exercises

12 IA 	 Draw a time-line for one second's execution of the processes scheduled below As
sume that each process executes for 80 ms per cycle

SCHEDULE A PRIORITY(100), REPEAT EVERY 1/5,

SCHEDULE B PRIORITY(99), REPEAT EVERY 1/3,

SCHEDULE-C PRIORITY(98), REPEAT EVERY 1/2,

12 lB 	 Draw a time-line for the processes in exercise 12 IA, but with all occurrences of
EVERY changed to-AFTER

12 IC 	Given two tasks, X and Y, both of which use one half second per iteration, wnte
schedule statements that will run X continuously for two seconds, then alternate X
and Y for two seconds, and then run Y half the time for two more seconds Use only
two schedule statements

12 2 EVENT VARIABLES

The three forms of begin-condition in a SCHEDULE statement are

IN "arithmetic expression",

AT "anthmetic expression", and

ON "event expression"

Two of these forms descnbe a begin-condition in terms of time, the third form, ON, lets
scheduling depend on conditions or occurrences which do not happen at a predetermined
time Suppose, for example, that the Guidance, Navigation and Control tasks of the previous
example are used during launch of a spacecraft, but when orbit is achieved, Guidance and
Control are to be replaced with another task, Freefall If the-time at which orbit will be
reached is known in advance, this can be done with the AT and UNTIL clauses already pre
sented Otherwise, it is appropnate to declare an event variable to correspond to this occur
rence as in

DECLARE ORBIT EVENT,

Then the desired transition can be specified in the SCHEDULE statements as shown m the
next example When an event variable is signalled, as in

SIGNAL ORBIT,,

all achiveeveznt expressions which reference that event are evaluated In this case three active
event expressions reference ORBIT When the SIGNAL statement causes ORBIT to become
TRUE, these expressions are all satisfied Guidance and Control are cancelled via the UNTIL
clauses, and Freefall is started via the ON clause

An active event expression is a boolean combination of event variables-used-m-a-real
time statement which has not yet been satisfied Event expressions are formed in the same

Event Variables 12-9

way as boolean expressions using the AND, OR, and NOT operators However, all variables
inan event expression must be events In the simplest case, an event expression consists of a
single event variable, e g "ORBIT" in the SCHEDULE statements above A boolean'com
bination of event variables is only considered an event.expression when it is used in one of
the real-time statements An active event expression is one that has never evaluated to
TRUE since the containing real-time statement was executed Once ORBIT is signalled, the
event expressions in the SCHEDULE statements are no longer aotive Signaling ORBIT
again will have no effect unless additional real-time statements which reference it'are exe
cuted

H STARTUP

H PROGRAM,

N DECLARE ORBIT EVENT;

M CLOSE GUIDANCE;

M NAVIGATION-

MI TASK;

11 CLOSE NAVIGATION,

i' COnTROL"

i TASK,

C--

M CLOSE CONTROL*

i1 FREEFALL

M TASK,

C..

7 CLOSE FREEFALL,
* SCHEDULE NAVIGATION PRIORITY(6O) REPEAT EVERYI 0;

* SCHEDULE GUIDANCE PRICRITY(7Oi, REPEAT EVERY .1 / 6 UNIL ORBIT;
* SCHEDULE CONTROL PRIORITY(803, REPEAT EVERY X / 20 UNTIL ORBIT;
* SCHEDULE FREEFALL ON ORBIT PRIORITY(7E), REPEAT EVERY I / 10;

* CLOSE STARTUP,

When an event expression is used in the UNTIL or WHILE clause of a SCHEDULE state
ment, it can cause cancellation of a process When used in the ON clause of a SCHEDULE
statement or in a WAIT statement, itcan cause a process to be readied or stalled 'Event ex
pressions are used only in SCHEDULE and WAIT statements, and always serve as a condi
lion under which the state of some proeem is to be changed

There are three types of event variables Latched and unlatched declared events, and
process events All events have only two states, ON and OFF, the distinction between

12-10 Real Time Statements

latched and unlatched events is that an unlatched event does not retain its state. ORBIT is
an unlatched event since the LATCHED keyword was not specified in its declaration It is
initially OFF or FALSE When the SIGNAL statement isexecuted it becomes momentarily
TRUE, just long enough for all active event expressions which reference itto be evaluated
SIGNAL is the only statement which can affect the value of an unlatched event

As stated above, an event expression can be a boolean combination of event variables
Since an unlatched event is only true during the execution of a SIGNAL statement, and
only-one event can be signalled at a time, the logical conjunction (A & B)of two unlatched
events will never be satisfied This is one reason for using LATCHED events, as illustrated
below

M P"
M PROGRAM;
" DECLARE ORBIT EVENT LATCHED I|ITIAL(FALSE);
ii DECLARE EGIHNE _OFV EVENT LATCHED INITIAL(FALSE I
N GUIDANCE!
11 TASK,
" CLOSE,
" SCHEDULE GUIDANCE PRIORITY701, REPEAT EVERY I / 6 UNTIL ORBIT AND ENIGlIE OFF,
" CLOSE p,

Here, Guidance will continue to cycle until both ORBIT and ENGINE_OFF are true at the
same time This can happen in several ways The sequence

SET ORBIT,
SET ENGINE OFF,

will cause Guidatce to be cancelled When a latched event variable is SET it remains true un
til it is RESET A latched event may also be SIGNALled In this case, the state of the event
is momentarily inverted for the duration of the SIGNAL statement, just as in an unlatched
event Thus,

SET ORBIT,
SIGNAL ENGINEOFF,

will also cause Guidance to be cancelled, as will

SET ENGINEOFF,
SIGNAL ORBIT,

However, if one event is first signalled and then the other set, there will be no time at which
both are true, and Guidance will continue The advantages of using unlatchedevents will be
come clearer when the WAIT statement is introduced

Event Variables 12-21

The third type of event is a process event These events are not declared b' the program
mer, but automatically defined to correspond to the state of each program or task The
process~event has the same name as the program or task, and is true from the time the proc
ess is scheduled until itcompletes its last cycle The process event of a cyclic process re
mazn true during, the inter-cycle wait, and during any other stall or wait state Process
events cannot be SET, RESET or SIGNALled, they simply reflect the state of the process of
the,same name

Process events can be used to solve a problem in the Guidance and Control to FREE-
FALL transition of the previous example Since a process cancelled via the UNTIL clause
of its SCHEDULE statement is allowed to finish its current cycle, FREEFALL will start
before the other tasks have finished if they are active at the time the event expression
becomes-true This difficulty is corrected in the following code

Mi STARTUP

M PROGRAM,

M DECLARE ORBIT EVENT LATCHED;

M GUIDANZCE:

M TASK,

CLOSE GUIDANCE;

N HAVIGATIC

M TASK,

e

" CLOSE NAVIGATION,

" CONTROL
" TASK,

C

H CLOSE CORTROL;

n1 FREEFALLi

H TASK;

C

M CLOSE FREEFALL;

H SCHEDULE NAVIGATION PRIORITY(601. REPEAT EVERY 1O;

H SCHEDULE GUIDANCE PRIORITYC7OI. REPEAT EVERY I / 6 UNTIL ORBIT;

h SCHEDULE CONTROL PRIORITY(8O), REPEAT EVERY 1 / 20 UNTIL ORBIT,

H SCHEDULE FREEFALL M14ORBIT PRIORITY(75), REPEAT EVERY 1 / 10,

H CLOSE STARTUP,

The-FREEFALL process is initiated when ORBIT is true and both other tasks have com
pleted their last cycles In this case, ORBIT must be a latched event and it should be SET
rather than SIGNALled

The effect tof SET, RESET and SIGNAL on latched and unlatched events is summanzed
m the table on the next page As shown SET and RESET leave a latched event in the TRUE
or FALSE states, respectively When a latched event is SIGNALLed, its state is momentarily
Inverted Unlatched events are always FALSE, except when SIGNAL makes them momen
tarily TRUE

op PAGE

.Poq

12-12 Real-Tume Statements

Set Reset Signal

Take all event actions
unlatched event illegal illegal depending on TRUE

state of <event var>

old 1 Set event state Take all event actions

value to TRUE depending on TRUE

latched Is 2 Take all event no actin state of <event var>

event FALSE actions depending
on TRUE state of
<event var>

old I Set event state Take all event actions

value to FALSE depending on FALSE
latched Is no action 2 Take all event state of <event var>
event TRUE actions depending

on FALSE state
of <event var>

Events can also be tested in non-real-time statements, e g

IF ORBIT THEN DO,

Booleans and events may be freely mixed in boolean expressions However, when used in
any statement other than SCHEDULE or WAIT, an unlatchedevent is always false

The SCHEDULE statements allow begin and end conditions to be specified in terms of
either time or event expressions, but the repetition option can only be specified in terms of
a constant interval of time The WAIT statement allows a piece of code to execute at irregu
lar intervals

Suppose a process is required to execute whenever ORBIT is false and ENGINE OFF is
true The schedule statement can be used to initiate a process thefirst time this combination
is true, as in

SCHEDULE REIGNITE ON NOT ORBIT
AND ENGINEOFF PRIORITY(999),

A convenient means of allowing this process to execute every time the event expression is
true is shown on the next page

Event Variables 12-13

M P,
M PRO AM,
I DECLARE EVENT,
I EUGIMNOFF.
M ORBIT LATCHED;
M SCHEDULE RE-IGNITE PRIORITY99);
M REIGSHITE
M TASK,
M DO WItrLE TRUE.
H WAIT FOR ENGIHEQPFF & -ORBITi

C
C
C-

II END,
" CLOSE REETNITE;
H CLOSE P;

When the WAIT statement is executed, if the event expression is true, execution continues
at the next statement If the event expression is false when the WAIT statement is executed,
the process is stalled until the expression becomes true as a result of event variable changes
by other processes If the event expression in a WAIT statement is not immediately satisfied,
it is put into the pool of active event expressions, the process containing the WAIT state
ment is stalled (taken out of the READY state) and the highest priorty ready process re
ceives control The process issuing the WAIT can only continue when the specified condi
tion is satisfied

Suppose that ORBIT and ENGINEOFF are both latched events If they are SET and
RESET from some process other than REIGNITE, it is possible that REIGNITE will exe
cute too many times Since it is of such a high priority, RE-IGNITE may finish processing
and re-execute the WAIT statement before the other process has a chance to RESET
ENGINEOFF In fact, if RE_IGNITE is the highest priority process and contains no other
WAIT statement, it will continue to loop to the exclusion of every other process If the RE-
SET statement can be placed in REIGNITE right after the WAIT statement the problem is
solved, but the situation could be avoided altogether by using a SIGNAL statement instead
of SET Since SIGNAL leaves an event in the true state just long enough for all active event
expressions to be evaluated, there is no possibility that REIGNITE will re-issue the WAIT
statement while the event is still true The SIGNAL statement is generally used when an
event is expected to change its state repeatedly, as there is no need to RESET* it in prepara
tion for the next use. Note, however, that if the process which isto wait for the event has
not already executed its WAIT statement, the SIGNAL has no effect

*Signal momentarily inverts the state of a latched event If a process waits for the false state, SIGNAL
avoids the need to SET the event before the next cycle

DRrAL PAG

PH-,0 -QU ST

12-14 Real-Time Statements

Consider the two communicating processes below

M P.
M PROGRAM; I
M DECLARE DOSOMETHINZ EVENT,
K DECLARE DO0E EVENT LATCHED INfTI4.L(OFF];

M SCHEDULE T PRIORITY(SO);

M SIGNAL DOSOMEYHIhG;

11 WAIT FOR DONE,

M 'T

" TASK;

" WAIT FOR DO. SOMETHING;

M SET DONE;

M CLOSE T;

M CL8E F,

In this example, if the priority of P is greater than 50, neither process will ever complete If
the prority of P is less than 50, T will execute its WAIT statement before DO-_SOME-
THING is signalled, and both processes will complete If P is the higher priority process, it
must pause before signalling DO,_SOMETHING to give T a chance to execute its WAIT
statement This could be done by adding

WAIT 1,

just before the SIGNAL statement

Exercises

12 2A Why does the SCHEDULE statement have both AT and ON clauses1

Event Variables 12-15

12 2B 	 In the program segment below, at which of the points A-D is the event expression Q
actve0

DECLARE Q EVENT LATCHED INITIAL(OFF),

A

SCHEDULE TASKI ON Q PRIORITY(57),

B

SIGNAL Q,

C

SET Q,

D

12 2C 	 Let X be a latched event which is initially OFF How is SIGNAL X, different from
the sequence SET X, RESET X,?

12 2D 	 Re-do problem 12 IC with the two transitions based on events assume that un
latched events, trani and tran2 are signalled at appropnate times by another process

12-16 Real-Time Statements

12 2E 	 Is alatched or unlatched event more appropriate in each of the following situations

a) As the single operand of an ON clause

b) As part of a complex event expression

c) In a boolean expression

d) In the RESET statement

e) In a WAlT statement inside a loop

12 2F 	 Write code that will cause the state of one event variable, COMPL, to always be the
inverse of another event, MASTER, which is set and reset by some other code Do
not examine the state of MASTER more often than necessary

12 3 OTHER REAL-TIME STATEMENTS

The SCHEDULE statement creates a process of some priority and possibly with some
repetition rate Begin and end conditions can be specified in terms of either time or event
variables These event variables may be SET, RESET and SIGNALled by other processes
The WAIT statement allows a process to voluntarily release control pending some future
condition This condition, like those in the SCHEDULE statement, may be either a combin
ation of event variables or the passage of time-

In addition to the time option of the WAIT statement, this section presents the CAN-
CEL and TERMINATE statements, which allow a process to discontinue itself or some
other process, and the UPDATE PRIORITY statement, which is used to modify the priority
of a process which has already been scheduled

The WALT statement has three forms

WAIT 	 FOR "event expression",

WAIT 	 "delta time", and

WAIT 	 UNTIL "time",

The effect of the statement is the same in all cases If the specified condition is already true,
execution continues, otherwise, the process is stalled until the condition becomes true

Asm the SCHEDULE statement, the expressions "delta time" and "time" may be any
arithmetic expression, both are in the same units as time values in other real-time state
ments The two forms distinguish between a particular time, and an interval of time, which
isthe same distinction as between the IIJ and AT options of the SCHEDULE statement As
before, ,

WAIT 1,

is equivalent to

WAIT 	UNTIL RUNTIME + 1,

OtherReal-TimeStatements 12-17

These forms of the WAIT statement are generally used in "sequencing" applications, for in
stance to fire a vehicle control let for a given duration or to wait between commands to
some slow moving mechameal device They are also useful in testing, to generate a scenano
of simulated inputs as a function of time

Note that the arithmetic expressions in the time-onented WAIT statements are evaluated
only once, when the WAIT statement is executed The expression "RUNTIME + I"does
not keep sliding into the future, but is converted to a scalar value when the WAIT statement
is executed It is only event expressions that are repeatedly evaluated by the system

A further example of the WAIT statement, is shown below Here, the acceleration
of a vehicle is controlled to get from HERE to THERE in minimum time by accelerat
ing halfway and deaccelerating halfway Steenng is ignored, as is any initial velocity

it p
ih PROQRA,

1t DECLARE VECTOR.

M HERE, THERE;
S [DECLAPE KAX THRUST CONSTAHT(1234),
I1 VEHr7ASS CONSTANT(5678),
11 DECLARE SCALAR,
IH A, s, T;

II DECLARE 1OOLEAN,

h' AC.chleD, DECCCID;

H A = MAX_-THRUST / VEK mASS,

E

II S = ABVAL(HERE - THERE) / a;

H T = SQrT(Z A S),

E

H ACe-eHO= ON,

M1 WAIT T;
E

H ACC CHD OFF;
E

i BEE ClHD - ON,
N WAIT T;
E
I DECC CHO = OFF,
H CLOSE P7

In this example, "WAIT T," introduces a delay of T seconds between setting ACCCMD
on, and back off

The WAIT statemen temporarily deactivates a process, a process can also be perma
nently deactivated A non-cyclic process (no REPEAT clause in the SCHEDULE statement)
terminates by executing its CLOSE statement, by causing a fatal runtime error, or as a result
of the TERMINATE statement A cyclic process can cease executing as a result of the
WHILE or UNTIL clause used when it was scheduled, the occurrence of a fatal error, or the
execution of a CANCEL or TERMINATE statement

The CANCEL and TERMINATE statements are similar in form, each consisting of a
keyword (CANCEL or TERMINATE) followed by a list of process names, for example

CANCEL GUIDANCE,
TERMINATE STARTUP,
CANCEL NAVIGATION, CONTROL, P, T,

12-18 Real-Time Statements

The TERMINATE statement causes immediate, abrupt cessation of the listed processes
Since it may stop a process at any point in its execution, its use is strongly discouraged The
HAL/S Language Specification imposes additional rules on the use of TERMINATE The
only use of TERMINATE which is generally considered acceptable is

TERMINATE,

When-no list-of processes-issupplied,.self~termtnation is implied This form of the TERMI-
NATE statement can serve as a "super return" statement at the PROGRAM or TASK level
Since the process "knows" its own state, this form is relatively safe When other processes
are terminated, it is important to consider all possible points at which they might be exe
cuting to ensure safety

The CANCEL statement allows an orderly shut-down of the specified processes Like
the WHILE and UNTIL clauses of the SCHEDULE statement, CANCEL can only stop a
process before its first cycle or during the inter-cycle watt This allows processes to be
stopped without the risk of leavingpartiallyupdated results

Since a cancelled process is allowed to finish its current cycle, the CANCEL statement
may not have immediate effect Process events can be used to key on the completion of the
last cycle before scheduling a "replacement" process, as shown below

CANCEL X, Y, Z,
WAIT FOR 1X & -iY & "1Z,
SCHEDULE XYZ_NEW PRIORITY(IO), REPEAT,

Exercises

12 3A Surround the statement "WRITE(6) RUNTIME," with other statements so that the
values 1/10, 1/8, 1/6, 1/4, 112, and I will be sent to channel 6 Use no other IO
statements Do not worry about numeric accuracy

12 3B Given

P PROGRAM,

DO WHILE TRUE,

/*sometlungC/

END,

CLOSE,

SCHEDULE P PRIORITY(100),

What does "CANCEL P," do" How should this be done?

OtherReal-Time Statements 1Z-19

End of Chapter Problems

Part of the specification of the flight software for the XYZ aircraft might read as
follows

Category Rate 	 Functions

A RA 	 input processing
elevon commands
telemetry

B 1/2 RA 	 rudder commands
guidance

C 114 RA 	 flight control gains

D 1/8 RA 	 navigation display
updates

The software functions are divided into four categories as shown The category
A software is to be executed at the highest possible rate consistent with the through
put of the machine and the total workload The category B software shall execute
one-half as frequently as category A, the rate of category C shall be half that of
category B, and the rate of category D shall be one-half that of category C (i e one
eighth the rate of category A) "

12A 	 Implement the above example via the real-time statements Explain your choice
of priontes Fix rate A at one-tenth

12B 	 Re-do the problem under the original "as fast as posible" groundrule

Bit Stritngs 13-1

13 0 SYSTEM PROGRAMMING AIDS

The Information presented in earlier chapters applies equally well to any HIAL/S com
piler Except for numeric precision, the examples shown will produce the same results under
any complete implementation of the HAL/S language This transferrabilty was one of the
major design goals of the language It decreases the dependence on the availability of fhght
hardware and encourages the re-use of debugged software

In order to provide this degree of machme-independence, the language isolates the user
from details of the underlying hardware, e g, the number of bits in a scalar The anthmetic
data types, Integer, Scalar, Vector and Matrix correspond to mathematical abstractions For
most users, the mapping of these data types into the data formats supported by a given
computer is of no concern The operations that can be performed on these data types are
defined in a way that is completely independent of any computer architecture The character
string, boolean, and event types also are defiried abstractly Users do not normally need to
know how much memory is occupied by a boolean or what character code (ASCII, EBCDIC,
ets) is used internally Since these low level decisions are made in the compiler, HAL/S
code is usually machine-independent

While most flight code implements algorithms that are defined in machine-independent
mathematical or logical terms, small portions of many projects are specified in terms much
closer to the computer in use Examples of this low level code are formatting sensor data,
handling interrupts, managing real-time clocks, commanding special purpose avionics, etc
These functions are intrinsically machine-dependent Algonthms are designed in terms of
hardware capabilities and concepts Thus, there is little chance of sharing this type of soft
ware between different projects Transferrability of "systems programs" is not a practical
goal, given the diversity of flight hardware

Even though system software is generally specific to a given computer, the other advan
tages of high order languages still apply Also, the use of a single language for both apphca
tion and system programs tends to simplify interfaces, documentation and training Hence,
HAL/S provides some features for writing system software, including the use of pointers
and low-level bit manipulation

These features are most frequently used in software that Is intrinsically non-transfer
rable The restriction of bit manipulation to the BIT data type, and similar constraints on
addresses, separate the possibly machine-dependent systems programs from applications
code

13 1 BIT STRINGS

, A bit string is a series of binary digits Each digit or bit behaves like a boolean The
forms, BOOLEAN and BIT(l), are completely interchangeable A bit string of length four
can be created via,

DECLARE FLAGS DIT(4),

Like vectors, character strings and other aggregate data types, bit strings may be sub
scripted to select single components or partitions The first, leftmost, or most significant bit
of FLAGS is denoted FLAGS$1 The last two bits would be referenced as FLAGS$(2 AT 3)

13-2 System ProgramAids

That catenation operator (I b also applies, though bit strings differ from character strings
in that bit strings are of fixed length The AND, OR and NOT operators can be applied to
entire strings as well as their boolean components

The length of a bit stnng must be less than an nmplementation-dependent limit This
limit generally equals the maximum number of bits that can be loaded into a general pur
pose accumulator or register on the target machine

Operations on single bit components of a bit string ate generally slower than correspond
mg operations on BOOLEANs or entire bit stnngs The machne instructions to perform
these operations also tend to occupy more space *

Because of the inefficiency of operating on a component of a bit string while leaving the
other bits alone, bit strings should not routinely be used to pack the individual booleans of a
program into a single word One type of situation in which bit strings can be used effectively
is illustrated below

K DECLARE I TITEGER,

[DECLARE B DITMS);

1 DECLARE BOOLEAN,

H C1, CZ, C3, C4, C5, C6, C7, CS,

C

TI O WHILE ON;
100 FOR I =1 TO11M,E
ii IF B = HEXOO' THEN

C

M END;

0 ELSE

H DO;

C

M ENt;
IM END,

H IF CITiEN
E

II B 'ON,

1z

C THEJN• 4*: IF £2

E
K B ONrS

c

C

C

*This is because most memory units are designed to transfer many bits (a byte or word) to or tomithe CPU
m one operation Modifying a single bit generally requires the use of logical or shafting instructions to
preserve the state of adjacent bits

Bit Strings 13-3

E
M IF C8 THEN

E
iiB ON;

ii Eli!);

In this code, eight booleans are packed in a bit stnng called B This makes the statements,
BSI=ON, B$2=ON, etc, less efficient than references to the individual booleans, Cl, C2,
etc However, the statement

IF 	B = HEX'00'THEN DO,

is much more efficient than

IF 	NOT (Cl I C2 I C3 I C4 I C5 I C6 rC7 I C8) THEN
DO,

Since this statement is executed much more frequently than the individual assignments, the
savings from making a simplertest more than offsets the cost of the componentassignments
Thus, one application of bit stnngs is to collect booleans for testing as a group

The example above tests whether all eight bits are false Other compound conditions can
be tested via the AND and OR operators For instance, the following statement tests for the
odd-numbered bits equal to zero

IF 	(B & BIN'1010d01010') = HEX'00' THEN
DO,

The test that bits I and 3 are on and 2 and 5 are off can be coded as

IF 	(B & BIN'1I,101000') = BIN'I010000 THEN
DO,

PA ,6

13-4 System ProgramAzds

When booleans are collected in a bit string, it is still possible to give symbolic names to
individual components via REPLACE statements, as m

REPLACE MEANINGFULNAME BY "B$3",

The only comparisons that may be made between bit strings are equality and non
equality (= and -1 =) As with arrays, the components are compared in pairs Two bit stnngs

are equal if all pairs match, and unequal if any pair mismatches If two bit strings of unequal
lengths are compared, the shortest is padded on the left with binary zeros before the
comparison

This left padding also occurs prior to logical operations on bit strings of unequal lengths

The following assignment statements all have the effect of setting B$6 to ON while leaving
the other bits alone

B6 = ON,

B B OR HEX'04',

B = B OR HEX4',

B = B OR BIN'100',

Provided that the implementation dependent limit on bit string lengths is not less than
twenty

B = B OR HEX'00004'

will also produce the same results A copy of B is padded to length twelve before it is ORed
with the HEX'004', and the result is truncated at the left (the most significant four bits are
removed) before it is stored back into B

Partitions of bit strings may be used in the same ways as entire stnngs, e g

IF B = OCT'lt7' THEN

1 TO 4

DO,

The width of every bit partition must be known at compile-time This means that m the
form BS(X AT Y), X must be an anthmetic expression composed solely of literals, CON-
STANTs, REPLACE names and the arithmetic operators In the form B$(X TO Y), both X
and Y must be computable at compile-time ICharactersttngs are the only data type for
which vanable-width partition subsenptmg is allowed

As we have stated, bit strings should not be routinely used to pack booleans The over
head of referencing the boolean components generally outweighs the savings of compressing

Bit Strings 13-5

them. In the first example, a bit string was appropriate since the entire string was referenced
more often that its components

It may also be appropriate to use bit strings to pack a table of booleans 'Since there are
generally fewer HAL/S statements which reference a table than entues in the table, it is
possible to save memory (at the expense of execution time) by compressing the table while
expanding each reference For instance, in the table of 1000 booleans,

DECLARE INFO ARRAY(1000) BOOLEAN,

each array element can be easily referenced as in

IF INFOS (I) THEN DO,

but the table itself will occupy a lot of memory Each boolean uses a whole byte, word, or
other addressable unit To save some storage, this table could be packed as shown below

M DECLARE INFO ARRAYfl + 1o0 / 16) SIT(16);
H TEST;
H FUNCTICN(lI BOOLEAN;
1
H

DECLARE I INTEGER ;
DECLARE INTEGER,

H WORD, B"IJNUMl,
H NORD = DIM, 161;
H
E

SYITKU = I - 16 WORD,

M RETURN INFO
S HORDI 1.BITNUMil

CLOSE TEST,

Now the value of entry number I in the table can be referenced as TEST(I) This will De a
less efficient reference, but the table size has been greatly reduced

This example assumes that the computer on which the code executes can address
memory by the 16-bit unit If not, this code could be very much less efficient Thus, this
example is not machine-independent It would still compile and produce the correct results
on, say, a 24-bit machine, but to achieve the same efficient use of memory would require
changing the four occurrences of 16 to 24 Thus, one reason why programs containing bit
stnngs tend to be less transferrable is that bit strings are sometimes used to control the
packing of information in "words" of memory

The expression INFOS(WORD BITNUM) contains both array and component sub
scripts As before, many combinations of simple and partition, component, array, and
structure subscripts are allowed

*Qj'

Op1

QU G

13-6 System Program Aids

One of the most common uses of bit strings in aerospace applications is for formatting
sensor and display data For example, a sensor might produce a value in "packed decimal"
format Six four-bit fields, each containing a number from 0 to 9 (BIN'O000' to BIN'1001'),
packed in a 24-bit word This could be converted to a simple integer by the following code

H DECLARE INPUT BIT24);
M DECLARE OUTPUT INTEGER IiITIALO);
M DO FOR I i TO 21 BY 4,
E
HT OUTPUT ID OUTPUT + INTEGERtINUT 3,
s 4 AT I

Here we see that the INTEGER shaping function will accept a bit string as its operand
The effect is merely to treat the string as a binary number rather than a senes of booteans

Conversely, the BIT function allows an integer to be treated as a bit stnng The length
of the string returned is always equal to the implementation-dependent maximum bit
length The code below assumes that the maximum is.16

M DECLARE I INTEGER,
ni E BIT(16);
ti REAMSI Ii

E
E a = BIT(I);

E-

H IF B THEN

S 1

I1 RiTTE(61 -VALUE OF I W4ASNEGATYVE',
E
11 IF a THEN
5 9

MI MITE(6) 'VALUE OF I WAS ODD';

This example produces correct results only on a 16-bit 2's complement or sign-magnitude
computer Here the machine dependence results from both the string length of 16 and the
assumptions made about the interpretation of the First and last bits of an INTEGER

Bit Strings 13-1

Conversions between bit and integer types use the BIT and INTEGER functions The
BIT function will also accept a scalar argument, and the SCALAR function will accept a
bit argument However, an intermediate conversion to integer occurs in scalar-to-bit and
bt-to-scalar conversions Thus, BIT(3 5) BIN'000000000000100', and SCALAR(BIN
'0100') = 4 0 BIT of a scalar between zero and one-half generates a stnng of binary zeros

The value returned by the BIT function is always of the maximum legal length for bit
strings, as defined for the compiler version in use This fact must be considered when the
BIT function itself is subscripted The last four bits of an integer, I, can be referenced as

BITS(4 AT #-3) (I)

but the expression

BIT$(I TO 4) (1)

may or may not select the first four bits of I If the number of bits in the representation of
an integer is less than the bit string length limit, the BIT function will left-pad the bit
pattern of I with binary zeros up to the limit The subscript applied to a BIT function
selects bits from the maximum-length result of the conversion, rather than from the original
operand, so BITS(l TO 4) (I) may pick out padding instead of data

The CHARACTER function can convert a bit string to its binary, octal, decimal, or hex
adecimal character representation This is specified via a radix, which is written as a sub
script, for example

M DECLARE B BIT(S),

E

M D = BIT(25);

S HEX
M RITE(6) CHARACTER (a),

E

E1 WRITE(6) CHARACTER (B);
S aflEc

E
M WIRfE(6) CHARACTER (B);

rZVCT

M WRITE(6) CHARACTER (B);
S ZaRH

i NMITEt63 B;

OPpO 0V.

13-8 System Program Aids

would produce

'19'

'25'
'31'
'0001 jol
'0001 1001'

The BIT function can convert a character string back to a bit stnng The radix is sup
plied here as well Every character in the string must be a digit in the valid range for the
specified radix BITS(@HEX) ('12') is BIN'10010', BIT$(C@OCT) ('12') is BIN'10I0', and
BITS(@BIN) ('12') would result in a runtime error Note that conversions between character
and bit do not depend on the codes used to represent numerals within character strings

Another function, a.UBBIT, allows any data type to be referenced, assigned, and sub
scripted as if it were a bit string SUBBIT obtains the internal representation of a variable
with no modifications at all Since these representations of HAL/S data types vary from
computer to computer, programs wlnch use SUIBBIT can not be machne-independent

The SUBBIT function is used in the code below to convert a character striAg containing
decimal digits to the packed decimal form discussed earlier This routine assumes that the
digits are represented in the EBCDIC character code In this code (which is not used in all
implementations) the decimal digits 0-9 are represented by the binary codes HEX'FQ'
through HEX'F9'

DECLARE C CHARACTER (4) INITIAL('1234'),
DECLARE B BIT(l 6) INITIAL(HEX'0000'),
DO FOR TEMPORARY I = 1 TO 4,

B = B 11 SUBBIT $(5 TO 8)(CSI),
END,

The expression SUBBIT$(5 TO 8)(C$I) selects bits five through eight of the binary rep
resentation of the Ith character of C SUBBIT can also be used to modify a variable as if
it were a bit string The SUBBIT function is descnbed further in the HAL/S language
specification

As a final example of bit strings, consider the following problem A set of three redun
dant sensors produce an ARRAY(3) BIT(16), where each sensor contributes one array
element containing four fields as shown below

1n32 n3 val8id9ty bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15

Bat Strings 13-9

The problem is to produce a fourth word in the same format which contains average values
The five bit fields will be treated as unsigned integral numbers, the validity bit in the average
will be true if and only if all three input validity bits are true

The data can be declared as

DECLARE DATA ARRAY(3) BIT(16),
DECLARE AVERAGE BIT(I6),

and the computation can be done in a single statement

E
AVERAGE M BIT JSL(IGIDrER(JTA f / 1 11 BIT (SU1MINTGER(IDATAI

5 AT -4 - 1 TO 5 5 AT U-4 5 AT

/ 3) SI CSUUHTEGEfRIYTAJ) I II DATA AND DATA & DATA
6 S AT r-4e 5 AT 11 1 is a is 3 16

Note that the bits in the diagram were numbered from bne to sixteen, startng at the left
(or most significant bit) HAL/S always numbers bits in this way, regardless of any conven
tions that may be used in hardware documentation

The expression BITS(5 AT #-4)) selects the last five bits'of its operand Since the
length of the stnng returned by the BIT function is implementation dependent, the use of
"#4" instead of "12" or "28", etc, is generally preferred

DATA$(' 1 TO 5) is an ARRAY(3) BIT(5), this expression selects a bit partition from
each array element Thus, the INTEGER function is being presented with an array of "N"
fields

This example also shows the use of the catenation oierator on bit strings, which
operates in the same way as on character strings

In this section, two major uses of bat strings have been presented ,First,,bit strings were
used to collect booleans into a single word so that a complex boolean expression could be
reduced to a simple comparison, the examples would work under any HAL/S implementa
tion The other major use of bit strings is for manipulating quantities of less than one
addrcssablity atom Bit subscripts can be used to pick apart a word of memory This allows
explicit user control over the packing of data, and provides a facility for reformatting
avionics IO data In this case, such considerations as the word size of the target maclune
and the internal representations of HAL/S data become important, hence, there is a degree
of implementation-dependence in the use of bit strings

OP J0 4V

'Zo

13-10 	 Systen ProgramAids

Exercises

13 IA 	 Given,

DECLARE FLAGS BIT(12),

write expressions that test for each of the following conditions without using
subscripts

a) bits I and 2 on,

b) even numbered bits off,

c) first six bits off or last six on,

d) bits 1,3, 5, 11 on, others off, and

e) bits 1,3, 5, 11 on, 2, 12 off, others irrelevant

13 lB Fill in the following function so it agrees with the comment

FLIP FLNCTION(B) BIT(12),
DECLARE B BIT(12),

C Return string of bits in reverse order,
C e , FLIP(HEX'00I') should be HEX'800'

CLOSE FLIP,

13 IC Six bits can represent an integer value between zero and 63 If a table of 200 such
values were to be stored in a computer with a 24-bit word, it would be advantageous

to pack four values per word Write a procedure,

SET-BITS PROCEDURE(ENTRY,VALUE),

which can be called to set one of the 200 6-bit entries to value, and a function,

GETBITS FUNCTION(ENTRY) INTEGER,

which returns the value of one entry Use the declaration

DECLARE TABLE ARRAY(50) BIT(24),

13 ID 	A common format for floating point numbers consists of a sign bit, followed by
seven exponent bits, and 24 mantissa bits The value of the number is

± mantissa x 1 6 exponent -64

A non-zero number is said to be "normalzed" if the first four bits of the mantissa
are not all zero Write a procedure which interprets its BIT(32) argument as a
floating point number, and returns a BIT(32) which has the same floating point
value as the input, but is normalized If the input mantissa is 0, then return true
zero (i e, all bits = 0) When would such a routine be useful9

Name-Vanables, 13-11

13 1E 	 Re-do the packed decimal to integer conversion example in the text using only one
executable statement

13 IF 	 Re-do the problem above without any arithmetic operators int Use character
operations

13 2 NAME VARIABLES

Name variables are pointers or addresses, they allow data to be referenced-indirectly
Name variables are sometimes called "pointers-to", since each name variable can point only
at variables of a given data type The type of the data pointed to is specified'in the declara
tion of the name variable itself

The most prevalent use-of pointers in general is to pass the address of a data aggregate
(such as MATRIX) to a subroutine In HAL/S, this is done implicitly via ASSIGN param
eters, hence, the need for name variables in application programs is almost eliminated In
system programs,,name variables may be used for efficiency in maintaining linked lists and
queues, for buffer control and storage management, and for interfaces to non-HAL/S code
or I/O hardware (e g, a DMA channel)

Another common use of name variables is to avoid a repeated structure subscript opera
tion Suppose an inertial sensor produces data in the format indicated below

STRUCTURE IMUDATA
I DELTAV ARRAY(3) INTEGER DOUBLE,
1 ATTITUDE ARRAY(3) INTEGER,
I STATUS BIT(16),

There are three of these sensors

DECLARE'IMUINPT IMUDATA-STRUCTURE(3),

A low rate process is to select the best of the three copies of IMU data, the entire structure
is to be read and the selected-copy processed at a higher rate One way- to pass the selection
information between the processes is as a structure subscript An integer,

DECLARE BEST INTEGER,

could be located in a compool visible to'both processes 'It would be assigned to 1', 2 or 3 at
the low rate, and the high rate would have computations involving IMUINPT$(BEST,) No
name variables are used so far, but this solution will work Individual components of the
selected structure can be referenced as in

PITCHANGLE = SCALAR(MUINPTATTITUDEBEST,J),

*without using name variables

13-12 System Program Aids

Every reference to the selected structure copy includes the subscnpting operation This
conceptually involves adding the base address of the structure to the product of the struc
ture width and the value of BEST Multiphcation is relatively slow on most computers It
would generally be more efficient to compute the address of the BEST copy of IMU_INPT
only once and reference itdirectly through this saved address Both "indexing" and "in
direction" are performed in a variety of ways on different computers, but when the index
requires multiplication, in this case by the width of ten integers, indirection is quicker Tis
is not to say that itis always preferred Some of the risks of using name variables will be
discussed-later

Before giving the name variable solution, we note that the address can be computed and
saved by adding an additional procedure

E +
M CALL XTRA ASSIli(IQMU_INPT 3;

5 BEST;

M XTRA:

t PROCEDURE ASSIGN(BEST.J)J;

I DECLARE BEST..T U IrLUATA-TRUCTURE;

C

M PITCHANGLE = SCALAR(BEST.InU.ATTITUnE 1;

C

M CLOSE XTRA;

Here the structure subscript is eliminated throughout the XTRA code block, since HAL/S
ASSIGN parameters are a case of "call by reference" rather than "call by value" The
address of the argument is passed to theprocedure Name variables allow the same type of
indirect reference without the overhead of calling an extra procedure This is shown below

f STRUCTURE iLOATA

M 1 DELTA_V ARRAY(3).INTEGEn DOUBLE,
M I ATTITUDE ARRAY(31 INTEGER,

M 1 STATUS BIT(1631

11 DECLARE IMUIHPT IhUOATA-SYrRUCTURE(3B-
M DECLARE BEST INTEGER,

M DECLARE PITCHAHGLE SCALAR;

K DECLARE BESTJtHAKE IMU DATA-STRUCrRE;

Naen Varfables 13-13

M LOW RATE:

M TASK;

M DECLARE BEST INTEGER,

H CALL TBD ASSIGH(BEST);

E + +

"I NAIEIBEST.IU) = FAHIEIII1IINPT 3;

S BEST;

H CLOSE LOW-RATE,

C

H HI RATE

H TASK,

C-

t PITCH_ANGLE = SCALAR(BESTTHU ATTITUDE 1;
S 1

c

M CLOSE RI RATE;

Tis program is much the same as before In particular, the HIRATE task is the same as
when BESTIMU was an assign parameter, except that the XTRA procedure is gone

The name vanable, BESTIMU, occurs three times in the program above First is the
declaration A variable is specified to be a name by placing the keyword NAME before
the data type The second is when it appears as an operand to the NAME function in the
LOWRATE task In this context (and only m this context) the name is treated as a pointer
Here it is set to the address of the best copy of IMUINPT The only way to "re-point" the
name variable BESTIMU is by executing a statement of the form

NAME(BEST IMU) = NAME();

The only way to reference a name variable's pointer value at all is by use of the NAME
function Normally, BEST IMU is of type IMU_DATA-STRUCTURE It may be used any
where that a non-name vanable of type IMUDATA-STRUCTURE is allowed In a normal
context, outside the name function, a name variable serves as an alias for data of some other
type, hence the terminology NAME instead of "pointer" This is not at all the same as the
use of a REPLACE macro as in

REPLACE BESTIMU BY "IMU_INPTS (BEST,)",

because the replace macro results in the subscript operation performed every time In the
case of name variables, changes to the value of BEST only affect which data is referenced by
BESTIMU when the

NAME(BEST IMU) = NAME(IMUINPT$ (BEST,),

name assignment is executed

OrtpWAc~w

http:NAIEIBEST.IU

13-14 System P'ogramAids

Name vanables may be of almost any data type, though the most useful is structure The
types of data to which Aames cannot point are those which require more than a simple
address to describe These are the same types that are disallowed as assign parameters, ex
amples include bit partitions, matrix columns, etc

A name variable can only refer to data of exactly the same type as specified in its decla
ration This means that all of the. type attributes must match, including precision, arrayness,
structure hierarchy, and so on The INITIAL attribute is an exception The statement

E +
ti DECLARE BESTI112 HAttE "IiUDATA-STRUCTJRE IHITIAL(NAE(III1LfINPT 11;

initializes NAME(BESTIMU), i e, the pointer value When a name variable is declared,
the amount of storage reserved is just enough for one address The INITIAL attribute
specifies the value to be placed in this address word The block of storage needed to contain
an IMU DATA-STRUCTURE is not allocated when the name is declared, thus the initial
values for the structure pointed at must be specified elsewhere The statement shown causes
the name variable BESTIMU to point initially at the second copy of IMUINPT

If the INITIAL attribute is not specified in a name declaration, the name initially points
nowhere A special value is used as a null address so that all uninitialized names have the
same values This null value is an address at which it is impossible to locate data and can be
written either as "NULL" or as "NAME(NULL)" It is possible to determine whether or not
a name vanable points anywhere, as shown below

t I 8AMge.EST 111a1 = THINIF IAME(NULLI
M I TR1ITE(6) 'BEST h1U NOT CHOSEN',

The basic NAME syntax has been shown in the context of one example The forms of
declanng, initializing, re-pointing, and dereferencing (i e, accessing the data pointed at) have
been shown The main example used is maclune-independent and at least somewhat apphca
tion oriented Nonetheless, there are pitfalls in the use of name variables It is difficult to
find out what a name variable is pointing at by examining the code surrounding a reference
to it Data which is accessed via name variables is not fully tracked in the cross reference
listing Name variables allow a single location to be referenced by several'identifiers, possibly
resulting in obscure side-effects of assignments Name variables also tend to bypass compiler

ListsandQueues 13-15

optimization, since they makeit difficult to find a segment of code over which a particular
vanable is not modified It is hard for either the programmer or the compiler to be certain
what is being changed when name variables are assigned into Thus, it is frequently worth
while to use a less efficient but less dangerous construct such as structure subscnpting A
common lament is "I though I understood this code until I saw these name variables"'

In most application code, name variables should be avoided The possible gain in effi
ciency isgenerally outweighted by the loss in reliability and maintamnabityr Name vari
ables are provided in HAL/S primarily to allow the writing of system software

Exercises

13 2A 	 Name any three HAL/S data items which cannot appear as an operand of the NAME
pseudo-function

13 2B 	Which of the following can be done with name variables

a) bypass HAL/S scoping rules,

b) declare a structure node with copiness,

c) reference a single data item by several names or identifiers,

d) reference absolute addresses, and

e) change the type of data

13 3 LISTS AND QUEUES

The HAL/S language does not provide syntax for dynamic storage allocation Tempo
rary variables and space for intermediate results may be allocated and freed by the runtime
code, but all decisions are made based on the static block structure, DO END grouping,
etc List processing languages can automatically release data that is not on any list and
allow the space so created to be used for new lists HAL/S does not provide this type of
storage management because it as not possible to guarantee that such systems will not run
out of storage this would be an unacceptable condition in flight

Aside from storage management, the most valuable feature of lists is that entries can be
deleted or inserted in the middle without copying data This capability is available in HAL/S
through structures and name variables

Consider the timer queue, a concept which is central to many operating systems Each
entry in the queue contains a time and an action to be taken The queue is maintained in
order of increasing time the top entry is loaded into an interval timer This could be coded
in HAL/S as shown on the next page

*Qualitatively speaking, a program's reliability is the probability that it has io hidden bugs Its maintain
ability isthe probability that it can be changed or extended without reducing reliability

C

13-16 System ProgramArds

if STRUCTURE TQE.

TIMER QUEUE ELEMENT

i1 I TIlE SCALAR,
11 1 ACTIO1 INTEGER,
1 I AFFECTED PROCESS NAME FPROCESSCONTROL-STRUCTURE,

H I NEXT NAME TOE-STRUCTURE,

H DECLARE TQ TQE-STRUCTURE(IOO;

These statements create a 100-copy structure, vith four fields n each copy Two fields
are name variables, they are referenced in the usual manner, e g,

TQ AFFECTEDPROCESS$(1 ,)

is the third field of the first copy of TQ It is of type PROCESS_CONTROL-STRUCTURE
Only the address is physically contained in TQS(,), but the structure elsewhere is accessed
when the name variable is referenced in a normal context (j e, outside of the NAME func
tion) The other name vanable points to a TQE structure The last field of TQE is the name
of another TQB We will explore the implications of this later As it stands, all of the fields
in TQ are null The queue could be imtalized as shown below

I DECLARE FREEQ N4AMEYQE-STRUCTURE,
1 DECLARE ACTVQ NAME TQE-STRUCTURE;

H INITIALIZE
E: + +
I
5

NAME(FREE-Q) = IAIE(TQ
Z

I;

IM DO FOR TEMPORARY N I TO 99,
E + +
M NAE(TQ.NEXT i HAI(TQ b.
S N,

M END,

List and Queues 13'17

Now the entries in the queue are tied together with pointers, as shown below

G. 	 .*.

The structure copy numbers are shown in the diagram, but each field can now be referenced
without using a copy number, as indicated in the following table

Referenced Data 	 Pointed To By

TQS(I ,) 	 FREEQ

TQS(2,) FREEQ NEXT

TQ$(3,) FREEQ NEXT NEXT

TQ TIMES(2,) FREEQ NEXT TIME

Since FREEQ NEXT is the name of a TQE structure, it also has a NEXT field Tins field
points at the third entry in the free queue, which at the moment is also the third copy of
TQ

The procedure below creates an entry in the active queue by removin it from the free
queue and Inserting it at the appropriate point in ACTVQ based on the tune field

H EN9UEUE

FROCED" EIiIEI.WHAT. PRClNAME).

I DECLARE 4HEI SCALAR.
H .!HATINTEGER.
M PPOCIAIIE NAIE PROCESS$ COITROL-S7PUCTUPE,
* DECLARE IEW"IAIE TCE-STPLCIU1RE,

C THE FOLLOWIPG 14AHEVARIABLE IS USED LIKE A LOOP
C VARIABLE IN A SEARCH

M DECLAPE ENT NIAWIETQE-STRUCTLIJEI

C IF H1OFREE ENTRY THEN AN EPROR

E 4
H IF 	HAMtEFREE_q) = KULL. THEN

RETURN,

aTOWN

13-18 System ProgramAids

C ELSE USE TOP FREE ENTRY FOR HEW ACTIVE Q ELEHENT

E

II NtbE(IE] = NAEIFREEQ),

C REMOVE NEWIENTRY FROM FrEE;O

E +
M NAIEFREEQ) = NAtE(FREE. NEXT),

C PUT INFO INTO NEU ENTRY

H NEWTIME = WlEll,
m NEU ACTION = WHT,

E

B)AVE.NELl AFFECTEQ-PPOCESS) = N lEIPROCHANE},

C NC). INSERT NEW ENTRY IN APPROPRIATE POINT OF ACTV QUEUE
C EITHER REFCqE FIPST,
C EET EEI EIT A '0 ENT NEXT FOR SOME E1T

C OR AT EN OF QUEUE

I IF NER TIME , ACTVtO T7ME THEN

H DO,

C 4

H NWAE(NEWI NEXT) = NAH (CTVQ),
E 4 4

M NAME(ACTV 0) lNAMErNEW),
H RETUJ .
h END,
E + 4
B NAMECENT) = HAHE(ACTV Q)3
E 4

H DO UNTIL NArIE(EIIT NEXT) lHAM(0?JLL;.
E +4
M NABECENT) = HAIIEACTVQ],

H If ENT 14EXT TIIE - NEI TIME THEN

it DO,

K NAmEtNEW NEXT) = IAltENr NEXT),

E
H HAME(ENT NEXT) = IAHEI)EI41
M RETUPN,
H END.
E
K NAME(ENT 2 HAIE(ENT NEXT),
m END,

C AT THIS POINT, THE WHOLE 0 WAS SEARCHED INSUCCESSFULLY,
Ca SO ADD NEW TO THE END

E+
K hAMEEENT NEXT) 2 NAHE(HEI.],

E
H NAM(NE NEXT) = NULL.
11 CLOSE EHNUEUE,

/* PUT FIRST*/

/-START AT TOP*/

/* SEARCH Q-/

/-START AT TOP/

/4 HEN ENTRY INSERTEDD/

/' TRY NEXT ENTRY-/

4' ,'- ~ 5.1 t

Lists and Queues 13-19

This procedure can insert an entry in the middle of the queue without physically moving
subsequent entries down, since the sequence information is encoded in the links (name
variables) rather than the position in memory (the copy number) After

CALL ENQUEUE(10, 1, NULL),

is executed, the queue looks like

IACTVQ

If the next calls are

CALL ENQUEUE(20, 1, NULL),
CALL ENQUEUE(15, 1, NULL),

the queue looks like

NOW, ACTVQ iS 1 QS(l ,),

ACTVQ NEXT is TQS(3,), and
ACTV_QNEXT NEXT is TQ$(2,)

13-20 System ProgramArds,

Thus when viewed as a list structure, the elements of ACTV Q are sorted by increasing
TIME, even though

TQ.TIME(2,) > TQ.TIMES(3,)

This queue cduld be used in implementing the HALIS real time statements The code
below illustrates how the timer queue might be used The CALL SET-CLOCK and WAIT
FOR event statements are intended to load the value ACTVQ TIME into an interval timer,
and wait for-the-interrupt This would have to be done via assembly language or 5o-macros
"Percent" macros are implementation-dependent They allow a pre-defined sequence of
machine instructions to be inserted in a HALIS program More detail is given in each Users
Manual

" N 114_XANfLER

" TASK,

N DECLARE CLOCK_NTERRUPT EVENT,

ii DECLARE TEMP NAME TQE-STRUCTURE;

i DO WHILE TRUE;

H CALL SETCLOCK(ACTV_1 TIME) ASSIt(CLOCK-INTERRUPT);

N iAIT FOR CLOCK_!HTERRUPT;

N 00 CASE ACTV..Q.ACTICH,

+

II CALL RECYCLE(ACTVQ AFFECTED PROCESS),

E +

M CALL CANCELPROC(ACTY Q.AFFECTEDFPROCESS),

E

M CALL READY(ACTV Q AFFECTED PROCESS),

E +

E

ii CALL SCHEDULEAT(ACTVQ AFFECTED_PROCESS);

N /04 ETC 4

M END;

C NOW REMOVE TE FROM ACTIVE CHAIN

E + t-

M HAME(TEMP) = NAE(CTV.Q);

E + -

Nl NAEfACTVQ = HIAE(ACTVQ-_ EXT);

M NAMECTEP NEXTI = NAME(FREEQ).

E + +
H HAE[FREE_QE NAMETEHP);

H END,

H CLOSE,

N RECYCLE

S ROCEDURE(X);

11 DECLARE X PROCESS COWTROL-STRECTURE,.
M CLOSE,

M CAHCEL PROC

M PROCEURE(X),

M DECLARE x PROCESS_CrNTROL-STRUCTURE;

Ltsts and Queues 13-21

With the process INTHANDLER running, and appropriate routines to recycle, cancel, and
otherwise change process states, ENQUEUE could be called as a result of several HAL/S
statements "WAIT 5 ," executed by some process X might be translated to

CALL ENQUEUE(RUNTIME + 5, 3, NAME(X)),

CALL STALL(NAME(X)), f enter wait state'/

Here we are assuming that X is a process_control-structure Such a structure might
consist of

K STRUCTURE PROCESSCONTROL'

K 1 SAVEJLREA RIGID,

K 2 FIXED REGS ARRAY(16) BIT(32),

K 2 FLOATREGS ARRAY(S) SCALAR OOUBLE?

21 2 OTHER SIT(32),

K 1 PRIOR£TIE INTEGER,

H I STATUS INTEGER,

M 1 NEXT NAME PROCESS-COHTROL-STRUCTURE,

M 1 LAST NAME PROCESS CONTROL-STRUCTIRE,

when the node, SAVEAREA is machine dependent This isa double linked list Each
entry has both forward and backward pointers To see how this is useful, suppose that there
are three queues containing process control blocks (PCBs) FREEPC will be the anchor
(simple name variable pointing at the first elenient of) of a queue of unused PCBs,
READYPC will be the anchor of a queue of PCBs representing ready processes, (sorted by
priority), and STALLED will be a queue representing blocked processes (e g, those inthe
wait state) One of these queues isdiagrammed on the next page All three have the same
form The STALL routine that was called above might simply remove the indicated process
from the READYPC queue and add it to the STALLED queue The argument to STALL is
the address of the PCB to be removed from the READYPC It could be written as

1 DECLARE READYPC NAME PROCESS cOAROL-SThUC'luRE,
N DECLARE STALLED NAME PROCESSCONTROL-STRUCTUlE.
H DECLARE FREEPC NAME FROCESS COHTROL-STRUCTURE,

C.
C

" STALL:

N PROCEDURE ASSrGN(PCB);

;1 DECLAPE PCB PROCESS CONTROL-STRUCTURE,

C REMOVE FROM READY QUEUE

13-22 System ProgramAids

++
M NANEIPCB LAST NEXT) = NAEIPC 3 NEXT),

1:+ +
M NAEtPCB.NEXT LAST) = NAHISPCB LAST);

C ADD TO STALLED QUEUE AT THE BEGINNING

11 HAMEfPCB NEXT) = HAME(FREFC);

E + +

H NAME(FREEPC) NAME(PCf),

M CLOSE STALL;

H CLOSE LAST EXAMPLE;

The reason a double linked list is needed is that STALL receives the address of a PCB in the
middle of a chain

To remove it, the links of both neighbors must be changed A singly linked list would suf
fice if it was always searched starting from READYPC

In this section, we have sketched portions of one possible implementation of the HAL/S
real time statements This design does not necessarily correspond to any actual operating
system The point of this section is to give a degree of familiarity with sophisticated uses of
name vanables, and to illustrate that large portions of "system programs" can be written in
HAL/S

This system presented is not at all complete A routine is needed to make a process
ready It could be essentially the same as the ENQUEUE routine shown earlier The routine
that readies a Cychc process when the timer goes off should put a new entry in the queue for
the next cycle Also, some low-level control code is needed to dispatch the highest priority
ready process This process is always the one that corresponds to READYPC, since the

Lists and Queues 13-23

ready queue is sorted, the top routine is always the one to receive control However, there is
no HAL/S syntax for branching to a program or for loadingjstoring specific machine regis
ters At some level, assembly language has to be used, though HAL/S does allow certain
canned machine-instruction sequences to be generated via % macros These macros make
machine dependencies lughly visible in the listing If the %-macros defined for a particular
implementation are not sufficient, assembly language comsubs can fill the gap

Name variables, percent macros, bit stnngs, EQUATE EXTERNAL*, and the ability to
call assembly language routines all contribute to making HAL/S suitable for systems pro
gramming Use of these features in application programming is discouraged, nonetheless,
some safety is provided by the type checking rules (as applied to name variables and bit
stnngs) and other safeguards Even in the system-language portion of HALlS, many forms
of bad programming practice are precluded by compiler restnctions These features are
designed so that reliable, readable and efficient programming is still encouraged even though
it cannot be as thoroughly enforced when the system programming features are used

Exercises

13 3A Declare and initialize a structure, CIRCLE, such that the following statement is true

NAME(CIRCLE NEXT) = NAME(CIRCLE)

13 3B Change the declaration of the timer queue so that each element (TQE) is the head of
an arbitrary-length list of action-affected process pairs all to be done at the same
time, as illustrated

AFFECTED_PROC I

ACTION i

AFFECTEDPROC e

I Actions at 1 Actions at
I timeI time 2

*See appropriate User's Manual for details

Att

13-24 System ProgramAids

Change the ENQUEUE routine to etther add the new element to the end of an
existing list, if there is already one, or more actions at that time, or insert a new list
consisting of a header and the new itern

13 3C 	 As written in the text, the procedure STALL may fail with some inputs When will
this happen? Modify the procedure to remove this problem

End of Chapter Problems

13A 	 Write a procedure which will insert a PROCESSCONTROL-STRUCTURE in the
READYPC queue (both defined as in Section 13 3) after all entnes having an equal
or higher PRIORITIE and before all entries that are lower Remember to maintan
bothforward and backward links

13B 	 Write a program which will read in two hexadecimal numbers (of up to six digits)
separated by cithef d plus or minus sign, and print their sum or difference in both
decimal and hexadecimal

AppendoA A-I

Appendix A

ARIThMETIC FUNCTIONS

" 	 Arguments may be integer or scalar

* 	 The data type of the result matches the argument type unless otherwise
noted

" 	 Arrayed arguments generate multiple invocations of a function, one for
each element in the array When two or more arguments are arrayed,
their arrayness must match *

Name <Arguments(s)> 	 Comments

ABS(X) 	 Absolute value IXI

CEILING(X) 	 Smallest integer> X

CEILING(-3 4) returns -3

DIV(X,Y) 	 Integer division X/Y, where scalar arguments are
rounded to integers This construct is the only way to
do integer division in HAL

DIV(5,2) returns 2

Note Where X, Y, Z are integers X = 5, Y = 2 The
statement Z = X/Y results in two integer to scalar con
versions and a scalar divide Finally, the result is con

verted to an integer type In this case Z = X/Y sets Z
to 3

FLOOR(X) 	 Largest integer C X

FLOOR(-3 4) returns -4

MIDVAL(X,Y,Z) 	 The value of the argument which is algebraically be
tween the other two If two or more arguments have the

same value, that value is returned

MIDVAL(- 4, - 6, 3 5) returns - 4

MOD(X,Y) - X MOD Y (modulus) The result is scalar unless both
arguments are integers

MOD(5,3) returns 2
MOD(5,-3) returns 2
MOD(-5,3) returns I
MOD(-5,-3) returns I
MOD(-5,2 1) returns 1 3

*For a discussion of arrayness, see Section 6 2

A-2 Appendix A

Name <Argument(s)>

ODD(X)

REMAINDER(X,Y)

ROUND(X)

SIGN(X)

SIGNUM(X)

TRUNCATE(X)

ARITHMETJC FUNCTIONS (CONT'D)

Comments

Result is BOOLEAN 	 True ifX is odd, false if X is even

IF(ODD(X))

THEN ..

Note Scalar arguments are rounded to integer

Signed remainder of integer division X/Y

REMAINDER(-5,3) returns -2
REMAINDER(5,-3) 	returns 2.
REMAINER(-5,-3) 	returns -2.

Note Scalar arguments are rounded to integers

Nearest integrat value to X, essentially the same as HAL
scalar to integer conversion

Returns an integer 	 +1 if X > 0,

-I ifX<0

Returns an integer 	 +1 if X> O,
0117X=-0,

-1 ifX< 0.

DO CASE(SIGNUM(X)+2)

Strip off fractional part of the scalar (X)

TRUNCATE(-3 4) returns -3
TRUNCATE(7 8) returns 7

AppendixA A-3

ALGEBRAIC FUNCTIONS

" 	 Arguments may be integer or scalar types - conversion to scalar occurs
with integer arguments

* 	 Result type is always scalar

* 	 Arrayed arguments cause multiple invocations of the function, one per
each array element

* Angular values are supplied or delivered in radians *

" Arguments that are outside the domain specified in the comments result
in HAL/S runtime errors, (see Chapter 10)

Name <Argument(s)> Comments

ARCCOS(X) IXI< I

ARCCOSH(X) X > I

ARCSIN(X) IXI < 1

ARCSINH(X)

ARCTAN2(X,Y) 	 Returns 6 = tan - ' (X/Y) where the proper quadrant for
-r < 0 < 7r is determined from the signs of X and Y
Proper quadrant results if

X = K sin 0
Y = K cos 0 K

ARCTAN(X) Principle value only, see above

ARCTANH(X) lXI < I

COS(x)

COSH(X)

xEXP(X) e

LOG(X) logeX, X > 0.

SIN(X)

*One radian equals 57 2957795131 degrees, so that
rr radians equals 180 degrees,

in2 radians equals 90 degrees

e~?on.4 'P4AQea

A-4 Appendix A

ALGEBRAIC FUNCTIONS (CONT'D)

Name <Argument(s)> Comments

SINH(X)

SQRT(X) f-, X 0.

TAN(X)

TANH(X)

Appaidix A A-5

ARRAY FUNCTIONS

" Arguments may be single or multi-dimensional arrays of scalars or
integers

" The type of the result matches the type of the argument and is
unarrayed

Name <Argument(s)> Comments

MAX(X) Maximum of all elements of X

MIN(X) Minimum of all elements of X

PROD(X) Product of all elements of X

SUM(X) Sum of all elements of X

A 6 	 Appendax A

BIT FUNCTIONS

S 	 HALlS provides AND, OR, and NOT operators for bit operands XOR
(exclusive OR) is available as a built-in function

Name <Aigument(s)> Result Type 	 Comments

XOR(X,Y) BIT 	 Exclusive OR, where X and Y are bit
strings The length of the result is the
length of the longer argument The shorter
argument is padded on the left with zeros

Appendx A A-7

CHARACTER FUNCTIONS

* 	 The first argument in each of the functions below is a character stnng If
a scalar or integer is specified where a character stnng is expected, a con
version to character type is performed

Name <Argument(s)> Result Type

INDEX(CI,C2) Integer

LENGTH(C) Integer

LJUST(CI,n) Character

RJUST(CI,n) Character

TRIM(CI) Character

Comments

C2 is a character stnng If string C2 is con
tained within string Cl, an index which is
the location of the first character of C2 in
CI is returned, otherwise, zero is returned

INDEX('CHARACTER', 'ACTER') returns
5-

INDEX('ALPIIA', 'BETA') returns 0

Returns the current length of character
string C

n is integer type - the string CI is ex
panded to length n by padding on the right
with blanks If n is less than the current
length of Cl, an error is signaled and CI is
truncated to length n

n is integer type - the string Ci is ex
panded to length n by padding on the left
with blanks If n is less than the current
length of Cl, an error is signaled and Cl is
truncated to length n

Leading and trailing blanks are stripped
from Cl

0p r 0o
OP?0PO 4 A~04Q4r

A-8 Appendx A

MISCELLANEOUS FUNCTIONS

" Arguments are as indicated, if none are indicated the function has no
arguments

" Result type is as indicated

Name <Argument(s)> Result Type

CLOCKTIME Scalar

DATE Integer

ERRGRP Integer

ERRNUM Integer

NEXTIME Scalar
(<label>)

PRIO Integer

RANDOM Scalar

Comments

Elapsed time since midnight (format is im
plementation dependent) See Chapter 12

Returns date (implementation dependent
format)

Returns group number of last error de
tected, or zero if no error was detected See
Chapter 10

Returns number of last error detected, or
zero if no error was detected See Chapter
10

<label> is the name of a program or task
The value returned is determined as
follows

a) If the specified process was scheduled
with the REPEAT EVERY option, and,
has begun at least one cycle of execu
tion, then the value is the time the next
cycle will begin

b) If the specified process was scheduled
with the IN or AT phrase, and has not
yet begun execution, then the value is
the time it will begin execution

c) Otherwise, the value is equal to the cur
rent time (RUNTIME function)

Returns pnority of process calling func
tion

Returns pseudo-random number from rec
tangular distribution over range 0-1

*Note that for any particular HAL program complex which contains references to random and/or randomg,
the same set of "random" numbers will be generated m each execution

Appendx A A-9

MISCELLANEOUS FUNCIONS (CONT'D)

Name <Argument(s)> Result Type

RANDOMG Scalar

RUNTIME Scalar

SHL(X,Y) Integer

SHR(X,Y) Integer

SIZE(X) Integer

Comments

Returns pseudo random number from
Gaussian distribution with a mean of zero,
vanance of one *

Time since the software began executing
(implementation dependent format) See
Chapter 12

X shifted left Y bit positions X and Y may
be scalar or integer, but scalars are con
verted to integer before shifting This is an
anthmetic (signed) shift

SHL(-2,2) returns -8

X shifts right Y bit positions As above, tis
is an anthmetic shift

SHR(-4,2) returns -I

One of the following must hold

- X is an unsubscnpted arrayed variable
with a one-dimensional array specifica
tion - function returns length of array.

- X is an unsubscnpted major structure
with a multiple copy specification -
function returns number of copies

- X is an unsubsripted structure terni
nal with a one-dimensional array speci
fication - function returns length of
array

Result is of integer type

*Note that for any particular HAL program complex wuch contais references to random andfor randomng,
the same set of "random" numbers will be generated in each execution

Appendix B B-1

Appendix B

Although the main body of this manual has avoided references to specific compilers,
there is considerable similarity in the compilers now available In this appendix we will de
scribe additional software development support which is typically provided

The HAL/S compiler is not simply a language translator All current implementations in
elude features not usually found in other common compilers, such as PL/I, FORTRAN, etc
These include special processing and annotation of the listings, facilities for restricting usage
of variables or language features, and additional outputs for post-compilation tools

In addition to annotating identifiers and indenting as described in the text, the compiler
adds several types of summary information to the listing At the end of each procedure or
function block, that block's interfaces are listed The information presented includes lists of
global variables referenced or modified, external procedures called, event vanables modified,
compool REPLACE macros used, and so forth At the end of the listing a table of identifiers
is printed, including the data type and a list of all statements which use the identifier Some
compilers produce a listing of annotated assembly language which corresponds to the
machine code actually generated This aids in debugging on flight hardware, although more
sophisticated debugging supports is also provided

Two facilities provide for the establishment of managerial control over HAL/S usage
ACCESS rights allow restnctions to be placed on the modification of selected variables or
on the usage of blocks Since this can be done separately for each compilation unit,
ACCESS rights provide managers with an important tool for controlling the interfaces be
tween modules Another device is the SUBSETing capability, which provides the ability to
restrict the usage of a user selected subset of HAL/S language'features or built-in functions
This mechanism does not affect the code generated but merely flags by a warning message
on the primary listing those statements violating the SUBSET

The efficiency and reliability of program complexes can be improved by use of a special
purpose link editor or binder These programs (e g , HALLINK) can reduce storage require
meats by generating the call tree beneath each program or task and allocating a temporary
storage area (or stack) just large enough for the longest limb of the tree If a compiler sys
tem includes an appropriate link editor, it may also add to software reliability While the
varous HAL/S modules are being bound together, they can also be checked for consistency
The template generation system (chapter 11) passes information to the link step that, for in
stance, allows venfiqation that every program used the same compool template

Another output of each compilation is a Simulation Data File or SDF This is a random
access data base containing attribute and cross reference information for variables and code
blocks Data concerning executable statements is also included, as well as global statistics
found in the primary listing It is this large database that allows for many post-compilatton
analysis tools, ranging from execution-time debuggers to HALSTAT, a statistics and analysis
package

B-2 AppendJB

Programmers have many modes of execution available to them in most implementations

of HAL/S Even running stand-alone (on a host computer) one can obtain detailed error

diagnostics related directly to the HAL/S source by statement number and block name, and
And if a program ternioptionally obtain an end of run formatted dump of all variables

rates abnormally, a full-traceback; showing the flow of control from block to block will be

Another package allows one to request dumps and traces of variables while running ingiven
can also provide a detailed log of real-time transactions,a batch environment This package

showing the transitions from~process to process Moreover, certain implementations provide

the capability of "functional simulation," or FSIM, of another target computer In this

usage, the amount of memory used is approximated by allocating variables in the same fash

ion as on the target machine Also, the extent of CPU utilization is estimated for the target

machine with a running accumulation of time maintained automatically The FSIM facility

isvery useful in cases where the target machine is not commonly available or is difficult-to

One very valuable feature available under FSIM is the "profile" capability, A listing canuse
be generated which shows the number.of times each HAL/S statementin the program com

plex was executed The estimated total execution time for each statement, and other statis

tics, allow the efficiency programs wntten. in HAL/S-to be attacked at the point of greatest

leverage

One host computer contains an interactive HAL/S debugger This program uses informa

tion from the simulation data files as well as "hooks" inserted in the machine code to allow
debugging at the HAL/S level (i e, without knowing any details of the underlying com
puter) Breakpoints can be set by statement number or label For instance, "AT LOOP + 3,"
sets a breakpoint three HAL/S statements after the label "Loop". Vanables can be inspected
and modified by their symbolicnames, all values are entered or presented in the standard

external format Data aggregates may be subscripted or pnnted in entirety Since the SDFs
contain full type information, there is no need to debug in hexadecimal or octal, or to con
tinually specify display formats Since HAL/S programs reference variables via scopmg rules,
this debugger provides a SCOPE command This command has a block name as its argu
ment References to variables in subsequent commands are interpreted as they would be in
the named block A SCOPE command is automatically performed when a breakpoint is
reached Thus commands at a breakpoint can reference any variable that is visible from the
block an which the breakpoint was hit The SDFs contain sufficient information to allow
similar capabilities in a "cross-debugger" to test actual flight code

The large amount'of data contained in the compiler's outputs, especially the SDF's and
the object modules, permits the development of many post-compilation analysis programs
Perhaps the best known of these is the HALSTAT program, which is used to accumulate

global data about a program complex HALSTAT performs three major functions Verifying
the consistency of SDF's, pnnting statistics for teach module, and giving a global dictionary
of variables SDF's are consistent if all variables shared by processes are in agreement with
respect to such factors as data type, size, location, and so on Variablestare also checked on
a global basis to insure that none are referenced that have not ever been assigned, if this situ
ation occurs a warning message will be given Multitudinous statistics are printed for each
HAL module in the program complex, giving the name of the module and the date of com
pilation, size statistics, and the modules' pattern both in terms of HAL/S blocks incorpo
rated and location.of 'codesections Theglobal-symbol directory (GSD) portion of HAL,
STAT isa listing of every variable used in every module of the program complex, including

http:location.of
http:number.of

Appendix A B-3

both compool and local variables It shows not only variable attributes and locations, but
also the cross reference data for each variable across all modules in which it is used The
cross reference shows both the HAL/S statements, by number, where an item is used, and
also the way in which it is used, e g, REFERENCED, ASSIGNED, SUBSCRIPT, etc

Additional programs have been developed to meet the needs of specific installations
One program provides a complete disassembly listing of a HAL/S load module, which shows
clearly the relationships between the machine code instructions and the HAL/S source
Since the typical program complex's load module incorporates code from both HAL/S mod
ules and assembly language modules (from the runtime library), a list showing both of these
is essential to review the integrated system Another program provides the above disassem
bly capability but limits it to user-specified machine instructions, a facility that is very use
ful in assessing the impact of instructions that are not correctly implemented in a machine's
hardware, or in determining the extent and nature of operating system interfaces There is
also a program which produces a list of all locations deemed to be invariant After executing
the load module for a period of time, one can dump the contents of memory and see if
these "never-changing" memory locations have indeed changed, which would indicate a
problem in the load module Another program is used to compile, based upon programmer
specification of the data items desired, a list of all parameters that will be patched This list
includes detailed information about each variable, such as type, size, and location, to allow
it to be modified in the correct fashion

As more installations use HAL/S on an ever-growing number of target machines, the
amount and diversity of the support software is certain to grow. The capabilities described
here may and may not be present in a particular system, but like the HAL/S compiler itself,
these utilities are written in a high order language, and as machine-independently as possible
The functional simulation and post-compilation analysis tools have proved so valuable in the
Space Shuttle program that they may eventually become required components of any
HAL/S compiler system

ORZIGNAL
Qar U4G

Appendix C C-I

Appendix C: Answers to Exercises

Solutions

2 1A

a) valid, identifier

b) valid, reserved word

c) invalid

d) valid, literal

e) valid, identifier

) invalid

g) valid, identifier

h) valid, reserved word

i) invalid

j) valid, reserved word

k) invalid

1) valid, identifier

m) valid, literal

2 2A

a) A X+B Y+C Z

b) (A+B)f(C + D)/(E+F)

c) 2**(N-I)/(2**N-I)

d) X*-3-3 X**2+3 X-I

e) (X- lyc3

f) 10**X**Y

g) (10*X)**Y

h) ((V W)f(V V)) V

ci Gk40 c

C-2 Appendix C

2 2B

a) '*" is not the multiplication operator In HAL/S

Correct expression M X+B

b) Incorrect operator precedence

Correct expression 2 (X+I)

G) Multiplication is represented by-a blank betweefn two operands

Correct expression X**(-2 5 N)

d) Two operators may not occur in succession

Correct expression C**(-5)

e) Order of evaluation isnormally from left to right

Correct expression A C/(B D) or (A C)/(B D)

2 3A

DECLARE SCALAR INITIAL(1) XDELTA, YDELTA,

DECLARE TIMEDELTA SCALAR CONSTANT(I),

DECLARE DELAY_FACTOR SCALAR CONSTANT(5),

DECLARE SCALAR, TEMPI, TEMP2, TEMP3,

DECLARE COUNT INTEGER INITIAL(I),

DECLARE POINTA VECTOR,

DECLARE ORIGIN VECTOR CONSTANT(0,0,0),

DECLARE TRANSFORM MATRIX INITIAL(I,0,0,0,1,0,0,0,1),

2A

?I PROCRAM.
iH OECLARE SCALAR,
i A, B, C, ROOTI, ROaIn,

II REAM)] A, B, C;

E; 2 0.5

K Roo1 (-B + [B - 4 A C)) / 2 A;

N' ROM (-B - (a 4 A C) I / 2 A;
i HRITE(6) ROOT1, ROOT2;
M CLOSE ROOTS;

Appendix C C-3

2B

m BOUNCE-

H PROGRAM,

K DECLARE SCALAR.

m HEIGHT,

M TIME INITIAL(O),

H HEIGHT = 110,

E 1/2

K TINE = (2 HEIGHT / 32) /* BOUNCE 1 */

" HEIGHT = 35 HEIGHT,

E 1/2

h T1E = TIME + 2 (2 HEIGHT / 32) ; /* BOUNCE Z */

H HEIGHT = 35 HEIGHT,

E 1/2

K TINE = TIME + 2 (2 HEIGHT / 32) ; /4 BOUNCE 3!/

h t4ITE(6) TIME,

M IRITE(6) 4 TIME,

M CLOSE BOUNCE;

2C

" EXZCl

N PROGRAM,

N DECLARE 1A55_OFEARTH SCALAR CONSTANT(5 983E27),

K DECLARE PI SCAtAR CONSTANT(3 14159265),

S DECLARE RADIUS SCALAR INITIAL(4000 160934 4),
" DECLARE PERIOD SCALAR;
E 2 3 0.5
" PERIO (E4 PI RADIUS 1 1 (MASS-OFEARTH 6.67E-0))
" NRITE(6) PERIOD,
" CLOSE EX2C,

2D

M SOLUTION:

K PROGhAM,

h DECLARE SCALARp

h A, B, C, 0, E, F, X, Y,

h READ(S) A, B, C, D, E, F,
H X (E 0 - B F) / (A D - B C),
H (A F - E C) / (A 1 - B C),

M NRITE(6) X, Y;
M CLOSE SOLUTION,

2cIGN0

C-4 	 Appendi C

Solutions

3 1A

a) Integer, value is 1.

b) 	 Matrix (3 by 3), value is [3
236

c) 	 2-vector, value is [J6

3 1B

" 	 TRAiN Lu:
M PROGRAM1,

N OECLA E f MATRIX COHSTACTI9, 8, 7, 6, 5, 4, 3, 2, 1),

N WRITE(6) H TRANSPOSE(N),

M CLOSE TRAINUL;

3 IC

a) (l+COS (2 X))/2

b) ARCTAN(Y/X)

G) M (R ZDOT - Z R-DOT) SIN(PHI) - M R Z PHIDOT COS(PHI)

d) ARCCOS((MIR-M A/N)JSQRT(2 M E+M**2 A**2/N**2))

e) LOG(TAN(X/2+PI/4))

3.2A

a) 1, 7, 0

b)['4] [7] [2 zt--
c) 	 DECLARE VI VECTOR(6) INITIAL(0,1,2,3,4,5),

DECLARE V2 VECTOR(6) INITIAL(10,11,12,13,14,15),

DECLARE M22 MATRIX(2,2) INITIAL(5,6,7,8),
DECLARE M35 MATRIX(3,5) INITIAL(7,4,1,-2,-5,6,3,0,-3,-6,5,2,-I,-4,

-7),

Appendix C C-3

3 2B

This is an example of how over-specifying a program may lead to inefficiency Two
answers are given here, the first follows the statement of the problem literally, while
the second produces the same result in a different way

M COMP.OT"
M PROGRAM,

M DECLARE VECTOR,

i ORIGVEC INZTIAL(1, 2, 3],

M RESULT_X;

IM DECLARE ORIG_HAT MATRIX IlNTIAL(1, 2, 3, 5, 6, 7, 8, 9),

E
K RESULT X = OPICVEC . 0036 MAT ;
S 1 *l

M RESULTX = ORIG_VEC CRIG MAT ;

S

M RESULT.X = ORIGVEC . ORIGSMAT ;
S3 *3

E
M WRITE(6) RESULT X;

1 CLOSE COMIP.DOT;

M COMP DT
M PROGRAM,
1 DECLARE VECTOP,

M ORIG.VEC INITIAL(I, 2, 3),

IH RESULT.X,

M DECLARE ORIGMAT MATRIX INITIALCI, 2, 3, 4, 5, 6, 7, 6, 9);

E - -

H RESULTX = ORIG_VEt ORGHAT;

E
M WITE6) RESULTX;
M CLOSE DOT,COM1P

C 6 	 Appendix C

3 2C

22WRITE(6) V41 will output the vector 23

The first WRITE(6) M22 ViIi output the matrix [-]

WRITE(6) M33 will output the matrix 8 1L
111 12 13

The second WRITE(6) M22 will output the matrix [2 181

3 5A

1) ", -, (>, /'* results scalar

11) +, - <>, I, "' 	 results scalar
iii) -- <, 	 results scalar*c>, , **

Iv) -, <, 	 results integer,/, 	 results scalar

v) 	 +, -, * results vector,
< > result matrix,

result scalar

vi) < > result matrix

vii) < >, / results vector.

vill) < > result vector

ix) -F, -, < > results matrix

x) <>, , ** results matnx

3A

1 	ANGLES:
H 	 P OGRAH,

I hECLARE VECTOR,

Ii VI, V2i

11 REAOW) Vil,Vz,

11 WR4ITE(6) ARCCOS(VI - V) / CAVAL(V1) ASVAL(VZa));
M CLOSE ANGLES,

Appendix C C-?

3B

M TRANS

M FROGRAM;

II DECLARE SCALAR,
m ALPHA, Xl, X2, Yi, Y2,
SPI
M

CONSTAT(3.1415),
READ(S) XI, Yi,

M
m

ALPHA N 17 PI / 180,
XZ = (XI 540003 COS(ALPIA) + (YI - 118000) SINtALPRA),

M
H

Y2 = -CX1 - 54000) SIN(ALPHA) +
WPRITE(6) XZ, Y2;

(YI - 118000] COS(ALFHA);

M CLOSE TRANS;

3C

a) V4 = VECTORS4(MS(2,2), MS(3,3), M$(4,4), M$(5,5)),

b) M22 = MS(2 TO 3, 8 TO 9),

c) M34 = MS(5 TO 7, 7 TO 10),

d) VIO = M$(9,*),

C-8 Appendix C

41A

4 1B

a)

b)

c)

Solutions

Compound conditions like A < B < C' are not recogmzed by HAL/S

In HAL/S, two 'ELSE' statements may not follow one another Section 4 2 in
troduces a way to avoid this problem

The expression following the 'NOT' operator must be parenthesized

a)l

C3 A4

A5

b)

c)

d)

Impossible the ELSE clause of C2 branches into the ELSE clause of C3

Impossible the THEN clause of C2 loops around, which would require travers
ing a line upward

Append C C-9

41C

IF W < h THEN SQ = 0,
ELSE IF W > L THEN SQ = 0,

ELSE SQ = 1,
AREA = WL,
IF SQ = 0 THEN WRITE(6) 'NO SQUARE',
ELSE IF AREA < 4 THEN WRITE(6) 'SMALL SQUARE',

ELSE WRITE(6) 'LARGE SQUARE',

41D

a) Not satisfied 0 Not satisfied

b) Illegal g) (A> B) & (A< C)

c) Satisfied h) (Vi S) & ((C> = D)/(D = 4))

d) Satisfied

e) Illegal.

4 2A F
1 The original code was over 300 state

i I ments, while the new code is about
160 statements

A j This change can be made in a valid
HAL/S program group C is removed
entirely from the IF statement, which

L] now consists only of the section of
the flow chart lying within the dotted
rectangle

C-10 Appendix C

Note that this flowchart

Cl

A B

C

does represent a shorter program than the original, though it cannot be translated
into a valid HAL/S program, as this would require-branchingnto the-ELSE clause
of the condition, which is not legal in HALIS

4 2B

M SOLUTION-

II PROGRAM;

M DECLARE SCALAR,

M A, B, C, D, E, F, X, Y;

II REA(S) A, B, C, 0, E, F;

M IF (A D - B C) = 0 THEN

H WITE(6) 'O SOLUTIOh EXISTS',

M ELSE
00;

SX (E D -B F) /(A D - B C);
M Y = (A F - E C) / (A D - B C),
M LfITE(6) X, Y.
M END,

I CLOSE SOLUTIOk,

4 2C

IF 	Y < X THEN DO,

IF Y < X - I THEN Y = Y + 1,

ELSE Y = Y - 1,

END,

ELSE IF Y > X + I THEN X = X - 1,

ELSE X = X + 1,

Appendix C C-JI

4 2D

a)

b)

The fine from C4 to C represents a branch into the ELSE clause of C3, which is
illegal in HAL/S

The following flowchart removes the difficulty without making any change in
the order of execution of any statements

ELSE THEN ELSE THEN

T

IF 	Cl THEN DO,
IF C3 THEN D,
ELSE C,

END,
ELSE IF C2 THEN C4 THEN C,
ELSE A,

C-12 Appends C

c) If the flowchart had been structured, it would have been awkward even to draw

lines from both C3 and C4 to C, and the fact that there was an illegal construct

in the flowchart would have been obvious To illustrate

TES THEN

ELSE

4 2E There are several possible solutions, one of which is given here

CI

Appendix C C-13

HAL/S code to implement the revised flowchart would be

IF (CI AND (NOT C3)) OR (NOT
ELSE IF Ci THEN D,
ELSE IF - C2 THEN A,

CI AND C2 AND C4) THEN C,

4 3A

a) Relational expression

b) Boolean expression

c) Relational expression

d) Illegal

e) Illegal

f) Relational expression

g) Boolean expression

4 4A

DO CASE I + 1,
ELSE SCRAMBLE
SCRAMBLE = 4,
SCRAMBLE = 0,
SCRAMBLE = 5,
SCRAMBLE = 3,
SCRAMBLE = 1,
SCRAMBLE = 2,

END,

= 3,

P0 4

C-14 Appendix C

Solutions

5 1A

Since the loop control vanable is an integer, while the increment is the scalar value
1, on each iteration I will be added to 1, the resulting I I will be rounded to 1, and

the control variable will never change That is to say, the loop wilt never terminate,
so the question is unanswerable

5 1B

DECLARE V VECTOR(5),
DECLARE NEGPART INTEGER,
DO FOR NEGPART = 5 TO I

IF V$NEGPART < 0 THEN
END,

BY -1,

EXIT,

Note-thatlf no component of V is-negative, NEGPART will equal zero upon exit
from the loop

5 IC

N is equal to 14 on exit from the loop, because in DO FOR I = I TO N BY 2, N is
evaluated only once, upon entry to the loop, when its value is 9 The loop will there
fore be executed five times, leaving N equal to 14

5 ID

a) The code assigns the value 2 to all the elements of A

b)

DO FOR X = I TO 5,
DO FOR Y II TO

A$(X,Y) = 2,
END,

END,

5,

Appendx C C-15

5 2A

a) The program will write the values

2 INITIALVALUE

4 INITIALVALUE

8 INITIALVALUE

16 INITIALVALUE

b) DO FOR X = 1 TO 4,

N = 2 N,

WRITE(6) N,

END,

is one possibility,

DO FOR X = I TO 4,

WRITE(6) 2--N,

END,

is another, and clearlyfthere are many others

5 3A

DECLARE V VECTOR(S),

DECLARE NEG PART INTEGER,

DO FOR NEG PART = I TO 5 WHILE VSNEGPART > = 0,

END,

IF NEGPART 5 THEN NEG PART = 0,

54A

If VSI = 0, the code shown will not exit with NEGPART = 1, as it should This
occurs because the UNTIL clause will not be evaluated for the first time until 2 has
been assigned to NEG_PART in the DO FOR loop

I Z Pp ?

C-16 Appendx C

5A

For this solution, we take the original DELTA to be FINAL-INITIAL and assume
5

that INITIAL < FINAL

H 	 SIMPSON"
H PROGRAM,

H DECLARE SCALAR,

M INITIALVALUE, FIHAL-VALUE, OLD APPROX, NEIJAFPROX, POINT;

H DECLARE SCALAR,

H DELTA, EPSILON,

M OLD-APPROX, HEW APPROX - 0;

M READ(S) INITIAL.VALUE, FIHAL.VAUE, EPSILON,

It DELTA = (IrNAt.VALUE - INITIAL-VALUE) / 5;

HI DO UNTIL fNEW APPROX - OLD APPROX) < EPSILON,

H OLAPPROX-= HERAPPROX;

II HEiNAPPDX = SQRT(INITALVALUE) + SQRT(FINA.L_VALUE);

ii DO FOR POINT = INITIALVALUE + DELTA TO FINAL VALUE - (DELTA /) BY DELTA;'

Hi NEIJAPPROX NEW-APPROX + 2 SQRTtPOINTI.

II END,

M NEW APPROX n HEWAPPROX'DELTA / 2,

M DELTA = DELTA / 2,
M END,

M WRITEC(6 NERAPPROX;

Mt CLOSE SIMPSON;

SB

a) 	 This program, admitted an inefficient one, will prnt all prime numbers from 3
through 499

b) 	 A solution that does not change the computations performed is

M 	 BETTER:
M PROGRAM;

M DECLARE INTEGER,

M NUMBER, DIVIDER.

H DO FOR HUMBER = 3 To 499,

ii DO FOR DIVIDER = 2 TO NUMBER - 1,

M IF IOD(NUM R, DIVIDER) = 0 THEN

H EXIT,

H END,

M IF DIVIDER
M WRITE(6)
H EHD;

M CLOSE BETTER,

= HUMBER THEN
HUMBER;

Append:x C C-17

Solutions

61A

a) 	 Illegal X is set to 3, but a variable with the INITIAL attribute is not considered
to be computable at compile time, so the declaration of LISTONE is errone
ous

b) 	 Legal LISTONE is an array of 4 scalars, value (2, 2, 2, 2) LIST-TWO is an
array of 4 integers, values unknown

c) 	 Legal LIST THREE is an array of 18 scalars, value

d) 	 Legal LIST-FOUR is a 9 by 3 array of 27 scalars, value

2 2 29 2)
2.(i 2 9 , 21 .2 9 2t ? 9

e) 	 Illegal The ARRAY specification must precede the type specification

6 1B

a) M EXERCISE_2.
N 	 PROGRAM;
H DECLA1E m MATRPX(5, 5);

H DECLARE TIME APRAY(IOO) SCALAR "tItTAL(G1;

N DECLARE SCALAR INITIAL(D),

H THIN, TIAX, ITEAN, SUHIOFSQUARES, STANDEV;

H uECLARE INTEGER,

H 1, J, K,

I DO FOR I = 1 TO 100,

H DO FOR J = I TO5,

H DO FOR K = I TO S.

H H RANDOM;

S J,K

H END,

Hi END,

H TIHE = RUNTIHE,

S I

E * *-I.
M H= ;

H TIME = RUNTIME - TIME

S I I

MI END;

C NOWPROCESS THE HUNDRED-SAMPLES IN THE ARRAY ITIMEI

11 TAX. THEAN4, TIN = TIME

S 1

C-18 Appendix C

H o FOR I ZT 100,
m TrZAM = THEA TIME
S I

Hi IF TIME 5 T THEN
SI

nTtt=X=--IIME,
S I

H IF TIME < THIN THEN
s I

THIN = TIME

SI

n EKO.

fl TMflr m TrMEAN/ 100.

c

Q COMPUTE 5TANDARO DEVIATION

C

* 51I1 OLFSQUARES = 0.
* 0 FORI= I TO 100,
E z

H1 SWLOFISqUARES = SUtIOF_.qUARES * (TIME - THEA)

5

H ERD.
M STMADEV z SQRT(SUIor_SUAES 1 100,)

H WITE(6) MN THIN. KEAN ' = STANDARD =
M THIEA, MAX TMAX, DEVIATION STANl_EV.
H ICLOSE EXCRCTSE..2,

b)

m EXtPCISEg

I PROSqAM'

I DECLAqE H HAThIM(S. S)

" DECLAPE TIME SCALAR INETIAL(O).

"I DECLARE SCALAR ThITIALIC).

H THl1IN,TMA x. TMEAN!, SURF SQUARES. STAL DEV,

II DECLARE INTEGER,
M I J, K.
1 THEM, SUOF5UAPE5 = 0,

H THAX = -1. / LESS THAR ANY POSSIBLE TIME VALUE *

"I THIN = 1000, /* GREATER TRAN AF.T FEASIBLE TIME VALUE *

" O FOR I = I TO 100,

M O0 FOR J = 1 TO S,.

l DO FOR h I TO S.

SIM RANCON,

M Et'

H1 ENS,

M TIME PUNlTIME,

E w

m TIVE RUIITIHE - TIPE.
H1 WEAN = TnEAt . TIME.
E" 2

h SUNOFSQUARES SLIOF-SQUARES 4 (TIME)

M IF TIME > THA\ THEN

II MAY m TIrE.

m IF TIE < THIN THEN
H. ThIN = I[rE,

S THEMEN= THEM / 100l,

H STAR DEV A SORTIS4EI_OFSUARES " 1001 - THEAE!)M

L1 1PITE(6) MIN = TrIll. HEAR , IlIEAN. It. = TMA, STANTtRD DEVIATIOI . STAIDEV,

M CLOSE EXERCISE_Z.,

Appendix C C-19

6 IC M EXAMPLE_-
N PROGRAM,
M DECLARE GYROIHNFT ARRAY1II) INTEGER INITXALCO);
M DECLARE ATT_RATE ARRAYrtl) SCALAR;
't DECLARE SCALE ARPAY(31 CONSTANT(013, 06, 013),
M DECLARE BIAS SCALAR TNITIAL(57 296),
H DO FOR TEMFORARY I 0 TD 9 BY 3,
1 DO FOR TEMPORARY J = I TO 3,
K ATT,.RATE = GYRO NFUIT SCALE + BIAS,
S 1.J "4J J

H END,

11 END,

M CLOSE E>AHPLEt2;

6 ID l EXAMPLE_4A
it PROtRAf;
l ORCLARE A ARRAT(5 SCALAR;

N DECLARZ TEMP SCALAR;

"1 TEMP : A

S 5

Ml DO FOR TEMPORARY T 4 TO I BY -1,

M A =A.

S T+1 T

II END,

M A = TEhP;

S I

H CLOSE EXAMPLE-4A,

6 2A

a) T k) T

b) F 1) F

c) T m) F

d) T n) T

e) T o) F

f) F p) F

g) T q) T

h) T r) T

F s) T

j)T t) T

6 2B

A single arrayed statement takes the place of one or more loops and a statement to
perform the same operaton on each array element that the arrayed statement per
forms on the entire array If the programmer writes these loops, loop variables must
be declared, correct loop limits must be coded, and such loops must be nested if the
array is of two or more dimensions This means extra work for the programmer, and

~~QAGE tQs

C-20 Appendx C

more complicated and potentially incorrect or unreadable code If an arrayed state
ment is coded, the compiler does the bookkeeping, and may even be able to produce
more efficient code, since loop vanables will not need to be saved for later reference

6 3A

a)x ii[2U[=I

b)[] [j [1]

z IJ[1[2I1] []
d) A ,)] 9 921 19 9,1 ,9,)

63B

S = XS(3 1,3),

S = Y$(3,1 3),

S = ZS(7 3),

S A$21,

6 3C

M$(1,2 TO 4) = XS(2 3)

M$(1,5 TO 7) = X$(3 1*) from X

M$S(,8) = XS(3 2j),

MS(1,2 TO 4) = Y$(2,3 *),

M$(1,5 TO 7) = Y$(3,I 1' from Y

M$(1,8) = Y$(3,2 1),

M$(1,2 TO 4) = Z$(6),

MS(1,5 TO 7) = ZS(7 *),/ from Z

MS(,8) = ZS(8 1),

M$(1,2 TO 8) = A$(16 TO 22),

Appendix C C-21

63 IA

M PRIHES:

M PROGRAM,
H REPLACE LIMIT BY "1OO",

M DECLARE PRIME ARRAY(LI1IT) BOOLEAN INITIAL(TgUE);

11 DO FOR TEMIPORARY I = 2 TO LIMIT,

E
HI IF PRME THEN
S I-

M DO;

M DO FOR TEMPORARY J Z I TO LIMIT BY I,

E

H PRME = FALSE,

S J:

MI END,

M WRITE16) 1 ;

M END;

M END,

H CLOSE PRIMES;

6 4.A

DECLARE TEMP VECTOR(27),

TEMP = VECTORS27(X),

M$(1,2 TO 8) = TEMP$(16 TO 22),

TEMP = VECTORS27(Y),

M$(1,2 TO 8) = TEMPS(16 TO 22),

TEMP = VECTORS27(Z),

M$(l,2 TO 8) = TEMP$(16 TO 22),

The assignment from A is already quite simple

OPkoov,
OpGVAZ

OF b Q PA3

C-22 Appendm C

641B

a) ARRAY(2,3) INTEGER 1 2 3)

b) ARRAY(12)INTEGER (1 2 3 1 2 3 1 2 3 1 2 3)

c) ARRAY(3) SCALAR (1 1 1)

d) ARRA7Y(2;6) INTEGER (1 2 3 1 2 3)

MATRIX(3,3) I I]
1 1f)

3VECTOR(6)

6A

II DECLAME IPfTEGER,

N X, TEP, SH.ILLEST,

21 DECLAPE VALUE LIST ARPAY(25) INTEGER IUITIAL(76. 87, 65, 54, 43, 32, 21, 12, 23, 34, 45. 56, 67,

1i 7$. M1 3234.ti, 45&. 567, 6M769 00t. 987. 876 765),

m O FO' X 1 TOt3

1 5-LLEST 'X,

m D0 FCR TEtPCR-RY J = X I1 TO 25,

m IF VALUELISZ < VALUE LIST THEN

3 J SMALLEST

H SIALLEST = J,
m EIM.
H1 IF SMALLEST -r X THEU
m 00,

=

H TEP VALULST

S SMALLESY

H VALUELIST = VALUE LIST
S SALLEST X

K VALUE LIST 2EIMP.
S

itit;END,EN'D.

$ kITE6) 'lEPIM = VALUELIST

M CLOSE rEOIAN,

Appendix C C-23

6B

DECLARE TIMINGDATA ARRAY(4,26) INTEGER INITIAL(O),
DECLARE I INTEGER,

DO FOR I = I TO 25,
TIMING_DATA$(1 TO 3,1) = TIMEVALUES$(*,I),
TIMINGDATAS(4,I) = SUM(TIM_VALUESS(,I)),

END,
DO FOR I = I TO 3,

TIMINGDATAS(I,26) SUM(TIMVALUES$(I,*)),
END,

-WoG

C-24 Appendix C

Solutions

71A

2
4

7 IB

line 4 the outer block may not call procedure PROC2, which is nested with
PROCI

line 5 the variable Y is known only within the scope of procedure PROC I

line 8 Procedure PROCI"cannot call itself

7 IC

Block May be invoked from block(s)

2 1,3,4,5,6

3 1,2

4 3,5,6

5 3,4

6 5

72A

Move the code block defining ALMOST-EQUAL from-the end of the program to a
point before ALMOST-EQUAL is invoked, i e, immediately before or after the
block MASS

7 2B

a 	 The function RANDOM returns a scalar X with umform distribution in the range
04 X <1 The function ROLL uses the implicit scalar-to-integer conversion sup
plied by HAL/S, with implied rounding Its results may be described by a table

a random value in the range yields an amount of

O x <I I

1 X <3 2

3<x <5 3

5< X <7 4

7< x <9 5

9< X <1 6

Thus, it is clear that the probabilities that ROLL wilt return I and 6 are 1/10,
while the probabilities of 2,3,4, and 5 are 1/5

Appendix C C-25

b
Ml XF_>ROLL
m pROGRAN'

" DECLARE COUNT INTEGER INITIALCO)B

" DECLARE I INTEGER,

" ROLL*

K FUNCTION INTEGER.

m RETURN TRUNCATE(4 RAMON + 1),

M CLOSE,

= m 00 FOR I 1 TO 5;
N DO UNTIL ROLL + ROLL = 7,
m COUNT = COUNT + 1,
HI END;
I END,
ti WRITE(6) COUNT,
N CLOSE FIX ROLL,

7 2C

11 FIDGCDS;
i
H

PROGRAM;
DECLARE ARRAYCS) INTEGER,

ti X, YS
"I DECLARE I INTEGER;
" GCD
" FUNCTION(tI, 12) INTEGER.
i DECLARE INTEGER,

K 111,121 Y, Y, R;

Nl
X 12;
Yr=!1;

M DD WHIE X -=0;
N R REHA!NDER(Y. X);
N Y X;
H R;
H END;
I RETURN ABS(Y);
" CLOSE GCo,
H
m1

READ(S) [X), [Y],
00 FOR : - I TO 5;

M IF GCD(X Y - TEN
S IX

mI WRITEt6) Y * GCO(X , 3;
S II

" OEND;
N CLOSE FIHD_.GCOS.

OW 'V t 1
On

C-26 Appendix C

7 3A

M FIXROLL-
M PROGRAM,
M 1DECLARE COUNT INTEGER INITIAL(O);

MI DECLARE INTEGER,

II 1, ROLLI, POLLS,

KI ROLL

M PROCEDURE ASSIGlCA);

M DECLARE A INTEGER;

M A = TRUNCATE(6 RANDOM + 1);

H CLOSE ROLL;

M DO FO I1 TO 5;

N1 00 UNTIL ROLL + ROLL = 7;

M COUNT = COUNT + 1;

M CALL ROLL ASSIGrNROLL1);

H CALL ROLL ASSIGNUROLLZ).

H END,

M END;

K WRITE(6) COUNT;

K CLOSE FIX-ROLL;

The solution in which ROLL is a function is clearly preferable, because the code to
invoke ROLL is much simpler in that case

In general, when a block is to produce as output a single value of any HALlS type,
the FUNCTION form will tend to produce more comprehensible code than the
PROCEDURE form This is because the calling sequence for a function mirrors
closely the mathematical notation for a function, and because often (as in thus ex
ample) use of the functional form avoids the introduction of "dummy" vanables
with no intrinsic meaning to the algonthm being implemented In the procedure
form, these dummy variables must be used as ASSIGN parameters

Appendix C C-27

7A

N DROP!

h PROGRAM;

N DECLARE SCALR.

N DROP TIME, BGUNCE TIME;

N DECLARE SCALAR INITIAL(O),

M1 TIME, HORIZDIST,

"1 DECLARE HEIGHT SCALAR INITIAL(IO);

"1 DECLARE HORIZSPEED CONSTANT(4);

" DECLARE G CO',STANT(321;

" DECLARE I INTESER,

" REPLACE NUMBEROFElUNCES BY "10";

" TIME TO DROP

11 FUNCTIONHI,

K DECLARE H SCALAR,

H RETURN SQRT(2 H / G;

K CLOSE TItlETODROP,
M HORIZHOTION

h PROCEDURE(T) ASSIGN(H),

K DECLARE SCALAR,
N T, H.

" H = H + HORIZ-SPEED T;

H CLOSE HORIZIIOTION;

11 BOUNCE

K PROCEDURE ASSIGN(H, T);

M DECLARE SCALAR,
M H, T;

H H = 75 H;

M T = SRT(2H / Z);
H CLOSE BUaICE;

11 DO FOR I 1I TO NUMBEROFBOUNCES;

1 DROPTIKE TIME-TODROPIHEIGHT);

H CALL HORIZIOTION(OROPTIME) ASSIGNHORIZ_DIST),

H TIME = TIME + DROP TIMEt

H HRITE(63' BOUNCE', 1, 'TIME'. TIME. 'HORIZOHTAL DISPLACEMENT', 1ORIZ..DIST;

H CALL BOUNCE ASSIGN(HEIGHT, BOUNCETIME),

M CALL HORIZ_MOTIONCEOUNCE_TIHEI ASSIGH(HORIZDIST),

H TIME = TIME + BOUNCE TINE;

H END,
H CLOSE DROP'

ORIGIN
jo wtO?4P

Al -2V '

C-28 Appendi C

7B

M SIMPSON:

K PROGRAM;

h DECLARE SCALAR,

' IHITIALVALJE, FINAL.VALUE, OLD APPRDX, HEWAPPROX, POINT;

ii DECLARE SCALAR,

M DELTA, EPSILON, A, B, C, B;

M POLY

i FUNCTIONtX) SCALAR;
K DECLARE X SCALAR,
E 3 2
M RETURN A X * B X 4 C X 4 D,
M CLOSE POLY;
M OLD APPROX, NEWAPPROX = 0.
H READ(S) A, B, C, D. INITtAL VALUE, FIHAL_VALUE, EPSILON;
H DELTA = (FIHNAtVALUE - INITIAL VALUE) / 5;
H DO UNTIL (HEWAPPROX - OLD_APPROX) < EPSILON;

K OLD APPROX = HEIAPFROX;
M HEW.AFFROX = PCLY(INITIAL.VALUE + POLYIFINAL VALUE],
M DO FOR POINT INITIAL.VALUE + DELTA TO FINALVALUE - (DELTA / 2) BY DELTA;
M NEWAPPROX NEWAPPROX + 2 POLY(FOhT),
2 END,
H EW_APPROX = HEWAFPROX DELTA / 2;
M DELTA = DELTA / 2,
M END,
II WRITE(&) NEW APPROX)
1 CLOSE SIMPSON;

Appendix C C-29

7C

M DROP
M PROGRAM;

I DECLARE SCALAR,

Mi DROP_TIME, BOUNCETIME;

M DECLARE SCALAR INITIAL(O),

M TIME, HORIZDIST;

K1 DECLARE HEIGHT SCALAR IHITIAL(11O);

M DECLARE HORIZ_'PE8O CONSTANT(q.,
M DECLARE G CONSTANT(32),

M DECLARE I INTEGER,
M REPLACE NUMEhOF BOUNCES BY "10";
14 TIrME T.DROP
H FUnCTIORIH);

H DECLARE H SCALAR;

M RET SQRT(2 H / G);
 NJR

H CLOSE TIME_TODROP;

H BOUNCE

M PROCEDURE ASSIGH(H, T),

H DECLARE SCALAR,

H H, T;

ii H w .75 H.

H T r SRT(H / G),

H CLOSE BOUNCE;

11 DO FOR I = 2 TO NUIIBER_OF_BOUNCES - 1.

N OROP_TIIIE TIME_ToOROPHEIGHT);

M HORIZO!ST HORI&DIST 4 HORTZSPEEQ DROP._TIKE;
M TIHE z TIME 0RQ0PTIME,
M kTE(6 'SOUIICV" I, TIME'. TIME, 'HORIZONTAL DISPLACEMENT', HORIZODIST,

H CALL BOUNCE ASSIGHHEIGHT, BOU CETINE)I
X HORIZ DIST z HORTZ_VIST + HDRIZSP4OE OOUNCETIKE,
K TIME TIME + BOUNICE TItE,
K END,

11 DRCP TIHE = TIMETODROP(HEIGXT);

H HORI&-DIST = HORIZDIST + HORIZ&SPEED DROPTIME,
K TIMtE = TIME + oROP-TIHE,
N WRITE(6) 'BOUNCE', I, 'TIME', TIME, 'HORIZONTAL DISPLACEMENT', HORIZ_O.1T;

N CLOSE DROP,

o 4 0

http:HORIZ_O.1T

C-30 Appendix C

Solutions

8IA

There are several advantages to naming I/O channels

1) 	If several channels are in use, giving them descriptive names makes it clearer
what any particular I/O statement is doing

2) 	 References-to REPLACE macros are collected in the cross-reference table, allow
ing all I/O statements to be found quickly and easily

3) 	 If itbecomes necessary to reassign a channel, the channel number need only be
changed once, in the REPLACE statement, and all IO statements, referencing
that channel will automatically be changed

8 1B

The expressions in the list are evaluated-one by-one, and data items c-nxerted to
character string standard external format These strings are then assembled into lines
and transmitted in an implementation dependent fashion to the output device asso
ciated with the channel number specified in the WRITE statement

Any legal HAL/S expression may appear in a WRITE statement There are no restric
tions whatsoever on output

8 IC

a) 	 I and 5

b) 	 1,3, 4, and 5

82A

a) 	 First, the three matnces in MATARRI will be pnnted, then the three matrices
in MATARR2

b) 	 The easiest way to do this is with loops

DO FOR TEMPORARY I= 1 TO 3,

DO FOR TEMPORARY J = 1 TO 3,

WRITE(6) MATARRIS(I 1,t),TAB(20),MATARR2S(I J,-),
END,
WRITE(6) SKIP(2),

END,

It could also be done with a single WRITE statement

WRITE(6) MAT ARRI$(I ,*),TAB(20),MAT ARR2S(1 l,),SKIP(l),
COLUMN(I),MATARR I$(I 2,*),TAB(20),MATARR2$(l 2,*),SKIP(I),
COLUMN(1),MATARRIS(I 3,4),TAB(20),MATARR2$(1 3,*),SKIP(3),
COLUMN(l),MATARRI$(2 1,),TAB(20),MATARR2S(2 I,.),SKIP(1),
COLUMN(I),MATARRI$(2 2,*),TAB(20),MATARR2S(2 2,*),SKIP(1),
COLUMN(I),MAT ARRI$(2 3,-),TAB(20),MAT ARR2S(2 3,),SKIP(3),
COLUMN(1),MATARRI$(3 1,*),TAB(20),MAT ARR2S(3 I,),SKIP(1),

Appendt= C C-3I

COLUMN(l),MATARRI$(3
COLUMN(I),MATARRI$(3

2,*),TAB(20),MATARR2S(3
3,-),TAB(20),MATARR2S(3

2,*),SKIP(l),
3,-),

8 2B

1) b

2) a,c

3) d

4) c (paged files only)

5) a,e

6) none of a-e, ovemdes the default SKIP(l)

7) c

8 3A

a)

b)

c)

INTS

INTS

INTS

=

=

=

(8,7,7),

(0,1,1),

(2,1,3),

SCALS

SCALS

SCALS

=

=

=

(-1,225,4)

(7 2,0,0)

(2 49,0,2 51)

8 3B

Change the READ statement to

READ(S) COLUMN(8),INTS,SKIP(1),COLUMN(8),SCALS,

8 4A

All are legal charactgr subscnpts Only a, b, c, and e are legal vector subscripts, all
the others have partition sizes not computable at compile time

8 4B

The output will be similar to this

ABC ABCABC
123AB BC456
1223ABC456
ABCABC ABC

8.4C

All the expressions listed are true

85A

Only character stnngs may be read using the READALL statement

-QbA,O&

C-32 Appendix C

8 5B

All characters on the input file are retrieved by the READALL statement, no matter
what they are Character strings to be input using the READ statement must be sur
rounded by single quotes, which are not placed into the target variable Further
more, single quotes represent themselves in READALL input, while they must be
represented by a pair of quotes in succession in READ input

SA

M REVERSE:

M PROGRA;

M DECLARE ARPAY[S) CHARACTER(5),

ii CHAR ARR1, CHAR ARR2,

i DECLARE X INTEGER;

II REV:

h FUNCTION(C) CHARACTER(S);

K DECLARE C CHARACTER(*)-

K DECLARE CHAPACTER(8),

H CTEHP, CHAR-REV,

M DECLARE INTEGER,

II "r L,

EII

M CHARREVi CTEHP = C,

E I
M IF CTE1P THEN

H RETURN';

E

M L = LEHGTH(CTErMP),

t DO FOR I = I TO L,

E I I

M CHAR-REV "CTEMP '
 S I L+1I

M END;
E
M RETURN CHAR-REV,
M CLOSE REV,
E
K READ(5) [CHAR ARI, [CHARARRal;

S DO FOR X = I TO 5.
E ,

K CHAR_ARRL = TRIH(CHARARRI " I;
Sx X

E I,
M
S

CHARARRZ
X

TRDIf CHARARR2)

H IflITE(S) COLUMMNS), REVICHARARR1),COLUMIJN S), 1Mt(CHAR-ARR2 11
5 X; X

II END,

MII CLOSE REVERSE,

Append C C-33

8B

M DECOOENAMES:

M PROGRAM,

M DECLARE NAMIES ARRAYV50, 2) CHARACTER1S),

M DECLARE INLINE CHARACTER(80);

11 DECLARE I INTEGER;
m REPLACE NO OF NAMES BY "50";

E

K INLINE ',

M 00 FOR i = 1 T0 O OF HMES;

M CALL GET.NAHIEtI),

E

N IF NAMES '- THEN

S

E
WRITE(6 NAMES II II NAMES

5 1,2

M END,
M GETYNAME"

M PROCEOURE(N),

N DECLARE INTEGER,

MH K;

E I

M IF INLINE '' THEN

H CALL GET LINE,

E I

ii K = INEX(INLINE, 'f',

M IF K = 0 TE

E

M CALL FIRST.AHL LASTEINLINE, N),

11 ELSE

NDO,

E
M CALL FIRSTJNLASTtILINE N J],
S I TO K-i

i INLINE = TRIMUINLINE).
S KI TO;

M END"

M FIRST ANDLAST

K PROCEDURE(C, H),

M DECLARE C CXARACTERC),

I N INTEGER,

NI INTEGER,

M I = INDEXCC, 'I,E I
H NAMES C

5 14,1. 1TO -1

H NAMES = C
5 N, I+1 TO 4

ri CLOSE 5IRST_AND_LAST;
H GET LINE:
M PROCEDURE,

E

H READALLCS) INLIHE,

M INLIRE = TRIMCINLINE),
M CLOSE GET LINE,
11 CLOSE SETNA1E,
M CLOSE DECODE_NAHES.

ORIGIAL PAGE IS

02loou JAjj

C-34 Appendnv C

8c

1 NBERWJTO._EXGLISH
H' P2RMI.

H DECLARE INTEGER,

H DECLARE CHAPACIER1301,

H 6EFT.PART, R!GHTPART,

m DECLARE TENS ARRAY(9) CHARACTER7) INxTIALI TEW', 'T. ETY, 'THIRTY'. 'FORTY', FIFTY , 'SIXTY-,

f SEVINTY', EIGHTY'. 'HI ETT').

II DECLARE TEENS A:2AYC9) CHAqACTER($9 III1TIALt'EEVEH *,'"WELVE, 'THIRTEEN'- 'FOURTEII'. 'FIFTEEN

i1 , SYTEEN , 'SEVENTEEN' NINETEEN 3.2 'EICHTEEII'.
tt DECLARE LZ41YS ARRAYC9I Ck{ARACTER(S) IWITIALE'tCRE', TWG * 'THREE', FOUP', FIVE', 'SIX'. 'SEVEN
* , 'EICHT , 'NIHE),
* READ(5) H,
* IF N vO THEN

t DO,

H ='

E ~LEFT_PART
I I

V'ZEROm RIGHT_PART
1 END,

i ELSE

n DO,
iiH DIMII. 100).Z

ii T z DIV(REMA DER(H, 100). 10),
El U PEHAIAhDERtN, 10),
h IF H > 0 THEN

EI
II LEFT.PART U UNITS I * $U'DRED
S H

I ELSE

E
m LEFT P'RT
H IF U z O THEN
E I
K RIGHTPART = TENS
5 T

H ELSE
11 00.
m IF T 1T HEN
EI
K RIGHTPART m TENS II -" II IDJTS
S T U

=
H ELE IF T I THEN

E

RIGH PART = TEENS
S U

tt ELSE
E

ES RZSHTPART = tRAITS
s U

m EN
E EEC,

K MITEI6) LEFTPART 11 RIGHT-PART,
KIt CLOSE,

.4ppendx C C-35

Solutions

9 2A

STRUCTURE X
I Al,

2 Cl VECTOR,
2 DI MATRIX,

I BI,
2 El VECTOR,
2 F1 MATRIX,

STRUCTURE Y
I A2 SCALAR,
I B2,

2 D2 ARRAY(5)
2 E2 ARRAY(5)

I C2 SCALAR,

VECTOR,
VECTOR,

9 2B

a) TESTDATA

L

MZL \ N JK

A\ / I \

V1 V2 B V1 V1 V2 B V1

b) TEST DATA LMA
TESTDATA LM B V1
TESTDATAL M B.V2
TESTDATA L N A B
TESTDATA L N A VI
TEST DATA LNC
TESTDATA I J A
TESTDATA.I JB VI
TESTDATA I J B V2
TESTDATA I K A B
TEST DATAJKAV1
TESTDATA I K C

OrINA.I

C-36 Appenda C

r) STRUCTURE DATA

I L,

2 M,

3 A INTEGER,
3 B,

4 VI VECTOR,

4 V2 VECTOR,

2 N,
3 A,

4 B INTEGER,

4 VI VECTOR,

3 C SCALAR,
1 1,

2 3,

3 A INTEGER,

3 B,

4 VI VECTOR,
4 V2 VECTOR,

2 K,

3 A,

4 B INTEGER,

4 Vi VECTOR,

3 C SCALAR,

d) All of the assignments'shown are legal

9.2C

STRUCTURE MINOR

I V VECTOR,

I T SCALAR,

STRUCTURE MAJOR

I XI MINOR-STRUCTURE,

I X2 MINOR-STRUCTURE,

I X3 MINOR-STRUCTURE,

I X4 MINOR-STRUCTURE,

I X5 MINOR-STRUCTURE,

DECLARE DATA MAJOR-STRUCTURE,

READ(5) DATA,

CALL PROCESS(DATA),

The procedure PROCESS must be modified to accept a MAJOR-structure as input
instead of the ARRAY(2) it originally took

Appendix C C-37

9 3A

STRUCTURE MINOR
1 V VECTOR,
I T SCALAR,

DECLARE DATA MINOR-STRUCTURE(5),

READ(S) DATA,
CALL PROCESS(DATA),

Now PROCESS must be changed to accept a 5-copy MINOR-structure
ment The data is stilt read in the same order as before

as its argu

933B

a) A$(25,) or A$25 type AI-STRUCTURE

b) A BS(*,3) type ARRAY(100) INTEGER

c) A C$(10 TO 20,) type ARRAY(l1) SCALAR

d) A D$(75 TO 85,) type ARRAY(1 1) VECTOR(6)

e) A DS(l,I) type SCALAR

93C

N
M
M
H
N
1
M
M
E
N
"
M

MEAN:
PROGRAM,

STRUCTURE PERSON:
I SS INTEGER DOUBLE,
1.SALARY SCALAR,
I JO3.CODE INTEGER,
I PHAME CHIARACTEtPI2);

DECLARE COMPANY PERSON-STRUCTURE(1001,

READ(5) {COMPANY),
WRITEC6I SUtI(lCOPAY SALARYI) / 100;

CLOSE BEAN;

9 4A

a) No X E F has the RIGID attnbute, Y does not.

b) Yes

c) Yes.

d) Yes

e) Yes

01? QUQVY

C-38 ApPen d a C

9 4B

a) 	 The 20th copy of A type A-STRUCTURE

b) 	 The 10th and 1 th copies of A type A-STRUCTURE(2)

c) 	 C from the first copy of A type INTEGER

d) 	 D from the 4th-6th copies of A type ARRAY(3) VECTOR(6)

e) 	 The 4th:6th components of D
from all copies of A type ARRAY(20) VECTOR(3)

9A

Structures allow the programmer to organize data of mixed types into one logical
unit that may be input, output, assigned, and passed as a parameter When a struc
ture js passed as a parameter, overhead is saved, as all the components of the struc
ture became available to the called procedure or function without being passedrm
dividually as separate parameters

The use of structures also allows the transfer of an aggregate of assorted data in a
single FILE I/O statement In I/O contexts, multiple-copy structures are particularly
convenient for reading or writing large blocks for the sake of efficiency

Appendx C C-39

9B

K BEST ONE

I, PROGRAM,

M STRUCTURE ITEM-DATA
h 1 VEC VECTOR,

M I TIHETAG SCALAR,

1l STPI tTURE UNIT DATA

HI 1 ACCEL ITEtfDATA-STRUCTIJPE,
KI I VEL ITEM IATA-STRUCTUP,

K 1 PITCH ITEtIDATA-STPUCTLPE

M STRUCTUPE BEST

M I SEST,_)CCEL ITEIIDATA-STRUCTURE.
M I BESTVEL ITEtIDATA-STRUCTURE,

M I BESTPITCK ITZM DATA-SYRUCTURE

1 DECLAPE BEST DATA BEST-STRLCTUPE,

H DECLARE SYSTOE DATA UNIT-DATA-STRUCTUl3),

M MIDDLE

M FLINCTION(DFU ITENOAA-STRUCTURE,

M DECLARE OFUI 5M DATA-STAUCTUPE[3), /m DATA FROM UNIT *,

K IF OFU TItETAG MtIDVL(OFU TIYETAG • DFU TIMETAG , DFU TIMETAG THEN

S 1. 2, 3,

H RETURN DFU
S 1,

M IF DFU TIfETAS HnVAL(OFU TIMETAG * DFU TIMETAG , BFU TIMETAG THENT

5 1, 2, 3,

11 RETURN DFU

E ,

M RETURN DFU
S 3

M CLOSE MIDDLE,

E +

H REAU)S ($YSTEM_DATA},

E + +

M BESUDATA BEST,-CCEL = "IIOLE((SYSTE"_DATA ACCEL0 3,

S " -

I BEST_DATA BEST_VL = MIUDLE {SYSTEtIDATA VELt 3.
S ,

E+4
H BEST-DATA BEST-PITCH IhDDLE((SYSTEH-DATA PITCH) 3,

M CLDSE BEST.CNE,

t 0~tcyi

C-40 Appendix C

Solutions

10 IA

Control falls through to the statement following the ON ERROR statement, unless
the ON ERROR statement has

1) 	 caused a GO TO or RETURN statement to be executed, or

2) 	 specified-SYSTEM or IGNORE, in which case either control returns to the pro
gram at the point where execution was interrupted, or the program terminates,
depending on the particular error

10 	lB

If the error should occur after control has left the loop, an unexpected transfer of
control into the loop will occur, potentially causing disastrous results since loop vari
ables may have unusual values, and TEMPORARY variables may even have been re
defined since leaving the loop

The compiler normally enforces a ban on branching into DO END groups In this
case where the compiler is unable to do so, the programmer should follow the same
course

10 	 IC

1) 	 SYSTEM If no ON ERROR statement is active for the current error, or if the
active one is ON ERROR SYSTEM, the standard action, if any, is taken and an
error message is sent

2) 	 IGNORE If an ON ERROR IGNORE statement is in effect for the error in
question, the standard fix-up is taken and no error message is sent

3) 	 If an ON ERROR statement defining a user action is in effect for the specified
error, then the user code receives control without possibility of returning to the
point where the error occurred No error message is sent

10 	ID

Error Specification Precedence

ERRORS(m n) 	 1 first

ERROR$(m) 2

or

ERROR$(m) 	 2

ERROR 	 3 last

Appendix C C-41

10 2A

An error handler may be deactivated

l) when flow of control leaves the block containing the handler,

2) when it is superseded by another error handler, and

3) wheni an OFF ERROR statement of the same form is executed

10 2B

a) 	 All three error handlers are still active both OFF ERROR statements were ig
nored

b) 	 ON ERRORS(1 1) IGNORE, and ON ERROR$(2) IGNORE, are still active
The first OFF error statement cancelled the first ON ERROR statement, and the
second had no effect

103A

The SEND ERROR statement is used

1) to simulate the occurrence of system-defined errors for testing, and

2) to allow the user to define errors and write error handlers for them

10 3B

When an applicable error handler is found in the local block, higher level blocks need
not be searched, as handlers in the calling blocks are ovemdden by the local handler

10A

a) No message

b) Message

c) No message

d) No message

e) Message

f) No message

g) No message

h) Message

i) No message

j) Message

k) Message

1) No message

0$_P AC0
OJ~Q QQtr

C-42 Appendix C

Solutions

I l.IA

I If several programmers are working on a single large project, it will probably be
convenient to assign them separately-compilable sections of the program com
plex

2 In a multiprogramming environment where several PROGRAMs are to run con
currently, there is no way to compile them all in a single compilation step, so a
program complex must be created

3 If the overall structure of a program is fixed, but small sections are under-going
revision, separating those sections out as COMSUBs may allow those parts to be
revised and recompiled without requiring recompilation of the entire program

11 	 1B

Just as if the COMSUB were an internal procedure, the error environment of the
caller is searched for an applicable error handler, then the environment of the caller's
caller, and so on

it 1C

a) 	 Compiling a COMPOOL reserves space for the variables declared therein Also,
in most implementations, a template is produced when the COMPOOL is com
piled

b) 	 The COMPOOL template, when included in the compilation of another compila
tion unit, makes the variables declared in the COMPOOL known to that compila
tion unit, without causing any space to be reserved for those variables

11 2A

The SCALARs A and B can only be referenced inside the program P but outside the
FUNCTION block F Inside of F, scoping rules will cause A and B to refer to the
local INTEGER variables

ii 2B

FILTER does not require any of the data in GNCPOOL, so there is no need to in
clude the template for GNC_POOL in the compilation of FILTER

11 2C

If several compool templates are included in a single compilation, names of variables
must be unique, because there is only one seeping level outside the main block of a
compilation Hence, it is in general desirable to give compool variables unique
names, so that it is possible to refer to any compool from any other compilation
unit if necessary

Appendx C C-43

11 2D

a) A template for FILTER is needed in order to compile NAVIGATION,
this order of compilation, it would need to be hand coded

and with

b) In this case, CONTROL needs the template for FILTER

c) No template need be hand coded, as all will be available when they are needed

d) This order of compilation is particularly inconvenient, all templates will need to
be hand coded.

11 3A

a) It is possible that the savings account for one ID might be updated, then the pro
cedure interrupt and another account updated When control returned to the
first task, the updating of the checking account would then be done incorrectly,
transferring funds from one customer to another

b) If SAVINGS and CHECKING are declared with the LOCK attribute, and the
transfer is enclosed in an UPDATE block, there is no possibility of an incorrect
transfer of funds as described above

11 3B

a) In this case, any interruption of an execution of AWARDINTEREST by an
other process that calls AWARDINTEREST may cause either an error in up
dating the account, or in logging the interest

b) Make the procedure AWARDINTEREST EXCLUSIVE Then there is no possi
bility that two processes will attempt to run AWARD_INTEREST concurrently.

Gei
op

Ao'

C-44 Appendax C

Solutions

12 IA

0 80 200 280 400 480 600 680 800 880 1600 msec

B FF
80 160 480 560 740 880

0 160 320 680

12 IBA F-- F-7 F-
0 80 280 360 560 640 840 920

F71 n$ P
B

80 160 493 653 986

C M- F-7

160 240 740 820

12 IC

SCHEDULE X PRIORITY(1), REPEAT UNTIL 3 5,

SCHEDULE Y IN 2 5 PRIORITY(2), REPEAT EVERY I UNTIL 6,

122A

The AT clause allows a process to be scheduled at a definite, predetermined time
The ON clause, on the other hand, allows a process to be scheduled depending on
occurrences of an unpredictable nature Either one can be appropriate, depending
on the desired effect

12 2B

Q is active only at B

12 2C

SIGNAL X, will cause X to become TRUE just long enough for all active event ex
pressions referencing X to be evaluated In particular, no code testing X as a
BOOLEAN variable will ever find it TRUE as a result of SIGNAL X, The sequence
SET X, RESET X, will also cause X to become TRUE, then return to FALSE, but if
in the meantime the process executing the SET and RESET statements relinquishes
control, X will remain SET dunng execution of some HAL/S code, and may be
found to be TRUE if tested

Appendix C C-45

12 2D

SCHEDULE X PRIORITY(]), REPEAT UNTIL TRAN2,

SCHEDULE Y ON TRANI PRIORITY(2), REPEAT EVERY I UNTIL 6,

12 2E

a) Unlatched, there is no need to specify LATCHED, so take the default

b) Latched, it is not possible to signal several events simultaneously

c) Latched, an unlatched event will always test FALSE

d) Latched, RESET is illegal for an unlatched event

e) Unlatched, presumably the loop is to execute once for each event transition,
which would probably not happen if the event were SET and remained on

12 2F

SCHEDULE T ON MASTER PRIO(999) REPEAT,

T TASK,
RESET COMPL,

WAIT FOR iMASTER,

SET COMPL,
WAIT FOR MASTER,

CLOSE T,

12 3A
M P=
M PROGRAM,

H DECLARE DEHOM 1NTEGER IHITIAL(1O);

M SCHEDULE T PRICRITY(9"f), REPEAT UNTIL 1;

11 T

h TASK,

H WAIT UNTIL 1 / DEMN,

Mi WRITE(6) RUNTIME;

M DENOM = nENGHo- 2,

n IF BENOM < I THEN

M DENOM = 1;

M CLOSE T,

Mi CLOSE P.

12 3B

Unless something causes P to exit from the DO WHILE TRUE loop, CANCEL P will
have no effect

If X is necessary to keep P as itis,itcan be stopped with

TERMINATE P,

However,it is safer simply to remove the DO WHILE TRUE,and END,statements

from P,and derive the same effect from writing

kIQ

i

C-46 Appendx C

12A

H FSW

PROGRAM,
B DECLARE VECTOR,
H PO5ITION. ATTITUDE, VELOCITY,

H DECLARE SCALAR,

H PITCHCCMAIi4D, ROLLCCWW.

H sDECLARE OESTINATION! VECTOR.

H DECLAREARRAYE4t,

H SEIISEO.ATTTUDE VECTOR.

B SENSED.VELCCITY VECTOR.
B II4PtHt PROC

B PPOCEDURE.

h CLOSE INPUTPROC,

H ELEVO _CMOS

H PROCEDURE.

I CLOSE ELEVCLCIOS,

H TELEMETRY

H PROCEDURE.

H CLOSE TELEMETRY,

" RUDDER CrDS

m PROCEDUPE,

B CLOSE RUDOERCUs,
n GUIDANCE
h PROCEDUE,
" CLOSE GUIDANCE,

"i FC.6AIb5
"i PROCEDURE,
" CLOSE FC.OAIHS,
H, NAVIGATION
H PRQCEUUPE,
M CLOSE NAVIGATION,

II DISPLAY UFOT
H PROCEDURE,
H CLOSE DISPLAY.UPD.

M SCHEDULE TI PRIORITY(41,

M SCHEOULE TZ MIRIT(3),

/* SCALE AHD FORMAT DATA FROM SENSORS 4

/* CONIAND AEPOSURFACES *7

/* DDL*ELIHC STATUS VARIABLES

/ CONTROL YAWAXIS -z

/ COMPUTE DESIRED FLIGHT PATH

/* COMPUTE COHTPOL LAW GAINS 4

it COHPUJT REAL FOSI I 'MAND VELOCITY *

REPEAT EVERY
REPEAT EVERY

1.
2.

/ REFRESH CRT -1

ii SCHEDULE T3 PRIORITY(2), REPEAT EVERY 4,

H SCHEDULE T4 PRICRITY(l), REPEAT EVERY S.

" TI

H TASK,

11 CALL NPUTJROC,
H CALL ELEVCNC1 S,
B CALL TELEMETRY,
11 CLOSE T1,

hi TASK;
m CALL RUDOER CMS.

" CALL GUIDANCE.

"t CLOSE T2,

" T31

" TASK;

11 CALL FC.GAINS,

B CLOSE T3,

M T4

H TAK.,
H CALL NAVIGATION,
H CALL DISPLAYUPo.
H CLO5E T4,
H CLOSE FEW,

The priorites here serve to fix the order of execution to be identical with that in the
chapter seven example

Appendix C C-47

12B

M FEW
M PROGRAM,
M DECLARE VECTOr,
ii FOSITION, AfTlTTiE, VELOCITY,

M
DOECLA E SCALAR,

PITCH _CH5t}ItD, ROLL COrtlAND,
IT DECLARE DESTINTfIO' VECTOR,
M
h

DECLARE ARRAY(t,
SEISDATTiTUE VECTOR,

IT SENSEDVELOCITY VECTOR,
M DECLAFE TILDONE EVENT,
H IHPUT,.FRCC
H PROCEDURE, /W SCALE AND FORMAT DATA FF01 SENSORS 1/

M CLOSE INPUTPROC,
H ELEVO ICMS
1 PROCEDUPE, /N COIIAND AEROSURFACES*/
" CLOSE ELEVONCMDS.
" TELEMIETRT
" PROCEDLRE, /* DO.NLIW(STAIUS VARIABLES y
" CLOSE TELEMETRY,
H RUDDERCD0S
I PROCEOUIE, / CONTROL YAW AXI5 t

H CLOSE RUDERCGIDS.
B GUIDAtCE
B PROCEDURE, /Y COMPUTE DESIRED FLIGHT PATH ,
B CLOSE SUIDANCE,
B FCGIKS
" PACCE0UE, /* CaPJTE CCNTROL LAW OAXNS V
" CLOSEFCO-AINS,
B NAVIGATIOl
IT NRCEDURE, /4 COMPUTE REAL POSITION AND VELOCITY
I CLOSE NAVIGATEZCI.
B DISPLAY UPOT
B PROCEDURE, /1 REFRESH CRT N'

B CLOSE OISPLAYUPDT.
"t SCHEDULE TI PRIORITY(I, REPEAT,
" SCHEDULE T2 PRIORPITY(2, REFEAT,
11 SCHEDULE T3 PPIOPITY(3). PEPEAT.
B SCHEDULE 74 PRIORITY(41, REPEAT,
B Ti
" TASK,
B CALL IFPLI.TFRDC;

CALL ELEV0N-CMOD
" CALL TELEMETRY.
"I SIG'tL TI DONE.
IT CLOSE TI,
Ht T2
H TASK,
H WAIT FO? TI DONE.
K WAIT FOR TIOONE.
M CALL RUDDER.CVDS,
H CALL GUIDANCE,
M CLOSE T2.

h TASK.
O FOR TEMPORARY I I TO 4,

WAIT FOR T2.GONE,

M CALL FCGAINS,
H CLOzE T3,
H TG
* TASK,
*t D0 FOR TEMPORARY I = 1 TO a.
B W4AIT FOR TI DONE,
H END.
H CALL aAVIGATIC.
M CALL DISPLAY PDT,
H CLOSE 14,
H CLOSE FEW,

This solution guarantees that the various tasks will never be executing any of their
procedures simultaneously Thus avoiding the need for UPDATE block protection
ofany shared variable

QWu

C-48 Appendx C

Solutions

13.A

a) 	 If FLAGS AND BIN'I10000000000' = BIN'I10000000000'

b) 	 If FLAGS AND BIN'OI0101010101' = BINooO0000000'
or
FLAGS AND BIN'0D000 I IIV' BIN'00000011 111'

c) 	 IfFLAGS = BIN'!01010000010'

d) 	IfFLAGS AND BIN'Il1010000011' = BIN'I010]0000010'

13 IB

H 	 FLIP-
M FUNCTICN(B) BIT(lf);
ii DECLARE B $IT(12);
;m DECLARE FLIPPED BIT(1Z),
m DO FOR TEMPORARY X 1 TO 12,
E
m FLIPPED = B
S x 13-X

m END,
E
II RETURN FLIPPED;
H CLOSE FLIP,

13 1C

M EXERCISEC:

M PROGRAM,

H OECLARE TABLE ARNAY4O) 8IT(24);

" SET.BITS;

" PROCEDURE(ENTRY, VALUE1;

" DECLARE INTEGER,

H ENTRY, VALUE;

E
H TABLE - BIT (VALUE);
S DIV(EIITRY,41'6 AT (6 KD(ENTRY,)+1) 6 AT #-5

H CLOSE SET3BITS;

M GET=BITS"

M FUNCTION(ENTRYJ INTEGER,

m DECLARE ENTRY INTEGER;

E
m RETURN INTEGER(TABLE
S 	 DIV(ENTRY,)I6 AT 6 HOWlENTRY,43+1

K CLOSE GET.BITS;

H CLOSE EXERCISEC;

Append= C C 49

13 1D
M
H
M
M
M
E

HORMAL
FUNCTIO(IUNNORM) BIT(32),

DECLARE UNHORH SIT(M21.
DECLARE B BIT(32I,
DECLARE COUNT IHTEGER,

II
5

IF LMNORN
9 TO 32

HEX'OODOOO' THEN

MI
E
S
E
H
S

RETURHN HEX'0000000-;

8= UNNOR,

DO FOR COUNT 11 TO 6 HILE B
4 AT 9

HEX10'.

E
H
S

B
e4AT9

BIT(SHL(NTEGER(B
24AT9

, 4));

E-

S7
a

AT 2
= BIT (INTEGER(B) - 1);

7 AT #-6 7 AT Z

H
E
H
h

END;

RETURN B.
CLOSE HOHAL.

13 IE

A OUTPUT = lES INTEGER(INPUTS(4 AT 1)) + IE4 INTEGER(INPUTS
(4 AT 5)) +

1E3 INTEGER(INPUTS(4 AT 9)) + IE2 INTEGER(INPUTS
(4 AT 13)) +

1El INTEGER(INPUTS(4 AT 17)) + iNTEGER(INPUTS
(4 AT 21)),

13 IF

A OUTPUT = INTEGER(BIT(CHARACTERS(@HEX) (INPUT))),

13 2A

1) Partitions of bit strings

2) Columns of a matrix

3) A structure node with copiness

ORIGIN r

OF ?oo~?Ac L3
QU44nly

C-50 Appendix C

13.2B

a) 	 Yes, if a name variable points to some variable m an outer code block and a van
able is checked in an inner code block with the same identifier as that the name
variable points to, the outer variables can be referenced

- b) 	 No, need more information than the address which is all the name variable
allows

c) 	 Yes, name variables allow sharing Several name variables can point to the same
data item

d) 	 No, it is possible to go up and down name pointers but not reference an absolute
address

e) 	 No, name variables can only point to data of the same type they were declared

13 3A

STRUCTURE LOOP

I VALUE INTEGER,

I NEXT NAME LOOP-STRUCTURE,

DECLARE CIRCLE LOOP-STRUCTURE,

NAME(CIRCLE NEXT) = NAME (CIRCLE),

13 3B

STRUCTURE TQE

1 TIME SCALAR,

I ACTION NAME ACTIONS-STRUCTURE,

1 NEXT NAME TQE-STRUCTURE,

STRUCTURE ACTIONS.
1 ACTION INTEGER,
1 AFFECTED-PROCESS NAME PROCESSCONTROL-STRUCTURE,
1 NEX NAME ACTION-STRUCTURE,

line 28

DECLARE NAME TQE-STRUCTURE, NEWTQE, ENT,

DECLARE NAME ACTIONS-STRUCTURE, NEWACT, ENTACT,

NEW TQE TIME = WHEN,

NEWACT ACTION = WHAT,

NAME(NEWACT AFFECTEDPROCESS) = NAME(PROCNAME),

after
line 37

NAME(ACTVQ ACTION) = NAME(NEWACT),

Appendix C C-S1

after
line 40

IF 	ENT NEXT TIME = NEWTQE TIME THEN DO,
IF 	NAME(ENT ACTION) = NAME(NULL) THEN DO,

NAME(ENT ACTION) NAME(NEWACT),
RETURN,

DO UNTIL NAME(ENTACT NEXT) = NAME(NULL)
NAME(ENTACT) = NAME(ENTACT NEXT),

END,

NAME(ENTACT NEXT) = NAME(NEWACT),

RETURN,

after 44

NAME(ENT ACTION) = NAME(NEWAC),

after 50

NAME(NEWTQE ACTION) = NAME(NEWACT),

13 3C

If PCB is ftirst or last in the ready queue, the code to remove PCB from the ready
queue will not work To avoid the difficulty, rewrite STALL as follows

C
C
C

C

STALL PROCEDURE ASSIGN(PCB),
DECLARE PCB PROCESSCONTROL-STRUCTURE,

Remove from ready queue

IF NAME(PCB LAST)=NULL THEN NAME(PCREADY)=NAME(PCB NEXT),
ELSE NAME(PCB LAST NEXT)=NAME(PCB NEXT),
IF NAME(PCB NEXT)I=NULL THEN NAME(PCB NEXT LAST)=NAME
(PCB LAST),

C
C

Add to stalled queue same as in the text

NAME(PCB NEXT) = NAME(STALLED),
NAME(STALLED) = NAME(PCB),

CLOSE STALL,

C-52 Appendix C

13A PCENQUEUE PROCEDURE ASSIGN(PCB),
DELCARE PCB PROCESSCONTROL-STRUCTURE,
DECLARE PCPTR NAME PROCESSCONTROL-STRUCTURE,

IF NAME(READYPC) = NULL THEN DOI /*empty queue*/
NAME(READYPC) = NAME(PCB),
NAME(PCB LAST), NAME(PCB NEXT) = NULL,

RETURN,

END,

C
C

NAME(PCPTR) = NAME(READYPC),
DO WHILE NAME(PCPTR NEXT) -= NULL,

IF PCPTR PRIORITIE<PCB PRIORITIE THEN DO,
NAME(PCB LAST) NAME(PCPTR LAST),
NAME(PCB NEXT) = NAME(PCPTR),
IF NAME(PCB LAST) -1= NULL THEN

NAME(PCB LAST NEXT) = NAME(PCB),
RETURN,

END,
NAME(PCPTR) = NAME(PCPTR NEXT),

END,

PCB IS LOWEST PRIORITY TAG ON END OF LIST
C

NAME(PCPTR NEXT) = NAME(PCB),
NAME(PCB NEXT) = NULL,
NAME(PCB LAST) = NAME(PCPTR),

CLOSE PC ENQUEUE,

Appendx C C-53

13B

M HEXCALC:
M PROGRA;
I DECLARE INTEGER DOUBLE,

II INTL INTa,

N DECLARE INLINE CHARACTER(80),

" DECLARE PLUS DOOLEAN,

" DECLARE K INTEGER,

E

N READALLAS) INLINE;

E I I
M INLINE = TRIN(INLINE),

E

m K = INDEX(INLINE, '+13,

N IF K > O THEN

E

PLUS- TRUE.
M ELSE

m DO,

E

m PLUS = FALSE,

E
IIK = INDEX(INLINE, .-),

M END,

E

N INTI = INTEGER (BIT (INLINE

S 2DOUBLE 0HEX I TO K-1

N INT2 = INTEGER (BIT !INLINE 1),

S 2DOUBLE ;HEX K+I TO #

E

K IF PLUS THEN -

N IIfT1 = NTI + INT2,

m ELSE

N INT1 = INTI - INT2,

m WRITE(6) INTI, CHARACTER (IT(INTl)};

S tHEX

M CLOSE HEXCALC;

0 4
- Ne

Appendjd D-1

Appendix D

HAL/S Reserved Words

ABS DOUBLE NAME SINGLE
ABVAL NEXTIME SIZE
ACCESS ELSE NONHAL SKIP
AFTER END NOT SQRT

ALIGNED EQUATE NULL STATIC
AND ERRGRP STRUCTURE
ARCCOS ERRNUM OCT SUBBIT
ARCCOSH ERROR ODD SUM
ARCSIN EVENT OFF SYSTEM
ARCSINH EVERY ON

ARCTAN EXCLUSIVE OR TAB
ARCTANH EXIT TAN
ARCTAN2 EXP PAGE TANH
ARRAY EXTERNAL PR7O TASK

ASSIGN PRIORITY TEMPORARY
AT FALSE PROCEDURE TERMINATE
AUTOMATIC FILE PROD THEN

FLOOR PROGRAM TO

BIN FOR TRACE
BIT FUNCTION RANDOM TRANSPOSE
BOOLEAN RANDOMG TRIM
BY GO

READ
READALL

TRUE
TRUNCATE

CALL HEX REENTRANT

CANCEL REMAINDER UNIT
CASE REPEAT UNTIL
CAT IF REPLACE UPDATE

CEILING IGNORE RESET

CHAR IN RETURN VECTOR
CHARACTER INDEX REMOTE

CLOCKTIME INITAL RIGID WAIT
CLOSE INTEGER RJUST WHILE
COLUMN INVERSE ROUND WRITE
COMPOOL RUNTIME

CONSTANT LATCHED XOR
Cos LENGTH SCALAR

COSH LINE SCHEDULE
LJUST SEND

DATE LOCK SET

DEC LOG SHL

DECLARE SHR

DENSE MATRIX SIGN

DEPENDENT MAX SIGNAL

DET MIDVAL SIGNUM

DIV MIN SIN

DO MOD SINH

OrtiGOOR~ PAcrtrjO pyoC A41r

Index I-)

INDEX

ABS 3-5 comsub 11-3
ABVAL 3-5 CONSTANT 2.4,2-12
ACCESS 11-8 conversions 2-16
addition 2.3, 1.5,3-20
aggregate 3-3 DECLARE 1-2
ALIGNED 9-19 group 2-1
AND 4-3,4-16, 1-2, 13-2 simple 2-11
arguments 7-7,7-12 factored 2-11
arrays 1-1,61 compound 2-11

of boolean 6-19 	 defaulttab 8-3
multi,-dimensional 6-5 DENSE 9-18, 9-21

arrayed expression 6-10 DET 3 5
Assembly Language 1.1 DEVICE directive 8-4
assignments 2-15 division 2-3,3-20
ASSIGN parameters 7-10,9.19 dollar sign (S) 3-7
asterisks (*) 2-15 DOUBLE 3-16
AT (arrays) 13-8 DO 4-9
AT(real-time) 12-7, 12-8 CASE 4-20,4 21
attributes 2-3, 2-11 FOR 5-1
AUTOMATIC 7-14, 7-15, 11-18 	 FOR (discrete) 5 6

UNTIL 5-1, 5-8
BIN 13-4 WHILE 5-1,5-7
BIT 1-2,416, 13-I, 13-6 dynamic storage allocation 1-3
bit strings 4-18, 8-5, 13-1

length of 13-2 EBCDIC 13 8
blanks 2-3 element 2-13
block structure 11-7 ELSE 4-1,44
BOOLEAN 1-2, 4-16,4-20,13-1 END 4-9,5-1
branclung 4-20 EQUATE EXTERNAL 13-23

ERRGRP 10-14
CALL 7-10 ERRNUM 104
CANCEL 12-6, 12-17 error 10-1
CAT 8-12 codes 10-4
CEILING 34 handler 10 5
channels 2-5,2-16,8-1 group 10-5
CHARACTER 8-12 recovery 10-1, 107
character strings 8-12 deactivation of 10 5, 10 8
CLOSE 2-5 i/o 10-4
COLUMN 8 6,.8- EVENT 12-8
columns 2-5 event variables 12-9
common blocks 1-1
comments 2-1,2-2 FALSE 4-16
comparisons 4 19,4-20 FILE 8-1, 9-19
compilationunit 11-1 fIle 821
compiler 14 address 8-21
compiler directives 8-4 expression 8 21
components 3-3 number 8-21
compool 11-i, 11-5 random access 8-21
compound statements 4-1 fixed point 3-19
concatenation 8 12 fixup 10-1

bit 13-2 	 restoration 106

http:7-10,9.19

1-2 Index

floating point 3-19

FLOOR 3-4

format

single line 2-9

multiple line 2-9

FORTRAN 1-i

FSIM 1-3, 1-4

functions 7-1, 11-1

built-in 3-1,3-3

invocations 3:19

of arrays 6-22

user defined 7-1

GOTO 1-I, [-2,4-2,4-11,4-22, 5-1

HEX 134

hooks 1-3

identifier 2-1, 2-3, 5-19

IF 4-1, 4-2,4-4,4-20

IGNORE 10-6

IN 12-7, 12 8

INCLUDE 11-4

indexing 13-12

indirection 13-12

INITIAL 2-12

integers 1-1, 2 4

INTEGER 2-11

INVERSE 3-5

i/o 1-3, 1-4, 8-1

i/o control functions 8 6

i/o errors 10-4

job control language 8-1

keywords 1-3,2-3

labels 2-3

LATCHED 12-10

LENGTH 8-17

library routines 3-1

LINE 8-6, 8-8

lines 2-2

lists 13-15

listing

compiler 2-9

source 2-9

literals 2-3,3-19

LOCK 11-15, 11-16

locked data 11-15

machne language 1-1

macros 1-4

macro names 3-13

mantissa 3-16

matrix 1-1,2-12,2-13

MOD 3-5

multiphcation 1-3,2-5,3-20

cross 1-3

multi-programming 11-13

NAME 9-19, 13-13

namevanables 13-11

declaring 13-13

disadvantage 13-14

initializing 13-14

referencing 13-14

NASA 1-1

negation 3-20

NOT 1-2,48,4-3,4-16,13-2

NONHAL 7-14, 7-15

object module 1-3

OFF ERROR 10-8, 10-10

ON 12-8

operators 2-3

OR 1-2,4-3,4-16, 13-2

packing 13-5

PAGE 8-6, 8-8

PAGED 8-4

parameters 7-7,7-12

partition subscript 3-8

percent macros 13-20

pointer value 13-18

precedence

operator 2-6

expression 3-19

operations 3-20

precision 3-15

specifier 3-18

PRIORITY 12-5

PL/1 1-3

process queues 12-5

process prionty 12-3

process procedures 7-9, 11-1

product

dot 1-3, 2-8, 3-20

cross 1-3,2-8

matrix 2 8

inner 3-20

vector matrix 2-8

vector outer 2-8

scalar 3-20

PROGRAM 2-1

Index 1-3

queues 13-15 SUBBIT 138
subroutines 1-1

READ 2-16,2-1,8-1,8-9 subscripts 1-2, 2-2,3-7
READALL 8-1, 8-19 subscripted identifier 3-19
real I-1 subtraction 1-3,2-5,3-20
real-time 1-1, 12-I system 1-3
recursion 1-3
REENTRANT I1-I7 TAB 8 6, 8-8
register 1-5 tasks 11-11,11-12
REPEAT 4-22,5-11 template 11-4
REPEAT AFTER 12-6 TEMPORARY 4-11,4-12, 5-1
REPEAT EVERY 12-1, 12-5, 12-6 TERMINATE 12-16, 12-17
repetition factor 2-14,2-15 THEN 4 1, 44
REPLACE 3-12, 8-2 TO 5-1
RESET 12-11,12-12 tokens 2-3, 2 4
RETURN 4-22,5-3,7-2,7-9 TRACE 3-5
RIGID 9-20, 9-21 TRANSFER
ROUND 3-4 conditional 4-22
rounding 3-4 unconditional 4-22

TRANSPOSE 3-5
SCALAR 2-11 TRIM 8-13
scalars 2-4 TRUE 4-16
scaling TRUNCATE 34

vector 2-8

matrx 2 8 UNIT 3-5

SCHEDULE 12-1, 12.2,12-12 UNPAGED 8-4
scopmg rules 7-13, 11-7 UNTIL 12-7, 12-9, 12-10
SEND ERROR 10-12 update block 11-15, 11-17
SET 12-11, 12-12 UPDATE PRIORITY 12-16
shaping functions 3-2, 34,6-1,13-6

CHARACTER 8-15, 13-7 variable type 2-9
sharp sig (#) 2-15, 3-9 VECTOR 2-12
SINGLE 3-17 vector 1-1,2-13
SKIP 8 6, 8-8 vector-matrix product 2-8
source 1-1 vector outer product 28
Space Shuttle 1-1
structures 9-1 WAIT 12-9, 12-12, 12-16

components 9-11 WRITE 2-2, 2.16, 8.1,8-5
copiness 9-12
copmess specifier 9-13 XOR 4-17
declaration 9 3
matching 9-l1
multi copied 9-12
template 9-2, 9-6
terminals 9-6
unqualified 9-21,9-22

*~ ~g, - La em- $1
a k, g - SI

I,

jI'SS

