
MSD MEMO #TX--

TO: Distribution

FROM: Jeff Day

DATE: 30 January 1992

SUBJECT: Simulation Data File (SDF) Access Package

UPDATE OF: MSD Memo #TX-108-86

DATED:06 October 1986

BY: J. Day

UPDATE OF: Shuttle Memo #12-75

OF: 07 March 1975

BY: C. Shulenberg

DISTRIBUTION:

IBM Intermetrics Intermetrics

D. Brubaker G. Cetrone P. Ansley
S. Ford C. Henson D. Brack
T. Metcalf J. Pate J. Crawley

D. Simmons R. Handley
B. Whitfield L. Kuo
G. Winslow S. McCullough

J. Payne
R. Prettyman
T. Rose
J. Sobieski
R. St.John
D. Strauss
T. Varesic

Preface:

The document this memo replaces is over 4 years old, in which time, an Assembler
interface program has been written to allow SDFPKG to be called from PL/I (see
Section 5). In addition, it was discovered that several SDFPKG features were not
documented and other areas were unclear. This updated and expanded memo seeks to
rectify the situation and provide more of the needed information.

2

2

CONTENTS

1.0 Simulation Data File (SDF) Access Package
1.1 Paging Area
1.2 Virtual Memory Considerations
1.3 SDF Selection
1.4 FCB Area
1.5 Paging Strategy
1.6 General Consideration
1.7 Communication Table (COMMTABL)
1.8 SDFPKG Statistics
1.9 SDFPKG Calling Sequence
1.10 SDFPKG Mode Argument Format
1.11 SDFPKG Mode Numbers
1.12 SDFPKG - HAL/SDL ICD Terminology Mapping
1.13 SDFPKG Return Codes
1.14 SDFPKG ABEND Codes
1.15 SDFPKG Mode Calls
1.15.1 Mode 0 - Initialize SDFPKG
1.15.2 Mode 1 - Terminate SDFPKG
1.15.3 Mode 2 - Augment Paging Area and/or FCB Area
1.15.4 Mode 3 - Rescind Paging Area Augments
1.15.5 Mode 4 - Explicitly Select an SDF
1.15.6 Mode 5 - Locate Pointer
1.15.7 Mode 6 - Set Disposition Parameters
1.15.8 Mode 7 - Locate Directory Root Cell
1.15.9 Mode 8 - Locate Block Data Cell given Block Number
1.15.10 Mode 9 - Locate Symbol Data Cell given Symbol Number
1.15.11 Mode 10 - Locate Statement Data Cell Given Internal Statement Number

(ISN)
1.15.12 Mode 11 - Locate Block Data Cell given Block Name
1.15.13 Mode 12 - Locate Symbol Data Cell given Block Name and Symbol Name
1.15.14 Mode 13 - Locate Symbol Data Cell given only Symbol Name
1.15.15 Mode 14 - Locate Statement Data Cell given Statement Reference Number

(SRN)
1.15.16 Mode 15 - Locate Block Index Table Entry given Block Number
1.15.17 Mode 16 - Locate Symbol Index Table Entry given Symbol Number
1.15.18 Mode 17 - Locate Statement Index Table Entry given Statement Number
2.0 SDFPKG Definitions
3.0 Calling SDFPKG by an Assembler Program
3.1 SDFPKG Register Conventions
3.2 Example Assembler Program
4.0 Calling SDFPKG From an XPL Program
4.1 SDFPKG Monitor Call
4.2 XPL Example Program
5.0 Calling SDFPKG From a PL/I Program via an Assembler Interface
5.1 SDFPKG Assembler Interface Arguments
5.2 PL/I SDFPKG Assembler Interface
5.3 PL/I Procedures Which Call the SDFPKG Assembler Interface
6.0 SDFPKG Assembler Data Overlay MACROS
6.1 SDFPKG Communication Table (COMMTABL)
6.2 SDFPKG Common Data Pool Buffer Table (DATABUF)
6.3 SDFPKG File Control Block (FCB)
6.4 SDFPKG Paging Area Directory (PAD)
6.5 SDF Master Directory Cell (Header)

3

6.6 Directory Root Cell
6.7 Block Index Table Entry
6.8 Block Data Cell
6.9 Block Statement Extent Cell
6.9.1 Invariant part of Block Statement Extent Cell
6.9.1 Variant part of Block Statement Extent Cell
6.10 Block Symbol Extent Cell
6.10.1 Invariant part of Block Symbol Extent Cell
6.10.2 Variant part of Block Symbol Extent Cell
6.11 Symbol Index Table Entry
6.12 Symbol Data Cell
6.12.1 Invariant part of Symbol Data Cell
6.12.2 Array Dimensions in Symbol Data Cell
6.12.3 Structure Part of Symbol Data Cell
6.13 Statement Index Table Entry
6.13.1 Statement Index Table Entry (Without SRNs)
6.13.2 Statement Index Table Entry (With SRNs)
6.14 Executable Statement Data Cell
7.0 Bibliography

4

Figures

Figure 1: Contents of Paging Area Directory (PAD) Entry
Figure 2: SDFPKG Multi-File Control Block (FCB) Mode
Figure 3: SDFPKG One-File Control Block (FCB) Mode
Figure 4: Contents of File Control Block (FCB) Entry
Figure 5: SDFPKG Communication Table (COMMTABL)
Figure 6: SDFPKG Internal Data Pool Overlay (DATABUF)
Figure 7: SDFPKG Calling Sequence
Figure 8: Mode Argument Format
Figure 9: Naming Convention Cross-Reference Table
Figure 10: Register 1 Format

5

1.0 Simulation Data File (SDF) Access Package

SDFPKG is an IBM-360/370 assembly language program comprised of five CSECTS:
SDFPKG, LOCATE, PAGMOD, NDX2PTR, and SELECT. Its function is to provide a demand
paging form of access to the data contained within the Simulation Data Files
(SDFs). SDFPKG can be separately link edited and employed as a loadable and
deletable service module, or it may be linked directly with other software. The
latter is the case with the HAL/S-360 stand-alone diagnostic system, while the
former method is used in the XPL monitor and PL/I interface module (Section 5).

1.1 Paging Area

Paging is done directly between core memory and the Partitioned Dataset (PDS)
containing the SDFs generated by Phase III of the HAL/S Compilers. This is made
possible by the list of TTRs (Track, Track, Records -- See Section 2 for a
description) contained within the last physical record(s) of each SDF. A TTR is
present for each record of the file. Reads can thus be accomplished via a FIND,
POINT, READ sequence. Figure 4 of the current HAL/SDL Interface Control Document
(HAL/SDL ICD) NAS9-14444 shows the physical layout of an SDF with the TTR
record(s) (or page(s)) at the end of the file. The TTR record(s) contains
pointers to all other file records and is itself, in turn, pointed to by one or
more TTRs in the User Data area of the PDS directory entry.

SDF records (or pages) are always 1680 bytes in length. This is true even of the
TTR page(s) which may contain as little as 4 bytes of data. SDFPKG reads SDF
pages from a PDS into "paging areas" which may consist of from 1 to more than 4000
1680-byte areas. The current version of SDFPKG contains a default upper limit of
250 pages. This upper limit can be increased by altering an assembly language
macro parameter in SDFPKG or by the user program providing SDFPKG with a larger
Paging Area Directory (PAD) and Paging Area. Figure 1 shows the contents of the
PAD. (Note: The Paging Area and PAD are two separate entities and should not be
confused with each other. In addition, the maximum number of pages allowed by
SDFPKG at any time is limited by the number of PAD entries allocated. The number
of pages must always be less than or equal to the number of PAD entries.)
Increasing the number of default PAD entries will increase the size of SDFPKG by
16 bytes per added PAD entry. At the other extreme, SDFPKG will usually function
properly with a 1 page paging area (if no reserves are requested), however 2 pages
is the recommended minimum.

Contents of Paging Area Directory (PAD) Entry

PAGEADDR - Address of the corresponding Paging AREA entry

FCBADDR - Byte 0 contains "Page modified" Flag of Hex '80'
Bytes 1-3 contains address of the File Control Block
(FCB)

USECOUNT - Usage Counter

PAGENO - Page # x 8 (2 bytes)

RESUCNT - Reserve counter (2 bytes)

Figure 1: Contents of Paging Area Directory (PAD) Entry

2

The absolute maximum number of entries in the paging area supported by SDFPKG is
4095 and, therefore, the "paging area" and PAD parameters should not exceed this
value. Currently, SDFPKG may be called an unlimited number of times, but in the
process of doing so, will lose track of the actual number of "Locates" (LOCCNT)
after the first roll-over at Hex 'FFFFFF'. Due to the roll-over which takes
place, the statistics produced by SDFPKG will now become a modulus value, i.e.
(Hex 'FFFFFF') MODULO (total # of locates).

The PDS containing the SDF members to be read is normally identified by a HALSDF
DD card; however at the time of the initialization call to SDFPKG, an alternate
DDNAME can be specified. The SDF PDS may contain catenation levels so long as the
program calling SDFPKG intends only to read the data. If the user desires to
"modify" an SDF (by requesting SDFPKG to operate in UPDAT mode), none of the SDFs
to be updated may reside within a concatenated DD level, due to O/S restrictions.

At the time of the SDFPKG initialization (Initialize call), the calling program
must specify the size of the "nucleus" paging area. This initially allocated area
will then be available to, and will be exclusively controlled by, SDFPKG until the
termination call (Terminate). SDFPKG makes provisions for dynamic expansion and
contraction of the paging area size (up to the limit set by the PAD whose default
size is currently 250 entries) via one or more Augment (increase paging area)
calls and Rescind (remove all augments) calls. The Rescind call always reduces
the paging area size to the initial (nucleus) area.

The core memory necessary for the nucleus paging area may be allocated by SDFPKG
via a GETMAIN or it may be provided by the calling program. The core memory
necessary for Augments, however, must always be provided by the calling program.
If SDFPKG is instructed to GETMAIN the nucleus paging area, it will perform a
FREEMAIN at the Terminate call as well. This is true of any GETMAINs performed by
SDFPKG.

1.2 Virtual Memory Considerations

SDFs are built by Phase III of the HAL/S Compiler in a virtual memory environment
and are manipulated by SDFPKG in the same way. In this context, SDF data
possesses both a "pointer", (i.e. a record/offset address in SDFPKG's virtual
memory space) and the core address of the data located in one of SDFPKG's virtual
memory pages (if it has not been read into core, this value is 0). As described
in the HAL/SDL ICD, the fullword pointers contained within the SDFs consist of a
page (record) number residing in the upper 2 bytes of the 4-byte pointer followed
by a displacement in the lower 2 bytes of the 4-byte pointer. The displacement is
the offset (from 0 to 1679 bytes) into the page (record) referenced by the upper 2
bytes. SDF pages are numbered beginning with zero so the pointer consisting of a
fullword of zeros identifies the first byte of data in an SDF.

In the most general form of data access provided by SDFPKG, an input SDF pointer
causes SDFPKG to return the core address of the corresponding data as output. The
returned core address lies somewhere within the allocated paging area. If the
necessary SDF page was already in the paging area, then this is a fast operation.
If it was not, then a paging operation that is transparent to the calling program
is performed as necessary. Although this process of "location" can be requested
explicitly by the calling program through a LOCATE call, the program will more
often employ the higher-level SDFPKG mode calls which will then perform the
necessary "locates" implicitly and totally internal to SDFPKG.

3

Whether the locates are explicit or implicit, the important point is that almost
all SDFPKG mode calls result in the core location (and corresponding virtual
memory pointer for reference purposes) of some data item being returned to the
calling program. This data item may be an SDF Directory Root Cell, Block Data
Cell, Symbol Data Cell, Executable Statement Data Cell, Block Index Table Entry,
Symbol Index Table Entry, Statement Index Table Entry, or merely some arbitrary
SDF location (if an explicit LOCATE call was made). Immediately after the call,
the page containing the item of interest is in core memory and the calling program
may extract (or insert in update mode) data using the core address provided (see
Figures 2 and 3).

It is normally the case, and especially true when a small paging area is used,
that the data located in this fashion must be considered vanished after the next
SDFPKG call. When using a small paging area, a subsequent SDFPKG call of any kind
may require I/O that will force the reuse of previously loaded paging area
"slots". If the calling program needs to guarantee the continued existence of the
located data at the advertised core address, the RESV (Reserve) disposition
parameter should be specified at the time of the initial mode call or prior to any
subsequent SDFPKG calls. SDFPKG then increments a reserve count that is
maintained in the PAD for the page containing the located data and ensures that
this page will not be overwritten until the reserve count has been decremented to
zero. At some later time, the calling program must "free" the data by making any
mode call that re-locates the data item and specifies the RELS (Release) option.
Since it is actually pages and not specific locations that are reserved, it is
only necessary to locate any part of the page in order to free it.

If the calling program cannot determine until after the SDFPKG call that RESV,
RELS, or MODF is desirable, then one or more of these disposition parameters can
be specified by a DISP (mode 6) call which retroactively applies such parameters
to the preceding item located.

Programmers designing programs that use SDFPKG should be careful to limit the use
of Reserves, especially if small paging areas are employed, since each reserve
makes one more paging area slot unavailable for further reads. Also, all pages
that are reserved should be ultimately released. A Rescind call will result in an
abnormal termination (Abend 4011) if any reserved pages are detected in the
augmented portion of the paging area.

The third disposition parameter MODF (Modify) can only be used if the UPDAT mode
was specified at the time of the Initialize call. MODF informs SDFPKG that the
located item will be altered by the calling program. As a result, SDFPKG will
rewrite the affected page back to the PDS (HALSDF or alternate DDNAME) prior to
overlaying the slot with newly read pages. Again, due to O/S restrictions, SDFs
which are to be altered must not lie within a concatenated dataset.

4

SDFPKG Multi-File Control Block (FCB) Mode

5

Figure 2: SDFPKG Multi-File Control Block (FCB) Mode

6

SDFPKG One-File Control Block (FCB) Mode

7

Figure 3: SDFPKG One-File Control Block (FCB) Mode

8

Contents of File Control Block (FCB) Entry

Each FCB entry consists of the following information:

TTR - TTR of the PDS Directory Record for BLDL

GTTREEPT - Pointer to next FCB Tree entry greater than this one

LTTREEPT - Pointer to next FCB Tree entry less than this one

FILENAME - 8 Character SDF Member name

BLKPTR - SDFPKG Pointer to Block Index Table

SYMBPTR - Pointer to Symbol Index Table

STMTPTR - Pointer to Statement Index Table

TREEPTR - Pointer to Nested Block Tree

NODESIZE - Size of Statement Index Table Entry (4 bytes - No Statement
Reference Numbers (SRNs) are Present; 12 bytes - SRNs
are present)

FLAGS - SDF Flags from Directory Root Cell

NUMBLKS - Number of Blocks (Including Includes) in SDF member

NUMSYMBS - Number of symbols in SDF member

FSTSTMT - First Internal Statement Number (ISN) in SDF member

LSTSTMT - Last ISN in SDF member

LSTPAGE - Last page of SDF data prior to TTR records

VERSIONX - Phase III Version number of SDF member

STMTEXPT - Pointer to Block Statement Extent Cell

 - Spare 2 Fullwords

The following two fields exist for every non-TTR record in the SDF member.

FCBTTRS - TTRS of each record in SDF member

FCBPDADR - Address of PAD entry holding this Record or 0 if not currently
in memory

Figure 4: Contents of File Control Block (FCB) Entry

9

1.3 SDF Selection

SDFPKG allows simultaneous access to an unlimited number of SDF members. This
means that the paging area can contain assorted pages from a number of different
SDF members. In order for SDFPKG to know which SDF member is to be referenced in
support of the user's call, it is necessary for the calling program to specify or
"select" the proper SDF member in one of two ways. The first method is to make an
explicit Select call to SDFPKG with the 8 character SDF member name (##CCCCCC) as
input. Until overridden, all further SDFPKG data access requests will be directed
to this SDF member. The second method is called "Auto-Selection". By specifying
the Auto-Select disposition parameter and including the SDF member name as an
auxiliary input, SDFPKG calls will reference the specified SDF member.
Auto-Selection is slightly slower than explicit selection but is very useful if
the SDF members are to be referenced randomly.

When an SDF member is selected for the first time following the Initialize call,
SDFPKG performs a BLDL for that PDS member, extracts the TTR list from the last
SDF member page(s), extracts certain data from the Directory Root Cell, and then
incorporates all of this information into a File Control Block (FCB) for that SDF
member (See Figures 2 and 3). The FCB (See Figure 4 for contents) is allocated
from a block of memory called the FCB area and is discussed in Section 1.4. The
new FCB is then linked into a binary tree structure that is ordered by SDF member
name so that later selections can rapidly find the FCB needed to access the data
in the file. With one exception (One-FCB mode), once an FCB is created, it is
maintained until a Terminate call resets all SDFPKG variables and data areas.
This means that the FCB area may eventually become filled with FCBs and require
extension.

If the calling program knows beforehand that SDF members will be accessed in a
serial fashion, or if core space is at a premium, then SDFPKG can be instructed at
the time of the Initialize call to operate in the One-FCB mode, i.e., only one FCB
is kept and therefore a new Select will cause the new FCB to be built over the old
one.

1.4 FCB Area

The FCB Area (see Figures 2 and 3 for Usage and Figure 4 for contents) is similar
to the Paging Area in that an initial amount must be allocated at the time of the
Initialize call. The calling program may specify what the allocation is to be or
accept the default of 1024 bytes. Additionally, the calling program has to decide
whether to provide SDFPKG with an FCB Area or to let SDFPKG obtain one via a
GETMAIN. If the calling program supplies an FCB Area, then it must be prepared to
supply additional areas (via the Augment call) whenever the current FCB Area is
exhausted. This condition is signalled by a return code of 12, meaning that a
select failed due to insufficient space to construct an FCB. A better method of
supplying the FCB area for SDFPKG is for the User Program to allocate the same
number of contiguous 128-byte data blocks as there are members in the SDF and then
pass the address of the FCB area and the negative value of the number of FCB
entries to SDFPKG. This will normally provide SDFPKG with all of the FCB area
needed to process all members in the SDF.

If the calling program does not need the flexibility of the user program
allocating the FCB area, then SDFPKG can be allowed to GETMAIN the initial FCB
Area, or, alternately, the MISC parameter can be set for Automatic FCB GETMAIN
mode on the Initialize call. The latter case will then allow automatic GETMAINs

10

regardless of who allocated the initial FCB area. In this mode of operation,
subsequent GETMAINs of 512 bytes each will be performed as needed and will be
totally transparent to the calling program. It is also possible to pass only the
negative value of the number of members in the SDF and allow SDFPKG to GETMAIN an
FCB area of 128 x number of SDF members passed. Again, all such GETMAIN'ed areas
are freed when SDFPKG is called to Terminate.

One-FCB mode is available regardless of whether the caller or SDFPKG is
responsible for FCB Area allocation. It should also be noted that although the
Augment call can extend either the Paging Area or FCB Area (or both
simultaneously), the Rescind call only applies to the Paging Area, i.e., the FCB
Area can only grow.

Each FCB requires an initial 60 bytes plus an additional 8 bytes for each page of
the associated SDF member (see Figure 4). FCBs are thus highly variable in
length.

1.5 Paging Strategy

The PAD contains an entry for each core slot up to the defined limit (the default
is 250) with each entry containing, among other data, a reserve count and a usage
count for the page (see Figures 1, 2, and 3 for more information). As mentioned
earlier, the reserve count is used to lock the page in its core slot for as long
as the count is non-zero. The usage count, however, keeps track of how recently
that page has been accessed relative to the other pages in core. A global count
of "locates" is maintained within SDFPKG and is inserted into the usage count
field of the PAD entry when the page is accessed. When an SDF page must be read
into a core slot from the PDS, the core slot that is both unreserved and least
recently accessed is overlayed by the new data. If, however, the modification
flag for that PAD entry indicates that the old page is in a modified state (UPDAT
mode only) then the page is written out prior to being overlayed. At the
Terminate or Rescind call all modified, but as yet unwritten, pages are written
out to the PDS.

1.6 General Consideration

The following is a brief summary of the more important aspects of SDFPKG:

1) SDFPKG is a modular access method for SDF members built upon a demand
paging virtual memory environment. It can be separately linked,
loaded, and deleted or link edited into the user program.

2) All calls to SDFPKG are made through a single ENTRY point by
supplying a mode number. Eighteen different mode calls (0-17) are
currently provided.

3) SDFPKG employs a paging area of from 1 to the defined limit (250 is
the default) of pages in size and may be dynamically expanded or
contracted as the core memory situation alters.

4) SDFPKG can support simultaneous access to an unlimited number of SDF
members. The area needed for FCBs can be automatically provided by
SDFPKG or be controlled by the calling program.

11

5) SDFPKG is serially reusable. Following a Terminate call an
Initialize call may be made and everything starts over again from the
beginning.

6) SDFPKG allows SDF members to be either modified or merely read.

7) SDFPKG provides built-in binary search algorithms to allow efficient
high-level access to data that must be searched.

8) SDFPKG FREEMAINs all storage at the Terminate call that it has
GETMAIN'ed since the Initialize call.

9) SDFPKG performs one OPEN (for the HALSDF or alternate DD) at
Initialize (mode 0 call) and one CLOSE (same DD) at the Terminate
(mode 1) call.

10) SDFPKG uses only the following system services and macros: GETMAIN,
FREEMAIN, FIND, BLDL, POINT, READ, WRITE, CHECK, OPEN, and CLOSE.

11) SDFPKG can be configured at Initialize so that it will perform no
GETMAINs.

12) SDFPKG performs complete error checking and will force an ABEND in
case of a legitimate user or I/O error (See Section 1.14). A
complete set of return codes is used to signal abnormal conditions
that are not reflections of serious user error (See Section 1.13).

13) Almost all communication between SDFPKG and the calling program is
accomplished through a 120-byte "communication" table that is
provided by the calling program (See Section 1.7). This eliminates
almost all parameter passing.

14) SDFPKG maintains statistical information which has bearing on its
operation as well as other data of interest which the calling program
may access at any time.

15) SDFPKG is designed to be as fast as possible without sacrificing
essential error checks. With a large paging area, the efficiency is
competitive with implementations in which all SDF members are core
resident in their entirety.

16) SDFPKG requires approximately 15,000 bytes of core, exclusive of the
FCB and Paging Areas.

1.7 Communication Table (COMMTABL)

The Communication Table (COMMTABL) is a contiguous 120-byte data area that the
calling program must supply. The address of COMMTABL is passed to SDFPKG during
the Initialize call. The assembler DSECT overlay for COMMTABL is shown in Figure
5. The Declaration and/or structure of this communication table may vary somewhat
from language to language and from language interface to language interface.

12

SDFPKG Communication Table (COMMTABL)

 BYTE FIELD FIELD
OFFSET NAME SIZE DESCRIPTION

COMMTABL DSECT SDFPKG COMMUNICATION AREA
 0 APGAREA DS A ADDRESS OF EXTERNAL PAGING AREA
 4 AFCBAREA DS A ADDRESS OF EXTERNAL FCB AREA
 8 NPAGES DS H # OF PAGES IN PAGING AREA OR AUGMENT
 10 NBYTES DS H # OF BYTES IN FCB AREA OR AUGMENT
 12 MISC DS H MISCELLANEOUS PURPOSES
 14 CRETURN DS H SDFPKG RETURN CODE
 16 BLKNO DS H BLOCK NUMBER (BLOCK INDEX TABLE ENTRY

* INDEX)
 18 SYMBNO DS H SYMBOL NUMBER (SYMBOL INDEX TABLE ENTRY

* INDEX)
 20 STMTNO DS H STATEMENT NUMBER (STATEMENT INDEX TABLE

* ENTRY INDEX)
 22 BLKNLEN DS CL1 NUMBER OF CHARACTERS IN BLOCK NAME

 * (BLKNAM)
 23 SYMBNLEN DS CL1 NUMBER OF CHARACTERS IN SYMBOL NAME

 * (SYMBNAM)
 24 PNTR DS F VIRTUAL MEMORY POINTER LAST LOCATED
 28 ADDR DS A CORE ADDRESS CORRESPONDING TO PNTR
 32 SDFDDNAM EQU * NAME OF ALTERNATE DD FOR SDF DATASET
 32 SDFNAM DS CL8 NAME OF SDF TO BE SELECTED
 40 CSECTNAM DS CL8 NAME OF CODE CSECT FOR BLOCK
 48 SREFNO DS CL6 STATEMENT REFERENCE NUMBER (SRN)
 54 INCLCNT DS H INCLUDE COUNT (FOR SRN)
 56 BLKNAM DS CL32 BLOCK NAME
 88 SYMBNAM DS CL32 SYMBOL NAME
 120 MEND

Field Formats and Descriptions

1. PNTR -- This is the pointer (i.e. virtual memory location) to the SDF
data. The pointer is in the FORMAT PPOO, where

PP -- is a 2-byte sub-field of the SDF Virtual Page Number (record)
containing the data

OO -- is a 2-byte sub-field giving the offset into the page (record)
where the data begins.

2. ADDR -- This is the actual memory location corresponding to the PNTR
location of the data.

Figure 5: SDFPKG Communication Table (COMMTABL)

13

1.8 SDFPKG Statistics

Upon return from the Initialize (mode 0) call to SDFPKG, register 1, together with
the ADDR field of the communication table, will point to the internal data pool of
SDFPKG. An assembler DSECT for this data pool is available and is shown in Figure
6.

Many of the statistics are of little or no interest to the calling program or
user, but the following variables may be useful:

LOCCNT - Total number of locates (explicit or implicit). This is
actually:

(Hex 'FFFFFF') MODULO (# of locates)

READS - Total number of reads from the SDF PDS

WRITES - Total number of writes to the SDF PDS (UPDAT mode only)

NUMGETM - Total number of GETMAINS performed by SDFPKG

NUMOFPGS - Current Paging Area size

BASNPGS - Size of "nucleus" Paging Area

TOTFCBLN - Total size of all FCBs

FCBCNT - Number of FCBs in FCB Area

SLECTCN - Total number of "real" selects, i.e. the number of times that
reference was actually switched from one SDF member to another

RESERVES - Total reserve count (sum of reserve counts of all active core
slots)

14

SDFPKG Internal Data Pool Overlay (DATABUF)

 BYTE FIELD FIELD
OFFSET NAME SIZE DESCRIPTION

 DATABUF DSECT COMMON DATA BUFFER
 0 LOCCNT DS F CURRENT LOCATE COUNTER
 4 AVULN DS A ADDRESS OF VULNERABLE PAD ENTRY
 8 CURFCB DS A ADDRESS OF CURRENT FCB
 12 PADADDR DS A STARTING ADDRESS OF PAD
 16 ACOMMTAB DS A ADDRESS OF COMMUNICATION AREA
 20 ACURNTRY DS A ADDRESS OF CURRENT PAD ENTRY
 24 ROOT DS A ADDRESS OF ROOT FCB OF FCB TREE
 28 SAVEXTPT DS F POINTER TO SYMBOL NODE EXTENT CELL
 32 SAVFSYMB DS H FIRST SYMBOL OF BLOCK
 34 SAVLSYMB DS H LAST SYMBOL OF BLOCK
 36 NUMGETM DS H NUMBER OF ENTRIES IN GETMAIN STACKS
 38 NUMOFPGS DS H NUMBER OF PAGES IN CURRENT PAGING AREA
 40 BASNPGS DS H INITIAL NUMBER OF PAGES IN PAGING AREA
 42 FCBSTKLN DS H NUMBER OF ENTRIES IN FCB STACKS
 44 IOFLAG DS C I/O IN PROGRESS INDICATOR
 45 GETMFLAG DS C > 0 IMPLIES AUTO GETMAINS FOR FCBS
 46 GOFLAG DS C > 0 IMPLIES SUCCESSFUL INITIALIZATION
 47 MODFLAG DS C > 0 IMPLIES UPDAT MODE ACTIVE
 48 ONEFCB DS C > 0 IMPLIES ONLY ONE FCB KEPT
 49 FIRST DS C > 0 IMPLIES TAKE FIRST SYMBOL FOUND
 50 DS 2C SPARE
 52 TOTFCBLN DS F TOTAL AMOUNT OF FCB SPACE IN USE
 56 RESERVES DS F GLOBAL (TOTAL) COUNT OF RESERVES
 60 READS DS F TOTAL NUMBER OF READS
 64 WRITES DS F TOTAL NUMBER OF WRITES
 68 SLECTCNT DS F TOTAL NUMBER OF 'REAL' SELECTS
 72 FCBCNT DS F TOTAL NUMBER OF FCBS IN EXISTENCE
 76 GETMSTK1 DS A ADDRESS OF GETMAIN ADDRESS STACK
 80 GETMSTK2 DS A ADDRESS OF GETMAIN LENGTH STACK
 84 FCBSTK1 DS A ADDRESS OF FCB AREA ADDRESS STACK
 88 FCBSTK2 DS A ADDRESS OF FCB AREA LENGTH STACK
 92 MAXSTACK DS H MAXIMUM NUMBER OF STACK ENTRIES
 94 SDFVERS DS H SDF VERSION NUMBER (OF SELECTED SDF)
 96 APGEBUFF DS A ADDRESS OF PAGE BUFFER
 100 ADECB DS A ADDRESS OF DECB
 104 ECB DS F EVENT CONTROL BLOCK (DECB)
 108 IOTYPE DS H I/O TYPE (DECB)
 110 IOLENGTH DS H NUMBER OF BYTES TO TRANSFER (DECB)
 112 DCBADDR DS A ADDRESS OF HALSDF DCB (DECB)
 116 BUFLOC DS A ADDRESS OF BUFFER AREA (DECB)
 120 IOBADDR DS A ADDRESS OF IOB (DECB)
 124 MEND

Figure 6: SDFPKG Internal Data Pool Overlay (DATABUF)

The Terminate call (mode 1) zeros out this data area so the values must be
extracted prior to the call. These parameters are maintained dynamically and may

15

be accessed at any time between the Initialize and Terminate calls.

16

1.9 SDFPKG Calling Sequence

The following block diagram (Figure 7) illustrates the order and hierarchy of the
mode calls needed to effectively use SDFPKG. Notice in the figure that items 5
and 6 are indented from the rest. This indicates that these items may be
performed multiple times within the SDFPKG calling sequence. Once SDFPKG has been
Initialized, it is necessary to Select the SDF member to which the next operations
will apply (Item 5). After Selecting the SDF member, the user is free to retrieve
and process any data (e.g., Statement data, Symbol data, or Block data) desired
(Item 6). Upon completion of the processing of the SDF data, it is necessary to
Terminate SDFPKG (Item 7). Examples of actual SDF Program calls are provided in
Sections 4 (Assembly Language), 5 (XPL/Monitor), and 6 (PL/I).

SDFPKG Calling Sequence

 +---+
1. |Setup the Communication Table and optionally Setup |
 |Data Buffer variables in user's program |
 +---+

 +---+
2. |Create/Declare any SDFPKG work areas (FCB, PAD, Paging |
 |Areas) and set values in Communication Table |
 +---+

 +---+
3. |CALL SDFPKG to initialize itself (mode 0)|
 +---+

 +---+
4. |CALL SDFPKG to augment any Paging Areas or FCB (optional)|
 |(mode 2) |
 +---+

 +--+
5. |Select SDF member containing data (may use Auto-Select|
 |option) |
 +--+

 +---+
6. |Select desired Block data, Statement data, Symbol|
 |data, etc. |
 +---+

 +--+
7. |Call SDFPKG to terminate itself (mode 1)|
 +--+

Figure 7: SDFPKG Calling Sequence

17

1.10 SDFPKG Mode Argument Format

Figure 8 shows the format for passing the SDFPKG Mode and option(s). As
illustrated in Figure 8, the SDFPKG mode is passed in the lower halfword of the
argument while the disposition options (Auto-Select, Modify, Release, and Reserve)
are passed in the upper most 4 bits (Nibble).

Mode Argument Format

 DISP MODE

 0 1 2 3 15 16 31
 +---+
 |^|^|^|^| | Mode Number |
 +---+

 BITS PURPOSE

 0 - Auto-Select
 1 - MODF (Modify)
 2 - RELS (Rescind/Release)
 3 - RESV (Reserve)

 4-15 - Unused
 16-31 - Mode Number

Figure 8: Mode Argument Format

Upon return from SDFPKG, the return code is available in the CRETURN location in
the Communication Table (COMMTABL), while ADDR in the same table generally
contains the core memory address of the "located" data item.

It should be noted that the Communication Table variables are not altered unless
they are explicitly output by the SDFPKG call.

18

1.11 SDFPKG Mode Numbers

The following is a summary of the currently supported SDFPKG Mode calls:

Mode # Function

 0 Initialize (must be the first call to SDFPKG).

 1 Terminate (must be the last call to SDFPKG).

 2 Augment Paging Area and/or FCB area.

 3 Rescind all Paging Area augments.

 4 Select SDF explicitly.

 5 Locate an SDFPKG virtual memory pointer.

 6 Set disposition parameters (MODF, RESV, RELS) for the last "located"
data item.

 7 Locate Directory Root Cell.

 8 Locate a Block Data Cell given the Block Number.

 9 Locate a Symbol Data Cell given the Symbol Number.

 10 Locate a Statement Data Cell given the Internal Statement Number
(ISN).

 11 Locate a Block Data Cell given the Block Name.

 12 Locate a Symbol Data Cell given the Block Name and Symbol Name.

 13 Locate a Symbol Data Cell given the Symbol Name only. (Must be
preceded by a mode 8, 11, or 12 call).

 14 Locate a Statement Data Cell given the Statement Reference Number
(SRN).

 15 Locate a Block Index Table Entry given the Block Number.

 16 Locate a Symbol Index Table Entry given the Symbol Number.

 17 Locate a Statement Index Table Entry given the Internal Statement
Number (ISN).

1.12 SDFPKG - HAL/SDL ICD Terminology Mapping

The definitions and layouts for the various data blocks contained within an SDF
and returned by SDFPKG can be found in the current version of the HAL/SDL
Interface Control Document (ICD). In the past, different terminology was employed
between the HAL/SDL ICD and SDFPKG, however now an effort is being made to
standardize the SDF table and cell names, so Figure 9 may be helpful in resolving
the new names.

19

Naming Convention Cross-Reference Table

HAL/S Compiler
Specification and HAL/S SDL Standardized HAL/SDL DSECT Template
SDFPKG Terminology ICD Terminology Table/Cell Names ICD Figure No. Names (Section 7)

Directory Root Cell Simulation Table Master Directory Section 1.2.1.2.1 PAGEZERO
or Cell (Figure 5)

Directory Header

Directory Root Cell Simulation Table Directory Root Section 1.2.1.2.1 DROOTCEL
or Cell (Figure 5)

Directory Header

Block Data Cell HAL Block List Block Data Cell Section 1.2.1.2.1.2.2 BLKTCELL
Member (Figure 7)

Symbol Data Cell Symbol Data Entry Symbol Data Cell Section 1.2.1.2.2.2 SYMBDC
(Figure 11) ARRADATA

STRCDATA

Statement Data Cell Statement Data Executable State- Section 1.2.1.2.3.2.1 STMTDC
(Executable) Entry ment Data Cell (Figure 14)

Statement Data Cell Statement Data Declare Statement Section 1.2.1.2.3.2.2 (n/a)
(Declare) Entry Data Cell (Figure n/a)

Block Node Block Index Table Block Index Table Section 1.2.1.2.1.2.1 BLCKNODE
Entry Entry (Figure 6)

Symbol Node Symbol Names and Symbol Index Table Section 1.2.1.2.2.1 SYMBNODE
Pointers Table Entry (Figure 10)
Entry

Statement Node Statement Names Statement Index Section 1.2.1.2.3.1 STMTNOD0
and Pointers Table Entry (Figure 12) (No SRNs)
Table Entry STMTNOD1

(With SRNs)

20

Figure 9: Naming Convention Cross-Reference Table

21

Naming Convention Cross-Reference Table

HAL/S Compiler
Specification and HAL/S SDL Standardized HAL/SDL DSECT Template
SDFPKG Terminology ICD Terminology Table/Cell Names ICD Figure No. Names (Section 7)

Statement Block Statement Block Block Statement Section 1.2.1.2.1.3 STMTEXTF
Extent Cell Extent Cell Extent Cell (Figure 9) STMTEXTV

Symbol Block Symbol Block Block Symbol Section 1.2.1.2.1.2.3 SYMEXTF
Extent Cell Extent Cell Extent Cell (Figure 8) SYMEXTV

Figure 9: Naming Convention Cross-Reference Table

22

1.13 SDFPKG Return Codes

SDFPKG error return codes are returned both in Register 15 (assembly language) and
in the Communication Table (COMMTABL) variable CRETURN.

Return Relevant Error
 Code Mode Numbers Description

 0 all Error Message: Operation successful.

Description: The requested SDFPKG operation was
successful.

Effects: The requested SDFPKG operation was
successful and the data is
ready for processing by the
user's program.

Recommendation: Not Applicable.

 4 0 Error Message: HALSDF DD Open Unsuccessful.

Description: The dataset(s) specified by the HALSDF or
alternate name DD card(s) could
not be opened by SDFPKG.

Effects: SDFPKG cannot initialize itself and
cannot access the SDF data;
therefore, the SDF information
is unavailable to the user's
program.

Recommendation: Check the user's JCL stream to make sure the
HALSDF or alternate name DD
card(s) is/are provided and
that it points to a valid SDF
dataset.

 8* 4* Error Message: Select failure: SDF not found
in PDS.

Description: The SDFPKG Select was unsuccessful since the
specified SDF member could not
be found in the PDS.

Effects: SDFPKG was unable to locate the
specified SDF member in the
PDS; therefore the data for
that SDF member is unavailable
to the user's program.

Recommendation: Check to see that all of the SDF datasets are
concatenated to the HALSDF or
alternate DD card(s).
Alternately, check the SDF

23

member name being passed to
SDFPKG to make sure it is
correct and spelled correctly
and that it is truly contained
in the SDF PDS.

12 4* Error Message: FCB Area Exhausted.

Description: The FCB Area is full and the FCB Automatic
GETMAIN option was not
specified at the time SDFPKG
was Initialized.

Effects: SDFPKG cannot Select the requested SDF
member since it has
insufficient space to build the
FCB for the member.

Recommendation: Provide SDFPKG with more FCB Area using the
Augment operation.
Alternately, SDFPKG may be
Initialized with a larger FCB
Area or allowed to
automatically GETMAIN the FCB
area as needed. Another option
is to Initialize SDFPKG using
One-FCB Mode. (See Sections
1.4 and 1.15 for more
information)

1611, 12 Error Message: Block name not found.

Description: The specified Block name could not be found
in the currently selected SDF
member.

Effects: The information for the requested Block
will not be available to the
user's program.

Recommendation: Check to see that the Block name is spelled
correctly and that it is
contained within the currently
selected SDF member.

 20 12, 13 Error Message: Symbol name or SRN not found.

Description: The specified Symbol name or SRN could not
be found in the SDF member.

Effects: The information for the requested
Symbol or SRN will not be
available to the user's
program.

24

Recommendation: Check to see that the Symbol name is spelled
correctly or that the correct
SRN was specified and that it
is contained within the
currently Selected SDF member.

 24 10, 14 Error Message: Statement is non-executable.

Description: The Statement for which the ISN or SRN was
specified is not an executable
statement and does not possess
an Executable Statement Data
Cell; it may, however, be a
Declare statement and possess a
Declare Statement Data Cell.

Effects: This statement is not executable;
however, Data may be available
for this statement in the form
of a Declare Statement Data
Cell.

Recommendation: If this is not a Declare statement, then make
sure the correct ISN or SRN was
specified and that it applies
to the currently selected SDF
member.

 28 14 Error Message: SDF does not have SRNs.

Description: The compiled source member either did not
contain SRNs or was compiled
without the SRN option being
specified. The SDF member does
not contain any SRN
information.

Effects: The SDF does not contain any SRN
information, therefore
statements cannot be located
using SRN numbers.

Recommendation: Recompile the source member so that SRN
information is available in the
SDF member or use ISNs to
locate the appropriate
Statement Data Cell.

 32 14 Error Message: SRNs not in increasing order ;
search will not be attempted.

Description: The SRNs specified in the SDF member are not
in increasing order and cannot
be used by SDFPKG in a binary
search to locate the Statement
Data Cell.

25

Effects: SDFPKG cannot locate the specified SRN
using its binary search,
therefore Statement Data Cells
cannot be located using SRNs.

Recommendation: Resequence the source member and recompile it so
that the SRNs are in increasing
order, or use ISNs to locate
the Statement Data Cells.

 36 10, 17 Error Message: ISN is outside legal range.

Description: The specified statement number is outside
the range that is legal for the
currently selected SDF member.

Effects: SDFPKG cannot locate the specified ISN
because it is not contained
within the SDF member;
therefore, the Statement Data
Cell information will be
unavailable for the requested
ISN.

Recommendation: Check to see that the correct ISN was specified
and that it exists within the
currently selected SDF member.

 * If the Auto-Select option (Select SDF member implicitly) has been
requested, then modes 5, and 7 through 17 (Locate Modes) can
result in return codes 8 and 12 as well.

26

1.14 SDFPKG ABEND Codes

The SDFPKG ABEND codes are listed and described below:

ABEND Relevant ABEND
Code Mode Numbers Description

4001 all Error Message: Paging Area exhausted, i.e. all pages are
reserved.

Description: The Paging Area is exhausted, i.e. all pages
are reserved and further I/O
is impossible.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot retrieve
any more SDF data.

Recommendation: Check to see that any Reserved SDF data is
Released as soon as possible.
Alternately, the user may
allocate a larger Paging Area.

4002 all Error Message: SYNAD error on HALSDF or alternate DD.

Description: SDFPKG received a SYNAD error while
attempting to use the dataset
specified by the HALSDF or
alternate DD card(s). This may
be the result of an SDF member
Open/Close or Read/ Write
operation failure or SDFPKG
being improperly initialized
with user specified options.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot retrieve
any more SDF data.

Recommendation: Check the user specified SDFPKG initialization
options to make sure that they
are correct and provide SDFPKG
with the correct inputs. In
addition, check to see that the
correct SDF dataset(s) was/were
specified and that they can be
accessed without producing an
error.

4003 5-17 Error Message: Reserve count overflow -- too many reserves
for one page.

Description: SDFPKG has encountered a Reserve count
overflow, i.e the user's

27

program has specified too many
Reserve operations for one SDF
page.

Effects: SDFPKG and the user's program Abend
since SDFPKG can no longer keep
an accurate count of the number
of Reserves applied to a single
SDF page.

Recommendation: Identify the area of the user's program that
continues to Reserve a single
page without ever Releasing it.

4004 5-17 Error Message: Reserve count underflow -- too many Releases
for one page.

Description: SDFPKG has encountered a Reserve count
underflow, i.e. the user's
program has specified too many
Release operations for one SDF
page.

Effects: SDFPKG and the user's program Abend.

Recommendation: Identify the area of the user's program that
Releases a single page without
having ever Reserved it or
Releases it more times than it
was Reserved.

4005 5 Error Message: Bad SDF virtual memory pointer.

Description: SDFPKG was given an invalid virtual memory
pointer, i.e. a pointer that
does not exist within this SDF
member.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot retrieve
the SDF data located at the
specified virtual memory
pointer.

Recommendation: Check to make sure the specified virtual memory
pointer was retrieved or
calculated correctly in the
user's program and that it
applies to the currently
selected SDF member.

4006 8, 15 Error Message: Bad block number specified.

Description: SDFPKG has encountered an invalid Block
number, i.e. a Block number
that is outside the range that

28

is valid for this SDF member.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot locate the
specified Block within the
currently selected SDF member.

Recommendation: Identify the area of the user's program that is
requesting the Block
information and make sure that
it is requesting the
information from the correct
SDF member and that the Block
number is being retrieved or
calculated correctly and that
the limit checking for any
loops is correct.

4007 9, 16 Error Message: Bad symbol number specified.

Description: SDFPKG has encountered an invalid Symbol
number, i.e. a Symbol number
that is outside the range that
is valid for this SDF member.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot locate the
specified Symbol within the
currently selected SDF member.

Recommendation: Identify the area of the user's program that is
requesting the Symbol
information and make sure that
it is requesting the
information from the correct
SDF member and that the Symbol
number is being retrieved or
calculated correctly and that
the limit checking for any
loops is correct.

4008 5-17 Error Message: MODF specified but SDFPKG not Initialized
with UPDAT option.

Description: A call to SDFPKG specified the MODF (Modify)
option; however the UPDAT
(Update) option was not
specified when SDFPKG was
Initialized.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot perform the
requested update, i.e. write
out the Modified SDF page.

Recommendation: Check the user's program to make sure that Update

29

capability is actually desired;
if so, then change the SDFPKG
Initialization call to include
the UPDAT option.

4009 1-17 Error Message: First call to SDFPKG was not Initialize.

Description: The user's program did not Initialize SDFPKG
prior to calling it for the
first time.

Effects: SDFPKG and the user's program Abend
since SDFPKG is not Initialized
and cannot retrieve any SDF
data.

Recommendation: Identify the area of the user's program that
fails to initialize SDFPKG and
add the code to properly
initialize it.

4010 5-17 Error Message: No SDF currently selected.

Description: An SDF member was not selected prior to
requesting Block, Symbol, or
Statement information or prior
to locating an SDF virtual
memory pointer. It is very
possible that a previous SDF
Select may have failed.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot identify
which SDF member is to be used
to retrieve the SDF data.

Recommendation: Identify the area of the user's program that is
requesting the information from
SDFPKG and make sure that an
SDF member is actually selected
prior to requesting the SDF
data.

4011 3 Error Message: Paging Area Rescind failure -- one or more
pages are reserved.

Description: One or more pages were still Reserved when
SDFPKG received a Paging Area
Rescind request.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot Rescind the
Paging Area.

30

Recommendation: Identify the area of the user's program that is
requesting the Paging Area
Rescind and make sure that all
SDF pages have been Released
prior to attempting the
Rescind.

4012 3 Error Message: Paging Area Rescind failure -- no external
area established.

Description: SDFPKG encountered a Paging Area Rescind
request when no external
(Augment) paging area had been
established.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot Rescind
that which it does not have.

Recommendation: Identify the area of the user's program that is
requesting the Paging Area
Rescind and either delete the
request or perform at least one
Paging Area Augment prior to
this request.

4013 0, 2 Error Message: Bad Paging Area Specification.

Description: A Paging Area was incorrectly specified to
SDFPKG by the user's program.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot use the
specified Paging Area.

Recommendation: Identify the area of the user's program that is
specifying the Paging Area and
correct the error.

4014 6 Error Message: Set disposition parameters called prior to
any "locate"-type request.

Description: SDFPKG received a request to set the
disposition parameters prior to
any "locate"-type requests
being made.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot set the
disposition of that which it
does not have.

Recommendation: Identify the area of the user's program that is
making the "Set Disposition"
request and make sure that a
"locate"-type request has been

31

successfully issued prior to
the "Set Disposition" request.

4015 0, 2 Error Message: Bad FCB Area Specification.

Description: An FCB Area was incorrectly specified to
SDFPKG by the user's program.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot use the
specified FCB Area.

Recommendation: Identify the area of the user's program that is
specifying the FCB Area and
correct the error.

4016 n/a Error Message: Bad mode number input.

Description: SDFPKG encountered an invalid Mode number
(i.e., one not between 0 and
17).

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot identify
the mode desired by the user.

Recommendation: Identify the area of the user's program that is
making the invalid request and
correct it.

4017 0 Error Message: Multiple calls to SDFPKG Initialize.

Description: SDFPKG has encountered multiple requests to
Initialize itself prior to a
Terminate request.

 Effects: SDFPKG and the user's program Abend
since SDFPKG cannot initialize
itself more than once without
an intervening Terminate
request.

Recommendation: Identify the area of the user's program that is
requesting the second SDFPKG
Initialize and correct it
either by deleting the second
Initialize request or adding a
Terminate request prior to the
second SDFPKG Initialize
request.

4018 4*Error Message: FCB Area exhausted - automatic GETMAIN was
unsuccessful.

Description: The SDFPKG FCB Area was exhausted and an
automatic GETMAIN was attempted

32

by SDFPKG, but was unsuccessful
in obtaining any more space.

Effects: SDFPKG and the user's program Abend
since SDFPKG does not have the
FCB space to open any more SDF
members and, so, cannot
retrieve any more SDF data.

Recommendation: Identify the area of the user's program that
Initializes SDFPKG and provide
it with a larger initial FCB
area that is allocated by the
user's program or increase the
Region size for the user's
program.

4019 0 Error Message: GETMAIN failure in SDFPKG Initialize.

Description: SDFPKG encountered an error during a GETMAIN
while attempting to Initialize
itself.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot Initialize
itself.

Recommendation: Identify the area of the user's program
performing the SDFPKG
Initialize and allocate all of
the FCB and (PAD) areas in the
user's program, or increase the
Region size for the user's
program.

4020 13 Error Message: HAL Block not "set" prior to locate Symbol
Data Cell using only Symbol
name.

Description: The user did not specify a HAL Block prior
to attempting to locate a
Symbol Data Cell using only the
Symbol name.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot be sure
which Symbol to retrieve as
there may be multiple symbols
of the same name in different
Blocks.

Recommendation: Identify the area of the user's program that is
requesting the Symbol
information and make sure that
the appropriate Block is
specified prior to asking for

33

the Symbol information.

4021 all Error Message: Internal SDFPKG storage area overflow.

Description: SDFPKG has encountered an internal storage
area overflow.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot retrieve
any more SDF data.

Recommendation: Identify the area of the user's program that
performing the SDFPKG
Initialize and allocate all of
the FCB and PAD areas in the
user's program, or increase the
Region size for the user's
program.

4022 4*Error Message: New SDF Select requested when pages of last
selected SDF are Reserved.

Description: After having been initialized in One-FCB
mode (i.e., MISC=8 was
specified during SDFPKG
Initialization), SDFPKG
encountered a request to Select
a new SDF member when one or
more pages of the currently
selected SDF member were still
Reserved.

Effects: SDFPKG and the user's program Abend
since SDFPKG cannot overlay the
current FCB until all pages
have been Released.

Recommendation: Identify the area of the user's program that is
attempting to perform a Select
of a new SDF member and make
sure that all pages Reserved in
the previously Selected member
have been Released, or change
the SDFPKG initialization to
allow multiple FCBs.

 * If the Auto-Select option (Select SDF member implicitly) has been
requested, then modes 5, and 7 through 17 (Locate Modes) can
result in these Abend codes as well.

34

1.15 SDFPKG Mode Calls

A more detailed description of the different SDFPKG modes as well as their inputs
and outputs are described in the following sub-sections.

General Notes:

 1) If the Auto-Select option is requested for mode 5, and 7 through 17 calls
then return codes 8 and 12 apply additionally. Also, the SDFNAM field
of the communication area must be set to the 8-character SDF name.

 2) The MISC field of the communication area is used only as an input to
Initialize.

 3) Multiple Augments may be performed for either Paging Area or FCB Area

 4) The Paging Area cannot be Augmented past the maximum length of the PAD (the
default length is 250)

 5) None of the augmented FCB Areas can be Rescinded.

 6) All Paging Area augments are removed by a single Rescind.

1.15.1 Mode 0 - Initialize SDFPKG

A. Input: R0 Address of communication table

MODE, R1 0

MISC*1 -- SDFPKG is to automatically GETMAIN the FCB Area as needed

2 -- UPDAT mode (MODF parameter is legal)

4 -- Alternate DDNAME is contained within communication
table field SDFDDNAM (actually the same
field normally occupied by the SDF member
name)

8 -- One-FCB mode (old FCB is overlayed by new FCB each time
a Select is performed)

16 --FIRST mode (Symbol name search returns with the first
name found)

32 --Alternate PAD is supplied.

* More than one MISC option may be specified by combining
them additively.

APGAREA Zero or the address of the calling program supplied external
paging area.

NPAGES Zero or the number of pages in the nucleus paging area.

AFCBAREA Zero or the address of the calling program supplied external

35

FCB area.

NBYTES Zero, the number of bytes in the initial FCB Area, or the
negative value of the number of 128-byte FCB entries
being allocated (generally this is the same as the
number of members in the SDF).

ADDR Zero or the address of the calling program supplied external
PAD Area.

PNTR Zero or the number of 16-byte PAD entries provided by the
calling program

The following table describes the result of different settings for the APGAREA,
AFCBAREA, NPAGES, NBYTES, ADDR, and PNTR input parameters mentioned above.

1) ADDR PNTR RESULTS

a) Address 0 < PNTR <= 4095 SDFPKG will accept the external PAD
provided by the calling program. The
number of entries contained in the PAD
will limit the maximum number of
"slots" in the Paging Area. The Paging
Area cannot be longer than the PAD,
though it may be shorter.

b) 0 PNTR = 0 SDFPKG will use its internal default
(currently 250) for the number PAD
entries. In this situation, the number
of "slots" in the Paging Area is
limited to 250.

2) APGAREA NPAGES RESULTS

a) Address 1 <= N <= PAD Length SDFPKG will accept the paging area of N
pages provided by the calling program
and will not GETMAIN an area of its own

b) 0 1 <= N <= PAD Length SDFPKG will perform its own GETMAIN to build
a paging area of N pages (if N=0,
SDFPKG defaults to 2)

3) AFCBAREA NBYTES RESULTS

a) Address NB > 0, MISC 1 SDFPKG will accept the external FCB
area of NB bytes provided by the
calling program and will not GETMAIN
any areas of its own. The calling
program will be notified of FCB Area
depletion through a return code of 12.

b) Address NB < 0, MISC = 1 SDFPKG will accept the External FCB
area of NB number of 128-byte entries
provided by the calling program and
will not GETMAIN any areas of its own.
The calling program will be notified of

36

FCB Area depletion through a return
code of 12.

c) Address NB > 0, MISC = 1 SDFPKG will accept the external FCB
area of NB bytes provided by the
calling program and will GETMAIN
additional space as needed (in 512-byte
extensions)

d) Address NB < 0, MISC = 1 SDFPKG will accept the external FCB
area of NB number of 128-byte entries
provided by the calling program and
will GETMAIN additional space as needed
(in 512-byte extensions).

e) 0 NB > 0, MISC = 1 SDFPKG will perform a GETMAIN to build
an initial FCB area of NB bytes and
will GETMAIN additional area as needed
(in 512-byte extensions)

f) 0 NB < 0 SDFPKG will perform a GETMAIN to build
an initial FCB area of NB number of
128-byte FCB entries, and will not
GETMAIN any additional area.

g) 0 NB = 0, MISC = 1 SDFPKG will GETMAIN an initial 1024-
byte internal FCB area and will then
GETMAIN additional area as needed (in
512-byte extensions).

B. Output: CRETURN, R15 0 - Operation was successful
 4 - DCB OPEN failure

ADDR, R1 Address of the SDFPKG internal data area.

APGAREA, AFCBAREA,
NBYTES 0

NPAGES Length of PAD (default is 250) - Paging Area
nucleus size, i.e. the number of pages
that can yet be added via an augment
call. Since this is the initialization
call, no pages have been added, and
therefore all of it can be added.

1.15.2 Mode 1 - Terminate SDFPKG

A. Input: MODE, R1 1

B. Output: CRETURN, R15 0 - Operation was successful

APGAREA, AFCBAREA,
NBYTES 0

NPAGES Length of PAD (default is 250). The maximum

37

possible paging area size is limited by
the number of entries in the PAD.

38

1.15.3 Mode 2 - Augment Paging Area and/or FCB Area

A. Input: MODE, R1 2

APGAREA Zero or the address of the external FCB Area
augment

NPAGES Zero or the number of pages in the Paging
Area augment

NBYTES Zero or the number of bytes in the FCB Area
Augment

1) APGAREA NPAGES RESULT

a) Address 1 <= N <= PAD Length Current Paging Area will be extended by the
N page external area

b) 0 - No action

2) AFCBAREA NBYTES RESULT

a) Address NB > 0 The NB byte area will be added to the
available FCB Area

b) 0 - No action

B. Output: CRETURN, R15 0 - Operation was successful

APGAREA, AFCBAREA,
NBYTES 0

NPAGES The number of pages which can yet be added
to the Paging Area

1.15.4 Mode 3 - Rescind Paging Area Augments

A. Input: MODE, R1 3

B. Output: CRETURN, R15 0 - Operation was successful

APGAREA, AFCBAREA,
NBYTES 0

NPAGES The number of pages which can yet be added
to the Paging Area

1.15.5 Mode 4 - Explicitly Select an SDF

A. Input: DISP 0 (Auto-Select parameter should not be
specified)

MODE, R1 4

39

SDFNAME 8 character SDF name, e.g. ##NAVIGA

B. Output: CRETURN, R15 0 - Select was successful
 8 - BLDL was unsuccessful (member not

found)
12 - FCB Area was exhausted (This return

code is valid only if the user's
program is supplying the FCB
Areas)

1.15.6 Mode 5 - Locate Pointer

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 5

PNTR Virtual memory pointer to be located

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core address corresponding to the "located"
pointer

1.15.7 Mode 6 - Set Disposition Parameters

A. Input: DISP {MODF, RESV, RELS}

MODE, R1 6

B. Output: CRETURN, R15 0 - Operation was successful

1.15.8 Mode 7 - Locate Directory Root Cell

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 7

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core address of the Directory Root Cell

PNTR Virtual memory pointer to the Directory Root
Cell

1.15.9 Mode 8 - Locate Block Data Cell given Block Number

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 8

BLKNO Block Number

40

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core address of the Block Data Cell

PNTR Pointer to the Block Data Cell

BLKNLEN Number of characters in the Block name

CSECTNAM Name of the code CSECT of the Block
requested

BLKNAM Block Name (up to 32 characters)

1.15.10 Mode 9 - Locate Symbol Data Cell given Symbol Number

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 9

SYMBNO Symbol Number

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core Address of the Symbol Data Cell

PNTR Pointer to the Symbol Data Cell

SYMBNLEN Number of characters in the Symbol name

SYMBNAM Symbol name (up to 32 characters)

BLKNO Block Number of the Block to which the Symbol belongs

1.15.11 Mode 10 - Locate Statement Data Cell Given Internal Statement Number
(ISN)

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 10

STMTNO ISN

B. Output: CRETURN, R15 0 - Locate was successful
24 - Statement is non-executable (i.e.

Comment or Declare Statement, and
may have a Declare Statement Data
Cell)

36 - ISN is outside legal range

ADDR, R1 Core Address of the Statement Data Cell

PNTR Pointer to the Statement Data Cell

41

 SREFNO, INCLCNT SRN and Include Count (if the SDF has
them)

BLKNO Block number of the Block to which the statement
belongs

1.15.12 Mode 11 - Locate Block Data Cell given Block Name

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 11

BLKNLEN Number of the characters in Block name

BLKNAM Block name

B. Output: CRETURN, R15 0 - Locate was successful
16 - No Block was found with the given name

ADDR, R1 Core Address of the Block Data Cell

PNTR Pointer to the Block Data Cell

BLKNO Block Number

CSECTNAM Name of the Block's code CSECT

1.15.13 Mode 12 - Locate Symbol Data Cell given Block Name and Symbol Name

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 12

BLKNLEN Number of characters in the Block name

SYMBNLEN Number of characters in the Symbol name

SYMBNAM Symbol name

B. Output: CRETURN, R15 0 - Locate was successful
16 - Block was not found
20 - Block was found but the Symbol was not

found

ADDR, R1 Core address of the Symbol Data Cell

PNTR Pointer to the Symbol Data Cell

BLKNO Block number

SYMBNO Symbol number

CSECTNAM Name of the Block's code CSECT

42

1.15.14 Mode 13 - Locate Symbol Data Cell given only Symbol Name

Note: A Mode 13 call must have been preceded at some point by a Mode 8, 11, or 12
call to set the Block in which the Symbol resides. Successive Mode 13
calls are legal.

A. Input: DISP {MODF, RESV, RELS}

MODE, R1 13

SYMBNLEN Number of characters in the Symbol name

SYMBNAM Symbol name

B. Output: CRETURN, R15 0 - Locate was successful
20 - Symbol was not found

ADDR, R1 Core address of the Symbol Data Cell

PNTR Pointer to the Symbol Data Cell

SYMBNO Symbol number

1.15.15 Mode 14 - Locate Statement Data Cell given Statement Reference Number
(SRN)

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 14

SREFNO, INCLCNT Augmented SRN, i.e., SRN + Include Count

B. Output: CRETURN, R15 0 - Locate was successful
20 - SRN was not found
24 - Statement is non-executable (i.e.

Comment or Declare statement, and
may have a Declare Statement Data
Cell)

28 - SDF does not have SRNs
32 - SRNs are not in increasing order

ADDR, R1 Core address of the Executable Statement
Data Cell

PNTR Pointer to the Executable Statement Data
Cell

BLKNO Block number of the Block to which the Statement
belongs

STMTNO ISN

1.15.16 Mode 15 - Locate Block Index Table Entry given Block Number

43

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 15

BLKNO Block Number

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core Address of the Block Index Table Entry

PNTR Pointer to the Block Index Table Entry

CSECTNAM Name of the Block's code CSECT

1.15.17 Mode 16 - Locate Symbol Index Table Entry given Symbol Number

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 16

SYMBNO Symbol number

B. Output: CRETURN, R15 0 - Operation was successful

ADDR, R1 Core address of the Symbol Index Table Entry

PNTR Pointer to the Symbol Index Table Entry

1.15.18 Mode 17 - Locate Statement Index Table Entry given Statement Number

A. Input: DISP {SELECT, MODF, RESV, RELS}

MODE, R1 17

STMTNO ISN

B. Output: CRETURN, R15 0 - Locate was successful
36 - ISN is outside legal range

ADDR, R1 Core address of the Statement Index Table
Entry

PNTR Pointer to the Statement Index Table Entry

SREFNO, INCLCNT Augmented SRN (the SRN and Include count, if
the SDF has SRNs)

44

2.0 SDFPKG Definitions

BLDL - The BLDL macro-instruction is used to place PDS (Partitioned
Data Set) directory information in main storage. The data
is in a build list, which must be constructed before the
BLDL macro instruction is issued. The format of the list is
similar to that of the directory. For each member name in
the list, the system supplies the address of the member and
any additional (user data) information contained in the
directory entry. Note that if there is more than one member
name in the list, the member names must be in alphabetical
order, regardless of whether the members are from the same
or different libraries (PDS files). BLDL can be used to
optimize the retrieval of directory information using the
FIND macro instruction.

CHECK - When processing a dataset, you can test for completion of a READ
or WRITE request by using the CHECK macro instruction. The
system tests for errors and exception conditions in the Data
Event Control Block (DECB). Successive CHECK macro
instructions issued for the same dataset must be issued in
the same order as the associated READ and WRITE macro
instructions.

CLOSE - The CLOSE macro instruction is used to terminate the processing
of a dataset and to release it from a DCB. The volume
dispositioning information that is to result from closing
the dataset can also be specified. The volume
dispositioning options that may be specified are the same as
those that can be specified for the end-of-volume conditions
in the OPEN macro instruction or the JCL DD statement.
Before issuing the CLOSE macro, a CHECK macro must be issued
for all DECBs that have outstanding I/O requests from the
WRITE macro instruction.

Core Memory- The address space (memory) allocated for the job. This is the
virtual memory supported by the MVS Operating System (OS)
and is transparent to the job and the user.

COMMTABL - Communication Table - This contiguous 120-byte Table of
Variables or Structure is used to pass data to and receive
data from SDFPKG.

DATABUF - Data Buffer - This Table lives within SDFPKG and contains
the current status information. The address of this table
is returned in the ADDR variable by SDFPKG after an
initialization call.

FCB - File Control Block - This SDFPKG Data structure contains all
the information needed to Read or Write an SDF page to disk.
See Section 1.0 for contents.

FIND - To determine the starting address of a specific member, the

45

calling program must issue a FIND macro instruction. The
system places the correct address in the Data Control Block
(DCB) so that a subsequent input or output operation begins
processing at that point. There are 2 ways the FIND macro
can be used to direct the system to the correct member: (1)
by specifying the address of an area containing the name of
the member, or (2) by specifying the address of the TTR
field of the entry in a build list that was previously
created using the BLDL macro. In the first case, the system
searches the PDS directory for the relative Track address
(TTR), while in the second case, no search is needed since
the relative track address is in the build list.

HAL/S-FC - The version of the HAL/S Compiler which runs on the Space
Shuttle Flight Computers (AP-101/B or AP-101/S).

HAL/S-360 - The version of the HAL/S Compiler which runs on any IBM
360/370 or compatible machine.

Include Count - This is a sequential number, starting with 1, that is given
to each "card" within a data group that is included into the
main source member.

ISN or ISNs- Internal Statement Number(s) - This is the sequential number that
is assigned by the compiler to every program statement.

OPEN - The OPEN macro instruction is used to complete a Data
Control Block (DCB) that is needed to "open" an associated
dataset. The method of processing (accessing) and the end-
of-volume dispositioning instructions may also be specified.

OS or O/S - Operating system - in our case, this is OS-MVS/SP (Multiple
Virtual Systems/System Product), MVS/XA (MVS/Extended
Architecture), and MVS/ESA (MVS/Enterprise System
Architecture).

PAD - Paging Area Directory - This SDFPKG Data Structure is used
to keep track of the address of a "Page" in the Paging Area
and to correlate which FCB is associated with that Page.
See Section 1.0 for more information.

POINT - The POINT macro instruction causes repositioning of a magnetic
tape or direct access volume to a specified block (not
record). The next read or write operation will then begin
at this block. If a write operation follows the POINT macro
instruction, the operation will begin at the previous block
(assuming the dataset is opened in UPDAT mode). In a multi-
volume dataset, the calling program must insure that the
volume referred to is the volume currently being processed.
If a write operation follows the POINT instruction and the
dataset is not opened in UPDAT mode, then all of the tracks
immediately following the written block will be erased.

READ - The READ macro instruction retrieves a data block (not
record) from an input dataset and places it in a designated
area of main storage. To allow overlap of the input

46

operation with processing, the system returns control to the
calling program before the read operation is completed. The
DECB (Data Event Control Block) created for the read
operation must be tested for successful completion before
the record is processed or the DECB is reused. If a dataset
is being read, the block is brought into main storage and
the address of the block is returned to the calling program
in the DECB.

Real Memory- Real non virtual memory as defined by JCL and the MVS O/S.

SDF - Simulation Data File(s). This is the new name for the
Simulation Tables.

Simulation Data
Files- See SDF.

SDFPKG - Simulation Data File Access Package - This is the SDF access
program that is described within this document.

Simulation
Tables - See SDF.

SRN or SRNs- Statement Reference Number(s) - This is the 6 character sequence
number that appears on the program source "card" in columns
73-78. This SRN, in combination with the Include Count,
creates a unique identifier for every source statement in
the program.

TTR - Track Track Record - Relative Address/Disk I/O - Two kinds
of relative addresses can be used to refer to records in a
direct-access dataset: relative block addresses and
relative track addresses.

The relative block address is a 3-byte binary number that
indicates the position of the block relative to the first
block of the dataset. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a
dataset always has a relative block address of 0.

The relative track address has the form TTR, where:

TT- is a 2-byte binary number specifying the position of the
track relative to the first track allocated for the
dataset. The TT for the first track is 0. Allocation
of noncontinuous sets of tracks does not affect the
number.

R - is a 1-byte binary number specifying the number of the block
relative to the first block on the track TT. The R
value for the first block of data on a track is 1.

User - In almost all cases, this is synonymous with the calling
program.

47

Virtual Memory - The data paging system implemented in SDFPKG.

WRITE - The WRITE macro instruction places a data block (not record) in
an output dataset from a designated area of main memory.
The WRITE macro instruction can also be used to return an
updated record to a dataset. To allow overlap of output
operations with processing, the system returns control to
the calling program before the write operation is completed.
The DECB (Data Event Control Block) created for the write
operation must be tested for successful completion before
the DECB can be reused.

48

3.0 Calling SDFPKG by an Assembler Program

3.1 SDFPKG Register Conventions

When calling SDFPKG from Assembler or an interface program the following Register
Conventions are used.

Register 0 is used only on the Initialize call and contains the address of the
Communication Table.

Figure 10 shows the format for passing the SDFPKG Mode and option(s) in Register
1. As illustrated in Figure 10, the SDFPKG mode is passed in the lower half-word
of register 1 while the disposition options (Auto-Select, Modify, Release, and
Reserve) are passed in the upper most 4 bits (Nibble) of Register 1.

Register 1 Format

 DISP MODE

 0 1 2 3 15 16 31
 +---+
 |^|^|^|^| | Mode Number |
 +---+

 BITS PURPOSE

 0 - Auto-Select
 1 - MODF (Modify)
 2 - RELS (Rescind/Release)
 3 - RESV (Reserve)
 4-15 - Unused
 16-31 - Mode Number

Figure 10: Register 1 Format

Upon return from SDFPKG, the return code is available both in Register 15 and in
the CRETURN location in the Communication Table (COMMTABL). Register 1, as well
as ADDR in the Communication Table, generally contains the core memory address of
the "located" data item.

All other registers are preserved as per standard OS linkage conventions.
Register 13, must point to the calling program register save area at the time of
call.

It should be noted that Communication Table variables are not altered unless they
are explicitly output by the SDFPKG call.

49

3.2 Example Assembler Program

The following is an assembler example of how SDFPKG might be loaded, called, and
deleted:

* INITIALIZE CALL
 LOAD EP=SDFPKG
 ST R0,ASDFPKG SAVE LOAD ADDRESS
*
 LA R0,COMMAREA R0=ADDRESS OF COMMUNICATION AREA
 SR R1,R1 ZERO REGISTER 1
 L R15,ASDFPKG LOAD ADDRESS OF SDFPKG IN R15
 BALR R14,R15 RETURN ADDR + BRANCH TO SDFPKG
 LTR R15,R15 TEST RETURN CODE
 BNZ OPENFAIL IF NONZERO RETURN CODES, OPEN
* FAILED
* ...
* ALL OTHER CALLS
 LA R1,<mode>
 O R1,=X'<disposition parameters>'
 LA R15,ASDFPKG LOAD ADDRESS OF SDFPKG IN R15
 BALR R14,R15 LOAD RETURN ADDRESS + BRANCH TO
* SDFPKG
 LTR R15,R15 TEST RETURN CODE
 BNZ MISCFAIL IF NOT 0 THEN FAILED
* ...
* TERMINATE CALL
 LA R1,1 TERMINATE
 L R15,ASDFPKG LOAD ADDR OF SDFPKG IN R15
 BALR R14,R15 LOAD RETURN ADDR IN R14 &
* BRANCH TO SDFPKG
* ...
 DELETE EP=SDFPKG DELETE SDFPKG
*
ASDFPKG DC 30F'0' ADDRESS OF SDFPKG
COMMAREA DC 30F'0' COMMUNICATION TABLE

Register 0 is used only on the Initialize call and contains the address of the
Communication Table (COMMTABL).

50

4.0 Calling SDFPKG From an XPL Program

All XPL programs using SDFPKG must call it using the MONITOR (22) interface. For
completeness, this Monitor Call is documented in Section 4.1 below.

4.1 SDFPKG Monitor Call

F=MONITOR (22,n,a); This Monitor call causes Load, Call, and
Delete of SDFPKG. This interface is used by
HALSTAT, DASS, and other programs to call
SDFPKG.

Parameter Purpose

22 - Call SDFPKG
 n - SDFPKG Mode (0-17)
 a - Address of the Communication Table

(COMMTABL) interface table. This
interface table is specified only in
the SDFPKG initialize call (mode 0).

4.2 XPL Example Program

The following are examples of how SDFPKG might be called from an XPL Program such
as HALSTAT.

/*########################*/
/* */
/* SDFPKG XPL EXAMPLE */
/* */
/*########################*/

/*===============================*/
/* LIMITING SIZES AND LENGTHS */
/*===============================*/

 DECLARE
 /* PHYSICAL BLOCK SIZE OF SDF PAGES */
 PAGE_SIZE LITERALLY '1680',

 /* MAX NUMBER OF CSECT TYPES */
 MAX_CSECT_TYPES LITERALLY '19',

 /* ALLOW UP TO 1000 PAGES */
 ALT_PAD_SIZE LITERALLY '16000';

 DECLARE
 MISC_VAL LITERALLY '49';

 COMMON
 DW_AD FIXED,
 ADDR_VALUE FIXED,

51

 ADDR_FIXER FIXED,
 ADDR_FIXED_LIMIT FIXED,
 ADDR_ROUNDER FIXED,
 TMP FIXED,
 TMP1 FIXED;

/*--------------------------*/
/* SDF GLOBAL PARAMETERS */
/*--------------------------*/

 COMMON
 /* NUMBER OF FIRST EXECUTABLE STATEMENTS */
 FIRST_STMT BIT(16),

 /* NUMBER OF LAST STATEMENT */
 LAST_STMT BIT(16),

 /* TOTAL NUMBER OF SYMBOL INDEX TABLE ENTRIES */
 #SYMBOLS BIT(16),

 /* TOTAL NUMBER OF STATEMENT INDEX TABLE ENTRIES */
 #STMTS BIT(16),

 /* NUMBER OF INCLUDED COMPOOLS */
 #EXTERNALS BIT(16),

 /* NUMBER OF HAL BLOCKS */
 #PROCS BIT(16),

 REF_STAT BIT(16),
 KEY_BLOCK BIT(16),
 KEY_SYMB BIT(16),
 #GAPS BIT(16),
 #PSEUDO_GAPS BIT(16),
 MIN_GAP BIT(16),
 #OVERLAPS BIT(16),
 #REFS1 BIT(16),
 #REFS2 BIT(16),
 SAVE_BASE BIT(16),
 SAVE_NDX FIXED,
 SELECTED_UNIT BIT(16),
 LAST_MAP_ADDR FIXED,
 LAST_GAP_ADDR FIXED,
 LAST_OVERLAP_ADDR FIXED,
 GAP_SIZE FIXED,
 TOTAL_ERRORS FIXED,
 TOTAL_STACK_WALKS FIXED,
 SEVERE_ERRORS FIXED,
 SAVE_SEVERE_ERRORS BIT(16),
 UNUSED_CNT FIXED,
 TOTAL_EXTRAN_CNT BIT(16),
 TOTAL_EXTRAN_SIZE FIXED,
 UNASSIGN_CNT BIT(16),
 LAST_ERROR FIXED,
 #LIBS BIT(16),
 NONHAL BIT(16),

52

 LIBRARY BIT(16),
 QCON BIT(16),
 LIBRARY_DATA BIT(16),
 MAX_PHASE BIT(16),
 MAP_LEVEL BIT(16),
 MAX_MAP_LEVEL BIT(16),
 FILE_LEVEL BIT(16),
 #U_CMDS BIT(16),
 CARD_NO FIXED,
 GSD_LEVEL BIT(16),
 MSG_LEVEL BIT(16),
 GFORMAT BIT(16),

 MFORMAT BIT(16),
 TOTAL_SYM_REC FIXED,
 TOTAL_SYM_REC_INSERT FIXED,
 TOTAL_RLD_REC FIXED,
 SDFPKG_LOCATES FIXED,
 SDFPKG_READS FIXED,
 SDFPKG_SLECTCNT FIXED,
 SDFPKG_FCBAREA FIXED,
 SDFPKG_PGAREA BIT(16),
 SDFPKG_NUMGETM BIT(16),
 FREE_STRING_SIZE FIXED,
 MIN_STRING_SIZE FIXED,
 LHS_RHS_SPILL_OFFSET BIT(16),

 /* NUMBER OF LABELS */
 #LABELS BIT(16),

 /* NUMBER OF LEFT-HAND SIDES */
 #LHS BIT(16);

 /*--*/
 /* DECLARES FOR SDFPKG COMMUNICATION AREA */
 /*--*/

 COMMON
 COMM_TAB(29) FIXED;

 COMMON BASED
 COMMTABL_BYTE BIT(8),
 COMMTABL_HALFWORD BIT(16),
 COMMTABL_FULLWORD FIXED;

 COMMON
 COMMTABL_ADDR FIXED;

 DECLARE
 APGAREA LITERALLY 'COMMTABL_FULLWORD (0)',
 AFCBAREA LITERALLY 'COMMTABL_FULLWORD (1)',
 NPAGES LITERALLY 'COMMTABL_HALFWORD (4)',
 NBYTES LITERALLY 'COMMTABL_HALFWORD (5)',
 MISC LITERALLY 'COMMTABL_HALFWORD (6)',
 CRETURN LITERALLY 'COMMTABL_HALFWORD (7)',
 BLKNO LITERALLY 'COMMTABL_HALFWORD (8)',

53

 SYMBNO LITERALLY 'COMMTABL_HALFWORD (9)',
 STMTNO LITERALLY 'COMMTABL_HALFWORD (10)',
 BLKNLEN LITERALLY 'COMMTABL_BYTE (22)',
 SYMBNLEN LITERALLY 'COMMTABL_BYTE (23)',
 PNTR LITERALLY 'COMMTABL_FULLWORD (6)',
 ADDRESS LITERALLY 'COMMTABL_FULLWORD (7)',
 SDFNAM LITERALLY 'COMMTABL_ADDR + 32',
 CSECTNAM LITERALLY 'COMMTABL_ADDR + 40',
 SREFNO LITERALLY 'COMMTABL_ADDR + 48',
 INCLCNT LITERALLY 'COMMTABL_HALFWORD (27)',
 BLKNAM LITERALLY 'COMMTABL_ADDR + 56',
 SYMBNAM LITERALLY 'COMMTABL_ADDR + 88';

 /*--*/
 /* DECLARES FOR SDFPKG INTERNAL DATA BUFFER (DATABUF) */
 /*--*/

 COMMON BASED
 DATABUF_BYTE BIT(8),
 DATABUF_HALFWORD BIT(16),
 DATABUF_FULLWORD FIXED;

 DECLARE
 LOCCNT LITERALLY 'DATABUF_FULLWORD (0)',
 AVULN LITERALLY 'DATABUF_FULLWORD (1)',
 CURFCB LITERALLY 'DATABUF_FULLWORD (2)',
 PADADDR LITERALLY 'DATABUF_FULLWORD (3)',
 ACOMMTAB LITERALLY 'DATABUF_FULLWORD (4)',
 ACURNTRY LITERALLY 'DATABUF_FULLWORD (5)',
 ROOT LITERALLY 'DATABUF_FULLWORD (6)',
 SAVEXTPT LITERALLY 'DATABUF_FULLWORD (7)',
 SAVFSYMB LITERALLY 'DATABUF_HALFWORD (16)',
 SAVLSYMB LITERALLY 'DATABUF_HALFWORD (17)',
 NUMGETM LITERALLY 'DATABUF_HALFWORD (18)',
 NUMOFPGS LITERALLY 'DATABUF_HALFWORD (19)',
 BASNPGS LITERALLY 'DATABUF_HALFWORD (20)',
 FCBSTKLN LITERALLY 'DATABUF_HALFWORD (21)',
 IOFLAG LITERALLY 'DATABUF_BYTE (44)',
 GETMFLAG LITERALLY 'DATABUF_BYTE (45)',
 GOFLAG LITERALLY 'DATABUF_BYTE (46)',
 MODFLAG LITERALLY 'DATABUF_BYTE (47)',
 ONEFCB LITERALLY 'DATABUF_BYTE (48)',
 FIRST LITERALLY 'DATABUF_BYTE (49)',
 TOTFCBLN LITERALLY 'DATABUF_FULLWORD (13)',
 RESERVES LITERALLY 'DATABUF_FULLWORD (14)',
 READS LITERALLY 'DATABUF_FULLWORD (15)',
 WRITES LITERALLY 'DATABUF_FULLWORD (16)',
 SLECTCNT LITERALLY 'DATABUF_FULLWORD (17)',
 FCBCNT LITERALLY 'DATABUF_FULLWORD (18)',
 VERSION LITERALLY 'DATABUF_HALFWORD (47)';

 /*---------------------------------*/
 /* MISCELLANEOUS GLOBAL COMMONS */
 /*---------------------------------*/

54

 COMMON BASED
 MISC_NAMES CHARACTER;

 DECLARE
 /* LOAD MODULE NAME */
 LMOD LITERALLY 'MISC_NAMES (0)',

 /* TITLE (TYPE II COMMON) */
 TITLE LITERALLY 'MISC_NAMES (1)',

 /* NAME OF LAST SELECTED SDF */
 SDF_NAME LITERALLY 'MISC_NAMES (2)',

 GOT_NAME LITERALLY 'MISC_NAMES (3)',
 MEM_TYPE LITERALLY 'MISC_NAMES (4)',
 MAX_MISC_NAMES LITERALLY '4';

 /*---------------------------------------*/
 /* SET UP THE SDFPKG COMMUNICATION AREA */
 /*---------------------------------------*/

 COREWORD (ADDR (COMMTABL_BYTE)) = ADDR (COMM_TAB);
 COREWORD (ADDR (COMMTABL_HALFWORD)) = ADDR (COMM_TAB);
 COREWORD (ADDR (COMMTABL_FULLWORD)) = ADDR (COMM_TAB);
 COMMTABL_ADDR = ADDR (COMM_TAB);

 /*--*/
 /* ALLOCATE SDFPKG FILE CONTROL BLOCK AREA */
 /*--*/

 TMP = MAX_UNITS;
 IF TMP < 8 THEN DO;
 TMP = 8;
 END;

 NBYTES = -TMP;
 CALL STORAGE_MGT (ADDR (PRO), SHL (TMP, 7), 1, 0);
 AFCBAREA = COREWORD (ADDR (PRO));

 /*---*/
 /* ALLOCATE AN AUXILIARY SDFPKG PAGING AREA DIRECTORY */
 /*---*/

 CALL STORAGE_MGT (ADDR (PRO), ALT_PAD_SIZE, 1, 0);
 ADDRESS = COREWORD (ADDR (PRO));
 PNTR = ALT_PAD_SIZE;

 /*---*/
 /* INITIALIZE SDFPKG WITH A SMALL PAGING AREA */
 /*---*/

 NPAGES = 2;
 TMP = NPAGES * 1680;
 CALL STORAGE_MGT (ADDR (PRO), TMP, 1, 0);

55

 APGAREA = COREWORD (ADDR (PRO));
 MISC = MISC_VAL;

 /*-------------------*/
 /* INITIALIZE SDFPKG */
 /*-------------------*/

 CALL MONITOR (22, 0, COMMTABL_ADDR);

 IF CRETURN ^= 0 THEN DO;
 SPACE_1;

 OUTPUT = '*** OPEN ERROR DETECTED FOR SDF PDS ' ||
 '-- CORRECT JCL AND RESUBMIT ***';

 GO TO BAIL_OUT;
 END;

 COREWORD (ADDR (DATABUF_BYTE)) = ADDRESS;
 COREWORD (ADDR (DATABUF_HALFWORD)) = ADDRESS;
 COREWORD (ADDR (DATABUF_FULLWORD)) = ADDRESS;

 CALL MOVE (8, BASE_NAME, SDFNAM);

 /*-----------------------------*/
 /* GET THE DIRECTORY ROOT CELL */
 /*-----------------------------*/

 CALL MONITOR (22, "80000007");
 SELECTED_UNIT = 0;

 IF CRETURN ^= 0 THEN DO;
 CSECT_TYPE = 0;

 OUTPUT = '*** SDF ' || BASE_NAME || ' WAS NOT FOUND -- CSECT ' ||
 CSECT_NAME || ' WILL BE ASSUMED NONHAL';

 GO TO ADD_CSECT;
 END;

 GOT_BLK = 0;
 GOT_VAR = 0;
 TMP = LENGTH (WORK_STRING);
 BLKNLEN = TMP;
 CALL MOVE (TMP, WORK_STRING, BLKNAM);

 /*---*/
 /* LOCATE BLOCK DATA CELL GIVEN THE BLOCK NAME */
 /*---*/

 CALL MONITOR (22, 11);
 IF CRETURN = 0 THEN DO;
 GOT_BLK = BLKNO;
 END;

 ELSE DO;

56

 TS = 'BLOCK NOT FOUND: ' || WORK_STRING;
 CALL TEXT_ERROR (TS, 0);
 END;

 GOT_BLK = KEY_BLOCK;
 BLKNO = KEY_BLOCK;

 /*---*/
 /* LOCATE BLOCK DATA CELL GIVEN THE BLOCK NUMBER */
 /*---*/

 CALL MONITOR (22, 8);

 /*--*/
 /* SAVE KEY SDFPKG PARAMETERS FOR USE BY PRINTSUMMARY */
 /*--*/

 SDFPKG_LOCATES = LOCCNT;
 SDFPKG_READS = READS;
 SDFPKG_SLECTCNT = SLECTCNT;
 SDFPKG_FCBAREA = TOTFCBLN;
 SDFPKG_PGAREA = NUMOFPGS;
 SDFPKG_NUMGETM = NUMGETM;

 /*--*/
 /* ALLOW SDFPKG TO TERMINATE ITSELF. THEN IT WILL BE DELETED */
 /*--*/

 CALL MONITOR (22, 1);

57

5.0 Calling SDFPKG From a PL/I Program via an Assembler Interface

The following Assembly Language Interface Program (Section 5.2) is used to invoke
SDFPKG from a PL/I Program. A PL/I example that illustrates SDFPKG Initialize and
Terminate mode calls is included immediately following the Assembler Interface
Program (Section 5.3).

5.1 SDFPKG Assembler Interface Arguments

The PL/I Parameters passed to the SDFPKG Assembler Interface Program are somewhat
different than either XPL or Assembler. The parameters are in the following
format and are described below:

CALL WMHSDFI (MODE, OPTIONS, COMM_TABLE, DEBUG, TITLE)

MODE - This parameter is the same 0-17 number used by both other SDFPKG
interfaces; however, it does not contain the Disposition
(DISP) options that are placed in the upper 4 bits (Nibble)
as with the other two interfaces.

OPTIONS - This parameter contains the SDFPKG Disposition options that are
specified in the upper 4 bits of the mode parameter for the
normal Assembler/SDFPKG (Section 3.0) and the XPL/SDFPKG
(Section 4.0) interfaces. In this parameter, however, the
options are passed in the low order 4 bits (Nibble) of the
fullword.

COMM_TABLE - This parameter serves the same purpose as COMMTABL in the
Assembler/SDFPKG (Section 3.0) and the XPL/SDFPKG (Section
4.0) interfaces. In an effort to make the interface more
"user-friendly," the table was modified to take advantage of
PL/I variable length character strings; thereby automating
the process of setting the length for the Block name length
and Symbol name length fields. In addition, the interface
call to WMHSDFI was changed to pass the COMM_TABLE parameter
each time in order to make it more consistent across the
different SDFPKG modes.

DEBUG_FLAG - This parameter does not exist in any other interface; its purpose
is to "Snap" (Dump) data areas from the WMHSDFI interface so
the user can verify the correct data is being imported to
his/her program.

TITLE - This parameter contains a title that will be printed at the
beginning of the debug data produced by the WMHSDFI
interface. This particular interface example does not
implement this feature since its implementation requires
changes be made to both the SNAPL macro and its
corresponding program SCDLSNAP.

58

5.2 PL/I SDFPKG Assembler Interface

* *
* MEMBER NAME: WAHSDFI *
* CSECT NAME: WAHSDFI *
* TITLE: PL/I PROCESSOR -- SDFPKG INTERFACE PROGRAM *
* FUNC. AREA: HALSTAT *
* PROGRAMMER: PETER KOESTER, JEFF DAY, AND GERALD CETRONE, III *
* OVERVIEW: MODULE WHICH IS CALLED BY A PL/I PROGRAM TO *
* INITIALIZE, EXECUTE, AND TERMINATE THE SDFPKG *
* ENTRY POINT: WMHSDFI *
* INVOCATION: CALL WMHSDFI (PLIMODE, PLIOPTS, PLICOMM, *
* DEBUGFLAG, DEBUGTITLE) *
* RETURN CODE: AT RETURN, REG 15 WILL CONTAIN THE SAME RETURN CODE *
* SET BY THE SDFPKG *
* *
* HISTORY==> INITIAL DEVELOPMENT: *
* DEVELOPED IN 3/91 AS A PART OF AN EFFORT TO PROTO- *
* TYPE HALSTAT OPTIONS BY PETER KOESTER. AT THE TIME *
* OF DEVELOPMENT, THERE WERE NO PLANS FOR THIS MODULE *
* TO BE PLACED IN PRODUCTION USE. *
* *
* SUBSEQUENT CHANGES: *
* *
* *
* COMMENTS: *
* *
* REGISTER ALLOCATIONS: *
* *
* REGISTER PURPOSE *
* -------- ------------------------------------ *
* $0 -- DSA LENGTH (SETUP) *
* -- ADDR ASSEMBLER COMMUNICATION TABLE *
* *
* $1 -- FIRST BYTE OF DSA (SETUP) *
* -- POINTER TO PL/I PARAMETER ADDRESSES *
* -- COMBINED SDFPKG MODE # AND OPTIONS *
* *
* $2 -- FREE *
* *
* $3 -- FREE *
* *
* $4 -- POINTER TO PL/I PARAMETER ADDRESSES *
* -- SCRATCH REGISTER *
* *
* $5 -- ADDRESS OF PL/I MODE # PARAMETER *
* *
* $6 -- ADDRESS OF PL/I OPTIONS PARAMETER *
* *
* $7 -- ADDRESS OF PL/I COMMUNICATION TABLE *
* *
* $8 -- SNAPL TRACE FLAG INPUT FROM PL/I *
* *
* $9 -- ADDRESS OF DEBUG/TRACE TITLE INPUT FROM PL/I *
* *

59

* $10 -- BASE REGISTER 1 *
* *
* $11 -- BASE REGISTER 2 *
* *
* $12 -- USED IN DSA SETUP *
* -- SCRATCH REGISTER *
* *
* $13 -- ADDRESS OF NEXT DSA AREA *
* *
* $14 -- BALR RETURN ADDRESS *
* *
* $15 -- BALR BRANCH ADDRESS *
* -- MODULE RETURN CODE *
* *

 EJECT

* *
* MACRO TO ESTABLISH A PL/I NAME IN AN APPROPRIATE FORMAT *
* *

 MACRO
 PLINAME &ID
 LCLA &IFODD,&STRLEN
 DS 0H
&STRLEN SETA K'&ID
&IFODD SETA &STRLEN-&STRLEN/2*2
 AIF (&IFODD EQ 1).NODD
 DC C' '
 DC C'&ID'
 DC AL1(&STRLEN)
 MEND
 EJECT

* *
* GENERAL NON-EXECUTABLE SETUP OPERATIONS: *
* 1) ESTABLISH CSECT NAME *
* 2) SPECIFY PL/I NAME *
* 3) ESTABLISH ENTRY POINT *
* 4) GENERATE REGISTER EQUATE STATEMENTS *
* *

WAHSDFI CSECT
 PLINAME SDF_PACKAGE_CALLER
 ENTRY WMHSDFI
 EQUATE
 EJECT

* *
* PROGRAM INITIALIZATION: *
* 1) SAVE REGISTERS *
* 2) ESTABLISH BASE REGISTER *
* 3) SAVE POINTER TO INPUT PARAMETERS *
* 4) ALLOCATE AND INITIALIZE A SAVE AREA FROM THE PL/I LIFO STACK*
* *

60

WMHSDFI DS 0H
 STM $14,$12,12($13) STORE CALLER'S REGISTERS
 BALR $10,0 ESTABLISH BASE REGISTER
 USING *,$10,$11
 LR $11,$10
 A $11,=F'4096'
 LR $4,$1 SAVE POINTER TO INPUT
* * PARAMETERS

* *
* ALLOCATE AND INITIALIZE A SAVE AREA FROM THE PL/I LIFO STACK SO *
* THAT IT IS IDENTIFIABLE AS A PL/I-LIKE DSA *
* *

 LA $0,MAINEND-MAINSA LENGTH OF DSA
 L $1,76(,$13) ADDR OF FIRST BYTE
* * BEYOND CURRENT DSA
 ALR $0,$1 IF NEW DSA WILL NOT FIT
* IN STACK
 CL $0,12(,$12)
 BNH SDF001 THEN
 L $15,116(,$12) CALL THE PL/I
* * STORAGE OVERFLOW
 BALR $14,$15 * TO TRY FOR MORE
* * STACK SPACE
SDF001 EQU * ENDIF
 ST $0,76(,$1) POINT TO NEXT AVAILABLE
* * STACK ADDR
 ST $13,4(,$1) SET DSA CHAIN-BACK ADDR
 MVC 72(4,$1),72($13) COPY ADDRESS OF LIBRARY
* * WORKSPACE
 LR $13,$1 ESTABLISH BASE REG OF
* * NEW DSA
 USING MAINDSA,$13
 MVI MAINDSA,X'80' SET FLAGS IN NEW DSA TO
* * PRESERVE
 MVI MAINDSA+1,X'00' * PL/I ERROR HANDLING IN
 MVI MAINDSA+86,X'91' * THIS ASSEMBLER ROUTINE
 MVI MAINDSA+87,X'C0'
 EJECT

* *
* LOAD ADDRESSES OF INPUT PARMS *
* IF THE MODE_# (INPUT PARM #1) IS ZERO, THEN *
* LOAD THE SDFPKG PROGRAM *
* ENDIF *
* *

 LM $5,$9,0($4) LOAD ADDRESSES OF FIVE
* * INPUT PARMS
 L $1,0(,$5) LOAD MODE_#
 USING DTITLE,$9
*
 L $8,0($8) GET DEBUG FLAG
 SRL $8,31 MOVE DEBUG FLAG TO LOW
* * ORDER BIT

61

*
 IF F,($8),EQ,=F'1',THEN IF DEBUG FLAG THEN
 SNAPL ID='MODE #'
 ENDIF ENDIF
*
 IF F,($1),IS,ZERO,THEN IF MODE 0 THEN
 LOAD EP=SDFPKG
 ST $0,SDFPKG SAVE ADDRESS OF
* * SDFPKG ENTRY POINT
 SLR $1,$1 RESET MODE_# = 0
 XC MODCALLS(72),MODCALLS ZERO MODCALLS TABLE
 ENDIF ENDIF

* *
* COUNT NUMBER OF EACH MODE CALL *
* *

 LR $2,$1 GET MODE CALL
 SLL $2,2 GET OFFSET INTO MODCALLS
* * TABLE
 L $3,MODCALLS($2) GET #CALLS FOR MODE
 A $3,=F'1' ADD 1 MORE CALL TO ENTRY
 ST $3,MODCALLS($2) PUT # CALLS BACK IN TABLE

* *
* MOVE DATA FROM PL/I VERSION OF THE COMMUNICATION TABLE TO THE *
* TRUE SDFPKG COMMUNICATION TABLE *
* *

 USING PCOMMTAB,$7
*
 IF F,($8),EQ,=F'1',THEN IF DEBUG FLAG THEN
 SNAPL ID='PCOMTAB1',START=($7),LENGTH=132
*
 IF F,($1),IS,ZERO,THEN IF MODE 0 THEN
 L $2,PADDR
 SNAPL ID='PAD AREA',START=($2),LENGTH=4000
 ELSE ELSE
 L $2,DBUFADDR
 SNAPL ID='DATABUFF1',START=($2),LENGTH=124
 ENDIF ENDIF
 ENDIF ENDIF
*
 IF F,PAPGAREA,EQ,=X'FF000000',THEN IF PL/I NULL PTR, THEN
 MVC APGAREA(4),=F'0' ZERO FIELD
 ELSE ELSE
 MVC APGAREA,PAPGAREA MOVE DATA DIRECTLY
 ENDIF ENDIF
 IF F,PFCBAREA,EQ,=X'FF000000',THEN IF PL/I NULL PTR, THEN
 MVC AFCBAREA(4),=F'0' ZERO FIELD
 ELSE ELSE
 MVC AFCBAREA,PFCBAREA MOVE DATA DIRECTLY
 ENDIF ENDIF
 MVC MOVE1(MOVE1END-MOVE1),PMOVE1 BLOCK DATA MOVES
 MVC MOVE2(MOVE2END-MOVE2),PMOVE2
 MVC MOVE3(MOVE3END-MOVE3),PMOVE3

62

 LA $0,COMMTABL COMM TABLE ADDR
*
 IF F,($1),IS,ZERO,THEN IF MODE_# IS 0, THEN
 IF T,MISC+1,X'04',OFF,THEN IF DEFAULT SDF NAME
* TO BE USED THEN
 MVC SDFDDNAM(8),HALSDF MOVE DEFAULT DD
* * NAME
 MVC PDDNAM(8),HALSDF MOVE DEFAULT DD
* * NAME
 ELSE ELSE
* ALTERNATE DDNAME
* * IS TO BE USED
 MVC SDFDDNAM(8),PDDNAM MOVE ALT. DD NAME
 OI MISC+1,X'04' * AND TELL SDFPKG
* * TO USE IT
 ENDIF ENDIF
*
 ELSE ELSE
 MVC SDFNAM,PSDFNAM MOVE SDF NAME
 ENDIF ENDIF
 MVC BLKNAM,PBLKNAM MOVE VARY-LEN FIELDS
 MVC SYMBNAM,PSYMBNAM AND
 MVC BLKNLEN(1),PBLKNLEN+1 THEIR LENGTHS
 MVC SYMBNLEN(1),PSYMNLEN+1

* *
* ESTABLISH INPUT REGISTER CONTENTS AND CALL SDFPKG PROGRAM *
* *

 L $15,SDFPKG ADDRESS OF SDFPKG
 SLR $3,$3 GET THE SDFPKG OPTION
 ICM $3,B'1000',3($6) * BITS AND 'OR' THEM
 SLL $3,4 * TO REG 1 -- THE
 OR $1,$3 * MODE IS IN REG 1
*
 IF F,($8),EQ,=F'1',THEN IF DEBUG FLAG THEN
 SNAPL ID='ACOMTAB1',START=COMMTABL,LENGTH=120
 ENDIF ENDIF
*
 BALR $14,$15 CALL SDFPKG
 ST $15,RETCODE SAVE RETURN CODE
*
 IF F,($1),IS,ZERO,THEN IF MODE 0 THEN
 MVC DBUFADDR,ADDR
 ENDIF ENDIF
*
 IF F,($8),EQ,=F'1',THEN IF DEBUG FLAG THEN
 SNAPL ID='ACOMTAB2',START=COMMTABL,LENGTH=120
 ENDIF ENDIF
*
 EJECT

* *
* MOVE DATA FROM SDFPKG COMMUNICATION TABLE TO THE PL/I VERSION *
* OF THE SDFPKG COMMUNICATION TABLE *
* *

63

 IF F,APGAREA,EQ,=X'00000000',THEN IF ADDR IS 0, THEN
 MVC PAPGAREA,=X'FF000000' MOVE NULL POINTER
 ELSE ELSE
 MVC PAPGAREA,APGAREA MOVE DATA DIRECTLY
 ENDIF ENDIF
 IF F,AFCBAREA,EQ,=X'00000000',THEN IF ADDR IS 0, THEN
 MVC PFCBAREA,=X'FF000000' MOVE NULL POINTER
 ELSE ELSE
 MVC PFCBAREA,AFCBAREA MOVE DATA DIRECTLY
 ENDIF ENDIF
 MVC PMOVE1(MOVE1END-MOVE1),MOVE1 BLOCK MOVES
 MVC PMOVE2(MOVE2END-MOVE2),MOVE2
 MVC PMOVE3(MOVE3END-MOVE3),MOVE3
 MVC PBLKNAM,BLKNAM MOVE VARY-LEN DATA
 MVC PSYMBNAM,SYMBNAM AND
 MVC PBLKNLEN,=H'0' FIELD LENGTHS
 MVC PBLKNLEN+1(1),BLKNLEN
 MVC PSYMNLEN,=H'0'
 MVC PSYMNLEN+1(1),SYMBNLEN
*
 IF F,($8),EQ,=F'1',THEN IF DEBUG FLAG THEN
 SNAPL ID='PCOMTAB2',START=($7),LENGTH=132
 L $2,DBUFADDR
 SNAPL ID='DATABUFF2',START=($2),LENGTH=124
 L $2,ADDR
 S $2,=F'32'
 SNAPL ID='32 BEFORE',START=($2),LENGTH=32
 L $2,ADDR
 SNAPL ID='DATA @ ADDR',START=($2),LENGTH=1680
 ENDIF ENDIF
*
 EJECT

* *
* IF THE MODE_# (INPUT PARM #1) IS ONE, THEN *
* DELETE THE SDFPKG PROGRAM *
* ENDIF *
* *

 IF F,0(,$5),EQ,=F'1',THEN IF MODE 1 THEN
 DELETE EP=SDFPKG
 L $15,RETCODE RESTORE RETURN CODE
 ENDIF ENDIF

* *
* PROGRAM TERMINATION *
* *

 STH $15,CRETURN STORE RETURN CODE
 L $13,4(,$13) RESTORE SAVE AREA
 RETURN (14,12),RC=(15)
 DROP $7,$10,$11,$13
 EJECT

* *

64

* DATA DECLARATIONS *
* *

 SPACE 2
SDFPKG DS A ADDRESS OF SDFPKG ENTRY POINT
 SPACE 2
DBUFADDR DS A DATA BUFF ADDRESS
 SPACE 2
HALSDF DC CL8'HALSDF ' DEFAULT SDF DD NAME
 SPACE 2
MODCALLS DS 50F TABLE SHOWING # TIMES A MODE WAS
* USED
 SPACE 2
RETCODE DS F RETURN CODE FROM BALR TO SDFPKG
 SPACE 2
WORKTITL DS CL133 TITLE WORKING AREA
 EJECT

* *
* DATA DECLARATIONS FOR ASSEMBLER SDFPKG COMMUNICATIONS TABLE *
* *

COMMTABL DS 0D SDFPKG COMMUNICATION TABLE
APGAREA DS A * PAGING AREA ADDRESS POINTER
AFCBAREA DS A * FILE CNTL BLK AREA ADDRESS POINTER
MOVE1 EQU * * START OF BLOCK MOVE 1
NPAGES DS H * NO. OF PAGES IN PAGING AREA
NBYTES DS H * NO. OF BYTES IN FCB AREA
MISC DS H * MISCELLANEOUS PURPOSE FIELD
CRETURN DS H * SDFPKG RETURN CODE
BLKNO DS H * BLOCK NUMBER
SYMBNO DS H * SYMBOL NUMBER
STMTNO DS H * STATEMENT NUMBER
MOVE1END EQU * * END OF BLOCK MOVE 1
BLKNLEN DS CL1 * NO. OF CHAR IN BLOCK NAME (BLKNAM)
SYMBNLEN DS CL1 * NO. OF CHAR IN SYMB NAME (SYMBNAM)
MOVE2 EQU * * START OF BLOCK MOVE 2
PNTR DS F * SDF POINTER TO DATA
ADDR DS A * MEMORY ADDRESS OF DATA IN PG. AREA
MOVE2END EQU * * END OF BLOCK MOVE 2
SDFDDNAM EQU * * ALTERNATE DD NAME FOR SDF DATASET
SDFNAM DS CL8 * NAME OF SDF TO BE SELECTED
MOVE3 EQU * * START OF BLOCK MOVE 3
CSECTNAM DS CL8 * NAME OF CODE CSECT FOR BLOCK
SREFNO DS CL6 * STATEMENT REFERENCE NUMBER (SRN)
INCLONT DS H * INCLUDE COUNT (FOR SRN)
MOVE3END EQU * * END OF BLOCK MOVE 3
BLKNAM DS CL32 * BLOCK NAME
SYMBNAM DS CL32 * SYMBOL NAME
COMMEND DS 0F SDFPKG COMMUNICATION TABLE END
 LTORG
 EJECT

* *
* DSECTS *
* 1) SAVE AREA --NEW DSA *

65

* 2) PL/I VERSION OF SDFPKG COMMUNICATION TABLE *
* 3) PL/I DEBUG TITLE *
* *

MAINDSA DSECT SAVE AREA IN PL/I DSA FORMAT
MAINSA DS 22F
MAINEND DS 0D
PCOMMTAB DSECT PL/I VERSION OF SDFPKG COMMUN. TABLE
PAPGAREA DS A * PAGING AREA ADDRESS POINTER
PFCBAREA DS A * FILE CNTL BLK AREA ADDRESS POINTER
PMOVE1 DS 0H
PNPAGES DS H * NO. OF PAGES IN PAGING AREA
PNBYTES DS H * NO. OF BYTES IN FCB AREA
PMISC DS H * MISCELLANEOUS PURPOSE FIELD
PCRETURN DS H * SDFPKG RETURN CODE
PBLKNO DS H * BLOCK NUMBER
PSYMBNO DS H * SYMBOL NUMBER
PSTMTNO DS H * STATEMENT NUMBER
PPAD DS H ********** ALIGNMENT PAD ************
PMOVE2 DS 0H
PPNTR DS F * SDF POINTER TO DATA
PADDR DS A * MEMORY ADDRESS OF DATA IN PG. AREA
PDDNAM DS CL8 * ALTERNATE DD NAME FOR SDF DATASET
PSDFNAM DS CL8 * NAME OF SDF TO BE SELECTED
PMOVE3 DS 0H
PCSECTNM DS CL8 * NAME OF CODE CSECT FOR BLOCK
PSREFNO DS CL6 * STATEMENT REFERENCE NUMBER (SRN)
PINCLONT DS H * INCLUDE COUNT (FOR SRN)
PBLKNLEN DS H * NO. OF CHAR IN BLOCK NAME (BLKNAM)
PBLKNAM DS CL32 * BLOCK NAME
PSYMNLEN DS H * NO. OF CHAR IN SYMB NAME (SYMBNAM)
PSYMBNAM DS CL32 * SYMBOL NAME
PCOMMEND DS 0F END OF PL/I VERSION OF COMMUN. TABLE
*
DTITLE DSECT PL/I DEBUG TITLE
TITLELEN DS H * TITLE LENGTH
TITLE DS CL133 * PL/I TITLEBLK AREA ADDRESS POINTER
DTITLEND DS 0F END OF PL/I TITLE AREA
*
WAHSDFI CSECT
 END WMHSDFI

66

5.3 PL/I Procedures Which Call the SDFPKG Assembler Interface

 /*--*/
 /* FUNCTIONAL TITLE OF CSECT: INCLUDE MEMBER CONTAINING SDFPKG- */
 /* PL/I INTERFACE ROUTINES */
 /* */
 /* LANGUAGE: PL/I */
 /* */
 /* PROGRAMMER: JEFF DAY, AND GERALD CETRONE III */
 /* */
 /* COMMENTS: */
 /* */
 /* THE FOLLOWING DECLARES ARE MAPPINGS OF DATA AREAS WITHIN SDFS */
 /* THAT ARE RETURNED BY SDFPKG.POINTER (SDFADDR). FOR FURTHER */
 /* INFORMATION CONCERNING THESE DATA AREAS AND THEIR MEANING */
 /* SEE : */
 /* */
 /* "SPACE SHUTTLE ORBITER AVIONICS SOFTWARE" */
 /* "HAL/SDL INTERFACE CONTROL DOCUMENT" */
 /* "SDFPKG MEMO" */
 /*--*/

 %PAGE;
 /*---*/
 /* DECLARE MISCELLANEOUS VARIABLES FOR EXAMPLE PROGRAM */
 /*---*/
 DECLARE
 TOGGLE_BIT_STR(100) BIT, /* TRACE FLAG BITS */

 %PAGE;
 /*--*/
 /* DECLARE COVER VARIABLES FOR SDFPKG MONITOR CALLS */
 /*--*/

 DECLARE
 SDF_INIT FIXED BIN(31) /*SDFPKG INITIALIZE*/
 INIT (0), /* MODE */
 SDF_TERM FIXED BIN(31) /*SDFPKG TERMINATE */
 INIT (1), /* MODE */
 SDF_AUG_PG FIXED BIN(31) /*SDFPKG AUGMENT */
 INIT (2), /* PAGING AREA */
 SDF_RESC_AUG FIXED BIN(31) /*SDFPKG RESCIND */
 INIT (3), /* ALL AUGMENTS */
 SDF_SEL_EXPL FIXED BIN(31) /*SDFPKG SELECT SDF*/
 INIT (4), /* EXPLICITLY */
 SDF_LOC_PTR FIXED BIN(31) /*SDFPKG LOCATE SDF*/
 INIT (5), /* POINTER */
 SDF_SET_DISP FIXED BIN(31) /*SDFPKG SET DISPO-*/
 INIT (6), /* SITION */
 SDF_ROOT FIXED BIN(31) /*SELECT SDF ROOT */
 INIT (7), /* CELL */
 SDF_BLK_BLK# FIXED BIN(31) /*GET BLOCK DATA */
 INIT (8), /* USING BLOCK NO. */
 SDF_SYMB_SYMB# FIXED BIN(31) /*GET SYMBOL DATA */
 INIT (9), /* USING SYMBOL NO.*/
 SDF_STMT_STMT# FIXED BIN(31) /*GET STATEMNT DATA*/

67

 INIT (10), /* USING STMT NO. */
 SDF_BLK_NAME FIXED BIN(31) /*GET BLOCK DATA */
 INIT (11), /* USING BLOCK NAME*/
 SDF_SYMB_BLK_SYMB FIXED BIN(31) /*GET SYMBOL DATA */
 INIT (12), /* USING BLK &SYMB */
 SDF_SYMB_NAME FIXED BIN(31) /*GET SYMBOL DATA */
 INIT (13), /* USING SYMB NAME */
 SDF_STMT_SRN FIXED BIN(31) /*GET STATEMNT DATA*/
 INIT (14), /* USING SRN */
 SDF_BINDEX_BLK# FIXED BIN(31) /*GET BLOCK INDEX */
 INIT (15), /* TABLE DATA */
 SDF_SYINDEX_SYMB# FIXED BIN(31) /*GET SYMBOL TABLE */
 INIT (16), /* DATA */
 SDF_STINDEX_STMT# FIXED BIN(31) /*GET STATEMENT */
 INIT (17); /* INDEX TABLE DATA*/

 %PAGE;
 /*--*/
 /* DECLARE COVER VARIABLES FOR SDFPKG MODE OPTIONS */
 /*--*/

 DECLARE
 SDF_AUTO_SELECT FIXED BIN(31) /*SDFPKG PERFORMS */
 INIT (8), /* AUTO-SELECT */
 SDF_MODIFY FIXED BIN(31) /*WRITE MODIFIED */
 INIT (4), /* SDF PAGE TO SDF */
 SDF_RELEASE FIXED BIN(31) /*RELEASE RESERVED */
 INIT (2), /* SDF PAGE */
 SDF_RESERVE FIXED BIN(31) /*RESERVE AN SDF */
 INIT (1), /* PAGE */
 SDF_NO_OPT FIXED BIN(31) /*NO SDFPKG OPTION */
 INIT (0); /* SPECIFIED */

 %PAGE;
 /*--*/
 /* DECLARE COVER VARIABLES SDFPKG INITIALIZATION OPTIONS. */
 /* (MISC VALUES) */
 /*--*/

 DECLARE
 SDF_AUTO_FCB FIXED BIN(31) /*SDFPKG PERFORMS */
 INIT (1), /* GETMAIN FOR FCB */
 SDF_UPDATE_MODE FIXED BIN(31) /*UPDATE MODE IS */
 INIT (2), /* ALLOWED FOR SDF */
 SDF_ALT_DD FIXED BIN(31) /*USE DD NAME OTHER*/
 INIT (4), /* THAN HALSDF */
 SDF_ONE_FCB FIXED BIN(31) /*USE ONLY 1 FCB */
 INIT (8),
 SDF_FIRST_SYMBOL FIXED BIN(31) /*RETURN FIRST SYMB*/
 INIT (16), /* FOUND IN SEARCH */
 SDF_ALT_PAD FIXED BIN(31) /*ALTERNATE PAD IS */
 INIT (32); /* SUPPLIED */

 /*--*/
 /* DECLARE SDFPKG INITIALIZATION OPTIONS */
 /*--*/

68

 DECLARE
 /*OPTIONS IN EFFECT ARE A */
 /* SUMMATION OF THE INITIAL- */
 /* IZATION OPTIONS DECLARED */
 /* ABOVE. */
 SDF_MISC_VAL FIXED BIN(31); /*SDFPKG INIT OPTS*/

 %PAGE;
 /*--*/
 /* DECLARE SDFPKG PAGING AREA IN PL/I */
 /*--*/

 DECLARE
 SDF_DBUFF_AREA_PTR POINTER, /*DATA BUFFER PTR */
 SDF_NO_PAGES FIXED BIN(31) /*NO SDFPKG PAGING*/
 INITIAL (250), /* AREAS */
 SDF_ALT_PAD_SIZE FIXED BIN(31) /*ADDED PAGING */
 INITIAL (4000), /* AREA DIR. SIZE */
 SDF_PAGING_AREA (250, 420) FIXED BIN(31), /*SDF PAGING AREA */
 SDF_FCB_AREA (2000, 32) FIXED BIN(31), /*FILE CNTL BLK */
 SDF_FCB_SIZE FIXED BIN(15) /*FILE CNTL BLK */
 INITIAL (-2000), /* AREA SIZE */
 SDF_PAD_AREA (250, 4) FIXED BIN(31); /*PAGING DIRECTORY*/

 %PAGE;
 /*--*/
 /* WMHSDFI IS AN ASSEMBLY LANGUAGE INTERFACE ROUTINE BETWEEN A */
 /* PL1 PROCESSOR AND SDFPKG. IT MUST BE LINK-EDITED INTO THE */
 /* CALLING PL/I MODULE. */
 /*--*/

 DECLARE
 WMHSDFI ENTRY OPTIONS (ASSEMBLER, INTER);

 %PAGE;
 /*--*/
 /* THE FOLLOWING IS A MAPPING OF THE SDFPKG/USER COMMUNICATION */
 /* AREA. ITS ADDRESS IS RETURNED IN SDFCOMAREA AS A RESULT OF THE */
 /* MODE 0 CALL TO SDFPKG */
 /*--*/

 DECLARE
 1 SDF_COMM_TABLE,
 2 ADDR_PAGING_AREA POINTER, /*ADDR PAGING AREA */
 2 ADDR_FCB_AREA POINTER, /*ADDR FCB AREA */
 2 #PAGES FIXED BIN(15), /*NO PAGES IN AREA */
 2 #BYTES_IN_FCB FIXED BIN(15), /*NO. BYTES IN FCB */
 2 MISC FIXED BIN(15), /*MISC. PURPOSES */
 2 CRETURN FIXED BIN(15), /*SDFPKG RTRN CODE */
 2 BLOCK_NO FIXED BIN(15), /*BLOCK NUMBER */
 2 SYMBOL_NO FIXED BIN(15), /*SYMBOL NUMBER */
 2 STMT_NO FIXED BIN(15), /*STATEMENT NO. */
 2 UNUSED FIXED BIN(15), /*SPACE HOLDER */
 2 PNTR FIXED BIN(31), /*SDF ROW/COL PTR */
 /* OF DATA */

69

 2 ADDRESS POINTER, /*ADDR RETURNED */
 /* CELL */
 2 DD_NAME CHAR(8), /*NAME SDF DATASET */
 /* DD CARD */
 2 SDF_NAME CHAR(8), /*NAME SDF TO */
 /* SELECT */
 2 CSECT_NAME CHAR(8), /*NAME CODE CSECT */
 2 STMT_REF_NO CHAR(6), /*STATEMENT REF NO */
 2 INCLUDE_COUNT FIXED BIN(15), /*INCLUDE COUNT */
 /* (SRN) */
 2 BLOCK_NAME CHAR(32) VARYING, /*BLOCK NAME */
 2 SYMBOL_NAME CHAR(32) VARYING; /*SYMBOL NAME */

 %PAGE;
 DECLARE
 TEMP_ADDR FIXED BIN(31);
 /*--*/
 /* DECLARES FOR SDFPKG INTERNAL DATA BUFFER (DATABUF) */
 /*--*/

 DECLARE
 1 SDF_DATABUFF BASED(SDF_DBUFF_AREA_PTR),
 2 #LOCATES FIXED BIN(31), /*CURRENT NO. */
 /* SDFPKG LOCATES */
 2 ADDR_VULN_ENTRY POINTER, /*ADDR VULNERABLE */
 /* PAD ENTRY */
 2 ADDR_CURRENT_FCB POINTER, /*ADDR CURRENT FCB */
 2 ADDR_PAD POINTER, /*ADDR PAGING AREA */
 /* DIRECTORY */
 2 ADDR_COMMON_TABLE POINTER, /*ADDR SDFCOMTAB */
 2 ADDR_CURRENT_ENTRY POINTER, /*ADDR CURRENT PAD */
 /* ENTRY */
 2 ADDR_ROOT_FCB POINTER, /*ADDR ROOT FCB OF */
 /* FCB TREE */
 2 SYM_NODE_EXTENT_PTR FIXED BIN(31), /*PTR TO SYMB NODE */
 /* EXTENT CELL */
 2 FIRST_SYM_IN_BLK FIXED BIN(15), /*FIRST SYM OF BLK */
 2 LAST_SYM_IN_BLK FIXED BIN(15), /*LAST SYM OF BLK */
 2 #GETMAINS FIXED BIN(15), /*NO. SDFPKG */
 /* GETMAINS */
 2 #PAGES FIXED BIN(15), /*NO. SDFPKG PAGES */
 2 INITIAL_#PAGES FIXED BIN(15), /*INITIAL NO. PGS */
 2 #FCB_STACK_ENTRIES FIXED BIN(15), /*NO. ENTRIES IN */
 /* FCB STACKS */
 2 IO_FLAG BIT(8), /*I/O IN PROGRESS */
 /* FLAG */
 2 GETM_FLAG BIT(8), /*>0 -- DO AUTO */
 /* FCB GETMAINS */
 2 GO_FLAG BIT(8), /*>0 -- SUCCESSFUL */
 /* SDFPKG INIT */
 2 MOD_FLAG BIT(8), /*>0 -- UPDATE */
 /* MODE IS ACTIVE */
 2 ONEFCB_FLAG BIT(8), /*>0 -- KEEP ONLY */
 /* 1 FCB */
 2 FIRST_SYM_FLAG BIT(8), /*>0 -- TAKE 1ST */
 /* SYMBOL FOUND */

70

 2 UNUSED FIXED BIN(15), /*SPARE FIELD */
 2 TOTAL_FCB_LEN FIXED BIN(31), /*TOTAL FCB SPACE */
 /* IN USE */
 2 #RESERVES FIXED BIN(31), /*GLOBAL COUNT OF */
 /* RESERVES */
 2 #READS FIXED BIN(31), /*TOTAL NO. READS */
 2 #WRITES FIXED BIN(31), /*TOTAL NO. WRITES */
 2 #SELECTS FIXED BIN(31), /*TOTAL NO. SELECT */
 2 #FCBS FIXED BIN(31), /*TOTAL NO. FCBS */
 2 GET_MAIN_STK_ADDR POINTER, /*ADDR GETMAIN ADDR*/
 /* STACK */
 2 GET_MAIN_STK_LEN POINTER, /*ADDR GETMAIN */
 /* LENGTH STACK */
 2 FCB_STK_ADDR POINTER, /*ADDR FCB AREA */
 /* ADDRESS STACK */
 2 FCB_STK_LEN POINTER, /*ADDR FCB AREA */
 /* LENGTH STACK */
 2 MAX_STK_ENTRIES FIXED BIN(15), /*MAX NO. STACK */
 /* ENTRIES */
 2 VERSION FIXED BIN(15), /*SDF VERSION NO. */
 2 PAGE_BUFF_ADDR POINTER, /*ADDR PAGE BUFFER */
 2 DECB_ADDR POINTER, /*ADDR DECB */
 2 ECB FIXED BIN(31), /*EVENT CONTROL BLK*/
 2 IO_TYPE FIXED BIN(15), /*I/O TYPE (DECB) */
 2 IO_LENGTH FIXED BIN(15), /*NO. BYTES TO */
 /* TRANSFER (DECB) */
 2 DCB_ADDR POINTER, /*ADDR SDF DCB */
 2 BUFF_ADDR POINTER, /*ADDR BUFFER AREA */
 2 IO_BLK_ADDR POINTER; /*ADDR I/O BLOCK */

 %PAGE;
 /*--*/
 /* DECLARE RECORD FOR SDFPKG FINAL STATISTICS */
 /*--*/

 DECLARE
 1 SDF_TOTALS,
 2 #LOCATES FIXED BIN(31), /*TOTAL NO. SDFPKG */
 /* PAGES LOCATED */
 2 #READS FIXED BIN(31), /*TOTAL NO. SDFPKG */
 /* RECORDS READ */
 2 #WRITES FIXED BIN(31), /*TOTAL NO. SDFPKG */
 /* RECORDS WRITTEN */
 2 #SELECTS FIXED BIN(31), /*TOTAL NO MEMBERS */
 /* SELECTED */
 2 #RESERVES FIXED BIN(31), /*TOTAL COUNT OF */
 /* RESERVES */
 2 #FCBS FIXED BIN(31), /*TOTAL NO. OF FCBS*/

 2 #PAGES FIXED BIN(31), /*TOTAL SDFPKG PAG */
 /* ING AREA SIZE */
 2 #GETMAINS FIXED BIN(31); /*TOTAL NO. SDFPKG */
 /* GETMAINS */

 %PAGE;
 NO_BLANKS: PROCEDURE

71

 (TEXT) RETURNS (CHAR(133) VARYING);

 DECLARE
 TEXT CHAR(*) VARYING,
 NTEXT CHAR(133) VARYING,
 I FIXED BIN(15),
 J FIXED BIN(15);

 NTEXT = '';
 J = LENGTH (TEXT);
 DO I = 1 TO J;
 IF SUBSTR (TEXT, I, 1) ^= ' ' THEN DO;
 NTEXT = NTEXT || SUBSTR (TEXT, I, 1);
 END;
 END;

 RETURN (NTEXT);

 END NO_BLANKS;

 %PAGE;
 /*--*/
 /* PROCEDURE THAT TURNS FIXED BINARY(31) INTEGERS INTO CHARACTER */
 /* NUMBERS WITHOUT LEADING OR TRAILING BLANKS. */
 /*--*/

 FMT31: PROCEDURE
 (DATUM) RETURNS (CHAR(24) VARYING);

 DECLARE
 DATUM FIXED BIN(31),
 RESULT CHAR(24) VARYING;

 RESULT = DATUM;

 RETURN (NO_BLANKS (RESULT));

 END FMT31;

 %PAGE;
 /*--*/
 /* DECODE SDFPKG RETURN CODES AND OUTPUT MESSAGE FOR THEM. */
 /*--*/

 SDFPKG_RETURN_CODE: PROCEDURE
 (RETURN_CODE) RETURNS (CHAR(100) VARYING);

 DECLARE
 RETURN_CODE FIXED BIN(15), /* SDFPKG RETURN CODE*/
 TEMP_STR CHAR(1000) VARYING; /* ERROR MSG STRING */

 SELECT (RETURN_CODE);
 WHEN (0) DO;
 TEMP_STR = 'RETURN CODE = 0; SDFPKG OPERATION WAS ' ||
 'SUCCESSFUL';
 END;

72

 WHEN (4) DO;
 TEMP_STR = 'RETURN CODE = 4; SDFPKG COULD NOT OPEN ' ||
 'DATASET ATTACHED TO HALSDF DD.';
 END;

 WHEN (8) DO;
 TEMP_STR = 'RETURN CODE = 8; SDF MEMBER WAS NOT FOUND ' ||
 'IN PDS AND COULD NOT BE SELECTED.';
 END;

 WHEN (16) DO;
 TEMP_STR = 'RETURN CODE = 16; SDFPKG COULD NOT FIND ' ||
 'SPECIFIED BLOCK NAME.';
 END;

 WHEN (20) DO;
 TEMP_STR = 'RETURN CODE = 20; SDFPKG COULD NOT FIND ' ||
 'SPECIFIED SYMBOL NAME OR SRN.';
 END;

 WHEN (24) DO;
 TEMP_STR = 'RETURN CODE = 24; STATEMENT SPECIFIED IS ' ||
 'NOT AN EXECUTABLE STATEMENT AND SO DOES NOT ' ||
 'HAVE A Executable Statement Data Cell.';
 END;

 WHEN (28) DO;
 TEMP_STR = 'RETURN CODE = 28; THE SDF SPECIFIED DOES ' ||
 'NOT CONTAIN SRNS.';
 END;

 WHEN (32) DO;
 TEMP_STR = 'RETURN CODE = 32; THE SRNS CONTAINED IN ' ||
 'THE SDF ARE NOT IN INCREASING ORDER.';
 END;

 WHEN (36) DO;
 TEMP_STR = 'RETURN CODE = 36; THE SPECIFIED STATEMENT ' ||
 'IS OUTSIDE THE LEGAL RANGE.';
 END;

 OTHERWISE DO;
 TEMP_STR = 'RETURN CODE = ' || RETURN_CODE ||
 '; UNKNOWN SDFPKG RETURN CODE.';
 END;
 END;

 RETURN (TEMP_STR);

 END SDFPKG_RETURN_CODE;

 %PAGE;
 /*--*/
 /* PROCEDURE TO INITIALIZE SDFPKG AND AUGMENT THE SDFPKG PAGING */

73

 /* AREA SDFIR.1100 */
 /*--*/

 SDFPKG_INITIALIZE: PROCEDURE
 (SDF_DD_NAME, SDF_TOTS, SUCCESS_FLAG, ABORT_FLAG);
 /*--*/
 /* */
 /* FUNCTION: */
 /* */
 /* PDS_MEMBERS IS USED TO 1) COUNT THE NUMBER OF MEMBERS IN A PDS*/
 /* 2) RETURN AN 8-BYTE STRING OF EACH */
 /* MEMBER NAME */
 /* THE CALLER MUST DEFINE A 10 FULL WORD WORK AREA FOR EACH DATA */
 /* SET TO BE PROCESSED BY PDS_MEMBERS. THE CALLER MUST SET THE */
 /* DDNAME TO BE USED IN WORDS 3 AND 4 OF THE WORK AREA: */
 /* */
 /* E.G. CALL MVC_STR(ADDR(FW(3)),'DDNAME '); */
 /* */
 /* ALL 8 CHARACTER OF THE DDNAME MUST BE SET. */
 /* */
 /* ON THE FIRST CALL (TYPE 0 OR 3) PDS_MEMBERS WILL SET THE TOTAL*/
 /* NUMBER OF MEMBERS IN WORD 2 OF THE WORK TABLE. */
 /* */
 /* ON THE FOLLOWING NORMAL TYPE CALLS (TYPE 1 OR 4) PDS_MEMBERS */
 /* WILL RETURN A CHARACTER STRING OF THE NEXT MEMBER NAME. */
 /* */
 /* THE FINAL CALL (TYPE 2 OR 5) IS A CLEAN-UP FUNCTION. */
 /* */
 /* IF PDS_MEMBERS IS CALLED USING THE 0-1-2 MODE, IT DOES A */
 /* GETMAIN AND HOLDS ALL OF THE MEMBER NAMES IN CORE. WHEN USED */
 /* IN THIS MODE, MORE THAN ONE DATASET CAN BE PROCESSED BY USING */
 /* N-10 WORD WORK AREAS. */
 /* */
 /* WHEN THE 3-4-5 MODE IS USED, A GETMAIN IS NOT PERFORMED WHICH */
 /* ALLOWS EXECUTION IN A SMALL REGION. ONLY ONE PDS CAN BE */
 /* PROCESSED AT A TIME IN THE 3-4-5 MODE. */
 /* */
 /* THE PDS_MEMBERS INTERFACE TABLE IS DESCRIBED IN THE CODE */
 /* BELOW. */
 /* */
 /*--*/

 DECLARE
 SMLWJPM OPTIONS (ASSEMBLER INTER);

 PDS_MEMBERS:
 PROCEDURE (PDS_WORK_TABLE, TYPE_OF_CALL);

 DECLARE
 1 PDS_WORK_TABLE,
 2 ASSEM_LOAD_MOD CHAR(8), /*LOAD MOD NAME CALLED*/
 2 #MEMBERS FIXED BIN(31), /*NO. MEMBERS IN PDS */
 2 PDS_DD_NAME CHAR(8), /*DD NAME OF PDS */
 2 CALL_MODE FIXED BIN(31), /*MODE PDS_MEMBERS IS */

74

 /* OPERATING IN */
 2 GETMAIN_ADDR POINTER, /*ADDR OF GETMAIN AREA*/
 2 GETMAIN_LENGTH FIXED BIN(31), /*LEN OF GETMAIN AREA */
 2 CURRENT_MEM_NO FIXED BIN(31), /*# OF CURRENT MEMBER */
 /* BEING PROCESSED */
 2 RETURN_CODE FIXED BIN(31), /*ERROR RETURN CODE */
 /* 0=OK; 1=OPEN ERROR */
 2 UNUSED FIXED BIN(31), /*UNUSED FIELD */
 2 MEMBER_NAME CHAR(8); /*DESIRED MEMBER NAME */

 DECLARE
 TYPE_OF_CALL FIXED BIN(31),
 MEM_PTR POINTER;

 PDS_WORK_TABLE.CALL_MODE = TYPE_OF_CALL;

 SELECT (TYPE_OF_CALL);

 /*-----------------------------*/
 /* CASE 0: OPEN PDS DIRECTORY */
 /*-----------------------------*/
 WHEN (0) DO;
 PDS_WORK_TABLE.CALL_MODE = 0;
 PDS_WORK_TABLE.RETURN_CODE = 0;
 PDS_WORK_TABLE.ASSEM_LOAD_MOD = 'SMLWJPM';
 CALL SMLWJPM (PDS_WORK_TABLE);
 /* PDS_WORK_TABLE.CURRENT_MEM_NO = 0; */
 END;

 /*-----------------------------*/
 /* CASE 1: READ PDS DIRECTORY */
 /*-----------------------------*/
 WHEN (1) DO;
 PDS_WORK_TABLE.CALL_MODE = 1;
 CALL SMLWJPM (PDS_WORK_TABLE);
 END;

 /*------------------------------*/
 /* CASE 2: CLOSE PDS DIRECTORY */
 /*------------------------------*/
 WHEN (2) DO;
 PDS_WORK_TABLE.CALL_MODE = 2;
 CALL SMLWJPM (PDS_WORK_TABLE);
 PDS_WORK_TABLE.MEMBER_NAME = 'LASTCALL';
 END;

 /*-----------------------------*/
 /* CASE 3: OPEN PDS DIRECTORY */
 /*-----------------------------*/
 WHEN (3) DO;
 PDS_WORK_TABLE.CALL_MODE = 3;
 PDS_WORK_TABLE.RETURN_CODE = 0;
 PDS_WORK_TABLE.ASSEM_LOAD_MOD = 'SMLWJPM';

 CALL SMLWJPM (PDS_WORK_TABLE);
 END;

75

 /*---*/
 /* CASE 4: READ PDS DIRECTORY MEMBER NAME */
 /*---*/
 WHEN (4) DO;
 PDS_WORK_TABLE.CALL_MODE = 4;
 CALL SMLWJPM (PDS_WORK_TABLE);
 END;

 /*------------------------------*/
 /* CASE 5: CLOSE PDS DIRECTORY */
 /*------------------------------*/
 WHEN (5) DO;
 PDS_WORK_TABLE.CALL_MODE = 5;
 CALL SMLWJPM (PDS_WORK_TABLE);
 PDS_WORK_TABLE.MEMBER_NAME = 'LASTCALL';
 END;

 END;

 END PDS_MEMBERS;

 %PAGE;
 /*--*/
 /* PROCEDURE: SDFPKG_INITIALIZE (CONTINUED) */
 /*--*/

 DECLARE
 1 PDS_WORK_TABLE,
 2 ASSEM_LOAD_MOD CHAR(8), /*LOAD MOD NAME CALLED*/
 2 #MEMBERS FIXED BIN(31), /*NO. MEMBERS IN PDS */
 2 PDS_DD_NAME CHAR(8), /*DD NAME OF PDS */
 2 CALL_MODE FIXED BIN(31), /*MODE PDS_MEMBERS IS */
 /* OPERATING IN */
 2 GETMAIN_ADDR POINTER, /*ADDR OF GETMAIN AREA*/
 2 GETMAIN_LENGTH FIXED BIN(31), /*LEN OF GETMAIN AREA */
 2 CURRENT_MEM_NO FIXED BIN(31), /*# OF CURRENT MEMBER */
 /* BEING PROCESSED */
 2 RETURN_CODE FIXED BIN(31), /*ERROR RETURN CODE */
 2 UNUSED FIXED BIN(31), /*UNUSED FIELD */
 2 MEMBER_NAME CHAR(8); /*DESIRED MEMBER NAME */

 DECLARE
 SDF_DD_NAME CHAR(8) VARYING, /*SDFPKG DD NAME */
 MISC_VAL FIXED BIN(31), /*SUCCESS PROCESS FLAG*/
 SDF_TOTS LIKE /*SDFPKG STATISTICS */
 SDF_TOTALS,
 SUCCESS_FLAG BIT(1), /*SUCCESS PROCESS FLAG*/
 ABORT_FLAG BIT(1), /*ABORT PROCESSING FLG*/
 TITLE CHAR(132) /*DEBUG TITLE */
 VARYING,
 TRACE_FLAG BIT(1), /*PROC TRACE FLAG */
 TRACE_FLAG_SDFI BIT(1), /*SDF INTERFACE TRACE */
 #INVOCATIONS FIXED BIN(31) /*# TIMES PROC CALLED */
 INITIAL (1);

76

 SUCCESS_FLAG = TRUE; /*SUCCESSFUL PROCESSING FLAG*/
 TRACE_FLAG = FALSE; /*PROC TRACE FLAG IS OFF */
 TRACE_FLAG_SDFI = FALSE; /*SDF INTERFACE TRACE IS OFF*/
 TITLE = ''; /*SET TITLE TO NULL */

 IF (TOGGLE_BIT_STR(1) = TRUE) THEN DO; /*IF TRACE DESIRED THEN*/
 TRACE_FLAG = TRUE; /*SET TRACE FLAG ON */
 TITLE = 'SDFPKG INITIALIZE -- INVOCATION # ' ||
 FMT31 (#INVOCATIONS); /*SET UP TITLE */
 #INVOCATIONS = #INVOCATIONS + 1; /*COUNT # INVOCATIONS */
 CALL PUT_SYSPRINT_TITLE (TITLE, PAGE_NO);

 IF (TOGGLE_BIT_STR(2) = TRUE) THEN DO; /*IF INTERFACE TRACE */
 TRACE_FLAG_SDFI = TRUE; /*SET SDFI TRACE FLAG */
 END;
 END;

 /* INITIALIZE SDF_TOTS VARIABLES TO 0 */
 SDF_TOTS.#LOCATES = 0; /*TOTAL SDFPKG PAGES LOCATED*/
 SDF_TOTS.#READS = 0; /*TOTAL SDFPKG RECORDS READ */
 SDF_TOTS.#WRITES = 0; /*TOTAL SDFPKG RECS WRITTEN */
 SDF_TOTS.#SELECTS = 0; /*TOTAL SDFPKG MBRS SELECTED*/
 SDF_TOTS.#RESERVES = 0; /*TOTAL SDFPKG PAGES RESERVD*/
 SDF_TOTS.#FCBS = 0; /*TOTAL SDFPKG FCB AREA */
 SDF_TOTS.#PAGES = 0; /*TOTAL SDFPKG PG AREA SIZE */
 SDF_TOTS.#GETMAINS = 0; /*TOTAL # OF SDFPKG GETMAINS*/

 /* SET SDF PDS FILE DD NAME */
 PDS_WORK_TABLE.PDS_DD_NAME = SDF_DD_NAME;
 SDF_COMM_TABLE.DD_NAME = SDF_DD_NAME;

 /* OPEN HALSDF FILE TO GET # MEMBERS IN PDS */
 CALL PDS_MEMBERS (PDS_WORK_TABLE, 0);

 /* IF FILE WAS NOT OPENED */
 IF (PDS_WORK_TABLE.RETURN_CODE ^= 0) THEN DO;
 CALL FMT_ERROR ('SDFIR', 1101, SDF_DD_NAME ||
 ' DATASET COULD NOT BE OPENED.', 4, ABORT_FLAG);
 END;

 ELSE DO; /* SDF PDS WAS OPENED */

 /*IF NO MEMBERS IN PDS */
 IF (PDS_WORK_TABLE.#MEMBERS = 0) THEN DO;
 /* OUTPUT WARNING MESSAGE ONLY */
 CALL FMT_ERROR ('SDFIR', 1102, 'NO SDF MEMBERS WERE FOUND' ||
 ' IN THE ' || SDF_DD_NAME || ' DATASET.',
 4, ABORT_FLAG);
 /* CLOSE SDF PDS */
 CALL PDS_MEMBERS (PDS_WORK_TABLE, 2);
 END;

 ELSE DO; /*SDF PDS CONTAINS SDFS */

 /* CLOSE SDF PDS */
 CALL PDS_MEMBERS (PDS_WORK_TABLE, 2);

77

 /*--*/
 /* SDFPKG INITIALIZATION OPTIONS ARE: */
 /* 1. AUTOMATIC GETMAIN FOR FILE CONTROL BLOCKS (FCBS) */
 /* 2. RETURN FIRST MATCHING SYMBOL FOUND IN SEARCH */
 /* 3. USE ALTERNATE PAGING AREA DIRECTORY SPECIFIED (PAD)*/
 /*--*/

 MISC_VAL = SDF_AUTO_FCB + SDF_FIRST_SYMBOL + SDF_ALT_PAD;
 SDF_COMM_TABLE.MISC = MISC_VAL;

 /*--*/
 /* ALLOCATE 512 BYTES FOR SDFPKG FILE CONTROL BLOCK AREA */
 /*--*/

 SDF_COMM_TABLE.ADDR_FCB_AREA = ADDR (SDF_FCB_AREA);
 SDF_COMM_TABLE.#BYTES_IN_FCB = SDF_FCB_SIZE;

 /*---*/
 /* ALLOCATE AN AUXILIARY SDFPKG PAGING AREA DIRECTORY */
 /*---*/

 SDF_COMM_TABLE.ADDRESS = ADDR (SDF_PAD_AREA);
 SDF_COMM_TABLE.PNTR = SDF_ALT_PAD_SIZE; /*PG DIR SIZE*/

 /*--*/
 /* INITIALIZE SDFPKG WITH DESIRED PAGING AREA */
 /*--*/

 SDF_COMM_TABLE.#PAGES = SDF_NO_PAGES;
 SDF_COMM_TABLE.ADDR_PAGING_AREA = ADDR (SDF_PAGING_AREA);

 /*---*/
 /* INITIALIZE OTHER COMMUNICATION TABLE PARAMETERS */
 /*---*/

 SDF_COMM_TABLE.CRETURN = 0;
 SDF_COMM_TABLE.BLOCK_NO = 0;
 SDF_COMM_TABLE.SYMBOL_NO = 0;
 SDF_COMM_TABLE.STMT_NO = 0;
 SDF_COMM_TABLE.SDF_NAME = '';
 SDF_COMM_TABLE.CSECT_NAME = '';
 SDF_COMM_TABLE.STMT_REF_NO = '';
 SDF_COMM_TABLE.INCLUDE_COUNT = 0;
 SDF_COMM_TABLE.BLOCK_NAME = '';
 SDF_COMM_TABLE.SYMBOL_NAME = '';

 /* INITIALIZE SDFPKG */
 CALL WMHSDFI (SDF_INIT, SDF_NO_OPT, SDF_COMM_TABLE,
 TRACE_FLAG_SDFI, TITLE);

 /* IF SDFPKG BAD INITIALIZATION THEN */
 IF (SDF_COMM_TABLE.CRETURN ^= 0) THEN DO;
 CALL FMT_ERROR ('SDFIR', 1103, 'INITIALIZATION OF ' ||
 'SDFPKG FAILED. ' ||

78

 SDFPKG_RETURN_CODE (
 SDF_COMM_TABLE.CRETURN),
 4, ABORT_FLAG);
 END;

 ELSE DO; /* SDFPKG WAS INITIALIZED */

 /*---*/
 /* INITIALIZE SDFPKG DATABUFF COMMUNICATION AREA */
 /*---*/

 SDF_DBUFF_AREA_PTR = SDF_COMM_TABLE.ADDRESS;
 END;
 END;
 END;

 END SDFPKG_INITIALIZE;

 %PAGE;
 /*--*/
 /* SAVE SDFPKG FINAL JOB STATISTICS AND TERMINATE SDFPKG. SDFPKG */
 /* STATISTICS CAN BE USEFUL TO THE MAINTAINER. SDFIR.1200 */
 /*--*/

 SDFPKG_TERMINATE: PROCEDURE
 (SDF_TOTS);

 DECLARE
 SDF_TOTS LIKE /*SETUP LOCAL SDFPKG */
 SDF_TOTALS; /* TOTALS STRUCTURE */

 DECLARE
 TITLE CHAR(132) /*DEBUG TITLE */
 VARYING,
 TRACE_FLAG BIT(1), /*PROC TRACE FLAG */
 TRACE_FLAG_SDFI BIT(1), /*SDF INTERFACE TRACE */
 #INVOCATIONS FIXED BIN(31) /*# TIMES PROC CALLED */
 INITIAL (1);

 TRACE_FLAG = FALSE; /*PROC TRACE FLAG IS OFF */
 TRACE_FLAG_SDFI = FALSE; /*SDF INTERFACE TRACE IS OFF*/
 TITLE = ''; /*SET TITLE TO NULL */

 IF (TOGGLE_BIT_STR(1) = TRUE) THEN DO; /*IF TRACE DESIRED THEN*/
 TRACE_FLAG = TRUE; /*SET TRACE FLAG ON */
 TITLE = 'SDFPKG TERMINATE -- INVOCATION # ' ||
 FMT31 (#INVOCATIONS); /*SET UP TITLE */
 #INVOCATIONS = #INVOCATIONS + 1; /*COUNT # INVOCATIONS */
 CALL PUT_SYSPRINT_TITLE (TITLE, PAGE_NO);

 IF (TOGGLE_BIT_STR(2) = TRUE) THEN DO; /*IF INTERFACE TRACE */
 TRACE_FLAG_SDFI = TRUE; /*SET SDFI TRACE FLAG */
 END;
 END;

79

 /*--*/
 /* SAVE KEY SDFPKG PARAMETERS FOR USE BY PRINTSUMMARY */
 /*--*/

 SDF_TOTS.#LOCATES = SDF_DATABUFF.#LOCATES;
 SDF_TOTS.#READS = SDF_DATABUFF.#READS;
 SDF_TOTS.#WRITES = SDF_DATABUFF.#WRITES;
 SDF_TOTS.#SELECTS = SDF_DATABUFF.#SELECTS;
 SDF_TOTS.#RESERVES = SDF_DATABUFF.#RESERVES;
 SDF_TOTS.#FCBS = SDF_DATABUFF.#FCBS;
 SDF_TOTS.#PAGES = SDF_DATABUFF.#PAGES;
 SDF_TOTS.#GETMAINS = SDF_DATABUFF.#GETMAINS;

 /*--*/
 /* ALLOW SDFPKG TO TERMINATE ITSELF. THEN IT WILL BE DELETED */
 /*--*/

 CALL WMHSDFI (SDF_TERM, SDF_NO_OPT, SDF_COMM_TABLE,
 TRACE_FLAG_SDFI, TITLE);

 END SDFPKG_TERMINATE;

 %PAGE;
 /*--*/
 /* PRINT SUMMARY SDFPKG STATISTICS BEFORE JOB TERMINATES PROCES- */
 /* SING. THESE STATISTICS CAN BE USEFUL TO THE MAINTAINER. */
 /* SDFIR.1300 */
 /*--*/

 SDFPKG_SUMMARY: PROCEDURE
 (SDF_TOTS);

 DECLARE
 SDF_TOTS LIKE /*SETUP LOCAL SDFPKG */
 SDF_TOTALS; /* TOTALS STRUCTURE */

 CALL PUT_SYSPRINT_TITLE ('SDFPKG SUMMARY STATISTICS', PAGE_NO);

 PUT SKIP(1) LIST ('NUMBER OF SDFPKG LOCATES = ' ||
 SDF_TOTS.#LOCATES);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG READS = ' ||
 SDF_TOTS.#READS);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG WRITES = ' ||
 SDF_TOTS.#WRITES);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG SELECTS = ' ||
 SDF_TOTS.#SELECTS);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG RESERVES = ' ||
 SDF_TOTS.#RESERVES);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG FCBS = ' ||
 SDF_TOTS.#FCBS);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG PAGES = ' ||
 SDF_TOTS.#PAGES);
 PUT SKIP(1) LIST ('NUMBER OF SDFPKG GETMAINS = ' ||
 SDF_TOTS.#GETMAINS);

80

 END SDFPKG_SUMMARY;

81

6.0 SDFPKG Assembler Data Overlay MACROS

(These macros overlay the various data tables contained within the SDFs and are
used by SDFPKG. They should correspond to the diagrams contained in the current
Revision of the HAL/SDL ICD.

6.1 SDFPKG Communication Table (COMMTABL)

 MACRO
 COMMTABL
COMMTABL DSECT SDFPKG COMMUNICATION AREA
APGAREA DS A ADDRESS OF EXTERNAL PAGING AREA
AFCBAREA DS A ADDRESS OF EXTERNAL FCB AREA
NPAGES DS H # OF PAGES IN PAGING AREA OR AUGMENT
NBYTES DS H # OF BYTES IN FCB AREA OR AUGMENT
MISC DS H MISCELLANEOUS PURPOSES
CRETURN DS H SDFPKG RETURN CODE
BLKNO DS H BLOCK NUMBER (BLOCK INDEX TABLE INDEX)
SYMBNO DS H SYMBOL NUMBER (SYMBOL INDEX TABLE INDEX)
STMTNO DS H STATEMENT NUMBER (STATEMENT INDEX TABLE INDEX)
BLKNLEN DS CL1 NUMBER OF CHARACTERS IN BLOCK NAME (BLKNAM)
SYMBNLEN DS CL1 NUMBER OF CHARACTERS IN SYMBOL NAME (SYMBNAM)
PNTR DS F VIRTUAL MEMORY POINTER LAST LOCATED
ADDR DS A CORE ADDRESS CORRESPONDING TO PNTR
SDFDDNAM EQU * NAME OF ALTERNATE DD FOR SDF DATASET
SDFNAM DS CL8 NAME OF SDF TO BE SELECTED
CSECTNAM DS CL8 NAME OF CODE CSECT FOR BLOCK
SREFNO DS CL6 STATEMENT REFERENCE NUMBER
INCLCNT DS H INCLUDE COUNT (FOR SRN)
BLKNAM DS CL32 BLOCK NAME
SYMBNAM DS CL32 SYMBOL NAME
 MEND

82

6.2 SDFPKG Common Data Pool Buffer Table (DATABUF)

 MACRO
 DATABUF
DATABUF DSECT COMMON DATA BUFFER TEMPLATE
LOCCNT DS F CURRENT LOCATE COUNTER
AVULN DS A ADDRESS OF VULNERABLE PAD ENTRY
CURFCB DS A ADDRESS OF CURRENT FCB
PADADDR DS A STARTING ADDRESS OF PAD
ACOMMTAB DS A ADDRESS OF COMMUNICATION AREA
ACURNTRY DS A ADDRESS OF CURRENT PAD ENTRY
ROOT DS A ADDRESS OF ROOT FCB OF FCB TREE
SAVEXTPT DS F POINTER TO SYMBOL NODE EXTENT CELL
SAVFSYMB DS H FIRST SYMBOL OF BLOCK
SAVLSYMB DS H LAST SYMBOL OF BLOCK
NUMGETM DS H NUMBER OF ENTRIES IN GETMAIN STACKS
NUMOFPGS DS H NUMBER OF PAGES IN CURRENT PAGING AREA
BASNPGS DS H INITIAL NUMBER OF PAGES IN PAGING AREA
FCBSTKLN DS H NUMBER OF ENTRIES IN FCB STACKS
IOFLAG DS C I/O IN PROGRESS INDICATOR
GETMFLAG DS C > 0 IMPLIES AUTO GETMAINS FOR FCBS
GOFLAG DS C > 0 IMPLIES SUCCESSFUL INITIALIZATION
MODFLAG DS C > 0 IMPLIES UPDAT MODE ACTIVE
ONEFCB DS C > 0 IMPLIES ONLY ONE FCB KEPT
FIRST DS C > 0 IMPLIES TAKE FIRST SYMBOL FOUND
 DS 2C SPARE
TOTFCBLN DS F TOTAL AMOUNT OF FCB SPACE IN USE
RESERVES DS F GLOBAL (TOTAL) COUNT OF RESERVES
READS DS F TOTAL NUMBER OF READS
WRITES DS F TOTAL NUMBER OF WRITES
SLECTCNT DS F TOTAL NUMBER OF 'REAL' SELECTS
FCBCNT DS F TOTAL NUMBER OF FCBS IN EXISTENCE
GETMSTK1 DS A ADDRESS OF GETMAIN ADDRESS STACK
GETMSTK2 DS A ADDRESS OF GETMAIN LENGTH STACK
FCBSTK1 DS A ADDRESS OF FCB AREA ADDRESS STACK
FCBSTK2 DS A ADDRESS OF FCB AREA LENGTH STACK
MAXSTACK DS H MAXIMUM NUMBER OF STACK ENTRIES
SDFVERS DS H SDF VERSION NUMBER (OF SELECTED SDF)
APGEBUFF DS A ADDRESS OF PAGE BUFFER
ADECB DS A ADDRESS OF DECB
ECB DS F EVENT CONTROL BLOCK (DECB)
IOTYPE DS H I/O TYPE (DECB)
IOLENGTH DS H NUMBER OF BYTES TO TRANSFER (DECB)
DCBADDR DS A ADDRESS OF HALSDF DCB (DECB)
BUFLOC DS A ADDRESS OF BUFFER AREA (DECB)
IOBADDR DS A ADDRESS OF IOB (DECB)
 MEND

83

6.3 SDFPKG File Control Block (FCB)

 MACRO
 FCBCELL
FCBCELL DSECT
TTRK DS F
GTTREEPT DS A
LTTREEPT DS A
FILENAME DS CL8
BLKPTR DS F
SYMBPTR DS F
STMTPTR DS F
TREEPTR DS F
NODESIZE DS H
FLAGS DS H
NUMBLKS DS H
NUMSYMBS DS H
FSTSTMT DS H
LSTSTMT DS H
LSTPAGE DS H
VERSIONX DS H
STMTEXPT DS F POINTER TO STATEMENT NODE EXTENT CELL
SPARE2 DS F
FCBLEN EQU *-FCBCELL
FCBTTRZ DS F
FCBPDADR DS A
 MEND

6.4 SDFPKG Paging Area Directory (PAD)

 MACRO
 PDENTRY
PDENTRY DSECT PAGING AREA DIRECTORY ENTRY TEMPLATE
PAGEADDR DS A ADDRESS OF IN-CORE PAGE
FCBADDR EQU * ADDRESS OF FILE CONTROL BLOCK (FCB)
MODFIND DS CL1 '80' > PAGE IS MODIFIED
 DS CL3 ADDRESS OF FILE CONTROL BLOCK (FCB)
USECOUNT DS F USAGE COUNTER
PAGENO DS H PAGE # * 8
RESVCNT DS H RESERVE COUNTER
PDENTLEN EQU *-PDENTRY
 MEND

6.5 SDF Master Directory Cell (Header)

 MACRO
 PAGEZERO
PAGEZERO DSECT MASTER DIRECTORY CELL TEMPLATE
VERSION DS H SDF VERSION NUMBER
 DS H
DIRFCPTR DS A POINTER TO DIRECTORY FREE CELL CHAIN

84

DROOTPTR DS A POINTER TO DIRECTORY ROOT CELL
DATFCPTR DS A POINTER TO DATA FREE CELL CHAIN
 MEND

85

6.6 Directory Root Cell

 MACRO
 DROOTCEL
DROOTCEL DSECT DIRECTORY ROOT CELL TEMPLATE
SDFFLAGS DS 2C SDF FLAGS
LASTPAGE DS H # OF LAST PAGE IN SDF FILE
SDFDATE DS F DATE OF CREATION
SDFTIME DS F TIME OF CREATION
LASTDPGE DS H # OF LAST DIRECTORY PAGE
COMPOOLS DS H # OF INCLUDED COMPOOLS
BLKNODES DS H # OF BLOCK INDEX TABLE ENTRIES
SYMNODES DS H # OF SYMBOL INDEX TABLE ENTRIES
FBNPTR DS A POINTER TO FIRST BLOCK INDEX TABLE ENTRY
LBNPTR DS A POINTER TO LAST BLOCK INDEX TABLE ENTRY
INSTRCNT DS H NO. OF EMITTED MACHINE INSTRUCTIONS
FREEBYTE DS H TOTAL AMT OF FREE SPACE IN SDF
DLSTHEAD DS H LIST HEAD FOR DECLARED VARS (BY ADDR)
RLSTHEAD DS H LIST HEAD FOR REMOTE VARS (BY ADDR)
FSNPTR DS A POINTER TO FIRST SYMBOL INDEX TABLE ENTRY
LSNPTR DS A POINTER TO LAST SYMBOL INDEX TABLE ENTRY
CUBTCPTR DS A PTR TO COMP. UNIT BLOCK DATA CELL
BTREEPTR DS A POINTER TO ROOT OF BLOCK TREE
FSTMTNUM DS H FIRST STATEMENT NUMBER
LSTMTNUM DS H LAST STATEMENT NUMBER
EXECSTMT DS H # OF EXECUTABLE STATEMENTS
STMTNODE DS H # OF STATEMENT INDEX TABLE ENTRIES
FSTNPTR DS A POINTER TO FIRST STATEMENT INDEX TABLE ENTRY
LSTNPTR DS A POINTER TO LAST STATEMENT INDEX TABLE ENTRY
SNELPTR DS A POINTER TO STATEMENT NODE EXTENT LIST
FIRSTSRN DS CL8 FIRST SRN IN SDF
LASTSRN DS CL8 LAST SRN IN SDF
CUBTCNUM DS H BLOCK NUMBER OF UNIT BLOCK
COMPUNIT DS H COMPILATION UNIT ID CODE
TITLEPTR DS F VIRTUAL MEMORY POINTER TO TITLE INFO
USERDATA DS CL8 FREE FOR USER DATA
SYMBCNT DS F ACTUAL NUMBER OF SYMBOLS IN COMP.
MACROCNT DS F TOTAL SIZE OF MACRO TEXT (BYTES)
LITSCNT DS F TOTAL NUMBER OF LITERAL STRINGS
XREFCNT DS F ACTUAL NUMBER OF XREF ENTRIES
DRCLEN EQU *-DROOTCEL
 MEND

86

6.7 Block Index Table Entry

 MACRO
 BLCKNODE
BLCKNODE DSECT BLOCK INDEX TABLE ENTRY TEMPLATE
CSCTNAME DS CL8 CSECT NAME OF BLOCK
BLOCKPTR DS A POINTER TO BLOCK TREE CELL
 MEND

6.8 Block Data Cell

 MACRO
 BLKTCELL
BLKTCELL DSECT BLOCK DATA CELL TEMPLATE
RTREEPTR DS A RIGHT TREE POINTER (>)
LTREEPTR DS A LEFT TREE POINTER (<)
FNESTPTR DS F FIRST NESTED BLOCK
LNESTPTR DS F NEXT BLOCK AT SAME LEVEL
EXTPTR DS A SYMBOL EXTENT CELL POINTER
 DS F SPARE
BLKFLGS DS C FLAGS APPLICABLE TO THE BLOCK
 DS C SPARE
BLKNDX DS H BLOCK INDEX
BLKID DS H BLOCK (STACK) ID
BLKCLASS DS C CLASS OF BLOCK
BLKTYPE DS C TYPE OF BLOCK
FSYMB# DS H FIRST SYMBOL NUMBER
LSYMB# DS H LAST SYMBOL NUMBER
FSTMT# DS H FIRST STATEMENT NUMBER
LSTMT# DS H LAST STATEMENT NUMBER
POSTDCL DS H STMT # OF FIRST POST-DECLARE STMT
STAKLIST DS H LIST HEAD FOR STACK VARS (BY ADDR)
BNAMELEN DS C LENGTH OF BLOCK NAME
BLKNAME DS 0C NAME OF BLOCK (1 TO 32 CHARACTERS)
BTCELLEN EQU *-BLKTCELL
 MEND

6.9 Block Statement Extent Cell

6.9.1 Invariant part of Block Statement Extent Cell

 MACRO
 STMTEXTF
STMTEXTF DSECT DSECT FOR FIXED PART OF STMT EXTENT CELL
SUCCPTR1 DS F POINTER TO SUCCESSOR CELL
NXNTRY DS H NUMBER OF EXTENT ENTRIES
FSTPAGE1 DS H PAGE # CORRESPONDING TO 1ST ENTRY
 MEND

87

6.9.2 Variant part of Block Statement Extent Cell

 MACRO
 STMTEXTV
STMTEXTV DSECT DSECT FOR VARIABLE PART OF STMT EXTENT CELL
FSTOFF1 DS H OFFSET TO FIRST SRN ON PAGE
LSTOFF1 DS H OFFSET TO LAST SRN ON PAGE
FSTSRN DS CL8 FIRST SRN ON PAGE
LSTSRN DS CL8 LAST SRN ON PAGE
 MEND

6.10 Block Symbol Extent Cell

6.10.1 Invariant part of Block Symbol Extent Cell

 MACRO
 SYMEXTF
SYMEXTF DSECT DSECT FOR FIXED PART OF SYMBOL EXTENT CELL
SUCCPTR DS F POINTER TO SUCCESSOR CELL (USUALLY 0)
NEXTNTRY DS H NUMBER OF EXTENT ENTRIES
FSTPAGE DS H PAGE # CORRESPONDING TO 1ST ENTRY
 MEND

6.10.2 Variant part of Block Symbol Extent Cell

 MACRO
 SYMEXTV
SYMEXTV DSECT DSECT FOR VARIABLE PART OF SYMBOL EXTENT CELL
FSTOFF DS H OFFSET TO FIRST SYMBOL ON PAGE
LSTOFF DS H OFFSET TO LAST SYMBOL ON PAGE
FSTSYMB DS CL8 NAME (8 CHARS) OF FIRST SYMBOL
LSTSYMB DS CL8 NAME (8 CHARS) OF LAST SYMBOL
 MEND

6.11 Symbol Index Table Entry

 MACRO
 SYMBNODE
SYMBNODE DSECT SYMBOL INDEX TABLE ENTRY TEMMPLATE
SYMBNAME DS CL8 FIRST EIGHT CHARACTERS OF SYMBOL NAME
SDCPTR DS A POINTER TO SYMBOL DATA CELL
 MEND

88

6.12 Symbol Data Cell

6.12.1 Invariant part of Symbol Data Cell

 MACRO
 SYMBDC
SYMBDC DSECT SYMBOL DATA CELL
BLOCKNUM DS H BLOCK NUMBER
EXTDOFF DS C OFFSET TO EXTENSION DATA
XREFOFF DS C OFFSET TO XREF DATA
ARRAYOFF DS C OFFSET TO ARRAYNESS DATA
STRUCTOF DS C OFFSET TO STRUCTURE DATA
CLASS DS C SYMBOL CLASS
TYPE DS C SYMBOL TYPE
FLAG1 DS C FLAG BYTE ONE
FLAG2 DS C FLAG BYTE TWO
FLAG3 DS C FLAG BYTE THREE
FLAG4 DS C FLAG BYTE 4
SYMBLEN DS C LENGTH OF SYMBOL NAME
RELADDR DS CL3 RELATIVE CORE ADDRESS
SBLKID DS H UNIQUE BLOCK ID
TEMPL# EQU * HALFWORD FOR MAJOR STRUCTURE TEMPLATE SYMBOL #
DENSEOFF EQU * DENSE BIT STRING OFFSET (ONE BYTE)
CHARLEN EQU * HALFWORD FOR CHARACTER STRING LENGTH
ROWS DS C NUMBER OF ROWS (LENGTH)
BITLEN EQU * BYTE FOR BIT STRING LENGTH
COLUMNS DS C NUMBER OF COLUMNS (LENGTH OF VECTOR)
LOCK# DS C LOCK GROUP # OF VARIABLE (IF LOCKED)
BYTESIZE DS CL3 TOTAL NUMBER OF BYTES USED BY SYMBOL
NAMECONT DS 0C SYMBOL NAME CONTINUATION
SDCLEN EQU *-SYMBDC
 MEND

6.12.2 Array Dimensions in Symbol Data Cell

 MACRO
 ARRADATA
ARRADATA DSECT ARRAYNESS DATA TEMPLATE
ARRAYNUM DS H NUMBER OF DIMENSIONS
RANGE1 DS H RANGE OF DIMENSION 1
RANGE2 DS H RANGE OF DIMENSION 2
RANGE3 DS H RANGE OF DIMENSION 3
ARRAYLEN EQU *-ARRADATA
 MEND

6.12.3 Structure Part of Symbol Data Cell

 MACRO
 STRCDATA

89

STRCDATA DSECT STRUCTURE LINKAGES TEMPLATE
LINK1 DS H LINK TO UNQUALIFIED STRUCTURE
LINK2 DS H LINK TO ELDEST SON
LINK3 DS H LINK TO BROTHER
STRCLEN EQU *-STRCDATA
 MEND

90

6.13 Statement Index Table Entry

6.13.1 Statement Index Table Entry (Without SRNs)

 MACRO
 STMTNOD0
STMTNOD0 DSECT STATEMENT INDEX TABLE ENTRY TEMPLATE (SRN_FLAG=0)
STDCPTR DS A POINTER TO STATEMENT DATA CELL
 MEND

6.13.2 Statement Index Table Entry (With SRNs)

 MACRO
 STMTNOD1
STMTNOD1 DSECT STATEMENT INDEX TABLE ENTRY TEMPLATE (SRN_FLAG=1)
SRN DS CL6 STATEMENT REFERENCE NUMBER
INCOUNT DS CL2 INCLUDE COUNT
STDCPTR1 DS A POINTER TO STATEMENT DATA CELL
 MEND

6.14 Executable Statement Data Cell

 MACRO
 STMTDC
STMTDC DSECT STATEMENT DATA CELL
BNUM DS H BLOCK NUMBER
STMTTYPE DS H STATEMENT TYPE
NUMLABLS DS CL1 NUMBER OF LABELS
NUMLHS DS CL1 NUMBER OF LEFT-HAND SIDES
 MEND

91

7.0 Bibliography

HAL/SDL ICD, NAS 9-14444, Version 8.0

Shulenberg, C., Shuttle Memo #12-75, 07 March 1975.

Day, J., Intermetrics MSD Memo #TX-108-86, 30 January 1986.

Day, J., Care and Feedings of SDFs, Presentation, 29 April 1986.

Day, J., XPL Information Guide.

Harper, B., Simulation Data Files, Presentation, 01 November 1988.

IBM, OS Data Management Services, Part 1.

HALSTAT 1,2,3 XPL Programs

PRE-HALSTAT XPL Program

SDFPKG Source

92

********* THIS PAGE IS NOT FOR DISTRIBUTION **************

ITEMS IN MEMO THAT MUST BE MANUALLY FIXED:

1. mode 0 item # 3 the NBYTES parameter (page 31) the first one must have an not
equal instead of an equal (=)!!!!!

