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PREFACE

This report discribes the logical structure of the APOLLO guidance and navigation
computer. A previous computer, AGC 3, designed for the APOLLO mission, was
predominately composed of core-transistor logic. The computer design described here
employs miniature integrated NOR logic, whose use will result in the next APOLLO
computer (AGC 4) being just over half the size of AGC 3.

The decision to change over to integrated circuitry was made in October, 1962.
About a year ago, it was deemed inadvisable to commit the APOLLO Guidance Computer
(AGC) to integrated circuitry. Its desirable attributes of small size, high speed, and
universality were then offset by its high cost, the difficulty in regulating power consump-
tion as a function of speed of computation, and the absence of operational experience in
large scale systems. Because of its potential, however, a computer-design investigation
was conducted with integrated circuits at the Instrumentation Laboratory during the de-
velopment of AGC 3.

Now, a year later, the price of integrated circuit elements has changed from high to
moderate; and enough experience has been gained in their use, by MIT and by others, to
permit extrapolation of their reliability data with substantial confidence. The adoption -
of the new technology, with the consequent redesign of the computer, is being undertaken
at a time when it is felt that it can still be effected without causing undue delays in the
program.

Since the first design of AGC 3 of about a year ago, much has been learned about
the capabilities demanded of the APOLLO computer; enough programming experience has
been gained to warrant the inclusion of programming features not present in AGC 3
and the exclusion of others that were. Consequently, AGC 4 is sufficiently different
from AGC 3 to make existing AGC documents inadequate for use in further developing
the guidance system and its production and support facilities. The prime purpose of this
report is to furnish necessary information to members of the Laboratory and its contract
and industrial support associates. Fine detail and internal consistency have been under-
emphasized for the sake of promptness so that this report could be written within
a few weeks of the inception of the design.

GENERAL REFERENCES

MIT/IL Report E-1077 Preliminary Mod 3C Programmers Manual
by R. Alonso, ]J. H. Laning, Jr., and
Hugh Blair-Smith

MIT/IL Report E-1126 AGC Mod 3C Computer Circuits - General
by A. Hopkins
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Chapter 1

INTRODUCTION TO AGC 4

Because of the many similarities between AGC 3 and AGC 4, and because
most of the people for whom this report is primarily intended are familiar with the
characteristics of AGC 3, the essential features of AGC 4 can be discussed by
comparing them with those of AGC 3, '

The principal difference between the two computers is in the difference between
core-transistor logic and NOR logic. In the former, a binary ONE is represented by
a current path established by a transistor switch in a conductive state. Complemented
variables are not generally available, and variables stored in cores are available one
time only, at the time the cores are reset. In NOR logic, a binary ONE has a voltage
representation. Each stage performs inversion so that complements are readily avail-
able; variables are available on a DC basis. Central registers consist of flip-flops
instead of cores, and are more expensive in terms of cost, size, and power. They are
faster, though, and will be operated at a 1-usec word rate as compared to the 5-usec
rate of the core registers. Moreover, they may be read nondestructively and cleared
without putting their contents onto the Read Bus.

The Fixed and Erasable Memories of AGC 3 are used in AGC 4. To take
advantage of the faster word-transfer rate in central registers, the cycle times are
reduced from an average of 19,5 usec to a fixed 11.7 usec, By fixing the memory cycle,
the timing of the various control functions may be set for maximum reliability and speed.

The memory cycle is broken down into twelve steps, or time pulses, each approxi-
mately one microsecond long. Within each step, a number may be transferred from one
flip-flop register to another. AGC 4 instructions consist of an integral number of mem-
ory cycle times (generally two) instead of an integral multiple of eight 5-usec pulse
times (generally one) as in AGC 3. Because of the high cost of flip-flop registers,
the number of central registers in AGC 4 is less than in AGC 3; and all of the
editing registers which are not central are relocated into the Erasable Memory.

The timing of the memory cycle does not permit reading directly from memory to
the Write Buses without reserving the buses for several time pulses which could other-
wise be used for data transfer., For this reason, a memory-buffer regiscer, called the
"G register, " is incorporated into AGC 4. The G register is loaded from Erasable
or Fixed Memory before the seventh time pulse and must be prepared for writing into
the Erasable Memory before the tenth.

UNCLASSIFIED
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R-333 LOGICAL DESCRIPTION FOR APOLLO GUIDANCE COMPUTER 4 NC%

The Write Buses in AGC 4 communicate among the G, Central, input, and output
registers, and the arithmetic unit. Since all of these have flip-flop storage, there is no
need for a storage medium in the Write Buses such as the Write Latches of AGC 3.
The Write Buses are simply multi-input amplifiers.

In AGC 3, the add time and parity-generation time were smaller than a number
transfer time. In AGC 4, they are greater; consequently, the adder and parity
circuits need input storage, whereas output storage was used in AGC 3. Three
microseconds are allowed for additions and two for parity detection, including the time
for writing in and reading out.

Three new instructions have been added to AGC 4: Mask, Divide, and Subtract.
An extra bit is added to the three-bit operation code by causing a negative overflow to
take place within an Index instruction and using the uncorrected sign bit in conjunction
with the sign bit in selecting operations. Multiply, Divide, and Subtract are the three
instructions which require negative overflow on Index for selection.

Table 1-1 lists some of the principal logical attributes of AGC 4 and compares
these with equivalent properties of AGC 3. Certain numbers in the table, such as

the numbers of counters, interrupts, and inputs and outputs, are descriptive of the
guidance system interface rather than of logical limitations of the computers.

UNCLASSIFIED
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Table 1-1. Comparison of AGC 3 and AGC 4 Characteristics

Characteristic AGC 4 AGC 3
Word Length: 16 bits (15 bits + parity)
Number System: "1's" complement,
with overflow correction
Memory Cycle Time 11.7 psec Av. 19.5 psec

Wired-in memory (Core Rope)

Erasable memory (Coincident current
Ferrite)

Normal order code

Involuntary instructions (Interrupt,
Increment, Load, Start)

Add instruction time

Double precision Add subroutine
X+x)+(Y+y)=(Z+2)

Multiply

Double precision multiply subroutine

Counter incrementing

Aggregate input rate at which instructions
are executed at half speed

Number of counters

Interrupt options

Discrete input lines (one input bit per line)

Discrete outputs (for displays)

Pulsed outputs under program control

Pulsed outputs not under program control

Telemetry: Single error correcting
pulse train. Output asynchronous to
AGC timing.

Up Link: Serial input to one register,
rates up to 5 words per second,
asynchronous.

12, 288 words

1008 words

11 instructions

8 instructions

23.4 usec

234 psec
98 usec
780 usec
11.7 psec

43 Kpps

20 counters
5 options
60 lines

18 lines

25 lines

16 lines

12, 288 words

992 words

8 instructions

6 instructions

39 usec

~ 1 msecC
634 usec
~ 4 msec

19.5 usec

25. 6 Kpps
20 counters
5 options
60 lines

18 lines

25 lines

16 lines
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Chapter 2

AGC 4 SYSTEM

GENERAL ORGANIZATION

The principal structure of AGC 4 is shown in figure 2-1. The various Central
registers are shown at the left of the drawing and are denoted A, Q, Z, etc. All of
these are flip-flop registers, and all except B, X, Y, and P are addressable. The
Central registers communicate with one another and with the rest of the computer via
the Write Buses. Gating pulses for reading out of, and writing in to, the Central reg-
isters are formed in the control pulse amplifiers. For addressable registers, the
gating pulses are in part dependent upon the memory selection logic.

Memory addressing is effected via the S register and the Bank register, which is
used for memory bank selection. The bank register is addressable; the S register is
not. Bank selection is used to choose one of ten groups of 1024 words of Fixed Memory
to be the fourth of four addressable 1024 word segments of memory. This means that
octal addresses 6000 to 7777 refer to one of ten groups of 1024 words, depending on the
state of the Bank bits. All addresses below octal 6000 have the same meaning regardless
of the state of the Bank bits. The first segment of 1024 words comprises the Central and
Erasable Memories. The second and third segments are always the same two groups of
fixed storage.

Whenever the Erasable or Fixed portion of memory is addressed, the information
is read to the G register prior to time pulse seven. The G register (not addressable)
communicates with the Write Buses in normal fashion for reading out and in one of five
modes for writing in. The choice of mode depends upon the address stored in the S reg-
ister. When a cycling or shifting register address is stored in S (these registers are
CYR, SR, CYL, and SL), the appropriate mode is used to effect the desired editing
transformation on the word being written into G for storage in the Erasable Memory;
otherwise, the normal mode is used.

The S and SQ registers together add up to sixteen bits: the SQ register uses four
bits, and the S register the remaining twelve bits.

Output signals are formed by logical functions of output register bits and time
signals from the scaler. Input signals belong to one or both of two classes: those which
appear as bits in input registers and those which request counter increments or program
interrupts. Those signals belonging to the latter class operate a priority network which
causes the instruction selection logic to interject an increment or interrupt sequence as

'"NCLASSIFIED
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soon as permissible. The priority network also supplies to the Write Buses the counter
address or the interrupt sequence address.

CLOCK AND SCALER

The oscillator for the AGC is the frequency standard for all of the APOLLO guidance
and spacecraft systems. It is a 2,048 megacycle, crystal-controlled, transistor oscil-
lator with an oven for thermal regulation. The computer uses as its clock signals four
phases of the 1.024 MC square wave obtained from a binary division of the oscillator
output. One more binary division produces the 512 KC signal, which serves as a synchro-
nizing signal to the spacecraft systems clock.

The Scaler provides timing signals for the operation and synchronization of the
electromechanical parts of the guidance system and for other sequential control processes
with which the computer is concerned.

Figure 2-2 illustrates the organization of the clock and scaler. The 512 KC square
wave is gated to the Scaler by the start-stop logic and is scaled by a factor of five to a
frequency of 102.4 KC. All of its subharmonics are generated by powers of two down to
0.390625 cps, this last frequency being used to control the computer in the standby (low
power) mode. Chapter 5 of this volume contains detailed information concerning the uses
of the various intermediate frequencies and the method of standby operation.

Under control of the Monitor, an external ground support device, the start-stop
logic can cause the scaler to halt. This permits certain aspects of real time operation
to be studied at slow speed or with manual interventions. *

The twelve time pulses are generated by means of a four-stage, gray-coded counter
advanced by gated phases of the computer clock. Like the scaler, the time-pulse gen-
erator can be halted by the Monitor.

SEQUENCE GENERATOR

The operation of the sequence generator is functionally depicted in figure 2-3. Time
Pulse 12 is reserved for instruction selection. If a new instruction is to be initiated,
"read B" (RB) and "write SQ" (WSQ) control pulses are generated at Time 12. The oper-
ation code in the upper four bits of B is transferred into the SQ register, where it
remains throughout the execution of the instruction. The stage counter is cleared by
the coincidence of Time 12 and the absence of inputs to its first section. The contents
of SQ and the stage counter uniquely select a subinstruction memory cycle, which will
be executed in eleven steps unless a counter increment has been requested. In that case,
the selected subinstruction is inhibited during any increment cycle servicing the counter.

*When the Monitor is not connected to the computer, the computer is always operating
in real time, either at full speed or in the standby mode.

UNCLASSIFIED
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Figure 2-2. Clock and Scaler Block Diagram.
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U NGbevmEl ED SYSTEM

The following Time 12 does not disturb SQ or the stage counter in order that the selected
instruction be executed after all counter requests are fulfilled.

If an instruction consists of more than one memory cycle, as is true of all but TC
and the three counter incrementing sequences, the stage counter is advanced by control
pulses (ST1, ST2, TRSM, CTR) at some time during the first 11 time pulses; and a
transfer to the "B" section of the stage counter occurs at Time 12.

A Control pulse is generated as the logical sum of a subset of the matrix crosspoints.
A crosspoint, in turn, is the logical product of a subinstruction variable and a time pulse,
and may produce as many as five control pulses by driving five different logical sum
circuits.

Branching is effected by storing the result of a test in a flip-flop and using the flip-
flop outputs to inhibit certain crosspoints. In some instances, two branch conditions are
stored simultaneously, thereby permitting a selection from among four crosspoints at
one time of one subinstruction. In figure 2-3, the four branch tests are indicated setting
BR1 or BR2 for their various conditions.

CENTRAL PROCESSING SECTION

The circuits which constitute the Central registers, input and output registers, the
G and S registers, and the Write Buses, are physically organized into sixteen identical,
interchangeable units called "bit sticks.' Each bit stick contains one bit of each register
and its connections to and from the Write Buses. The sixteen bit sticks, together with a
few others, constitute the Central Processing Section, about half of the micrologic part
of the computer.

The AGC adder is a 16-bit parallel adder with end around carry. It operates in a
modified "1's" complement system in which the sign bit is processed in two adjacent
columns. The two sign columns of the sum are identical unless overflow occurs on the
addition. If overflow does occur, the leftmost sign bit is the same as the original sign
of the operands; and it is adopted as the sign (SG) of the sum. Thus it can be said that
sign is preserved on overflow.

Some of the arithmetic and logical machine processes require preservation of the
rightmost sign bit, the uncorrected sign (US). For this reason, the A, Q, Z, LP, and B
registers contain columns for storage of the uncorrected sign. These registers have no
parity bit position; hence, the bit stick which contains the parity positions of the G and
Output registers also contains the US positions of the other Central registers and of the
Write Buses.

Since words coming from Erasable or Fixed Memory contain no overflow information,
all transfers from G to the Central registers duplicate the sign of G into the US position
of the Write Buses.

2-9
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The functions of the various Central registers are given in detail in chapter 3 of
this volume. Briefly, the arithmetic is all done in the adder, which has flip-flop storage
for two operand words X and Y. The correct sum of X and Y is present at the output of
the sum circuit U within three microseconds of the time at which the read-in of the
second operand (always X) occurs. It is also possible to add one to a positive number
in X or Y by means of a "Carry In" (CI) control pulse. Three microseconds are suffi-
cient for generating the correct sum in this case, too.

The B register is primarily for temporary storage. The C register is fictitious;
C is the complement side of the B register. The A register is also used for temporary
storage. It is called the accumulator and retains data from one instruction to the next.
The LP register, together with the A register via right shift gates, forms a double-
length shifting accumulator for multiplication.

The input and output registers are flip-flop registers whose assignments and
functions are described in chapter 5.

Table 2-1 is a list of Special registers, including addressable Central registers,
their octal addresses, and their physical locations.

Table 2-1. AGC 4 Special Registers

OCTAL REGISTER OCTAL REGISTER
ADDRESS  NAME LOCATION ADDRESS NAME LOCATION
~N 3N
0000 A 15 Bank Located in
1 Q 16 Relint > Service
2 Z 17 Inhint Sticks
3 LP 0020 CYR )
4 INO 21 SR
5 INL Located i 22 CYL Located in
6 IN2 D n 23 SL Erasable
Bit Sticks Memor
7 IN3 24 ZRUPT y
0010 OUTO 25 BRUPT
1 OUT1 (RIP)
" oUT2 26 ARUPT
13 OUTS3 21 QRUPT)
14 OUT4
(DOWNTEL)

2-10 UNWD
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MEMORY OPERATION

The signals which operate the Erasable and Fixed Memories are generated during
every subinstruction (with two exceptions) as functions of the time-pulse generator, the
clock, and the contents of the S and Bank select registers. If the S register contains
the address of a flip-flop register, neither memory is operated; if not, then only the
appropriate memory is operated. The memory is not operated during the Multiply and
Divide repetitive loops, MPI and DVI,

Chapter 4 contains further details of memory selection and timing.
PARITY TEST AND GENERATION

The purpose of the parity circuit is to ensure that the numbers stored in Erasable
and Fixed Memory are read correctly. Single errors and all other odd multiple errors
cause an alarm to be signalled to the computer and the display panel. The parity bit is
chosen so that the number of "1's" in a word is odd. In Fixed Memory, this bit is wired
in along with the rest of the information. In Erasable Memory, it must be generated
cach time a new word is stored. It is convenient, in fact, to generate a new parity bit
each time a word is read so that any wrong parity indication will not persist. In the
Special registers, no parity test is made because of the difficulty of generating the
parity bit for words produced by arithmetic, logical, and editing operations.

Figure 2-4 illustrates the flow of parity information. A single circuit, called a
"pyramid, " is sufficient to generate and test a parity bit. If "read G" (RG) and "write P"
(WP) gates are on at the same time, the pyramid produces even number indications of
the incoming word, both with and without the parity bit. These two indications are called
the P-15 and 1-15 indications, respectively. If the source of the word is not G, then both
outputs produce a 1-15 indication.

The parity output of G has only a single destination, which is the write gate of the
P register. The position in the Write Buses corresponding to the parity bit is used for
the uncorrected sign, as mentioned in the Central Processing Section of this chapter,
and receives the SG bit from G.

During memory cycles in which information is brought from memory, the process
of parity testing is initiated by RG and WP control pulses. A later Test Parity (TP) pulse

T _ 1

generates an alarm if an even number of "1's" was written into P.
When no new information is being written into Erasable Memory, the word just read

is regenerated except for the parity bit. The latter is generated by the 1-15 indication
of the pyramid and gated into the G register by a Generate Parity (GP) control pulse.

UN%MED 2—11‘
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When a new word is stored, the same method is used except in the Exchange
instruction. There, it is necessary to store the generated parity bit while the pyramid
is used to test another incoming word. The P2 register serves that purpose. A Read P2
(RP2) control pulse produces the same result from P2 as does GP from the 1-15 indication.

Finally, for Down telemetry, it is required to store a parity bit in the OUT4 reg-
ister; there is a special gate which is enabled only when OUT4 is addressed. This gate
transmits the parity bit as required.

COUNTER INCREMENTING

Counters in AGC 4 are addressable registers in the Erasable Memory. The inputs
to these counters are trains of pulses which are first stored in a special set of circuits
called a Priority Chain, The Priority Chain is shown symbolically in figure 2-5. The
cells labeled Py, P9, P3,....Pg0, each represents a pair of flip-flops and some extra
gates; each flip-flop stores one of the two possible incoming pulses (e.g., a pulse for
increment or a pulse for decrement). If either flip-flop of P; is set to "1", which means
that the counter i is to be serviced, then a "1" is transmitted through gate G; into the
Counter Address Generation Network; and all other gates Gj, where ] > i, are blocked.
Gate Gj will transmit a "1" into the Counter Address Generation Network only if no other
earlier counter Gy, where k < i, requires processing.

Should simultaneous requests be made, the counters are serviced in preassigned
order, hence, the name "Priority Chain. "

The cells P; each have two outputs, sych as Cj +, Cj -, or Cj +, CiS. These outputs
are "1" if the corresponding storage flip-flops are on, and if the corresponding gages G;
are not blocked,

The signals Cj +, Ci -, and CiS are grouped into three OR gates; the outputs from
these OR gates go to the Sequence Generator, where they are used in the selection of a
PINC, MINC, or SHINC sequence.

When an increment is received, the address of the appropriate Erasable register
is supplied through the Address Generation Network; information for the selection of the
appropriate sequence is provided to the Sequence Generator; and activity relating to all
counters of lower priority is inhibited temporarily. Inputs to lower priority counters
are not lost, however, since they are stored in the P cells.

2-12 UNMED‘
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When the Sequence Generator reaches the end of a memory cycle, a test is made to
see if any of PINC, MINC, or SHINC are requested. If so, the outputs of all P cells are
temporarily (3 usec) prevented from changing state; and the counter address and proper
sequence are recorded in the address register S and in the Sequence Generator, respec-
tively. Blocking the changes of state of outputs of all P cells is necessary in order to
prevent an ill-timed input pulse from changing a counter address in the middle of the
sampling period. Such an incoming pulse is not lost, however, since there are holding
flip-flops before the blocking gate inside the P cells.

The counter to be serviced is then incremented after the end of a memory cycle,
essentially by inserting an incrementing memory cycle before proceeding with the next
"normal’ cycle called for by the instruction being executed.

If more than one counter input is to be serviced, the counters are incremented in
order of descending priority until there are no further increments to be made. The same
test made at the end of "normal" memory cycles is made at the end of an incrementing
cycle. The only thing not "normal'" about an incrementing cycle is that it was not called
for by an instruction.

A detailed description of the steps of PINC, MINC, and SHINC are found in chapter 3.

While normal computations proceed at half speed, AGC 4 is capable of an aggregate
counting rate of about 42 Kpps. The relationship between counting rate and computing
speed is an inverse one; if the aggregate input rate is about 21 Kpps, the computing
speed is 75% of maximum,

It is difficult to speak of maximum counting rate for counters in an absolute sense.
If there are no other counters receiving inputs, then a given counter will lose no counts
if its inputs are below 80 Kpps. It is also true that no pulses will be lost if all counters
receive simultaneous inputs which are at least 240 usec apart (about 4 Kpps). In both of
the above cases, however, no computing other than counting would be done, since the end
of every memory cycle would find a new request for ‘servicing a counter.

If a counter input circuit P receives simultaneous plus and minus inputs, a single
incrementing cycle occurs which increments the counter by zero; i.e., there is no net

change in the contents of that counter.

A 20-counter system requires about 250 NOR gates, including those necessary for
generating the address of the counter.

""NGLASSIEIED
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PROGRAM INTERRUPTION

The normal sequence of instructions can be interrupted by a certain kind of signals
called RUPT's (for interrupts). These signals are derived from certain other signals,
which go to INBITS, or by the overflow of some counters. (See chapter 5.) The Priority
Chain associated with RUPT's is much the same as that of the counters, but the resulting
actions are more complicated for RUPT's than for increments.

A RUPT causes a transfer of control to some prespecified program. At the end of
that program, a RSM (for resume) sequence takes place, which sets the AGC arithmetic
and control units back to the exact state they were in at the time of interruption. To do
this, the RUPT sequence must preserve, and store in a safe place, the contents of B and
Z; the interrupting program further preserves A and Q.

Interrupts themselves cannot be interrupted. If an interrupting program is in
progress, and a RUPT signal comes in at this time, the new request is preserved and
acted upon only after the original interrupting program has ended and the RSM sequence
has taken place.

It is sometimes desirable to inhibit interruptions for a brief period. This can be
done by the instruction INDEX INHINT. The address INHINT (octal 0017) is interpreted as
meaning that RUPT signals should not be processed until further notice. "Further notice"
is defined as the instruction INDEX RELINT (for Release Interrupt). Address RELINT is
octal 0016. The inhibition of interrupts is used sometimes when dealing with input and
output registers.

WAITLIST AND EXECUTIVE PROGRAMS*

One of the most important problems in general purpose control computers is that of
starting and stopping programs for which real time is a variable. The WAITLIST and
EXECUTIVE programs should, for this reason, be considered to be an integral part of
AGC 4. These programs do not presently exist for AGC 4, but they do exist for AGC 3;
the differences between the two versions are expected to be minor.

The descriptions given below, although superficial, are included in order to give
some idea as to the nature of such programs.

*Both WAITLIST and EXECUTIVE programs were first written by J. H. Laning, Jr.,
for the Mod 3C Computer, later AGC 3.

-
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WAITLIST

This program allows a desired subroutine, called "task, " to be entered at a spec-
ified future time. The format for such requests is as follows:

L XCH AT
L+1 TC WAITLIST
L+2 TASKADDRESS

The contents of register AT is a time interval At, the time from "now'" at which
the desired task is to be executed by means of an interrupt. The contents of L + 2,
"TASKADDRESS, " is the fourteen-bit address of the desired task. As a matter of con-
vention, "tasks" refer to programs executed by WAITLIST, while "jobs" refer to pro-
grams under control of the EXECUTIVE, described in the next section. After making
the request, the program continues at L + 3.

There may be up to seven different task requests waiting to be processed at one
time. If two of these tasks should happen to request the same time of execution, then
the first one requested is executed first; and the second one as soon as the first task is
completed. The end of a task is signalled by the instruction TC TASKOVER. The pro-
gram TASKOVER sees to it that any additional tasks requested for that time are exe-
cuted before resuming the interrupted program.

The WAITLIST routine makes use of the Time 3 counter, which is incremented at
the rate of 100 pps. A task request essentially results in presetting Time 3 so that it
will overflow at the proper time. When Time 3 overflows, it triggers the T3RUPT
interrupt. The interrupt program then determines which task is called for at this time
and takes appropriate action, after which it resumes the original at the point of inter -
ruption. A common type of action is to enter a job request into the executive system of
routines (of which EXECUTIVE and WAITLIST are a part). This last is done to avoid
lengthy interrupting programs which, in turn, prevent other interrupting signals from
being serviced.

A task request may be self-perpetuating. After a task is done, but before trans-
ferring to TASKOVER, a new request is made for the same task to be executed At sec-
onds ahead.

EXECUTIVE
This program will arrange the order of processing of up to seven independent pro-
grams, each of which has a preassigned priority ranking. The AGC 4 programs will

have certain points at which the EXECUTIVE can suspend that program's computations
and initiate processing of a program of higher priority. When the higher priority job is
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done, the interrupted job is resumed. Unlike the "hardware'" priority circuits, the
EXECUTIVE will allow for the interruption of interrupted programs. To initiate a job,
programs FINDVAC or NOVAC are used in the interrupt mode or with interrupt inhibited.
FINDVAC is used if the job desired is written in interpretive language or uses a vector
accumulator; NOVAC is used if the job requested does not use a vector accumulator and
is in basic language.

Entry into the EXECUTIVE is via the sequence:

L XCH PRIO
L+1 TC FINDVAC

{L +1 TC NOVAC
L+2 JOBADDRESS

¢(PRIO) is a priority designation for the job, and c(L + 2) = JOBADDRESS is the four-
teen-bit address of the requested job. After making the request, the program continues at
L+ 3.

To terminate a job, it should end with the instruction TC ENDOF]JOB if the job written
in was basic AGC language, or with the interpretive instruction RTB ENDJOBLI if the job

was written in interpretive. "RTB" stands for "Return to Basic."

All AGC programs which qualify as jobs have, at suitable points, the instructions:

L CCS NEWJOB
L+1 TC CHANG1 (if present job is basic)
L+1 TC CHANG2 (if present job is interpretive)

This pair of instructions allows the EXECUTIVE to replace the present job with one of
higher priority, if one exists.

The time required for the EXECUTIVE for AGC 4 is not known exactly at this time.
Assuming, however, that the AGC 4 program is like that for AGC 3, then the speeds
are approximately as follows:

AGC 3 AGC 4
NOVAC @7 + 7P) I 2(27 + 7TP) MCT
FINDVAC (40 + 7P) I 2(40 + 7P) MCT
CHANG?2 50 I 100 MCT
ENDJOBL1 91 + 11P) I 2(91 + 11P) MCT

where: P is the number of jobs outstanding.
I is the AGC 3 instruction time (40 usec).
MCT is the AGC 4 Memory cycle time (12 psec).
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Chapter 3

AGC 4 INSTRUCTIONS

GENERAL REMARKS

There are eighteen sequences in the repertoire of AGC 4: eight basic instructions,
three extracode instructions, four unprogrammed sequences, a special case of one of
the basic instructions (resume), and two sequences that operate under control of the sys-
tem test equipment. The last two are of no concern to programmers and are mentioned
here only for completeness.

Each sequence consists of one or more subsequences lasting one memory cycle
time (MCT). 1 MCT is nominally 12 psec; actually it is a little less.

The format of an instruction word is:

Bits 15 14 13 122 11 10 9 8 7 6 5 4 3 2 1 P

1 T T L 1 ! J 1 1 | I | 1

Operation Odd
Code Address Parity

In the notation of this memo, L is the address of the location from which the instruction
is taken. For any register or location K, c(K) denotes the contents of K; b(K) denotes
initial ("b" is for "before') contents of K wherever the distinction clarifies the discus-
sion. The results of addressing special registers referenced explicitly by instructions
are given in the "Special Cases: Implied Address Codes" section of this chapter.

Table 3-1 shows the special registers, excluding unaddressable central registers.
A, Q, Z, and LP figure prominently as arithmetic or control registers. It should be
noted that an initial condition for an instruction in L is bits 12-1 of C(Z) = L + 1.
Normally bits 16-13 of C(Z) are zero. Table 3-2 shows how the registers are written
into. Note particularly that A has two independent sign bits. When a word is brought
into A from Fixed or Erasable Memory, its sign bit goes into both positions. When
C(A) is stored in Erasable Memory, bit 16 is stored as the sign. The quantity stored
is said to be overflow-corrected because, if bits 16 and 15 of C(A) had become different
due to an arithmetic overflow, the stored sign is that of the operands of the overflow-
ing addition. One implication of these facts is that overflow is not so much an event
as it is a class of quantity retainable in a special register; the descriptions in the next
section treat it accordingly.

UNCIAGSIBIED
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Table 3-1. AGC 4 Special Registers

OCTAL REGISTER OCTAL REGISTER
ADDRESS NAME ADDRESS NAME
0000 A A 0020 CYR h
1 Q 21 SR
2 Z 22 CYL
3 LP 23 SL
4 INO 24 ZRUPT (In Erasable)
5 IN1 25 BRUPT (RIP)
6 IN2 26 ARUPT
7 IN3 > g:glsf ;‘;g 27 QRUPT
0010 ouTo 0030-56 COUNTERS )
11 OUT1
12 OUT2
13 OouT3
14 OouUT4
15 Bank
16 Relint No bits in
17 Inhint these registers
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WA

BASIC INSTRUCTIONS

3-4

These eight instructions are called basic because, unlike the extracodes, they are com-
pletely specified by an instruction word. The code number accompanying each description is
the octal digit in bits 15-13 of the instruction word.

Code 0.

Code 1.

Code 2.

L: TC K Transfer Control 1 MCT
Set C(Q) = TC L+1;

Take next instruction from K, and proceed from there.

L: CCS K Count, Compare, and Skip 2 MCT
Set C(A) = DABS[C(K)] , where the DABS function
(Diminished Absolute Value) of an integer « is defined

as =
_ o al - 1,if |of > 1
DABS() = 7 ¢ la] =1
Set C(K) = Db(K);
Take next instruction from L + n, and proceed from there,

where

n 1if C(K) > 0
n = 2if C(K) = +0
n = 3ifCK) < 0
n = 4if C(K) = -0.

Remarks: K may not be in Fixed Memory; a parity error and wrong answer
would result. This is no restriction because nothing is gained
by testing the contents of Fixed Memory.

If K is a flip-flop register, the sign bit (position 16) is tested.

Note that for any quantity &, a-a = -0in "1's" complement

notation.

L: INDEX K (K # 0025) Index 2 MCT

Usie the sﬁm of C(L + 1) + C(K) as the next instruction just as if that sum
had been taken from L + 1; set C(K) = b(K).

Final C(L +1) = b(L + 1).

UACLASSIFLED
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Remarks: One of eight operation codes distinct from the basic set results
if the sum contains an overflow. Three of these (the extracodes)
are used; interrupt cannot occur at the end of an INDEX that

overflows.

Code 2. L: RESUME ( = INDEX25 ) Resume 2 MCT

Set C(Z) = C(24);

Enable further interrupts.

Use C(25) as the next instruction.

Remarks: This brings about resumption of an interrupted program be -
cause the interrupt sequence stores in 24 (ZRUPT) the contents
of Z at the time of interruption and in 25 (BRUPT) the contents
of B at that time. Interrupt occurs between instructions, at
which time C(B) is the upcoming instruction and C (Z) is L+ 1,
where L/is the address of the source of C(B). Notice that

RESUME is INDEX 25 and not TC 25.

Code 3. L: XCH K Exchange 2 MCT
Set C(A) b(K);
Set C(K)

i

b(A) unless K is in fixed memory;

Take next instruction from L + 1.

Code 4. L: CS K Clear and Subtract 2 MCT
Set C(A) = -C(K);
Set C(K) = Db(K);
Take next instruction from L + 1.

Remarks: The minus sign, here and elsewhere, indicates "1's" complement.

Code 5. L: TS K Transfer to Storage 2 MCT
Set C(K) = b(A);
If b(A) contains no overflow, C(A) = b(A);
Take next instruction from L + 1;

If b(A) contains overflow, take next instruction from L + 2 and set

\FCTRRNRED -5
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C(A)
C(A)
(The leftmost digit is binary, representing the sign bit. The uncorrected
sign bit is accounted for in the digit second from left.

Remarks: The "skip on overflow" feature of TS is used chiefly in double pre-
cision arithmetic.

I

000001 for positive overflow, or

177776 for negative overflow

Code 6. L: AD K Add 2o0or3 MCT

Set C(A) = b(A) + C(K);

Set C(K) = b(K);

Take the next instruction from L + 1.

Remarks: If C(A) contains positive (negative) overflow after the addition,
the overflow counter OVCTR (octal address 0034) is incremented
(decremented) by one, which accounts for the third MCT. Also,
an interrupt can never occur while C(A) contains an overflow.
The effect on OVCTR is an explicit property of the AD and SU

instructions and not of overflows in general.

Code 7. L: MASK K  Mask 2 MCT
Set C(A) = ba) \ cx);
C(K) = b(K)

Remarks: "/\" is the Boolean operator AND applied in each bit position.

EXTRACODE INSTRUCTIONS

These three instructions are formed by overflow of the addition in INDEX. They can-
not be completely stored in memory, but conventional octal codes are stipulated, assuming
a conventional way of causing the overflow. If no address modification is desired, this
will be done by an EXTEND instruction which is simply INDEX 5777. The programmer is
responsible for supplying in 5777 the octal constant 47777. If address modification of an
extracode instruction is desired, the technique is to index by the sum of octal 47777 and
the modifying quantity. This implies that, if an argument address is used several times
to modify extracode instruction addresses, indexing of extracodes is virtually free. (See
the examples of double -precision multiplication. )
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In the following descriptions, the conventional octal code is shown as the code
number; but it is understood that the code does not have the meaning shown unless it
is preceded by the proper INDEX 5777 instruction.

Code 4. L: MP K Multiply 10 MCT

Set C(A,LP) = b (A) x C(K);

Take next instruction from L + 1.

Remarks: b'(A) is the overflow-corrected form of b(A); that is, over-
flow in b(A) is ignored. The high-order product in A and
the low-order product in LP (address 0003) agree in sign,
which is determined strictly by the sign bits of the operands,
even if one or both operands is zero. C(K) = b(K) except

when K = A or K = LP.

Code 5. L: DV K Divide 18 MCT
Set C(A) = b (A) / C(K);
Set C(Q) = - IRemainder| ;

Set C(LP) > 0 if quotient is positive,
< 0 if quotient is negative;
Take next instruction from L + 1.
Remarks: Ib(A)l should be less than IC(K)' , although equal magnitudes
are permissible if used very carefullv — iC(A)I = 37777 and
C(Q = - |C(K)| inthis case. If |bA)] >[CK)|, [|C(a)
= 37777 and C(Q) is meaningless. Therefore, b(A) must not

contain an overflow. C(K) = b(K) except when K = A, Q, or LP.

Code 6. L: SU K Subtract 4 or 5 MCT
Set C(A) = b(A) - C(K);
Set C(K) = b(K);

Take next instruction from L + 1.

Remarks: This instruction is identical to AD in all other respects.

UNCIASMELED s
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SPECIAL CASES; IMPLIED ADDRESS CODES

The descriptions in the foregoing "Basic Instructions' and ""Extracode Instructions"
sections assume that the address K is in nonediting Erasable or in Fixed Memory, except
as noted. The phrase "Set C(K) = b(K)" appears in most of the descriptions as a short-
hand indication that C(K) remains unchanged unless:

1. K = LP, CYR, SR, CYL, or SL, in which case b(K) is edited by one of the edit-
ing functions shown in table 3-2 to produce the final C(K).

2. Kis the address of one of the central registers always used by the instruction.
It is not obvious in this case how the instruction behaves.

There is an exception to Rule 1 in MASK, MP, and DV, as stated in their descriptions.
Also, in the very unlikely case that an instruction is taken from an editing register, Rule 1
holds for the instruction except for the instruction executed after a CCS. The function of
this section is to state the implications of Rule 2 for each instruction.

The following can also be considered as a list of special instructions. The mnemonic
of the instruction is on the left, and the means for getting it executed is explained on the
right-hand text.

RESUME, which is done by INDEX 25; this is a unique combination because it
actually performs a special pulse sequence during the second MCT; and

EXTEND, done by INDEX 5777,
Three more are defined which do not have to do with the consequences of Rule 2:
INHINT, done by INDEX 17, which inhibits interrupt until further notice;

RELINT, done by INDEX 16, which enables or "releases' interrupt (no storage
is associated with addresses 16 and 17, which behave as if they always
contained +0, so that neither INHINT nor RELINT affects the next in-
struction); and

XAQ, done by TC A, the mnemonic being "Execute C(A) using Q." The action
is straightforward, but it appears to do an out-of-line execution of C(A)
because Q follows A in the address pattern. In nearly all cases, it is
better to write

INDEX A
0 0

an important exception being the case that the instruction in A is a TC.

UNCAASBIHED
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The remaining special actions are introduced as they come up in the following paragraphs,
which discuss the consequences of Rule 2.

TC uses Z and Q. TC Z is not useful. TC Q is useful and is represented by the
mnemonic code RETURN. Let b(Q) = TC K, then the action of TC Q is, in 2 MCT:
Set C(Q) = TC 2;
Take next instruction from K, and proceed from there.
Remarks: Not useful if b(Q) is not a TC; see cautionary note under

TCAA (TS Z).

CCS uses Z and A. CCS Z might be useful; its action is, in 2 MCT:
Set C(A) = TC L;

Take next instruction from L + 1.

CCS A is definitely useful; its action is, in 2 MCT:
Set C(A) = DABS [b(A)] :
Take next instruction from L + n, and proceed from there,
where n = 1lif b(A) >0,
n = 2if b(A) = +0,
n = 3if b(A) <O,
n = 4if b(A) = -0.
Remarks: Bit 16 is regarded as the sign. The DABS function is computed
on the full 15 bits and sign of b(A), so that C(A) contains an
overflow if |b(A)| Z 40001.
INDEX uses Z. INDEX Z might be useful for a small program to operate
anywhere in Erasable Memory; its action is, in 2 MCT:
Use the sum of C(L + 1) + L + 1 as the next instruction just as if that sum
had been taken from L + 1.
XCHuses Z and A. XCH Z might be useful. Let b(A) = TC K; then the action
of XCH Z is, in 2 MCT:
Set C(A) = TC L+ 1;

Take next instruction from K, and proceed from there.
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Remarks: The effect is the same if b(A) is not a TC; but see cautionary note

under TCAA (TS Z).

XCH A (mnemonic NOOP) is useful and its action is, in 2 MCT:
Take next instruction from L + 1.
Remarks: This is used for no operation whenever it is desired to save C(Q).

Otherwise TC L + 1 is faster.

CSuses Z and A. CS Z might be useful; its action is, in 2 MCT:
' Set C(A) = -(TC L+ 1);

Take next instruction from L + 1.

CS A (Mnemonic COM) is definitely useful and its action is, in 2 MCT:
Set C(A) = -b(A);
Take next instruction from L + 1.
Remarks: The full 15 bits and sign are complemented.

TS uses Z and A. TS Z is useful and is represented by the mne ..onic code TCAA
(transfer control to address in A). Let b(A) = OP K, where OP is any four bits; then the
action is, in 2 MCT:

If b(A) contains no overflow, C(A) = b(A);
If b(A) contains positive overflow, C(A) = 000001;
If b(A) contains negative overflow, C(A) = 177776;
Take next instruction from K and proceed from there.
Remarks: Assuming that no explicit manipulation of C(Z) intervenes, the
next TC executed (from, say, location L/ ) will set C(Q) = OP
L + 1, whichin geﬁeral is not a proper return address (see TC Q).
CAUTION: The first TC following a TCAA must
not be a subroutine call. There is no problem if

OP = 0000 (binary), but in this case XAQ is as
fast and is preferred unless it is desired to save

CQ).
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TS A is also useful and is represented by the mnemonic code OVSK (overflow skip). Its
action is, in 2 MCT:

If C(A) contains no overflow, take next instruction from L + 1;
If C(A) contains positive or negative overflow, take next instruction from
L + 2, and proceed from there.
AD uses Z and A. AD Z might be useful; its action is, in 2 or 3 MCT:
Set C(A) = bA)+ L+ 1;
Take next instruction from L + 1.
Remarks: (Same as those under AD in the previous "Basic Instructions"

section.)

AD A is definitely useful; its mnemonic is DOUBLE; its action is, in 2 or 3 MCT:
Set C(A) = Db(A) + b(A);
Take next instruction from L + 1.
Remarks: (Same as those under AD in the previous "Basic Instructions!
section.)
MASK uses Z and A. MASK Z is not useful. MASK A is equivalent to XCH A.
MP uses Z, A, and LP. MP Z is not useful. MP A is useful; its mnemonic is
SQUARE, and its action is, in 10 MCT (including 2 MCT for the EXTEND instruction):
Set C(A, LP) = b’(A) x b'(A)
Take next instruction from L + 1.

Remarks: b'(A) is the overflow-corrected form of b(A); that is, overflow

in b(A) is ignored.

MP LP might be useful; its action is, in 10 MCT:
Set C(A, LP) = b“%A) x b(LP);
Take next instruction from L + 1.
DV uses Z, A, Q, and LP. DV Z and DV A are not useful. DV Q might be useful;
its action is, in 18 MCT:

Set C(A)
Set C(Q)

Set C(LP) > 0 if quotient is positive, or
< 0 if quotient is negative;

Uner

ba) / bQ);

-| Remainderl ;
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Take next instruction from L + 1.

SU uses Z and A. SU Z might be useful, its action is, in 4 or 5 MCT:
Set C(A) = b(A) - L -1;
Take next instruction from L + 1.
Remarks: (Same as those under AD in previous ""Basic Instructions" section.)
SU A is not useful.

Summary of Consequences of Rule 2:

1. With the exception of MP, addressing of a flip-flop register causes the full 15 bits
and sign to be used as the operand.

2. Addressing registers, whether or not they are centrals used by the instruction,
usually results in straightforward operation, except as follows:

TCAA (TS Z) yields the +1 overflow indicator in A but always transfers control to
the location whose address is in bits 12-1 of C(A); that is, the skipping function is
lacking.

OVSK (TS A) skips if C(A) contains an overflow but leaves C(A) as it was.

The complete set of mnemonic codes for which the address is implied is:

RESUME = INDEX 25 NOOP = XCH A
EXTEND = INDEX 5777 COM = CS A
INHINT = INDEX 17 TCAA = TS Z
RELINT = INDEX 16 OVSK = TS A
XAQ = TC A DOUBLE = AD A
RETURN = TC Q SQUARE = MP A

There are three mnemonic operation codes (not implied address) that may be used

for clarity in place of the standard codes:
TCR = TC, indicating a subroutine call (Transfer Control, intending to Return);
CAF = XCH, indicating that an XCH addressed to Fixed acts like a Clear and Add;
OVIND = TS, indicating that a TS addressed to Fixed skips and sets C(A) = z1 on

overflow but changes r.o memory location.



INSTRUCTIONS

SEQUENCES NOT UNDER PROGRAM CONTROL

There are four sequences whose execution is specified not by program but by the
state of the priority chain, which is altered by events external to the computer and some
internal events, such as overflow of a counter.

INTERRUPT 3 MCT
Set C(ZRUPT) b(Z);
Set C(BRUPT) b(B);

Reset priority signal, and inhibit interrupt until further notice;

Take next instruction from 2000 + 4n (n =0, 1, 2, ---), where n is the

interrupt type number; and proceed from there.

Remarks: At the end of each instruction, C(B) is the next instruction. An
interrupt may occur at the end of any instruction except in the
following circumstances:

1. An interrupting program is in progress;

2. An INHINT instruction has occurred, but no subsequent
RELINT;

3. C(B) contains overflow (as from INDEX);

4. C(A) contains overflow.

The standard coding at 2000 + 4n is:

TS ARUPT
XCH Q

XCH QRUPT

TC RUPTPRGN

By convention, ARUPT = 26 and QRUPT = 27,

Note that an interrupt causes any overflow in C(Q) to be lost.

COUNTER INCREMENT 1 MCT
Set C(J) = b() + 1.
COUNTER DECREMENT 1 MCT

Set C(Jy = b() -1.
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COUNTER SHIFT 1 MCT
Set C(J) = b() + b(j).
Remarks: ] is the address of the counter corresponding to the priority signal,
30 = J = 56. For some counters, an overflow sets up an interrupt
priority signal. Any memory cycle time may be preempted by the

priority chain for a counter operation.
PULSE SEQUENCES

The skeleton upon which the AGC 4 sequences are built is the memory cycle, which
occurs every MCT except in the Multiply and Divide loops and whenever a flip-flop register
is addressed. The events of two different types of memory cycles are shown in figure 3-1,
with the division into 1-usec time periods called Time 1 through Time 12. The address
selection register is written into at Time 1; if the address is 2000 or greater, the Rope
manipulations shown at the left begin. If the address is in the range 20 to 1777, the Eras-
able Memory manipulations shown at the right begin. A strobe writes data from the sense
lines of its memory into the memory buffer register G, which is cleared beforehand. It
can be seen that information from Fixed Memory becomes available early in Time 7, and
from Erasable early in Time 6. G accepts information to be stored in Erasable before
Time 10 or by special early pulses in Time 10, and supplies it to the Z Inhibit Drive (ZID)
during Times 10-12.

The control pulses that form the micro-operations of the sequences are listed in
table 3-4 at the end of this chapter.

As many as five pulses can occur simultaneously. Table 3-5 (at the end of this chapter)
shows the subsequences of twelve times (1 MCT) each. The subsequences that make up a
sequence are selected in turn by changes in a 2-bit stage counter, which starts at 00 for
instructions and 01 for interrupt, and is stepped explicitly by the pulses ST1 and ST2 as they
occur in subsequences. Each subsequence has a name consisting of a mnemonic abbrevia-
tion and a suffix (0, 1, 2, or 3) showing the state of the stage counter when it is selected.
Where no suffix is given, 0 is understood.

Flowcharts of the sequences are given in table 3-6 (at the end of this chapter), Parts
1 through 13. These are simplified to show activities of central importance to the results
of each sequence, omitting parity procedures and the application or not of Rule 1 in the
"Special Cases: Implied Address Codes" section. Explanatory remarks on the flowcharts
comprise the bulk of this discussion.
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MEMORY CYCLE TIMING AGC 4
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Notation: INHINT 1 denotes that interrupt is prevented from occurring at the end of
the current instruction; "V ' denotes superposition (Boolean inclusive OR); INHINT denotes
the inhibition of interrupt until further notice; other notation is that of the "Basic Instructions"
and "Extracode Instructions" sections, except that "C(n) « " is used instead of "set C(n) =."

Boundary conditions: At the beginning of the instruction in L, C(Z) = L+ 1. After
Time 11 of the last subsequence in each sequence, C(B) is the next instruction. If no un-
programmed sequences are commanded, Time 12 selects the next instruction by writing
C(B) into the sequence selection register SQ.

Table 3-6, Part 1: TC requires only 1 MCT because its only operation on memory is
to fetch the instruction to which control is being transferred. Time 7 sets up that instruc-
tion, Time 8 the return address, and Time 10 the initial condition in Z for C(K).

Table 3-6, Part 2: Time 2 of CCSO sets up C(Z) for the skip increment in Time 8.
The argument is fetched from G at Time 6 because of the amount of work to be done in
the remainder of MCT 1. This accounts for the restriction that K not be in Fixed Memory.
The chief constraint on timing in CCS0 and a few other subsequences is carry propagation
time in the adder; the sum is not available until the third usec after the second addend is
entered. Time 10 of CCSO and Times 5, 8, and 10 of CCS1 compute the DABS function.
An overflow check is made in Time 10 of CCS1 because b(A) could contain overflow.

Table 2 o, Part 3, shows how INDEX and RESUME share the same first MCT. Time 7
of NDXO either sets up the indexing quantity (INDEX) or restores C(B) from BRUPT (RESUME),
the semantic distinction being made by which subsequence is chosen as MCT 2. Times 6, 8,
and 11 of NDX 1 perform the indexing; the overflow check is made because an extracode in-
struction cannot be preserved in BRUPT. Time 7 of RSM sets up the initial condition in Z
for the instruction restored to B.

Table 3-6, Part 4, shows the method of XCH; the overflow check is made for the case
of NOOP (XCH A) because C(A) never contains an overflow when filled from memory.

Table 3-6, Part 5, shows the method of CS; the overflow check is made for the case
of COM (CS A).

Table 3-6, Part 6, shows the method of TS; the overflow check in Time 10 of TS is
made for the case of OVSKP (TS A). Observe also the implications of K = Z.

Table 3-6, Part 7, shows the method of AD. The incrementing or decrementing of

OVCTR occurs between the two normal MCT's of AD because a counter operation can pre-
empt any MCT.

UNCLASSHhD
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Table 3-6, Part 8, shows how MASK accomplishes its function using De Morgan's
law AAB = - [(—A) V(—B)] . Notice how MASK, like MP and DV, but unlike all other in-
structions, does not change the contents of an editing register when referencing it. This
is done by omitting RB WG WSC at Time 9 and is intended as a useful property of MASK.

Table 3-6, Part 9, depicts the MP sequence, shows the prologue of 1 MCT, and the
6-MCT loop and 1-MCT epilogue. Broadly, the method is as follows:

1. Generate in B a number with the magnitude of the multiplicand [C(K)] and the
sign of the product.

2. Generate in bits 13-1 and 16 of LP (in LP, bits 16 and 15 always agree) the right-
cycled absolute value of the multiplier [b(A)] , and generate in bit 14 of LP the
sign of the product. (Note that this quantity is not the same as a right-cycled
version of a number having the magnitude of the multiplier and the sign of the
product.)

3. Generate in A a zero with the sign of the product.

4. [Examine bit 16 of LP and rewrite LP, causing bits 16 and 15 to be replaced from
bit 1, bit 14 to be clea;ed, and former bits 14-2 to be shifted right 1. If zero,
shift right C(A) into A and bit 14 of LP, extending the sign in A; if one, shift
right C(B) into A and bit 14 of LP, extending the sign in A.

5. Repeat step 4 thirteen times, except; if the examined bit from LP is one, shift
right b(A) + C(B) into A and LP, extending the sign. The overall effect is that
the partially formed product and the absolute value of the multiplier migrate to
the right in a double -length shift register A and LP, separated by the product
sign injected in step 2, while each multiplier bit is discarded after examination.
The injected product sign ends up in bits 16 and 15 of LP; thus, both halves of
the product have correct magnitude and sign.

Now refer to table 3-6, Part 9a, for the events of the prologue. The sign test in
Time 2 enables the generation of the absolute value of the multiplier and, at th. same
time, chooses whether to use the multiplicand or its complement. Thus, the sign of the
product is known even though the original sign of the multiplicand is never examined.
The multiplier magnitude is stored in LP in Time 4 and retrieved in Time 5 for testing
in Time 10. Times 7-9 perform the function of step 1 above and :est the sign of the
product. In Time 10, the product sign is injected into LP to the immediate left of the
multiplier and the first (originally rightmost) multiplier bit is tested. Time 11 per-
forms the remaining functions of steps 3 and 4 above. MPO performs all of steps 1
through 4, although not in the same order.
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The loop subsequence MP1 (table 3-6, Part 9b, top) performs twelve of the thirteen
iterations of step 5 at the rate of two per MCT. The two iterations within each MCT are
slightly overlapped to make use of the adder carry propagation time. C(A) is moved to
the adder in Time 1 to make room in A and set up the possible addition. A multiplier bit
is tested in Time 2, and the addition, if required. is begun in Time 3. The multiplier
(with sign of product and partial lower product) is shifted into LP in Time 4. C(LP) is
tested in Time 5 but not moved because it lacks bit 14, which is supplied in Time 6 as the
sum (or b(A)) is shifted into A and LP. The action of Times 7 and 8 is analogous to that
of Times 1 and 3, and that of Times 9 and 10 to that of Times 2 and 4 but without the bit
test, which was overlapped into the preceding iteration. The Multiply Loop Counter is de-
cremented and tested in Time 10 to determine the successor to Times 11 and 12. The sum
from the second iteration of the loop is shifted into A and bit 14 of LP in Time 11.

In the epilogue subsequence MP3 (table 3-6, Part 9b), the last iteration of step 5
is interleaved with fetching the next instruction, which is initiated in Time 1. C(LP)
is tested in Time 2 but not moved because there is no place for it to go. The adder re-
mains busy until Time 4, when the initial condition in Z is set up for the next instruction.
The final addition is begun in Times 5 and 6, leaving room for the next instruction in B in
Time 7. The final lower product with its sign bit, but lacking bit 14, is formed during
Times 8 and 10; and the upper product with that bit is shifted into place in Time 11.

Table 3-6, Part 10, shows the logic of the prologue, loop, and epilogue of the DV
sequence. Broadly, the method is as follows:

1. Generate in bits 16 and 15 of LP the sign of the quotient.

Do

Generate in Q the negative absolute value of the dividend (b(A)).
3. Generate in A the absolute value of the divisor (C(K)).
4. Set up 00001 in B, representing -37777 left-cycled.

5. Generate -2 |dividend| in Q and -2 |dividend| + |divisor| in the adder. If the
difference is zero or negative, accept it in Q as the new dividend and generate a
quotient bit = 1 by leaving C(B) alone; otherwise, retain C(Q) as the next dividend
and generate a quotient bit = 0 by injecting a sign bit into B.

6. Cycle C(B) left. If the sign bit of the C(B) is zero, go back to step 5; otherwise,
the marker bit placed in B in step 4 has arrived in the sign position; and C(B)
= - |quotient| , CQ) = - |remainder| . Now test the sign of C(LP), and put the
quotient with correct sign in A.

7. Use the standard instruction-fetch subsequence.
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Now refer to the top of Part 10 in table 3-6 for the events of the prologue. Times 2,
4, and 6 produce - |dividend| in Q, and Time 5 sets up the sign bits of C(LP) to the oppo-
site of the sign of the dividend. Times 7 and 8 set up the divisor in A and test its sign.
If positive, C(A) is left alone and C(LP) is read and restored to rotate the opposite sign
into position. (The injection of a low-order 1 ensures that the final C(LP) is nonzero,
facilitating subsequent testing by CCS if desired.) If the divisor is negative, C(A) is set
to the negative of the divisor. Thus, in all cases, C(A) = ldivisorl after Time 10. Time 11
sets up in B the marker bit, which will also be the legitimate sign of - |quotient| .

The operation of the loop DV1 depends on some peculiar properties of the editing
function in AGC 4. If S contains the address of one of the four Erasable editing reg-
isters, data passing from a central register from G is transformed according to the
definition of the editing register so that G is actually the editing register. Since S con-
tains 0022 during DV1, G is a cycle-left register during DV1. G contains only one sign
position, which is fed normally by write line 16. In this case, it is fed by write line 14,
bit 1 being fed by write line 16.

In Time 2, C(Q) is cycled left into G. The result, with a sign bit superimposed, is
sent to Q and the adder in Time 3. This last is twice b(Q) because cycling left is equiv-
alent to doubling except that the sign bit is changed if the argument magnitude is at least
1/2. b(Q) is known to be negative; hence, supplying the sign bit remedies the defect and
can return a sum Wwith correct overflow. The main subtraction of the loop is begun in
Time 4. The sign test on C(LP) in Time 5 has no effect until Time 10 is executed for the
14th time. Time 7 decides the value of the quotient bit. If the result of the subtraction
is negative, it becomes the new dividend in Q; otherwise, C(Q) is unchanged. In Time 9,
the quotient bit is injected into B. Since each bit in C(B) except the marker that becomes
the sign is initially a 0 (which has a value of 1 in a negative number), a bit is injected if
the true quotient bit is 0. Times 9 and 10 cycle C(B) left, and the sign test in Time 10
tests for the marker bit. The quotient with correct sign is stored in A in Time 11 of the
14th and last execution of DV1, the choice of sign being governed by the sign test on C(LP)
in Time 5.

Table 3-6, Part 11, shows the method of SU. It is identical with AD except for the
negative sign on C(K) in Times 8 and 11 of SU.

Table 3-6, Part 12, shows the actions of the interrupt sequence. The C(B) stored
in BRUPT is the instruction that was about to be executed, and the C(Z) is one greater
than the location of that instruction.

Table 3-6, Part 13, shows the counter operations. C(CTR) can be fetched in Time 6
because the counters are in Erasable. The sum is not stored until Time 10 because of
the time required to compute its parity; actually, it is read out 250 nsec earlier than
normal.
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COMPARATIVE SPEED CHART

Table 3-3 is a chart comparing running times of the AGC 4 sequences with those of

AGC 3.

Memory Cycle Time, AGC 4
Instruction Time, AGC 3

Nominal Actual
12 psec 11.72 psec
40 usec 39. 06 usec

The times quoted are actual rather than nominal, the units being:

It is assumed that, on the average, address modification of AGC 4 extracode instructions

costs no appreciable time.

Table 3-3.
Sequences with AGC 3 Sequences

Comparison of Running Times of AGC 4

Op. Time, Time, | AGC 3 Speed
Operation Code MCT usec time, usec| factor
Transfer Control TC 1 11.72 39.06 3.33
Count, Compare, and Skip CCS 2 23.44 78.13 3.33
Index INDEX 2 23.44 39.06 1.67
Exchange XCH 2 23.44 39.06 1.67
Clear and Subtract CS 2 23.44 39.06 1.67
Transfer to Storage TS 2 23.44 39.06 1.67
Add (no overflow) AD 2 23.44 39.06 1.67
Add (overflow) AD 3 35.16 58.59 1.67
Mask MASK 2 23.44 117.19% 5.00
Multiply (not indexed) MP 10 117.19 625.00 5.33
Multiply (indexed) MP 10 117.19 664. 06 5.67
Subtract (not indexed, SU 4 46. 88 117.19% 2.50
no overflow)
Subtract (not indexed, SU 5 58.59 136. 72% 2.33
overflow)
Subtract (indexed, SU 4 46. 88 156.25% 3.33
no overflow)
Subtract (indexed, SU 5 58.59 175, 78%* 3.00
overflow)
Divide (not indexed) DV 18 210.94 9062.50% 42,96
Divide (indexed) DV 18 210.94 19101, 56% 43.15
Interrupt - 3 35.16 39.06 1.11
Resume - 2 23.44 78.13 3.33
Counter Increment - 1 11.72 19.53 1.67
Counter Decrement - 1 11.72 19.53 1.67
Counter Shift - 1 11.72 19.53 1.67

*Not an AGC 3 instruction; time is for equivalent coding.
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EXAMPLES OF AGC 4 PROGRAMMING

INSTRUCTIONS

Examples 1, 2, and 3 are simplified versions of the standard double -precision arith-
metic subroutines for AGC 4. They are for illustration only and are not grammatically
complete, since some obvious symbols like ONE, ZERO, A, etc., are not explicitly de-

fined. The following is a set of exercises to aid a close study of the subroutines.

EXERCISES ON THE EXAMPLES

1.

Multiple precision numbers are often easier to deal with if their component words
agree in sign. It is not easy, however, to keep them that way.

a. For each of three kinds of operation in the examples (since we are dealing
with signed numbers, addition and subtraction are considered the same kind
of operation throughout these exercises), show that the component words of
the double (triple for DMP) precision result can differ in sign when the com-

ponent words of each operand agree in sign.
may differ (except for DDV),

The signs of the two operands

b. Write an AGC 4 program to convert a double precision number, whose com-
ponent signs may or may not differ, into the equivalent double precision number

whose component signs agree.

c. Do the same for a triple precision number.

Assume, as was done in the examples, that the possibility of net overflow in ad-

dition is to be ignored because only checked-out programs go into orbit.

Consider

the following two routines for double precision addition (the address symbols have

the same meaning as in the examples):

DAD1 XCH
INDEX
AD
XCH
XCH
INDEX
AD
XCH
XCH
TS

MPAC
ADDRWD
0

OVCTR
MPAC + 1
ADDRWD
1

MPAC + 1
OVCTR
MPAC

DAD 2

XCH
TS
XCH
INDEX
AD
XCH
XCH
INDEX
AD
XCH

MPAC
OVCTR
MPAC + 1
ADDRWD
1

MPAC + 1
OVCTR
ADDRWD
0

MPAC

a. In what special circumstance does each routine give a grossly wrong result?

b. What does each routine do with the operands that make the other routine fail?
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c. Is there a pair of operands that makes both routines fail?
d. Show that the routine in Example 1 is proof against these failures.
There is no facility in AGC 4 for intelligent handling of overflow out of OVCTR.

a. Show that this problem does not arise in the double precision multiply routine
in Example 2.

b. Rewrite the routine using the skipping and overflow-indicating features of the
TS instruction and without any use of OVCTR.

Analysis of double -precision arithmetic is often aided by thinking of double -precision
numbers as two-digit fractions in radix-16384 notation (for AGC 4). This is es-
pecially true for double -precision division.

a. Derive the approximation used in Example 3 for double -precision division.

b. Derive an expression for the error of that approximation.

c. Show that the routine in Example 3 works when the high-order words of the
operands are equal.

d. Show the necessity of the restriction assumed in the introductory remarks
to Example 3.
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EXAMPLES OF AGC 4 PROGRAMMING _ EXAMPLE 1

DOUBLE PRECISION ADD AND SUBTRACT SUBROUTINES. THE MULTIPLE PRE-
CISION ACCUMULATOR, MPAC THROUGH MPAC +2, IS THE SOURCE OF ONE OPER-
AND IN ALL THESE EXAMPLES AND IS THE DESTINATION OF THE RESULT. IN
THESE EXAMPLES, ASSUME THAT C(MPAC +2) IS INITIALLY ZERO, AND THAT
ADDRWD INITIALLY CONTAINS THE ADDRESS N, WHERE THE OTHER OPERAND IS
’ , IN N AND N +1. FOR ADDITION AND SUBTRACTION, C(N,N +1) IS TO BE ADDED TO
; ‘ OR SUBTRACTED FROM C(MPAC, MPAC +1). THE TIME ESTIMATE ASSUMES NO

OVERFLOWS.
DSU CAF EXTENDER ~ MODIFY C(ADDRWD) SO AS TO CHANGE
AD ADDRWD EACH INDEXED AD TO SU WITHOUT

~ TS ADDRWD CHANGING THE ADDRESS MODIFICATION.

THE SYMBOL .. EXTENDER.. STANDS FOR THE ADDRESS (5777) OF THE LOCATION
! . IN FIXED MEMORY WHICH BY CONVENTION CONTAINS THE OCTAL CONSTANT 47777,
THIS CONVENTION FIXES THE DEFINITION OF THE MNEMONIC OP CODE

.. EXTEND. .
DAD XCH MPAC +1 C(OVCTR) MAY CHANGE IN THIS SUB-
- INDEX ADDRWD ROUTINE, BUT WE DO NOT CARE.

AD 1 ADD OR SUBTRACT C(N +1).
TS MPAC +1 STORE RESULT, SKIP ON OVERFLOW,
CAF ZERO OTHERWISE MAKE INTERWORD CARRY =0,
AD MPAC PROPAGATE CARRY OF +1, -1, OR 0.
INDEX ADDRWD
AD 0 ADD OR SUBTRACT C(N).
XCH MPAC STORE RESULT THUS TO IGNORE OVERFLOW,
RETURN RUNNING TIMES- DAD 20 MCT, DSU 26 MCT.
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EXAMPLES OF AGC 4 PROGRAMMING EXAMPLE 2

DOUBLE PRECISION MULTIPLY SUBROUTINE. HERE WE STORE IN MPAC
THROUGH MPAC +2 THE PRODUCT OF B(MPAC, MPAC +1) AND C(N, N +1) , CARRIED
OUT TO TRIPLE PRECISION. WE ABBREVIATE THE OPERANDS AS M0, M1 AND No,
N1. THE NOTATIONS U(MXNY) AND L(MXNY) MEAN UPPER WORD OF THE PRODUCT
MXNY AND LOWER WORD, RESPECTIVELY,

P DMP CAF EXTENDER CHANGE C(ADDRWD) SO THAT THE INDEX
AD ADDRWD OPERATIONS OVERFLOW FOR THE EXTRA-
TS ADDRWD CODE MP,
: XCH MPAC +1
TS OVCTR M1 TO OVCTR.
! INDEX ADDRWD
MP 1 M1N1. ONLY U(M1N1) IS TO BE KEPT.
XCH OVCTR U(M1N1) TO OVCTR, M1 TO A.
INDEX ADDRWD
MP 0 M1NO,
- XCH OVCTR U(M1NO0) TO OVCTR, U(MLN1) TO A.
AD LP MAYBE INCREMENT U(M1N0) IN OVCTR.
XCH MPAC L(M1N0)+U(M1N1) TO MPAC, MO0 TO A.

.. INCREMENT. ., IN THIS SUBROUTINE, MEANS INCREMENT OR DECREMENT
ACCORDING TO THE SIGN OF THE OVERFLOW,

TS MPAC +2 MO0 TO MPAC +2.

INDEX ADDRWD

MP 1 MONL.

XCH OVCTR ~ U(MON1) TO OVCTR, U(M1NO) TO A.

XCH MPAC U(M1N0) TO MPAC, L(M1NO)+U(M1N1) TO A.
AD LP MAYBE INCREMENT U(MON1) IN OVCTR.
XCH MPAC +2 C(MPAC +2) = L(MON1+(L(M1N0)+U(MLN1).
INDEX ADDRWD

MP 0 MONO.

XCH OVCTR U(MONO) TO OVCTR, U(MON1) TO A.

AD MPAC MAYBE INCREMENT U(MONO) IN OVCTR.
AD LP DITTO.

XCH MPAC +1 C(MPAC +1) = L(MONO0)+U(M1N0)+U(MON1).
XCH OVCTR

TS MPAC C(MPAC) = U(MONO).

RETURN RUNNING TIME 83 MCT AVERAGE.
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EXAMPLES OF AGC 4 PROGRAMMING EXAMPLE 3

DOUBLE PRECISION DIVIDE SUBROUTINE. USING THE NOTATION OF THE MUL-
TIPLY SUBROUTINE, ASSUME THAT M0, M1, NO, AND N1 ARE ALL POSITIVE, THAT
NO, N1 IS GREATER THAN M0, M1, AND THAT NO IS GREATER THAN 1/2 (ASSUMING
THE BINARY POINT TO LIE BETWEEN THE SIGN AND BIT i4). AN ACTUAL DIVIDE
SUBROUTINE MUST MAKE THOSE THINGS TRUE BEFORE DOING THE PART SHOWN
HERE. THE QUOTIENT OF (MO0, M1)/(N0, N1) IS DELIVERED TO MPAC AND MPAC +1.

. USING THE NOTATIONS Q(MX/NY) AND R(MX/NY) FOR THE QUOTIENT OF MX/NY

AND THE REMAINDER, RESPECTIVELY, DIVISION IS ACHIEVED BY MEANS OF THE

APPROXIMATION

MO+SM1 . (MO) S ( (MO) (MO) ) 1 -14

S = Q(--) + -- (ML+R(--) - Q(--) N1), WHERE S=----- =2

NO+SN1 (NO) NO ( (NO) (NO) ) 16384

DDV CAF EXTENDER CHANGE C(ADDRWD) SO THAT THE INDEX
AD ADDRWD OPERATIONS OVERFLOW FOR THE EXTRA-
TS ADDRWD CODES.
XCH Q

- XCH MPAC RETURN ADDRESS TO MPAC, MO0 TO A.

INDEX ADDRWD
DV 0 Q(MO0/N0) TO A, -ABS(R(MO0/N0)) TO Q.
TS OVCTR Q(MO0/N0) TO OVCTR.
INDEX ADDRWD
MP 1 Q(MO/NO)N1.
AD Q - R(MO0/N0)+Q(MO0 /NO)N1.
COM R(M0/N0)-Q(MO0/NO)N1.
AD . MPAC +1 M1+R(M0/N0)-Q(MO0/NO)N1. MAYBE INCREMENT
OVSK Q(M0/N0) IN OVCTR. SKIP ON OVERFLOW.
TC +3 BRANCH IF NO OVERFLOW.
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EXAMPLES OF AGC 4 PROGRAMMING

R-333 LOGICAL DESCRIPTION FOR APOLLO GUIDANCE COMPUTER 4

EXAMPLE 3

DOUBLE PRECISION DIVIDE SUBROUTINE (CONTINUED).

+3

+2

+2

+4

+2

INDEX
SU

TS
CCS
AD

TC

AD
INDEX
SU
CCS
AD

TC

TC

XCH
DOUBLE
CCS
XCH

TC

CS

INDEX
DV

TS
XCH
XCH
TC

ADDRWD
0

MPAC +1
A

ONE

+2

ONE
ADDRWD
0

A

ONE

+2

+4

MPAC +1

A
MPAC +1
+2

MPAC +1

ADDRWD
0

MPAC +1
OVCTR
MPAC

A

UNC’ éﬁi!ﬁ[gn

REDUCING C(A) BY THE DIVISOR (NO)
GUARANTEES NO OVERFLOW NOW,
TENTATIVE DIVIDEND TO MPAC +1.

COMPUTE
ABSOLUTE
VALUE.

COMPARE ABSOLUTE VALUE OF TENTATIVE
DIVIDEND WITH THE DIVISOR, NO.

GREATER, SO MUST USE REDUCED DIVIDEND.
THAT CCS NEVER COMES HERE.

LESS, SO DIVIDEND IS OK,
EQUAL, SO MUST USE ZERO.
INCREMENT OR DECREMENT OVCTR.

RECALL SIGN OF DIVIDEND,
POSITIVE,

NEGATIVE,
(M1+R (M0 /N0)-Q(MO0 /NO)N1) /N0

IS THE LOWER QUOTIENT.

STORE ADJUSTED UPPER QUOTIENT.
RETURN. RUNNING TIME 96 MCT AVERAGE.
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INSTRUCTIONS

Table 3-4. Control Pulses in AGC 4

PULSE NAME | MNEMONIC FOR: TIMING ACTION
(N= NORMAL)
CI Carry In N Force carry-in to adder
stage 1.
CLG * Clear G Full usec Reset G.
CTR Loop Counter N 1. Increment loop counter.
2. Set stage 2 flip-flop next
Time 12 if loop counter
goes to six.

GP Generate Parity 1. Reset the parity bit of
the G register, and
write the 1-15 output of
the parity pyramid into
the parity bit of the
G register.

2. If c(S) is 0014, reset the
parity bit of the OUT 4
register; and write the
1-15 output of the parity
pyramid into the parity
bit of the OUT 4 register.

KRPT Knock down Rupt N Reset the current interrupt

priority priority flip-flop.

NISQ New instruction N Set flip-flop to cause trans-

to the SQ register fer from B to SQ next Time
12,

RA Read A N

RB Read B N

RB14 Read Bit 14 N Octal 20000 to Write Buses.

RC Read C N

RG Read G N Read G, placing the Sign bit

into the SG and US positions
of the Write Buses.

RG * Read G Full pusec As above.

\NGL&SIFIED

3-31



R-393 LOGICAL DESCRIPTION FOR APOLLO GUIDANCE COMPUTER 4

UNCLASSMo!

Table 3-4. Control Pulses in AGC 4 (Continued)

PULSE NAME | MNEMONIC FOR: TIMING ACTION
(N = NORMAL) '
RLP Read LP N
RP2 Read Parity two N 1. Reset the parity bit of
the G register, and write
the contents of P2 into
the parity bit of the G
register.
2. If ¢c(S) is 0014, reset the
parity bit of the OUT 4
register; and write the
contents of P2 into the
parity bit of the OUT 4
register.
RQ Read Q N
RRPA Read RUPT Address N Read current interrupt
address to Write Buses.
RSB Read Sign Bit N Octal 100000 to Write Buses
(US unaffected).
RSC Read Special and N Read addressed flip-flop
Central register.
RSCT Read Selected N Read current counter address
Counter address to Write Buses.
RU Read sum N
RU * Read sum Full psec
RZ Read Z N
R1 Read one N Octal 00001 to Write Buses.
R1C Read one N Octal 177776 to Write Buses
Complemented Uus=1).
R2 Read 2 N Octal 00002 to Write Buses.
R22 Read 22 N Octal 00022 to Write Buses.
R24 Read 24 N Octal 00024 to Write Buses.

3-32
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INSTRUCTIONS

Table 3-4. Control Pulses in AGC 4 (Continued)

PULSE NAME| MNEMONIC FOR: TIMING ACTION
(N = NORMAL)
ST1 Stage 1 N Set stage 1 flip-flop next
Time 12,
ST2 Stage 2 N Set stage 2 flip-flop next
Time 12.
T™Z Test for Minus N Set Branch 2 flip-flop if
Zero Write Buses are at minus
zero.
TOV Test for Overflow N 1. Set Branch 2 flip-flop if
positive overflow.
2. Set Branch 1 flip-flop if
negative overflow.
TP Test Parity N Generate alarm if P-15 output
of parity pyramid is "1."
TRSM Test for Resume N Set stage 2 flip-flop next
Time 12 if c (S) = 00025.
TSGN Test Sign N Set Branch 1 flip-flop if
sign bit is "1."
TSGN 2 Test Sign N Set Branch 2 flip-flop if
sign bit is "1."
WA Write A N Reset and write A.
WALP Write A and LP N 1. Reset A and write A via
right-shift write gates.
2. Reset bit 14 of LLP, and
write bit 1 into bit 14 of LP.
WB Write B N Reset and write B.

_NGLARSIFIFD
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Table 3-4. Control Pulses in AGC 4 (Continued)

PULSE NAME| MNEMONIC FOR: TIMING ACTION
(N = NORMAL)

WG Write G N Reset all of G except bit P,
and write via normal or
shifting or cycling write
gates as dictated by contents
of S.

WG * Write G Full psec Write G (do not reset) via
normal write gates, and
write into the parity bit of
G from the 1-15 output of
the parity pyramid.

WLP Write LP N Reset and write LP.

wWOvC Write Overflow N Direct overflow to OVCTR

Counter priority inputs.
WOVI Write Overflow N Inhibit interrupt after this
RUPT Inhibit instruction if overflow
indication on Write Buses.
WOVR Write Overflow N 1. Direct overflow to
priority inputs.
2. Reset current counter
priority flip-flop.

WP Write P N Reset and write P.

WP * Write P Last 3/4 psec Write P (do not reset).

WP2 Write P2 N Reset and write P2 from 1-15
output of parity pyramid.

wQ Write Q N Reset and w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>