TT—

CUIDANGE AND NAVIGATION

-Approved Zfﬁ%’ﬁf%\ i »/1/6"%@# _Date &’gnlfg_i
MILTON B. TRAGESRX DIRECTOR
APOLLO GUIDANCE AND NAVIGATION PROGRAM

oy
bl g
i

i mingy P i, , £ — AR g .
o ? Y 4L g 3 f HR W . o ? w Y b 3 &Y
F: % % i 38 5 SET g 3 T e £ # ¥ o .
e RS A 7 3 %4 R : - D5 e X
=gk R W ik Bt e] R T N W Ml L H

[
13

o

4-'\

Approved ﬁ&'&aﬁé}éﬁl@@%}%— Date /¢ .
ROGER EHDBURY DEBUTY DIRECTOR

INSTRUMENTATION LABORATORY

im b

R-489

USERS GUIDE TO THE BLOCK II
AGC/LGC INTERPRETER

by
Charles A Muntz

April 1965

INSTR

7\1 Wl o -
] A Pa A " LT 4
Ll I Y B o o ey

o

CAMBRIDGE 39, MASSACHUSETTS

 ACKNOWLEDGEMENT

, This report was prepared under DSR Project 55-~238,
sponsored by the Manned Spacecraft Center of the National
Aeronautics andSpace Administiration through Contract NAS

9-153..) *

The publica';ion of this report does not constitute ap-
proval by the National Aeronautics and Space Administration
of the findings or the conclusions contained therein, It is
published only for the exchange and stimulation of ideas,

ii

R-489 |
GC/LGC INTERPRETER

O THE BLOCK II A

———

USERS GUIDE T

ABSTRACT

en of the AGC/LGC (Apollo and LEM
a language in which

|
] :
A description is giv
Guidance Computers) algebraic interpreter,
computer programs may be conveniently prepared

Apollo Mission
by Charles A, Muntz

April 1965

iii

I1.
L.

1V.

VI

VIIL.

. A IX.

XI.

XI1I.

Table of Conﬁenﬁs

. Introduction

Multi-Precision Numbers

Interpretive Accumulator, MPAC
Memory Organization

Orgapization of Interpretive Language

Description of Interpretive Operation Codes

Computation of Generalized Parenthetical Expressions
Sémple Interpretive Program

Detailed Description of Interpretive Operation Codes
Detailed Timing Summary

YUL Assembly Formats

Index

Page

21

36

38

54

59

66

FI. AIntroduction

/ The interpreter is a collection of programs in the Apollo and LEM
Guidance Computers which permits the preparation of programs in a con-
j{ieniexlt, problem-oriented language. 'The advantages of such a pseudo-

‘(-!f.lar’i/guage over basic machine language for solving most computational
‘\problems are well known, Conventionally, compiler techniques are used
to‘translate equations into basic machine language and the basic language
program executed to solve the req11ired problem., One disadvantage of
thi's translation process is its uneconomic use of program storage. The
limitations of a space-borne guidance computer indicate the desirability
of storage savings at-the expense of some execution time; i.e., the com-
puter is necessarily small but considerably faster than the devices it
controls. Such a trade-off may be achieved with an interpreter.

In an interpretive system, the translation from problem-oriented
language to basic language is carried out in two stages, The first stage,
performed by the YUL Assembler for AGC/LGC operation, consists of
reducing interprétive language to a compact, encoded form, This inter-
mediate form of the program is stored in a relatively small number of
‘registers in the guidance computer. Final translation is done by the
guidancé computer at execution time, at the expense of some increase in

running time,

1I. Mulii-Precision Numbers

Most of the variables involved in computations during an Apollo
mission require accuracy beyond the 4 digits specified by a single pre-
cision number, indicating that the problem-oriented pseudo-language
should be centered about multiple~-precision computation, ' As many of
the required equations are most economically represented in vector and
matrix form, it is highly desirable to include vector-matrix operations
in such a pseudo';--language. To accomplish these ends and to facilitate
operational déscrip‘cions in the remaining sections of this report, the

following symbdls and nomenclature are introduced:

S(X) The single register X is understood -
“to be a fraction, -1< S(X) <, |

D) The pair of registers (X,X+1) has the
value S(X) + 214 §(X+1) where S(X)
and S(X+1) may have different signs,

T(X) - The trio of registers (X,X+1,X+2) has

' the value S(X) + 2714 g(x+1) +2-28
S(X+2) with possible sign disagree-

» ment as in D{X}, ,
V(X) The six registers (X, X+1,..., X+5)

form a column %ector,

D(X).
D(X+2)
D(X+4)

M(X) The eighteen registers (X, ..., X+17)
are understood to be the following
matrix:

D(X) D(X+2) D(X+4)

D(X+6) D(X+8) D(X+10)
D(X+12) D(X+14) D(X+16)

Note that all numbers in the above definitions are understood to be
fractions. This convention is preferable for fixed-point arithmetic since
the binary point is unaffected by addition, subtraction, multiplication,
and division,

III. Interpretive Accumulator, MPAC

In executing interpretive programs, a set of erasable registers is
set aside as a pseudoraccumulator, This area is designated MPAC for
Multi- Purpose Accumulator, MPAC congists of seven registers with
slightly modified array definitions: ' : *

D(MPAC) Same as D(X) with X = MPAC.
T(MPAC) Same as T(X) with' X = MPAC.
V(MPAC) Six of the seven registers are
understood to be th‘e column
vector.
. D(MPAC).
D(MPAC + 3)
D(MPAC + 5)

with S(MPAC + 2) irrelevant,

M{(MPAC) Not used, Matrix operations are
' vector-matrix multiplication

and yield vector results.

S(MPAC) Not used since single precision
numbers are not manipulated
in MPAC,

An interpretive overflow indicator, OVFIND, is provided for re-
cording overflows in arithmetic operations. This register is zero initially
and set to + 1 1if an overflow occurs. Instructions are provided for test-
ing and resetting OVFIND. ' |

1V. Memory Organization - S : ¢

Almost all memory may be used for interpretive variables, con-
stants, and programs, Variables may be stored anywhere in erasable
memory except registers 0—778. An interpretive program will not
change E banks; it is assumed that any such computation may be confined
to un-switched erasable and one E bank. General erasable from 618 to 13778
plus the current E bank are together referred to as "local erasable'’

Fixed memory is divided into two parts for interpretive consider-
ations,

Low ITigh

:‘6’67 %5102 | (Cross.—hatched area is
//0/] Jz] ~ unavailable to interpretive
L/ / / V ~ programg.)
Fixed*Fixed’o/z/ 22 P ‘
/013 A 23
04 24
05 25
/11 1 11/
16 ' 36
17 37

The low memory consists of banks 0.4—17 and high memory of 21-37,
these two portions referred to as half-memories. Programs may be
stored anywhere in high orlow memory, Any program may branch to
any other program; however, programs stored in low memory may only
refer to constants stored in low. memory and correspondingly, programs
in high memory are limited to constants in high memory.

V. Organization of Interpretive Language .

The interpretive.language itself consists of a number of pseudo
operatibn codes. These operation codes are mostly single address, with
no-address codes included where desirable, A more conventional organ-
ization would employ pseudo-codes and address constants packed into one
word of cornputef memory, similar to the basic instruction format, How-
ever, since the AGC/LGC word length is short, this organization is not
practical for this application.) ‘

_ Returning to memory considerations, it is desirable to allow pro-
grams and constants anywhere in fixed memory, while variables are of
course confined to erasable memory. A full word is required to specify
a fixed memory address while only 10 bits are required to locate a local
erasable memory location, This constraint on locations of variables leads
to the following organization of coded pseudo instructions:

1514 87 1
1 -|{o lorz |op1 | General Instructions

For instructions which address variables, programs, and constants

-4 -

.

the above format is used to store two seven-bit operation codes in one
word of memory. Address constants are given a full word of memory:
1514 81 1
~{0 or2 Or1
Address for OP1
Address for OP2 . ‘

2) 15 14 1110 1
0 oP [F—Address Store Instructions

Instructions wh1ch store an accumulator are generally the only ones
whose addressing capablhty may be restricted to erasable memory,

Several methods of address modifications are provided, as will be
explained later. The most important of these is furnished by two index
registers, X1 and XZ. If an address is indexed, the contents of the
specified index register are Sub’cx-acted from the unmodified address and
tﬁe result used as a net operand address,

The seven-bit operation codes comprising the general op code set
are divided into 4 addressing classes according to the last two bits of the

operation code:
Suffix ~Address

00 OP code requiring no address - i,e,, a set
of unary instructions. Included here are
function codes (for sine, cosine, square

root, etc.) and some shift instructions,

01 . . Arithmetic instructions with non-indexed
address, Address may be any location
in local erasable, or the half-memory

from which the instruction was taken.

10 Branch instructions and index instructions,
This set of instructions performs sequence
changes and modifies contents of index
registers, Addresses may be the same
as class 01 except that either half-memory
may be referenced.

11) Same as 01 except that an index register is
subtracted from the given address to form
a net operand address,
-5 = ’

VI. Description of Interpretive Operation' Codes

The following operations may be used to load the multi-purpose ac-
cumulator MPAC.

DLOAD X Load MPAC in doublé precision
TLOAD X Load MPAC in triple precision
VLOAD X Load MPAC with a vector

SLOAD X "Load MPAC with a single precision

The address X may be direct or indexed and refer to any local eras-
able memory register or any fixed memory location in the half-memory
from which the instruction was selected. DLOAD, TLOAD and VLOAD
load double precision (DP), triple precision (TP), and vector quantities
into MPAC, while SLOAD prepares a single precision quantity (counter,
etc.) for double precision computation. To assist in subsequent operations
which store MPAC, an indication of the type of quantity currently in MPAC
is maintained in a register known as MODE, this information being re-
ferred to as the store mode of MPAC. The store mode has three states:
+0 for double precision, +1 for triple precisiori, and -1 for vector. Ac-
.cordingly, DLOAD and SLOAD set the store mode to double precision,
TLOAD to triple precision, and VLOAD to vector,

The following store code stores MPAC, leaving the store mode un-
changed:

STORE X Store MPAC in X -

The address X may be anywhere in local erasable and may be direct or
indexed. The type of quantity to be stored is specified by the store mode,
Similarly, the following store codes combine storing with other useful

operations:
STODL X Store MPAC in X
Y and reload in DP from Y
STOVL X Store MPAC in X ,
Y and reload as vector from Y
STCALL X Store MPAC in X
Y and call the routine at Y

P

© STODL is entirciy equivalent to STORE X immediately followed by
DLOAD Y, except that it is more compact and fagter. Similarly, STOVL
is STORE X followed by VLOAD Y. STCALL is not quite as general, ac-
cepting only direct addresses, but is otherwisq equivalent to STORE X
followed by CALL Y (See discussion on sequence changing instrﬁctions).
v Using combinations of the load and store codes, information transfers

may be performed as follows:

TOFF = T
RRECT = R

is coded as

DLOAD
T
STOVL TOFF
R B
STORE RRECT

Of course, the DILLOAD could be the last half of a STODL at the end of
a previous computation and the STORE could be a STODL or STOVL to begin
the next.

The following instructions are available for performing scalar arith-

metic:
DAD X DP add
DSU X DP subtract
BDSU X DP substract from
DMP X DP multiply
DMPR X DP multiply and round
DDV X DP divide by
BDDV X DP divide into -
SIGN X DP sign test
TAD X TP add '

All leave resulis in MPAC and may address local erasable .
or the current half (31‘ fixed memory with a direct or indexed address (SIGN
is an exception and may only address erasable memory). As the arithmetic
is fixed-point throughout, almost all of the above operations may result in

!

overflow; e. g. the sum of . 5 and ., 75 is . 25 and overflow, An interpretive
overflow indicator, OVFIND, is maintained to communicate this information
to interpretive programs. Instructions are available for testing and re-

" setting it (see BOV and BOVB). Usually, the overflow corrected result is
left in MPAC (. 25 in the case above). Handling of overflow by each in-
struction is explained in the operation code summary,

Using the above ingtructions,

x=2(25-¢cd)
b

would be coded in the following way:

DLOAD DMP
C
D
BDSU DMP |
.25 DP
| A
DDV
B
STORE X

The following instructions are available for doing vector arithmetic
with a vector in MPAC:

VAD X Vector add

VSsuU X Vector subtract

BVSU X Vector subtract from

DOT X Vector dot product

VXSC X Vector times scalar-

v/sC X Vector divided by -scalar

VXV X Vector cross product

VPROJ X Vector projectioﬁ

VXM X Matrix pre-multiplied by vector
MXV X Matrix post-multiplied by vector

As before all may address local erasable and any location

in the current half-memory with a direct or indexed address. VAD, VSU,

./
!

and BVSU are entirely analogous to their scalar equivalents DAD, DSU, and
BDSU. DOT is one of the few non-loading instructions whose execution
modifies the store mode: it is changed to double precision corresponding to
the result of the scalar product. VXSC and v/ SC are unusual in that the
store mode determines the type of quantity to be found at X. If the current
store mode is double or triple precision, theée instructions reference a
vector at X, i, e, V(X); if it is a vector they use D(X). 'This flexibility does
not apply to matrix operations since MPAC would then be required to contain
a matrix; the address of MXV or VXM always refers to a matrix, -
» Using the above instructions, the equé’cions

asyesz+b
=L 15+@. Wy
a
are coded as follows:
VLOAD boT
Y
Z
DAD
B
STOVL A
' Z
DOT VXSC
. -
U
VAD V/sC
v
A
STORE - X

The following scalar function codes are available:

SQRT A Square Root

SIN (SINE) - Sine

COS (COSINE) . Cosine
ARCSIN (ASIN) Arc-sine
ARCCOS (ACOS) Arc-cosine '
DSQ : Square
ROUND Round

DCOMP Negate

ABS ' Absolute Value

(Alternate spellings are given in parentheses). None of these codes
require an address, All perform their function on the scalar in MPAC and
leave their result in MPAC. '

The functions SIN, COS, ARCSIN, and ARCCOS accept scaled inputs
and leave scaled outputs so that the full range in question may be accom-~
modated within the fixed-point fraction (see detailed descriptions). The
following illustrates the use of the function codes:

1
8, = " b2 +c
= cos [2(7 - B}
2
DLOAD DSQ
B
DAD SQRT
C
STORE Al
DCOMP
STOVL A2
' Y
DOT ARCCOS
Z

STORE X

-10 -

" In addition, the following vector functions are available:

UNIT Unit vector operation
ABVAL Vector length

VSQ Square of vector length
VCOMP Vector negation

Similar to the scalar functions, these inétructions require no address
but use the vector in MPAC., ABVAL and VSQ have scalar results and
change the store mode to double precision accordingly. UNIT and ABVAL
produce additional results as by-products, namely the square of the vector
length in one standard location and, in the case of UNIT, the length in an-
other (see detailed operation code description). To accommodate a vector

" of the form (x, 0, 0) a half-unit vector is left in MPAC by UNIT.

Scaling adjustments are frequently required in fixed-point computa-
tion, Operation codes requiring no address are provided for fixed, short
length shifts, while another operation code uses a specially decoded ad-
dress to specify a completely general shift. The short shift codes are as

follows:
SR1 Scalar shift right one
SR2 Scalar ghift right two -
SR3 © Scalar shift right three
SR4 Scalar shift right four
SR1R Scalar shift right one and round
SR2R Scalar shift right two and round
SR3R ‘Scalar shift right three and round
SR4R Scalar shift right four and round
SL1 . Scalar shift left one
SL2 Scalar shift left two
SL3 Scalar shift left three
SL4 Scalar ghift left four
SIL1R Scalar shift left one and round
SL2R . Scalar shift left two and round
SL3R Scalar shift left three and round
SL4R Scalar shift left four and round

- 11 -

VSR1 Vector ghift right one

VSR8 Vector shift right eight
VsLi1 ' Vector shift left one
VSL8 Vector shift left eight

Those codes provide scalar shift left or righyt, one to four places,
with or without terminal round, or vector shift left or right, one to eight
places. Rounding is optional in scalar shifts: round after right shift is
degirable unless the quantity is to be retained in triple precision; and
round after left shift is only meanful if a triple precision number is in
MPAC; e, g. after DOT. Rounding is not optional in vector operations
since components are always double.precision: vector shift right always
rouncis components and vector shift left never rounds.

Variables are usually scaled to give maximum precision and still
accommodate the required range of values. Suppose position information
is required which can be as large as3 X 108 meters. To prepare this
quantity for fixed-point arithmetic we will divide it by an integral power
of two so that the maximum value lies between .5 and 1, If E is the vector
to be stored in the guidance computer, then '

% 229

i§as]

B:

Suppose that a calculated position increment §R will never exceed
1.2 X 106 meters., Then, to achieve maximum precision 6R should be
stored as

sR= shrx 221

To add 6R to R as stored in fixed-point we have

R =R+ R

><229=

teot

1
X
XY
+
o
=
X
N

-12 -

or -

-8

jxt

The interpretive program for performing this operation is:

VLOAD VSRS
DELR
VAD
R
STORE R

While the above codes satisfy most needs, the following general re-

quirements exist and are met by the corresponding operation code:

SR Scalar shift right 1-41 places
SL Scalar shift left , 1-41 places
SRR Scalar shift right and round 1-28 places
SLR Scalar shift left and round 1-13 places
VSR Vector shift right ' 1-28 places
VSL Vector shift left . 1-27 places

The above shift capabilities form limits for corresponding direct
addresses. If the address (shift count) is indexed, the stored address may
"lie between + 128, but the resultant address should lie within the above
limits. If the result of the indexing operation produces a negative result,
the specified shift takes place but in the opposite direction.

Often, fixed poinf division is complicated by wide ranges of variation,
Such difficulties may be overcome by adjusting the scaling of the denominator.

“The instruction.

NORM (SL.C) X Scalar normalization

shifts the scalar in MPAC left until’its magnitude is at-least. .5, storing
the negative of the required number of shifts in the erasable location X.
Using this instruction 1/4z may be found with maximum precision as

follows:

- 13 -

DLOAD NORM

X1
BDDV SRR -
.25
' | 0,1

A number of instructions are provided for changing sequence in an
interpretive program. (Note: programs may not implicitly cross bank
boundaries; an explicit sequence-change ingtruction must be used for this
purpose,). As these instructions are the principal referencers of fixed mem-
ory, their addressing rahge has been extended to cover both half~memories.
This prohibits indexed addregsing in these instructions, but in this case a
more desirable form of address modification is provided: indirect ad-
dressing at an arbitrary level., If the address of a sequence~changing in-
struction refers to erasable, the contents of this location are taken to be
the address of the next interpretive instruction, If this address also re-
ferences erasable, the process is continued until a fixed memory address
is encountered, Usually, only one level of indirect address is used,

To execute a simple sequence change, the instruction

GOTO X Go to X
is provided. To call a subroutine which returns to caller
CALL X Call subroutine

may be used. Associated with each interpretive program is a return ad-
dress register, QPRET. CALL leaves in QPRET the complete address of
the next interpretive operation code (Sec also STCALL)., CALL and GOTO
- are members of a class of operations codes known as "right hand operation
codes'. If they are in the left hand positidn'of a pair, the right-hand code
must be blank. Clearly, if GOTO was in the left-hand position, a right-
hand op code would never be executed. In further discussions, no op code

is a right-hand code unless specifically stated.

-14-

Two instructions are provided for returning from subroutine entered
by CALL instructions. I return is desired before any other CALL instruc-

tions have been executed, the right-hand no-address instruction

RVQ (ITCQ) Return Via QPRET

will execute a GOTO QPRET. If the original return address must be saved

while another subroutine is called, the instruction
STQ (ITA) X Store QPRET

stores QPRET in the erasable location X (X must be a direct address). If
QPRET was stored in QTEMP, subsequent return may be made with a GOTO
QTEMP instruction,

To provide further addressing flexibility for CALL and GOTO the
following instructions are provided:

CGOTO X Computed GOTO -
< .
CCALL X Computed CALL

Y

In both instructions, X is the indexed or direct address of an erasable loca-
tion and Y the address of any location in either fixed half-memory. To lo-
cate the operand address for CALL or GOTO, Y + S(X) is formed and the
address taken from there. To call a different subroutine for each mode of
a program, the followin'g may be used:

CCALL
MODE
- SUBROADR

'SUBROADR CADR MODEZERO
CADR MODEONE
CADR MODETWO

-15-

The addrcss constants are stored out of sequence, of course. QPRET is
set to three locations following the CCALL operation code,

“The following instructions are provided for changing sequence de-
pen}dent on the contents of MPAC:

1 BPL X Branch plus
R BZE X Branch zero
' ' BMN X Branch minus
BHIZ X Branch high-order zero

» ;As with CALL and GOTO, X may refer to either half~memory, or an
address in erasable. In particular, they may be used for early subroutine
return via QPRET. Suppose SUBRO1 should call SUBRO02 if ab~c is positive
or return directly if negative.

SUBRO1 DLOAD DMP

A
B

DSU BMN
C
QPRET

GOTO
SUBRO2

SUBRO02 will return to SUBRO1's caller via QPRET if ab-c is non-negative.
During the execution of an interpretive program it may be desirable
to return to basic language. Two options are provided:

- BXIT Leave interpretive mode
RTB X " Return to basic at X

EXIT begins executing basic instructions immediately followirig the last

word processed by the interpreter, and is a'right-hand op code" like CALL
and GOTO. Suppose a point is reached at which an output bit should be set,
and then return to the interpretive mode: '

. EXIT
CAF BITX
EXTEND
WOR CHANNEL
TC INTPRET
(Interpretive coding)

-16-

RTB may, in effect,

be used to construct additionsl interpretive

operation codes, particularly those which require no address. Suppose we

desire a routine to load the time counters into MPAC. The following rou-

tine could be written:

LOADTIME

EXTEND

DCA - TIMEL
DXCH © MPAC
CA ZERO
TS : MPAC +2
TS ‘MODE
TCF DANZIG

When such a routine is called with an RTB, the exit instruction TCF

DANZIG begins the execution of the interpretive instruction following the

RTB, Suppose it is desired to go to ACTION if the present time is later

than TCRIT:

RTB DSU.
LOADTIME
TCRIT

BMN '
ACTION

No indirect addressing feature is provided with RTB: ' X must be the

direct address of a location in either fixed half-memory.

Several instructions may result in overflow, setting OVFIND to in-

dicate this fact to the interpretive program, These instructions include:

ABVAL
" BDDV
BDSU
BVSU
DAD
DDV

. DOT
DSU
MXV

ROUND SL4 VSL
SL SL4R VSL1
SLR SR e
SL1 - SRR VSL8
SL1R TAD VSQ
SL2 UNIT VXM
SL2R VAD VXV
SL3 VPROJ v/sC
SL3R VSR VSU
-17-

e O S-S T e i A TRl o i e R A L

Two instructions are provided for interrogating the interpretive overflow
indicator, OVFIND,

BOV X Branch on 6verﬂow
BOVEB X Branch on overflow to basic

If the overflow indicator is off (+0), no operation occurs. If it is on (+1),
it is reset; then BOV does a GOTO X and BOVB, an RTB X, At the be-
ginning of every interpretive job, OVFIND is set to zero by the EXECUTiVE.
_ The need for two-valued indicators arises frequently in Apollo mis-
sion programs. The interpreter provides compact storage for these switches
and several instructions with which to manipulate and test them. Four erag-
able locations are reserved in the STATE area for use as sixty interpretive
switches, numbered from 0 - 59D, (¢he set is almost arbitrarily expandable):

STATE 10 (.- . . . |14

+1 15y, . . . |29

+2 |30, . . . |44

+3 45, . . . |59

Fourteen two-stage operations are pfovided, First stage options in-
clude: _ '
1) Set switch to 1;
2) Clear switch to 0;
3) Invert switch (0 to 1 ~ 1 to 0);
4) No operation,

Second stage operations are;

1) Branch if switch initially set {on);

2) Branch if switch initially clear (off);
. 3) Go to unconditionally; -

4) No operation '

-18_

f,

~The fourteen useful combinations are

, _ SET X Set switch X
/ ‘ CLEAR X Clear switch X
I INVERT X Invert switch X
/ A | SETGO X Set switch X
/ Y and GOTO Y
CLRGO X Clear switch X
:! Y and GOTO Y
; : INVGO X Invert switch X
' Y and GOTO Y
BON X If switch X is on,
Y GOTO Y
BOFF X If switch X is off,
Y GOTO Y
BONSET X Set switch X, and if on
Y initially, GOTO Y
BOFSET X Set switch X, and if off
Y initially, GOTO Y
BONCLR X Clear switch X, and if on
) Y initially, GOTO Y
BOFCLR X Clear switch X, and if off
Y initially, GOTO Y
BONINV X ‘ Invert switch X, and if on
Y initially, GOTO Y
BOFINV X Invert switch X, and if off’
Y initially, GOTO Y

- In all cases but SET, CLEAR, and INVERT, two full words of address
are required in addition to the half-word operation code, Note that the in-
direct addressing features of the sequence changing instruction apply here.
Interrupt is inhibited during these instructions so that basic interrupt pro-
grams may manipulate switches with basic routines. _ '

As explained‘earlier, two index registers are provided for address

modification, X1 and X2. They also may be used for simple manipulation

..19..

of single precision numbers such as computed shift counts, etc. The follow-

ing instructions are available for loading and storing these registers:

, AXT,1 X Load address X
’! / AXT, 2 X | directly into index o .
: | AXC, 1 X Load complement of X
: AXC, 2 X directly into index
; LXA, 1 X Load index from erasable
f . 1LXA, 2 X ' register X
: LXC, 1 X Load index with complement
LXC, 2 X of erasable register X \
SXA, 1 X Store index in erasable :
SXA, 2 X register X -
XCHX, 1 X Exchange index with
XCHX, 2 X erasable register X
Note that an index register may be compleménted by LXC, 1 X1 or LXC, 2

X2. The "address' X of an AXT or AXC instruction may be any single
precision constant: interpretive address, OCT or DEC constant, etc.
Single precision constants may be stored in erasable memory using

the following instruction:

SSP X Set single. precision constant

Y .Y into erasable location X

Y may be any single precision constant,

The following instructions are provided to modify contents of index

registers:
INCR, 1 X Add X to index register
INCR, 2 X '
XAD, 1 X Add the contents of erasable
XAD, 2 X location X to index .
)fSU, 1 X Sﬁbtract the contents of
X eragable location X from index

XSsU, 2

~-20-

As with AXT and AXC, INCR may use any single precision constant as an

"address''. ,
Index registers may be used for counting with the following instruc-
tion: | .) '
TIX, 1 X Count and branch
TIX, 2 X on 'index

Associated with each interpretive job are two step registers S1 and S52.
They may be used for single or double precision temporary storage but
are implicitly used for counting the TIX instruction: if the contents of thel
specified index may be reduced by the contents of the corresponding step
register without producing a result which is zero or less, the index is re-
placed by the reduced value and.a GOTO X is executed (X is indirect if in
erasable), Otherwise, no operation occurs., To illustrate the power of
TIX, suppose T2 words at WI must be transferred to 72 locations at W,

" This operation might be coded as follows (X1 will be preserved):

SXA, 1 TAXT, 1
XTEMP

DEC 72

SSP
St

DEC 6

LOOP VLOAD?
h WI+72D,1

STORE . W + 72D, 1

TIX, 1 LXA, 1
LOOP
XTEMP

VII. Computation of Generalized Parenthetical Expressions

Many of the simpler algebraic forms may be directly computed
with single_—address and no-address instructions. As example is

-21-.

S,

/21:“:‘*;'
¥ o= RESASIR
d _

which is coded asv) '

DLOAD - DMP

A
. B
DSU DDV
c -
D
SQRT

STORE ' X

More complicated forms often must be computed irib steps, saving and
‘combining partial results in the process. An example of such an ex-

pression is

x =ab + cd - ef
which might be coded as follows:

DLOAD DMP

STODL, TEMP
DMP DAD

TEMP
STODL. TEMP

DMP BDSU
¥
TEMP

STORE X

-929.

f
/
|

The contents of register TEMP are only useful in the computation of X and
may be discarded afterwards. While the above expression requires the use
of ;/only one temporary variable, expressions can be constructed which re-
qqire the simultancous use of any number of temporary variables. In parti-

cular, two are required for the following:
!

; (:2 -+ d2
| ,
! DLOAD DSQ
A
STODL TEMPL : f
o .
DSQ DAD
TEMPI
STODL . TEMP1
C
DSQ
STODL, TEMP2
D
DSQ : DAD
’ TEMP2
BDDV :
TEMP1
STORE X

To g'ive a graphical interpretation of these phenomena, networks of
computational flow may be constructed whose topology expresses the paren-
thetical nature inherent in an expression, Xach operation code is mapped
on to a node and each node linked to its input variables and to those nodes
whose inputs areithe result of the operation itself, The former are called

input links and the latter, output links. The following symbols are used:

-23-

VAN

P
o
e
3
o
=]
oy

|

a b
5
A
|
a

Each node is limited to one or two input links (depending on the operation)

/ﬂ’

pbut may have as many output links as required,
The flow graph for the example of direct computation is as follows:
(&
o
‘ N = opf cemranain
/v d . : d
/‘@*\ °
a b

An expression is directly computable if and only if for every two input node,
at least onc of the input links comes from a variahle instead of another node,
The addition and subtraction nodes in the following graph fail to meet this

requirement in the example of single temporary variable requirements:

e ,@\,\G
o o TN
7 N\,

c

X = b +edo-eb

04~

The graph of the requirement for two gimultaneous temporaries is

as follows:

Y e 24 b*
@._/"“"Q\ d -
/NS

Two temporaries are required because both-input links at the divide node
come from nodes, both of whose inputs both come from other nodes. In
this tree-like fashion, networks requiring an arbitrary number of simul-
taneous temporaries may be constructed. . }
The flow.graph representation of such algebraic forms suggests a
systematic method for their computation. Start at'a variable at the bottom
of the flow graph, say at the far, left-hand side. By our definition, any g
single input nodes are directly computable, as are two input nodes whose
other input does not come from another node. If a node is encountered
- which is an exception to this case, store the f)resent results in temporary
storage and, considering the graph of operations leading to that node as a

sub-iree, evaluate it in the same manner. When the original node is
" reached, combine the two inputs and procede up the tree until the entire
expression has been evaluated. This division into sub-trees illustrates

the process for the two-temporary example:

Y

25«

Sub-then 3

Suh - Gasts 2 Sub-tae 4
This systematic approach suggests that required temporary storage

assignments might be handled by the interpreter itself, offering additional
convenience to the user, In addition, memory savings may be realized by

using implied address techniques to gpecify temporary storage. A pattern
for meeting these temporary storage requirements is immediately pro-
vided by a pﬁsh-dqwn ligt structure. Such a list may contain an arbitrary
number of items with the characteristic that the last quantity to be entered
is the first to be withdrawn, Entering an item in the list is referred to as
a "push down' and withdrawing the last item entered as a '"push up". This
process might-be applied to preceding examples as follows:

A. x=ab+cd-ed

Operation , ' Push down list after operation
1) Form ab and push down ab__
00

2) Form cd and add ab from the PE—

pushdown list ©o0o0

N

3) Push down ab + ¢d and form
ef :

-26 -

. 4) Subtract result from push-down list

and store
2 2
B' ¥ = .?.'_....__'....b.__ '
c2 + d2
’ 2 . 2
1) Form a” and push it down , a
oo
2 ' 2 2
2) Form b", add from push-down . a +b
list, and push that down 06 6
2) 2 2
3) Form c” and push that down a. +h
L.
e © O
2 2 2
4) Porm d° and add from push- a_tb
down list -
e © o
5) Divide into push-down list S
and store result "
e o P

Two basic types of operations are required:

1) A means for entering quantities into the push-down list. These
may be special instructions which then require no address word to re-
ference the push-down list. They must be capable of entering double or
triple precision scalars or vectors, -

2) Means by which instructions may reference the push-down list in-
'stead' of anerasable or fixed memory locat'ion; This facility must be avail-
able to most of the single-~address arithme-tic instructiqn's.

Push down capabilities are provided by the following instructions:

-2~

IS
i o ot

! ' PUSH Push down MPAC

,’i,‘ / PDDL, X Push down MFPAC ahd
1 | re-load with D (X) ;
i PDVL X Push down MPAC and

re-load with V(X).

To signal to an instruction the fact that it should push up for its operand,
we will adopt the economical convention that if no address is supplied to an
op code that requires an operand, the operand is taken from the push-down

list. Thus,

x = a(be + de)

would be coded as follows:

DLOAD - DMP

B
C
. PDDL DMP
D
E
DAD ' '
DMP
A
STORE X

DAD pushes up for its operand since DMP is recognized as an op code in-
stead of an address; it uses bc which was entered by PDDL.

This push u‘p technique requires differentiation between op code words
and address words. il‘his requirement ié fulfiled by pairs of general opera-
tion codes and addresses of arithmetic instructions; pairs of general op
codes have bit 15 = 1 and these operand addresses have bit 15 = 0 since they
are confined to one-half of fixed memory. Unfortunately, no distinction may

be made between store codes and operand

- -28-

A/

addresses. Such conflicts (which do not arise too frequently in practice)
are resolved by a special no-address right hand operation code:

STADR Recognize store code

This code fnay be used to compute !

x = ab + cd
DLOAD DMP
A
B
PDDL DMP
C
D
DAD STADR
STORE X

STADR causes the YUL system to store the STORE instruction comple-
mented. During execution, DAD pushes up and then STADR picks up the

‘ store code, complements it, and executes it.
‘ . . , _ The following instructions will take their argument from the push-

down list if no address (i.e., a vacuous address) is given:

BDDV DOT VLOAD

BDSU DSU . VPROJ
BVSU PDDL Vsu
DAD PDVL VXSC
DDV SIGN VXV
DLOAD TAD ' V/SsC
DMP TLOAD

DMPR VAD

In addition, STODIL and STOVL will push up if no load address is given.
In the previous examples, the flow diagrams weré in what might be
called normal form; i. e., such that no node had more than one output
link. Such situations are entirely covered by PDDL and PDVL with the
push up feature of arithmetic instructions. When a small expression ap-
pears several times in a larger expression, the desire to compute the

smaller expression only once leads to non-normal flow graphs. Consider

I ~-29~

x= (a3 % - 5= abWED -5

@/O \ -
VA : -

The PUSH instruction is designed to accommodate cases such as this:
whenever the result of any node is needed by more than one other node,
it.may be retained in the push-down list for future use without disturbing

the present computational flow. This example is coded ag follows:

DLOAD DMP
' A
B
PUSH SQRT
DMP '
DSU
. 5DP
' STORE X

When two different computations must be formed with the same inter-
mediate result before that result can be discarded, a different situation is

encountered:

§
Y
el \@/ ™,
P |

~30-

DLOAD DAD

A .

B
PUSH -DAD,

C
PDDL
DSU DDV

C.

STADR |
STORE . X

PDDL (and PDVL) with no address given may be thought of as an exchange
with the last quantity to be pusheli down. Any type of quantity (vector, etc)
may be pushed down even though a gcalar is pushed up in the case of PDDL,
and similarly PDVL may exchange a scalar for a vector. |
When one expression is common to several equations, STODL and

STOVL may be used in a similar faghion:

CWT = COS(WT)

SWT

1

SIN(WT)

| ﬁ"y
ye

©
O

W ¥
DLOAD DMP
w
_ T
PUSH . SIN
STODL SWT
COoS
STORE CWT
-31-

Frequently, it is desirable to address a quantity saved in the above
fashion more than once. This is facilitated by providirxg another method
of addressing the area the interpreter uses for the push-down list. The
pﬁsh-down list, index registers, step registers, and return address are
contained in a 43 word work area assigned to each interpretive job:

Pusgh-down
list and
temporary
storage

9 38 words total
IV(IMPAC)|® after UNIT, ABVAL } | 34-35

| VIMPAC) after UNIT } 36-37
' X1

X2

S1

52

QPRET

Five such areas are available to accommodate up to five interpretive
jobs in partial stages of completion. Registers in this area are not di-
rectly addressable since any of the five may be in use. Addresses 0-43,¢
are reserved for directly addressing a job's work area and at execution
time, are interpreted to be relative to the beginning of the work area cur-
rently in use. The push-down list occupies locations 0~3710; however, -
any such registers not used by push-down operations may be used for
quasi-long-term storage by using direct addresses in that range. Push-
down list manipulations use a movable pointer, PUSHLOC which is ini-
tialized at register 0 by the EXECUTIVE. A push-down operation stores
MPAC at locations beginning at the address in PUSHI.OC, édvancing
PUSHLOC to the first word after the stored array., Push-up operations
regress the pointer until it points to the first word in the operand, and

this value supplied as the operand address for instruction execution. The

-32.

first quantity pushed down may be found in register 0, etc. Quantities
written into the work area by push-down ober'ations remain intact until
they are written over. '

If at any time it is desired explicitly to' change PUSHLOC, the in-

- struction

SETPD X Set PUSHLOC

will set PUSHLOC to any local erasable address as specified by X. Of
course to avoid confusion, the value of X should be restricted so that opefa\-
tions are confined always within the work area.

Returning to the original example of sines and cosines, suppose we

desire:

sin (wt) sin (wt + ¢)
cos (wt) cos (wt + ¢

4

¢
...

/’Q | “\

w \'t ¢

DI.OAD DMP

w
T .
PUSH SIN
STODL SINWT
0
CcoS. :
STODL =~ = COSWT
DAD PUSH
PHI
SIN _
STODL, SINWT + P
CcOoS
STORE - COSWT+P

~33=

It was assumed that the push-down pointer was initially at 0; it is left at .
0 as well with wt + ¢ in 0. '
This alternate addressing mode may be used to accommodate
highly unusual algebraic forms whose econorﬁized nbn-normal graphs do not

yield to push-down list strategies. An example is the following:

v

: ~
| /" AN VN
(e3 b A dl.

Assume the push-down pointer is at 0 initially. This computation

may be coded as follows:

DLOAD DMP
A
, B
PDDL DMP
C
, D
PUSH DAD
: .
PDDL
BDSU
0
- DDV~ STADR
STORE X

.

- Note that there is a net change of 2 in the position of the push-~down pointer.

-34.

" The push-down list may also assist in vector definition operations.
The no-address instruction

VDEF _ Vector define

assumes the X component of the desired vector is D(MPAC), puéhes up
for the Y component and pushes up again for Z, changing the store mode

to vector, If

v: (_a: 0: b)

then V can be defined as follows:

DIL.OAD PDDL
B
DPZERO

PDDL, DCOMP
A

VDEF

Scalar equations have been used in the previous discussion for sim-
plicity. The push-down list structure may also be used for vector compu-

taions, as the following example illusirates:

ﬁe = ,Gx cos () + ﬁy sin (6)
DLOAD SIN
’ THETA
VXSC PDDL,
1004
THETA
cos VXSC
- UX
VAD STADR
STORE UTHETA

~35-

VIII. Sample Interpretive Program

The following interpretive subroutine finds the roots of the quad-

" ratic ax2 +Dbx + ¢, The quadratic formula has been put in the following

form more appropriate to fixed point arithmetic where ry and r, are the

two roots.

— 4 [(=) - ac
2 9
1
a
i /(pj)znac
_ 2 2
ry = :
a

Assume initially that a,b,and c are in D{A), D(B), and D(C), and
that the push-down pointer is at 00D. This subroutine is called as

follows:
CALL
QROOTS
. {returns here)

or
(OP) CALL
(Addresses for left hand OP)

QROOTS

{returns here)

-36~

QROOTS DLOAD

DCOMP
DSQ

DMP
SQRT
DAD
STODL
BDSU
DDV

STORE
RVQ

SR1

PUSH
PDDL
BDSU
C
PUSH
DDV
00D

A
ROOT1

A
ROOT?2

LOAD codes are usually
only needed at the begin-
ning of subroutines. More
frequently STODL may be
used, '
-b/ 2 replaces D{(00D)
b2/4 replaces D(02D)

BDSU pushes up to form
b2 /4 - ac.

.,’bz /4 - ac replaces D(02D),

-b/2

Completes ROOT1 and __
2

pushes up fory b /4 - ac,

Pushes up -b/2

This returns to caller with r, as D(ROOT1) and r, as D(ROOT2)

and D(MPAC).

-37-

N
I

f

IX. Detailed Descripiion of Operation Codés with Probable Averape

Execution Times.

A. Store,Load, and Push-Down Instructions.
]

STORE X Store MPAC V62 m.s.

D(MPAC), TIMPAC) or V(MPAC) replace D(X), T(X) or V(X),
respectively., X may be indexed or direct.

STODL X Store MPAC ‘
Y and re~load in DP 1.24 m, s,

D(MPACQC), T(MPAC) or V(MPAC) replace D(X), T(X) or V(¥).
(D(Y), 0) become T{(MPAC) setting the store mode to DP, X may
be indexed, or direct and Y indexed, direct or vacuous (push-up).

STOVL X Store MPAC
Y and re~locad as Vector 1.43 m, s,

Same as STODL except V(X) become V(MPAC) and store mode is
set to vector.

"STCALL X Store MPAC
Y and CALJL, a Routine 1.40 m. s.

D(MPAC), T(MPAC), or V(MPAC) replace D(X), T(X) or V(X),
leaving the store mode unaltered, Call the routine at Y, leavinga
return address (of the location after the second address) in QPRET.
Both addresses must be direct.

DILLOAD X L.oad MPAC in DP .64 m.s,

(D(X), 0) become T(MPAC), setting the store mode to DP,

"Address may be direct, indexed or vacuous.

TLOAD X Load MPAC in TP - L1 m, 8. o 4 -

Same as DLOAD except T(X) become T(MPAC) and store mode
is set to TP, '

- 38 -

VLOAD X Load MPAC with a Vector .91 m.s.

Same as DLOAD except V(X) becomé V(MPAC) and store mode

is set to vector,
[

SLOAD X Load MPAC in Single Precision .74 m.s,

- Same as DLOAD except (3(X), 0,0) become T(MPAC), X may not
be vacuous, (

PDDL X Push Down and
load MPAC in DP .91 m. s,

D(MPAC), T(MPAC) or V(MPAC) are pushed down; (D(X),0) be-
come T(MPAC) with the store mode set to DP, X may be direct, indexed,

or vacuous,

PDVL X Push Down and load
MPAC with a vector 1.14 m. s,

Same as PDDL except V(X) become V(MPAC) and the store mode
is set to vector,

PUSH Push Down . 2 .55 m. 8.

D(MPAC), T(MPAC) or VIMPAC) are pushed down. -

SETPD X Set Push~down Pointer .58 m. s,

Set the Push-~down Pointer PUSHLOC to X, where X is in local

erasable memory. X must be direct,

-39 -

e e e 8 A

;

s

‘ |

B, Scalar Arithmetic Operétions - All addresses may be direct, indexed,

oy vacuous.

DAD X DP Add , .66 m.s.

D(MPAC) + D(X) replace D(MPAC)., Set OVFIND on overflow,

and leave the over-flow corrected result in MPAC.

DSU X DP Subtract _ .66 m,s.

D(MPAC) - D(X) replace D{MPAC), Set OVFIND on overflow, and

overflow-correct the result.

BDSU X DP Subtract From . .74 m,s,

D(X) - D(MPAC) replace D(MPAC). Set OVFIND on overflow,

and overflow-correct the result,

DMP X DP Muliiply 1,13 m.s.
‘ | D(X) times D(MPAC) replace T(MPAC).
DMPR X DP Multiply and Round . 1,29 m.s.

- D(MPAC) D(X) = P is formed and rounded to DP so ithat (P, 0)
replace T(MPAC). ’ »

DDV X DP Divide By 2,48 m. 8.

1t | DiPAC) < |DX)|, the DP quotient Q=D(MPAC)/ DX) is
f_ormed and (Q, 0) replace T(MPAC). Overflow indication is set if re-
quired. *. 999999 replace D{MPAC) in this case,

BDDV X DP Divide Into . 2.50 m, s,
Same as DDV except @ = D(X) / DIMPAC) it | D0 | < [pmapacy].

SIGN X DP Sign Test , L70 m, 8,

X must be in erasable memory. If D{X) > 0, no operation occurs.
, Otherwise if store mode is DP or TP, ~ T(MPAC) replace T(MPAC),;
. if store mode is vector, - VIMPAC) replace V(IMPAC),

- 40 -

TAD X TP Add .75 m. s,

T(MPAC) + T(X) replace T(MPAC),. OVFIND is set on overflow,
with the overflow corrected result left in MPAC,

C. Vector Arithmetic Operations.,
. All addresses may be direct, indexed, and any but MXV and VXM

may have vacuous addresses,

VAD X Vector Add .92 m, s,

VIMPAC) + V(X) replace V(IMPAC), Set OVFIND on overflow in
anyAcomponent, leaving the overflow-corrected result,

VSU X Vector Subtract .92 m.s.

VIMPAC) - V(X) replace V(MPAC). Set OVFIND on overflow in

any component, leaving an overflow-corrected result.

BVSU X Vector Subtract From 1,17 m. s.

V{X) - VIMPAC) replace V(MPAC), Set OVFIND on overflow of

any component, leaving an overflow-corrected result.

DOT X Vector Dot Product 3,08 m, s,

V(MPAC) V(X) replace T(MPAC), setting the store mode to DP,
Set OVFIND if overflow occurs, leaving an overflow-corrected result,

VXS5C X Vector Times Scalar 3,27 m,s,

» If the initial store mode is Vector, each component of V(IMPAC)
is multiplied by D(X), the rounded products replacing their respective X
components of VIMPAC), If the initial store mode is DP or TP, change
it to Vector, and each component of V(X) is multiplied by D(MPAC) to
form V(MPAC) as ahove,

- 41 -

e e e e ot T

v/SC X Vector Divided by Scalar 5.39 m.s.

If the initial store mode is Vector, each component of V(MPAC).
is divided by D(X), the DP quotients réplacing their respective com-
ponents of V(IMPAC), If the initial store modetig DP or TP, it is
changed to Vector, and each component of V(X) is divided by D(MPAC) K
to form VIMPAC). If overflow occurs in any component, the operation
is terminated with OVFIND set and unspecified results in MPAC.

VXV X Vector Cross Product 4,98 m, s,

V(MPAC) * V(X) replace VIMPAC). Set OVFIND if overflow

occurs, leaving an overflow-corrected result, ' :

VPROJ X Vector Projection 5,756 m.,s,

[V(MPAC)- V(X)} V(X) replace VIMPAC), Set OVFIND on over-
flow, and leave the result obtained with overflow-corrected '[V(MPAC) .
vx)]. |

VXM X Matrix Pre-Multiplication :
' by Vector 8,88 m. s,

(veuPAC)T Mx)T replace VIMPAC)., Set OVFIND on overflow,

leaving an overflow-corrected result.

MXV X Matrix Post-Multiplication
: by Vector 8.97 m.s,

M(X) V(MPAC) replace V(IMPAC). Set OVFIND on overflow,

leaving an overflow-corrected result,

D, Scalar Functions,

SQRT DP Squa.re Root ’ 1,94 m. s,

SQRT (D{MPAC)) replace T(MPAC); i.e. the initial contents of
MPAC are normalized, the DP square root of the normalized number
computed, and that result unnormalized so that MPAC + 2 has marginal

© e . -4
signifigance, Receipt of an argument less than -10 ~ causes an abort.

- 49 -

SIN (SINE) DP Sine 5,63 m. s,

.5 (Sin (27 D(MPAC)) replace T(MPAC),

COS(COSINE) DP Cosine ' 5.80 m.s.

.5 (Cos (27 DIMPAC)) replace T(MPAC),

ARCSIN (ASIN) DP Arc-sine 9,26 m.s.

. (1(gm)Arc-sine (2D(MPAC)) replace T(MPAC), This is the in-
verse of the SIN function. Receipt of an argument greater than , 5001

in magnitude causes an abort,

ARCCOS (ACOS) DP Arc-Cosine . 9.12 m.s.
(1/27) Arc-Cosine (2D(MPAC) replace T(MPAC). This is the

inverse of COS, Receipt of an argument whose magnitude is greater

than . 500\1 causes an abort,

DSQ DP Square .16 m. 8.

D(MPAC) times D(MPAC) replace T(MPAC).

ROUND . Round to DP .56 m.s,

T(MPAC) are rounded to DP so that (ROUND (T(MPAC)), 0) replace
T(MPAC)., Set OVFIND if overflow occurs, leaving an overflow-correct-
ed result, +0,

DCOMP TP Complement " .52 m.s,

-T(M PAC) replace T(MPAC).

ARBRS - TP Absolute Value .48 m.s,

| TovPAC)] replace T(MPAC).

- 43 -

E. Vector Functions.

UNIT Unit Vec’cof Function ' - 6,40 m.s,

VIMPAC)/2 | VOMPAC)| replace VIMPAC), |VMPAC)| % re-
place D(34D) and | VIMPAC)| replace D(36D). Set OVFIND if

lV(MPAC)lei 2—21 or 'V(MPAC)IZ: 1 in which case the result is in-
correct, ' '
ABVAL _ Vector Length " 3.86 m, s,

JV(MPAC) ' become T(MPAC), changing the store mode to DP,
In addition, |V(MPAC)|? replace D(34D). The result is zero if |V(MPAC)
< 2-21.‘ If‘V(MPAC)lZ: 1 set OVFIND to indicate unspecified result.

VSR Square of Vectoir Length 2,21 m., s,

. 'V(MPAC)I % become T(MPAC), changing the store mode to DP,
If !V(MPAC)}?_ 1, set OVFIND and leave an overflow-corrected result.

VCOMP Vector Complement .63 m.s.

. -V(MPAC) replace V(MPAC).

VDEF ' Vector Define - .67 m.s.

Push up for V, and again for V., so that (D(MPAC), VY’VZ) be-~
comes V(MPAC), setting the store mode to vector. ’
F. Shift Instructions,
1. Short Shifts
SR1 Scalar Shift Right . .85 m.s.
SR2 .85 m,s,
SR3 o .85 m. s,
S,

 SR4 ‘ ' .85 m,

T(MPAC) 27 replace T(MPAC) (j= 1,2, 3,4).

- A4 -

SL1 Scalar Shift Left .72 m.

S.

SL.2 _ .95 m, s.
SL3 : 1.17 m.s.
s,

SL4 : ' 1.39 m.

| TMPAC) X 21 replace TMPAC) (f = 1,2,3,4). If significant
bits are lost, set OVFIND but leave the overflow-corrected result as
T(MPACQC), o

SR1R Scalar Shift Right .99 m.

S.

+ SR2R and Round 99 m.s.
SR3R o .99 m.s.
S,

SRA4R ' : : .99 m.

T(MPAC) X 2”3 is rounded to a DP number R and (R, 0) replace
T(MPAC) (j = 1,2, 3, 4).

SL.IR Scalar Shift Left .88 m.s,
SLOR and Round 1.10 m. s
"SLL3R . _ 1.32 m.s
SL4R : : ' 1.54 m. s,

T(MPAC) X 2+J is rounded to a D'PA number R and (R, 0) replace
T(MPAC) (j = 1,2, 3,4). If overflow occurs, set OVFIND and leave the
overflow-corrected result as T(MPAC),

VSR1 Vector Shift Right 2.01 m.s,.
VSR2 and Round - 2.01 m.s.
VSR3 2.01 m.s.
VSR4 2.01 m,s.
VSRS 2.01 m.s,
VSR6 2.0l m.s.
VSR7 . 2.01 m. s.

m.S.

VSR8) 2,01

Each component of V(MPAC) is replaced by the original value
multiplied by 2”9 and rounded ta DP. (j = 1(1)8),
- 45 -

VSL1 Vector Shift Left .81 m.s.

VSL2 | 1.18 m. s.
VSL3 | - 1.55 m.s
VSLA | 1,93 m. s
VSL5 , " ' " 2.30 m. s.
VsSL6 : 2,68 m.s
VSL1T . 3.05 m. s
V518 ' _ 3,43 m, s,

nach component of VIMPAC) is replaced by the original multiplied
+ ‘
by 2 J (j = 1(1)8). If overflow occurs in any component, leave the over-
flow~corrected result and set OVEFIND, '

L
- 2, General Shifts. Addresses may be direct or indexed,

SR X General Scalar Shift 1.38 m. s,

Right " +.23 INTEGER (-]2;;) m. s.

T(MPAC X 2™ replace T(MPAC) where -42 < X < 42 (X can be
negat.iv_e only if the address was indexed. Address limits are 0< X <42
if direc't and -128 <XS < 128 if indexed. Xs'is the stored address before
index modification; X is the net address in any case. On overflow leave

the overflow-corrected result and set OVFIND,

SIL. X General Scalar Shift 1,03 m, s,
‘ Left : 4,22 X m.s.

Same as SR except that T(MPAC)ZX replace T(MPAC).

SRR X General Scalar Shift 1,52 m.s, +
Right and Round .23 INTEGER (X/14) m.s.

Same as SR except that T(MPAC)X 20,(is rounded to a DP number
R and (R, 0) replaf:e T(MPAC). Address limits are 0 < X< 29 if direct.

SLR X General Scalar Shift L18m.s. +

Left and Round .22 X m, s,

Same as S, éxcept that T(MPAC) X 2X is rounded to a DP number
R and (R, 0) reblac:e T(MPAC), Dirvect address limitsg are 0 < X < 14,
- 46 - .

VSR X General Vector Shift 2,61 m.s.
Right +. 82 INTEGER (X/14)m. s.

/ Each component of V(MPAC) is replaced by the original value
multlphed by 2 "X and rounded to DP., If X is an indexed address and the
i result address IlGE?LTlV@ do a VSL -X instead. Address limits are

| 0. < X « 29 if direct and ~128 < XS < 128 if indexed,

: VSL X General Vector Shift .89 m,s.
j . Left +,37TX m.s. -

Each component of VIMPAC) is replaced by the original component
multiplied by ZX. On overflow of any component, leave the overflow-
corrected result and set OVFIND, If the address was indexed and the
resulting address negative, VSR(-X) instead, Address limits are 0 <X <28

if direct.

3. Normalization. Address may be direct or indexed,

NORM(SLC) X Scalar Normalize .88 m, s.
+,21 N m. s,
An N is found such that lT(MPAC) > .5 providéd T(MPAC) # 0.

-N replaces S(X) and T(MPAC) X 2 replace 'I‘(I\/[PAC). If T(MPAC) =
-0 replaces S(X) and T(MPAC) are unchanged. '

G. Branchiﬁg, Sequence Changing, and Subroutine Linkage Instructions.
All have a direct address except EXIT and RVQ. Any such address

l except those associated with transition to basic language (RTB and BOVB)

is interpreted as indirect if it refers to erasable memory. Any level of

indirect addressing is allowed,

GOTO | X Go To’ . o .77 m. s.

Begin executing interpretive instructions at X, QPRET is undisturbed,

GOTO is a right-hand operation code,

- 47 -

CALL X Call a Subroutine .89 m. s,

Begin execuling interpretive instructions at X, A return address
]
is left in. QPRET, CALIL is a right-hand operation code,

CGOTO X Computed .90 m. s,
Y GoTo '

The contents of X(X in erasable) are added to address Y (Y in fixed)
and the address at Y + S(X) is selected. Begin executing interpretive
instructions there unless the address is in erasable, in which case it is

interpreted as indirect., CGOTO is a right-hand op code,

CCALL X ’ Computed 1.07 m.s.
Y Call ’

Same as CGOTO except that a return address is left in QPRET in
addition, CCALIL is a right-hand op code,

RVQUITCQ) Return Via QPRET .69 m.s.

Begin executing interpretivé instructions at the location whose
address is in QPRET. This may be used to return from a subroutiné
which contains no CALL or CCALL instructions, If QPRET contains
the address of an erasable register, the address is interpreted as an in-

direct address. RVQ is a "right-hand op code'’,

STQ(ITA) X Store QPRET .69 m. s,

S(QPRET) replace S(X) (X in erasable). ‘This may be used to save

the return address in subroutines which contain CALL and CCALL instructions.

The STQ X in this case is eventually followed by GOTO X to return.

BPL X . Branch Plus .85 m,.s,+
' .19 m.s. GO

1If TIMPAC) > 0, doa GOTO X, Otherwise, no operation occurs.

- 48 -

BZE X Branch Zéro‘ .65 m.s,
.19 m.s, GO

1If TMPAC) = 0, do a GOTO X. Otherwise, no operation occurs.
-BMN X Branch Minus .67 m.s.
+,19 m.s. GO

I'f T(MPAC) < 0, do a GOTO X, Otherwise, no operation occurs.

BHIZ X Branch High - | .6 m,s.
Order Zero +.19 m.s, GO

1f SMPAC) = 0, do a GOTO X, Otherwise, no operation occurs,

BOV X Branch On .58 m. s,
Overflow . +.23 m.s. GO

If OVFIND is set, re-set it to zero and do a GOTO X, Otherwise,

.no operation occurs.

BOVEB X Branch On .58 m. s,

Overflow to Basic o .16 m.s, GO

If OVFIND is set, reset it to zero dnd begin executing basic instruc-

tions at X, Otherwise no operation occurs, X must be in fixed memory.

RTB - X Return to BRasic .71 m. s,

Begin executing basic instructions at X. X must be in fixed memory,

EXIT - ' Eiit from Interbreter ‘ . .28 m,s,

Begin executing basic instructions after the last op code or address
word referenced by the interpreter as follows:

1) If EXIT is a left hand op code, go to the word after the EXIT in-
struction; .

2) If EXIT is a right hand op code, go to the word following the last
address used by the left hand op code, o

EXIT is a right-hand op code,

H. Switch Instructions

<

witch 1,27 m.

. »
b e P ST R = Aty

SET X Set S S,
Set switch X to 1,)
CLEAR X Clear Switch o 1.25 m.s.
Clear switch X to 0.
INVERT X Invert Switch - 1,27 m.s.
Invert switch X; i.e., if 0, set to 1; if 1, clear to O,
SETGO X Set Switch 1,54 m. s,
Y and Go To
Set switch X to 1 and do a GOTO Y. SETGO is a right-hand op code, |

CLRGO X Clear Switch . 1.52 m. s,
Y and Go To

Clear switch X to 0 and do a GOTO Y. CLRGO is a right-hand op code,.

INVGO X Invert Switch 1_, 54 m. s,
Y and Go To '

Invert switch X and do a GOTO Y. INVGO is a right-hand op code.

- I. Switch Test Instructions.

BON X Branch if 1,26 m.s.
Y Switch On) +,23 m,s.

If switch X is set to 1, do a GOTO Y. Otherwise, mo operation

occurs,

'BOFF X Branch if 1.27 m.s,
Y Switch Off +.23m.s, GO

If switch X is cleared to 0, do a GOTO Y, Otherwise, no operation

occurs,

- 50 -

BONSET = X Branch if Switch 1.37 m, s,
Y On, Setting Switch +.23 m.s. GO

Set switch X to 1, If initially set to 1, so a GOTO Y. Otherwise,

no further operation occurs. ¢

BOWSET X Branch if Switch 1.39 m. s,
Y Off, Setting Switch +.23 m.s., GO

Set switch X to 1. If initially cleared to 0, do a GOTO Y. OCther-
wise, no further operation occurs. '

BONCLR Branch if Switch 1.35 m. s,
On, Clearing Switch +. 23 m.s., GO

Mo M

Clear switch X to 0, If initially set to 1, do a GOTO Y. Otherwise,

no further operation occurs,

- BOFCLR X Branch if Switch) ’ 1. 36 m.s.
Y Off, Clearing Switch +.23 m.s., GO

Clear switch X to 0. If initially cleared to 0, do a GOTO Y. Other-

wise, no further operation occurs,

BONINV X Branch if Switch 1,37 m.s.
Y On, Inverting Switch +.23 m.s. GO

Invert switch X, If originally set to 1, do a GOTO Y, Otherwise,

no further operation occurs,

BOFINV X Branch if Switch 139 m.s,
Y Off, Inverting Switch +.23 m.s. GO

Invert switch X, If originally cleared to 0, do a-GOTO Y. Other-
wise, no operation occurs. '

Y

J. Index Register Instructions

AXT,1 X Address to .75 m, s,
AXT,2 X Index True '

X replaces S(XT) (T = 1,2)

AXC,1 X Address to . .76 m, s.
- AXC, 2 X _ Index Complemented

« -X replaces S(XT).

IXA,1 X Load Index . .78 m.s.

LXA,2 X from ¥rasable ‘

S(X) replaces S(X'T).

LXC,1 X Load Index .78 m.s.

1.XC,2 X from Erasable Complemented
. © -8(X) replaces S(X'T),
"8XA,1 X - Store Index . ' .78 m.s.
SXA,2 X : in Eragable

S{XT) replaces S(X).

XCHX,1 X Exchange Index "~ .83m.s.
XCHX, 2 X - with Erasgable -

S(XT) replaces S(X) which then replaces S(XT).

INCR, 1 X Increment Index : .76 m, s,
INCR, 2 X)

The overflow-corrected sum of S(XT) and X replaces S(XT).

XAD,1 X Index Register , 77 m.
XAD,2 X Add

w

" The overflow-corrected sum of S(XT) and S(X) replace S(X'1).

- 52 -

X5U, 1 X Index Register Subtract .78 m.s,
XSU, 2 X ‘

The overflow-~corrected differenée SEXT) - S(X) replaces S(XT).

®

TIX, 1 X : Transfer on Index .78 m, s, A
TIX, 2 X . +. 26 m.s. GO

If S(XT).< S(ST) (T=1,2), no operation occurs, Otherwise, S(XT) -
S(ST) replaces S{XT) and a GOTO X is executed,

K. Miscellaneous Instructions

SSP X Set ?ingle .67 m.s,
‘ ' Y Precision

Y replaces S(X). Y may be any constant: arithmetic, logical,

address, etc,

STADR Push Up On 4 ‘ .26 m, s.

Store Code

During assembly, the appearance of STADR causes the next store
code to be stored complemented. During'execution, STADR complements the
the next word to be referenced by the interpreter.and enters the store

code processor. STADR is a right-hand op code,

- 53 ~

X. Detailed Timing Sumnary

ation of all interpretive instructions. Tigures quoted are in milli-seconds,
and, unless otherwise stated, exact, For all except the store codes STORE,
STODY., STOVL, and STCALL, add .13 m,s, if the operation code is in the !

left-hand position,

A,

/

/

The following table gives execution times for all modes of oper-

Store, lL.oad, and Push-down Instructions
r

STORE
STODL
STOVL

STCALL

DLOAD (a, b)

TLOAD (a, b).
VLOAD (a, b)

SLLOAD (a)

PDDL (a,b)
PDVL (a, b)
PUSH

SETPD

1.

1.
1.

17

36

33

.64
. 69
. 83
. 66

.76

.99

.48

.51

(1)
(2)
(3)

(1)
(2)

(3)-

(4)

(1)
(2)

(1)

(2) .
(1)

(2)

.Atdd
Add
Add

Add
Add
Add
Add
Add
- (5)
- (2)

Add
Add

Add

Add

Add
Add

.08 if MPAC TP
21 i MPAC vector
. 08 if indexed address

.08 if MPAC TP

.21 if MPAC vector

. 08 if store address indexed
.15 if load address indexed
. 05 if load pushes up

Same as STODL

Same as STORE

.07 if MPAC TP
.20 if MPAC V

.08 if MPAC TP
.20 if MPAC V
.08 if MPAC TP
.21 if MPAC V

B. Scalar Arithmetic Instructions {(a,b)

DAD . 59
DSU .59 : ,
BDSU .67 |
DMP | 1,05
DMPR 1.21
DDV 2. 40
'BDDV ‘9, 42
SIGN .61 (1) Add .02 if MPAC V
TAD .67

C. Vector Arithmetic Instructions (a)

VAD (b) . 84

VSU (b) . 84
BVSU (b) 1.09 |
VXSC (b) 2.98 (1) Add .21 if initial MPAC scalar
. ~V/SC (b) 5.15 (1) Add .32 if initial MPAC scalar
| _DOT (b) 3.00
VXV (b) 4.90
VPROJ (b) 5.67
VXM ' 8. 90
MXV 8. 89

D. Scalar Functions

SQRT (c) 1.86
SIN 5.55
COS : 5.72
ARCSIN (c) 9,18
ARCCOS (c) 9. 04
DSQ .68
ROUND (c) .48
pcomMpr . .44

ABS .40

E. Vector Functions

UNIT (c)
ABVAL (c)

vsQ

- jveomp
' VDEF,

¥, Shi.ft Instructions

1') Short Shifts
a) Scalars
SR1
SR2
SR3
SR4
SIL1
SL.2
S1.3
S14
SR1R
SR2R
SR3R
SR4R
SLiR
SL2R
SL3R
SLAR

b) Vectors
VSR1
VSR 2
VSR3
VSR4 .
VSRS

[P

11
7T
T
17
.64
.87
.09
.31
.91
.91
.91
.91
. 80
.02
.24
. 46

.93
.93
.93
.93
.93

VSR6 1.93

VSR 1.93
VSRS 1.93
VSL1 .73 '
VSL2 1,10
VSL3 1.47
VSL4 1.85
VSL5 2.22
VSL6 2. 60
VSLY7 2. 97
VSLS 3.35

2} General Shifts (a)

a) Scalar

SR 1.30 +.,23R

SL, .95 +, 22N

SRR 1.44 + ., 23R

SLLR 1.10 + . 22N
b) Vector.

VSR : 2.53 +.82R

VSL . .81 +.37"TN

3) Normalization (a)
NORM (S1.C) .80 +,21N

R = Number of 14 place shifts 're'quired;' e.g. SR 19 takes
1.53 m.s. _ : '
N = Number of places shifted.

Branching, Sequence Changing, and Subroutine Linkage Instructions -

"GO" represents additional execution if sequence, change performed.

GOTO (d) .69
CALL (d) . 81

CGOTO (b, d) .82
CCALL (b, d) .99

H.

- L

J.

RVQ
STQ
BPL (d)
BZE (d)
BMN (d)

. BHIZ (d)

BOV (d)
BOVB
RTB
EXIT

Switch Instructions

SET
CLEAR
INVERT
SETGO (d)
CLRGO ()
INVGO (d)

-

.19
.17
.19

.46

44
.46

Switch Test Instructions(d)

BON
BOFF

BONSET
BOFSET
BONCLR
BOFCLR

BONINV
BOFINVE
I

Index Instructions

AXT
AXC
LXA
LXC

.18
.19

. 29

. 31
.27

.28 +

.29 +

. 31

.67
.68
.70
.70

.19GO
. 18GO
L19GO
.19GO

. 23GO

. 16GO

.23GO
.23GO

. 23GO
. 23GO

. 23GO
. 23GO

.23GO
. 23GO.

-58 -

SXA .70

/- " XCHX 15

P INCR .68
0 XAD . 69 .
! / XSy .70

L TIX (d) 70 + . 26GO

K. Single Precision and Miscellaneous
{

o ssp . 59
STADR .18

NOTES:
(a} Add .18 m.s. if address is indexed.
(b) Add .04 m.s. if push up called for.
(c) Average time
{d) Add .26 m.s. for each level of indirect addressing.

XI.. YUL Assembly Formats

The following is a discussion of the punched-card formats used in pre-
paring interpretive programs, and of the cdrresponding encoding performed
by the YUL agsembler. The latter is intended primarily for those who wish
to. prepare octal corrections in the course of program check-out. The term
"ADDRESS" is understood to be an octal or decimal integer, or symbol with
or without an octal or decimal modifier. Numbers in parentheses denote
card columns at which fields of information begin, If operation'OP requires
two addresses, the first is labelled OP (1st) and the second OP (2nd).

General operation codes are submitted in one of the following forfnats,

with the encoded result on the right:
i

(9) (18) (25) 15 14 87 1
(SYMBOL) " OP1 - lo 0 "CODE 1+1
(SYMBOL) or2 oPr2 - lojcopr 2+1 { CODE 1+1

- 59 -

The seven bit operation code for any general operation may be found in
the index. If OP1 or OP2 has an indexed address, the operation code must
- have an asterisk suffix. Thus DAD with an indexed address is written
DAD*, | S

Operand addresses (not to be confused with the specially encoded shift

and switch bit addresses) are first evaluated by memory type:

Location

0 %250

100, - 1377,
E3,1400 - E7, 1777
04,2000 - 17, 3777

21, 2000 - 37, 3777

Location

0 - 4210

1008 - 137‘78

E3, 1400 - BT, 1777
04, 2000 - 117, 3777

21, 2000 - 37,3771

Value for ad-
dresges limited to
one half-memory
and erasable

0 - 4210

1008 - 137.78

1400, - 17774
04, 2000 ~ 17, 3777

01,2000 - 17,3777

Value for ad-
dresges limited
to erasable

0 - 4210
- 1371

8 8
1400 - 1777

100

(Mlegal)
(Ilegal)

-~ 60 -

Value for ad-

dresses reaching

both half-memories
and erasable

0-42

100, - 137 78

8
14008 - 17778
04, 2000 - 17, 3777

21, 2000 - 37, 3777

Value for ad-
dresses limited

to fixed

(Megal)

 (Mlegal)

(Tlegal)
04, 2000 - 17,3777
21, 2000 = 37, 3777

General operation codes whose address is restricted to one half-memory

and erasable include:

BDDV DDV DOT PDVL - VAD - VXM

BDSU DLOAD DsU SILOAD - VLOAD VXSC
BVSU DMP MXV ~ TAD VPROJ VXV
DAD DMPR PDDI. TLOAD Vsu V/sC
Non-vacuous addresses for the above are submitted and processed as be-
low: '
(9) (18) (25) ‘ 15 14 1
ADDRESS 10 [Value + 1
ADDRESS, 1 : 0 {Value + 1
ADDRYSS, 2 =10 (Value + 1

The operation code corresponding to the indexed address must have a
suffix asterisk.
General operations whose address may reference all of interpretive

program memory (both half-memories and eragable memory) are as

follows:

BHIZ BOFSET (2nd) BOV GOTO
BMN BON ' BPL . INVGO(2nd)
BOFF(2nd) =~ BONCLR(2nd) B2ZRE SETGO(2nd)
BOFCLR (2nd) BONINV(2nd) CALL TIX, 1

BOFINV (2nd) BONSET(2nd) CLRGO(2nd) TIX, 2
Address for these operation codes are submitted and processed as follows:

(9) (18) (25) ' 15 1
ADDRESS [value |

General operations whose addresses are limited to erasable memory
are divided into two classes: those whose address is indexable and those

whose address must be direct, The former class is as follows:

CCALI{1st) NORM SIGN
CGOTO(1st) SETPD SSP(1st)

- 61 ~

i
!

These are submitted and stored in the following faghion:

/ (9) (18) (25) 151110 1
‘ ADDRIESS 0 [Value + 1
ADDRESS, 1 * |0 |value +1
: / ADDRIESS, 2 -0] Value + 1

|

Those codes which must have a direct address are ag follows:

LXA, 1 STQ XAD,1 . XCH¥,2
LXA,2 . SXA,1 XAD, 2 XSU, 1

'LXC, 1 XA, 2 XCHX, 1 XSU, 2
LXC, 2

Their address is submitted and encoded ag follows:

(9) (18) (25) 15 1110 1
ADDRESS [0 Value

Those general operation codes whose address is confined to fixed

memory are the following:
BOVB ~ CCALI(2nd) CGOTO(2nd) RTB

This address is submitted and processed as follows:

(9) o (19) (25) 15 1
' ADDRESS | vawe |

Some general operation codes may employ any single precision con-
stant as their "operand address'. The are the following:
AXC, 1 AXT, 1 INCR, 1 SSP(2nd)
AXC, 2 AXT, 2 INCR, 2

They may employ an interpretive address constant referring to any inter-

pretive program memory:

(9) (18) (25) 15 1
: ADDRESS | Vvalue |

- B2 -

In addition, the following constants rhay be ugsed: DEC, OCT, CADR, .

ECADE, FCADR, ADRES and BBCON., These constants are described in
YUL system documentaiion, '

General shifts and switch~bit instructions employ specially encoded
addresses. TFor general shifts, the shift count is submitied as an address
in the usual manner, understanding that negative indexed addresses are to
be put in the form 0 - N, 1 or 0 - N, 2, The following is a table of con-
stants’ which are added to the shift count obtained by evaluating the given

address field (all operations use op code 115 if direct and 117 if indexed):

Code Value
SL 00200 + count
SR 00600 + count
SL.R 01200 + count
SRR 01600 + count
VSL 00200 + count
VSR 00600 + count

Input and resulting address are as follows:

(9) (18) (25) 15 1110 1
ADDRESS 0 Value + 1
ADDRISS, 1 0 Value + 1
ADDRESS, 2 =| 0 [Value + 1

For example, SR 6 has op code 115 and address 00607; SRR* 0 - 3, 2
has op code 117 and address 76201, ' '

All switch operations follow from op code 162. The first (or only)
address contains three fields of information which specify the desired |
action and switch number: operation type in bits 5 - 8, switch bit posi-

* tion in bits 1 - 4, and switch word numberin bits 9 - 10. Operation types
set bits 5 -~ 8 as follows: ' '

BOFF 00340 - BONSET 00000

BOFCLR 00240 CLEAR 00260
BOFINV 00140 CIL.RGO 00220
BOFSET 00040 INVERT 00160
BON . 00300 INVGO 00120
BONCLR 00200 SET 00060
BONINV 00100 CSETGO 00020

- 63 -

The switch word and bit position information is obtained by dividing

the switch number by 15: the quotient is the switch word and the remainder

is the switch bit position.

" The card on which the user specifies the first address of a switch in-

I i
struction need only contain the switch number (0 - 59D):
: ! ! .

(9)

(25)

ADDRESS

1

5

1110

1

0

Value

As an example, CLEAR 46D is encoded as op code 162 and address 01661,

Operation code values for all store code configurations are tabulated

below:
STORE
 STORE
STORE
STODL

STODL

STODL

 STODL*
STODI*
STobL*
STOVL
STOVL

E
STOVL

ADDRESS

ADDRIESS, 1
ADDRESS, 2
ADDRESS

(ADDRESS)
ADDRESS, 1
(ADDRESS)

ADDRESS, 2

(ADDRESS)
ADDRESS

ADDRESS, T
ADDRESS, 1
ADDRESS, T
ADDRESS, 2
ADDRESS, T
ADDRESS

(ADDRESS)
ADDRESS, 1
(ADDRESS).
ADDRESS, 2
(ADDRESS)

00000

02000
04000
06000
10000
12000
14000
16000
20000
22000

24000

26000

STOVL* ADDRESS 30000
ADDRESS, T '

STOVI.* ADDRESS, 1 32000
' ADDRESS, T '
STOVLA* . ADDRESS, 2 34000
ADDRESS, T ‘ ‘f
STCALL ADDRESS 36000
' ADDRESS

Addresses used in the storing portion of the above operations are con-
fined to erasable and have the same ten bit values as operand addresses
in thaf range. The load addresses associated with STODL and STOVL may
be vacuous if in parenthesis; othtrwise, they are stored just as the ad- ‘_
dress for DLOAD or VLOAD. The call portion of STCALL uses the same ,

address format as CALIL. Store codes are received and procesgsed as

follows:
(9) (18) (25) . 15 14 11 10 1
(SYMBOL) opP ADDRESS 0 | CODEL |Value + 1
(SYMBOL)Y =~ OP ADDRESS, 1 0 |CODE {Value + 1
(SYMBOL) or ADD_RESS, 2" lo |copr | value +1

Any accompanying load or call address is processed as explained eariler.

b
s’j
. : TN
Sﬁff{:i}i characters require reference to Section X7, YUL Assembly Format: .
‘;“I_ A Code to be used with indexed addrese, '
P8 See note on switch operations (pp. 63-64).
; / G See note on genersl ghifts (p. 63).)
» SC See note on store codes {pp. G4-65),
4‘
'Sym|bo].ic Code Octal Code Page .
ABS 130 : 10, 43
ABVAL 130 11,17, 44
ACOS 050 10, 43
ASIN 040 10, 43
AXC,1 ' 016 120, 52, 62
AXC, 2 . 012 20, 52, 62
AXT,1 006 20, 52, 62
. o AXT, 2 002 20, 52, 62
BDDV 111, 113% 7,17,29, 40,61
BDSU 155, 157% ' 7,17, 29, 40, 61
BHIZ 156 16, 49, 61
BMN ' 136 » 16, 49, 61
BOFF : 1625 ' 19, 50, 61
BOFCLR 1628 19, 51, 61
BOFINV 1628 19, 51, 61
BOFSET 1628 | 19, 51, 61
BON X 1628 19, 50
BONCLR 1628 ' 19, 51, 61
BONINV : 1625 . 19,51,61
BONSET 1628 19, 51, 61
BOV : 176 18, 49, 61
BOVE 172 118, 49,62
BPL 132 16, 48, 61 '
BVSU 131, 188% | 8,17, 29, 41,61
' BZE 122 16, 49, 61 -
- 66 -

CALL,
CCALL
CGOTO
CLEAR
CLRCO
Cos

DAD
DCOMP
DDV
DLOAD
DMP
DMPR
poT
D3Q
DSU

EXIT
GOTO
INCR, 1
INCR, 2
INVERT
INVGO
LXA, 1.
LXA, 2
LXC, 1
LXC, 2

MXEV

NORM

142

065, 067

021, 023%
1625
1625

030

161, 1635
100 '

105, 10'7%
031, 033
171, 173%
101, 103%

135, 137

060

151, 153% -

000
126
066
062
1625
1628
026
022
036
0632

055, 057

075, 077

- 67 -

14, 48, 61
15, 48, 61, 62
15, 48, 61, 62
19, 50

19, 50, 61

10,43

7,17, 29, 40, 61
10, 43
7,17, 20, 40, 61
6, 20, 38, 61
7,29, 40, 61
7,29, 40, 61
8,17, 29, 41, 61
10, 43, 61
7,17, 29, 40, 61

.16‘:%?“

14, 47, 61

20, 52, 62

20, 52, 62
19, 50
19, 50, 61

20, 52, 62
20, 52, 62
20, 52, 62
20, 52, 62

8,17, 42, 61

13, 47, 61

PDDL
PDVL,
PUSH

ROUND
RTB
RVQ

SET
SETGO
SETPD
SIGN
SIN
SL
SLOAD
SLR
SL1
SLIR
SL 2
SLZR
SL3
SL3R
SL4’
SLAR
SQRT
SR
SRR

. SRi
SRIR
SR2
SR2R
SR3
SR3R
SR4
SRAR

051, 053+
061, 063
170
070
152
160

1625
1625

175

011, et 3%
020

115G, 1176%

041, 043

115G, 117G

024
004
064
044
194
104
164
144
010
115G, 117G*
115G, 117G
034
014
074
054
134
114
174

154

- 68 -

$11,45

28, 29, 31, 39, 61
28, 29, 31, 39, 61
28, 30, 39

10,17, 43
16, 49, 62
15, 48

19, 50
19, 50, 61
33, 39, 61
7,29, 40, 61
10, 43
13,17, 46
6, 39, 61
18,17, 46
11, 17,45
11,17, 45
11,17, 45
11,17, 45
11,17, 45
11,17,45
11,17,45
11, 17,45
10, 42
13,17, 46
18,17, 46
11,44
11,45
11,44
11,45
11, 44
11,45

11, 44

ssP

STADR
/STCALL
| STODL
 STORE

STOVL

J

STQ |
SXA,1
SXA, 2
-TAI)
TILOAD
T, 1
TIX, 2

UNIT

VAD
VCOMP
VDE®F
VILOAD
VPROJ
VSL
VSIL.1
VSL2
VSL.3
VLS4
VSLS
VSL6
VSL7
VSL8
VSR
VSR1
VSR2
VSR3
VSR4
VSRS

045, 047%
150
360005C
060005C
000008C
220008C
146
046
042

005, 007
025, 027%
076
072

120

121, 123%
100

© 110

001, 003
145, 147%

115G, 117G*

004
024
044
064
104
124
144
164

115G, 117G*

014
034
054
074
114
- 69 -

20, 53, 61, 62
29, 53

6,38

6, 29, 31, 38
6,38

6, 29, 31, 38
15,48, 62

120, 52, 62

20, 52, 62

7,17, 29, 41, 61
6, 29, 38, 61
21, 53, 61
21, 53, 61

11,17, 44

8,117, 29, 41, 61
11, 44
35, 44
6, 29, 39, 61

8,17, 29, 42, 61

13,17, 47
12,17, 46
12,17, 46
12,117, 46
12,17, 46
12,17, 46
12,17, 46
12,17, 46

12,17, 46

13,17, 47
12,45
12, 45
12,45

12, 45

VSR6 134 12, 45

| VERT 154 12, 45
| VSR8 174 12, 45)
L VsQ 140 ~ 11,17, 44
- |VsU 125, 127% 8,17, 29, 41, 61 -
VRN 071, 073 8, 17, 42, 61
VS 015, 017 | 8, 29, 41, 61
VRV 141,148% 8,17, 29, 42, 61
visc 035, 037 8,117, 29, 42, 61
XAD, 1 106 | 20, 52, 62
XAD, 2 102 20, 52, 62
XCHX, 1 056 20, 52, 62
XCHE, 2 052 20, 52, 62
XSU, 1 116 20, 53, 62
XSU, 2 12 20, 53, 62

-0 -

	SL4

