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Abstract

A key challenge in achieving high performance on

software DSM systems is overcoming their relatively

large communication latencies. In this paper, we

consider two techniques which address this problem:

prefetching and multithreading. While previous stud-

ies have examined each of these techniques in isolation,

this paper is the �rst to evaluate both techniques us-

ing a consistent hardware platform and set of applica-

tions, thereby allowing direct comparisons. In addition,

this is the �rst study to consider combining prefetch-

ing and multithreading in a software DSM. We per-

formed our experiments on real hardware using a full

implementation of both techniques. Our experimen-

tal results demonstrate that both prefetching and mul-

tithreading result in signi�cant performance improve-

ments when applied individually. In addition, we ob-

serve that three of the eight applications achieve the

best overall performance by combining both techniques

such that prefetching hides memory latency and multi-

threading hides synchronization latency.

1. Introduction

There has been considerable interest recently in ex-
ploiting collections of workstations or PCs connected
by commodity networks as less expensive alternatives
to tightly-coupled multiprocessors. To help simplify
the task of writing parallel applications, software can
provide a shared memory abstraction across the ma-
chines with the help of the virtual memory system [16].
For certain classes of applications, these software dis-
tributed shared memory (DSM) systems can deliver
performance which is comparable to hardware cache-
coherent machines of a similar scale [5, 10]. However,
for applications with larger communication demands,

the performance can be disappointing.
A key stumbling block to achieving higher perfor-

mance on software DSMs is the relatively large commu-
nication latency. In contrast with tightly-coupled mul-
tiprocessors, where remote miss latencies are on the or-
der of half a microsecond [15], the remote miss latencies
for software DSM on moderately aggressive hardware
are closer to half a millisecond [6]|i.e. roughly three
orders of magnitude slower. This large communication
latency a�ects not only remote memory accesses, but
also synchronization operations. Since communication
latency is already known to be a signi�cant bottleneck
even in tightly-coupled multiprocessors, it is reasonable
to expect the much larger latencies in software DSMs
to make the problem even worse.

1.1. Software DSM Performance
To illustrate the impact of communication latency

on software DSM performance, we ran a collection
of applications taken primarily from the SPLASH-2
suite [24]1 using TreadMarks [11] (a state-of-the-art
software DSM implementation) on eight 133 MHz IBM
RS/6000 workstations connected by a 155 Mbps FORE
Systems ATM LAN. (Further details of the hardware
platform are given later in Section 2.2). Figure 1 shows
a detailed breakdown of the resulting execution times,
as measured on the real hardware using the high resolu-
tion timers under AIX 4.1. The normalized execution
times are broken down into the following four cate-
gories, from top to bottom: time spent stalled waiting
for (i) synchronization and (ii) remote memory misses,
respectively; (iii) time spent executing DSM system
software (e.g., the memory coherence protocol); and
(iv) time spent doing useful computation.2

1The exception is SOR, which is taken from the TreadMarks
distribution.

2The \Busy" time also includes interrupt times associated
with software DSM, since we cannot isolate them otherwise.
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Figure 1. Execution time breakdown using TreadMarks
on eight ATM-connected workstations.

As we see in Figure 1, six of the eight applications
spend over half of their time stalled waiting for either
remote memory references or synchronization. There-
fore techniques for coping with the large communica-
tion latencies are clearly important.

1.2. Latency Tolerance Techniques

The �rst step in dealing with latency is to ex-
ploit caching to avoid communication. Software DSMs
accomplish this by using local memory as a cache
for remote locations. The second step is to bu�er
and pipeline remote accesses through a relaxed mem-
ory consistency model, which TreadMarks does using
lazy release consistency [12]. TreadMarks also uses
a multiple-writer protocol to avoid the e�ects of false
sharing. The net e�ect of all of these optimizations
is to reduce the amount of communication so that it
more closely approximates the inherent communication
due to true data sharing and synchronization. While
these techniques go a long way toward improving per-
formance, the remaining latency is still painful (as we
saw in Figure 1), and hence we would like to cope with
it as well.

To tolerate the latency of reading remote memory,
we must separate the request for data from the use

of that data, while �nding enough useful parallelism
to keep the processor busy in between. The two main
techniques for accomplishing this are prefetching [4, 21]
and multithreading [2, 8, 13, 14]; the distinction be-
tween the two is that prefetching �nds the parallelism
within a single thread of execution, while multithread-
ing exploits parallelism acrossmultiple threads. To hide
the latency within a single thread, the request for the
data (i.e. the prefetch request) must be moved back suf-
�ciently far in advance of the use of the data in the ex-

ecution stream. This e�ectively requires the ability to
predict what data is needed ahead of time. In contrast,
the multithreading approach splits read transactions
by swapping out the currently executing thread when
it su�ers a miss, executing other concurrent threads for
the duration of the miss to keep the processor busy, and
eventually resuming the initial thread after the mem-
ory access completes.

In the context of software DSMs, the primary ad-
vantage of prefetching is that it does not consume ad-
ditional parallel threads simply for the sake of hid-
ing latency. This is appealing because achieving
good speedups on a large number of threads can
be quite challenging on a software DSM, and hence
we do not want to assume that parallelism is abun-
dant. In contrast, the advantages of multithreading
include the fact that it can directly tolerate synchro-
nization (as well as memory) latency, it does not rely
on prediction (and hence can handle arbitrarily com-
plex and unpredictable access patterns), and it does
not require program modi�cations (unlike software-
controlled prefetching). Both approaches involve run-
time overheads, either to issue prefetches or to perform
context switches. Given the strengths and weaknesses
of both approaches, the best overall approach to deal-
ing with latency in software DSMs has remained an
open question.

1.3. Objectives and Overview

The goal of this paper is to characterize the bene�ts
and costs of prefetching and multithreading in a soft-
ware DSM environment, using a consistent hardware
platform and set of applications. While studies do exist
which consider each technique in isolation [3, 6, 22], the
results cannot be directly compared since the architec-
tural assumptions, DSM software, etc. are di�erent. In
addition to considering each technique in isolation, we
also present the �rst results which combine prefetching
and multithreading for the sake of hiding software DSM
latency. Our study is based on a complete implemen-
tation of both prefetching and multithreading within a
software DSM, running on real hardware (none of the
results presented here are from simulations).

The remainder of the paper is organized as follows.
We begin in Section 2 by describing our experimental
environment, including the DSM software, the hard-
ware, and the benchmark applications. Next, in Sec-
tions 3 and 4, we consider prefetching and multithread-
ing in isolation, respectively. Section 5 evaluates the
performance when the two techniques are combined.
Finally, we discuss related work and present conclu-
sions in Sections 6 and 7.



2. Experimental Framework

This section brie
y describes the hardware and soft-
ware used throughout our experiments.

2.1. DSM Software Layer: TreadMarks

All of our experiments are built on top of Tread-
Marks [11], which is a state-of-the-art software DSM
implementation. As mentioned earlier, TreadMarks
uses lazy release consistency (LRC) [12] and a multiple-

writer protocol to minimize communication tra�c. In
this subsection, we brie
y discuss some implementa-
tion details on TreadMarks which are relevant to later
sections when we discuss how prefetching and multi-
threading are added (further details on TreadMarks
can be found in Keleher et al. [11]).

TreadMarks uses a distributed timestamp and
interval-based algorithm for maintaining LRC. Syn-
chronization operations are explicitly labeled as either
acquires or releases, and they de�ne the boundaries of
intervals, which processors designate by incrementing
local timestamps. When synchronization occurs, the
releasing processor piggybacks a vector timestamp (one
element per processor) and write notices (to indicate
which pages have been modi�ed) along with the syn-
chronization reply message. The acquiring processor
then invalidates all pages for which a write notice is re-
ceived. If one of these pages is subsequently accessed,
the fault handler sends out messages to get an up-to-
date copy of the page.

To avoid the ping-pong e�ects of false sharing,
TreadMarks allows multiple processors to write to
the same page simultaneously without interfering with
each other. This is accomplished by later merging to-
gether runlength encoded records (\di�s") which are
created by comparing the modi�ed versions of the
pages with clean, unmodi�ed copies (\twins"). These
di�s are applied to the shared pages according to the
happen-before-1 [1] partial order among the intervals
(i.e. in increasing timestamp order) to ensure program
correctness.

2.2. Hardware Platform

We performed our experiments on a collection of
eight IBM RS/6000 workstations running AIX 4.1.
Each workstation contains a 133 MHz PowerPC 604
processor, with split 16KB primary instruction and
data caches, a 512KB uni�ed secondary cache, and
96MB of physical memory. The machines were con-
nected by a single FORE Systems ASX-200WG ATM
LAN switch using 155Mbps OC3 multimode �ber optic
links. The TreadMarks processes communicate using a
lightweight reliable communication protocol built on

top of UDP. All timing measurements were done using
the high-resolution timers provided by AIX 4.1.

2.3. Applications
We performed our experiments on the following

set of applications: FFT, LU-NCONT, LU-CONT,
OCEAN, RADIX, WATER-NSQ, and WATER-SP
from the SPLASH-2 suite [24], and SOR from the
TreadMarks distribution. FFT performs a 1D com-
plex Fast Fourier Transform on 256K data points.
LU-NCONT solves a blocked LU factorization of a
1024�1024 matrix with a block size of 128 where each
block is allocated non-contiguously. LU-CONT solves
the same problem as LU-NCONT except with a block
size of 32 and contiguously allocated blocks. OCEAN
simulates large-scale ocean movement based on eddy
and boundary currents within a 258�258 grid. RADIX
performs an integer radix sort with 220 keys and max-
imum key value of 221. SOR performs a red-black suc-
cessive over-relaxation on a 2000� 2000 array over 50
iterations. WATER-NSQ simulates forces and poten-
tials among 512 water molecules in liquid states across
9 time steps using an O(n2) algorithm. WATER-SP
performs the same simulation as WATER-NSQ except
with 4096 water molecules and an O(n) algorithm. Fur-
ther details on these applications can be found in stud-
ies by Woo et al. [24] and Liviu et al. [10].

3. Prefetching

We begin our study by focusing on prefetching alone.
The idea behind prefetching is to use knowledge of fu-
ture access patterns to bring remote data into the local
memory before it is actually needed. In particular, we
focus on software-controlled prefetching, where explicit
prefetch calls are inserted into the code by either the
programmer or the compiler. Since purely hardware-
controlled prefetching probably does not make sense
in a software DSM, the more realistic alternative to
our approach is to have the DSM run-time layer issue
prefetches automatically, perhaps based on access pat-
tern histories [3]. While the advantage of this latter
approach is that it does not require source code mod-
i�cations, our experience has shown that by inserting
prefetches explicitly, we can prefetch more intelligently
and more aggressively [?].

In a multiprocessor environment, prefetches can be
classi�ed as being either binding or non-binding. With
binding prefetching, the value seen by a subsequent
read access is bound at the time when the prefetch

operation completes. While binding prefetching is of-
ten easy to implement, it has the unfortunate prop-
erty that the value may become stale if another pro-
cessor modi�es the same location during the interval



between the prefetch and the read access. This places
signi�cant restrictions on where prefetches can safely
be inserted. In contrast, with non-binding prefetch-
ing the data is brought close to the processor, but
remains visible to the underlying coherence protocol
such that the actual access is guaranteed to get the
latest copy of the data. Hence the non-binding prop-
erty gives the programmer or the compiler the 
ex-
ibility to insert prefetches more aggressively without
worrying about violating program correctness [18, 20].
Therefore we focus on software-controlled non-binding

prefetching throughout this study.

3.1. Prefetching Implementation

Adding non-binding prefetching support to Tread-
Marks turns out to be non-trivial, due to the lazy and
distributed nature of the consistency protocol. Unlike
traditional directory-based protocols, where one can al-
ways get an up-to-date copy of memory by sending a
message to the home node [15], determining the current
set of modi�cations to a page at a given instant is di�-
cult in TreadMarks since write notices are distributed
across processors and are only known precisely at ac-
quire time. The timestamping protocol was designed
to provide correct information relative to the most re-
cent synchronization point, but non-binding prefetches
can be issued prior to synchronization.

We implemented non-binding prefetches in Tread-
Marks as follows. When a prefetch operation is exe-
cuted, we �rst examine the set of write notices that
have propagated to the local processor to determine
which of them are more recent than the local copy of
the page. For each of these write notices, we issue
prefetch request messages to the corresponding nodes.
Upon receiving a prefetch request, the servicing node
replies with the necessary modi�cations, and write-
protects the given page. If that page is subsequently
modi�ed, a new interval is created so that the coher-
ence protocol can distinguish modi�cations before and
after a prefetch reply. (The net result is that the inter-
vals which are dictated by synchronization points may
be further broken down into smaller intervals.) The
prefetched data is stored in a separate heap (managed
by the TreadMarks garbage collector), which can be
thought of as a cache of remote di� replies. At the
time when the page is accessed, these prefetched mod-
i�cations will be applied to the page to bring it up to
date. If the page has been modi�ed by another proces-
sor since the prefetch, we simply request these remote
di�s as normal, and apply them to the page after the
prefetch modi�cations. Therefore the prefetches are
truly non-binding, and never violate program correct-
ness. (Further details on our prefetching implementa-

tion can be found in another publication [?].)

Since our prefetch operation only makes use of the
existing write notices to fetch modi�cations, its e�ec-
tiveness is limited by the lazy propagation of write no-
tices in LRC. However, as we will see later in this sec-
tion, this limitation does not have a large impact on
application performance in practice.

When a prefetch is executed, we immediately check
to see whether the page is already up-to-date in local
memory, or whether remote requests for the updates
are already in 
ight (either from earlier page faults or
prefetches of the same page). If so, then the prefetch is
dropped. Finally, it is important to note that prefetch
requests are unreliable and may be dropped in the
network.3 Therefore if a prefetch fails to return be-
fore a page fault occurs on the real access, we do not
wait for the prefetch (since it may never return), but
instead issue a normal remote memory request at that
time.

3.2. Inserting Prefetches

We inserted explicit prefetch procedure calls into
the source code of the applications as follows. With
the exception of WATER-SP, all of the other appli-
cations use arrays as their primary data structures
(WATER-SP uses linked lists). Therefore we apply
Mowry's prefetching algorithm [18] to these applica-
tions to isolate dynamic miss instances through loop-
splitting techniques (e.g., strip mining) and to sched-
ule prefetches far enough ahead using software pipelin-
ing. Prefetching for software DSM is quite similar to
prefetching page faults to hide the latency of out-of-
core I/O [19]. For two of the seven array-based appli-
cations (FFT and LU-NCONT), our implementation
of prefetching in the SUIF compiler [23] achieved per-
formance comparable to the best that we could do by
hand; in the other �ve cases (LU-CONT, OCEAN,
RADIX, SOR and WATER-NSQ), we achieved bet-
ter performance through hand-tuning. Hence to show
the full potential of prefetching, we use hand-inserted
prefetching in the latter �ve cases and compiler-
inserted prefetching for FFT and LU-NCONT.

For WATER-NSQ in particular, the non-binding
property of our prefetches is important. WATER-NSQ
is a multiple-producer, multiple-consumer application
where the major misses occur when updating shared lo-
cations protected by locks. With non-binding prefetch-
ing, we can insert prefetches before the locks, thereby

3One of the problems with making prefetches reliable is that
during high network congestion, we do not want to continuously
retry sending a prefetch, since this would make the congestion
even worse. With our scheme, we will retry only once (upon the
actual access) if the prefetch fails.
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Figure 2. Performance impact of prefetching (O = original,P = with prefetching).

giving us more time to hide the latency.

We inserted prefetches into WATER-SP (a pointer-
based program) by hand using a variation of the history
prefetching scheme proposed by Luk and Mowry [17].
Since the recursive data structures do not change once
they are created, we create a new local array and use it
to record pointers to the elements in the traversal order.
Therefore to issue prefetches early enough, we simply
dereference the pointers in this local array, thereby cir-
cumventing the pointer-chasing problem.

3.3. Prefetching Results

Figure 2 shows the impact of prefetching on execu-
tion time for all of the applications. For each appli-
cation, the topmost portion of the normalized execu-
tion time for the prefetching case (labeled \Prefetch
Overhead") represents the overhead of issuing the
prefetches. The remaining categories are the same
as in Figure 1, except that for the prefetching case,
the \Busy" time includes prefetch overheads associated
with loop transformation and unnecessary prefetches.4

\DSM overhead" includes the amount of time spent
servicing prefetch requests and replies.

As we see in Figure 2, prefetching improves the exe-
cution time of all of these applications, with speedups
ranging from 4% to 29%. This improvement is due to
signi�cant reductions in the memory miss stall times,
ranging from 45% to 92%. This bene�t is large enough
that it more than o�sets the runtime overheads of
prefetching. Despite the fact that each prefetch which
generates a remote message (i.e. those that are not
immediately dropped because they are unnecessary)
requires roughly 140 �sec of software overhead, the
\prefetch overhead" category remains quite low (un-
der 3%) in all cases. The \DSM overhead" increases
somewhat due to two e�ects: (i) prefetch requests are

4The overhead associated with an unnecessary prefetch in-
volves an address lookup, checking the \valid" 
ag for the given
page locally, and a conditional branch.

more expensive to service than normal memory re-
quests, since they involve creating new intervals when
the requested page is dirty; and (ii) prefetches which
fail to fully hide the latency result in a retry request
upon the real access. The \busy" times generally in-
crease due to the extra prefetch computation embedded
in the application source codes and due to unnecessary
prefetches. The slight decrease in busy time in some
cases is largely due to small measurement variations,
since we are running on real hardware. Finally, we see
that while prefetching typically does not have much
impact on synchronization time, RADIX does enjoy a
21% reduction due to improved load balancing.5

While the performance improvements o�ered by
prefetching are substantial, a natural question is why
did prefetching fail to hide all of the latency? To
develop a deeper understanding of the limitations of
prefetching in a software DSM, we will focus on two
issues: (i) the success of the prefetch insertion strategy
in selecting the appropriate references to prefetch and
scheduling them early enough, and (ii) the e�ects of
network tra�c.

Prefetching E�ectiveness

To evaluate the e�ectiveness of our prefetches,
two concepts are useful: the number of unneces-

sary prefetches and the coverage factor. Unnecessary
prefetches are prefetch operations which �nd their data
locally. The coverage factor is the fraction of original
remote misses that are prefetched. An ideal prefetch-
ing scheme will have a 100% coverage factor and no
unnecessary prefetches. Table 1 shows the percentage
of unnecessary prefetches and the coverage factors.

If we focus on unnecessary prefetches, we see that
�ve of the eight applications have roughly 50% or more
unnecessary prefetches. The numbers are particularly
high in the compiler-inserted prefetching cases (FFT

5Part of this e�ect was reduced garbage collection time.
Prefetching reduces garbage collection times by allowing the
garbage collector to validate dirty pages more quickly.



Table 1. Prefetching statistics (O = original, P = with prefetching).

Total Tra�c Average Miss
Unnecessary Coverage (KBytes) Total Misses Latency (�sec)

Benchmark Prefetches Factor O P O P O P

FFT 98.38% 99.89% 63112 64395 13013 464 3600 43800

LU-NCONT 47.93% 88.80% 145024 140292 33002 4052 2400 5800
LU-CONT 11.48% 94.54% 35800 36509 6008 550 3900 11700
OCEAN 35.44% 74.41% 210688 218658 71464 25399 2000 2900

RADIX 11.39% 94.27% 141477 146402 16437 3359 3800 10000
SOR 12.48% 99.96% 14683 15383 4917 166 3200 50698
WATER-NSQ 77.91% 91.36% 23671 24140 9483 1230 1600 2100

WATER-SP 79.32% 97.61% 64641 65932 21724 1387 1721 2000
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Figure 3. Breakdown of the original remote misses.

and LU-NCONT) since the compiler cannot distin-
guish private from shared memory locations, and hence
wastes prefetches on private data. However, since the
prefetching overheads in Figure 2 are generally quite
small, wasted overhead is clearly not the real problem.

The real question is why the upside of prefetching
is not larger. Based on the large coverage factors in
Table 1, we would expect to see larger reductions in the
memory stall times. For example, 99.9% of the original
remote misses in FFT were prefetched, but nearly half
of the original memory stall time still remains. To help
answer this question, Figure 3 shows a more detailed
breakdown of what happened to the original remote
misses. The topmost section (\no pf") is the fraction
that was not prefetched. The remaining three cases
constitute the coverage factor. The ideal case is \pf-
hit", where the prefetches fully hide the latency|notice
that this is the largest case for all applications.

The \pf-miss: invalidated" case is where prefetched
data is brought into the local memory but is invalidated
before it can be used. This situation arises because
we use non-binding prefetches, and therefore sometimes
the data must be invalidated to preserve correctness.
This case is generally small, and is most noticeable
in OCEAN and WATER-NSQ where prefetches are
moved back across barriers and locks, respectively. Al-
though this is an interesting e�ect, the fact that the

invalidations allow prefetches to be non-binding results
in a performance bene�t that far outweighs the cost of
these occassionally unsuccessful prefetches.

Finally, the \pf-miss: too late" category are cases
where the data has been prefetched but does not re-
turn in time to satisfy the reference. With the excep-
tions of OCEAN and WATER-NSQ, this case accounts
for most of the unsuccessful prefetches. There are two
reasons for this problem: either the prefetches were
not issued early enough to hide the latency, or else the
prefetch request messages were dropped in the network.
Both of these cases are a�ected by the network tra�c,
which we now consider in greater detail.

Network Tra�c

The pair of columns in the center of Table 1 com-
pare the total number of bytes sent through the net-
work in the original and prefetching cases. Although
we generally see an increase in the prefetching case,6

this increase is typically quite small, and hence does not
suggest a problem. The rightmost pairs of columns in
the table show the impact of prefetching on the num-
ber of misses and their average latency. In all cases, the
number of remote misses has been reduced. However,
in several cases (FFT, LU-CONT, RADIX, and SOR)
the average miss latency has increased enormously. For
example, prefetching has reduced the number of misses
in FFT by a factor of 28, but has increased the average
miss latency by a factor of 12. We observe that this
problem is due to the burstiness of tra�c in the net-
work, which is causing extreme queueing delays and/or
dropped messages. In particular, we see hot-spotting
e�ects during program initialization (when all proces-
sors are trying to communicate with a single processor)
which are particularly acute.

Overall, we observe that software-controlled non-
binding prefetching can yield substantial performance
improvements (4% to 29% speedups) by reducing mem-
ory stall times. Despite high coverage factors, one of

6Except in LU-NCONT, where the separate prefetch heap
provides additional storage area for the di�s and therefore re-
duces the need for garbage collection, thus reducing memory
tra�c.



the limitations which prevents prefetching from doing
better is network contention delays caused by attempt-
ing to compress the original message tra�c into a small
period of time, and also due to hot-spotting. Another
limitation of prefetching is that it does not directly ad-
dress synchronization latency, which can be quite sig-
ni�cant in software DSM (as we saw in Figure 2).

4. Multithreading

To tolerate the latency of synchronization as well
as remote memory accesses, we now consider multi-
threading. The idea behind multithreading is it to
switch from one parallel thread to another upon a long-
latency operation, thereby keeping the processor busy
with useful work until the remote operation completes.
The performance of multithreading depends on several
factors, including whether there is enough parallelism
in the application such that a ready-to-run thread is
always available, whether a signi�cant amount of time
is wasted during thread switches, and whether the lo-
cality e�ects of sharing the same local portion of the
memory hierarchy are positive or negative.

4.1. Multithreading Implementation
We implemented multithreading on top of Tread-

Marks using the Pthreads [9] user-level thread library.
The bene�t of user-level threads is that since the
threads share the same memory image within a pro-
cessor, there is less state to save on a context switch,
and there is less overhead managing the local portion
of shared memory. For example, if one thread brings a
page into the local portion of shared memory, another
thread can also use it directly. Hence if there is sig-
ni�cant locality within the clusters of threads on each
processor, we can see a prefetching bene�t relative to
running them on distinct processors.

In our implementation, a thread switch occurs when-
ever the current thread encounters a long latency
event|i.e. a remote memory miss or a remote syn-
chronization operation. We do not necessarily restart
threads immediately once the event they were wait-
ing for completes|instead, we will mark the thread as
\ready to run", and will potentially restart it whenever
the current thread is swapped out.

The main overhead of multithreading within soft-
ware DSM is a larger number of asynchronous message
arrivals. Without multithreading, a process can often
spin on a particular message queue, waiting for a reply
to its outstanding request. With multithreading, how-
ever, spinning no longer occurs since a thread typically
switches control to another thread upon long-latency
events. Hence there is non-trivial kernel overhead due
to signaling as messages arrive asynchronously.

To avoid unnecessary communication, we combine
outstanding requests whenever possible. For remote
memory accesses, we simply stall a subsequent access
to the same page until the reply returns and the page
is validated. For locks, we do something similar, ex-
cept that we still maintain mutual exclusion on the
lock among local threads once it returns (of course).
By keeping track of which local threads are queued
waiting for a given lock, we can pass the lock very
quickly between threads on the same processor. Com-
bining requests for barriers is somewhat di�erent|we
gather the local arrivals �rst such that only the last lo-
cal thread to arrive generates a remote arrival message.
(Further details on our multithreading implemenation
can be found in another publication [?].)

4.2. Modifications to the Applications
Most applications do not require any modi�cations

to run correctly in a multithreading fashion, other than
replicating \private" data on the heap whenever appro-
priate such that each thread has its own copy. However,
in cases where a signi�cant amount of redundant com-
putation is performed initializing these private copies
of data structures, a useful performance optimization
is to keep a single shared copy of the data structure
per processor, thus avoiding wasted computation and
synchronization. We applied this latter optimization to
FFT and WATER-NSQ, resulting in large performance
improvements in both cases.

4.3. Multithreading Results
Figure 4 shows the performance impact of multi-

threading with two, four, and eight threads per proces-
sor relative to the original execution time. The \Multi-

threading Overhead" component of the normalized ex-
ecution time represents the overhead for switching be-

tween threads|all other components are the same as
in Figure 1. In addition, the \DSM overhead" includes
any time spent servicing asynchronous message arrivals
and combining remote requests.

As we see in Figure 4, multithreading improves the
performance of six of the eight applications by 6% or
more, with two applications speeding up by over 50%.
The optimal number of threads varies across the board.
To provide further insight, Table 2 shows several statis-
tics on the behavior with multithreading. Using the
�rst two columns in Table 2, one can roughly estimate
the number of additional threads needed to hide the
latency (under ideal circumstances) by dividing the av-
erage stall time by the sum of the average run length
plus the average context switch time (which is roughly
110 �sec). For example, this ratio would suggest that
two threads should su�ce for WATER-SP|as we see
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Figure 4. Performance impact of multithreading (O = original, nT = multithreading with n threads)

Table 2. Multithreading statistics (O = original, nT = multithreading with n threads).

Benchmark

Avg. Avg. All Messages Remote Misses Remote Locks Remote Barriers
Stall Run Avg. Avg. Avg.
Time Length Total Volume Total Stall Total Stall Total Stall
(�sec) (�sec) (Msgs) (Kbytes) (Msgs) (�sec) (Msgs) (�sec) (Msgs) (�sec)

FFT

O 3554 856 31520 63112 13013 3554 0 0 70 200000
2T 2189 967 31520 63279 13013 2189 0 0 70 185714
4T 2020 959 31520 63279 13013 2020 0 0 70 200000
8T 2072 943 31519 63278 13013 2072 0 0 69 202898

LU-NCONT

O 2350 3465 156067 145024 33002 2350 0 0 250 596000
2T 1790 3443 66508 99605 19829 1790 0 0 198 666666
4T 1823 5271 25902 44438 10623 1823 0 0 190 642105
8T 1534 5436 25455 46802 10403 1534 0 0 177 531073

LU-CONT

O 3902 2788 18777 35800 6008 3902 0 0 250 596000
2T 2080 2614 18912 36169 6004 2080 0 0 198 666666
4T 1738 2432 18980 36306 5990 1738 0 0 190 642105
8T 1380 2338 29540 57598 9030 1380 0 0 177 531073

OCEAN

O 2094 936 167918 210688 71464 1970 1645 7506 7209 14010
2T 1424 1051 149178 160241 62281 1356 1656 4003 7208 12902
4T 940 1161 151816 125359 64212 858 1657 4155 7208 12069
8T 628 1289 250718 198124 112278 545 1662 6287 7208 18174

RADIX

O 3776 979 262400 141477 16437 3788 93 1680 141 191489
2T 1480 1049 160008 97029 17490 1483 105 1077 133 135338
4T 1422 1097 160386 97671 17650 1430 126 369 134 156716
8T 1496 1151 161142 98963 17970 1503 167 266 134 186567

SOR

O 3184 8614 11258 14683 4917 3184 0 0 800 5000
2T 2550 8729 11258 14723 4917 2550 0 0 800 5000
4T 2144 8758 11258 14723 4917 2144 0 0 800 5000
8T 2185 8821 11258 14723 4917 2185 0 0 800 5000

WATER-NSQ

O 1507 847 91997 23671 9483 1610 25808 1470 440 11363
2T 509 1012 91576 24146 9425 1244 25806 241 440 13636
4T 393 1727 91476 24265 9393 1195 25808 102 440 13636
8T 292 3067 91578 24429 9419 997 25810 36 440 13636

WATER-SP

O 1873 4704 47948 66191 21724 1721 386 10432 440 25000
2T 519 5116 47363 66670 21655 487 253 3284 440 79545
4T 338 5222 47474 66881 21677 306 249 3124 440 36363
8T 354 4733 47363 66702 21659 325 252 2849 440 38636

in Figure 4, WATER-SP does achieve its best perfor-
mance with two threads. In most cases, however, the
performance is dominated by other e�ects.

The impact of multithreading on locality|which
translates into variations in network tra�c (see Ta-
ble 2)|has both positive and negative e�ects on per-
formance. LU-NCONT and RADIX enjoy improved
locality with multiple threads, while locality degrades
in LU-CONT and OCEAN beyond four threads. Since
each processor's local memory is large enough to hold

the entire data set of each application, the major e�ect
is how multithreading a�ects communication, partic-
ularly due to false sharing. On the one hand, multi-
threading can result in better task assignments which
improve spatial locality (LU-NCONT); on the other
hand, reducing the block size too much to accomodate
additional threads can induce false sharing (OCEAN).

Another limiting factor is bursty misses along with
hot-spotting in the network. This was particularly
problematic in FFT and SOR, where hot-spotting oc-



curs as the processors read their initial data sets from
the master processor. Since performance is limited
by the throughput of master processor's network link
in these cases, multithreading shows less improvement
than one might otherwise expect.

Finally, the overhead of multithreading can o�set a
signi�cant fraction of the latency tolerance bene�t in
some cases (e.g., WATER-SP). Note that the major ef-
fect is not context switching time, but rather the over-
head of handling asynchronous message arrivals (which
appears as \DSM Overhead" in Figure 4).

5. Combining Prefetching and Multi-

threading

Having considered prefetching and multithreading
in isolation, we now focus on combining these tech-
niques. Whether the combination of both techniques
o�ers better performance than either technique alone
on a software DSM has remained an open question.
One the one hand, each technique might compensate
for the other technique's weaknesses, thereby hiding
more latency; on the other hand, the techniques may
interfere with each other, thus degrading performance.

How should prefetching and multithreading be com-
bined? To hide synchronization latency, one might
expect multithreading to be the right answer, since
prefetching does not directly address this problem. To
hide memory latency, however, the right approach is
less clear, since both prefetching and multithreading
can potentially hide this same latency.

One approach is to apply multithreading to syn-
chronization latency, and to apply both prefetching and
multithreading to memory latency. We experimented
with this approach, but found that despite all of our
e�orts to improve its performance (including the op-
timizations described later in Section 5.1), it never
achieved better performance than either prefetching or
multithreading alone [?, ?]. The problem with this ap-
proach is that switching between threads tends to re-
sult in bursty miss patterns, which in turn slow down
requests in the network, including prefetches. When
prefetches fail to return in time, a retry occurs (since
prefetches are unreliable) followed by a thread switch,
thereby further exacerbating the problem. As a result,
we tend to pay the full overheads of both prefetching
and multithreading (in fact, the overhead tends to go
up due to more asynchronous message arrivals), with-
out appreciably improving our ability to hide latency
(in part because of increased queueing delays).

Therefore in the remainder of this section, we con-
sider a di�erent approach to combining prefetching and
multithreading. We apply multithreading only to syn-

chronization latency, and we use prefetching to hide
memory latency.

5.1. Optimizing Prefetching for Multithreading
We discovered that naively applying our original

prefetching scheme to multithreaded code resulted in
disappointing performance for the following reason.
Since there is often signi�cant overlap among the work-
ing sets of threads running on the same processor, the
�rst thread which touches remote data often e�ectively
\prefetches" it for other threads. Hence we would like
to avoid having these subsequent threads issue unnec-
essary prefetches, but there are two complications: all
threads execute the same static code, and we do not
know a priori which thread will arrive at the data �rst
(since threads are scheduled dynamically). To address
this problem, we identify cases where threads on the
same processor would be redundantly prefetching the
same data, and we protect these prefetches with a con-
ditional test of a dynamic 
ag which is explicitly reset
by the �rst processor to arrive at the data.

A second optimization was useful in the case of
RADIX. To help reduce the load on the network, we
throttled back the number of prefetches (in this case by
eliminating every-other dynamic prefetch). Although
this resulted in a lower prefetching coverage factor, this
was more than o�set by reductions in network queueing
delays in this particular case.

5.2. Performance of the Combined Approach
Figure 5 shows the impact of combining prefetching

and multithreading on performance. In three of the
eight applications (FFT, OCEAN and WATER-NSQ),
we see that the best performance is achieve through the
combination of both techniques, with speedups ranging
from 4% to 26% over either technique alone. In two

cases (LU-NCONT and RADIX) the best performance
occurs with multithreading alone, and in three cases
(LU-CONT, SOR and WATER-SP) prefetching alone
performs the best.

Why does the combined approach fail to outperform
the individual techniques in these latter �ve cases? In
LU-NCONT, the combined case actually does achieve
the best performance with fewer than eight threads per
processor, and is comparable to the best case even with
eight threads.

In RADIX, the primary problem is that the loop
structure makes it di�cult to schedule prefetches early
enough to hide the large network latencies|notice in
Figure 3 that RADIX has the largest fraction of late
prefetches. In addition, RADIX su�ers from network
contention delays due to its very high rate of communi-
cation. These two e�ects interact negatively: increased
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Figure 5. Performance impact of combining prefetching and multithreading (O = original, P = with prefetching, nT =
n threads without prefetching, nTP = n threads with prefetching)

network contention slows down prefetches, causing
them to arrive even later, and as more prefetches be-
come late, they result in more retry messages, thus
resulting in more network contention. Hence multi-
threading alone is the clear winner for RADIX, since it
can address memory latency without requiring the abil-
ity to predict addresses far in advance (thus avoiding
the late prefetch problem).

In LU-CONT, SOR, and WATER-SP, prefetching
is more e�ective at hiding memory latency than mul-
tithreading, so clearly we would at least want to use
prefetching. What may be surprising, however, is that
we are better o� doing nothing for synchronization la-
tency rather than attempting to tolerate it through
multithreading. The reason for this is twofold. First,
the bulk of the synchronization latency in these cases
is due to barriers, and multithreading improves barrier
stall times only indirectly by improving load balancing.
Second, there is a signi�cant �xed cost involved in sup-
porting multithreading, since all message arrivals must
then be handled asynchronously. As we see in Fig-
ure 5, this increased overhead (which mostly appears
as \DSM Overhead") more than o�sets any gains in
reduced synchronization stall times.

The largest performance gain from the combined
scheme is in WATER-NSQ. In this case, prefetching
eliminates over 80% of the memory stall time (as op-
posed to less than 50% with multithreading), and mul-

tithreading eliminates roughly 80% of the synchroniza-
tion stall time (which is primarily due to locks). Hence
WATER-NSQ is a good illustration of how prefetching
and multithreading can be combined in a complemen-
tary fashion.

5.3. Summary
What is the best overall strategy for tolerating la-

tency in a software DSM? If it is di�cult to predict
memory addresses early enough to schedule prefetches
e�ectively (e.g., RADIX), then multithreading alone

may be the best solution, although one must be careful
not to reduce block sizes to the point where they induce
false sharing. Once you pay the overhead of support-
ing multithreading to hide memory latency, there is no
reason not to also apply it to synchronization latency.

If addresses are predictable enough that prefetches
can be scheduled su�ciently far in advance, we observe
that prefetching is generally just as good (if not bet-
ter) than multithreading at tolerating memory latency.
We found no cases where it was best to apply both
prefetching and multithreading to memory latency|
the best choice appears to be one or the other.

Once prefetching is being used to tolerate mem-
ory latency, it is most likely that multithreading will
complement prefetching (by hiding synchronization la-
tency) if lock stalls account for a signi�cant fraction
of execution time. On the other hand, if synchroniza-



tion stall times are small or are dominated by barrier
stalls, it is less clear that the additional overhead of
supporting multithreading will be worthwhile.

6. Related Work

Both prefetching and multithreading have been
studied previously in the context of tightly-coupled
multiprocessors [2, 7, 8, 13, 14, 18]. Prefetching
for software DSMs has been studied by Dwarkadas
et al. [6] and by Bianchini et al. [3]. The former
study focused on compilation techniques to automati-
cally insert prefetches into numeric applications. The
latter study examined binding prefetches which were
launched at synchronization points based on access
pattern histories. The results in this latter study
demonstrated that binding prefetching results in bursty
tra�c, it increases synchronization time, and is not ap-
propriate for locks that protect small critical sections.
In contrast, our non-binding prefetches can be moved
back ahead of locks, and therefore do not su�er from
these same problems.

Thitikamol and Keleher [22] studied the impact of
multithreading on software DSMs. They found that
multithreading could improve application performance
with a small number of threads. They also observed
that the speedup is often limited by contention for local
resources, and argued that reduction operations should
be explicitly identi�ed in the source code to achieve
better performance.

In contrast with these earlier studies, our work is
the �rst to evaluate both techniques using a consis-
tent hardware platform and set of applications, thereby
allowing direct comparisons. In addition, this is the
�rst study to consider combining prefetching and mul-
tithreading in a software DSM.

An interesting comparison is between our results and
the results of the earlier study by Gupta et al. [7] on
combining prefetching and multithreading in a tightly-
coupled multiprocessor. Similar to their study, we also
conclude that combining prefetching and multithread-
ing produces mixed results. In fact, we have found that
prefetching and multithreading work best together in a
software DSM when multithreading focuses primarily
on synchronization latency, and allows prefetching to
handle remote memory latency.

7. Conclusions

This paper has focused on how prefetching and mul-
tithreading, both individually and in combination, can
address the communication latency bottleneck is soft-
ware DSM systems. We performed our experiments

on real hardware using a full implementation of both
techniques.

We found that that software-controlled non-binding
prefetching o�ers signi�cant performance improve-
ments by hiding roughly 50% or more of the memory
stall times for most of the applications we consider.
The reason why prefetching does not achieve even bet-
ter performance is that network contention is greatly
increasing the latency of the references which are not
successfully prefetched.

Multithreading addresses not only remote memory
latency, but also synchronization latency. The over-
all speedups from multithreading alone were greater
than 50% in two cases, which is larger than the best
improvement that we saw from prefetching alone. To
get the best performance from multithreading, we ob-
served that the applications needed to be modi�ed to
take local sharing patterns into account.

By combining both prefetching and multithreading
such that multithreading hides synchronization latency
and prefetching hides memory latency, we found that
three of the eight applications can achieve better per-
formance than when we use either technique individu-
ally. We do observe, however, that combining prefetch-
ing and multithreading such that both techniques at-
tempt to hide memory latency is generally not a good
idea, and hurts performance through redundant over-
head in most cases. The best overall approach to hiding
latency depends on factors such as the predictability of
memory access patterns and the extent to which lock
stalls dominate synchronization time.
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