CUNMQR - overwrite the general complex M-by-N matrix C
with SIDE = 'L' SIDE = 'R' TRANS = 'N'
SYNOPSIS
SUBROUTINE CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO )
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDA, LDC, LWORK, M, N
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
WORK( * )
PURPOSE
CUNMQR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS =
'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product
of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by CGEQRF. Q is of order M if SIDE = 'L' and
of order N if SIDE = 'R'.
ARGUMENTS
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product
defines the matrix Q. If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) COMPLEX array, dimension (LDA,K)
The i-th column must contain the vector which
defines the elementary reflector H(i), for i =
1,2,...,k, as returned by CGEQRF in the first k
columns of its array argument A. A is modified by
LDA (input) INTEGER
The leading dimension of the array A. If SIDE =
'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
max(1,N).
TAU (input) COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the ele
mentary reflector H(i), as returned by CGEQRF.
C (input/output) COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C. On exit, C is
overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >=
max(1,M).
WORK (workspace/output) COMPLEX array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SIDE = 'L',
LWORK >= max(1,N); if SIDE = 'R', LWORK >=
max(1,M). For optimum performance LWORK >= N*NB
if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error message
related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value
Man(1) output converted with
man2html