ZLAGTM - perform a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix
of order N, B and X are N by NRHS matrices, and alpha and
beta are real scalars, each of which may be 0., 1., or -1
SYNOPSIS
SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X,
LDX, BETA, B, LDB )
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION ALPHA, BETA
COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
X( LDX, * )
PURPOSE
ZLAGTM performs a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix
of order N, B and X are N by NRHS matrices, and alpha and
beta are real scalars, each of which may be 0., 1., or -1.
ARGUMENTS
TRANS (input) CHARACTER
Specifies the operation applied to A. = 'N': No
transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta
* B
= 'C': Conjugate transpose, B := alpha * A**H * X
+ beta * B
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices X and B.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.;
otherwise, it is assumed to be 0.
DL (input) COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) COMPLEX*16 array, dimension (N)
The diagonal elements of T.
DU (input) COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of T.
The N by NRHS matrix X. LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(N,1).
BETA (input) DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.;
otherwise, it is assumed to be 1.
B (input/output) COMPLEX*16 array, dimension
(LDB,NRHS)
On entry, the N by NRHS matrix B. On exit, B is
overwritten by the matrix expression B := alpha *
A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(N,1).
Man(1) output converted with
man2html