ZLAGTM - perform a matrix-vector product of the form  B :=
       alpha * A * X + beta * B  where A is a tridiagonal  matrix
       of  order N, B and X are N by NRHS matrices, and alpha and
       beta are real scalars, each of which may be 0., 1., or -1


SYNOPSIS

       SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL,  D,  DU,  X,
                          LDX, BETA, B, LDB )

           CHARACTER      TRANS

           INTEGER        LDB, LDX, N, NRHS

           DOUBLE         PRECISION ALPHA, BETA

           COMPLEX*16     B(  LDB, * ), D( * ), DL( * ), DU( * ),
                          X( LDX, * )


PURPOSE

       ZLAGTM performs a matrix-vector product of the form  B  :=
       alpha  *  A * X + beta * B where A is a tridiagonal matrix
       of order N, B and X are N by NRHS matrices, and alpha  and
       beta are real scalars, each of which may be 0., 1., or -1.


ARGUMENTS

       TRANS   (input) CHARACTER
               Specifies the operation applied to A.  = 'N':   No
               transpose, B := alpha * A * X + beta * B
               = 'T':  Transpose,    B := alpha * A**T * X + beta
               * B
               = 'C':  Conjugate transpose, B := alpha * A**H * X
               + beta * B

       N       (input) INTEGER
               The order of the matrix A.  N >= 0.

       NRHS    (input) INTEGER
               The  number  of right hand sides, i.e., the number
               of columns of the matrices X and B.

       ALPHA   (input) DOUBLE PRECISION
               The scalar alpha.  ALPHA must be 0., 1.,  or  -1.;
               otherwise, it is assumed to be 0.

       DL      (input) COMPLEX*16 array, dimension (N-1)
               The (n-1) sub-diagonal elements of T.

       D       (input) COMPLEX*16 array, dimension (N)
               The diagonal elements of T.

       DU      (input) COMPLEX*16 array, dimension (N-1)
               The (n-1) super-diagonal elements of T.

               The  N  by NRHS matrix X.  LDX     (input) INTEGER
               The leading dimension of  the  array  X.   LDX  >=
               max(N,1).

       BETA    (input) DOUBLE PRECISION
               The  scalar  beta.   BETA  must be 0., 1., or -1.;
               otherwise, it is assumed to be 1.

       B       (input/output) COMPLEX*16 array, dimension
               (LDB,NRHS)
               On  entry,  the N by NRHS matrix B.  On exit, B is
               overwritten by the matrix expression B := alpha  *
               A * X + beta * B.

       LDB     (input) INTEGER
               The  leading  dimension  of  the  array B.  LDB >=
               max(N,1).


Man(1) output converted with man2html