ZTPRFS - provide error bounds and backward error estimates
for the solution to a system of linear equations with a
triangular packed coefficient matrix
SYNOPSIS
SUBROUTINE ZTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB,
X, LDX, FERR, BERR, WORK, RWORK, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK(
* )
COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X(
LDX, * )
PURPOSE
ZTPRFS provides error bounds and backward error estimates
for the solution to a system of linear equations with a
triangular packed coefficient matrix. The solution matrix
X must be computed by ZTPTRS or some other means before
entering this routine. ZTPRFS does not do iterative
refinement because doing so cannot improve the backward
error.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices B and X. NRHS >= 0.
AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed
columnwise in a linear array. The j-th column of
'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for
j<=i<=n. If DIAG = 'U', the diagonal elements of
A are not referenced and are assumed to be 1.
B (input) COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input) COMPLEX*16 array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solu
tion vector X(j) (the j-th column of the solution
matrix X). If XTRUE is the true solution corre
sponding to X(j), FERR(j) is an estimated upper
bound for the magnitude of the largest element in
(X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reli
able as the estimate for RCOND, and is almost
always a slight overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) COMPLEX*16 array, dimension (2*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value
Man(1) output converted with
man2html