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Preface

While there may seem to be no more abstract and theoreticslipthat the study
of meaningitself, the calling of such a simultaneously overly dramaind likely
ill-fated project nonetheless emerges out of a very coa@tetiggle with a particu-
lar subject matter - the World Wide Web, which is already ig/fi@coming almost
a transparent part of our everyday activity. In fact, at jhiecture | would hold the
Web to part of the very social and cognitive fabric that maimour very being. As
has been noticed by - ofcourse! - Wittgenstein, the aspddtsrgs that are most
important for us are hidden because of their simplicity asaifiarity. Far from
feeling alone and isolated in a lonely world devoid of megnirtake it for granted
that we strive to live in a meaningful world, a world burstiagart at the seams
with undiscovered facets; the Web being a particular papuknner of intertwin-
gling these facets together at this moment. Even thougle’thao a priori reason
why that our individual human ‘minds’ can escape whatevamiwork they are
inhabit to understand the process, respectably cakedanticsby which meaning
somehow exists in a world that is, at least according to theemmature science of
physics, ultimately atomic in nature. Yet | do not exist in arld of atoms (or even
bytes) but a world rich in of full-blooded coffee, tablesaals, web-pages, trees,
family, and friendsRepresentationare key to my world, from the warmth in my
heart the mental image of parents invokes to a tangible aétaxlooking upon the
Mediterranean from my window.

A friend once said that the world is not composed of atoms @admposed of
stories. Across the Mediterranean, | find the courage of Egyptagious and | fol-
low their stories, one by one, as external digital photostaextin my Web browser.
So this book can be considered the trace of my particulay.striting a thesis
on the Web was sternly looked down upon at my University, arden remem-
ber the Principal distinctly asking me why one would ever wanwrite a thesis
about this newfangled and quite hacked together thing ccédtlee Web.” Yet the
kindness and support of those mentioned in my acknowledtgneanging from
my Ph.D. advisors Henry S. Thompson and Andy Clark, to mymar@nd even to
Tim Berners-Lee, who kept my sanity even when it appeared ofdke rest of the
graduate school at the University of Edinburgh thought | biagrly lost the plot.
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There are memories that make the bleak moments of writintgesdhapters in my
little stone villa in Old Burdiehouse Road worthwhile. Omepiarticular was when
| presented the Representational State Transfer aralniettd a group of theoret-
ical computer scientists and so explained why the ‘backidsubn a browser did
not work. When Phil Wadler agreed that that inventor of théo\Wad been correct
about how the Web should work, | felt | was perhaps on to soimgtim this study
of the Web.

The story | am telling in this book is not exactly the story tHeoped to tell as a
graduate student. This book is to a large extent a reworkédexrdited version of
my thesis, and as such suffers from the problems that anigthas, namely that the
studies it compromises were done as small shots in the darilar to reveal some
aspect of a much larger and more sophisticated questiohe®étstudies, the ones |
did most quickly such as my study on tagging have so far reddive most acclaim,
while the ones | was most intellectually attached to haveasmhly garnered a
small but eager group of fellow travelers in the ‘philosopliyhe Web’ around me.
Looking back on this book, | can only notice that it is essahtia preface to a much
larger work that can properly do justice to the question ef\tfeb means not only
to our notion of representation and semantics, but to laggestions of cognition
and intelligence, which ultimately always are always profdly ethical questions.
This larger endeavor will no doubt be another book in due saurdowever, in this
book we point to the hypothesis that all of these questioassacial, and take a
stab at what that entails. At the time of writing these stadligid not have access to
the massive Web-scale data-sets or processing power neefiechulate a testable
theory of social computation, and as | sit here in Yahoo! Resge | cannot but be
amazed at the seemingly unlimited amount of computatiooaigp | have and the
fact that | have an entire copy of the Web accessible from nsktd@. So | will
simply deliver this book to clear space for this future ttetimal framework and
sketch the components of an adequate computational opeaiitiation of social
semantics. The idea came upon me in a visit to Amsterdam wihiiest larrived
in Europe: Meaning is not something we possess alone, buethimy we create
together. To this day, | can still not think of a better way togse the hypothesis of
social semantics.

Barcelona, April 2011 Harry Halpin
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Chapter 1
Introduction

You have abandoned the old domain, the old concepts. Herargon a new do-
main, for which new concepts will give you the knowledge. dige that a real
change in locus and problematic has occurred, and that a néwveature is begin-
ning, the adventure of science in developmkeatis Althusser (1963)

This book is an inquiry into representation. Given the almgpossibly wide
scope of possible kinds of questions pertaining to reptasens, we will deploy
an analysis that is simultaneously both historical andrgifie by restricting our
inquiry to the an investigation of representations on theltiV@vide Web. Yet re-
gardless of our careful scoping, we will nonetheless bedbfidriven into the realm
of semanticsthe hard question of how meaning is assigned to represamtaa
guestion that is as hard it seems as that of the more popuidmphablem of con-
sciousness Chalmers (1995). The nature of representatiomlbnger fashionable
to even pursue in philosophy or even in artificial intelligenit is a problem whose
immensity overwhelms us. As a subject matter the apparesrigshenon ofefer-
ence the suspiciously mysterious - and so perhaps even noteaiis connection
between a representation and that which it representsssegpn the totality of our
social relationship with the world. From Plato’s theory afrfas to the evolution of
representation in artificial life Halpin (2006), sciencéditiered with theories of the
semantics, all of which equally purport to solve this thomgtter in one way or
another. One would be forgiven in given the lack of clear egs®f any theory so
far that perhaps the question is unscientific or simply ottrble in nature, yet that
compels us with only a more irresistible attraction.

At first glance, representation and semantics seems styaslgefashioned, par-
ticularly given the current enthusiasm for embodiment igrnitive science, which
in its more extreme versions leads to claims of “intelligendthout representation”
Brooks (1991). Yet this fetish for embodiment may be stréyndésciplinary and
- although radical on the surface - actually end up being ati@zary fad when
viewed within context of a larger landscape outside acad@miosophy and cog-
nitive science. In particular, computer science - with theeption of the peculiarly
anthropomorphic line of research of Al in robotics - does se¢m to care about
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embodiment. In hi©ne Hundred Billion Lines of C+#computer scientist-turned-
philosopher Brian Cantwell Smith notes that in artificiaelligence debates over
representation tend to frame the debate as if it were betteteessical” logic-based
symbolic reasoners and some “connectionist” and “embddikdrnative ranging
from neural networks to epigenetic robotics (1997). Sniitant goes on to aptly
state that the kinds of computational systems discussaetdificial intelligence and
philosophy tend to ignore the vast majority of existing eyss, for “it is impossible
to make an exact estimate, but there are probably somethitigecorder of 10, or
one hundred billion lines of C++ in the world. And we are bargtarted. In sum:
symbolic Al systems constitute approximately 0.01% of teritsoftware” (1997).
What Smith fails to mention is that the same small fracti&all holds true of “non-
symbolic Al” computational systems such as robots, aréfidie, and old-fashioned
connectionist networks (an exception may soon be made éomtichine-learning
that runs phenomena such as advertising and search on the X¢elaw statis-
tics of deployed systems by themselves hold little intéllatweight, no doubt a
philosopher could argue that the vast majority of compateti systems may have
no impact on our understanding of representation and iigeégite. In other words,
what the vast majority of the planet is doing with computatmd representation
- which is increasingly focused on the World Wide Web - is dyriptellectually
uninteresting. In this book we argue otherwise.

Yet while one can easily deny if anything resembling digitadresentations ex-
ists ‘inside the brain,’ it is much harder to argue that themeeno digital represen-
tations on the Web. As one clicks from web-page to web-pdgeeams that the
Web is nothing but a vast network of digital representatidiie thesis of this book
is that the wide class of computational systems outside afehiraditionally con-
sidered by atrtificial intelligence or philosophy presentiv@antwell Smith calls a
“middle distance” where questions of representation (artaps even intelligence)
come to the forefront in a peculiarly obvious manner and i&edyl more tractable
than in the case for humans, given the relative complexigoaiputers and humans
(Smith, 1995). At the present moment, with all the totalizattraction of a black
hole, computational systems the world over are becominggrat parcel of the
World Wide Web, described by Tim Berners-Lee - the persorelyidcclaimed to
be the ‘inventor’ of the Web - as “a universal information spg1992). We further
argue that not only may the Web may not only reveal some gkimsights about
representation, but its unique historical status as thedatsial universal informa-
tion space may prompt an entire re-thinking of semanticsei\ésked to consider
this hypothesis, Michael Wheeler - a philosopher who is dkethwn for his Hei-
deggerian defense of embodiment - surmises that while “theep of the Web as
a technological innovation is now beyond doubt” but “whatess well appreci-
ated is the potential power of the Web to have a conceptuadmpn cognitive
science” and so may provide a new “fourth way” in additionte tthree kinds of
cognitive science or artificial intelligence: classicainoectionist, and (something
like) embodied-embedded” (2008). While countless papave lbeen produced on
the technical aspects of the Web, very little has been dopécély on the Web
quaWeb as a subject matter of interest to philosophy. This da¢snean there
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has not been interest, although the interest has come iicydartmore from the
side of those engineers working on developing the Web rdttaar those already
entrenched in philosophy, linguistics, and artificial Iigence (Halpin et al, 2006;
Bouquet et al, 2007, 2008). In this spirit, what we will urtd&e in this thesis as a
whole is to apply many well-known philosophical theoriegefierence and repre-
sentation to the phenomenon of the Web, and see which theoryss - and lastly,

if the Web points a way to aewtheory of semantics, which we surmise may be a
social semantics.

1.1 Scope

The World Wide Web is without a doubt one of the most significamputational
phenomenato date. Yet there are some questions that cananstvered without a
theoreticalunderstanding of the Web. Although the Web is impressivepaaétical
success story, there has been little in the way of develapthgoretical framework
to understand what — if anything — is different about the Welmfthe standpoint of
long-standing questions of representation and semamtipkilosophy. While this
situation may have been tolerable so far, serving as no @raieb to the further
growth of the Web, with the development of the Semantic Wetliexd generation
of the Web “in which information is given well-defined meagjrbetter enabling
computers and people to work in cooperation,” these philb&al questions come
to the forefront, and only a practical solution to them calptiee Semantic Web
repeat the success of the hypertext Web (Berners-Lee d@l) 2At this moment,
there is little doubt that the Semantic Web faces gloomy ot - and perhaps
for good reason. On first inspection, the Semantic Web appiedre a close cousin
to another intellectual project, known politely as ‘clasdiartificial intelligence’
(also known as ‘Good-Old Fashioned Al’) an ambitious proyeicose progress has
been relatively glacial and whose assumptions have beardftlube cognitively
questionable (Clark, 1997). The initial bet of the Semaweb was that somehow
the Webpart of the Semantic Web would somehow overcome whatevédrgnres
the Semantic Web inherited from classical artificial inggdhce, in particular, its
reliance on logic and inference as the basis of meaning (H&p04).

This thesis is explicitly limited in scope, concentratingyoon the terminology
necessary to phrase a single, if broad, question: How caretegrdine the meaning
of a URI on the Web? Although the thesis is interdisciplinasyit involves elements
as diverse as the philosophy of language and machine-tggithiese elements are
only harnessed insofar as they are necessary to phrasertral teesis and present
a possible solution. Due to constraining ourselves to tbhpeof the Web and the
topic of representation, this thesis is not an attempt teldgva philosophy of com-
putation (Smith, 2002), or a philosophy of information (fdd, 2004), or even a
comprehensive “philosophy of the Web” (Halpin, 2008b). 3&@re much larger
projects outside the scope of a single book, and even a smgjiedual’s life-long
calling. However, in combination with more fully-formed vkoin the philosophy,
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we hope that at least this book provides a starting pointifturé work in these ar-
eas. So we use notions from philosophy selectively, anddeéne the terms in lieu
of our goal of articulating the principles of Web architeetand the Semantic Web,
rather than attempting to articulate or define the terms gfséematic philosophy
or with reference to the many arguments over these termsalytamphilosophy.
Many of the terms in this thesis could be explored much furtbet by virtue of
our scoping not explored, as to constrain the book to a reddersize. Unlike a
philosophical work, in this book counter-arguments anduargnts are generally
not given for terminological definitions, but instead refeces are given to the key
works that explicate these terms further.

This thesis does not inspect every single possible answketguestion ofVhat
is the meaning of a UR|Dut only three distinct positions. An inspection of every
possible theory of meaning and reference is beyond the safdpe thesis, as is an
inspection of the tremendous secondary literature thabhesied over the years.
Instead, we will focus only on theories of meaning and regm&sgtion that have
been brought up explicitly in the various arguments oves thiestion in the Web
by the primary architects of the Web and the Semantic Web p@aposed solution
of social semantics rests on a theory of meaning, a neo-&vigiginian theory, that
is one of the most infamously dense and infuriatingly obse¢heories of meaning.

Finally, while the experimental components of this book ttase its best to be
realistic, they are in no way complete. Pains have been tikensure that the ex-
periments, unlike much work in the Semantic Web, at least &l data, feedback
from real users, and is properly evaluated over a range ofittgns and parame-
ters. Work on tagging systems takes its data from a realrsysiel.icio.us as well.
While various parts of the experiments could no doubt bengipéd and scaled up
still further, these experiment should be sufficient to wai# our movement to-
wards social semantics, although a full formalization aftsa theory and testing it
of would require access to the data of a large-scale seagiheesuch as Google,
which for the time being it outside of scope. For future wonke would like to
pursue the formalization and large-scale testing of seealantics.

1.2 Summary

The thesis of this book must be stated in a two-fold fashiost fo analyze the
problem and then to propose a solution. To analyze the probferepresentation
on the Web, one must ask the questitvhat is the meaning of a URI? First,

we will must clarify the problem that the Web is a kind of nemdaage that can
be defined by its engineering conformance to the principfed/eb architecture,
but nonetheless inherits the problems regarding senseeé@i@nce from the phi-
losophy of natural language. So there is no easy way out of#né question of
representation. Our proposed answer is then that only athefaepresentation
and semantics that takes into account the socially groundedf a multiplicity

of representations is sufficient to provide the meaning oé@esentation on the
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Web, from which the meaning of a peculiar URI can be derive@sisence, we turn
the question on its head; instead of saying that a URI can igveeaning only
by virtue of what representations can be accessed from itnstead say that the
network of representations and their use provides the mganfia URI.

In order to orient the reader to the Web, we give an extendedduction to its
history and its architecture in Chapter 2, while introdgdine philosophical termi-
nology in concert with examples from the Web that underdinésrest of the book.
In Chapter 3 we propose that the Semantic Web, as embodidweRedsource De-
scription Framework (RDF), is a kind of URI-based knowledggeresentation lan-
guage for data integration based on the principles of Welitacture, and illustrate
it by providing the elements of Web architecture in terms dbmamal Semantic
Web ontology. These works have in earlier forms been pubtisisAn Ontology
of Resources: Solving the Identity Crisislpin and Presutti (2009) with Valentina
Presutti and my very early ess@ije Semantic Web: The Origins of Artificial Intel-
ligence Reduxdalpin (2004).

In 4 we illustrate the crisis of the Semantic Web: There ismaneer to the afore-
mentioned question of how to assign meaning to a URI. Thereleast two dis-
tinct positions to this question on the Semantic Web, eaatesponding to a distinct
philosophical theory of semantics. The first response isapieist position which
states thathe meaning of a URI is determined by whatever model(s)gdlis for-
mal semantics of the Semantic Wetayes, 2004). This answer is identified with
both the formal semantics of the Semantic Web itself and ribitional Russel-
lian theory of names and its descriptivist descendantsq&L1s1905). While this
answer may be sufficient for automated inference enginésatiswer is insuffi-
cient for humans, as it often crucially under-determineatind of things the URI
identifies. As the prevailing position in early Semantic Webearch, this position
has borne little fruit. Another response is tiieect reference positiotfior the Web,
which states thahe meaning of a URI is whatever was intended by the owWiés.
answer is identified with the intuitive understanding of ya the original Web
architects like Berners-Lee and a special case of Putnamatsiral kind’ theory of
meaning. This position is also a near relative to Kripkemmdas response to Rus-
sell (Kripke, 1972; Putnam, 1975). Further positions treatehbeen marginal to the
debate on the Web, such as that of semiotics, are not explnegarlier version of
this work has been previously publishedZense and Reference on the Wethe
journalMinds and Machineblalpin (2011).

Then we dive from the heights of theory to the depths of expenital work. In
Chapter??, we begin the exploration of an alternative form of discawgthe mean-
ing of a representation, namely that of ‘bottom-up’ colledive tagging systems,
where users simply ‘tag’ a resource with a term they find usafdescriptive and
so define the ‘sense’ of a URI as a set of terms. We commit a nuofilegperiments
to determine if these tags converge over time and over agify@f resources. Then
in Chapter??we extend this exploration to search engines, considenmtpag-of-
words’ produced by a document to be equivalent to a set of tagsso, the sense
of the URI. In particular, we explore this using documentsfrboth the Seman-
tic Web and the hypertext Web, and use relevance models tbicenthem. The
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study of tagging was previously publishedfdse Complex Dynamics of Collobora-

tive Taggingn ACM Transactions on the Welith Valentin Robu and Hana Shepard
Halpin et al (2007); Robu et al (2009), while the short usedgtvas published with

Dirk Bollen asAn Experimental Analysis of Suggestions in Collaboratiagging
Bollen and Halpin (2009). The study of search engines amyaelce feedback was
previously published aRelevance Feedback between Web Search and the Semantic
Webwith Victor Lavrenko Halpin and Lavrenko (2011).

We finally turn to formulate a third position in Chapt®?, thesocial semantics
which states that since the Weba form of language, and as language exists as
a public mechanism among multiple agents, then the meariiaguRl is deter-
mined by the socially-grounded use of networks of represients on the Web by
ordinary users As vague as this position seems at first glance, we arguariails
ysis of meaning and representation is the best fit to how aktamguage works,
and it supersedes and even subsumes the two other posHimtisermore, it goes
beyond a certain quietism about natural language attiibiat&Vittgenstein as well
as a certain belief in the occult powers of some ‘mental'deri Ideas in this ver-
sion were previously published with Andy Clark and Michaeh&gler asTowards
a Philosophy of the Web: Representation, Enaction, CalledhtelligenceHalpin
et al (2010). The entire Ph.D. thesis was submitted and &pgrtw University of
Edinburgh, with Yorick Wilks being the external examiney Sense and Reference
on the WelHalpin (2009b), with the precis being published with HenryrfSomp-
son asSocial Meaning on the Web: From Wittgenstein to Search EsjmIEEE
Intelligent Systemidalpin and Thompson (2009). Note that all previously puiais
versions of work in this book have been edited, amended, Hratwise expanded.

As Wittgenstein would say, one must remember that everygtiage game”
comes with, a “form of life” (Wittgenstein, 1953), and the bVis a new form of
life that goes beyond the philosophy of natural language leads us straight into
a new philosophy of dynamic machinic and human assemblagasijosophy-to-
come of collective intelligence.

1.3 Notational Conventions

In order to aid the reader, this book employs a number of iotakconventions. In
particular, we only use “double” quotes to quote a particalahor or other work.
When a new word is introduced and used in an unusual mannerdtabfied later,
we use ‘single’ quotes. The use of ‘single’ quotes is alsa wsleen a word is sup-
posed to be understood as the worch word, a mention of the word, rather than
a use of the word. When a term is defined, the word is first labe#ngbold and
italic fonts, and either immediately followed or preceded by thindt®n given in
italics. Mathematical or formal terms aitalicized, as is the use oémphasisn
any sentence. Finally, the names of books and other workeftae italicized. In
general, technical terms like HyperText Transport Prat@td® TP) are often abbre-
viated by their capitalized initials. The World Wide Web isually referred to by
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the web. One of the largest problems of this whole area li¢stity has had a rather
ad-hoc use of terms, and we hope this fairly rigorous nataticonvention helps
separate the use, mention, definition, and direct quotatbwords.






Chapter 2
Architecture of the World Wide Web

All the important revolutions that leap into view must bega@ed in the spirit of
the era by a secret revolution that is not visible to everyamel still less observable
by contemporaries, and that is as difficult to express in waslit is to understand.
G.W. F. Hegel(1959)

In order to establish the relative autonomy of the Web as gestumatter, we
recount its origins and so its relationship to other prgjgobth intellectual such as
Engelbart's Human Augmentation Project, as well as morelgtechnical projects
such as the Internet (1962). It may seem odd to begin this ,bebich involves
very specific questions about representation and meanireo¥veb, with a his-
torical analysis of the Web. To understand these questiaswst first have an
understanding of the boundaries of the Web and the normatigements that de-
fine the Web. The Web is a fuzzy and ill-defined subject mattdten considered
a ill-defined ‘hack’ by both academic philosophers and cot@pscientists - whose
precise boundaries and even definition are unclear. Untikeessubject matters like
chemistry, the subject matter of the Web is not necessagity stable, like a ‘natu-
ral kind,” as it is a technical artifact subject to constamhiege. So we will take the
advice of the philosopher of technology Gilbert Simonddnstead of starting from
the individuality of the technical object, or even from ifgesificity, which is very
unstable, try to define the laws of its genesis in the framkwbthis individuality
or specificity, it is better to invert the problem: it is frotmetcriterion of the genesis
that we can define the individuality and the specificity of thehnical object: the
technical object is not this or that thing, givéit et nuncbut that which is gen-
erated” (1958). In other words, we must first trace the coeadf the Web before
attempting to define it, imposing on the Web what Fredric Jamealls “the one
absolute and we may even say ‘transhistorical’ imperathat, is: Always histori-
cize!” (1981). Only once we understand the history and sigimite of the Web, will
we then proceed to dissect its components one-by-one, gmd@tto align them
with certain still-subterranean notions from philosophy.
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2.1 The History of the Web

What is the Web, and what is its significance? At first, it appéa be a relative
upstart upon the historical scene, with little connectiorahything before it, an
ahistorical and unprincipled ‘hack’ that came unto the warhforeseen and with
dubious academic credentials. The intellectual trajgotdrthe Web is a fascinat-
ing, if unknown, revolution whose impact has yet to be histdly comprehended,
perhaps even by its creators. Although it is well-known tihet \WWeb bears some
striking similarity to Vannevar Bush’s ‘Memex’ idea from 48, the Web is itself
usually thought more of as a technological innovation nathan an intellectually
rich subject matter such as artificial intelligence or ctigeiscience (1945). How-
ever, the Web’s heritage is just as rich as artificial ingellice and cognitive science,
and can be traced back to the selfsame root, namely the ‘MachMe Symbiosis’
project of Licklider (1960).

2.1.1 The Man-Machine Symbiosis Project

The first precursor to the Web was glimpsed, although nevpleimented, by Van-
nevar Bush, chief architect of the military-industrial qolex of the United States
of America. For Bush, the primary barrier to increased pobigtity was the lack of
an ability to easily recall and create records, and Bush sawicrofiche the basic
element needed to create what he termed the “Memex,” a sytbi@ntets any in-
formation be stored, recalled, and annotated through assefi“associative trails”
(1945). The Memex would lead to “wholly new forms of ency@dgas with a mesh
of associative trails,” a feature that became the inspingr “linking” in hypertext
(Bush, 1945). However, Bush could not implement his visioritee analogue com-
puters of his day.

The Web had to wait for the invention of digital computers dhe Internet,
the latter of which bears no small manner to debt to the work GfR. Licklider,
a disciple of Norbert Wiener (Licklider, 1960). Wiener thgii of feedback as an
overarching principle of organization in any science, dreg was equally universal
among humans and machines (1948). Licklider expanded ttiemof feedback
loops to that of feedback between humans and digital comgutdis vision of
‘Man-Machine Symbiosis’ is distinct and prior to cognitigeience and artificial
intelligence, both of which were very infantile disciplsat the time of Licklider,
and both of which are conjoined at the hip by hypothesizirag the human mind
can be construed as either computational itself or everémehted on a computer.
Licklider was not a true believer in the computational mibdt held that while
the human mind itself might not be computational (Licklid&verly remained ag-
nostic on that particular gambit), the human mind was definitomplementety
computers. As Licklider himself put it, “The fig tree is poléited only by the in-
sect Blastophaga grossorun. The larva of the insect livéeeiovary of the fig tree,
and there it gets its food. The tree and the insect are thuslyhéaaterdependent:
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the tree cannot reproduce without the insect; the insectataeat without the tree;
together, they constitute not only a viable but a produdive thriving partnership.
This cooperative ‘living together in intimate associationeven close union, of two
dissimilar organisms’ is called symbiosis. The hope is,timahot too many years,
human brains and computing machines will be coupled togetsy tightly, and
that the resulting partnership will think as no human braas lever thought and
process data in a way not approached by the informationimgnchachines we
know today” (1960). The goal of ‘Man-Machine Symbiosis’lienh the enabling of
reliable coupling between the humans and their ‘exterméfirimation as given in
digital computers. To obtain this coupling, the barriersimie and space needed to
be overcome so that the symbiosis could operate as a sirgfess. This required
the invention of ever decreasing low latency feedback Idmisveen humans and
their machines.

In pursuit of that goal, the ‘Man-Machine Symbiosis’ prdje@as not merely a
hypothetical theoretical project, but an concrete enginggroject. In order to pro-
vide the funding needed to assemble what Licklider termsddualactic network”
of researchers to implement the first step of the projecklider became the insti-
tutional architect of the Information Processing TecheigQffice at the Advanced
Research Projects Agency (ARPA) (Waldrop, 2001). Licklifiiest tackled the bar-
rier of time. Early computers had large time lags in betwéenitiput of a program
to a computer on a medium such as punch-cards and the rateptioe program’s
output. This lag could then be overcome via the use of tinegisp, taking advan-
tage of the fact that the computer, despite its centralizaglesprocessor, could run
multiple programs in a non-linear fashion. Instead of iglimhile waiting for the
next program or human interaction, in moments nearly imgetible to the human
eye, a computer would share its time among multiple humamrC@vthy, 1992).

In further pursuit of its goal of human-machine symbiosiswhich some over-
enthusiastic science-fiction fans or academics with a pEmahfor the literal might
see the idea of a cyborg, the ‘Man-Machine Symbiosis’ ptojewve funding to
two streams of research: artificial intelligence and and#sser-known strand, the
work on ‘human augmentation’ exemplified by the Human Augtagon Project
of Engelbart (1962). Human augmentation, instead of hofgimgplicate human in-
telligence as artificial intelligence did, only thought tthence it. At the same time
Licklider was beginning his ‘Man-Machine Symbiosis’ profeDouglas Engelbart
had independently generated a proposal for a “Human AugatientFramework’
that shared the same goal as the ‘Man-Machine Symbiosia’ adé icklider, al-
though it differed by placing the human at the centre of ttetesy, focusing on the
ability of the machine to extend to the human user. In conttasklider imagined
a more egalitarian partnership between humans and digitapaters, more akin to
having a somewhat intelligence machine as a conversatiantader for the human
(1962). This focus on human factors led Engelbart to thezat&n that the primary
reason for the high latency between the human and the masalis¢he interface
of the human user to the machine itself, as a keyboard wasaabienited channel
even compared to punchcards. After extensive testing of déwces enabled the
lowest latency between humans and machines, Engelbaritetv¢he mouse and
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other, less successful interfaces, like the one-handemtdcteyboard (Waldrop,

2001). By employing these interfaces, the temporal latdretyveen humans and
computers was decreased even further. Strangely enoudigweenot - despite all

the hyperbole around tactile or haptic interfaces fromawsimedia-labs - gone far
beyond keyboards, mice, and touch-screens in fifty years.

2.1.2 The Internet

The second barrier to be overcome was space, so that any temspould be ac-
cessible regardless of its physical location. The Intefoame out of our frustra-
tion that there were only a limited number of large, poweréglearch computers in
the country, and that many research investigators who dhwaue access to them
were geographically separated from them” (Leiner et al,300icklider’s lieu-
tenant Bob Taylor and his successor Larry Roberts conttami¢ Bolt, Beranek,
and Newman (BBN) to create the Interface Message Procélsedrardware needed
to connect the various time-sharing computers of Licklgt&yalactic network” that
evolved into the ARPANet Waldrop (2001). While BBN providixe hardware for
the ARPANet, the software was left undetermined, so anmé&group of graduate
students constituted the Internet Engineering Task FOECEN) to create software
to run the Internet (Waldrop, 2001).

The IETF has historically been the main standardizationylibdt creates the
protocols that run the Internet. It still maintains the imf@l nature of its founda-
tion, with no formal structure such as a board of directotboagh it is officially
overseen by the Internet Society. The IETF informally aseds their main orga-
nizing principle the credo “We reject kings, presidents] &nting. We believe in
rough consensus and running code” (Hafner and Lyons, 1@¥§)isions do not
have to be ratified by consensus or even majority voting, égtire only a rough
measure of agreement on an idea. The most important protiinetse list-serv dis-
cussions and meetings are IETF RFCs (Request for Commelmits) differ in their
degree of reliability, from the unstable ‘Experimentaltbe most stable ‘Standards
Track.” The RFCs define Internet standards such as URIs addPHBerners-Lee
et al, 1996, January 2005). RFCs, while not strictly acadeguablications, have a
de factonormative force on the Internet and therefore on the Web sarttiey will
be referenced considerably throughout this book.

Before the Internet, networks were assumed to be static lasda systems, so
one either communicated with a network or not. Howeveryestwork researchers
determined that there could be “open architecture netwgrkivhere a meta-level
“internetworking architecture” would allow diverse netike to connect to each
other, so that “they required that one be used as a compohé&m other, rather
than acting as a peer of the other in offering end-to-ends&t{Leiner et al, 2003).
In the IETF, Robert Kahn and Vint Cerf devised a protocol teak into account,
among others, four key factors, as cited below (Leiner €G03):



2.1 The History of the Web 13

1. Each distinct network would have to stand on its own andnternal changes
could be required to any such network to connect it to thehete

2. Communications would be on a best effort basis. If a patikiett make it to the
final destination, it would shortly be retransmitted frora #ource.

3. Black boxes would be used to connect the networks; theséhiater be called
gateways and routers. There would be no information retidiyethe gateways
about the individual flows of packets passing through theergby keeping them
simple and avoiding complicated adaptation and recovemy fvarious failure
modes.

4. There would be no global control at the operations level.

In this protocol, data is subdivided into ‘packets’ that atetreated indepen-
dently by the network. Data is first divided into relativelgual sized packets by
TCP (Transmission Control Protocol), which then sends #ekets over the net-
work using IP (Internet Protocol). Together, these two geots form a single pro-
tocol, TCP/IP (Cerf and Kahn, 1974). Each computer is nanyexhtdnternet Num-
ber, a four byte destination address suchh%®.2.210.122and IP routes the system
through various black-boxes, like gateways and routeas db not try to reconstruct
the original data from the packet. At the recipients end, TGRects the incoming
packets and then reconstructs the data.

The Internet connects computers over space, and so prawieghysical layer
over which the universal information space of the Web is enpnted. However, it
was a number of decades before the latency of space and ttaenkdow enough
for something like the Web to become not only universalizimgheory, but uni-
versalizing in practice, and so actually come into beingeathan being merely
a glimpse in a researcher’s eye. An historical example ehgtting a Web-like
system before the latency was acceptable would be the NLS&ijeNsystem) of
Engelbart (1962). The NLS was literally built as the secondenof the Internet,
the Network Information Centre, the ancestor of the domama&system. The NLS
allowed any text to be hierarchically organized in a seriesutlines, with sum-
maries, giving the user freedom to move through variouddevkeinformation and
link information together. The most innovative featuretod NLS was a journal for
users to publish information in and a journal for otheréin& and comment upon,
a precursor of blogs and wikis (Waldrop, 2001). However,&bart’s vision could
not be realized on the slow computers of his day. Althougleisharing computers
reduced temporal latency on single machines, too many sharing a single ma-
chine made the latency unacceptably high, especially whisg@an application like
NLS. Furthermore, his zeal for reducing latency made the [irSoo difficult to
use, as it depended on obscure commands that were far todecofopthe average
user to master within a reasonable amount of time. It was aftér the failure of
the NLS that researchers at Xerox PARC developed the pdrsomguter, which
by providing each user their own computer reduced the teabpetency to an ac-
ceptable amount (Waldrop, 2001). When these computersceeneected with the
Internet and given easy-to-use interfaces as developeé@a>PARC, both tem-
poral and spatial latencies were made low enough for ordinsers to access the
Internet. This convergence of technologies, the persamapater and the Internet,
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is what allowed the Web to be implemented successfully adbled its wildfire
growth, while previous attempts like NLS were doomed tadialas they were con-
ceived before the technological infrastructure to supthain had matured.

2.1.3 The Modern World Wide Web

Perhaps due to its own anarchic nature, the IETF had prodaucedltitude of in-
compatible protocols such as FTP (File Transfer Protocud)@opher (Postel and
Reynolds, October 1985; Anklesaria et al, 1993). While grots could each com-
municate with other computers over the Internet, there veasmniversal format to
identify information regardless of protocol. One IETF jiEpant, Tim Berners-Lee,
had the concept of a “universal information space” which hbled the “World
Wide Web” (1992). His original proposal to his employer CEBNhgs his belief
in universality to the forefront, “We should work towards aiversal linked infor-
mation system, in which generality and portability are mionportant than fancy
graphics and complex extra facilities” (Berners-Lee, 1988e practical reason for
Berners-Lee’s proposal was to connect the tremendous asotidata generated
by physicists at CERN together. Later as he developed hiside came into direct
contact with Engelbart, who encouraged him to continue loikwdespite his work
being rejected at conferences like ACM Hypertext 1991.

In the IETF, Berners-Lee, Fielding, Connolly, Masinterdarthers spear-headed
the development of URIs (Universal Resource IdentifiersyMH (HyperText
Markup Language) and HTTP (HyperText Transfer Protocatjc&by being able
to reference anything with equal ease due to URIs, a web offrimdtion would form
based on “the few basic, common rules of ‘protocol’ that wicallow one computer
to talk to another, in such a way that when all computers avieeye did it, the sys-
tem would thrive, not break down” (Berners-Lee, 2000). Theb\Wé avirtual space
for naming informatiorbuilt on top of the physical infrastructure of the Internet
that could move bits around, and it was built through speatifics that could be
implemented by anyone, “What was often difficult for peoglaihderstand about
the design was that there was nothing else beyond URIs, HANdPHTML. There
was no central computer ‘controlling’ the Web, no singlewagk on which these
protocols worked, not even an organization anywhere tlaat the Web. The Web
was not a physical ‘thing’ that existed in a certain ‘pla¢ewas a ‘space’ in which
information could exist” (Berners-Lee, 2000).

The very idea of ainiversalinformation space seemed at least ambitious, if not
de factoimpossible, to many. The IETF rejected Berners-Lee's ileadny identi-
fication scheme could be universal. In order to get the tingeof the Web off the
ground, Berners-Lee surrendered to the IETF and renamed ©&h Universal
Resource Identifier@JRIS) to Uniform Resource Locator@JRLS) (Berners-Lee,
2000). The Web begin growing at a prodigious rate once thd®@mapof Berners-

1 Personal communication with Berners-Lee.
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Lee, CERN, released any intellectual property rights they to the Web and after
Mosaic, the first graphical browser, was released. Howévewser vendors started
adding supposed ‘new features’ that soon led to a ‘lock-imére certain sites could
only be viewed by one particular corporate browser. Thesmvber wars’ began to

fracture the rapidly growing Web into incompatible infortioa spaces, thus nearly
defeating the proposed universality of the Web (Berners-2600).

Berners-Lee in particular realized it was in the long-tenteiest of the Web to
have a new form of standards body that would preserve itseusality by allow-
ing corporations and others to have a more structured totin than possible
with the IETF. With the informal position of merit Bernergé had as the sup-
posed inventor of the Web (although he freely admits thatrthention of the Web
was a collective endeavour), he and others constituted tmdW/ide Web Con-
sortium (W3C); a non-profit dedicated to “leading the Webtsofull potential by
developing protocols and guidelines that ensure long-tgowth for the Web” (Ja-
cobs, 1999). In the W3C, membership was open to any orgamizaiommercial
or non-profit organization. Unlike the IETF, W3C memberstame at a consider-
able membership fee. The W3C is organized as a strict repase democracy,
with each member organization sending one member to thesAdyiCommittee of
the W3C, although decisions technically are always madééypirector, Berners-
Lee himself. By opening up a “vendor neutral” space, comgmmiho previously
were interested primarily in advancing the technology faiit own benefit could
be brought to the table. The primary product of the World Wideb Consortium
is a W3C Recommendation, a standard for the Web that is ékploted on and
endorsed by the W3C membership. W3C Recommendations argtthtm be sim-
ilar to IETF RFCs, with normative force due to the degree ofrfal verification
given via voting by the W3C Membership and a set number of @mgntations
to prove interoperability. A number of W3C Recommendatibage become very
well known technologies, ranging from the vendor-neuttéi versions of HTML
(Raggett et al, 1999), which stopped the fracture of thearsa information space,
to XML, which has become a prominent transfer syntax for migmes of data
(Bray et al, 1998).

This book will cite W3C Recommendations when appropriat¢hase are one of
the main normative documents that define the Web. With IETE®RREhese norma-
tive standards collectively define the foundations of théoWeis by agreement on
these standards that the Web functions as a whole. Howéeerptigh-and-ready
process of the IETF and the more bureaucratic process of (B€ s led to a
terminological confusion that must be sorted in order tsgrine nature of repre-
sentations on the Web, causing even the most well-meanisgud$ to fall into a
conceptual swamp of undefined and fuzzy terms. This is trgpades in particular
over the hotly-contested term ‘representation.’
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2.2 The Terminology of the Web

Can the various technologies that go under the rubric of tbed\WVide Web be
found to have common principles and terminology? This doeswould at first
seem to be shallow, for one could say that any technologyishdéscribed by its
creators, or even the public at large, can be consideradllyiypart of the Web.’ To
further complicate the matter, the terms like the ‘Web’ amel ‘internet’ are elided
together in common parlance, and so are often deployed asgys. In a single
broad stroke, we can distinguish the Web and the Internet.Ifiternet is a type of
packet-switching network as defined by its use of the TCPytRogol. The purpose
of the Internet is to get bits from one computer to anothecdntrast, the Web is a
space of names defined by its usage of URIs. So, the purpdse @fdb is the use of
URIs for accessing and referring to information. The Web tredinternet are then
strictly separable, for the Web, as a space of URIs, coulehkzed on top of other
types of networks that move bits around, much as the sameVirtachine can be
realized on top of differing physical computers. For exaaphe could imagine the
Web being built on top of a network built on principles di#eat from TCP/IP, such
as OSl, an early competitor to the TCP/IP stack of networkiregocols (Zimmer-
man, 1980). Likewise, before the Web, there were a numbeiffefent protocols
with their own naming schemes built upon the Internet likgoBar (Anklesaria et al,
1993).

Is it not presumptuous of us to even hope that such an unrelggrhenon such as
the Web even has guiding principles? Again we must appeaktdact that unlike
natural language or chemistry, the Web is like other engétbartifacts, created
by particular individuals with a purpose, and designed whik purpose in mind.
Unlike the case of the proper function of natural languadeen natural selection
itself will forever remain silent to our questions, the mipal designers of the Web
are still alive to be questioned in person, and their desijomale is overtly written
down on various notes, often scribbled on some of the etwliels-pages of the Web
itself. It is generally thought of that the core of the Web sists of the following
standards, given in their earliest incarnation, HTTP (BesrLee et al, 1996), URI
(Berners-Lee, 1994a), and HTML (Berners-Lee and Conndlipe 1993). So the
basic protocols and data formats that proved to be sucdegsfa the creation of
a fairly small number of people, such as Tim Berners-Lee, Relding, and Dan
Connolly.

The primary source for our terminology and principles of Wbhitecture is
a document entitledhe Architecture of the World Wide WEAWWW), a W3C
Recommendation edited by lan Jacobs and Norm Walsh to ‘itbestive proper-
ties we desire of the Web and the design choices that haverhada to achieve
them” (Jacobs and Walsh, 2004). The AWWW is an attempt toesyatize the
thinking that went into the design of the Web by some of itenaniy architects, and
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as such is both close to our project and an inspiraidn. particular, AWWW is
an exegesis of Tim Berners-Lee’s notes on “Design Issueshiectural and philo-
sophical points® and Roy Fielding’s dissertation “Architectural Styles @hd De-
sign of Network-based Software Architectures” (Fieldigg10), often abbreviated
as REST. The rationale for the creation of such a documentintiples devel-
oped organically over the existence of the W3C, as new pexptexhnologies were
sometimes considered to be either informally compliantor-nompliant with Web
architecture. When the proponents of some technology wéadhat their particu-
lar technology was not compliant with Web architectureytiveuld often demand
that somewhere there be a description of this elusive Weitaoture. The W3C
in response set up the Technical Architecture Group (TAG)t@ument and build
consensus” upon “the underlying principles that should diteeged to by all Web
components, whether developed inside or outside W3C,”atedsin its chartet.
The TAG also maintains a numbered list of problems (althahgimumbers are in
no way sequential) that attempts to resolve issues in Weditacture by consensus,
with the results released as notes called ‘W3C TAG findingsith are also referred
to in this discussion. The TAG’s only Recommendation at iime tof writing is the
aforementionedirchitecture of the Web: Volumeldut it is reasonable to assume
that more volumes ofrchitecture of the Welnay be produced after enough find-
ings have been accumulated. The W3C TAG’'s AWWW is a blend ofroon-sense
and sometimes surprising conclusions about Web architetitat attempts to unify
diverse web technologies with a finite set of core designgplas, constraints, and
good practices (Jacobs and Walsh, 2004). However, theretogy is AWWW is
often thought to be too informal and ungrounded to use by nanywe attempt to
remedy this in the next few chapters by fusing the terminplofdWeb architecture
with our own peculiar brand of philosophical terminology.

To begin our reconstruction of Web architecture, the firsk tis the definition
of terms, as otherwise the technical terminology of the Wt lead to as much
misunderstanding as understanding. To cite an extreme @gampeople coming
from communities like the artificial intelligence communiise terms like ‘repre-
sentation’ in a way that is different from those involved irebVarchitecture. We
begin with the terms commonly associated with a typical eplany Web interac-
tion. For an agent to learn about thresourceknown as the Eiffel Tower in Paris,
a person can access ipresentatiorusing itsUniform Resource Identifier (URI)
http://ww.tour-eiffel.fr/ andretrieve awebpage inthe HTMincod-
ing whosecontentis the Eiffel Tower using the HTTProtocol

2 Although to what extent the Web as it actually exists folldhsse design choices is still a matter
for debate, and it is very clear some of the more importartsgHithe Web such as the ubiquity of
scripting languages, and thus HTML as mobile code, are tefiantioned.

3 There exist a collection of wunordered personal notes dilaila at:
http://ww. w3. or g/ Desi gnl ssues/, which we also refer directly to in the course
of this chapter.

4 Quoted from their charter, available on the Web at:
http://ww. w3. or g/ 2001/ 07/ 19-t ag (last accessed April 20th, 2007).
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2.2.1 Protocols

A protocol is a convention for transmitting information between two orreno
agents a broad definition that encompasses everything from coengarotocols
like TCP/IP to conventions in natural language like thosgleyed in diplomacy. A
protocol often specifies more than just the particular emgpdbut also may attempt
to specify the interpretation of this encoding and the negfiuil behaviour that the
sense of the information should engender in an agenagmtis any thing capable
of interacting via a protocolThese are often called a ‘user agent’ on the Web, and
the term covers both web-browsers, humans, web spiderss\@rdcombinations
such as humans operating web-browserpa&loadis the information transmitted
by a protocol Galloway notes that protocols are “the principle of orgation na-
tive to computers in distributed networks” and that agresime protocols are nec-
essary for any sort of network to succeed in the acts of conation (2004) The
paradigmatic case of a protocol is TCP/IP, where the payi@edmitted is just bits
in the body of the message, with the header being used by Te#stoe the lossless
delivery of said bits. TCP/IP transmits strictly an encapaf data as bits and does
not force any particular interpretation on the bits; thelpagt could be a picture
of the Eiffel Tower, web-pages about the Eiffel Tower, oit joaningless random
bits. All TCP/IP does is move some particular bits from orgividual computer to
another, and any language that is built on top of the bittlaxe strictly outside the
bounds of TCP/IP. Since these bits are usually communitatith some purpose,
the payload of the protocol is almost always an encoding @val bf abstraction
above and beyond that of the raw bits themselves.

The Web is based on dient-server architecturemeaning thaprotocols take
the form of a request for information and a response withrimfation Theclientis
defined aghe agent that is requesting informatiand theserveris defined ashe
agent that is responding to the requdsta protocol, arendpointis any process that
either requests or responds to a protocahd so includes both client and servers.
The client is often called aser-agentsince it is the user of the Web. A user-agent
may be anything from a web-browser to some sort of automaasbning engine
that is working on behalf of another agent, often the spetifibiuman user. The
main protocol in this exposition will be thdyperText Transfer Protoco(HTTP),
as most recently defined by IETF RFC 2616 (Fielding et al, JA99TP is a pro-
tocol originally intended for the transfer of hypertext datents, although its now
ubiquitous nature often lets it be used for the transfer wifost any encoding over
the Web, such as its use to transfer XML-based SOAP (orilgittag Simple Object
Access Protocglmessages in Web Services (Box et al, 2000). HTTP consists of
sending anethod a request for a certain type of response from a user-ageriteo t
server including information that may change the state of the eefhese meth-
ods have a list oheadersthatspecify some information that may be of used by the

5 Although unlike Galloway, instead of descending into a sbpiostmodern paranoia of protocols,
we recognize them as the very conditions of collectivity.
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server to determine the respon3derequestis the method used by the agent and
the headers, along with a blank line and an optional messagiy.b

The methods in HTTP are HEAD, GET, POST, PUT, DELETE, TRACE-O
TIONS, and CONNECT. We will only be concerned with the mosqfrently
used HTTP method, GET. GET is informally considered ‘commeint-free,” which
means that the method has no side effects for either theagsat or the server, be-
sides the receiving of the response (Berners-Lee et al,)1$@6a GET method
should not be used to change the state of a user-agent, suzia@gng some-
one for buying a plane ticket to Paris. To change the stat@eirtformation on
the server or the user-agent, either PUT (for uploading diaéetly to the server)
or POST (for transferring data to the server that will requadditional process-
ing, such as when one fills in a HTML form) should be used. A damgquest to
http:///ww. exanpl e. or g from a Web browser user-agent is given in Fig-
ure 2.1.

GET /index.htm HTTP/ 1.0
User-Agent: Mozilla/5.0
Accept: */=*

Host: www. exanpl e. org
Connection: Keep-Alive

Fig. 2.1 An HTTP Request from a client

The first part of an HTTP response from the server then cansfsan HTTP
status codewhich is one of a finite humber of codes which gives the user-agent
information about the server's HTTP response its€lie two most known status
codes are HTTP 200, which means that the request was sud¢cesst04, which
means the user-agent asked for data that was not found oartrez.sThe first digit
of the status code indicates what general class of respoisd-or example, the
two hundred serie2kx) response codes mean a successful request, although 206
means partial success. Téex codes indicate that the user-agent asked for a request
that the server could not fulfill, whiléxx is informational, 3xx is redirectional,
and5xx means server error. After the status codes there ISTarP entity which
is “the information transferred as the payload of a request aponsé (Fielding
etal, 1999). This technical use of the word ‘entity’ shoudddistinguished from our
earlier use of the term ‘entity’ like the Eiffel Tower who canly be realized by the
thing itself, not in another realization. In order to do s, will take care to preface
the protocol name ‘HTTP’ before any ‘HTTP entity,’ while ttegm ‘entity’ by itself
refers to the philosophical notion of an entity. An HTTP gntionsists of “entity-
header fields and... an entity-body” (Fielding et al, 1998)HY TP responsecon-
sists ofthe combination of the status code and the HTTP enfibhese responses
from the server can include an additional header, whichiBpsthe date and last
modified date as well as optional information that can deiteerifithe desired repre-
sentation is in the cache and the content-type of the reptatsen. A sample HTTP
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response to the previous example request, excluding théH€Tlity-body, is given
in Figure 2.2.

HTTP/ 1.1 200 K

Date: Wed, 16 Apr 2008 14:12:09 GVIr

Server: Apache/2.2.4 (Fedora)

Accept - Ranges: bytes

Connection: close

Content - Type: text/htm; charset=lSO 8859-1
Cont ent - Language: fr

Fig. 2.2 An HTTP Response from a server

In the HTTP response, an HTTP entity body is returned. Theoding of
the HTTP entity body is given by the HTTP entity header fielst tspecify its
Cont ent -t ype andCont ent - | anguage. These are both considered different
languages, as a single webpage can be composed in multigledges, such as the
text being given in English with various formatting givenHTML. Every HTTP
entity body should have its particular encoding specifiedhgCont ent - t ype.
The formal languages that can be explicitly given in a reggoor request in HTTP
are calleccontent typesin the example response, based on the header that the con-
tent type ist ext / ht M a user-agent can interpret (‘display as a web-page’) the
encoding of the HTTP entity body as HTML. Since the same eimgpdan theo-
retically represent many different languages besides HTdlliser-agent can only
know definitely how to process a message through the contpat tf no content
type is provided, the agent can guess the content type thraaigous heuristics
including looking at the bytes themselves, a process inddigntalled sniffing A
user-agent can specify what media types they (can) prefénas a web-server that
can only present JPEG images can specify this by also astirthdé content type
i mage/ j peg in the request.

Content-types in HTTP were later generalized as ‘Internedisl Types’ so they
could be applied with any Internet protocol, not just HTTRI &IME (Multime-
dia Internet Message Extensigias e-mail protocol) (Postel, March 1994)media
typeconsists of two-part scheme that separates the type and a subtype ofcaie
ing, with a slash indicating the distinction. Internet medipey are centrally regis-
teredwith IANA atht t p: / / ww. i ana. or g/ assi gnnent s/ nedi a-t ypes/,
although certain ‘experimental’ media types (those begmwith ‘x-") can be cre-
ated in a decentralized manner (Postel, March 1994). A akrdgistry of media
types guarantees the interoperability of the Web, althangteasingly new media-
types are dependent on extensions to specific applicatdung-(ns) in order to run.
Support for everything from new markup languages to prognarg languages such
as Javascript can be declared via support of its media type.

To move from concrete bits to abstract definitions, a prdtoan be defined and
implemented in many different types of way. In the early ARRA, the first wide-
area network and foundation of the Internet, the protocd thard-wired’ in the
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hardware of the Interface Message Processor (IMP), a degaechine attached to
computers in order to interface them with ARPANet (Hafnedt &yons, 1996). As
more and more networks multiplied, these heterogeneousriet began using dif-
ferent protocols. While the invention of TCP/IP let thes¢éehegeneous networks
communicate, TCP/IP does not interpret messages beyandHoitther protocols
built on top of TCP/IP, such as FTP (File Transfer Protocot)the retrieval of files
(Postel and Reynolds, October 1985), Gopher for the retrigvdocuments (An-
klesaria et al, 1993), and SMTP (Simple Mail Transfer Protpfor the transfer of
mail (Postel, August 1982). Since one computer might holdyndhfferent kinds of
information, IP addresses were not enough as they onlyiftehivhere a particular
device was on the network. Thus each protocol created itsmamming scheme to
allow it to identify and access things on a more fine-graimedlithan IP addresses.
Furthermore, each of these protocols was often associgi@degistration with a
governing body like IANA, thdnternet Assigned Numbers Authojityith partic-
ular ports, such that port 25 was used by SMTP and port 70 byh&oljaVith this
explosion of protocols and naming schemes, each Intermdicapon was its own
‘walled garden.” Names created using a particular prota@k incapable of being
used outside the original protocol, until the advent of taming scheme of the Web
(Berners-Lee, 2000).

2.2.2 Information Encoding and Content

There is a relationship between a server sending a messagé as a web-page
about the Eiffel Tower - to a client in response to an HTTP esfand certain no-
tions from information theory, however hazy and qualitatiVo phrase informally,
information is whatever regularities held in common betweesocairceand are-
ceiver(Shannon and Weaver, 1963). Note that the source and recivet have
to be spatially separate, but can also be temporally sepanatl thus the notion of
a self-contained ‘message’ resembling a postcard beirtdhetneen sender and re-
ceiver is incomplete if not incorre€tTo have something in common means to share
the same regularities, e.g. parcels of time and space thabt®e distinguished
at a given level of abstraction. This definition correlatéhwnformation being the
inverse of the amount of ‘noise’ or randomness in a systemhtl@mamount of infor-
mation being equivalent to a reduction in uncertainty. ptriscisely this preservation
or failure to preserve information that can be thought ofaheending of message
between the source and the receiver over a channel, whecbdheel is over time,
space, and - most likely - bothVhether or not the information is preserved over
time or space is due to the properties of a physical subskiatevn as thehannel

So in our example, the channelis the fiber-optic or coppersitinat must accurately
carry the voltages which the bits consist of. Thessagés the physical thing that
realizes the regularities of the information due to its Ibclaaracteristics which in

6 Imagine that your eye color not changing is a message fromsgtilat ten years old to yourself
at seventy!
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this case would be particular patterns of bits being preskover multiple channels
as they are popped from an electro-magnetic hard-disk orvarde fibre-optic then
over the air via wireless and finally back to the electric gearstored in memory
chips in a client device, such as a web browser on a mobileghidrese messages
are often called theealizationof some abstract informational content.

Already, information reveals itself to be not just a singukiang, but something
that exists at multiple levels: How do the bits become a nggssaHTTP? In partic-
ular, we are interested in the distinction in informatiotvieen content and encod-
ing. Here our vague analogy with Shannon'’s information théails, as Shannon'’s
theory deals with finding the optimal encoding and size ohclehso that the mes-
sage can be guaranteed to get from the sender to the reaelieh, in our case is
taken care of by the clever behavior of the TCP/IP protocelafing over a variety
of computational devices (Shannon and Weaver, 1963). 6gt,dan an encoding
be distinguished from the content of information itself iparticular HTTP mes-
sage? Let’s go back to bits by leaning on aesthetic theorl} tifiags; art critic and
philosopher Nelson Goodman definemark as a physical characteristicanging
from marks on paper one can use to discern alphabetic chesadotranges of volt-
age that can be thought of as bits (1968). To be reliable ineydng information,
an encoding should be physically ‘differentiable’ and timaintain what Goodman
calls ‘character indifference’ so that (at least within soontext) each character
(as in ‘characteristic’) can not be mistaken for anotherrabti@r. One cannot re-
construct a message in bits if one cannot tell apart 1 and @hras one cannot
reconstruct a HTML web-page if one cannot tell the variowsrabters in text apart.
So, anencodingis a set of precise regularities that can be realized by the aggss
Thus, one can think of multiple levels of encoding, with trerywbasic encoding
of bits being handled by the protocol TCP/IP, and then thégea HTTP handing
higher-level encodings in textual encodings such as HTML.

Unforunately, we are not out of the conceptual thicket yredré is more to infor-
mation than encoding. Shannon’s theory does not explaindtien of information
fully, since giving someone the number of bits that a messagtains does not tell
the receivemwhat information is encoded. Shannon explicitly states, “Thedfar
mental problem of communication is that of reproducing & paint either exactly
or approximately a message selected at another point. &ndgthe messages have
meaning; that is they refer to or are correlated accordirgptoe system with cer-
tain physical or conceptual entities. These semantic éspécommunication are
irrelevant to the engineering problem” (1963). He is carratleast for his partic-
ular engineering problem. However, Shannon’s use of the tefformation’ is for
our purposes the same as the ‘encoding’ of information, bubee fully-fledged
notion of information is needed. Many intuitions about thaion of information
have to deal with not only how the information is encoded aw @ encode it, but
what a particular message is about, tbatentof an information-bearing message.

7 An example of the distinguishment between content and éngobinagine Daniel sending Amy
a secret message about which one of her co-employees wagnta thie Eiffel Tower. Just deter-
mining that a single employee out of eight won the lotteryuiegs at least a three bit encoding and
does not tell Amy (the receiver) which employee in particul@n the lottery. Shannon’s theory
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‘Content’ is a term we adopt from Israel and Perry, as opptsdtle more con-
fusing term ‘semantic information’ as employed by FloriddeDretske (Israel and
Perry, 1990; Dretske, 1981; Floridi, 2004). One of the fitstrapts to formulate a
theory of informational content was due to Carnap and BdeH1952). Their the-
ory attempted to bind a theory of content closely to firsteonoredicate logic, and
so while their “theory lies explicitly and wholly within seantics” they explicitly
do not address “the information which the sender intendembtwvey by transmit-
ting a certain message nor about the information a recebired with a certain
message,” since they believed these notions could evénhetlerived from their
formal apparatus (Carnap and Bar-Hillel, 1952). Their tyegstrictive notion of
the content of information as logic did not gain widespreadtion, and neither did
other attempts to develop alternative theories of inforomasuch as that of Don-
ald McKay (1955). In contrast, Dretskesemantic theory of informatiodefines
the notion of content to be compatible with Shannon’s infation theory, and his
notions have gained some traction within the philosophécahmunity (Dretske,
1981). To him, the content of a message and the amount ofiafiion — the num-
ber of bits an encoding would require — are different, forfeg ‘There is a gnu in
my backyard’ does not have more content than the utterarwerélis a dog in my
backyard’ since the former is, statistically, less probafDretske, 1981). Accord-
ing to Shannon, there is more information in the former caseigely because it is
less likely than the latter (Dretske, 1981). So while infation that is less frequent
may require a larger number of bits in encoding, the contéimtformation should
be viewed as to some extent separable if compatible with i&ras information
theory, since otherwise one is led to the “absurd view thairejrcompetent speak-
ers of language, gibberish has more meaning than semastioutse because it is
much more less frequent” (Dretske, 1981). Simply put, Sbarend Dretkse are
talking about distinct notions that should be separategdnttions of encoding and
content respectively.

Is there a way to precisely define the content of a messagd8kierdefines the
content of information as “a signalcarries the information thatis F when the
conditional probability of's beingF, givenr (andk) is 1 (but, giverk alone, less
than 1) .k is the knowledge of the receiver” (1981). To simplify, tt@ntentof any
information-bearing message \ghatever is held in common between the source

only measures how many bits are needed to tell Amy precisbtywwon. After all, the false mes-
sage that her office-mate Sandro won a trip to Paris is alse thits. Yet content is not independent
of the encoding, for content is conveyed by virtue of a palicencoding and a particular encod-
ing imposes constraints on what content can be sent (ShaamblVeaver, 1963). Let's imagine
that Daniel is using a code of bits specially designed fa phoblem, rather than natural language,
to tell Amy who won the free plane ticket to Paris. The cont#rthe encodind01 could be yet
another co-employee Ralph while the content of the enco@dit® could be Sandro. If there are
only two possible bits of information and all eight emplogeeed one unique encoding, Daniel
cannot send a message specifying which friend got the tnigesihere aren’t enough options in
the encodings to go round. An encoding of at least three iteéded to give each employee a
unique encoding. 101 has the content that ‘either Sandro or Ralph won the ticket'rhessage
has not been successfully transferred if the purpose of gssage is to tell Amypreciselywhich
employee won the ticket.
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and the receiver as a result of the conveyance of a partiankessageWhile this is
similar to our definition of information itself, it is diffent. The content is whatever
is shared in common as a result oparticular message, such as the conveyance
of sentence ‘The Eiffel Tower is 300 meters high. The cohteiha message is
called the “facts” by Dretske,H). This content is conveyed from the sourap (
successfully to the receiver)(when the content can be used by the receiver with
certainty,andthat before the receipt of the message the receiver was rtatrcef
that particular content. Daniel can only successfully eyrthe content that ‘Ralph
won a trip to Paris’ if before receiving the message Amy doetskmow ‘Ralph
won the trip to Paris’ and after receiving the message Amysdamw that fact.
Dretkse himself notes that information “does not mean thsigaal must tell us
everything about a source to tell us something,” it just latell enough so that
the receiver is now certain about the content within the doriE981). Millikan
rightfully notes that Dretske states his definition too sgly, for this probability
of 1 is just an approximation of a statistically “good bettiexed to some domain
where the information was learned to be recognized (20@t)e¥ample, lightening
carries the content that “a thunderstorm is nearby” in ralyes but in an arid
prairie lightning can convey a dust-storm. However, oftee teverse is true, as
the same content is carried by messages in different enggdike a web-page
about the Eiffel Tower being encoded in either English onEhe These notions of
encoding and content are not strictly separable, which istiwby together compose
the notion of information. An updated famous maxim of Hegerlld be applied: For
information, there is no encoding without content, and natent without encoding
(1959).

The relationship of an encoding to its conteist aninterpretation The inter-
pretation ‘fills’ in the necessary background left out of #reoding, and maps the
encoding to some content. In our previous example usingyiligits as an encod-
ing scheme, a mapping could be made between the enco@ihgo the content
of the Eiffel Tower while the encodin@10 could be mapped to the content of the
Washington Monument. When the word ‘interpretation’ isdiae a noun, we mean
the content given by a particular relationship between ambégnd an encoding, i.e.
the interpretation. Usual definitions of “interpretatidahd to conflate these issues.
In formal semantics, the word “interpretation” often canused either in the sense
of “an interpretation structure, which is a ‘possible woddnsidered as something
independent of any particular vocabulary” (and so any ggaritan interpretation
mapping from a vocabulary into the structure” or as shorthiam both (Hayes,
2004). The difference in use of the term seems somewhatedtiviry fields. For
example, computational linguistics often use “interpiietd to mean what Hayes
called the “interpretation structure.” In contrast, we tiee term ‘interpretation’ to
mean what Hayes called the “interpretation mapping,” resgrthe word ‘content’
for the “interpretation structure” or structures seledbgda particular agent in re-
lationship to some encoding. Also, this quick aside intotaratof interpretation
does not explicitly take on a formal definition of interpt@a as done in model
theory, although our general definition has been designdzktoompatible with
model-theoretic and other formal approaches to interfioeta
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These terms are all illustrated in Figure 2.3. A source igisgna receiver a
message. The information-bearing message realizes satifza encoding such
as a few sentences in English and a picture of the Eiffel Toamt the content of
the message can be interpreted to be about the Eiffel Tower.

realizes
interprets to

¥
B= i
| [ > | 1.‘&
——— | interprets to |
— P /,“!é;%\
Encoding Z_"} L_>_\

Content

Fig. 2.3 Information, Encoding, Content

The encodings and content of information do not in generahecon self-
contained bundles, with each encoding being interpretesotoe free-standing
propositional content. Instead, encodingevs and contanedn entire interlocking
informational systems. One feature of these systems istiidings are layered
inside of each other and content is also layered upon otheent The perfect ex-
ample would be an English sentence in an e-mail messageewhsgries of bits
are used to encode the letters of the alphabet, and the a&lpisaihen used to en-
code words. Likewise, the content of a sentence may depetiteacontent of the
words in the sentence. When this happens, one is no longéngledth a sim-
ple message, but some form of languagdaAguagecan be defined aa system
in which information is related to other information systgioally. In a language,
this is a relationship between how the encoding of some inédion can change
the interpretation of other encodings. Messages always éavodings, and usually
these encodings are part of languages. To be more briefpmaton isencoded in
languages. The relationships between encodings and ¢@meensually taken to be
based on some form of (not necessarily formalizable or evelerstood) rules. If
one is referring t@ system in which the encoding of information is related tchea
other systematicallythen one is talking about theyntaxof a language. If one is
referring toa system in which the content of information is related toheather
systematicallythen one is referring to theemanticsof the language.The lower-
level of a language can lerms regularities in marksthat may or may not have
their own interpretation, such as the words or alphafey. combination of terms
that is valid according to the language’s synti@xa sentence(sometimes an ‘ex-
pression’) in the language, aatly combination of terms that has an interpretation
to content according to the language’s semaniicastatemenin the language.

Particular encodings and content then are accepted by sidsed viaid by the
syntax and semantics of a language respectively (and teustimative importance
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of standardization on the Web in determining these critéiso, we do not restrict
our use of the word ‘language’ to primarily linguistic forpmut use the term ‘lan-
guage’ for anything where there is a systematic relatigndeitween syntax and
(even an informal) semantics. For example HTML is a langdagenapping a set
of textual tags to renderings of bits on a screen in a web pV@ne principle
used in the study of languages, attributed to Frege, is tineipte of composition-
ality, wherethe content of a sentence is related systematically to texmich it
is composedndeed, while the debate is still out if human languagesrate com-
positional (Dowty, 2007), computer languages almost asnag compositional. In
English, the content of the sentence such as ‘Tim has a pielwet to Paris so he
should go to the airport!’ can then be composed from the miemmentary content
of the sub-statements, such as ‘Tim has a plane ticket’ winictirn can have its
contentimpacted by words such as ‘Paris’ and ‘ticket.” Tiggienent about whether
sentences, words, or clauses are the minimal building bddadontent is beyond
our scope. Do note one result of the distinction between @¢ingoand content is
that sentences that are accepted by the syntax (encodirayjamiguage, such as
Chomsky’s famous “Colourless green ideas sleep furiouslyy have no obvious
interpretation (to content) outside of the pragmatics ob@bky’s particular expo-
sition (1957).

2.2.3 Uniform Resource Identifiers

The World Wide Web is defined by the AWWW as “an informationcga which
the items of interest, referred to as resources, are idethtifiy global identifiers
called Uniform Resource Identifiers (URI)” (Jacobs and WaZ)04). This naming
scheme, not any particular language like HTML, is the primdentifying charac-
teristic of the Web. URIs arose from a need to organize then§maotocols and
systems for document search and retrieval” that were in ndb® Internet, espe-
cially considering that “many more protocols or refinemeoftexisting protocols
are to be expected in a field whose expansion is explosiverhn@s-Lee, 1994a).
Despite the “plethora of protocols and data formats,” if apgtem was “to achieve
global search and readership of documents across diffeamputing platforms,”
gateways that can “allow global access” should “remain iptess(Berners-Lee,
1994a). The obvious answer was to consider all data on teenkitto be a single
space of names with global scope.

URIs accomplish their universality over protocols by mayéil the information
used by the protocol within the name itsdlhe information needed to identify any
protocol-specific information is all specified in the naneelt. the name of the
protocol, the port used by the protocol, any queries theppadis responding to, and
the hierarchical structure used by the protocol. The Wehés first and foremost
a naming initiative “to encode the names and addresses etishpn the Internet”
rather than anything to do with hypertext (Berners-Lee,4899The notion of a
URI can be viewed as a “meta-name,” a name which takes thérexisrotocol-
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specific Internet addresses and wraps them in the name asgibcess analogous
to reflection in programming languages (Smith, 1984). kxs$tef limiting itself to
only existing protocols, the URI scheme also abstracts dway any particular
set of protocols, so that even protocols in the future or mernet protocols can be
given a URI; “the web is considered to include objects acmssing an extendable
number of protocols, existing, invented for the web itsetffo be invented in the
future” (Berners-Lee, 1994a).

One could question why one would want to name informatiosidetthe context
of a particular protocol. The benefit is that the use of URI®Ves different types of
resource identifiers to be used in the same context, even thikanechanisms used
to access those resources may differ” (Berners-Lee etralalg 2005). This is an
advantage precisely because it “allows the identifiers tebsed in many different
contexts, thus permitting new applications or protocoltet@rage a pre-existing,
large, and widely used set of resource identifiers” (Berhewset al, January 2005).
This ability to access with a single naming convention thenense amount of data
on the entire Internet gives an application such as the itbiggi\Web browser a vast
advantage over an application that can only consume apipleapecific informa-
tion.

Although the full syntax in Backus-Naur form is given in IETRFC 3986
(Berners-Lee et al, January 2005), a URI can be given as théareexpression
URI = [scherme ":"] [hierarchical component]* [ "?" query ]7?
[ "#" fragnent]?. First, aschemeis a name of the protocol or other nam-
ing convention used in the URNote that the scheme of a URI does not deter-
mine the protocol that a user-agent has to employ to use tHe k&R example,

a HTTP request may be used drt p: / / ww. exanpl e. or g. The scheme of

a URI merely indicates a preferred protocol for use with tHel.UA hierarchi-

cal componentis the left to right dominant component of the URI that syntac-
tically identifies the resourcdJRIs are federated, insofar as each scheme identi-
fies the syntax of its hierarchical component. For exampldé) WTTP the hier-
archical component is given bdyaut hority] [//] [":" port]? ["/"

pat h conponent] *. The authority is a name that is usually a domain name,
naming authority, or a raw IP address, and so is often the nathe server
However, in URI schemes likeel for telephone numbers, there is no notion
of an authority in the scheme. The hierarchical componentains special re-
served characters that are in HTTP characters such as tkeldsit for locations
as in a file system. Foabsolute URIs there must be a single scheme and the
scheme and the hierarchical component must together fgeatresourcesuch

as http://ww. exanpl e. com 80/ nonunent/ Ei f f el Tower in HTTP,
which signals port 80 of the authorityww. exanpl e. comwith the path com-
ponent/ nonunent / Ei f f el Tower . The port authority is usually left out, and
assumed to be 80 by HTTP-enabled clients. Interestinglygimthere are alseel-
ative URIsin some schemes like HTTP, where the path component itsalbigyh to
identify a resource within certain contextike that of a web-page. This is because
the scheme and authority itself may have substituted someaharacters that
serve as indexical expressions, such as ‘.’ for the curriatepn the path compo-
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nent and ‘..” as the previous level in the path component. SO Ei f f el Tower
is a perfectly acceptable relative URI. Relative URIs hawtraightforward trans-
lation into absolute URIs, and it is trivial to compare albselURIs for equality
(Berners-Lee et al, January 2005).

The ‘hash’ ¢) and ‘question mark’ %) are special characters at the end of
URI. The question mark denotes ‘query string.” The ‘quernngt allows for the
parameterization of the HTTP request, typically in the sasbere the HTTP re-
sponse is created dynamically in response to specifics itHTHEP request. The
‘hash’ traditionally declares ragment identifier, which identifies fragments of a
hypertext documertut according to the TAG, it can also identify a “secondary
resource,” which is defined as “some portion or subset of tiregry resource,
some view on representations of the primary resource, oesatirer resource de-
fined or described by those representations” where the ‘gsimesource” is the
resource identified by the URI without reference to eitheashhor question mark
(Jacobs and Walsh, 2004). The fragment identifier (spedifjed ‘hash’ followed
by some string of characters) is stripped off for the requesthe server, and
handled on the client side. Often the fragment identifierseauthe local client
to go to a particular part of the accessed HTTP entity. Iféhsas a web-page
about Gustave Eiffel, its introductory paragraph could dentified with the URI
http://ww. exanpl e. cont Ei f f el Tower #i nt r 0. Figure 2.4 examines a
sample URIht t p: / / www. exanpl e. or g/ Ei ff el Tower #i ntro:

scheme hierarchical component

it example.ogustave) Erfel#ithday
| , s

fragment identifier

authority

Fig. 2.4 An example URI, with components labelled.

The first feature of URIs, the most noticeable in comparisoitPt addresses,
is that they can be human-readable, although they do notthave. As an idiom
goes, URIs can be ‘written on the side of a bus.” URIs can tlaee lan interpretation
due to their use of terms from natural language, suclvas whi t ehouse. gov
referring to the White House or the entire executive branfcthe United States
government. Yet it is considered by the W3C TAG to be bad pador any agent
to depend on whatever information they can glean from the it#elIf, since to a
machine the natural language terms used by the URI have ampistation. For
an agent, all URIs are opaque, with each URI being just agstfrcharacters that
can be used to either refer to or access information, andrgaaycally it can only
be checked for equality with other URIs and nothing moresTiticaptured well
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by the good practice dfRI opacity, which states that “agents making use of URIs
should not attempt to infer properties of the referencedue®” (Jacobs and Walsh,
2004). So, just because a URI séwtp://www.eiffel-tower.cordoes not mean it will
not lead one to a web-page trying to sell one cheap trinketssaake oil, as most
users of the Web know. Second, a URI has an ownerolireeris the agent that is
accountable for a URlInterestingly enough, the domain name system that assigns
control of domain names in URIs is a legally-binding tectsoaial system, and
thus to some extent a complex notion of accountability fer tlame is built into
URIs. Usually for URIs schemes such as HTTP, where the ki@l component
begins with an authority, the owner of the URI is simply wheeeontrols that
authority. In HTTP, since URIs can delegate their relatmmponents to other users,
the owner can also be considered the agent that has they dbiliteate and alter
the information accessible from the URI, not just the owrfethe authority. Each
scheme should in theory specify what ownership of a URI m@anentext of the
particular scheme.

2.2.4 Resources

While we have explained how a URI is formed, we have yet to defihat a URI is.
To inspect the acronym itself, a Uniform Resource IdentifigRl) is an identifier
for a ‘resource.’ Yet this does not solve any terminologieaks, for the term ‘re-
source’ is undefined in the earliest specification for “Undad Resource Identifiers”
(Berners-Lee, 1994a). Berners-Lee has remarked that otte difest things about
resources is that for so long he never had to define them (Betre, 2000). Even-
tually Berners-Lee attempted to define a resource as “amythat has an identity”
(Berners-Lee et al, 1998). Other specifications were dlighbre detailed, with
Roy Fielding, one of the editors of HTTP, defining (appanewithout the notice of
Berners-Lee) a resource as “a network data object or sérfredding et al, 1999).
However, at some later point Berners-Lee decided to gererdiis notion, and in
some of his later works on defining this slippery notion osarce,’ Berners-Lee
was careful not to define a resource only as information thattcessible via the
Web, since not only may resources be “electronic documearid’ “images” but
also “not all resources are network retrievable; e.g., huilmgings, corporations,
and bound books in a library” (Berners-Lee et al, 1998). Alssources do not
have to be singular but can be a “collection of other res®ir(lerners-Lee et al,
1998).

Resources are not only a concrete messages or sets of posmiskages at
a given temporal junction, but are a looser category thaludes individuals
changing over time, as “resources are further carefullyndeffito be information
that may change over time, such as a service for today’s weadtiport for Los
Angeles”(Berners-Lee et al, 1998). Obviously, a web-pagh ttoday’s weather
report” is going to change its content over time, so what ikat unites the notion
of a resource over time? The URI specification defines thimtisely as a ‘concep-



30 2 Architecture of the World Wide Web

tual mapping’ (presumably located in the head of an indialdweating the repre-
sentations for the resource) such that “the resource isathesptual mapping to an
entity or set of entities, not necessarily the entity whiclhresponds to that map-
ping at any particular instance in time. Thus, a resourcerearain constant even
when its content — the entities to which it currently cori@sgs — changes over time,
provided that the conceptual mapping is not changed in thegss” (Berners-Lee
etal, 1998). This obviously begs an important questioresburces are identified as
conceptual mappings in the head of an individual(s), them d@es an agent know,
given a URI, what the resource is? Is it our conceptual mappminthe conceptual
mapping of the owner, or some consensus conceptual mapplig?uestion and
further questions of identity come to centre stage in Cha@2eThe latest version
of the URI specification deletes the confusing jargon of ‘aptual mappings” and
instead re-iterates that URIs can also be things above aruhteoncrete individ-
uals, for “abstract concepts can be resources, such as ¢nators and operands of
a mathematical equation” (Berners-Lee et al, January 2@3tr providing a few
telling examples of precisely how wide the notion of a reseus, the URI specifi-
cation finally ties the notion of resource directly to the @fdtdentification given by
a URI, for “this specification does not limit the scope of whaght be a resource;
rather, the term ‘resource’ is used in a general sense fotewbiamight be identified
by a URI” (Berners-Lee et al, January 2005). Although thifirdion seems at best
tautological, the intent should be clearrésourceis any thing capable of having a
sensgcontent), or in other words, an ‘identity’ in a languagen& a sense is not
bound to particular encoding, in practice within certaiotpcols that allow access
to informationa resource is typically not a particular encoding of someteobut
some content that can be given by many encodingsephrase in terms of sense,
the URI identifies content on a level of abstraction, not theoeling of the content
So, a URI identifies the ‘content’ of the Eiffel Tower, not fus particular web-
page which is subject to change. However, there is nothifigrind someone from
identifying a particular encoding of information with itsva URI and resource. For
example, one could also have a distinct URI for a webpagetdbekiffel Tower in
English, or a webpage about the Eiffel Tower in English in HT.Nh other words,
a resource can be givenultiple URIs each corresponding to a different encoding
or even different levels of abstraction. Furthermore, duthé decentralized nature
of URIs, often different agents creataultiple URIs for the same contemthich are
then called in Web architectuoe-referential URIs

We illustrate these distinctions in a typical HTTP interacin Figure 2.5, where
an agent via a web browser wants to access some informaton gie Eiffel Tower
via its URI. While on a level of abstraction a protocol alloavgser-agent to identify
some resource, what the user-agent usually accesses teynesome realization
of that resource in a particular encoding, such as a webpa@ ML or a picture
in the JPEG language (Pennebaker and Mitchell, 1992). Iexample, the URI is
resolved using the domain name system to an IP address oteeteserver, which
then transmits to the user-agent some concrete bits thisgagahe resource, i.e.
that can be interpreted to the sense identified by the URhitexample, all the
interactions are local, since the webpageodeghe content of the resource. This



2.2 The Terminology of the Web 31

HTTP entity can then be interpreted by a browser as a rerglerirthe screen of
Ralph’s browser. Note this is a simplified example, as somtistcodes lik&07
may cause a redirection to yet another URI and so anothezrsend so on possibly
multiple times, until an HTTP entity may finally be retrieved

User Agent

HTTP Request

HTTP GET

Iittp: /| fwww example org/ Fiffel Tower

HTTP Response
200 OK

Server

I

Z
refers ,# http: /s example o g Bl Tower

= ‘// Web Representation ,,’

A Web Page -
,I

A

Resource
The Eiffel Tower Itself

\

Fig. 2.5 A user agent accessing a resource

One of the most confusing issues of the Web is that a URI doeseauessarily
retrieve a single HTTP entity, but can retrieve multiple HPT@ntities. This leads
to a surprising and little-known aspect of Web architecturewn as content ne-
gotiation.Content Negotiatioris a mechanism defined in a protocol that makes it
possible to respond to a request with different Web reptasiens of the same re-
source depending on the preference of the user-agdnms is because information
may have multiple encodings in different languages thatratlode the same sense,
and thus the same resource which should have a singular URephesentation”
on the Web is then just “an entity that is subject to contegiotiation” (Fielding
et al, 1999). Historically, the term “representation” oe MWeb was originally de-
fined in HTML as “the encoding of information for intercharigBerners-Lee and
Connolly, June 1993). A later definition given by the W3C dad mention content
negotiation explicitly, defining a representation on thebVes just “data that en-
codes information about resource state” (Jacobs and W20§l). To descend fur-
ther into a conceptual swamp, “representation” is one ofitlest confusing terms
in Web architecture, as the term “representation” is uséfdréntly across philos-
ophy. In order to distinguish the technical use of the terepfesentation” within
Web architecture from the standard philosophical use ofeha “representation,”
we shall use the term “Web representation” to distinguigtoiin the ordinary use
of the term “representation” as given earlier in Section®.2 Web representation
is the encoding of the content given by a resource given in respto a request that
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is subject to content negotiatipwhich must then include any headers that specify
an interpretation, such as character encoding and media 8ga Web representa-
tion can be considered to hatweo distinct components, and the headers such as the
media type that lets us interpret the encoding, and the pdyitself, which is the
encoding of the state of the resource at a given point in tirmethe HTML itself).
So,web-pagesreweb representations given in HTMWeb resources can be con-
sidered resources that under ‘normal’ conditions resuhérdelivery of web-pages.
Our typical Web transaction, as given earlier in Figure 2d&n become more
complex due to this possible separation between contergemting on the Web.
Different kinds of Web representations can be specified ®r-agents as pre-
ferred or acceptable, based on the preferences of its uséts capabilities, as
given in HTTP. The owner of a web-site about the Eiffel Towerides to host
a resource for images of the Eiffel Tower. The owner createiRafor this re-
sourceht t p: // ww. ei f f el t ower. exanpl e. or g/ i mage. Since a single
URI is used, the sense (the depiction) that is encoded irere8VG or JPEG is
the same, namely that of an image of the Eiffel Tower, thathisre are two dis-
tinct encodings of the image of the Eiffel Tower availableagserver in two dif-
ferent iconic languages, one in a vector graphic languagevkras SVG and one
in a bitmap language known as JPEG (Ferraiolo, 2002; Pekeebad Mitchell,
1992). These encodings are rendered identically on theesdi@r the user. If
a web-browser only accepted JPEG images and not SVG imdgedyrowser
could request a JPEG by sending a requestdorept : i mage/ j peg in the
headers. Ideally, the server would then return the JPE®ekttimage with the
HTTP entity heade€ont ent - Type: i nage/j peg. Had the browser wished
to accept the SVG picture as well, it could have paotept : i mage/j peg,
i mage/ svg+xm and received the SVG version. In Figure 2.6, the user agent
specifies its preferred media typeiasage/ j peg. So, both the SVG and JPEG
images are Web representations of the same resource, ae ohtwge Eiffel Tower,
since both the SVG and JPEG information realize the samenv#tion, albeit us-
ing different languages for encoding. Since while a singkdurce is identified by
the same URht t p: / / www. exanpl e. or g/ Ei f f el Tower /i mage, differ-
ent user-agents can get a Web representation of the resmuecé&anguage they
can interpret, even if they cannot all interpret the samguage. In Web archi-
tecture, content negotiation can also be deployed overmigtdiffering computa-
tional languages such as JPG or SVG, but differing naturgjdages, as the same
content can be encoded in different natural languages siEhemch and English.
An agent could request the description about the Eiffel Tofn@m its URI and
set the preferred media type tAccept - Language: fr’so thatthey receive a
French version of the webpage as opposed to an English meidhey could set
their preferred language as English but by usisgcept - Language: en. The
preferences specified in the headers are not mandatorydaetiver to follow, the
server may only have a French version of the resource al@jlahd so send the
agent a French version of the description, encoded in HTM&oone other formal



2.2 The Terminology of the Web 33

language, regardless of their preferefideéigure 2.6 shows is that the Web repre-
sentations are distinct from the resource, even if the Wplesentations are bound
together by realizing the same information given by a res®usince accessing a
resource via a single URI can retudifferent Web representations depending on
content negotiation.

{User Agent |

HTTF Request

HTTP GET

Bttp:/ /www.example.org/ Eiffel Tower /image
HTTP Response Accept: image/jpeg

200 0K
Content-Type: image/jpeg

T Server
encode is location of
\ http:/ /www.example.org/Eiffel Tower lrﬁﬁgﬂ
Web Representation
An JPEG Image
- is location of

o T
'w encodes
P I =N

Information Resource
Image of the Eiffel Tower

Web Representation
An SVG Lmage

Fig. 2.6 A user agent accessing a resource using content negotiation

The only architectural constraint that connects Web regmtagions to resources
is that they are retrieved by the same URI. So one could ineagjiresource with a
URI calledht t p: / / www. exanpl e. or g/ Mbon, that upon accessing using En-
glish as the preferred language would provide a web-page avipicture of the
moon, and upon accessing with something other than Engdisheapreferred lan-
guage would provide a picture of blue cheese. While this semahd, this situation
is definitely possible. What binds Web representations &saurce? Is a resource
really just a random bag of Web representations? Remember thats$heais that
the Web representations should have the seomentregardless of their particular
encoding if it is accessible from the same URI. This notiopedels on our notion of
informational content (sense) as given in Sec@@nwhich we define by an appeal
to Dretske’s semantic theory of information (Dretske, 198D recall, Dretske’s

8 Itis well-known there are some words in French that are difffi¢ not impossible to translate into
English, such as ‘frileusement.’ Indeed, saying that onarablanguage encodes the same content
as another natural language is akin to hubris in the genesel ¢f this is the case, then itis perfectly
reasonable to establish different resources and so URikddfrench and English language encod-
ings of the resource, such bst p: / / www. ei ff el t ower. exanpl e. org/ francai s and
http://ww. ei ffeltower.exanple.org/english. In fact, if one believes the same
image cannot be truly expressed by both SVG and JPEG imageafsr one could give them
distinct URIs as well.
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definition of semantic information, “a signalcarries the information that is F
when the conditional probability afs beingF, givenr (andk) is 1 (but, givenk
alone, less than 1k.is the knowledge of the receiver” (Dretske, 1981). We can the
consider the signal to be a Web representation, wistbeing a resource and the
receiver being the user-agent. However, instead of sonté-fabout the resource,
we want an interpretation of the Web representationliffgrentuser-agents to be
to the same contedtFrom a purely normative viewpoint in terms of relevant IETF
and W3C standards, it is left to the owner to determine whetheot two Web
representations are equivalent and so can be hosted usitentaegotiation at the
same URI. The key to content negotiation is that the owner @dR&never knows
what the capabilities of the user-agent are, what natuidffarmal languages are
supported by it. This is analogous to what Dretske calls kmeWledge” ork of the
receiver (1981). The responsibility of the owner of a URIddde, in order to share
their resource by as many user-agents as possible, to prasidgnany Web repre-
sentations in a variety of formats as they believe are redsgmecessary. So, the
owner of the URI for a website about the Eiffel Tower may wisihéve a number of
Web representations in a wide variety of languages and fistrBy failing to pro-
vide a Web representation in Spanish, they prevent speakersy Spanish from
accessing their resource. Since the maintainer of a resaamtnot reasonably be
expected to predict the capabilities of all possible uggrés, the maintainer of the
resource should try their best to communicate their intggtion within their finite
means. The reason URIs identify resources, and not indivMieb representations,
is that Web representations are too ephemeral to want téifgénof themselves,
being by definition the response of a server tpaaticular response and request
for information. While one could imagine wanting to accegsmdicular Web rep-
resentation, in reality what is usually wanted by the uggmrais the content of the
resource, which may be presentin a wide variety of langualyest is important is
that the sense gets transferred and interpreted by the geet, aot the individual
bytes of a particular encoding in a particular language artiqular time.

2.2.5 Digitality

The Web is composed of not just representations, but digifalesentations. One
of the defining characteristics of information on the Welthit this information is

9 Of course, one cannot control the interpretations of yehoni agents, so all sorts of absurdities
are possible in theory. As the interpretation of the sameding can differ among agents, there is
a possibility that the owner of the URIt t p: / / www. exanpl e. or g/ Moon really thinks that
for French speakers a picture of blue cheese has the sanesasempicture of the Moon for English
speakers, even if users of the resource disagree. Howesbauld be remembered that the Web is
a space of communication, and that for communication to beessful over the Web using URIs,
it is in the interest of the owner of the resource to deploy \Wgiresentations that they believe
the users will share their interpretation of. So contenbtiagjon between a picture of blue cheese
and a picture of the moon for a resource that depicts the Meamder normal circumstances, the
Web equivalent of insanity at worse, or bad manners at best.
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digital, bits and bytes being shipped around by variousquals. Yet there is no
clear notion of what ‘being’ digital consists of, and a warginotion of digitality
is necessary to understand what can and can not be shippetas bytes on the
Web. Much like the Web itself, we can know something digitakbn we spot it, and
we can build digital devices, but developing an encompgssition of digitality is
a difficult task, one that we only characterize briefly here.

Goodman defined marks afritely differentiable’ when it is possible to deter-
mine for any given mark whether it is identical to another knar marksGoodman
(1968). This can be considered equivalent to how in categbperception, despite
variation in handwriting, a person perceives hand-writédters as being from a fi-
nite alphabet. Sequivalence classes of marks can be thought of as an applicat
of the philosophical notion of type¥his seems close to ‘digital,” so that given a
number of types of content in a language, a system is didi@hy mark of the
encoding can be interpreted to a one and only one type of rbriteerefore, in
between any two types of content or encoding there can noh lxefiaite number
of other types. Digital systems are the opposite of Batesfamhous definition of
information: Being digital is simply having a differenceatrdoes not make differ-
ence (Bateson, 2001). This is not to say there are charstaterof a mark which do
not reflect its assignment in a type, and these are preclselgttaracteristics which
are lost in digital systems. So in an analogue system, eviéeyehce in some mark
makes a difference, since between any two types there ib@ngpe that subsumes
a unique characteristic of the token. In this manner, theogpypical digital system is
the discrete distribution of integers, while the continsloumbers are the analogue
system par excellence, since between any real number than®ther real number.

Lewis took aim at Goodman'’s interpretation of digitalityterms of determin-
ism by arguing that digitality was actually a way to repregassibly continuous
systems using the combinatorics of discrete digital stgt®%1). To take a less lit-
eral example, discrete mathematics can represent conraudbject matters. This
insight caused Haugeland to point out that digital systerasalways abstractions
built on top of analog systems (1981). The reason we builsktladstractions is be-
cause digital systems allow perfect reliability, so that®@a system is in a digital
type (also called a ‘digital state’), it does not change ssli¢is explicitly made to
change, allowing both flawless copying and perfect religbiHaugeland reveals
the purpose of digitality to be “a mundane engineering mptioot and branch. It
only makes sense as a practical means to cope with the vagaitd vicissitudes,
the noise and drift, of earthy existence” (Haugeland, 198d4)Haugeland does not
tell us what digitality actually is, although he tells us witadoes, and so it is un-
clear why certain systems like computers have been wildégsssful due to their
digitally (as in the success of analogue computers was natidespread), while
others like ‘integer personality ratings’ have not beenwsssful. Without a co-
herent definition of digitality, it is impossible to even iniciple answer questions
like whether or not digitality igurelysubjective (Mueller, 2007). Any information
is digital whenthe boundaries in a particular encoding can converge witlegur-
larity in a physical realizationThis would include sentences in a language that can
be realized by sound-waves or the text in an e-mail messagiedh be re-encoded
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as bits, and then this encoding realized by a series of wdtegince the encoding
of the information can be captured perfectly by a digitatteys it can be copied
safely and effectively, just as an e-mail message can bevsamy times or a digital

image reproduced countlessly.

To implement a digital system, there must be a small charatetik information
realization can be considered to be in a state that is notgbdinte discrete types
given by the encoding. The regularities that compose thsipalboundary allows
within a margin of error a discrete boundary decision to béena the interpreta-
tion of the encoding. So, anything is capable of upholdirgitdiity if that buffer
created by the margin of error has an infinitesimal chanceyagaen time of being
in a state that is not part of the encoding’s discrete staie ekample, the hands
on a clock can be on the precise boundary between the marimtie clock, just
not for very long. In a digital system, on a given level of ahstion, the margin of
error does not propagate upwards to other levels of abitraittat rest on the ear-
lier level of abstractions. Since we can create physicaésys through engineering,
we can create physical substrata that have low probabilitidoeing in states that
do not map to digital at a given level of abstraction. As puffying, “The digital
computers ... may be classified amongst the ‘discrete stathimes,’ these are the
machines which move by sudden jumps or clicks from one quéfenite state to
another. These states are sufficiently different for thesipdgy of confusion be-
tween them to be ignored. Strictly speaking there are no swmthines. Everything
really moves continuously” (Turing, 195@nalogueis the rather large and hetero-
geneous set @verything that is not digitalThis would include people, such as Tim
Berners-Lee himself, who can be represented but not reladige message, as well
as places, like Mount Everest, whose precise boundariestrer indeterminate.
While, according to Hayles, “the world as we sense it on th@duu scale is basi-
cally analogue,” and the Web is yet another developmentamg-line of biological
modifications and technological prostheses to imposediizgttion on an analogue
world (2005). The vast proliferation of digital technolegiis possible because there
are physical substrata, some more so than others, whiclodupp realization of
digital information and give us the advantages that Haugktayhtfully points out
is the purpose of the digital: flawless copying and perfdalbdity in a flawed and
imperfect world (1981).

2.2.6 Representations

A web-page about the Eiffel Tower seems to be an obvious septation. One can
sit at home on one’s computer far away from Paris and accesbgage that fea-
tures a clear picture of - a representation! - of the Eiffel@&a Furthermore, others
from Japan to Egypt should be able to access the exact saneseafation by ac-
cessing the same URI. By claiming to be a “universal spacafofination,” the

Web is asserting to be a space where any encoding can beetraastbout any
content (Berners-Lee et al, 1992). However, there are sastiaat differences be-
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tween kinds of content, for some content can be distal aref athintent can be local.
Things that are separated by time and spacedistal while those things that are
not separated by time and space areximal. As synonyms for distal and proximal,
we will usenon-localandlocal, or justdisconnectedandconnected Although this
may seem to be an excess of adjectives to describe a simfitectiem, this afore-
mentioned distinction will underpin our notions of repnetsgion. In a message be-
tween two computers, if the content is a set of commands tpldy these bytes
on the screen’ then the client can translate these bytesg tctieen directly without
any worry about what those bytes represent to a human usee\o, the content
of the message may involve some distal components, sucle atrihg “The Eiffel
Tower is in Paris,” which refers to many things outside of¢bhenputer. Differences
between receivers allow the self-same content of a messdigelioth distal and lo-
cal, depending on the interpreting agent. The messagesplayi these bytes on the
screen’ could cause a rendering of a depiction of the Eifteldr to be displayed
on the screen, so the self-same message causes not only ateotolisplay some
bytes but also causes a human agent to receive informatmut athat the Eiffel
Tower in Paris looks like.

Any encoding of information that has distal contesitcalled arepresentation
regardless of the particular encoding of the informatioepfesentations are then
a subset of information, and inherit the characteristidfireed of all information,
such as having one or more possible encodings and often agmigmd the ability
to evoke normative behaviour from agents. To have soméop#dtip to a thing that
one is disconnected from is to @outsomething else. Generallje relationship
of a thing to another thing to which one is immediately calysdisconnecteds
a relationship ofeferenceto areferentor referents the distal thing or things re-
ferred to by a representatiofThe thing which refers to the referent(s) we call the
‘representation,’ and take this to be equivalent to beisgrabol Linguistic expres-
sions of an natural or formal languagere calleddescriptionswhile the expressions
of a iconic languagés calleddepictions To refer to something is tdenotesome-
thing, so the content of a representation iglgsotationn the tradition of Bretano,
the reference relation is considetriatentionaldue to its apparent physical spooki-
ness. After all, it appears there is some great looming adigtion: if the content
is whatever is held in common between the source and thevezcas a result of
the conveyance of a particular message, then how can theesand receiver share
some information they are disconnected from?

On the surface this aspect of ‘representation’ seems to la Bitian Cantwell
Smith calls “physically spooky,” since a representation tefer to something with
which it is not in physical contact (Smith, 1995). This spin@ss is a consequence
of a violation ofcommon-sengghysics, since representations allow us to have some
sort of what appears to be a non-physical relationship itigss that are far away
in time and space. This relationship of ‘aboutnessinbentionalityis often called
‘reference.” While it would be premature to define ‘referena few examples will
illustrate its usage: someone can think about the Eiffel@aw Paris without being
in Paris, or even having ever set foot in France; a human cagiime what the Eiffel
Tower would look like if it were painted blue, and one can etfenk of a situation
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where the Eiffel Tower wasn'’t called the Eiffel Tower. Fietmore, a human can
dream about the Eiffel Tower, make a plan to visit it, all vetbleing distant from the
Eiffel Tower. Reference also works temporally as well asallig for one can talk
about someone who is no longer living such as Gustave Hiedpite appearances,
reference is not epiphenomenal, for reference has reaitefée the behaviour of
agents. Specifically, one can remember what one had for dyms¢erday, and this
may impact on what one wants for dinner today, and one can ag@dmne ticket to
visit the Eiffel Tower after making a plan to visit it.

We will have to make a somewhat convoluted trek to resolve plaradox. The
very idea of representation is usually left under-defined &standing-in” intu-
ition, that a representation is a representation by virfustanding-in” for its ref-
erent (Haugeland, 1991). The classic definition of a symisohfthe Physical Sym-
bol Systems Hypothesis is the genesis of this intuition ntigg representations
(Newell, 1980): “An entityX designates an entily relative to a proceds, if, when
P takesX as input, its behaviour depends¥ri There are two subtleties to Newell's
definition. Firstly, the notion of a representation is grded in the behaviour of an
agent. So, what precisely counts as a representation is caviext-free, but depen-
dent upon the agent completing some purpose with the regegim. Secondly, the
representatiosimulatests referent, and so the representation must be local to an
agent while the referent may be non-local: “This is the sylclaspect, that having
X (the symbol) is tantamount to having(the thing designated) for the purposes
of proces$” (Newell, 1980). We will callX a representatiory, the referentof the
representation, a proceBghe representation-usiragent This definition does not
seem to help us in our goal of avoiding physical spookinéssgst pre-supposes
a strangely Cartesian dichotomy between the referent amdpresentation. To the
extent that this distinction is held a priori, then it is plogdly spooky, as it seems
to require the referent and representation to somehow m@liagiine up in order for
the representation to serve as a substitute for its missiiegant.

The only way to escape this trap is to give a non-spooky thebhow repre-
sentations arise from referents. Brian Cantwell Smithlegckhis challenge by de-
veloping a theory of representations that explains how #nesg temporally (1995).
Imagine Ralph, the owner of a URI for that he wants to host tupgcof the Eiffel
Tower, finally gets to Paris and is trying to get to the Eiffelwer in order to take
a digital photo. In the distance, Ralph sees the Eiffel Toweéthat very moment,
Ralph and the Eiffel Tower are both physically connectedigtat-rays. At the mo-
ment of tracking, connected as they are by light, Ralphigts cone, and the Eiffel
Tower are a system, not distinct individuals. An alien waisinight even think they
were a single individual, a ‘Ralph-Eiffel Tower’ system. W¢hwalking towards the
Eiffel Tower, when the Eiffel Tower disappears from viewgbas from being too
close to it and having the view blocked by other buildingg)ldR keeps staring into
the horizon, focused not on the point the Eiffel Tower wasedble it went out of
view, but the point where he thinks the Eiffel Tower would gizen his own walk-
ing towards it. Only when parts of the physical world, Ralpid éhe Eiffel Tower,
are now physically separated can the agent then use a ratatse, such as the
case of Ralph using an internal “mental image” of the EiffeWé&r or the external
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digital photo to direct his walking towards it, even thoughdannot see it. The agent
is distinguished from the referent of its representatiowiblyie of not only discon-
nection but by the agent’s attempt to track the referentpteayidistance coupling
against all the laws of physics” (Smith, 1995). The local ibgl processes used to
track the object by the subject are the representation, de‘ihside’ a human in
terms of a memory or ‘outside’ the agent like a photo in a digiamera.

This notion of representation is independent of the reptagien being either in-
ternal or external to the particular agent, regardless wfdrwe defines these bound-
aries!® Imagine that Ralph had been to the Eiffel Tower once befoescétld have
marked its location on a piece of paper by scribbling a smalpnThen, the mark-
ing on the map could help guide him back as the Eiffel Toweagi®ars behind
other buildings in the distance. This characteristic ofdbgnition of representation
being capable of including ‘external’ representationsigezially important for any
definition of a representation to be suitable for the Welr;esthe Web is composed
of information that is considered to be external to its humsers.

However fuzzy the details of Smith’s story about represiria may be, what
is clear is that instead of positing a connection betweerfeaept and a represen-
tation a priori, they are introduced as products of a tempamacess. This pro-
cess is at least theoretically non-spooky since the entiregss is capable of being
grounded out in physics without any spooky action at a degaio be grounded
out in physics, all changes must be given in terms of conoe@ti space and time,
or in other words, via effective reach. Representationsaweay of exploiting lo-
cal freedom or slop in order to establish coordination wittatis beyond effective
reach” (Smith, 1996). In order to clarify Smith’s story angprove the definition of
the Physical Symbol Systems Hypothesis, we consider Ssrfibory of the “origin
of objects” to be aeferential chainwith distinct stages (Halpin, 2006):

Presentation ProcessSSis connected with proce€3.
Input: The procesSis connected withR. Some local connection &putsRin
some causal relationship with procé3wia an encoding. This is entirely non-
spooky sincesandO are both connected witR. R eventually becomes the rep-
resentation.

e Separation Processe® andSchange in such a way that the processes are dis-
connected.

e Output: Due to some local change in proc&s$ uses its connection witR to
initiate local meaningful behaviour that is in part causgdR!

In the ‘input’ stage, theeferentis the cause of some characteristic(s) of the in-
formation. The relationship a&ferencads the relationship between the encoding of
the information (the representation) and the referent.rélaionship of interpreta-
tion becomes one of reference when the distal aspects obtitertt are crucial for
the meaningful behaviour of the agent, as given by the ‘augtage. So we have

10 The defining of “external” and “internal” boundaries is aty non-trivial, as shown in (Halpin,
2008a).

11 n terms of Newell’s earlier definition, 0 X while Sis P andRis Y.
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Fig. 2.7 The Referential Chain

constructed an ability to talk about representations afeteace while not presup-
posing that behaviour depends on internal representatiotisat representations
exist a priori at all. Representations are only needed whendlevant intelligent
behaviour requires some sort of distal co-ordination wittiseonnected thing.

So the interpretation of a representation — a particulat &frencoding of content
— results in behavior by the user-agent that is dependentiistal referent via the
referential chain. In this manner, the act of reference b&m tbe defined as the
interpretation of a representation. This would make ouromobf representation
susceptible to being labelleccarrespondence theory of tru¢Emith, 1986), where
a representation refers by some sort of structural correfuce to some referent.
However, our notion of representation is much weaker, ra@ggionly a causation
between the referent and the representation - and not jysiearsal relationship, but
one that is meaningful for the interpreting agent - as oppéssome tighter notion
of correspondence such as some structural ‘isomorphistwdam a representation
and its “target,” the term used by Cummins to describe whathesee called the
“referent” of a representation (1996). So an interpretatio an act of reference
should therefore not be viewed as mapping to referents, oaping to some
content where that content leads to meaningful behaviaaigely because of some
referential chain. This leads to the notion of a Fregearedije’ sense, which we
turn to later.

Up until now, it has been implicitly assumed that the reféisrsome physical
entity that is non-local to the representation, but the a€ntity was still exis-
tent, such as the Eiffel Tower. However, remember that tHimitien of non-local
includesanythingthe representation is disconnected from, and so includgsiph
cal entities that may exist in the past or the future. Theterise of a representation
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does notimply the existence of the referent or the direataicgance of the referent
by the agent using a representation — a representationroplieis that some aspect
of the content is non-local. However, this seems to conttadir ‘input’ stage in the
representational cycle, which implies that part of our d&din of representation is
historical: for everyre-presentation there must be a presentation, an encouriker wi
the thing presented. By these conditions, the famous exaafffutnam’s example
of an ant tracing a picture of Winston Churchill by sheer dent in the sand would
not count as a representation (1975). If a tourist didn'vkmdhere the Eiffel Tower
was, but navigated the streets of Paris and found the EiffeET by reference to a
tracing of a Kandinsky painting in his notebook, then theisiwould not then be
engaged in any representation-dependent meaningful lmetnasince the Kandin-
sky painting lacks the initial presentation with the Eiffedwer. The presentation
does not have to be done by the subject that encountereditigedinectly. How-
ever, the definition of a representation does not mean teaaimeagent using the
representation had to be the agent with the original praient A representation
that is created by one agent in the presence of a referenteasdd by another
agent as a ‘stand-in’ for that referent if the second ageateshthe same interpre-
tation from encoding to distal content. So, instead of redydon his own vision, a
tourist buys a map and so relies on the ‘second-order’ reptagon of the map-
maker, who has some historical connection to someone whalactravelled the
streets of Paris and figured out where the Eiffel Tower wathigregard, our defi-
nition of representation is very much historical, and thigioal presentation of the
referent can be far back in time, even evolutionary time,i@smgby accounts like
those of Millikan (1984). One can obviously refer to Gustaviéel even though he
is long dead and buried, and so no longer exists.

Also, the referent of a representation may be to what we tbhfrés real-world
patches of space and time like people and places, to abstradike the concept
of a horse, to unicorns and other imaginary things, to fustaes such as ‘see you
next year, and descriptive phrases whose suppesadtreferent is unknown, such
as ‘the longest hair on your head on your next birthday. Wihill these types of
concepts are quite diverse, they are united by the facthiegitdannot be completely
realized by local information, as they depend on partiatatpof an agent’s local
information, the future, or things that do not exist. Contsgpat are constructed
by definition, including imaginary referents, also have petyf ‘presence,’ it is
just that the ‘presentation’ of the referent is created k&initial description of the
referent. Just because a referent is a concept — as oppasetiysical entity — does
not mean the content of the representation cannot have amimgéal effect on the
interpreter. For example, exchanging representationgludsts’ - even if they do
not quite identify a coherent class of referents - can gottegrbehaviour of ghost-
hunters. Indeed, it is the power and flexibility of represtinns of these sorts that
provide humans the capability to escape the causal pristhemflocal environment,
to plan and imagine the future.
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2.3 The Principles of Web Architecture

It is now possible to show how the various Web terms are reélegecach other
in a more systematic way. These relationships are phraséeednite principles
that serve as the normative Principles of Web architeciline: Principles of Uni-
versality, Linking, Self-Description, the Open World, anelast Power. In practice
many applications violate these principles, and by virtitbeir use of URIs and the
HTTP protocol, many of these applications would be in sormseéon the Web.’
However, these principles are normative insofar as theyéeafihat could be con-
sidered as compliance with Web architecture, and so ancagpioln that embodies
them is compliant with Web architecture.

2.3.1 Principle of Universality

ThePrinciple of Universalitycan be defined as thahy resource that can be iden-
tified by a URI The notion of both a resource and a URI was from their onset
universal in its ambition, as Berners-Lee said, “a commaituies of almost all the
data models of past and proposed systems is something wdrichecmapped onto
a concept of 'object’ and some kind of name, address, or ifikantor that object.
One can therefore define a set of name spaces in which theseban be said to
exist. In order to abstract the idea of a generic object, tek meeds the concepts
of the universal set of objects, and of the universal set ofiesmor addresses of
objects” (1994a). The more informal notes of Berners-Leeesen more startling
in their claims for universality, stating that the first ‘ar’ of Web architecture is
“Universality” where “by universal’ | mean that the Web isallered to be able to
contain in principle every bit of information accessible fwtworks” (1996b). Al-
though it appears he may be constraining himself to onlyahtkut digital ‘objects’
that are accessible over the Internet in this early IETF REiCkter IETF RFCs
the principle quickly ran amok, as users of the Web wanteds® WRIs to refer
to “human beings, corporations, and bound books in a librd@grners-Lee et al,
1998).

There seems to be a certain way that web-pages are ‘on theikivahvay that
human beings, corporations, unicorns, and the Eiffel Toavernot. Accessing a
web-page in a browser means to receive some bits, while ameotaasily imag-
ine what accessing the Eiffel Tower itself or the concept ah&orn in a browser
even means. This property of being ‘on the Web’ is a commasaelistinction
that separates things like a web-page about the Eiffel Tdwen things like the
Eiffel Tower itself. This distinction is a matter of betwe#re use of URIs tac-
cessandreferencebetween the local and the distal. The early notes of Betibees
that pre-date the notion of URIs itself address this distimcbetween access and
reference, phrasing it as a distinction between locatiodsw@ames. As Berners-Lee
states, “conventionally, a ‘name’ has tended to mean a dgiay of referring to
an object in some abstract name space, while the term ‘asldras been used for
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something which specifies the physical location” (1991). &lmcation is a term
that can be used to access the thindpile anameis a term that can be used to refer
to a thing Unlike access, reference is the use of an identifier forrgttd which
one is immediately causally disconnect&dcesss the use of an identifier to create
immediately a causal connection to the thing identifiddyes and Halpin, 2008).
The difference between the use of a URI to access a hyperebdpage or other
sort of information-based resource and the use of a URI &r tefsome non-Web
accessible entity or concept ends up being quite imporéanthis ability to repre-
sentationally use URIs as ‘stands-in’ for referents forhesliasis of the distinction
between the hypertext Web and the Semantic Web.

Names can serve as identifiers and even representationistal tings. How-
ever, Berners-Lee immediately puts forward the hypothisis “with wide-area
distributed systems, this distinction blurs” so that “tjnwhich at first look like
physical addresses...cease to give the actual locatidre @fiiject. At the same time,
a logical name...must contain some information which adlale name server to
know where to start looking” (1991). He posits a third nelutem, “identifier” that
was “generally referred to a name which was guaranteed toigge but had little
significance as regards the logical name or physical add{Besners-Lee, 1991).
In other words, amdentifier is aterm that can be used to either access or refer, or
both access and refer to, a thinfhe problem at hand for Berners-Lee was how to
provide a name for his distributed hypertext system thatdcgaet “over the prob-
lem of documents being physically moved” (1991). Using darip addresses or
any scheme that was tied to a single server would be a mistakbe thing that was
identified on the Web should be able to move from server toesemthout having
to change identifier.

For at least the first generation of the Web, the way to oveedhiis problem was
to provide a translation mechanism for the Web that couldigema methodology
for transforming “unique identifiers into addresses” (BemiLee, 1991). Mecha-
nisms for translating unique identifiers into addressesaaly existed in the form
of the domain name system that was instituted by the IETFearetirly days of the
expansion of ARPANet (Mockapetris, Novemeber 1983). Betbe advent of the
domain name system, the ARPANet contained one large mapiingntifiers to
IP addresses that was accessed through the Network Infomfaéntre, created
and maintained by Engelbart (Hafner and Lyons, 1996). Hewetiis centralized
table of identifier-to-address mappings became too unwfelda single machine as
ARPANet grew, so a decentralized version was conceivedb@sdomain names
where each domain namedsspecification for a tree structured name space, where
each component of the domain name (part of the name sepdrategeriod) could
direct the user-agent to a more specific “domain name servatil the translation
from an identifier to the name to IP address was complete.

Many participants in the IETF felt like the blurring of thisstinction that
Berners-Lee made was incorrect, so URIs were bifurcatedtimd distinct spec-
ifications.A scheme for locations that allowed user-agents via an h&eprotocol
to access informatiowere calledUniform Resource Location§URLS) (Berners-
Lee et al, 1994) whila scheme whose names that could refer to things outside of the
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causal reach of the Internetere calledJniform Resource NamefJRNS) (Sollins
and Masinter, 1994). Analogue things like concepts andiesthaturally had to be
given URNSs, and digital information that can be transmitiedr the Internet, like
web-pages, were given URLSs. Interestingly enough, URNsconly as a nam-
ing scheme, as opposed to a protocol like HTTP, because #rayot access any
information. While one could imagine a particular Web-asiile realization, like
a web-page, disappearing from the Web, it was felt that ifiers for things that
were not accessible over the Web should “be globally uniquever, and may well
be used as a reference to a resource well beyond the lifefithe cesource it iden-
tifies or of any naming authority involved in the assignmdritoname” (Mealling
and Daniel, 1999).

Precisely because of their lack of ability to access infdioma URNS never
gained much traction, while URLSs to access web-pages bettaamerm. Building
on this observation about the “blurring of identifiers,” thation of URIs implodes
the distinction between identifiers used only for accessl&)Rnd the identifiers
used for reference (URNSs). Aniform Resource Identifieris a unique identifier
whose syntax is given in (Berners-Lee et al, January 2003}, may be used to
either or both refer to or access a resourtéRls subsume both URIs and URNS,
as shown in Figure 2.8. Berners-Lee and others were onlytalplesh this standard
through the IETF process years after the take-off of the Weleed, early propos-
als for universal names, ranging from Raymond Lull to Engglb ‘Every Object
Addressable’ principle (1990), all missed the crucial adage of the Web; while
classically names in natural language are used for refereort the Web names
can be used to access information. In a decentralized emaiaot this is crucial
for discovering the sense of a URI, as illustrated by theamstiof ‘linking’ and
‘self-description’ detailed next in Section 2.3.2 and 8stP.3.3.

Fig. 2.8 A Venn Diagram describing the relationships between URRNS, and URLs
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2.3.2 Principle of Linking

ThePrinciple of Linking states thaany resource can be linked to another resource
identified by a URINo resource is an island, and the relationships between re-
sources are captured by the linking, transforming loneuess into a Web. Aink

is a connection between resourc@he resource that the link is directed from
called itsstarting resourcewhile theresource a link is directed t&s the ending
resource(DeRose et al, 2001).

What are links for? Just as URIs links may be used for eithegsscor reference,
or even both. In particular, in HTML the purpose of links is &zcess to additional
hypertext documents, and so they are sometimes called ImkgerThis access is
often calledollowingthe link, a transversal from one Web representation to ampth
that results in access to Web representations of the engtiogirce. A unidirectional
link that allows access of one resource from another is thédgminant kind of link
in hypertext. Furthermore, access by linking is transjtfee if a user-agent can ac-
cess a Web representation of the ending resource from thimgteesource, then it
can access any links present in the Web representationhanebly access a Web
representation of an ending resource. It is precisely thilgyato transitively access
documents by following links that led the original Web to beeamless Web of hy-
pertext. While links can start in Web representations, tagmmotivation for using
URIs as the ending resource of a link as opposed to a specificréfgesentation
is to preventoroken links where a user-agent follows a link to a resource that is
no longer there, due to the Web representation itself cimgndis put by the TAG,
“Resource state may evolve over time. Requiring a URI owoegpublish a new
URI for each change in resource state would lead to a significamber of bro-
ken references. For robustness, Web architecture prormatependence between
an identifier and the state of the identified resource” (Jaeotdl Walsh, 2004).

However, one of the distinguishing features of the Web islthkks may be bro-
ken by having any access to a Web representation disappesatio dimply the lack
of hosting a Web representation, loss of ownership of thealomame, or some
other reason. These reasons are given in HTTP status camtdsas the infamous
404 Not Found that signals that while there is communication with a sether
server does not host the resource. Further kinds of broké&s &re possible, such
as301 Moved Permanent |y ora5xx server error, or an inability to even con-
nect with the server leading to a time-out error. This apiit links to be ‘broken’
contrasts to previous hypertext systems. Links were nanted by the Web, but
by the hypertext research community. Constructs simildinks were enshrined in
the earliest of pre-Web systems, such as Engelbaikiisne SystenfNLS) (1962),
and were given as part of the early hypertext work by Theodssdh (1965). The
plethora of pre-Web hypertext systems were systematizedtie Dexter Reference
Model (Halasz and Schwartz, 1994). According to the DexefeRence Model, the
Web would not even qualify as hypertext, but as “proto-hygdy” since the Web
did not fulfill the criteria of “consistency,” which requi€ein creating a link, we
must ensure that all of its component specifiers resolve igtieg components”
(Halasz and Schwartz, 1994). To ensure a link must resoldettzarefore not be
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broken, this mechanism requires a centralized link indext tdould maintain the
state of each resource and not allow links to be created teerimtent or non-
accessible resources. Many early competitors to the WelHijperG had a central-
ized link index (Andrews et al, 1995). As an interesting dvigtal aside, it appears
that the violation of this principle of maintaining a cetizad link index was the
main reason why the World Wide Web was rejected from its ficsid@mic con-
ference, ACM Hypertext 1991, although Engelbart did enagaBerners-Lee and
Connolly to pursue the Web furth&.While a centralized link index would have
the benefit of not allowing a link to be broken, the lack of atcalized link index
removes a bottleneck to growth by allowing the owners ofweses to link to other
resources without updating any index besides their own \@plesentations. This
was doubtless important in enabling the explosive growthinking. The lack of
any centralized link index, and index of Web representatiemalso precisely what
search engines like Google create post-hoc through spigldar order to have an
index of links and web-pages that enable their keyword $eand page ranking
algorithms. As put by Dan Connolly in response to Engelb#ine design of the
Web trades link consistency guarantees for global sc#l@b{2002). So, broken
links and404 Not Found status codes are purposefahtures not defects, of
the Web.

2.3.3 Principle of Self-Description

One of the goals of the Web is for resources to be ‘self-desgj currently de-
fined as “individual documents become self-describinghésense that only widely
available information is necessary for understanding th@viendelsohn, 2006).
While it is unclear what “widely-available” means, one way information to be
widely-available is for it to be linked to from the Web repeetation itself. The
Principle of Self Descriptionstates thatthe information an agent needs to have
an interpretation of a Web Representation (resource) ghbalaccessible from the
Web representation itself (URI)

How many and what sort of links are necessary to adequatstyithe a resource?
A resource is successfully described if an interpretatiba eense is a possible.
Any representation can have links to other resources winichrin can determine
valid interpretations for the original resource. This msg of following whatever
data is linked in order to determine the interpretation ofRl ¥ informally called
‘following your nose’ in Web architecture.

The Follow-Your-Nose algorithmstates that if a user-agent encounters a repre-
sentation in a language that the user-agent cannot intetpesuser-agent should,
in order:

1. Dispose of Fragment Identifiers:As mandated by the URI specification (Berners-
Lee et al, January 2005), user-agents can dispose of thenérggdentifier in

12 personal communication with Tim Berners-Lee.
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order to retrieve whatever Web representations are alaifedm the racine (the
URI without fragment identifier). For example, in HTML theaffment identi-
fier of the URI is stripped off when retrieving the webpaged #men when the
browser retrieves a Web representation, the fragmentifalgntan be used to
locate a particular place within the Web representation.

2. Inspect the Media Type: The media type of a Web representation provides a

normative declaration of how to interpret a Web repres@ntaSince the number
of IETF media-types is finite and controlled by the IETF, artsgent should be
able to interpret these media typés.

. Follow any Namespace Declarationdlany Web representations use a generic
format like XML to in turn specify a customized dialect. Iniglcase, a lan-
guage or dialect is itself given a URI, callednamespace URla URI that
identifies that particular dialectA namespace URI then in turn allows access
to anamespace documeyd Web representation that provides more information
about the dialectin a Web representation using this dialeataaespace decla-
ration thenspecifies the namespace URI this case, the user-agent may follow
these namespace declarations in order to get the extrariafam needed to in-
terpret the Web representation. As a single Web represemtaiay be encoded
in multiple languages, it may have multiple namespace Uifsltow.

in particular languages that may be preferred, such as tti@g@mnesource of a
I i nk header in HTML or in RDF Schema links suchrdss:isDefinedBYinks,
or links like OWL by theowl:imports(See Chapte?? for the definition of RDF
and OWL). If links are typed in some fashion, each languagg deéine or rec-
ommend links that have the normative status, and normaitike should be pre-
ferred. However, for many kinds of links, their normativatss is unclear, so the
user-agent may have to follow any sort of link as a last resort

Using this algorithm, the user-agent can begin searchingdme information
that allows it to interpret the Web representation. It cdlofothe first three guide-
lines and then follow the fourth, applying the above guidesi recursively. Even-
tually, this recursive search should bottom out either irr@ypm that allows an
interpretation of the Web representation (such as a remglefia web-page or in-
ferences given by a Semantic Web language) or specificagjives by the IETF
in plain, human-readable text, the natural bottoming pofreelf-description. This
final fact brings up the point that the information that gate @an interpretation is
not necessarily a program, but could be a human-readaltéispgon that requires
a human to make the mapping from the names to the intendee.sens

13 The finite list is available atttp://www.iana.org/assignments/media-typastl a mapping from
media types to URIs has been proposebtat://www.w3.0rg/2001/tag/2002/01-uriMediaType-9

. Follow any links: The user-agent can follow any links. There are some links
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2.3.4 The Open World Principle

The Open World Principlestates thathe number of resources on the Web can al-
ways increaseThere can always be new acts of identification, carving ouéwa
resource from the world and identifying it with a URI. At aniygn moment, a new
webpage may appear on the Web, and it may or may not be linkethie is a
consequence of the relatively decentralized creation dsWét resources given by
the Principle of Universality and the decentralized ci@atf links by the Principle
of Linking. Without any centralized link index, there is nertral repository of the
state of theentire Web. While approximations of the state of the entire Web age ¢
ated by indexing and caching web-pages by search engiree&bkgle, due to the
Open World Principle, none of these alternatives will neae$y ever be guaranteed
to be complete. Imagine a web-spider updating a search eimgiex. At any given
moment, a new resource could be added to the Web that the pigdr-snay not
have crawled. So to assume that any collection of resourfcégedNeb can be a
complete picture of the whole Web is at best impudent.

The ramifications of the Open World Principle are surprisengd most clear in
terms of judging whether a statement is true or false. Thien@issions transform
the Open World Principle into its logical counterpart, Dpen World Assumption
which logically states thagtatements that cannot be proven to be true cannot be
assumed to be falséntuitively, this means that the world cannot be bound. @ t
Web, the Open World Principle holds that since the Web caaydwe made larger,
with any given set of statements that allows an inferenceyastatement relevant to
that inference may be found. So any agent’s knowledge of thie ig/always partial
and incomplete, and thus the Open World Assumption is a sflobagents on the
Web. The Open World Principle is one of the most influentidlgjellenging princi-
ples of the Web, the one that arguably separates the Web ffeglitional research in
artificial intelligence and databases in practice. In tHiedgs, systems tend to make
the opposite of the Open World Assumption, the Closed Worddunption. The
Closed World Assumptiostates that logicallgtatements that cannot be proven to
be true can be assumed to be falb#uitively, this means that somehow the world
can be bounded. The Closed World Assumption has been famdatin a num-
ber of different occasions, with the first formalizationigeidue to Reiter (1978).
This assumption has often been phrased as an appeal to theflthes Excluded
Middle (vp.pV —p) in classical logic (Detlefsen, 1990)egation as failurds an
implementation of the Closed World assumption in both |lggiegramming and
databases, where failure for the program to prove a stateis¢rue implies the
statement is false (Clark, 1978).

2.3.5 Principle of Least Power

The Principle of Least Powestates that &/eb representation given by a resource
should be described in the least powerful but adequate laggurhis principle
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is also normative, for if there are multiple possible Webrespntations for a re-
source, the owner should chose the Web representationstigiaten in the ‘least
powerful’ language. The Principle of Least Power seems bdtit is motivated by
Berners-Lee’s observation that “we have to appreciateg¢hsans for picking not
the most powerful solution but the least powerful langua@®@96b). The reasons
for this principle are rather subtle. The receiver of th@infation accessible from
a URI has to be able to decode the language that the informiatiencoded in so
the receiver can determine the sense of the encoding. FFombine, an agent may be
able to decode multiple languages, but the owner of the URkdmt know what
languages an agent wanting to access their URI may possisss tlle same agent
may be able to interpret multiple languages that can expihessame sense. So, the
question always facing any agent trying to communicate iatddnguage to use?
In closed and centralized systems, this is ordinarily natodolem, since each agent
can be guaranteed to use the same language. In an open skstéme Meb, where
one may wish to communicate a resource to an unknown numbegeofts, each
of which may have different language capabilities, the tioerf which language
to deploy becomes nearly insurmountable. Obviously, if genais trying to con-
vey some sense, then it should minimally choose a languagedode that sense
which is capable of conveying that sense. Yet as the same sande conveyed by
different languages, what language to choose?

The Principle of Least-Power is a common-sense enginesohgion to this
problem of language choice. The solution is simply to buitdtfa common core
language that fulfills the minimal requirements to commateéavhatever sense one
wishes to communicate, and then extend this core languagjegWHTML as an
example, one builds first a common core of useful featurel asche ability to
have text be bold and have images inserted in general ard¢las t#xt, and then as
the technology matures, to slowly add features such as #ager positioning of
images and the ability to specify font size. The Principld_e&st Power allows a
straightforward story about compatibility to be built torfus the“be strict when
sending and tolerant when receiving” maxim of the Interséice it makes the
design of a new version an exercise in strictly extendingpievious version of
the language (Carpenter, June 1996). A gaping hole in theleaf the Principle
of Least Power is no consistent definition of the concept ofver,’ and the W3C
TAG seems to conflate power with the Chomsky Hierarchy, tdlem of defining
‘power’ formally must be left as an open research question.

2.4 Conclusions

The Web, while to a large extent being an undisciplined aratlpeadefined space,
does contain a set of defining terms and principles. Whileipusly these terms and
principles have been scattered throughout various infonoizs, IETF RFCs, and
W3C Recommendations, in this chapter we have systematatbdhoe terminology
and the principles in a way that reveals how they internalijdbof each other. In
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general, when we are referring to thgpertext Webwe are referringo the use

of URIs and links to access hypertext web-pages using HY&Rhere is more to

the Web than hypertext. The next question is how can theseiphes be applied to
domains outside the hypertext Web, and this will be the topiChapter 3, as we
apply these principles to the Semantic Web, a knowledgessepitation language
for the Web.



Chapter 3
The Semantic Web

The task of classifying all the words of language, or whdt&s same thing, all the
ideas that seek expression, is the most stupendous of leasés. Anybody but the
most accomplished logician must break down in it utterlyd axen for the strongest
man, it is the severest possible tax on the logical equipraedtfaculty.Charles
Sanders Peirce, letter to editor B. E. Smith of the Century Détionary

The Web is a universal information space, but so far it has loee composed
entirely of hypertext documents. As said by Berners-LedatWorld Wide Web
conference in 1994, “to a computer, then, the web is a flaingowvorld devoid
of meaning...this is a pity, as in fact documents on the wedzrilee real objects
and imaginary concepts, and give particular relationshgigeen them” (1994b).
The heart of this particular insight is the realization thias the content of the
information, not its encoding in hypertext, that is of cahimportance to the Web.
The purpose of the architecture of the Web is to connectimnébion of any kind in
a decentralized manner, and this architecture can be dgpdigond the hypertext
documents of its initial incarnation.

The next step in Berners-Lee’s programme to expand the Wgtmdenypertext
is called theSemantic Weba term first used by Foucault ithe Order of Things
(Foucault, 1970). The most cited definition of the Seman&b\¥ given by Berners-
Lee et al. as “the Semantic Web is not a separate Web but amséxteof the current
one, in which information is given well-defined meaning teetenabling computers
and people to work in cooperation” (2001). How can informatbe added to the
Web without encoding it in hypertext? The answer is to findrgleage capable of
representing the information about the aforementionedalgjacts and imaginary
concepts. This requireskmnowledge representation languaga language whose
primary purpose is the representation of non-digital cont@ a digital encoding
So instead of the Eiffel Tower, we will have a number of fadis@ the Semantic
Web, ranging from pictures to its height, encoded in a kndgéerepresentation
language available via a URI for the Eiffel Tower.

As the previous exposition of Web architecture explaineditail, resources on
the Web are given by a URI that identifies the same content@i\i&b across dif-
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ferent encodings. What drives the Semantic Web is the egadizthat at least some
of the information on the Web is representational, i.e.rimfation about distal con-
tent. Then instead of HTML, which is mainly concerned witk firesentation and
linking of natural language for humans, the Web needs a kexgd representation
language which describes the represented content as $yllgssible without regard
to presentation for humans. The mixture of content and e@ngsdor presentation
forces web-spiders to “scrape” valuable content out of hgpé In theory, encod-
ing information directly in a knowledge representatiorgaage gives a spider more
reliable and direct access to the information. As Bernexs+huts it, “most informa-
tion on the Web is designed for human consumption, and evewafs derived from
a database with well defined meanings (in at least some téomit3 columns, that
the structure of the data is not evident to a robot browsiegabab” (1998b). This
has led him to consider the Semantic Web to a Web “for exprgssiformation
in a machine processable form” and so making the Web “maealmuerstandable”
(Berners-Lee, 1998b). This leads to the contrast betweeiSémantic Web as a
‘web of data’ as opposed to the hypertext ‘web of documeW8C standards such
as XML were originally created, albeit rarely used, prelgise order to separate
content and presentation (Connolly, 1998).

Furthermore, the purpose of the Semantic Web is to exparsttpe of the Web
itself. Most of the world’s digital information is not naély stored in hypertext. In-
stead, it is stored in databases and other non-hypertexhuets and spreadsheets.
While this information is slowly but surely migrating tovasthe Web, as more and
more of this information is being exposed to the Web via sstipat automatically
and dynamically convert data from databases into HTML, the&ntic Web imag-
ines that by having a common knowledge representation Egejacross the entire
Web, all sorts of information that previously were not on Yheb can become part
of the Web. This makes the Semantic Web not a different anallph¥Veb to the
hypertext Web, but an extension of the current Web, wheretggt serves as just
one possible language.

3.1 A Brief History of Knowledge Representation

The creation of the Semantic Web then depends on the cregtanleast one (if
not multiple!) knowledge representation language for treby¥nd so the Semantic
Web inherits both the successes and failures of previowsteffo create knowl-
edge representation languages in artificial intelligefite earliest work in digital
knowledge representations was spear-headed by John NMgGaattempts to for-
malize elements of human knowledge in first-order preditaje, where the pri-
mary vehicle of intelligence was to be considered some farinference (1959).
These efforts reached their apex in Hayes'’s “Naive Physisifédsto,” which called
for parts of human understanding to be formalized as firdeologic. Although ac-
tual physics was best understood using mathematical tgagbsisuch as differential
equations, Hayes conjectured that most of the human kngeleéiphysics, such
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as “water must be in a container for it not to spill” could banceptualized better
in first-order logic (1979). Hayes took formalization as argt long-term challenge
for the entire Al community to pursue, “we are never going ¢b @n adequate for-
malization of common sense by making short forays into sarats, no matter how
many of them we make” (Hayes, 1979). While many researchefsup the grand
challenge of Hayes in various domains, soon a large numbasiofious problems
were encountered, primarily in terms of the expressivityist-order logic and
its undecidability of inference. In particular, first-ordegic formalizations were
viewed as not expressive enough, being unable to cope withdeal reasoning as
shown by the Frame Problem, and so had to be extended withiSlaed other
techniques (McCarthy and Hayes, 1969). Since the goal dicat intelligence
was to create an autonomous human-level intelligencehanoéntral concern was
that predicate calculus did not match very well with how hasactually reasoned.
For example, humans often use default reasoning, and wamendments must
be made for predicate calculus to support this (McCarthg0)l9Further efforts
were made to improve first-order logic with temporal reasgrio overcome the
Frame Problem, as well as the use of fuzzy and probabilisgjclto overcome is-
sues brought up by default reasoning and the uncertainenafilsome knowledge
(Koller and Pfeffer, 1998). Yet as predicted by Hubert Dtesyfit seemed none of
these formal solutions could solve the fundamental epistegical problem that all
knowledge was in front of an immense background of a worltlitealf seemed to
resist formalization (Dreyfus, 1979).

Under increasing criticism from its own former champioke IMcDermott, first-
order predicate calculus was increasingly abandoned ksetimathe field of knowl-
edge representation (1987). McDermott pointed out thah&dizing knowledge in
logic requires that all knowledge be formalized as a set @frax and that “it must
be the case that a significant portion of the inferences we.were deductions, or it
will simply be irrelevant how many theorems follow deduetivfrom a given axiom
set” (1987). McDermott found that in practice neither cdrkabwledge be formal-
ized and that even given some fragment of formalized knogdethe inferences
drawn are usually trivial or irrelevant (1987). Moving awiagm first-order logic,
the debate focused on what was the most appropriate marmmarl fo model hu-
man intelligence. Some researchers championgeeduralview of intelligence
that regarded the representation as itself irrelevaneiptiogram could successfully
solve some task given some input and output. This contrdmtadily with earlier
attempts to formalize human knowledge that it was calleddinelarative versus
proceduraldebate. Champion of procedural semantics Terry Winogi@edthat
“the operations on symbol structures in a procedural seicsanéed not correspond
to valid logical inferences about the entities they repn€'sgince “the symbol ma-
nipulation processes themselves are primary, and theatilegic and mathematics
are seen as an abstraction from a limited set of them” (19¥8)le the procedural
view of semantics first delivered impressive results thitopgpgrams like SHRDLU
(Winograd, 1972), since the ‘semantics’ were ad-hoc ankldapendent, proce-
dural semantics could not be used outside the limited doimaivhich they were
created. Furthermore, there became a series of intensted@vawhether these pro-
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grams often purported to do what they wanted even withimr ti@inain, as Dreyfus
critiqued that it was ridiculous that just because a progveas labelled ‘under-
stand’ that it did actually in any way understand (1979)etestingly enough, the
debate between declarative and procedural semanticgisy tire right formal con-
ditions, a red herring since the Curry-Howard Isomorphisates that given the
right programming language, there is a tight coupling betwiegical proofs and
programs so that the simplification of proofs can be equintatesteps of computa-
tion (Wadler, 2001).

Within Al, research began into other forms of declarativewtedge represen-
tation languages besides first-order logic that were swggptis be in greater con-
cordance with human intelligence and that could serve a® rstable substrates
for procedural knowledge-based systems. Most prominemngnthese alterna-
tives weresemantic networks“a graphic notation for representing knowledge in
patterns of interconnected nodes and arcs” (1987). Secaetorks are as old
as classical logic, dating back to Porphyry’s explanatibAristotelian categories
(Sowa, 1987), although their first self-described usageasascommon knowledge-
representation system for machine-translation systenMdsgerman (1961). Moti-
vated by a correspondence with natural language, semaetti®rks were used by
many systems in natural language processing, such as thkeWafilks in resolving
ambiguities using preference semantics and the work ofrichaing conceptual
dependency graphs to discover identical sentences regarafi their syntactic form
(Schank, 1972; Wilks, 1975). Soon semantic networks weirghesed to represent
everything from human memory to first-order logic itself {{ian, 1968; Sowa,
1976). The approach of semantic networks was given someecedby the fact
that often when attempting to make diagrams of ‘knowledgerhans often start
by drawing circles connected by lines, with each componaine¢lled with some
human-readable description. A semantic network about 8robitect of the Eiffel
Tower was Gustave Eiffel’ is given in Figure 3.1. Note thatiters declaratively to
things in the world, but uses ‘natural-language-like’ lstmn its nodes and edges.
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TheEiffel Tower > @
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|
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The Eiffel Tower Itself
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Fig. 3.1 An example semantic network
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When researchers attempted to communicate or combinekihevledge rep-
resentation schemes, no-one really knew what the natunglubege description
‘meant’ except the author, even when semantic networks weeel as a formal
language. The ‘link’ in semantic networks was interpretedtileast three different
ways (Woods, 1975) and no widespread agreement existedeomalst common
sort-of link, thel S- A link, which could represent both subclassing, instarttiati
close similarity, and more. This led to an assault on sernaetworks by champions
of first-order logic like Hayes, who believed that by prowvigia formal semantics
that defined ‘meaning’, first-order logic at least allowedwedge representations
to be transportable across domains, and that many altegriatowledge represen-
tations could be re-expressed in first order-logic (Hay83,78). In response, the
field of knowledge representation bifurcated into sepadateiplines. Many of the
former champions of logic currently do not believe that harirgelligence can be
construed as logical inference, but researchers stilvegtipursue the field as it
is of crucial importance to many systems such as matherhaticaf-proving and
it is still used in many less ambitious knowledge-reasorsygtems such as ISO
Common Logic (Delugach, 2007).

The classical artificial intelligence programme, while fedg on finding a for-
mal language capable of expressing human knowledge, hadeidrihe problem
of tractable inference. This problem came to attention jaitywhen KRL, one of
the most flexible knowledge representation languages predeby Winograd was
found to have intractable inference even on simple problHiosyptarithmetic, de-
spite its representational richnésBurthermore, while highly optimized inference
mechanisms existed for first-order logic, first-order pcath logic was proven to be
undecidable. These disadvantages of alternative repegigaral formats and first-
order logic led many researchers, particularly those @éstexd iran alternative “slot
and value” knowledge representation langudgmwn asramesto begin research-
ing the decidability of their inference mechanisms (Minsk975). This research
into frames then evolved into research agscription logics where the trade-offs
between the tractability and expressivity where carefstlydied (Levensque and
Brachman, 1987). The goal of the field was to produce a lodilc décidable infer-
ence while maintaining maximum expressivity. Although fiingt description-logic
system, KL-ONE, was proven to have undecidable inference¥en subsump-
tion, later research produced a vast proliferation of dpson logics with carefully
categorized decidability and features (Brachman and Stdend71-216; Schmidt-
Schauss, 1989).

Ultimately, the project of artificial intelligence to desi@ single knowledge rep-
resentation system suitable for creating human-levelliggmce has not yet suc-
ceeded and progress, despite occassional bursts of eaginyss doubtful at best.
With no unifying framework, the field of artificial intelligese itself fragmented
into many different diverse communities, each with its oammily of languages and
techniques. Researchers into natural language embraatéstisal techniques and
went back to practical language processing tasks, whileitngs have produced

1 Personal communication with Henry S. Thompson.
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an astounding variety of different knowledge represeoatanguages, and cog-
nitive scientists moved their interests towards dynamsgatems and specialized
biologically-inspired simulations. The lone hold-out sesl to be the Cyc project,
which continued to pursue the task of formalizing all ‘commysense’ knowledge
in a single knowledge representation language (Lenat,)1896ne critique of Cyc,
Smith instead asked what lessons knowledge representatignages could learn
from hypertext, “Forget intelligence completely, in othleords; take the project as
one of constructing the world’s largest hypertext systeiith @yc functioning as
a radically improved (and active) counterpart for the Dewegimal system. Such
a system might facilitate what numerous projects are stingtp implement: reli-
able, content-based searching and indexing schemes feiva&axtual databases,”
a statement that strangely prefigures not only search esdingthe revitalization
of knowledge representation languages due to the Semapto ¥991).

3.2 The Resource Description Framework (RDF)

What makes knowledge representation language on the diffelsent from clas-
sical knowledge representation? Berners-Lee’s earlyghtsy as given in the first
World Wide Web Conference in Geneva in 1994, were that “agild@mantics to the
Web involves two things: allowing documents which have infation in machine-
readable forms, and allowing links to be created with refeghip values” (Berners-
Lee, 1994b). Having information in “machine-readable fstrrequires a knowl-
edge representation language that has some sort of réfativetent-neutral lan-
guage for encoding (Berners-Lee, 1994b). The parallel tmkedge representation
in artificial intelligence is striking, as it also sought tadione universal encoding,
albeit encoding human-intelligence. The second pointatibtving links,” means
that the basic model of the Semantic Web will be a reflectiothef Web itself:
the Semantic Web consists of connecting resources by lirfkes.Semantic Web is
then easily construed as a descendant of semantic networksfassical artificial
intelligence, where nodes are resources and arcs are limider the aegis of the
W3C, the first knowledge representation language for thea®&mWeb, theRe-
source Description LanguagéRDF) was made a W3C Recommendation, and it is
clearly inspired by work in Al on semantic networks. This gltbcome as no sur-
prise, for RDF was heavily inspired by the work of R.V. Guhatlo& Meta-Content
Framework (Guha, 1996). Before working on MCF, Guha wasfdld@atenant of
the Cyc project, the last-ditch Manhattan project of cleasartificial intelligence
(R.V.Guhaand D.Lenat, 1993). There are nonetheless soyrfferences between
semantic networks and RDF, as RDF was built in accordandetiét Principles of
Web Architecture as given in Chapt®?, as detailed in the next subsections.
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3.2.1 RDF and the Principle of Universality

Semantic networks fell out of favour because of their usembiguous natural
language terms to identify their nodes and arcs, which becamroblem when
semantic networks were transported between domains dedafif users, a problem
that would be fatal in the decentralized and multi-linguatisonment of the Web
Woods (1975). According to the Principle of Universality)yce a resource can be
anything then a component of the knowledge representation langsiageld be
considered a resource, and thus can be given a URI. Instéalolediing the arcs and
nodes with natural language terms, in RDF all the arcs an@ésodn be labelled
with URIs. Although few applications had ever taken advgetef the fact before
RDF, URIs could be minted for things like the Eiffel Towgua Eiffel-Tower, an
absolute necessity for knowledge representation. Sireesehse of statements in
knowledge representation is usually about content in thddaautside the Web,
this means that the Semantic Web crucially depends on therratrange fact that
URIs can refer to things outside the Web.

This does not restrict the knowledge-representation lagguo merely refer to
things that we would normally consider outside of the Wetcasinormal web-pages
use URIs as well, and so the Semantic Web can easily be usedetoto normal
web-pages. This has some advantages, as it allows RDF tebdeéamodel the re-
lationships between web-accessible resources, and ewekimds of relationships.
This sort of “meta-data” is exemplified by the relationshgivkeen a web-page and
its human author, which in with RDF would both be denoted byldJRastly, this
ability to describe everything with URIs leads to some umli$eatures, for RDF
can then model its own language constructs using URIs, aké statements about
its own core language constructs. However, just as all corepis of RDF may be
considered resources, just as all resources may not have dIRtomponents of
RDF may not have URIs. For example, a string of text or a numisgyr be a com-
ponent of RDF, and these are call@drals by RDF. In RDF specified anonymous
resources are not given a URI, and these are céllaak nodes Yet it would be
premature to declare that the deployment of URIs in RDF $igmaajor improve-
ment over the natural language labels, for URIs can be justrdsguous as natural
language labels by themselves. However, various theofissroantics as well as
engineering like the ‘follow-your-nose’ principle wereettrized to solve the prob-
lem of ambiguity.

3.2.2 RDF and the Principle of Linking

The second step in Berners-Lee’s vision for the Semantic, Yedlbwing links to be
created with relationship values,” follows straightforddy from the application of
the Principle of Universality to knowledge representatidimce RDF is composed
of resources, and any resource may link to another resailnee any term in RDF
may be linked to another term. This linking forms the hearR&fF, as it allows
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disparate URIs to be linked together in order for statemen®DF to be made.
The precise form of a statement in RDF ifrigle, which consists of two resources
connected by a link, as shown in Figure 3.2. This use of RDivsludf the flexibility
of using URIs and links for reference instead of access.ly,asis use of URIs
and linksoutsideWeb representations like those of hypertext web-pagesskioav
flexibility of the linking paradigm, as RDF is an example oéthse of the idea
of alinkbasethat was developed in the hypertext community, in particidahe
Microcosmhypertext system (a pre-Web forebear that failed due to eioigobased
on open standards and also not being based on the Interpat)téin et al, 1990).
Any Web representatiom some form of Semantic Web languageh as RDF
are calledSemantic Web document3here are several options for encoding Se-
mantic Web documents. The W3C standardized an encoding & iRInh a ver-
bose XML format called ‘RDF/XML" and a simpler encoding el Turtle for
triples. In Turtle, a triple is three space-delimited ter(ti®e subject, predicate,
and object) ended in a periodt t p: / / www. exanpl e. or g/ Ei f f el Tower
http://ww. exanpl e. or g/ hasArchi t ect
http://ww. exanpl e. or g/ Gust ave Ei f f el . Using namespaces, wigx="ht t p: / / www. exanpl e.
one abbreviates the example tripleet: Ei f f el Tower ex: hasArchitect
ex: Qust ave_Ei f f el . As compared to Figure 3.1, tlealy noticeable difference
between RDF and a classical semantic network is the use of.URI

Bt oo ascanmpleorg asreitect
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Gustave Eiffel Himself

The Eiffel Tower Itself

Fig. 3.2 An example RDF statement

There are some restrictions to linking on the Semantic Webopgposed to the
vast numbers and kinds of links possible in XLink, linkingthle Semantic Web is
directed, like hyperlinks (DeRose et al, 200Ihe starting resource in the triple
is called thesubject while the link itself is called thepredicate andthe ending
resource in the tripleés the object The predicate is usually a role as opposed to
an arc role. The major restriction on the Semantic Web isttiasubject must be
a URI or a blank node, and the predicate must also be a URI. Bjezty on the
other hand, is given the most flexibility, as it may either bdRi, a blank node,
or a literal. This predicate-argument structure is a wathkn and familiar structure
from logic, linguistics, and cognitive science. Triplesemble the binary predicates
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in propositional logic needed to express facts, relatigosstand the properties of
individuals. Furthermore, triples seem similar to simpd¢umal language sentences,
where the subject and objects are nouns and the predicateib.a

From the perspective of the traditional Web, the main featdiRDF is that links
in RDF themselves have a required role URI. It is through tbie that URIs are
given to relationships outside the Web in RDF. For example rélationship of ‘is
architect of’ between Gustave Eiffel and the Eiffel Toweulkbbe formalized as
a link (as shown in Figure 3.2), as could the relationshipveen Tim Berners-
Lee and the creation of his web-page. Since the relatioasdnip abstract, these
URIs then refer to these relationships, the URIs may not lbessible, and RDF
predicates are unlike links in traditional hypertext syste Similarly, a triple by
itself can only state a simple assertion, but webs of linky & made between
triples to explain complex statements. A set of triples hetre resources is called
agraph, as illustrated in Figure 3.3 by two triples having the samigect, namely
that ‘The Eiffel Tower in Paris has as an architect calledt®uesEiffel.’

it enanmpleacy s ochitert bt o el ooy st

http: /v example.org /Eiffel Tower

ttpe eation exatple ocg hasLocation It/ fwwoweample, ong Paridl

Fig. 3.3 Merging RDF triples

With the ability to make separate statements using URIspthi purpose of
RDF is revealed to bimformation integrationDue to their reliance on URIs, RDF
graphs cargraph merge whentwo formerly separate graphs combine with each
other when they use any of the same URIse central purpose of URIs is to allow
independent agents to make statements about the samenteféith a common
language of URIs, agents can merge information about trexeefs of the URIs
in a decentralized manner. This is one of the most importppti@ations of the
Semantic Web, and it will be further explored in Chafer

3.2.3 RDF and the Principle of Self-Description

Once the Principle of Universality and the Principle of Limi are obeyed, the
Principle of Self-Description naturally follows, and RDE no exception. Self-
description is a crucial advantage of RDF in decentralizadrenments, since an
agent by following links can discover the context of a tripgeded for its interpreta-
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tion. As witnessed by the Brachman and Smith survey of kndgdeepresentation
systems, a bugbear of semantic networks was their inatulibg transferred outside
of the closed domain and centralized research group thagraessthem (Brachman
and Smith, 1980). The crucial context for usage of a padicsémantic network
was always lost in transfer, so that what precisely “IS-A’amg could vary im-
mensely between contexts, such as the difference betweadnelass relationship
or individual identity (Brachman, 1983). By providing seléscription, RDF triples
can be transported from one context to another, at leastioleahworld where nor-
mal conditions, such as when the URIs in the triple can be tisaccess a web-page
describing its content, and correct media types are used.

The hypertext Web, when every resource is linked togethexriges a seam-
less space of linked documents. For example, the W3C triegepdoy its own
internal infrastructure in a manner compatible with thengiples of Web archi-
tecture. Its e-mail lists are archived to the Web, and eantaidis given a URI,
so an agent may follow links seamlessly from one e-mail ngEssa another, and
by following links can launch applications to send e-mai$cdver more about the
group, and in new e-mails reference previous topics. Likewan initiative called
“Linked Data” attempts to deploy massive public data-sstRBF, and its main
tenet is to follow the Principle of Self Description (Bizetr &, 2008). The hope
is that the Semantic Web can be thought of as a seamless weiked Idata, so
that an agent can discover the interpretation of Semantls &&¢a by just follow-
ing links. These links will then go to more data which may Hosmal definitions
or informal natural language descriptions and multimediaictions. For exam-
ple, if one finds an RDF triple such es: Ei f f el Tower ex: hasArchitect
ex: Qustave Ei ffel and discover more information about the Eiffel Tower,
like a picture of it or the fact that construction was finished 889 by accessing
http://ww. exanpl e. org/ Ei f f el Tower.

Since RDF is supposed to be an all-purpose knowledge repietiesn system for
the Web, RDF statements themselves can also be descriefRBIF. RDF itself
has a namespace documerttiat p: / / www. wW3. or g/ 1999/ 02/ 22- r df - synt ax- ns#,
which provides a description of RDF in RDF itself. In otherrd®, RDF can be
meta-modeled using RDF itself, in a similar manner to theafiseflection in knowl-
edge representation and programming languages (Smiti,)1B8r example, the
notion of a RDF predicate tst t p: / / www. W3. or g/ 1999/ 02/ 22- r df - synt ax- ns#pr edi cat e,
and is defined there as “the predicate of the subject RDFnstate’ The same
holds for almost all RDF constructs, and a conformant RDFc@ssor can de-
rive from any RDF triple a set of axiomatic triples that defRBF itself, such as
rdf: predi cate rdf:type rdf: Property (all RDF predicates are of the
type property). For any RDF statement lée: Ei f f el Tower ex: hasArchitect
ex: Qust ave_Ei f f el ,an RDF-aware agent can then infer teat hasAr chi t ect
rdf :type rdf: predi cat e, which states in RDF that an architect relationship
is a predicate in a RDF triple. However, usually RDF is nottedsccording to the
Principle of Self-Description. Use of the media tygppl i cati on/ r df +xm
is not consistent usually, and the namespaces URI of spaaifis like the RDF
Syntax namespace just allow access of to some RDF triplashviduseless to a



3.2 The Resource Description Framework (RDF) 61

machine incapable of understanding RDF in the first placgead of a more use-
ful RDDL document Borden and Bray (2002). A version of RDDLRDF (Walsh
and Thompson, 2007) with an associated GRDDL transform dteroto make it
even easier for Semantic Web agents to follow namespacerdots to associated
resources (Connolly, 2007).

3.2.4 RDF and the Open World Principle

The Principle of the Open World is the fundamental principiénference on the
Semantic Web. A relatively simple language for declaring-slasses and sub-
properties, RDF Schema, abbreviated as RDF(S), was frorhabmning part of
the vision of the Semantic Web and developed simultaneauigityRDF. Yet deter-
mining how to specify exactly what other triples may be indelrfrom a given RDF
triple is a non-trivial design problem, since it requirediand) an inference mecha-
nism to a semantic network, which historically in Al featdidtle or no inference.
Those that do not remember the history of artificial inteltige are bound to repeat
it, and the process of specifying inference in RDF led to amoak complete repeat
of the ‘procedural versus declarative’ semantics debaseorginally as defined,
the original RDF specification defined its inference procedyy natural language
and examples. Yet differing interpretations of the orijiRBF specification led to
decidedly different inference results, and so incompatfiDF processors. This be-
ing unacceptable for a Web standards organization, thénatigefender of formal
semantics in artificial intelligence, Pat Hayes, oversaaciteation of a declarative,
formal semantics for RDF and RDF(S) in order to give them agipled inference
mechanism.

The Open World principle was considered to be a consequehite dack of
centralized knowledge implied by the decentralized cosatif URIs and links as
given by the Principles of Universality and Linking. The glégl to the removal
of centralized link indexes is that on the Semantic Web, “emave the central-
ized concepts of absolute truth, total knowledge, and twtalability, and see what
we can do with limited knowledge” (1998c). Hayes argued, ginailar fashion as
he had argued in the original ‘procedural versus declaatgmantics debate in
Al, that the Semantic Web should just use standard firstrquodicate logic. Yet
while Berners-Lee accepted the need for a logic-based dermame argued against
Hayes for the Principle of Open World and monotonicity, ama formal semantics
of RDF was designed to obey the Open World Assumption (HB&32). The rea-
son for maintaining the Open World Assumption was that agittiiples in a graph
merge should never change the meaning of a graph so one cauddnetract infor-
mation by simply adding more triples, or invalidate prexdlyumade conclusions.
This monotonicity is considered key, since otherwise evieng a RDF triple was
merged into a graph the interpretation of the graph coulchgbaand so the en-
tire graph might have to be re-interpreted, a potentialiypotationally expensive
operation. By having a design that allows only monotonisoséng, RDF allows
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interpretations to be changed incrementally in order téeseall in the potentially
unbounded partial information of the Web. Hayes himselhévally came to agree
with Berners-Lee on the issue, noting that reasoning on émea®tic Web “needs
to always take place in a potentially open-ended situatiogre is always the pos-
sibility that new information might arise from some otheuste, so one is never
justified in assuming that one has ’all’ the facts about sarpét (2002).

RDF Schema is on the surface a very simple modeling and imderanguage
(Brickley and Guha, 2004). Due to the Open World assumptimtike schemas
in relational databases or XML Schemas, RDF Schemas arerestrptive, but
merely descriptive, and so an agent cannot validate RDesrgs being either con-
sistent or inconsistent with an RDF Schema (Thompson et0842 They cannot
make the information given by a triple itself change, butyamirich the description
of an existing triple. RDF Schema adds two main features t&.Rirst, RDF(S)
provides a notion otlass or a set of resources. Then RDF(S) allows any resource
to be given membership in classes and declare sub-clagsesligets) of a class
that inherit all the triples created to describe the clagzo8d, RDF(S) also al-
lows properties to have sub-properties and for propeniésve types for domains
and ranges, such that in for a triple the subject is the dowruwaihthe object is the
range of a property. Imagine that the propexky. hasAr chi t ect has the range
ex: Per son and domairex: Bui | di ng. Note that RDF Schemas are not auto-
matically applied to triples even if they are mentioned ir@¢, such that for a state-
ment likeex: Ei ff el _-Tower ex: hasArchitect ex: Gustave.Eiffel,
the fact that the domain @&Xx: hasAr chi t ect is buildings and the range is peo-
ple, is not known unless the RDF Schema is automatically meplcand so merged
with the triple itself. An RDF(S)-aware agent that has eteid the RDF Schema can
deduce from the triple thatx: Gust ave Ei ffel rdf:type ex: Person,
namely that Gustave Eiffel is indeed a person. This sortropks reasoning is again
encoded as a set of axiomatic triples and rules for inferandesemantic conditions
for applying these axioms to infer more triples. See the RDffal Semantics for
full details (Hayes, 2004). From here on out, the acronymFRefers to both RDF
and RDF(S), whose formal semantics are given together 2094).

In practice, the Principle of the Open World has surprisiesuits. One of the
ramifications in RDF is that there is no proper notion of falsé only the notion that
something is either inferred or not, and if it is not inferrédnay simply be unde-
fined. Although it seems straightforward, in practice te&ds to surprising results.
Take the following example: “Gustave is the father of Vaileaf which in RDF is
ex: Gustave ex:fatherOf ex: Val entineEiffel.Is George also the
father of Valentineéx: Geor ge ex: father O ex: Val enti ne? Operating
under the closed world assumption, the answer would be napérating under the
Open World Principle, that statement would be possibletHere is no restriction
that the there someone can only have a single father, and F{(®Btating such a
restriction is impossible. This restriction is possibleéhirWeb Ontology Language
(abbreviated OWL, in an obscure reference to A.A. Milne) oaen-world exten-
sion of RDF that allows restrictions, such as cardinal@yh¢ placed on predicates.
However, even if one set the cardinality of tee: f at her Of predicate to one (so



3.2 The Resource Description Framework (RDF) 63

that one could have at most one father), the results will lper&ing: the reasoner
will conclude thatex: Geor ge andex: Gust ave refer to the same individual. In
contrast to the expected behaviour of many other inferengies, including peo-
ple, there is ndnique Name Assumptiorthe assumption is that each unique name
refers to a unique individuadue to the Open World Principle. The Unique Name
Assumption, while very useful for counting, makes an implassumption about
each name referring to only one individual, and if an indidtcannot be found
that satisfies the name then that individual must not exfgs flrther reinforces the
tendency of URIs on the Semantic Web, despite their glolmdesdo be ambiguous,
a point we shall return to.

3.2.5 RDF and the Principle of Least Power

Insofar as it is applied to the Semantic Web, the Principlesafst Power is strangely
counter-intuitive: traditionally knowledge represeitatlanguages were always
striving for greater power, yet the Semantic Web begins Wifi, a language pur-
posefully designed to be the least powerful language. Theeliet of the Semantic
Web is then on triples as the most basic language upon whigr nguages can
be based. The challenge for the Principle of Least Powenistbduild the rest of
the Semantic Web by expanding on the language of triples.

Inspired by the Principle of Least Power, he envisaged thett é(anguage would
extend and build upon lower-level languages. On top of RD#nBrs-Lee envis-
aged a whole stack of more expressive languages being gotesir Although the
vagarities of the standardization process have causedugachanges in the ‘Se-
mantic Web stack’ and numerous conflicting versions exis,driginal and most
popular version of the Semantic Web stack is given in Figufe(Gerber et al,
2008). The W3C has commenced standardization efforts imgbeu of these ar-
eas, and research in almost all levels of the stack has batnenmajority of the
research has focused on extending the Semantic Web witbltmies” based on
description logic like OWL. As should be suspected giverirtheritage in artificial
intelligence, most of the work in description logic appliedOWL has focused on
determining the most expressive possible language thaepres decidable infer-
ence. OWL itself works well with the Open World Principlense it only makes an
inference by adding inferred statements and classificatiand so remains mono-
tonic. While almost any possible triple is acceptable in RDWL allows users
to design ontologies that can even add constraints, suclhrdgality and data-
typing, that can make some RDF triples inconsistent withvargiOWL ontology.
Another part of the Semantic Web, originally unforeseernthis query language
SPARQL a query language for RDF similar to the popular databaseydaieguage
SQL (Prud’hommeaux and Seaborne, 2008). Current work isstedt orRule Inter-
change Forma} (RIF), a rule-language similar to Prolog for both seriggznormal
rules and operating over RDF data (Boley and Kifer, 2008he®higher-levels on
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the Semantic Web stack such as ‘Unifying Logic’ remain mystes, if poetic and
evocative.

Proof

L'o__gf:ic

Rules / Query

|

|
Ontology ‘ o
RDF Model & Syntax ‘

URI /IRI

Fig. 3.4 The Semantic Web stack

3.3 Information and Non-Information Resources

One question is whether or not there should be some way tinglissh between
URIs used to access web-pages and Semantic Web documahtdRas used as
names for things like physical entities and abstract cotsctéat are not ‘on the
Web. This latter class of URIs, URIs that are used as nanremnftities and abstract
concepts, are calleésemantic Web URIsShould a URI be able to both name a non-
Web accessible thing in addition to accessing a representaft the thing? This is

a difficult question, as it seems the class of web-pages apsiqat people should
be disjointed (Connolly, 2006). The W3C TAG took on this dims calling it the
httpRange-14ssue, which was phrased as the question: what is the rante of
HTTP dereference function? (Connolly, 2006)

The TAG defined a class of resources on the Web calleédfarmation resource
which is a resource “whose essential characteristics caoiesyed in a message”
(Jacobs and Walsh, 2004). In particular, this means thatfarmation resourceis
aresource that can be realized as an information-bearingsags, even with mul-
tiple encodingsA resource is defined by its sense (content), not the encadiitg)
Web representations. So information resources would alitinclude web-pages
and so resources on the hypertext Web, as well as most dilitejs. However,
there arehings that cannot be realized digitally by a messdn# only described or
depicted by digital information. These things amn-information resourcesTheir
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only realization is themselves. Many analogue things floeeeare non-information
resources. It appears that this distinction between inddion resources and non-
information resources is trying to get at the heart of théiriton between a re-
source being a web-pagéoutthe Eiffel Tower and a resourder the Eiffel Tower
itself. A web-page is an information resource, but the Eifi@ver itself is a non-
information resource, as is the textibby Dickor the concept of red.

The distinction is more subtle than it first appears. The tpess not whether
somethingis accessible on the Web, but whethercin be accessible on the
Web by beingin theory transmitted as an encoding, and therefore Web repre-
sentation, in a message. For example, imagine a possible where the Eiffel
Tower does not have a web-page. In this world, it would seeoni-intuitive
to claim that the web-page of the Eiffel Tower is then not aforimation re-
source just because it happens noexgstat this moment. This is not as implau-
sible as it sounds, for imagine if the Eiffel Tower's web ssrwent down, so that
http://ww.tour-eiffel.fr returned a404 status code. A more intuitive
case is that of the text dfloby Dick Is the text ofMoby Dickan information re-
source? If the complete text of Moby Dick isn’t on the Web, alag it might be.
However, a particular collector’s edition dfoby Dickcould not be an information
resource, since the part of that resource isn’t the textthmiphysical book itself.
Are ordinary web developers expected to have remarkablglastic discussions
about whether or not somethingassentiallyinformation before creating a Seman-
tic Web URI?

Both a web-page about the Eiffel Tower and the texttloby Dickare, on some
level of abstraction, carrying information about some eahin some encoding. So,
if any information resource is any resource which can haedntent realized as a
Web representation, then information resouroestbe on some level digital so that
they can be encoded as Web representations. Then both thef drby Dickand
a web-page about the Eiffel Tower are information resoyreesn if they are not
currently Web-accessible. Digital information can be sraitted via digital encod-
ings, and s@anin theory be on the Web by being realized as Web represengatio
even if the resource does not allow access to Web repregsgait a given time.
Lastly, a particular edition of Moby Dick, or Moby Dick in Fneh, or even some
RDF triples abouMoby Dick are all information resources, with various encodings
specified at certain levels of abstraction. It appears tebest story we have to tell
about the rather clumsy term ‘non-information resourcehet a non-information
resource is a thing that snalogueand so resists direct digital encoding, but can
only be indirectly encoded via representations of the tling suitable language.
This would then at least be the rather odd combination of ighi/entities and ab-
stract concepts. So the Eiffel Tower itself, Tim Bernerglémself, the integers,
and a particular book at a given point in space-time (i.e. paréicular shelf!) are
all non-information resources.

Should there be a class to which a web-page about the EifigeiTdelongs
but the text of some as-of-yet unwritten novel does not? heiowords, it seems
that the class oihformation resourcess too large, and we need a term for things
that are actually accessible over the Web at a given time.alVéhis kind of thing a
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Web resourcean information resource that has accessible Web repretentathat
realize its informationA Web resource can then be thought of as a mapping from
time of request to a series of Web representation respowbese the information
realized by those Web representatiansthe Web resource. This definition is close
in spirit to the original pre-Semantic Web thinking behirdources in IETF 1630,
as well as in IETF RFC 2616 where a ‘resource’ is defined as tworg data
object or service " and coherent with Engelbart’s originsd of the term ‘resource’
(Engelbart and Ruilifson, 1999; Fielding et al, 1999)SAmantic Web resourcis

a resource that allows access to Semantic Web documents

The distinction between information resources and noarimétion resources
has real effects. When the average hacker on the streets twaadd some informa-
tion to the Semantic Web, the first task is to mint a new URI ierresource at hand,
and the second task is to make some of this new informatidtabl@as a Web rep-
resentation. However, should a Web representation be sibteérom a URI for
a non-information resource? If not, should Web represemsitbe accessed from
such a non-information resource, as it might confuse theinfammation resource
itself with a Web resource that merely represents that resolYet how else would
fulfilling the Principle of Self-Description for Semanticaly resources be possible?
To refuse to allow access to any Web representations wouké the Semantic Web
completely separate from the Web. Non-information resesireeedissociated de-
scriptions resources that have as their primary purpose the represemghowever
incomplete, of some non-information resourtteother words, associated descrip-
tions are classical examples of metadata. According toAli& Fince the associated
description is a separate thing from the non-informaticouece it represents, the
non-information should be given a separate URI. This woultillfthe common-
sense requirement that the URI for a thing itself on the Sé¢im&eb should be
separatdrom the URI for some information about the thing.

The TAG officially resolvedhttpRange-14y saying that disambiguation be-
tween these two types of resource should be done througbtBeSee O her
HTTP header. The official resolution to Identity Crisis by tRFAG is given below
as:

e If an HTTP resource responds to a GET request wilxa response, then the
resource identified by that URI is an information resource;

e If an HTTP resource responds to a GET request wiB08 (See O her)
response, then the resource identified by that URI could peesource;

e IfanHTTP resource respondstoa GET requestwitka (error) response,
then the nature of the resource is unknown.

To give an example, let's say an agent is trying to access af@&nNeb URI
that names a non-information resource, the Eiffel Towelfitas illustrated in Fig-
ure 3.5. Upon attempting to access that resource with a HTEP @quest using
its Semantic Web URI, since the Eiffel Tower itself is not aformation resource,
no Web representations are directly available. Insteadatfent gets 803 See
O her that in turn redirects them to a documentation resourcehibsts Web rep-
resentations about the Eiffel Tower, such as the informatsource for the home-
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page of the Eiffel Tower. When this URI returns the 200 statode in response
to an HTTP GET request, the agent can infer that the homegagetually an in-
formation resource. The Semantic Web URI used to refer té&ifiel Tower itself,
http://ww. exanpl e. org/ Ei ff el Tower, could be any kind of resource,
and so could be a Semantic Web resource. B8 redirection then allows the
Semantic Web resource given by a Semantic Web URI for thelHiGwer itself to
comply with the Principle of Self-Description.

User Agent

HTTP Request
HOTTP GET

HTTP Response
200 OK

Btepe /v example.org) Fiffe Tower

@ — accesses iT-l;il"m"
— See Other
— = Server
— L]J (—w Server
— hittp:/ ftour-eiffel. fr
—— bttp:/ /W example org FAel Tower
= -
-
Web Representation™, o
5 ~,_refers -
A Web Page ~ e
AN refers_ o
-
Q N -ﬁT b Q
L P
I
,:!\ o
/i
A B
Resource
The Eiffel Tower sell

Fig. 3.5 The 303 redirection for URIs

An alternative to the obtusg03 redirection is théhash conventionwhere one
uses the fragment identifier of a URI to get redirection faefrIf one wanted
a Semantic Web URI that referred to a non-information resauike the Eif-
fel Tower itself without the hassle of a 303 redirection, ameuld use the URI
http://ww.tour-eiffel.fr/#to refer to the Eiffel Tower itself. Since
browsers, following the follow-your-nose algorithm, a@thdispose of it or treat the
fragment identifier as a fragment of a document or some otledr presentation,
if an agent tries to access via HTTP GET a Semantic Web URIubes the hash
convention, the server will not returnd®4 Not Found status code, but instead
resolve to the URI before the hadit t p: / / www. t our - ei f f el , which can
then be treated as a documentation resource. In this wayar8&nWeb inference
engines can keep the Semantic Web URI that refers to thd Edffeer itself and an
associated description about the Eiffel Tower separateking advantage of some
predefined behaviour in web browsers.

While at first these distinctions between Semantic Web messuand informa-
tion resources seems ludicrously fine-grained, clarifgirgm and pronouncing an
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official W3C policy on them had an immense impact on the Seim&wb, since
once there was definite guidelines on how to publish infoimnadn the Semantic
Web, users could start creating Semantic Web URIs and ctinge¢lsem to relevant
documentation resources. The TAG'’s decision on rediraatias made part of a tu-
torial for publishing Semantic Web information calleldw to Publish Linked Data
on the WelgBizer et al, 2007).

3.4 An Ontology of Web architecture

The primary use of a formal ontology in the context of Web #ezture is to allow
us to formally model the various distinctions used in speaffons and debates.
Although some other formal logic that deals with actions ameints may be more
suitable for modelling the temporal transactions of chsatver interactions on the
Web, an ontology is necessary in order to capture the vad@igictions given
in specifications first. As even the primary architects of Wb find themselves
confused about the distinctions between ‘entities’ in HTarRl ‘representations’
in Web architecture (Mogul, 2002), this ontology could beusé as a reference to
anyone interested in understanding or even extendingrexidteb specifications as
well as those interested in correctly implementing besttres that are dependent
on rather obscure corners of Web architecture, such as diDia¢a’s 303 redirects.
A first attempt to formally model Web concepts was tbentity, Resources, and
Entity ontology (IRE) (Presutti and Gangemi, 2008), which has\aain the IRW
ontology presented here via several iterations Halpin ardu®ti (2009).

IRW is a small ontology at the core of an ontology network. Blepecifically,
IRW defines the core concepts of the Web architecture and eaextended by
specialized ontology modules in order to address more Bp&¢eb domains such
as HTTP transactions and Linked Data. IRW reuses existitiglagies, some of
which are ontology design patterns (Gangemi and PresQ@BR The following list
summarizes the prefixes that are used in the ontology andiagsothem with their
respective ontologies. Terms in IRW ontology will be givan &l et ype font, and
if no namespace is given, we will assume threxv: namespace. Namespace URIs
are given in the footnotes.
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[Prefix [Ontology name |

i rw 2 [Identity of Resources on the Web

i r:3 [Information Realization

conp: 4|Composition

ht t p: °[HTTP concepts based on IRW

| dow: ®|Linked Data concepts based on IRW
tag: 7 |'ldentity Crisis’ concepts based on IRW
ont : 8 |Generic Resource
r df s: 9|RDF Schema

rdf : °|RDF

ow : {owL

Notice that the stable version of the ontology can also besssd via its PURL. The
latest version of the IRW ontologyisht t p: / / ont ol ogydesi gnpatterns. org/ ont/web/irw. ow #.
While the IRW ontology in full cannot be graphically explied due to lack of

| ©webClient| | webResource |

| ©webRepresentation | O associatedDescription

[ Y anyurl |

hasURIString , has?

| ©semanticwebur| Kt

subClass0f accesses , refersTo , isRef&rencedBy , isAccessedBy

| @Nunlm‘urmatiﬂnﬁe source |

Fig. 3.6 The main elements of the IRW network of ontologies is illattd as a graph. Boxes with
the symbol “C” are classes, while those with a small arrovidegre datatypes. Arcs labelled as
“subClassOf” represemtdf s: subC assOf relations between classes. The other arcs are either
object properties or datatype properties, depending onmahge node. The direction of an arc
indicates the domain and range of the property. Two arroasrtteet on their edges indicate a
relation whose domain and range is the given by the same class

space on a printed page, the primary classes and propexigs/an in Figure 3.6.
The IRW-related elements needed for the example of 303eetiin are given in
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Figure 3.5. The IRW ontology defines the cldssour ce to be equivalent to
rdf s: Resour cel?as it expresses the same intuition.

3.4.1 Resources and URIs

The notion of a URI is modeled as a clatiigl As XML Schema data-types for
URIs are not extensible, modeling URIs as a class allows talkabout different
kinds of URIs, such as IRIs (Internationalized Resourcantifiers) and Seman-
tic Web URIs. A propertyi dent i fi es can then connect a URI to a resource.
Since we want to associate a URI with character strings {jplgssith the XML
Schema data-type for URIs) such as ‘http://www.exampig.ae also have a prop-
erty calledhasURI St ri ng. This property has various (functional) sibling chil-
dren such one relating IRIs to URIs, so that a IRI given in tagahese character
can be a URI. The core properties we includefssRel at i veURI Stri ngand
hasAbsol ut eURI St ri ng for the conversion of relative URIs to absolute URIs.

e Resour ce: An OWL Class. “Anything that might be identified by a URI” (Ja
cobs and Walsh, 2004). This class is meant to express the isdmitéon of
r df s: Resour ce hence it is defined as equivalentrtdf s: Resour ce.

— owl : equi val ent To rdfs: Resource

e URI : An OWL Class. An abbreviation for Uniform Resource IdestifiA global
identifier in the context of the World Wide Web” (Jacobs anddha2004). Any
identifier that follows the role given in IETF RFC 3986 can bdrsstance of this
class, even if it is an IRI that has a conversion to a URI or asssheme such as
URN (Moats, 1997) or URL (Berners-Lee et al, 1994) that hamntmibsumed
by the concept of URIS?

— rdf s:subC assO Resource
— identifies exactly 1 Resource

e identifies: An OWL Object Property. The relationship between a URI and
aresource. It can be functional as one should “assign didtiRIs to distinct re-
sources” although some users of this ontology may wish taisethis constraint
and so use theef er sTo property (Jacobs and Walsh, 2004).

— ow :inverseXF isldentifiedBy
— rdfs: domai n URI

— rdf s: range Resource

— rdfs: subPropertyOr refersTo
— owl : Functi onal Property

12 Notice that the ontology is encoded in OWL2.

13 Note that this class has itself a URI that is thew class name for URI in the IRW namespace,
but concrete individual URIs are instances of this classcandd be any URI.
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e accesses: An OWL Object Property. The relationship between a respard
another resource where the former provides a causal pattovtbg latter.

ow :inverseX isAccessedBy
rdf s: domai n Resource

rdf s: range Resource

ow : TransitiveProperty

e refersTo: An OWL Object Property. The relationship between a respard
another resource where the former may be immediately dgiudistonnected
from the latter but still 'stand in’ for it in a syntactic exgssion. Note that ref-
erence in the logicist position is an aspect of an interpiceteof the syntax of
an ontology, not a property of the use of an ontology itseif.t!8s is actually
a meta-property that attempts to make explicit ititendedinterpretation of an
agent.

— ow :inverseO isReferencedBy
— rdf s: domai n Resour ce
— rdfs: range Resource

3.4.2 Information Resources

There is a controversial sub-classRefsour ce outlined in AWWW known as ‘in-
formation resources.” The AWWW defines the notionrdbrmation resource as
“aresource which has the property that all of its essentiat&cteristics can be con-
veyed in a message” (Jacobs and Walsh, 2004), which we meldefar mat i onResour ce.
This definition has widely been thought of as unclear, andhaefiwhat set of indi-
viduals belong in this class and what do not has been a sofiperetual debate

on various list-servs. In order to clarify this notion we kst to reuse a known
ontology pattern i.e. thenformation Realizatiorrontent ontology pattern, referred
to with prefixi r : . Remarkably, this content ontology pattern is extractethfthe
DOLCE Ultra Light ontology* and is implemented also in the Core Ontology for
Multimedia (COMM)!® for addressing a similar modeling issue. The reuse of such
a content pattern also supports interoperability with oth@ologies that reuse it.
This pattern-based approach to ontology design is a strerigRW.

Notice that thd r : is very small, two classes and two object properties, hence
it is convenient to simply directly import all of thinformation Realizatiorpat-
tern. Anl nf or mati onResour ce is viewed to be equivalent to the notion of
information objectfromi r : , such as a musical composition, a text, a word, or a
picture. An information object is an object defined at a lexfedbstraction, inde-
pendently from how it is concretely realized. This meansrdarimation resource
has, viathe r : r eal i zes property (with inversér : i sReal i zedBy), at least

14 htt p: // www. ont ol ogydesi gnpat t erns. or g/ ont/ dul / DUL. oW
5 http://conm semanti cweb. or g/
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onei r: I nformati onReal i zat i on, a concreteealization The fact that any
information resource’s “essential characteristics cacdrereyed in a single mes-
sage” implies that everything from a bound book to the elegtltages that encode
a HTTP message can be a realization of an information res¢diacobs and Walsh,
2004). Furthermore, the propempout (and inverse property,sTopi cOf ) ex-
presses the relationship between an information resomdether resource (or re-
sources) that an information resource is ‘about.’

Examples of realizations are descriptions of a resourcgyustural language or
depictions of a resource using images. Information ressucan, but not necessar-
ily, be identified (accessed or referred to) by a URI. In thasmer, the text of Moby
Dick can be an information resource since it could be cond@gea single message
in English, and can be realized by both a particular book oeb-page containing
that text. Thus, the definition of information object andoimhation realization can
be thought of as similar to the classic ‘type-token’ divisia philosophy of mind
between an object given on a level of abstraction and someetathing which re-
alizes that abstraction, where that single abstractionimasg multiple realizations.
This is similar, but broader than the class-individualidigion as one may want to
model the ‘token’ or ‘realization’ itself as a class. As spitls also broader than
TBoxandABoxdistinction from description logic.

e | nformati onResour ce: An OWL Class. “A resource which has the prop-
erty that all of its essential characteristics can be coegiély a message” (Jacobs
and Walsh, 2004).

rdf s: subCl assOf Resour ce

ir:isRealizedBy min 1 ir:InformationRealization

ow : equi val ent To ont: | nfornmati onResource

ow : equi val ent To ir: I nformationObject, which is defined by
i r: as"“A piece of information, such as a musical compositioexg & word,
a picture, independently from how it is concretely realizggangemi, 2008).

e ir:InformationRealization: An OWL Class. Imported fromr : . “A
concrete realization of an expression, e.g. the writterudwmt containing the
text of a law” (Gangemi, 2008). This is equivalent to the li@anotion of
repr esent at i on as defined in AWWW, “data that encodes information about
resource state” (Jacobs and Walsh, 2004).

e ir:realizes: An OWL Object Property. Imported froinr : . “A relation be-
tween an information realization and an information ohjedaj. the paper copy
of the Italian Constitution realizes the text of the Consiitn” (Gangemi, 2008).

— ow :inverseOF ir:isRealizedBy
— rdfs:domain ir:InformationRealization
— rdfs:range ir: I nformati onoj ect

e about : An OWL Object Property. An intentional relationship betmean infor-
mation resource and another resource. Note that this gyoiservider than the
inverse functional oaf : pri mar yTopi ¢ andf oaf : i sPri maryTopi cOf
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propertiesof th&ri end of a Friend (FOAF) vocabulary:®which could
be considered sub-properties of this property, asath@ut property makes no
claims about whether a topic is primary or not.

— ow :inverseO:isTopicOf
— rdfs: domai n | nfornmati onResource
— rdf s: range Resource

3.4.3 Web Resources and Web Representations

Up until this section, the work done by IRW has, outside of timaring URIs, not
been specific to the Web per se, but explicating the more geideas of information
and resources that apply equally as well to books as to wgbspén this section,
we further specialize IRW to the Web domain by considerirgribtion of ‘repre-
sentations’ that can be transferred over a protocol sucifa$®Hro avoid confusion
with the broader philosophical notion of representatioa call this term from Web
architectureweb representationsinstead. Also, it is possible our use of the term
‘representation’ is narrower than the AWWW's use, whichlddee equivalent to
the notion of any information realization in the large, vehdur use of the term is
instead for representations sent over the Web using HTTighé&unore, one can
distinguishweb resource§\WebResour ce) as a subset of information resources
that areunder normal conditionasually web-accessible, i.e. the server is not down,
the browser works normally, etc.

In terms of HTTP, aAébRepr esent at i on is an entity (associated with vari-
ous entity headers and an entity body) that is also subjexdritent negotiation and
so may be transferred as multiple entities. This is becassgjven in IETF RFC
2616, a web representation may be defined as “an entity iadlwdth a response
that is subject to content negotiation” such that “there mgt multiple representa-
tions associated with a particular response status” (fFiglet al, 1999). Therefore,
we defineébRepr esent at i on as a sub-class of a more gendtat i t y class
as defined by HTTP RFC 2616 (Fielding et al, 1999). The termiti¢rcould be
confusing as it is often used in many other philosophical &uthnical contexts.
However, in HTTP arentity may be the information given by either a HTTP re-
quest or response, but a web representation, by virtue afjteeirepresentation’
of a resource, is only for a HTTP response. A web representddi thus a kind
of entity that is about the state of a resource as defined in AWWacobs and
Walsh, 2004), but there are entities that only request #ite stf resources or indi-
cate that requests can or cannot be fulfilled. For exampl& BHPOST request or
even a 404 response are entities but they do not necessgpilgsent the state of
a particular web resource. An entity may be transferred @sefjuest or response
of many particular actions by a client. For example, différdRIs may return the
same entity, such as when one URI hosts a copy of a resourea biv another

16 Thef oaf : prefix stands foht t p: / / xml ns. cond f oaf / 0. 1/
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URI. In order to model the complexity of headers and bodiddTi P entities, we
use another popular content ontology pattern,Gloenpositionpattern, referred to
asconp: . This pattern, extracted from the DOLCE Ultra Lite ontolddyallows
us to model a non-transitive component-whole relationshkifpch however implies
(by subsumption) a transitive part-of relation.

e http: Entity:An OWL Class. “The information transferred as the payload o
arequest or response” (Fielding et al, 1999). “An entitysists of metainforma-
tion in the form of entity-header fields and content in thexfaf an entity-body”
(Fielding et al, 1999).

— rdfs:subC assOf ir:InformationRealization
— conmp: hasConmponent exactly 1 http: EntityHeader
— conp: hasConponent nmax 1 http: EntityBody

e http: EntityBody: An OWL Class. Whatever information is sent in the re-
questorresponse s in “aformat and encoding defined by tiitg-éreader fields”
(Fielding et al, 1999). Also called in HTTP the ‘content’ ofreessage (Fielding
etal, 1999).

— http: hasMedi aType sone http: Medi aType

e http: EntityHeader: An OWL Class. “Entity-header fields define meta-
information about the entity-body or, if no body is presetiput the resource
identified by the request” (Fielding et al, 1999). Sometircalied in HTTP
“meta-information” (Fielding et al, 1999). Various fieldktbe entity header can
define HTTP status coddst(t p: St at usCode), contentencodindht t p: Medi aType),
contentlanguagéf t p: Cont ent Language), date of creation{t t p: Cr eat i onDat e),
date of modificationlft t p: Modi fi cat i onDat e), and so on.

— rdfs:subClassOf ir:InfornationRealization
— http: hasConponent nmin 1 http:EntityHeaderField

e http: hasHeader Fi el dVal ue: An OWL Object Property. A relation be-
tween an entity header field and its field values. It is spiedlby several prop-
erties, each representing a typical entity header field asicht p: hasSt at usCode
andht t p: hasCont ent Type.

— rdfs: domai n http: Header Fi el d

e WebRepr esent at i on: An OWL Class. A sequence of octets, along with rep-
resentation metadata describing those octets, that tutesta record of the state
of the resource at the time when the representation is gee(Berners-Lee
et al, January 2005). Note that the term ‘representation'sisd for this class
in IETF RFC 3968, but has been changed to ‘web representaticseparate
it from the more general notion of ‘representation’ in pedphy (Jacobs and
Walsh, 2004)

7ht t p: / / www. ont ol ogydesi gnpat t er ns. or g/ ont/ dul / DUL. oW
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— rdf s: subCl assOf http:Entity
— locatedOn min 1 WebServer

e \WbResour ce: An OWL Class. “A network data object or service” (Fielding
et al, 1999). As such, this is a resource that is accessibléhei Web (Hayes
and Halpin, 2008). Therefore, a web resource must have sttdea URI and be
realized by at least one web representation.

— rdf s: subCl assOf | nformati onResour ce
— isldentifiedBy min 1 URI
— ir:isRealizedBy min 1 WbRepresentation

3.4.4 Media Types, Generic, and Fixed Resources

One intriguing problem, central to the notion of web repntéggons and resources,
is the connection between media types and resources. Wtiywork has been done
in this area, likely due to the lack of use of content negmtain general on the
hypertext Web. For example, instead of using content natjori to return versions
of the same resource in multiple languages, many sites ysieiekinks. The only
substantial work so far on this issue has been Berners-he&&eneric Resources
where he outlines an ontology of types of resources conaitidoy how the resource
varies over HTTP requests (Berners-Lee, 1996a). Berneeshias informally said
that ageneric resources equivalent to information resources, since the impartan
part of a generic resource is the information itself, not pasticular realization of
the information. For example, a resource like ‘the weatbport for Los Angeles’
is a generic resource, as is the text of Moby Dick in any laggudowever, the
‘weather report for Los Angeles today’ is not a generic rese@s it is indexed to a
particular temporal junction nor is Moby Dick in a particulanguage like English.
Resources may also vary over time. For example, the text diyMaick will be
the same over time and so lieme-invariant, but the resource for the ‘weather
report for Los Angeles’ will change over time and so thae-specific (Berners-
Lee, 1996a). Furthermore, resources may vary over megestyFor example, the
same information may be given in some custom XML dialect oFRID the same
depiction may be given in different formats like JPG and SV@ese resources
are all imported from Berners-Lee¥it ontology® There are alséixed resources
that regardless of aspects like time and natural languageyalreturn the same
representation. For example, a resource for Moby Dick theays provided the
same edition in the same language as plain text would be aresedirce. The idea
of a fixed resource is surprisingly common, as it equatesgesineb-page with a
resource and so matches the folk psychology of most usehe dveb.

e ont: Ti meSpeci fi cResour ce: An OWL Class. A resource of which all
representations are in the same version. Representafitims i@source will not

B http://ww. w3. or g/ 2006/ gen/ ont
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change as a result of the resource being updated to a verifotime. The dates
of creation and of last modification of such a resource woel@kpected to be
the same.

— rdfs: subC assOf | nf ormati onResour ce
— owl :disjointWth ont: Ti reGeneri cResource
— ir:realizedBy only (WbRepresentation A
(conmp: hasConponent exaclty 1 CreationDate) A
(comp: hasComponent exactly 1 LastModificationDate))

e ont: LanguageSpeci fi cResour ce: An OWL Class. A resource of which
all representations are in the same natural language.

— rdf s: subCl assOf | nformati onResource
— owl :disjointWth ont:LanguageGeneri cResource
— ir:realizedBy only (WbRepresentation A

(comp: hasComponent exactly 1 Cont ent Language))

e ont: Cont ent TypeSpeci fi cResour ce: An OWL Class. A resource of
which all representations are encoded in the same Interditatype, also called
‘content-type.

— rdfs: subd assOF | nformati onResour ce

— owl :disjointWth ont: Content Generi cResource

— realizedBy only (WbRepresentation A
(conmp: hasConmponent only (EntityBody encodedln exactly
1 MediaType)))

e ont: Fi xedResour ce: An OWL Class. A resource whose representation type
and content will not change under any circumstances.

— owl : equi val ent To (ont: Cont ent TypeSpeci fi cResource A
ont : LanguageSpeci fi cResource A ont: Ti meSpeci fi cResour ce)

3.4.5 Hypertext Web Transactions

The typical web transaction is started by an agent, givenRW Iby a class
Agent , which is some client like a browser in the context of the Waacbbs
and Walsh, 2004). This agent can issuequest (r equest s) through an entity
(htt p: sendsEnti ty) containing a header field with, as value, the URI that the
request is acting uporhésRequest edURI ). This path is modeled in IRW by
means of a property chain axiom, asserted in the module elévot HTTP, i.e.

ht t p: . Note that equest s serves as a hook to the alignment of IRW WA TP

in RDF' as a URI corresponds a response executed by a server whichsrein

Yhttp://ww. w3. or g/ TR/ HTTP- i n- RDF10/
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entity which includes a status codet  p: St at usCode). Hence, we also intro-
duce the clas¥ébSer ver for the generic notion of aveb server, which has a
r esol ves property. The property represents the resolution of a URI¢oncrete
web server, which currently is done by mapping a URI to an kiresk or addresses
via the Domain Name System (DNZ).

EachWebSer ver resol ves at least onedJRI , and for the resolution to be
successful, the web server has also to bddbation ofi.e. it host s, at least one
WebRepr esent at i on. This indicates that a web server concretely can respond
to an HTTP request with a particular web representationceSirrquest s and
r esol ves are all sub-properties of the transitive propextcesses, this part of
the ontology models the physical and causal pathway betagaren request for a
URI and a response with a web representation.

The entity given in the request may have a preferred megiie;gnd the response
should have a media-type as well. The media-type, such aicaion/xml’ or ‘ap-
plication/rdf+xml, tells the agent how to interpret thetignbody of the response.
Media-types are modeled in IRW through the cliksli aType. The relationship
between ant t p: Medi aType and anht t p: Enti ty is given by theencodes
relationship. Note that each web representation has aesimgtlia-type.

A URI may also have aedi r ect sTo property, a sub-property afccesses,
that we can use to model HTTP redirection. This can be done wiamber of dif-
ferent techniques, ranging from a ‘Content-Location’ HTamRity header to a 300-
hundred level HTTP status code, and to model these we relfe@dTTP-in-RDF
ontology?! Note that, even in the light of the W3C TAGHtpRange-14iecision,
redirection can be also used between information resothe¢save nothing to do
with the Semantic Web. So, the domain and range say nothiogtabe type of
resource.

e Agent: An OWL Class. A human or a program that establishes conmesti
for the purpose of sending requests (Fielding et al, 199%thé W3C AWWW,
an agent is “a person or a piece of software acting on therimdton space on
behalf of a person, entity, or process” (Jacobs and Wal€h¥)20

— rdfs: subCl assOF Resource

e requests: An OWL Object Property. “The act of issuing a request messag
from a client to a server that includes, within the first lirfetttat message, the
method to be applied to the resource, the identifier of thewe®, and the pro-
tocol version in use” (Fielding et al, 1999). A request ati®a flow itself char-
acterized by an agent that sends an entity that includes atbiRlis expressed
in IRW by a property chain axiom.

— rdfs: subPropertyOf accesses
— rdfs: domai n Agent
— rdf s: range URl

20 Although caching complicates this in actual situations.
2Lhttp: // wwwv. w3. or g/ TR/ HTTP- i n- RDF10/
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— http:sendsEntity o conp: hasConponent o http: hasRequest edURI

e \WebSer ver: An OWL Class. “An application program that accepts conioast
in order to service requests by sending back responsekfifigeet al, 1999).
Note that “any server may act as an origin server, proxy,vgateor tunnel,
switching behavior based on the nature of each requestt{feeet al, 1999). A
web server hosts at least one web representation and resaleast one URI.

— rdfs: subC assOfF Agent
— hosts mn 1 WbRepresentation
— resolves mn UR

e resol ves: An OWL Object Property. The relationship between a webeerv
that hosts a web representation, and the URI of the resoeatieed by that web
representation.

— ow inverseO resolvesTo

— rdfs: subPropertyOf accesses

— rdf s: domai n WebSer ver

— rdf s:range URl

— hosts o ir:realizes o isldentifiedBy

e | ocat edOn: An OWL Object Property. A relation between a web representa
tion and a web server, indicating that the entity can be obthby an HTTP
request to the web server.

— ow :inversed hosts
— rdfs: domai n WebRepr esent ati on
— rdfs: range WebServer

e encodedl n: An OWL Object Property. The relationship between an infarm
tion realization and its encoding. In the case of entitisgdinge is the entity’s
media type. So given an entity that has a component with seabihtpe header
field set to a certain media type, that entityeiscodedl| n that media type.

— ow :inversed encodes
— rdfs:domain ir:Informati onReal i zati on
— conp: hasConponent o conp: hasConponent o irw hasVal ueMedi aType

e redirectsTo: An OWL Object Property. The relationship between two URIs
wherein any requested entity is forwarded to the URI givethabject of this
property.

ow :inverseX redirectedFrom

rdf s: subPropertyOf accesses

rdfs: domain UR

rdf s: range URI
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3.4.6 Modeling the Semantic Web and Linked Data

The Semantic Web is supposed to use URIs not only for hypedtsouments but
also for abstract concepts and things. In order to modeli@ttplthe redirection
solution to the ‘Identity Crisis’ by the W3C TAG, two distinsub-properties of
redi rect sTo have been added in a specific module of fVsssociated with
prefixt ag: . This module contains theag: r edi r ect s303To property and the
tag: redi rect sHashTo property. The former models the TAG’s ‘solution’ to
httpRange-14vhile the latter represents the hash convention. With thkesds of
re-directions in hand, we can now model the typical Semaffb transaction. A
new sub-class diRI , Semant i cWWebURI is given. ASemantic Web URIrefers
to a resource that is not accessible on the Web such as tlet Hiffier, and so the
URI must redirect to another URI that can access an infoonaé&source containing
data encoded in some Semantic Web language like RDF. Theréiiés kind of URI
also has a constraint that it must have at leastradi r ect sTo property.

As mentioned earlier, in the ‘Linked Data Tutorial’ notegtkinds of resources
referred to by a Semantic Web URI are callemh-information resources(Bizer
et al, 2007). Although this term is controversial (and ecifiii not endorsed by
Berners-Lee) and hard to define abstractly, operationalginiply means a re-
source that is not web-accessible that therefore shoulthriply with the Linked
Data initiative, use redirection to resolve to an inforroatresource describing
the non-information resource. Although the space of ndorimation resources is
relatively large and hard to draw precise boundaries arowedlist a few exem-
plars in order to serve a what Dennett would call “intuitipmmps” in order to
help us understand this concept (Dennett, 1981). In p#ati@new class called
| dow. Nonl nf or mat i onResour ce is introduced, which represents things that
can not themselves - for whatever reason - be realized agle sligitally encoded
message. Naturally, this class is disjoint wiithf or mat i onResour ce. A num-
ber of different kinds of things may bionl nf or mat i onResour ces. Since
this concept is the cause of much confusion and debate, tiloa@nusly range over
physical people, artifacts, places, bodies, chemicaltanbss, biological entities,
and the like - or to resources that are created in a sociaépsoand can not be com-
pletely realized digitally such as legal entities, poétientities, social relations, as
well as the concept of a horse, and imaginary objects likearns or even functions
over the integers.

An associated descriptiongl dow. Associ at edDescri ption)is an in-
formation resource that can be accessed via redirectiom & Semantic Web URI
(Bizer et al, 2007). In DBpedfdthe resourcdbpedi a: / r esour ce/ Ei f f el _Tower
redirects todbpedi a: / dat a/ Ei ff el _Tower in RDF/XML, and to an HTML
page atdbpedi a: / page/ Ei f f el “Tower depending on the requested me-
dia type (Auer et al, 2007). This Linked Data typical scemaran be general-
ized as follows: avebC i ent requests aSenmanti cWebURI x and the re-

22htt p: / / www. ont ol ogydesi gnpat t er ns. or g/ ont / web/ t ag2i r w. owl
23 prefixdbpedi a: is used for the namespabét p: / / dpedi a. or g
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quest is redirected (via hash or 303 redirection) to another that identifies a

| dow: Associ at edDescr i pti on?4 which has on@bout property to a non-
information resource. The associated description is glfyicreated in order to de-

scribe its associated non-information resource. We mlodielv: Associ at edDescri pti on
as a subclass MébResour ce. For an illustrated example of these classes in ac-

tion, refer to Figure 3.5.

e Semanti cWebURI : An OWL Class. A URI used to identify any resource that
is not accessible on the Web.

— rdfs: subd assOfF URI
— identifies only Nonlnformati onResource
—redirectsTo min 1 (URI and identifies only | dow Associ at edDescri pti on)

e Nonl nf or mat i onResour ce: An OWL Class. All resources that are not in-
formation resources.

— rdfs: subC assOf Resource
— owl :disjointWth Informati onResource

e | dow Associ at edDescri pti on: An OWL Class. A resource that exists
primarily to describe a non-web accessible resource.

— rdfs: subCl assOF WebResour ce
— redirectedFrom sone Semanti c\WWebURI
— i sAbout exactly 1 I dow Nonlnfornmati onResource

e tag:redirects303To: An OWL Object Property. A redirection that uses
the HTTP 303 status code.

ow :inverseX redirected303From
rdf s: donai n URI

rdf s: range URI

rdf:type ow : Functi onal Property

e tag:redirect sHashTo: An OWL Object Property. A redirection that works
via the fragment identifier being removed from the URI.

— ow :inversed redirectedHashFrom
— rdfs:donmai n URI
— rdf s:range URl

24 Typical Linked Data terminology is represented in a specifinodule of

IRW referred to here by the prefixl dow., which stands for the namespace
http://ontol ogydesi gnpatterns. org/ ont/web/ | dow2i r w. o
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3.5 The Semantic Webh: Good Old Fashioned Al Redux?

Despite its apparent utility in crafting formal ontologies the present moment the
Semantic Web has not taken off as part of the wider Web. To piahgs seemed
that the Semantic Web was nothing but a second coming oficédsstificial intel-
ligence. As put by Yorick Wilks, “Some have taken the initesentation of the
Semantic Web by Berners-Lee, Hendler and Lassila to be ateasént of the Good
Old Fashioned Al agenda in new and fashionable World Wide W&ahs” (2008).
So why would the Semantic Web succeed where classical kdgeleepresenta-
tions failed? The first reason would be a difference in theeulythg intellectual
project. A second reason would be a difference in technology

The difference of the project is one both of scope and goa.Sémantic Web is,
at first glance at least, a more modest project than artificialligence. To review
the claims of artificial intelligence in order to clarify tiheelation to the Semantic
Web, we are best served by remembering the goal of Al as digtédhn McCarthy
at the 1956 Dartmouth Conference, “the study is to proceetherbasis of the
conjecture that every aspect of learning or any other featfiintelligence can in
principle be so precisely described that a machine can be toagimulate it” (Mc-
Carthy et al, 1955). However, ‘intelligence’ itself is nates vaguely defined. The
proposal put forward by McCarthy gave a central role to “camrsense,” so that
“a program has common sense if it automatically deducesdelf ia sufficient wide
class of immediate consequences of anything it is told arat vttalready knows”
(1959).

In contrast, the Semantic Web does not seek to replicate imimtelligence and
encode all common-sense knowledge in some universal egeg®nal scheme.
The Semantic Web instead leaves “aside the artificial igetice problem of train-
ing machines to behave like people” but instead tries to Ideva representation
language that canomplemenhuman intelligence, for “the Web was designed as
an information space, with the goal that it should be use@ulonly for human-
human communication, but also that machines would be abpaitticipate and
help” (Berners-Lee, 1998c). Despite appearances, the 1ggnvseb is in the spirit
of Licklider and Engelbart rather than McCarthy, Minskydagven latter-day pro-
ponents of Al like Brooks. Berners-Lee is explicit that thejpct of encoding hu-
man intelligence is not part of the problem, as the Semanéb Woes not imply
some magical artificial intelligence which allows machitegomprehend human
mumblings. It only indicates a machine’s ability to solve allwdefined problem
by performing well-defined operations on existing well-defl data” (Berners-Lee,
1998c). Instead, the Semantic Web is an intellectual ptejaose goal is philosoph-
ically the opposite of artificial intelligence, the creatiof new forms of collective
intelligence. As phrased by Licklider, this would be a “maachine symbiosis,”
in which in “the anticipated symbiotic partnership, menlwit the goals, formu-
late the hypotheses, determine the criteria, and perfoemavhluations. Computing
machines will do the routinizable work that must be done tppre the way for
insights and decisions” (1960).
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While the goals of the Semantic Web are different, it dodkestiploy the same
fundamental technology as classical artificial intelligenknowledge representa-
tion languages. As put by Berners-Lee, “The Semantic Webhiatwe will get
if we perform the same globalization process to knowledgeazentation that the
Web initially did to hypertext” (Berners-Lee, 1998c). Yaete is a question about
whether or not knowledge representatitself might be the problem, not just scale.
As put by Karen Sparck Jones, one of the founders of infaonaetrieval, “there
are serious problems about the core [Semantic Web] ideanobitong substantive
formal description with world-wide reach, i.e. having yaake and eating it, even
if the cake is only envisaged as more like a modest spongethakethe rich fruit
cake that Al would like to have” (2004). So the problem mayitig¢he very use
of knowledge representation languaitgelf. So far we have shown that the proper-
ties of at least RDF as a a knowledge representation lanquagehe emphasis on
‘Web’ as opposed to ‘Semantic’ in the Semantic Web, as it hasnaber of proper-
ties — a graph structure, the ability to make unconstraitetgsents, and the like
— that have their basis in the tradition of the Web, rathen thrzowledge represen-
tation in Al. As the Web has proved to be extraordinarily ®ssful, the hope of
the Semantic Web is that any knowledge representation &gewhich is based on
the same principles as the Web may fare better than its amsaéstartificial intel-
ligence. However, these changes in the formalism of RDF duéé influence of
the Web are all relatively minor, and while counter-intestito traditional knowl-
edge representation, they have yet to be vindicated as thar8ie Web has not yet
reached widespread use.

Overlooked by Sparck Jones in her critique of the Seman&b \he only sub-
stantive difference between traditional knowledge regméstion and the Semantic
Web is the central role of URIs. Just as the later principfé&eb architecture build
upon the Principle of Universality, so the Semantic Webdsibn top of the use
of URIs as well. The true bet of the Semantic Wemat a bet on the return of
knowledge representation languages, but a bet on the salitgrof URIs, namely
that agents in a decentralized and global manner can use tdRlsare meaning
even about non-Web accessible things. As this use of URIsealsasic element of
meaning is central to the Semantic Web, and as it is a geryuiegitechnical claim,
it is precisely in the understanding of the status of meaaimdjreference of URIs
that any nevtheoreticalclaim must be made. Furthermore, it is precisely within the
realm of URIs that anyechnicalclaim to advance must be made.



Chapter 4
Theories of Semantics on the Web

Meaning is what essence becomes when it is divorced frombjleetf reference
and wedded to the wordlV.V.O. Quine (1951).

4.1 The ldentity Crisis

How can agents determine what a URI identifies? To use a wone rfiamniliar
to philosophers, how can anyone determine what a URI refes tmeans? On
the pre-Semantic Web, a URI trivially identify the hypettexeb-pages that the
URI accesses. On the Semantic Web, a whole new cluster ofigugsdubbed the
Identity Crisis emerges. Can a URI for the Eiffel Tower be used to refer to the
Eiffel Tower in Paris itself? If one just re-uses a URI for abagage of the Eiffel
Tower, then one risks the URI being ambiguous between tlielHdwer itself and
a particular representation of the Eiffel Tower. If one githe Eiffel Towerqua
Eiffel Tower its own URI, should that URI allow access to anjormation, such
as a hypertext web-page? In the realm of official Web starsddhe jury is still
out. In the specification of RDF, Hayes notes that “exactlaiit considered to be
the ‘meaning’ of an assertion in RDF or RDF(S) in some broa$senay depend
on many factors, including social conventions, commentsatural language” so
unfortunately “much of this meaning will be inaccessiblentachine processing”
such that a “a full analysis of meaning” is “a large reseaoghd’ (Hayes, 2004).
The comment in the RDF Semantics specification glosses dueg@argument.
Unsurprisingly, the reason there is no standardized wayeterthine the meaning
of a URI is because, instead of a single clear answer, theredsceptual quagmire
dominated by two positions in the development of RDF. The fiosition, thedi-
rect reference positigns that the meaning of a URI is whatever was intended by the
owner. The owner of the URI should be able to unambiguoustjade and com-
municate the meaning of any URI, including a Semantic Web. Wirthis position,
the referentis generally considered to be some individoambiguousinglething,

83
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like the Eiffel Tower or the concept of a unicorn. This vieviqids the one generally
held by many Web architects, like Berners-Lee, who imadihelds not just for the
Semantic Web, but the entire Web. The second position, whieekall thelogicist
positiondue to its more clear roots in non-modal logic, is that forSeenantic Web,
the meaning of a URI is given by whatever things satisfy theleh@) given by the
formal semantics of the Semantic Web. Adherents of thistjposhold that the ref-
erent of a URI is ambiguous, as many different things casfyatvhatever model
is given by the interpretation of some sets of sentencegtisé\URI. This position
is generally held by logicians, who claim that the Semantab\V¢ entirely distinct
from the hypertext Web, with URIs serving as nothing moretparticularly funny
symbols.

These two antagonistic positions were subterranean inseapment of the Se-
mantic Web, until a critical point was reached in an argurbetween Pat Hayes, the
Al researcher primarily responsible for the formal senantif the Semantic Web,
and Berners-Lee. This argument was provoked by an issusdc&bcial Meaning
and RDF’ and was brought about by the following draft stateimetheRDF Con-
cepts and Abstract Syntax Recommendatitre meaning of an RDF document
includes the social meaning, the formal meaning, and thialsmeaning of the for-
mal entailments” so that “when an RDF graph is asserted imtblg, its publisher
is saying something about their view of the world” and “suntaasertion should be
understood to carry the same social import and resporigbifis an assertion in any
other format” (2004). During the period of comments for tHeMRWorking Drafts,
Bijan Parsia commented that the above-mentioned senteincest “really specify
anything and thus can be ignored” or are “dangerously uhdaght and under-
specified” and so should be removed (Parsia, 2003). Whilestttfiese sentences
about the meaning of RDF seemed to be rather harmless ana@om@ance with
common-sense, the repercussions on the actual implenoertathe Semantic Web
are surprisingly large, since “an RDF graph may contain fdedj information’ that
is opaque to logical reasoners. This information may be bgddiman interpreters
of RDF information, or programmers writing software to penh specialized forms
of deduction in the Semantic Web” (Klyne and Carroll, 2004)other words, a
special type ohon-logicalreasoning can therefore be used by the Semantic Web.

An example of this extra-logical reasoning engendered é¥ettt that URIs iden-
tify ‘one thing’ is as follows. Assume that a human agent famfl a URI for the
Eiffel Tower from DBpedia, and so by accessing the URI a Seim&veb agent can
discover a number of facts about the Eiffel Tower, such thatin Paris and that its
architect is Gustave Eiffel, and these statements aresedeas an RDF graph (Auer
etal, 2007). However, a human can have considerable baskdimowledge about
the Eiffel Tower, such as a vague belief that at some poinitrie it was the tallest
building in the world. This information is confirmed by therhan agent employing
the follow-your-nose algorithm, where by following the gedi of any triple, the hu-
man would be redirected to the hypertext Wikipedia artitlewt the Eiffel Tower,
where the agent discovers via a human-readable descrithtétrihe Eiffel Tower
was in fact the tallest building until 1930, when it was sigeeled in height by New
York City’s Chrysler building. This information isot explicitly in the RDF graphs
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provided. It is furthermore difficult to even phrase thistsditemporal information
in RDF. Furthermore, the human agent discovers another tiRhé Eiffel Tower,
a RDF version of Wordnet in the fileynset - Ei f f el _Tower - noun- 1. r df
(van Assem et al, 2006). When the human agent accesses thighdre is little
information in the RDF graph except that this URI is used feroain. However,
the human-readablgl oss property explains that the referent of this URI is ‘a
wrought iron tower 300 metres high that was constructed iisRa1889; for many
years it was the tallest man-made structure.” Thereforehthman agent believes
that there is indeed a singular entity called the ‘Eiffel ®oinn Paris, and that this
entity was in fact at some point the tallest building in therdpand so the two
URIs are equivalent in some sense, although the URIs do noity match. What
the ‘Social Meaning’ clause was trying to state is that thenan should be able
to non-logicallyinfer that both URIs refer to the Eiffel Tower in Paris, anéyh
use this information to merge the RDF graphs, resulting ihges some improved
inferences in the future.

This use-case was put forward primarily by Berners-Lee, tiedW3C RDF
Working Group decided that deciding on the relationshipveen the social and
formal meaning of RDF was beyond the scope of the RDF Workirau@to decide,
so the RDF Working Group appealed to the W3C TAG for a decishks1 TAG
member Connolly noticed, they “didn’t see a way to specify ftlois works for RDF
without specifying how it works for the rest of the Web at then® time” (Berners-
Lee, 2003b). In particular, Berners-Lee then put forwasddwn viewpoint that “a
single meaning is given to each URI,” which is summarizedigysiogan that a URI
“identifies one thing.” (2003c). In response, Hayes said tihég simply untenable
to claim that all names identify one thing” (2003a). Furthere, he goes on to state
that this is one of the basic results of the knowledge reptaten community and
20th century linguistic semantics, and so that the W3C ciahndiat render the
judgment that a URI identifies one thing. Berners-Lee rgjefayes’s claim that the
Semantic Web must somehow build upon the results of logicatdral language,
instead claiming that “this system is different from natuaaguage: we designed
it such that each URI identifies one and only one concret@tinithe real world or
one and only one globally shared concept” (2003a). At thiatpin exasperation,
Hayes retorted that “I'm not saying that the ‘unique ideaéfion’ condition is an
unattainable ideal: I'm saying that it doesn’t make sertsat, it isn't true, and that
it could not possibly be true. I'm saying that itésazy’ (2003b). While Hayes did
not explain his own position fully, as he was the editor of finenal semantics of
RDF and had the support of other logicians in the RDF Workimgup, the issue
deadlocked and the RDF Working Group was unable to come tmseosus. In
order to move RDF from a Working Draft to a Recommendatioa,\#i3C RDF
Working Group removed all references to social meaning fiteerRDF documents.

One should be worried when two prominent researchers su@easers-Lee
and Hayes have such a titanic disagreement, where no sayhsénsus agreement
seems forthcoming. Yet who is right? Berners-Lee’s viewpseems intuitive and
easy to understand. However, from the standpoint of thedbsemantics of logic,
the argument would seem to have been won by Hayes. Stile theeason to pause
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to consider the possibility that Berners-Lee is correatsti-iwvhile his notion may

seem counter to ‘common-sense’ within formal logic, it dddae remembered that
as far as practical results are concerned, the project at-lwsed modelling of

common-sense knowledge in classical artificial intellgemaugurated by Hayes
earlier is commonly viewed to be a failure by current researsin Al and cognitive

science (Wheeler, 2005). In contrast, despite the earigearily similar argument
that Berners-Lee had with original hypertext academicaeders about broken
links and with the IETF about the impossibility of a singlemiag scheme for the

entire Internet, the Web is without a doubt an unparalleledsss. While in general
the intuitions of Berners-Lee may seem to be wrong accordirsgademia, history
has proven him right in the past. Therefore, one should ték@ionouncements
seriously.

The Identity Crisis is not just a conflict between merely twffeding individ-
ual opinions, but a conflict between two entire disciplirt@g: nascent discipline of
‘Web Science’ as given by the principles of Web architectanel that of knowledge
representation in Al and logic (Berners-Lee et al, 2006)nBes-Lee’s background
is in the Internet standardization bodies like the IETF, &rnsl primarily his intu-
itions behind Web architecture. Hayes, whose backgrouitahic jumpstarted the
field of knowledge representation in artificial intelligenshould be taken equally
seriously. If two entire fields, who have joined common-&inghe Semantic Web,
are at odds, then trouble at the levetloéoryis afoot.

Troubles at levels of theory invariably cause trouble ircfice. So this disagree-
ment would not be nearly as worrisome were not the Semantle ¥¥elf not in
such a state of perpetual disrepair, making it practicaltysable. In a manner
disturbingly similar to classical artificial intelligencthe Semantic Web is always
thought of as soon-to-be arriving, the ‘next’ big thing, lisitactual uses are few and
far between. The reason given by Semantic Web advocatest iithSemantic Web
is suffering from simple engineering problems, such asladésome new standard,
some easily-accessible list of vocabularies, or a deartBenfiantic Web-enabled
programs. Given that the Semantic Web has not yet expedeheealizzying growth
of the original hypertext Web, even after an even longergueof gestation, points
to the fact that something is fundamentally awry. The roothef problem is the
dependence of the Semantic Web on using URIs as names fgstham-accessible
from the Web.

Far from being a mandarin metaphysical pursuit, this prohke the very first
practical issue one encounters as soon as one wants tohacts@lthe Semantic
Web. If an agent receives a graph in RDF, then the agent shewddlle to determine
an interpretation. The inference procedure itself may ti@gpproblem, but it may
instead make it worse, simply producing more uninterpiet®DF statements. The
agent could employ the follow-your-nose algorithm, but windormation, if any,
should be accessible at these Semantic Web-enabled URAs?sEr wants to add
some information to the Semantic Web, how many URIs sho@y theate? One for
the representation, and another for the referent the reptaison isabouf? Should
the same URI for the Eiffel Tower itself be the one that is usesccess a web-page
about the Eiffel Tower?
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URIs on the Semantic Web can be thought of as analogous toah&nguage
namesas names in natural language can be used to refer as wetkefohe what
needs to be done is to distinguish within analytic philogogite various theories
on naming and reference in general, and then see how thaéses#reories either
do or do not apply to the Semantic Web. What is remarkablegisttie position of
Hayes, the logicist position, corresponds to a well-knoheoty of meaning and
reference, the ‘descriptivist theory of reference’ atitédl to early Wittgenstein,
Carnap, Russell, and turned into its pure logical form bysKafLuntley, 1999).
However, it is common currency in philosophical circles th@ descriptivist theory
of reference was overthrown by the ‘causal theory of refesechampioned by
Kripke and extended by Putnam (Luntley, 1999). It is prdgifiais causal theory
of reference that Berners-Lee justifies in his direct refeeeposition. Thus, the
curious coincidence is that both opposing positions on émeahtic Web correspond
to equallyopposing positions in philosophy. Understanding theséipos belongs
primarily to the domain of philosophy, even if Hayes and ety Berners-Lee do
not articulate their positions with the relevant acaderitations. In this manner, the
precise domain of philosophy that the Identity Crisis faligler is the philosophy
of language. The purpose of the rest of this chapter is theriuth explication of
these two theories of reference in philosophy of language tlaen to inspect their
practical success (or lack thereof) in the context of the &#im Web, while at the
end offering a critique of both, paving the way for a thirdaheof meaning.

4.2 Sense and Reference

The original theory of meaning we shall return to is Fregeiginal controversial
theory of sense and reference as giveSimn und Bedeutungrrege, 1892}.This
theory is no longer particularly popular, although it had fame revival with an odd
dualist variation under the ‘two-dimensionalism’ of Chairs Chalmers (20086),
and this is likely because Frege himself was quite cryptitwegards to any def-
inition of ‘sense.’ The key idea lies in Frege’s contentibattthe meaning of any
representational term in a language is determined by wiegieFealls the “sense” of
the sentences that use the term, rather than any direcénefeof the term (1892).
According to Frege, two sentences could be the same onlgyf shared the same
sense. Take for example the two sentences “Hesperus is theirivStar” and
“Phosphorus is the Morning Star.” (Frege, 1892). Since timemt Greeks did not

1 The ambiguous translation of this work from original Gernheas been a source of great philo-
sophical confusion. While the word ‘Sinn’ has almost alwhgen translated into ‘sense,’ the word
‘Bedeutung’ has been translated imtither ‘reference’ or ‘meaning,’ depending on the translator.
While ‘Bedeutung’ is most usually translated into the fuEnglish word ‘meaning’ by most Ger-
man speakers, theseto which Frege puts it is much more in line with how the wordérence’ is
used in philosophy. So in the tradition of Michael Dummet,will translate Frege’s ‘Bedeutung”
into ‘reference’ Dummett (1973).

2 Likely Frege himself would not be considered a dualist, butanist with objective meaning
given in the world.
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know that ‘“The Morning Star is the same as the Evening Skeay tlid not know that
the names ‘Hesperus’ and ‘Phosphorus’ share the samentebenen they baptized
the same star, the planet Venus, with two different namesg@=r1892). Therefore,
Frege says that these two sentences have distinct ‘sensedf éhey share the same
referent. Frege pointed out that, far from being meanirgglemtements of identity
that would be mere tautologies from the point of view of a tiyeaf reference are
actually meaningful if one realizes different terms canehdistinct senses. One can
understand a statement like ‘The Morning Star is the EveSitag’ without know-
ing that both refer to Venus, and one may only know that thertiay Star’ refers
to Venus and by learning the ‘Morning Star’ and the ‘EveninarSare not distinct
senses but a single sense, one can do aoteahingful cognitive worky putting
these two senses together. While the idea of a notion of &Sseems intuitive from
the example, it is famously hard to define, even informaltgge defines ‘sense’ in
terms of the mysteriousiode of presentatigifior “to think of then being connected
with a sign (name, combination of words, letters), besides$ to which the sign
refers, which may be called the reference of the sign, alsat Wshould like to call
the sense of the sign, wherein the mode of presentation tioaad” (1892). This
statement has caused multiple decades of debate by pHilesopf language like
Russell and Kripke who have attempted to banish the notisen$e and simply
build a theory of meaning from the concept of reference.

Regardless of what precisely ‘sense’ is, Frege believetiiganotion of sense
is what allows an agent to understand sentences that mayametehreferent, for
“the words ‘the celestial body most distant from Earth’ hasease, but it is very
doubtful there is also a thing they refer to...in graspingasg, one certainly is not
assured of referring to anything” (Frege, 1892). So it isdbacept of sense that
should be given a priority over reference. This is not to déyrole of reference
whatsoever, since “to say that reference is not an ingrégli@meaning is not to deny
that reference is a consequence of meaning ... it is onlyytdhst understanding
which speaker of a language has a word in that language .nesean consist merely
in his associating a certain thing with it as its referergyéhmust be some particular
meandy which this association is effected, the knowledge of Witianstitutes his
grasp of its sense” (Dummett, 1973).

Sense is in no way an ‘encoded’ referent, since the refesedistal from the
sense. Instead, the sense of a sentence should naturalgieagent to correctly
guess the referents of the representational sentenceoWetduld this be detected?
Again, sense is sense strictly ‘in the head’ with no effecbehaviour. As put by
Wittgenstein, “When 1 think in language, there aren’t ‘mieas’ going through
my mind in addition to the verbal expressions: the languagdesélf the vehicle of
thought” (Wittgenstein, 1953). Sense is the bedrock upoithvimeaning is con-
structed, and must be encoded in a language. In fact, aocptaliFrege, sense can
only be determined from a sentence in a language, and the séassentence al-
most always requires an understanding of a whole networkhafrsentences in a
given discourse. Furthermore, without determining whiefise of a number of pos-
sible senses a sentenoayhave the sentencel®@eshave, one cannot meaningfully
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act, even if the sense used by the agent is incorrect aceptalithe creator of the
sentence’s purpose.

So, how can sense be determined, or at least detected? Aftamzostany-
thing counts as meaningful behaviour. While sense determinaiardifficult and
context-ridden question that seems to require some fult trast ‘molecular’ lan-
guage understanding, one account of sense detection s ¢fwvein by the ear-
lier notion of assertoric content of Dummett, which is signfiiat an agent can be
thought of as interpreting to a sense if they can answer a auafliyes-no” binary
guestions about the sense in a way that makes ‘sense’ toagjbats speaking the
language (Dummett, 1973). There is a tantalizing connedfddummett’s asser-
toric content as answers to binary questions to the infdomaheoretic reduction
of uncertainty through binary choices (bits), as the carmémformation cannot be
derived without enough bits in the encoding. Overall, Durttimaotion of sense as
grounded in actual language use naturally leads to anotlestign: Is sense objec-
tive?

The reason the notion of sense was thought of as so objebt@bg many
philosophers like Russell and Kripke was that sense wasedeas a private, in-
dividual notion, much like the Lockean notion of &tea Frege himself clearly
rejects this, strictly separating the notion of a sense fasnindividual subjective
idea of a referent, which he refers to as an ‘idea.’ Far fromeaensubjective idea
or impression of a referent, Frege believed that sense vaasentlyobjective “the
reference of a proper name is the object itself which we deseby using it; the
idea which we have in that case is wholly subjective, in betwkes the sense,
which is indeed no longer subjective like the idea, but isnatthe object itself”
(1892). A sense is objective insofar as it is a shared parhdhherently public
language, since a sense is the “common property of many @eapdl so is not a
part of a mode of the individual mind. For one can hardly ddrat mankind has
a common store of thoughts which is transmitted from one gioa to another”
(1892). While the exact nature of a sense is still unclesumidin characteristic is
that it should be whatever @bjectively sharethetween the competent in the use of
names in a language.

It is precisely this notion that sense - and therefore mepagwhole - is ‘ob-
jective’ that is crucial for our project of reconstructingeaming on the Web. The
Fregean notion of senseigenticalwith our reconstructed notion of informational
content These terms should be viewed as identical. The contenfafration is
precisely what is shared between the source and the re@sivgeresult of the con-
veyance of a particular message. By definition, this holdihgontent in common
which is the result of the transmission of an informatiomieg messagmustby
definition involve at leastwo things: a source and a receiver. Furthermore, if the
source and receiver are considered to be human agents eajaipleaking natural
language, then by the act of sharing sentences, which drerjosdings shared over
written letters or acoustic waves in natural language,wuedpeakers of language
are sharing the content of those sentences. Since the tisteossessed by two
people, and is by definition of information tkamecontent, insofar asubjectives
defined to be that which is only possessed by a single agergtdadtiveis defined
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to be that which is possessed by more than one agent (althmigiecessarily all
agents), thewontent is objective

Most of the productive concepts from Web architecture arnbpbphy map into
the notion of a Fregean sense rather easily. Sentencesargitatural in a language
have both a syntactic encoding and a semantic content oe stivad can multiply
realized over differing mediums. A sentence is a fully-fledinformation-carrying
message, that can have multiple realizations in the formiftdrdnt utterances at
different points in space and time. The Gricean notion ofeakpr’s intentions then
maps to the meaningful behavior a sentence is supposeden@egGrice (1957a).
The problem of word senses is now revealed to be much larger piheviously
supposed, as it now stretches across to all sorts of nomahdmguages. Every-
thing from messages in computer protocols (formal langsagepaintings (iconic
languages) are now just encodings of information, and ttesdave senses and
possible sense ambiguities.

Representations are not just then ‘in the head’ but alsceptess an objective
component of sentences as genseof names|n particular, a name in natural lan-
guage is no more than some encoding that has as its interpretihe sense of a
(possibly and usually distal') referent. The claspafper nameslong a source of
interest, is just a representation in natural language wheferent is an entity, such
that the name ‘TimBL’ refers to the person Tim Berners-Lekilevthe larger class
of names such as ‘towers’ or ‘integers’ can refer to groupsmities and concepts.
There may be some objection that a meaenein a sentence is a full-blooded repre-
sentation. However, unlike some theories of represemtatioh as those put forward
by Cummins, we do not require that there be some “isomorphismther struc-
tured relationship between the representation and itseef¢1996), we require the
much less-demanding causal relationship with some impaah the sense (con-
tent) and thus the meaningful behaviour of the agent. While @bvious there is
nothing inherent in the term ‘Eiffel Tower’ that leads th&ées or phonemes in the
name to correspond in any significant structural way withBHtel Tower itself, as
long as the sense of the name is dependeniere being a refererthat the name
‘stands-in’ for, so a name like the ‘Eiffel Tower’ is still @presentation of the Eiffel
Tower itself. The referentitself or some ‘image’ thereoédmot have to be bundled
along and carried with the sentence in any meaningful waguagrevious work
on the representational cycle shows that is primarily atohial chain with causal
efficacy that is the role of the referent.

However, since Frege’s time find this notion of meaning as lgiraive sense
has been considered counter-intuitive and controveiaal,so with a few excep-
tions most philosophers of language would throw the notf@ease out the window
by grounding theories of meaning in subjective impressadrsense-data.’ Further-
more, unlike Fregean sense, these theories of semantiesabaally been debated
in the context of the Web. So before buying into a Fregearonatf sense on the
Web, let’s see how they fare in their encounter with the Web.
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4.3 The Logicist Position and the Descriptivist Theory of
Reference

The origin of the logicist semantics is in what is popularholkn as ‘the descrip-
tivist theory of reference’. In this theory of referenceg tieferent of a name is given
by whatever satisfies the descriptions associated withahrenUsually, the descrip-
tions are thought to be logical statements, so a name islgctudisguised logical
description. The referent of the name is then equivaleritéset of possible things,
given normally by a mathematical model, such that all states)containing the
name are satisfied. To explain a bit furtifermal languagesare languages with an
explicitly defined syntax at least, and also possibly (altiffonot always) a model-
theoretic semantics. The purpose of these formal languzsgeke interpretation by
computers. Many computer languages not considered to lgegrmning languages
are languages insofar as they have some normative or ex@miaffinterpretation,
such as HTML. Furthermore, due to some biases against cempaguages being
put on the same footing as natural language, sometimesrthéddematis a used as
synonym for computer-based language.

As mentioned earlier, an act of interpretation is usualbutjht of as a mapping
from some sentences in a language to the content of somep$tattairs in a world.
This world is often thought to be the everyday world of coteteces, houses, and
landscapes that humans inhabit. Informally an interpi@iatan be considered to
be a mapping from sentences to the physical world itself, pping rather ironi-
cally and appropriately labelled ‘God Forthcoming’ (Halp2004). However, often
we do not have access to the world itself and it is unclear ifrgbstic definition
such as “the truth of a sentence consists in its agreememt(witcorrespondence
to) reality” makes any sense, for “all these formulations tsad to various mis-
understandings, for none of them is sufficiently precise erdr” Tarski (1944).
In an attempt to define a formal notion of truth, Tarksi defitteglinterpretation of
a language, which he terms the “object” language, in terns ‘oheta-language”
(1944). If both the language and the meta-language arebuitarmalized, the in-
terpretation of the language can then be expressed in termsatisfaction of a
mathematical model, whemgatisfactioncan be defined aan interpretation to a
mathematical model that defines whether or not every seaiartbe language can
be interpreted to contentvhich in the tradition of Frege is usually thought of as a
‘truth’ value (i.e. the content is simply the value 'truel?) this way, formal seman-
tics is distinguished from the jungle of informal semantigshaving a precisely
defined mathematical model ‘stand-in’ for the vague andywearld or some por-
tion thereof. While Tarksi originally applied this only taitably formal languages,
others such as Montague have tried to apply this approatihvaiying degrees of
success and failure, to natural language. To summariadgl-theoretic semantics
is a semantics whem@n interpretation of a language’s sentences is to a mathemat
ical model Themodelis a mathematical structure, possibly a representation of the
world or the language itselfThe relationship is summarized below in Figure 4.1,
where the relationship between the model and the world isghtto be distal (such
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that the modetepresentghe world). This is not always the case, as in the model
can be thought of as ranging over the world itself.

The adequacy of models is usually judged by whether or netftiiéll the pur-
poses to which the language is designed, or whether or nothiBbaviour ade-
quately serves as a model of some portion of the world. Giverodel-theoretic
semantics, an interpretation can be given as “a minimal &dwascription of those
aspects of a world which is just sufficient to establish tightor falsity of any ex-
pression” in the language (Hayes, 2004). While again th®tyisand debate over
these terms is outside the scope of this thesis, in generartginal notion, as pi-
oneered by Carnap (1947), is that a cert&imd of thing may only be described
and so given aimtension while thethings that satisfy this descriptiqvhich may
be more than one thing) aextensions Sentences amonsistentf they can be sat-
isfied it is inconsistentif otherwise. Lastly, note that aentailmentis where an
interpretation of one sentence to some content alwaysfigstithe interpretation
of another sentence to some conterm. the first statement entails the second. In
contrast, arinferenceis asyntactic relationship where one sentence can be used to
construct another sentence in a langualyedetail, as shown in Figure 4.1, the syn-
tactic inference mechanisms over time produce more val@émces, and because
these inferences ‘line up’ with entailments, they also meguaately describe the
world outside the formal system. Ideally, this model alsee's-up’ with the world,
so the inferences give one more correct statements abowdHd. Models can
be captured in various ways, of which we have primarily déscta denotational
semantics, but often an axiomatic and operational sensate equally powerful
formalisms. Inference can usually be accomplished by saoa& linference pro-
cedure, like a computer program. The inference procedueelafiguage isound
if every inferred sentence can be satisf{ed. the inference mechanism preserves
‘truth’), and it is completeif every satisfied sentence can be shown to be entailed
(i.e. all ‘true’ statements can be proven). This is necdysaguick overview of the
large field of formal semantics, but the general notions larstiated in Figure 4.1
as the parallel between the causal relationships of thastiatsentences and their
interpretations to a model thag¢manticallyefers to the world.

4.3.1 Logical Atomism

Obviously, the use of some kind of formal logic to determirfeatvcould satisfy a
name was appealing, as it appeared that semantics couiBlgdsscome a science
on the same footing as, say, physics. The roots of the dés@ifgheory of refer-
ence lay with the confluence of philosophers inspired bywisi®n who are known
aslogical positivistsandlogical atomistswhose most systematic proponents were
Rudolf Carnap and Bertrand Russell respectively. Altholagiical positivism is a
vast school of thought that has proven tremendously inflagm®ven in its current
discredited state, for our purposes we will only concerrselwes with one particu-
lar doctrine common to both logical positivism and logic@lraism, the problem of
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how natural language terms relate to the logic descriptiang logical descriptions
to the world. The difference between the two schools is rgadmie of focus, for
the logical positivists hoped to rid the world of metaphgsiand epistemological
statements through the use of logic and empiricism, whijéckd atomists thought
that the basics metaphysics and even our epistemologydsbeyphrased in terms
of logic over elementary sense-data.

The logical positivists and Bertrand Russell were inspibgdWittgenstein’s
early philosophical work in th&ractatus Logico-Philosophicubn it, Wittgenstein
strongly argues fological atomism thatlogic is the true language of the world;
“logic is not a body of doctrine, but a mirror image of the veBirfor “the facts in
logical space” are the world (1921). So logical statemergs‘laid against reality
like a measure” (1921). This is possible because the worltkigphysically deter-
minate at its base, being composed of “simple” and “unatiefabjects that “make
up the substance of the world” so that “the configuration gécts produces states
of affairs” where “the totality of existing states of affais the world” (Wittgenstein,
1921). In other words, there is no — as Brian Cantwell Smithldigut it — “flex”
or “slop” in this picture, no underlying “metaphysical flufiat somehow resists
easily being constrained into these fully determinateéoty” (1996). Although the
nature of the world consists true logical facts, humans, since they “picture facts”
to themselves, can nonetheless mékse logical statements, since these pictures
merely “model reality” (Wittgenstein, 1921). Contrary t&stown logical atomist
teacher Russell, Wittgenstein thought that the primarygbthe logician is then
to state true facts, and “what we cannot speak about” in thm faf true logical
statements “we must pass over in silence,” a phrase he bdli@as consistently
misinterpreted by logical positivism (Wittgenstein, 192ote that unlike the more
mature standpoint of Hayes, the early logical atomism ofd#fitstein allowetbgi-
cal statementt directly refer to single things in the world, i.e. youngtiyenstein
and the logical positivists reifietthe formal modelo be the worlditself.
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Carnap’s ultimate goal was to use this logical empiricismettder any scientific
hypothesis either verifiable by sense experience or not@laeg to Carnap, in his
The Logical Structure of the Worl@ll statements (at least, “scientific” statements
with “cognitive content”) can be reduced to logical statemsewhere the content
of this logical language is given by sensory experience&1rhese “elementary
experiences” (calle@igenpsychischby Carnap) cannot be directly described, as
they are irreducible, but only described by a network ofdagpredicates that treat
these experiences as logical constants (Carnap, 1928¢xBarples of these kinds
of sentences, one would not say “The Eiffel Tower is made déligh iron.” One
would say something more elementary like ‘hard thing hem’' o ‘redness here
now’ when bumping one’s toe against the brute fact of thegEifower. Then these
sense-data - which were consideeegriori true due to their verification by sense
experience - could be built up into larger complex sentemacgsnames via logic.
Since natural language is part of the world, the structuramduage too must be
logical, and range over these elementary sense experiéndeis regard, names are
given to their referents by concordance with a logical strreeranging over these
elementary sensory experiences. Carnap’s project wakasimspirit to Chomsky’s
syntactic theory of language, but focused on semanticeratian syntax: Carnap
hoped to develop a semantic and logical definition of meattiagwould validate
only sentences with ‘meaning’ and dispose of all metaplaysictions, which would
naturally include likely most of Hegel and perhaps even Eaggsense.

Bertrand Russell begins the logical atomist investigatibthe connection be-
tween logic and names in language is his landmark invegtig@n Denotingwith
a deceptively simple question: “is the King of France bal(Russell, 1905). To
what referent does the description “the King of France” réé® (Russell, 1905)
Since in Russell's time there was no King of France, it coudtinefer to anything
like what Carnap later called “elementary sense data” (§art928). In this re-
gard, Russell makes a crucial distinction. According todeliselementary sensory
experiences are known througbguaintancein which we have some sort of direct
‘presentation of’ the thing (Russell, 1905). According tasRell, these statements of
acquaintance with directly present sensory data employ arfgeknown as Russel-
lian demonstratives (such as ‘this’ or ‘that’) as exemptifiy the statement “That is
the Eiffel Tower.” Yet knowledge of a thing can be baseddescription which are
those “things we only reach by means of denoting phrasesSg&lj 1905). Russell
believed that “all thinking has to start from acquaintarg,it succeeds in thinking
aboutmany things with which we have no acquaintance” via the uskestription
(Russell, 1905). Russell was most interested in whethesettidings with which we
have direct acquaintance can be considered true or falseh@ther a more mys-
terious third category such as ‘nonsense’ is needed. Rugxslto reject creating
imaginary but true ‘things’ as well as any third category,ibstead holds that state-
ments such as “the King of France is bald” are false, sinds filse that there is an
entity which is now the King of France and is bald” (Russefip3). This solution
then raises the alarming possibility that “the King of Fraig not bald” may also
come out false, which would seem to violate the Law of the &detl Middle. So,
Russell counters this move by introducing the fact that Kivey of France is bald”
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is actually a complex logical statement involving scope guantification, namely
(IX.F(X) AG(x)) A (WY.F (y) = x =), whereF is “being the King of France” and
G is “being bald” (Russell, 1905). According to the analySi$e King of France’
is merely adisguiseccomplex logical statement. Furthermore, this treatmembea
extended to proper names such as ‘Sir Walter Scott,” who eaddntified with ‘the
author of Waverly,’ so that instead of being a tautologyres@roper name of a per-
son, even if known through acquaintance, is sort of shondtar a large cluster of
logical statements. To use our previous example, the ‘Efffever’ can be thought
of as a short-hand for not only that ‘there exists an entitykmas the Eiffel Tower’
but also the logical statement was ‘the aforementionedyelméid Gustave Eiffel as
its architect.” If someone did not know that ‘the aforemen#d entity was also the
tallest building in the world up until 1930, one could theake a statement such as
‘The Eiffel Tower is identical to the tallest building in tkeorld up until 1930’ with-
out merely stating a tautology, and such a statement wowddraeé and consistent
knowledge to a hearer who was not aware of the statement.

As sensible as Russell's programme appeared, there aruli&s in building
any theory of reference on, as Quine put it, such a “slendsisbas elementary
sense data and logic (1951). One obvious problem for anyrigése theory of
names comes for the use of names of any “kind of abstractesnlike properties,
classes, relations, numbers, propositions,” for suchiesittould not have an inter-
pretation for any content using such a simple sensory epatgy (Carnap, 1950).
Carnap’sEmpiricism, Semantics, and Ontologyade an argument for basing such
entities purely on linguistic form itself. Carnap believbat, despite the difficulty
of determining the interpretation of names for abstracitiest “such a language
does not imply embracing a Platonic ontology but is perjextimpatible with em-
piricism” (1950). His position was that while “if someoneskies to speak in his
language about a new kind of entity, he has to introduce &sysf new ways of
speaking, subject to new rules,” which Carnap calls the Stietion of a linguistic
framework for the new entities in question.” Fromithin a linguistic framework,
Carnap believed to commit to any statement about the “exister reality of the
total system of the new entities” was to make a “pseudo-stame without cogni-
tive content” (1950). This particular position of Carnawas eventually devastated,
as Quine showed that even the most unremarkable of sensprgssions such as
‘redness here now’ were undermined by multiple problems.agxample, there is
the issue of indeterminacy of translation, in which even\teebal expression of
sense experiences assumes a common background, but ongagamg many cases
where two creatures would utter “redness here now” in readt actually different
sensory stimuli (imagine a human with color-blindnessydlthere is the problem
where even our sense experiences are not ‘raw’ but influemgedcomplex holis-
tic network of propositions - one does not experience ‘hesd here now’ but the
Eiffel Tower itself (Quine, 1951).
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4.3.2 Tarski's Formal Semantics

Tarski abandoned the quaint epistemology of logical atoniisterms of direct ac-
quaintance with sensory data and defined reference purtdyrivs of mathematical
logic in hisThe Concept of Truth in Formal Languag@rski, 1935). Reference
was just defined as a consequence of the tamly in terms of satisfaction of a
formal language (Tarski, 1935). To set up his expositiomsKiadefines two lan-
guages, the first being the syntactibject language land the second being the
meta-languag®l. The meta-languagshould be more expressive such that it can
describe every sentence in the object language, and fortrer that it contain ax-
ioms that allow the truth of every sentence in the object laug to be defined.
In his first move, Tarski defines the formal conception oftiras ‘Convention T,
namely that for a given sentensé L, there is a statemeptin M that is a theorem
defining the truth o8, that is, the truth o§ is determined via a translation sinto

M (Tarski, 1935). Tarski then later shows that truth can bm#dly defined as$is
true if and only ifp” (Tarski, 1944). For example, if the object language is epitm
fied by a sentence uttered by some speaker of English and ttzelamguage was
an English description of the real world; ‘The Eiffel Towsrin Paris’ is true if and
only if the Eiffel Tower is in Paris. The sentence ‘The Eiffelwer is in Paris’ must
be satisfied by the Eiffel Toweactually beingin Paris. While this would at first
seem circular, its non-circularity is better seen througfemthe object language is
not English, but another language such as German. In thés €Br Eiffelturm ist

in Paris’ is true if and only if the Eiffel Tower is in Paris.”dwever, Tarksi was not
interested in informal languages such as English, but ierdehing the meaning of
a new formal language via translations to mathematical tsateother formal lan-
guages with well-known models. If one was defining a formataetics for some
fragment of a knowledge representation language like RD§tatement such as
http://ww. ei ffeltower. exanpl e.org ex:location ex: Paris istrue if and
only if Jab.R(a, b) whereR, a, andb are given in first-order predicate logic.

If one is defining a formal Tarski-style semantics for a laage, what should
one do when one encounters complex statements, such asiffibleTBwer is in
Paris and had as an architect Gustave Eiffel’? The answetlie deart of Tarksi's
project, the second component of Tarski’s formal semaigits use the principle
of compositionality so that any complex sentence can havielth conditions de-
rived from the truth conditions of its constituents. To disttthe meta-language
has to have finitely many axioms, and each of the truth-defitirorems produced
by the meta-language have to be generated from the axiomsk{(;Th935). So, the
aforementioned complex sentence is true if and oriath.R(a, b) A Q(a, ¢), where
Q can be thearchitect of relationship,c can be Gustave Eiffel and the Eiffel
Tower. Tarksi’s theory as explained so far only deals witlosed’ sentences, i.e.
sentences containing no variables or quantification. Tind,tAnd final component
of Tarski's formal semantics is to use the notion of satisfecvia extension to de-
fine truth (Tarski, 1935). For a sentence such as ‘all montsrteave a location, we
can translate the sentence/m|.monumen(a) — hasLocatiofa, | ) which is true if
and only if there is an extensiorfrom the world that satisfies the logical statements
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made aboué. In particular, Tarksi has as his preferred extensionsitefiordered
pairs, where the ordered set could be anything (Tarski, L %86 formal languages,
a model-theoretic semantics with a model composed by setytheas standard. For
example, the ordered pairs in some modé€liiff fel TowerParis) would satisfy, as
would (ScottMonumenEdinburgh but not(Paris, Eif felTower. However, there
is no reason why these models could not be “God Forthcomthmmys in the the
real world itself, albeit given in set-theoretic terms (8mil995). To summarize
Tarksi's remarkably successful programme, model-th@osetmantics can produce
a theory of truth that defines the semantics of a sentencerirstef the use of a
translation of the sentence into some formal language withit® number of ax-
ioms, then using compositionality to define the truth of cexsentences in terms
of basic sentences, and finally determining the truth ofdfi@sic sentences in terms
of what things in a model satisfy the extensions of the basitesces as given by the
axioms. This work marks the high-point of the logical pragrae, as all questions
of meaning are reduced to questions about giving the irggapon of a sentence
in terms of a formal notion of truth. This notion of truth istrestricted by the
logical atomist’s epistemology of elementary sense datainistead can range over
any possible formal language and any possible world. Thitoky is not without
its costs, since while Tarski provides the best account efréhationship between
logical descriptions and the world by simply removing alegtions that cannot be
phrased formally, formal semantics by itself leaves urstbhe fundamental ques-
tion about how natural language relates to our experientleeofvorld. Ignoring a
problem does not make it go away. So when confronted withviséng problem,
champions of formal semantics often revert to the Russetlactrine of direct ac-
quaintance, thereby returning to the original problemsdhased Tarski to abandon
epistemology.

4.3.3 Logical Descriptions Unbound on the Web

While the descriptivist theory of reference seems distanhfthe Identity Crisis of
the Web, it is in fact central to the position of Hayes and then&ntic Web as a
whole. This is primarily because Hayes'’s background wasimé&l logic, with his
particular specialty being the creation of Tarski-stylmaatics for knowledge rep-
resentation languages. What Hayes calls the “basic rés@th century linguistic
semantics” that Berners-Lee’s dictum that “URIs identifyedhing” violates is the
interpretation of URIs in a Tarski-style formal semantietayes, 2003a). For the
logicist position, thesemanticsn the Semantic Web derive from the Tarski-style
formal semantics Hayes created for the Semantic Web (H20€g,).

Before delving into the formal semantics of RDF, it shoulchioéiced that these
semantics are done by extension, like most other formaluaggs Hayes (2004).
However, the semantics of RDF are purposefully quite weakaago allow arith-
metic or constructs like the negation of a class, and so Ridavogical para-
doxes like the encoding of Godel sentences. Yet in orderdakenRDF triples as
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flexible as possible, RDF includes features normally assediwith higher-order
logic such as “a property may be applied to itself” and classgay contain them-
selves” (Hayes, 2004). This is handled semantically byrfirst an interpretation
map the URI to an individual. Then unlike standard first-ordgic, this individ-
ual then maps to different extensions depending on the heléJRI is playing as
a property or class in the triple. A simple example shouldiceito give a flavour
of the formal semantics, where a relation is just anothed binindividual. What is
the formal semantics ofex: Ei f f el Tower ex:architect ex: Gustave Eiffel ?
To simplify slightly, Hayes defines the formal semantics emis of set theory,
where there is a set of resources that compose the model ddrigeage, a set
of properties, and a set of URIs that can refer to resourdes.ifiterpretation of
any RDF statement is then given as an extensional mappingtfie set of prop-
erties to the powerset of resources, to the set of pairs ofiress. So, given a set-
theoretic model consisting of elements (given by itali@sistave Eiffeandthe Eif-
fel Towerandbeing the architect ofthen ex: Ei ff el Tower = the Eiffel Tower
ex: Gustave_Ei ffel |= Gustave Eiffeand ex: architect = being the architect
of, so that the entire triple maps to a set of paies: Ei f f el Tower ex: ar chi t ect
ex: Gustave_Ei ffel = (..., (the Eiffel Tower, Gustave Eiffel), ..ommon-sense
human intuitions will likely have this interpretation mafis ex: Ei f f el Tower
ex:architect ex:Custave_Eiffel Tower, and using the axioms defined in the
RDF formal semantics, a few new triples can be inferred, sisclex: ar chi t ect
rdf:type rdf:Property, i.e.being an architect ofs a property of something.
However, the inherent pluralism of the Tarski approach taet® also means
that another equally valid interpretation would be the isegi.e. the mapping of
ex: Ei ffel Tower to Gustave Eiffeand ex: Gust ave_Ei f f el to the Eiffel Tower
In other words, ex: archi tect = being the architect ofso that the entire triple
maps to a set of pairsx: Ei ff el Tower ex:architect ex:CGustave Eiffel
..., (Gustave Eiffel, Eiffel Tower), ...]pue to the unconstrained nature of RDF,
ex: architect has no ‘natural’ relationship to anything in particulart lmould
easily be assigned eithéne Eiffel Toweror Gustave Eiffejust as easily abe-
ing the architect aof Furthermore, the model could just as easily be given by
something as abstract as the integérand 2, and an equally valid mapping
would be for ex:Eiffel Tower = 1 and ex: Gustave.Eiffel = 2, so that
ex: architect |= being the architect ofso that the entire triple maps to a set of
pairs ex: Eiffel Tower ex:architect ex:Gustave.Eiffel (..., (1,2),...)In-
deed, the extreme pluralism of a Tarski-style semantice/slioat, at least if all one
has is a single lone triple statement, that triple can befgadi by any model. This
is no mere oddity of formal languages, this would also holdgioy lone sentence
in a language like English — such as “Gustave Eiffel is thénigect of the Eiffel
Tower” — as long as one subscribed to a Tarski-style sensfaicatural language.
As the number of triples increased, the amount of possibifg¢hthat satisfy the
model is thought to decrease, but in such a loose languag®B&s Hayes notes
that it is “usually impossible to assert enough in any lamggui@ completely con-
strain the interpretations to a single possible world, sodlis no such thing as ‘the’
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unique interpretation” (Hayes, 2004). This descriptidistory of reference, where
descriptions are logical statements in RDF, is illustratefigure 4.2.

Tt/ fwww.example.org / Eiffel Tower ROF Triples
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Fig. 4.2 The descriptivist theory of reference for URIs

While Hayes makes no claim that access to some web-pagefRV&isnot pos-
sible, he claims that such access to Web representatiorteagonal to the question
of what a URI could refer to, since “the architecture of thebviletermines access,
but has no direct influence on reference” (Hayes and Hal@i@8® Furthermore,
Hayes’s logical understanding of ambiguity parts path wigttural language un-
derstandings of ambiguity: Hayes claims that referencesources is completely
independentf whatever Web representations can be accessed, eveséftbatain
logical expressions. While much credit should be given tgdddor creating a log-
ical semantics for RDF, the problem of connecting theserg#gms to the world
outside of the Web falls outside formal semantics and so ®ppra seemingly un-
crossable abyss between the logical descriptions and isedata. One seemingly
easy way out of this abyss is to revert to the doctrine of Rlissealirect acquain-
tance, also known as ostentation. In moments, Hayes hiseseffs to subscribe to
the logical atomist epistemology of Russell, as he says“te&trence can either
be established by either description or ostention” witlengbn being defined as
the use of a Russellian demonstrative (like ‘that’ or ‘thislentifying a particular
“patch of sense data” via a statement such as ‘that is thelEfver’ (Hayes, 2006).
Since most of the things referred to by names are not acéessference can only
be determined by description, and these descriptions aeréntly ambiguous as
regards any sense data (Hayes and Halpin, 2008).

As our example showed, RDF in general says so little inféaythat many
different models can satisfy almost any given RDF statemEn¢refore, Hayes
considers it essential to ditch the vague word ‘identifylasd in URIs, and distin-
guish between the ability of URIs to access and refer. Whitess is constrained
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by Web architecture, according to Hayes, reference is ateglunconstrained ex-
cept by formal semantics, and so “the relationship betweeass and reference is
essentially arbitrary” (Hayes and Halpin, 2008). From thiislosophical position,
the Identity Crisis dissolves into a pseudo-problem, fer $ame URI can indeed
access a web-page and refer to a person unproblematicatlye no longer have
to obey the dictum to identify one thing. Hayes compareshisation to that of
overloading using a single name to refer to multiple referents, aneabf being
a problem, “it is a way of using names efficiently” and not alppeon for commu-
nication, as “natural language is rife with lexical ambiguivhich does not hinder
normal communication,” as these ambiguities can almosaydwe resolved by
sufficient context (Hayes and Halpin, 2008). Overall, trguanent of Hayes against
Berners-Lee in the Identity Crisis is the position of kegptine formal semantics of
reference separate from the engineering of the Web.

4.4 The Direct Reference Position and the Causal Theory of
Reference

The alternative slogan of Berners-Lee, that “URIs identifie thing,” may not be
completely untenable after all (Berners-Lee, 2003c). jtesgs to even be intuitive,
for when one says ‘| went to visit the Eiffel Tower,’ one b&ks one is talking about
a veryparticular thing in thereal world called the ‘Eiffel Tower, not a cluster of
descriptions or model of the world. The direct theory of refece of Berners-Lee
has a parallel in philosophy, namely Saul Kripke’s ‘caukeabty of reference,’ the
widely-known argument against the descriptivist theoryreference, and so the
reliance upon the purely formal semantics of Hayes (Krifl8,2). In contrast to
the descriptivist theory of reference, where the conteranyf name is determined
by ambiguous interpretation of logical descriptions, iectiusal theory of reference
any name refers via some causal chain directly to a refekeiike, 1972).

4.4.1 Kripke’s Causal Theory of Proper Names

The causal theory of reference was meant to be an attack aleficeiptivist theory
of reference attributed to Russell, and its effect in plifdsy has been to discredit
any neo-Russellian descriptivist semantics for properesamynsurprisingly, the
causal theory of reference also has its origin in logic,sikdpke as a modal logi-
cian felt a theory of reference was needed that could makedbgtatements about
things in different logically possible worlds (Kripke, 1®)7 However, while Kripke
did not directly confront the related position of Tarskis eirgument does nonethe-
less attempt to undermine the ambiguity inherent in Tesskibdel-theoretic se-
mantics, although a Tarski-style semantics can merelyéfthimodels of possible
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worlds into a singular model. Still, as a response in phigoof language, it is
accepted as a classical refutation of the descriptivigtrthef reference.

In Kripke's Naming and Necessitan agent fixes a name to a referent by a pro-
cess calledaptism in which the referent, known through direct acquaintarsce i
associated with a name via some local and causally effeatition by the agent
(Kripke, 1972). Afterwards, a historical and causal chatween a current user of
the name and past users allows the referent of a name to tsenitéed unambigu-
ously through time, even iather possible worlds=or example, a certain historical
personage was given the name ‘Gustave Eiffel’ via a rattenali baptism, and the
name ‘Gustave Eiffel’ would still refer to that baptized gen, even if he had not
been the architect of the Eiffel Tower, and so failed to $atisat definite descrip-
tion. Later, the causal chain of people talking about ‘Gusstiffel’ would identify
that very person, even after Gustave Eiffel was dead and. gueseriptions aren’t
entirely out of the picture on Kripke’s account; they areessary for disambigua-
tion when the context of use allows more than one intergogtaf a name, and they
figure in the process by which things actually get their narifehe thing cannot
be directly identified. However, this use of descriptiona imere afterthought with
no causal bearing on determining the referent of the naralf, ifer as Kripke puts
it, “let us suppose that we do fix the reference of a name by erig¢ion. Even if
we do so, we do not then make the name synonymous with theijglser but in-
stead we use the name rigidly to refer to the object so named,ia talking about
counterfactual situations where the thing named would aitisfy the description in
question” (Kripke, 1972). So what is crucial is not satisfyiany description, but
the act of baptism and the causal transmission of the name.

4.4.2 Putnam’s Theory of Natural Kinds

Kripke's examples of the causal theory of reference usepgymeames, such as ‘Ci-
cero’ or ‘Aristotle,” and he did not extend his analysis te thhole of language in a
principled manner. However, Hilary Putnam, in fiilse Meaning of ‘Meaningex-
tends Kripke's analysis to all sorts of names outside tiawtl proper names, and in
particular Putnam uses for his examples the names of n&indd (Putnam, 1975).
Putnam was motivated by an attempt to defeat what he beligtis false distinc-
tion between intension and extension. The set of logicatrijgsons, which Putnam
identifies with a “psychological state,” that something insetisfy to be given a
name is theéntension while those things in a given interpretation that actualy
isfy these descriptions, is thextensior(Putnam, 1975). Putnam notices that while
a single extension can have multiple intensions it satisfiesh as the Eiffel Tower
both being “in Paris” and “a monument,” a single intensioaupposed to have the
same extension in a given interpretation. If two people @okihg for a “monument
in Paris,” the Eiffel Tower should satisfy them both, eveaugh the Eiffel Tower
can also have many other possible descriptions.
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Putnam'’s analysis can be summarized as follows: Imaginetikee is a world
“very much like Earth” called ‘Twin Earth.” On Twin Earth “ehliquid called ‘wa-
ter’ is not H,0 but a different liquid” whose chemical formula is abbrégthas
XY Z and that thisXY Zis “indistinguishable from water at normal temperatures
and pressures” since it “tastes like water and quenchest thie water” (Putnam,
1975). A person from Earth wouldcorrectlyidentify XY Zfor their normal refer-
ent of water, as it would satisfy all their descriptions. histregard, this shows that
meanings “ain’t in the head” but are in fact determined, noinfdlividual language
use or descriptions, but by some indexical relationshipstaff that is like water
around here” normally. That “stuffShouldget its name and meaning froemperts
since “probably every adult speaker even knows the negeasar sufficient con-
dition ‘water isH»0," but only a few adult speakers could distinguish watenfro
liquids which superficially resembled water...in case affatpother speakers would
rely on the judgment of these ‘expert’ speakers” who woukhity testXY Zand
determine that it was indeed, not water” (Putnam, 1975)eddd less outlandish
examples, such as the difference between “beech trees’emdtrees” are trotted
out by Putnam to show that a large amount of our names for shipgerhaps even
extending beyond natural kinds, are actually determineeidmpert knowledge (Put-
nam, 1975). In this way, Kripke’'s baptism can extend to alnaidanguages, and
scientists can be considered a special sort of naming atytleapable of baptiz-
ing all sorts of things with a greater authority than everyefse. As even Putnam
explicitly acknowledges “Kripke’s doctrine that natutafd words are rigid desig-
nators and our doctrine that they are indexical are but twgsvemaking the same
point” (Putnam, 1975).

4.4.3 Direct Reference on the Web

This causal theory of reference is naturally close to theatireference position
of Berners-Lee, whose background is in expert-createddats. He naturally as-
sumes the causal theory of reference is uncontroversiainfdatabase schemas,
what a termrefers tois a matter best left to the expert designer of the database.
So Kripke and Putnam’s account of unambiguous names carbthéansposed to
the Web with a few minor variations in order to obey Berneeg’k “crazy” dictum
that “URIs identify one thing” regardless of interpretatior even accessible web-
page (Berners-Lee, 2003c). While it may be a surprise to fieih&s-Lee to be a
closet Kripkean, Berners-Lee says as much, “that the Welotishe final arbiter

of meaning, because URI ownership is primary, and the |gpkystem of HTTP
is...secondary” (Berners-Lee, 2003c). There is also amehé¢ of Grice in the di-
rect theory of reference, for thetendednterpretation and perhaps even purpose of
the owner is the one that really matters to Berners-Lee, mppablicly accessible
particular Web representation (Grice, 1957b). Howevémaltely Berners-Lee has
far more in common with the causal theory of reference, salteugh the URI
owner’s intention determines the referent, after the mgtf the new URI for the
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resource, the intended interpretation is somehow nevegrcsgal to vary (Berners-
Lee, 1998a).

To apply the causal theory of reference as to URIs, baptiggiven by the reg-
istration of the domain names, which gives a domain nameegally binding set
of IP addresses, such esample.orga legally binding owner. Of course, the natu-
ral question then would be if this Kripkean practice can therextended to entire
URIs such asttp://www.example.org/EiffélFor most domain names a specific pol-
icy given by the owner could set the allowed referents fordteation of URIs that
involve the domain name in question, perhaps as embodi@die software system.
One could imagine several variations on this theme, frontRés being controlled
indirectly by systems-programmers or even outsourcedd@émeral public in the
form of a user-generated URI registry with a single topdel\nain. Regardless of
the details, the referent of a URI is established by fiat byotleer(s), and then op-
tionally can be communicated to others in a causal chaindridim of publishing
web-page accessible from the URI or by creating Semantic Stiglements about
the URI. This causal theory of reference for URIs is illustthin Figure 4.3.

A Resource
The Eiffel Tower Itself

Fig. 4.3 The causal theory of reference for URIs

In this manner, the owner of the URI can thereby determinedferent of the
URI and communicate it to others, but ultimately the act obtlsam and so the
determination of the referent are in the hands of the owneh®fURI, the self-
professed ‘expert’ in the new vocabulary term introducethts Semantic Web by
his URI, and the owner has no real responsibility to host aep Vépresentations
at the URI. Since the owner can causally establish a namerionaNeb accessi-
ble thing via simply minting a new URI without hostiramy web-page, under the
causal theory of reference the Semantic Web can be treatea/ary a giant trans-
lation manual mapping URIs directly to referents, wherelfids refer directly to
objects in the world outside of the Web. Realistically, if agpent got a URI like
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http: // ww. exanpl e. or g/ Gust ave_Ei ffel and one wanted to know what the
URI referred to, one could use a service suckMasi s to look up the owner of the
URI, and then contact the owner of the URI if there was any tiduthe matter.
Yet since obviously such URIs cannot access things outse&léeb and contacting
the owner every time a URI is to be used is absurd, what kindsedf-pages, if
any, should this giant Semantic Web dictionary return? téturns no web-page,
how can a user-agent distinguish a URI for a referent outkiel®Veb from that of a
URI for a web-page? This question is partially answered bynBes-Lee in a solu-
tion called 303 redirection,’ where a distinct URI is given to the thingafitself,
and then when this URI is accessed by an agent such as a webdrya particular
Web mechanism called the 303 Header redirects to the agamather URI for
a web-page describing the resource, either in RDF or in HTdflhoth. However,
this mechanism has been considered difficult to use and staahet, “analogous to
requiring the postman dance a jig when delivering an offieidér” (Hayes, 1977D).

4.5 Sense and Reference on the Web

The Semantic Web has still not experienced the tremendouglyof the hypertext
Web, and the primary reason appears to be this impasse dihiity Crisis. For the
first few years of its existence (2001-2006), in general tigements of Hayes pre-
vailed, and the URIs used in RDF graphs did not access anypagbs. However,
in this phase of its existence, the Semantic Web did not pssgoeyond yet another
little-used knowledge representation language. In thdédéasyears (2006-2009), the
Semantic Web has experienced phenomenal growth underrthéltmked Data,’
as Berners-Lee’s position has had more acceptance andhaserstarted deploy-
ing RDF using actual URIs. This growth of estimated billianiples, including
large-scale projects by biomedical community and in gowemnt data in using the
Semantic Web, seems to have implicitly validated Bernexe'd direct reference
position. Yet that is far from true; what is apparent from anglysis of the Seman-
tic Web is that there appear to tso manyURIs for some things, whilao URIs for
other things (Halpin and Lavrenko, 2009). As differing ssexport their data to the
Web in a decentralized manner, new URIs are always mintets@running the risk
of fracturing the Semantic Web into isolated ‘semanticigls instead of becoming
a unified web, as the same URIs are not re-used. The criticzing element of the
Semantic Web is some mechanism that allows users to comederagnt on URIs
and then share and re-use them, a problem ignored both bygital and direct ref-
erence positions on semantics. Given the practical fadfiteoth approaches, one
should be suspicious that somethinghisoreticallywrong as well.

The philosophical root of the problem may be that both Rlissel Kripke - and
so both Berners-Lee and Hayes - reject the notion of ‘sefike.Fregean distinction
between ‘sense’ and ‘reference’ that provoked both RuaselKripke's intellectual
projects to build an entire theory of meaning on top of onfgrence, where Frege
held that the the meaning of any term in a language is detexdhiy the “sense” of
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the sentences that use the term, rather than any direcenefeof the term (Frege,
1892). It is precisely this notion that sense is ‘objectivt allows us to construct
a new position in the next chapter. Yet how does this notiosesfse play out?
Dummett provides an insightful hint, “Frege’s thesis thenise is objective is thus
implicitly an anticipation of Wittgenstein’s doctrine thaeaning is use” (Dummett,
1993). So we must outline a third position, the position afiaglbsemantics takes the
objective notion of ‘sense’ and Wittgenstein’s analysisrafaning as use” as its
foundation (Wittgenstein, 1953) .






Chapter 5
The Semantics of Tagging

You philosophers ask questions without answers, questiishave to remain
unanswered to deserve being called philosophical. Acogrdo you, answered
questions are only technical matters. That's what they vierbegin with.Jean
Lyotard (1988)

5.1 Making Sense of Tagging

During the last decade the Web has become a space wheresingr@ambers of
users create, share and store content, leading it to be dieatonly as an “in-
formation space” Berners-Lee (1996b) but also a “sociatebp@. This new step
in the evolution of the Web, often referred to as the “Web"2v@s shaped by the
arrival of the different services that came into existerwesupport users to eas-
ily publish content on the Web, such as photos (Flickr), boakks (del.icio.us),
movies (YouTube), blogging (Wordpress), and others allsers totag URIs with
keywords to facilitate retrieval both for the acting used &or other users?. Aimost
simultaneously with the growth of user-generated contarthe Web came a need
create order in this fast growing unstructured data. Taggfers to the labeling of
resources by means of free-form descriptive natural laggkaywords, and tagging
has become the predominant method for organizing, searelmid browsing online
web-pages, as well as any other resource. Sets of categerieed based on the
tags used to characterize some resource are commonlyaeferas folksonomies.
This approach to organizing online information is usuatiyitasted with the fom-
ral ontolgoies used by the Semantic Web, as in collabortdiyging systems users
themselves annotate resources by tags they freely chosbastbrms a ‘flat space
of names’ without the predefined and hierarchical struatheracteristic of the Se-
mantic Web ontologies.

As shown earlier, the Semantic Web has so far been attacha#dgsical theo-
ries of semantics that are based on a rejection of the nofian objective Fregean
‘sense’ in favor of an approach based purely on reference.uBual critique of

107
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Fregean sense has been that the notion of some objectiveiysha@n notion of
sense in at least cryptic and even anti-scientific. Yet with development of col-
laborative tagging systems, it seems we at long last haveganic notion of a
Fregean sense developing that is both objective and commtbe form of tagging.
In tagging, for each URI a number of users attach tags to acpkt URIs, and
this common set of tags can be considered the Fregean setiee @RI ?. While
there are some difficulties with this viewpoint, namely thatlaborative tagging
systems usually conflate a URI with whatever web representatire accessible
by that URI (and thus violate the Semantic Web dictum to sepaepresentations
from resources and their URISs), such conflation does notl aisjualify tagging
as a candidate for a computational theory of sense. Firstcan imagine that tag-
ging could be applied to the associated descriptions of 88aid/eb URIs, and that
these tags would then directly apply to the non-informatigsource of that URI.
To strike deeper, one could also hold that the entire dimibetween Semantic Web
URIs and URIs for ordinary hypertext web-pages is fundamdgnmisbegotten,
with 303 redirection being akin to @ @DANCING QUOTE. Howenieshould be
also noted that while the Semantic Web has yet to reach widadpsage, collab-
orative tagging systems are now part and parcel of most magbrsites, and their
use seems to be increasing rather than decreasing.

There are concrete benefits to the tagging approach compathd Semantic
Web’s traditional focus on formal ontologies. The flexityilof tagging systems is
thought to be an asset; tagging is a post-hoc categorizat@oess, in contrast to a
pre-optimized classification process such as expert-geataxonomies. In defin-
ing this distinction, Jacob (2004) believes that “catezgtion divides the world of
experience into groups or categories whose members shaee gerceptible simi-
larity within a given context. That this context may vary amith it the composition
of the category is the very basis for both the flexibility ahé power of cogni-
tive categorization.” Philosophically, tagging is akinlade Wittgenstein's notion
of ‘family-resemblance.? Classification, on the other hand “involves the orderly
and systematic assignment of each entity to one and onlylase within a system
of mutually exclusive and non-overlapping classes; it naa@sl consistent applica-
tion of these principles within the framework of a prescdlmdering of reality”
Jacob (2004), a tradition going back to AristofleOther authors argue that tag-
ging enables users to order and share data more efficieattyusing classification
schemes; the free-association process involved in taggicagnitively much more
simple than are decisions about finding and matching egistitegories Butterfield
(2004). Additionally, proponents of tagging systems shioat tisers of tagging sys-
tems only need to agree on the general meaning of a tag in torgeovide shared
value instead of the more difficult task of agreeing on a $jmedetailed taxonomy
Mathes (2004).

Yet, what are thesemanticof a tagging system? A number of problems stem
from organizing information through tagging systems, tiithg ambiguity in the
meaning of tags and the use of synonyms which creates infamnahredundancy.
Interestingly, Semantic Web ontologies likiceTaghave been developed to ad-
dress the issues of ambiguity in tagging systems by foringlithe tagging process
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itself, often by linking a particular tag to a Semantic WebIUR While this may
clarify the intended meaning of the tag, this approach dagghereby in some
semi-magical manner give semantics to the tag. Also, it sesammost interesting
question for our approach is not what the referent of a pddid¢ag act, but whether
or not thecollectivesum of individual tagging acts can serve as an objectiveonoti
of sense. Since each tag for a given web resource (such as pagebis repeated
a number of times by different users, for any given taggedues there is a distri-
bution of tags and their associated frequencies. The ¢imteof all tags and their
frequencies ordered by rank frequency for a given resosritestag distributionof
that resource, which is our candidate for a Fregean sense.

So then, the important open question concerning the usdlabooative tagging
to organize metadata is whether the system becatabseover time. Bystablg we
mean that users have collectively developed some implicisensus about which
tags best describe a site, and these tags do not vary muctiroge©nly this will al-
low tags to be used as an adequate computational theory dfnegean sense, since
otherwise tagging would be subjective rather than objectivVe will assume that
these tags that best describe a resource will be those thatosst often, and new
users mostly reinforce already-present tags with simigdencies. Since users of a
tagging system are not acting under a centralized contgpliocabulary, one might
imagine that no coherent categorization schemes wouldgararall from collab-
orative tagging. In this case, tagging systems, espedclatlye with an open-ended
number of non-expert users like del.icio.us, would be ieh#ly unstable such that
the tags used and their frequency of use would be in a corstetof flux. If this
were the case, identifying coherent, stable structure®lidative sense produced
by users with respect to a site would be difficult or impossibl

The hope among proponents of collaborative tagging sysieniat stable tag
distributions, and thus, possibly, stable categorizasicimemes, might arise from
these systems. Again, Isyablewe do not mean that users stop tagging the resource,
but instead that users collectively settle on a group of tiagisdescribe the resource
well and new users mostly reinforce already-present tatfstive same frequency as
they are represented in the existing distribution. Onlagging systems have a vari-
ety of features that are often associated with complex systeich as a large num-
ber of users and a lack of central coordination. These typggstems are known to
produce a distribution known as a power law over time. A @ufgature of some
power laws - and one that we also exploit in this work - is thaftcan be produced
by scale-free networks. So regardless of how large thesygtews, the shape of
the distribution remains the same and teteble Researchers have observed, some
casually and some more rigorously, that the distributiotagé applied to particular
resources in tagging systems follows a power law distrilbuivhere there are a rel-
atively small number of tags that are used with great frequand a great number
of tags that are used infrequently Mathes (2004). If thifésdase, tag distributions
may provide the stability necessary to draw out useful mf@tion structures.

This chapter is organized as follows. In the first part of thpgr, we examine
how to detect the emergence of stable “consensus” disoitmbf tags assigned to
individual resources. In Section 5.2 we demonstrate a ndefinoempirically ex-
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amining whether tagging distributions follows a power laistidbution. In Section
5.2.4 we show how this convergence to a power law distributian be detected
over time by using the Kullback-Leibler divergence. We fiettempirically analyze
the trajectory of tagging distributions before they hawebgized, as well as the dy-
namics of the “long tail” of tag distributions. In the secopart of the paper, we
examine the applications of these stable power law digtabs.In Sectior??, we
@@ In Section 5.5 we demonstrate how the most frequent tagdistribution can
be used in inter-tag correlation graphs (or folksonomy gso chart their relation
to one another. Section 5.6 shows how these folksonomy greg be (automat-
ically) partitioned, using community-based methods, ideorto extract shared tag
vocabularies. Finally, Section 5.7 provides an independenchmark to compare
our empirical results from collaborative tagging, by sotythe same problems us-
ing a completely different data set: search engine quers.log

5.1.1 Related Work

Existing research on tagging has explored a wide varietyaflpms, ranging from
fundamental to more practical concerns - and much of thisare$ is not relevant
to our task at hand, such as discovering the best interfacgsrésenting tags to
users Halvey and Keane (2007) our using tags to extract data & event and
place locations from tagged photos Rattenbury et al (2067 .direction of work
that bears directly on the larger question of the semanficsltective tagging sys-
tems, Mika (2005) addresses the problem of extracting tamaninformation from
tagging systems in the form of Semantic Web ontologies,dilgt fo address the sta-
bility of collective tagging. More of interest is studies the structure of a tagging
network for del.icio.us data which examine network chaeastics of the tagging
system such as the degree distribution (the distributighehumber of other nodes
each node is connected to) and the clustering coefficiesetban a ratio of the
total number of edges in a subgraph to the number of all plessiiiges) of this
network. Shen and Wu do indeed find that the a snapshot of &e &gging net-
work is indeed “scale-free” and has the features Watts arudy8tz (1998) found to
be characteristic of small world networks: small averagh fength and relatively
high clustering coefficient.

However, we are more interested in the tags applied to iddaliURIs. An early
line of research that has attempted to formalize and quathif underlying dynam-
ics of a collaborative tagging systems is Golder and Hubar(®806), which also
make use of del.ici.ous data. They show the majority of sgash their peak pop-
ularity, the highest frequency of tagging in a given timeigerwithin ten days of
being saved on del.icio.us (67% in their data set), thouginessites are “rediscov-
ered” by users (about 17% in their data set), suggestinglistah most sites but
some degree of “burstiness” in the dynamics that could leayytlical patterns of
stability characteristic of chaotic systems. Importan@plder and Huberman find
that the distribution of tags within a given site stabilize®r time, usually around
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one hundred tagging events. They do not, however, examira type of distri-
bution arises from a stabilized tagging process, nor do fregent a method for
determining the stability of the distribution which we sexecantral to understand-
ing the possible utility of tagging systems. Thus, the fiasktshould be determine
the stability of tagging systems.

5.1.2 The Tripartite Structure of Tagging

To begin, we review the conceptual model of generic collathee tagging systems
theorized by Marlow et al (2006a); Mika (2005) in order to ragkedictions about
collaborative tagging systems based on empirical data aseldon generative fea-
tures of the model.

There are three main types of entities that compose anyrtggyistem:

e The users of the system (people who actually do the tagging)
e The tags themselves
e The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces cgnsistets of nodes,
which are linked together by edges (see Fig. 5.1). The fimteptheuser space
consists of the set of all users of the tagging system, whach aode is a user.
The second space is tieg spacethe set of all tags, where a tag corresponds to a
term (“music”) or neologism (“toread”) in natural languadée third space is the
resource spacethe set of all resources, where usually each resource idaitee
denoted by a unique URIA tagging instance can be seen as the two edges that
links a user to a tag and that tag to a given website or resoNate that a tagging
instance can associate a date with its tuple of user, tag(d);esource.

From Figure 5.1, we observe that tags provide the link betviiee users of the
system and the resources or concepts they search for. Talisareveals a number
of dimensions of tagging that are often under-emphasizegatticular, tagging is
oftena methodology for information retrievahuch like traditional search engines,
but with a number of key differences. To simplify drastigalvith a traditional
search engine a user enters a number of tags and then an Ho@lgarithm labels
the resources with some measure of relevance to theptagdiscoverydisplaying
relevant resources to the user. In contrast, with collah@tagging a user finds a
resource and then adds one or more tags to the resource hyawitalthe system
storing the resource and the tggsst-discoveryWhen faced with a case of retrieval,
an automatic algorithm does not have to assign tags to tlogines automatically,
but can follow the tags used by the user. The difference bailds and traditional
searching algorithms is two-fold: collaborative taggiefigs on human knowledge,

1 A URI is a “Universal Resource Identifier” such hgp://www.example.corthat can return a

webpage when accessed. Some tagging based systems stergitbedocument, not the URI,
but most systems such as del.icio.us store only the URI. &seurce space, in this definition,
represents whatever is being tagged, which may or may noebsites per se.
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USERS TAGS

RESOURCES
(WEBSITES)

Fig. 5.1 Tripartite graph structure of a tagging system. An edgerigla user, a tag and a resource
(website) represents one tagging instance

as opposed to an algorithm, to directly connect terms to mheciis before a search
begins, and thus relies on the collective intelligenceohitman users tpre-filter
the search results for relevance. When a search is compléter@source of interest
is found, collaborative tagging often requires the usertpthe resource in order
to store the result in his or her personal collection. Thisses afeedback cycle
These characteristics motivate many systems like delisiand it is well-known
that feedback cycles are one ingredient of complex systeang&@m (2003), giving
further indication that a power law in the tagging distribautmight emerge.

5.2 Detecting Power Laws in Tags

This section uses data from del.icio.us to empirically exenwhether intuitions
regarding tagging systems as complex systems exhibitimgeptaw distributions
hold.

5.2.1 Power Law Distributions: Definition

A power lawis a relationship between two scalar quantikesdy of the form:
y=cx* (5.1)

wherea andc are constants characterizing the given power law. Eq. Shls®d be
written as:

logy = alogx+logc (5.2)
When written in this form, a fundamental property of powevddbecomes appar-

ent; when plotted in log-log space, power laws are straighsl Therefore, the most
simple and widely used method to check whether a distribdtiows a power law
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and to deduce its parameters is to apply a logarithmic teanettion, and then per-
form linear regression in the resulting log-log space. s gaper we used a more
powerful regression method to derigethat minimizes the bias in the value of the
exponent (see Newman (2005a) for the technical details).

The intuitive explanation of power law parameters in the donof tagging is
as follows:c represents the number of times the most common tag for thaditee
is used, whilea gives the power law decay parameter for the frequency ofdags
subsequent positions. Thus, the number of times the tagsitigop is used (where
p=1..25, since we considered the tags in the top 25 positions)eapproximated
by a function of the form:

Frequencyp) = (5.3)

p—a

where —a > 0 andc = Frequencyp = 1) is the frequency of the tag in the
first position in the tag distribution (thus, it is a constémat is specific for each
site/resource).

5.2.2 Empirical Results for Power Law Regression for Indiial
Sites

For this analysis, we used two different data sets. The fatt set contained a sub-
set of 500 “Popular” sites from del.icio.us that were taggelkast 2000 times (i.e.
where we would expect a “converged” power law distributmappear). The second
data set considers a subset of another 500 sites selectmmbrfrom the “Recent”
section of del.icio.us. Both sections are prominently ldiged on the del.icio.us site,
though “Recent” sites are those tagged within the short fi@eod immediately
prior to viewing by the user and “Popular” sites are thosechlaire heavily tagged
in generaf While the exact algorithms used by del.icio.us to deterrtiiese cate-
gories are unknown, they are currently the best availalpecgimations for random
sampling of del.icio.us, both of heavily tagged sites and wfider set of sites that
may not be heavily tagged.

The mean number of users who tagged resources in the “Pdplaliar set was
2074.8 with a standard deviation of 92.9, while the mean remalb users of the
“Recent” data set was 286.1 with a standard deviation of.18.2ll cases, the tags
in the top 25 positions in the distributions have been carsid and thus all of our
claims refer to these tags. Since the tags are rank-ordgrigdduency and the top
25 is the subset of tags that are actually available to dekLis users to examine for
each site, we argue that using the top 25 tags is adequatdg@xamination.

2 All data used in the convergence analysis was collecteceinvibek immediately prior to 19 Nov
2006.
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Results are presented in Figure 5.2. In all cases, logaittmse 2 was used in
the log-log transformatior.

Individual tag distributions for 500 popular sites (log-log scale)

Individual tag distributions for 250 less popular sites (log-log scale)
T T T T T

Number of times the tag is used (Iog2 scale)
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Fig. 5.2 Frequency of tag usage relative to tag position. For eaehtbié 25 most frequently used
tags were considered. The plot uses a double logarithngel@ig) scale. The data is shown for a
set of 500 randomly-selected, heavily tagged sites (l&ift) far a set of 500 randomly-selected,
less-heavily tagged sites (right).

As shown by Newman (2005a) and others, the main charaatexfst power law
is its slope parameter. On a log-log scale, the constant parametenly gives the
“vertical shift” of the distribution with respect to the yia. For each of the sites
in the data set, the corresponding power law function waiseland the slopes of
each ¢ parameters) were compared. The slopes indicate the fundahoharac-
teristic of the power laws, as vertical shifts can and do &gyificantly between
different sites.

Our analysis shows that for the subset of heavily tagged,site slope param-
eters are very similar to one another, with an average ef —1.22 and a standard
deviation+0.03. Thus, it appears that the power law decay slope is relgtoon-
sistent across all sites. This is quite remarkable, givahttiese sites were chosen
randomly with the only criteria being that they were heavdgged. This pattern
where the top tags are considerably more popular than thefréte tags seems to
indicate a fundamental effect of the way tags are distribiriendividual websites
which is independent of the content of individual websifdse specific content of
the tags themselves can be very different from one websiteemther and this
obviously depends on the content of the tagged site.

3 Note that the base of the logarithm does not actually appeéne power law equation (c.f.
Eq. 5.1), but because we use empirical and thus possibly dais, this choice might introduce
errors in the fitting of the regression phase. However, wendidind significant differences from
changing the base of the logarithmdor 10.
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For the set of less-heavily tagged sites, we found the sldiffesed from each
other to a much greater extent than with the heavily taggedal, eéth an average
o = —5.06 and standard deviation6.10. Clearly, the power law effect is much
less pronounced for the less-heavily tagged sites as ogposbe heavily tagged
sites, as the standard deviation reveals a much poorer fieaggression line to the
log-log plotted aggregate data. For sites with relatively instances of tagging, the
results reveal mostly noise.

5.2.3 Empirical Results for Power Law Regression Using Rela
Frequencies

In the previous section, we applied power law regressiohrtiggies to individual
sites, using the number of hits for a tag in a given positioth distribution. In
this section, we examine the aggregate case where we na lesgéhe raw number
of tags (because these are not directly comparable actesy sind instead use the
relative frequencies of tags. The relative frequency isngefias the ratio between
the number of times a tag in a particular position is used f@saurce and the total
number of times that resource is tagde@hus, relative frequencies for a given site
always sum to one. These relative frequencies based onrdataafl 500 sites of
the “Popular” data set were then averaged. Results arerjeesian Figure 5.3.

Relative frequency of tags per position and the derived power law (log-log scale)
T T T T T T T T T

Log2 of the average relative frequency

.
15 25 3 3.5 4 4.5 5
Position of a tag in the distribution (Iog2 scale)

Fig. 5.3 Average relative frequency of tag usage, for the set of 5@ptiar” sites from above. On
the y-axis, the logarithm of the relative frequency (praligh is given. (The plot uses a double
logarithmic (log-log) scale, thus on the y-axis values agative since relative frequencies are less
than one.)

4 To be more precise, the denominator is taken as the total @uaftimes the resource is tagged
with a tag from the top 25 positions, given available data.
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As before, a power law was derived in the log-log space ustagtimeans
squares (LMS) regression. This power law was found to hawsltpea = —1.25.
The regression error, computed through the LMS method indheal, not logarith-
mic space, was found to be 0.038. Note that the LMS regression computation
only makes sense when converted back in the normal space, isirthe log-log
space exponents are negative and, furthermore, deviatiotie y-axis only denote
actual error only after thexp function is applied. This corresponds to a LMS error
rate in the power law regression of 3.8% over the total nurob&ags in the distri-
bution, which is low enough to allow us to conclude that tegjributions do follow
power laws.

We note, however, that there is a deviation from a perfectgogdaw in the
del.icio.us data in the sense that there is a change of shtgretlae top seven or
eight positions in the distribution. This effect is alscatélely consistent across the
sites in the data set. This may be due to the cognitive cantraf the users them-
selves or an artifact of the way the del.icio.us interfaceadsstructed, since that
number of tags are offered to the users as a suggestion te thguf search process.
Nevertheless, given that the LMS regression error is rdtiverwe argue the effect
is not strong enough to change the overall conclusion tigatlistributions follow
power laws.

5.2.4 The Dynamics of Tag Distributions

In Section 5.2, we provide a method for detecting a power latridution in the
tags of a site or collection of sites. In this section, we gtadother aspect of the
problem, namely how the shape of these distributions degeilo time from the
tagging actions of the individual users. First, we examireeitow power law distri-
butions form at the top (the first 25 positions) of tag disttibns for each site. For
this, we employ a method from information theory, namely wlback-Leibler
divergence. Second, we study the dynamics of the entireisagoditions, including
all tags used for a site, and we show that the relative weigftise top and tail of
tag distributions converge to stable ratios in the data sets

5.2.4.1 Kullback-Leibler Divergence: Definition

In probability and information theory, the Kullback-Ledldivergence (also known
“relative entropy” or “information divergence”) repressra natural distance mea-
sure between two probability distributioR&ndQ (in our caseP andQ are two vec-
tors representing discrete probability distribution®rrially, the Kullback-Leibler
divergence betweel andQ is defined as:

D (PIQ) = 3 PIoa(Gy ) (5.4)
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The Kullback-Leibler distance is a non-negative, convexcfion, i.e.
DkL(P,Q) > 0,VP,Q (note thatDk (P.Q) = 0 iff. P and Q coincide). Also, unlike
other distance measures it is not symmetric, i.e. in gefaa(P, Q) # Dk (Q,P).

5.2.4.2 Application to Tag Dynamics

We use two complementary ways to detect whether a distoibdtas converged to
a steady state using the Kullback-Leibler divergence:

e The first is to take the relative entropy between every twcseontive points in
time of the distribution, where each point in time represesaime change in the
distribution. Again, in our data, tag distributions are éh®n the rank-ordered
tag frequencies for the top 25 highest-ranked unique tagarfp one website.
Each point in time was a given month where the tag distriloutiad changed;
months where there was no tagging change were not countedeapaints. Us-
ing this methodology, a tag distribution that was “stableuld show the relative
entropy converging to and remaining at zero over time. IfKn#back-Leibler
divergence between two consecutive time points becomegaeclose to zero),
it suggests that the shape of the distribution has stopp@dieyg. This technique
may be most useful when it is completely unknown whether artie tagging
of a particular site has stabilized at alll.

e The second method involves taking the relative entropy eftéy distribution
for each time step with respect to the final tag distributtbe,distribution at the
time the measurement was taken or the last observation ithettae for that site.
This method is most useful for heavily tagged sites whergalrieady known or
suspected that the final distribution has already conveiagower law.

The two methods are complementary; the first methodologyldveonverge to
zero if the two consecutive distributions are the same, and bne could detect
whether distributions converged if even temporarily. @all patterns of stabiliza-
tion and destabilization may be detected using this firshowktThe second method
assumes that the final time point is the stable distributmthis method detects
convergence only towards the final distribution. If both loése methods produce
relative entropies that approach zero, then one can clatttie distributions have
converged over time to a single distribution, the distiitnuiat the final time point.
Given our interest in distributions that have convergeddwegr laws, we are actu-
ally examining the dynamics of convergence to a power law.

5.2.4.3 Empirical Results for Tag Dynamics

The analysis of the intermediate dynamics of tagging isic@nably more involved
than the analysis of final tag distributions. Because thgtkeaf the histories varies
widely, there is no meaningful way to compute a cumulativeasoee across all
sites as in Section 5.2, so our analysis has to consider eachnce individually. In
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Figure 5.4 (A and B), we plot the results for the convergerfde@®500 “Popular”
sites, on the basis that their final distribution must haweveoged to a power law,
that their complete tagging history was available from tingt iagging instances,
and that this history was of substantial length. In the datacensidered, up to 35
time points are available for some sites (which roughly esponds to three years
of data, since one time point represents one month).

KL distance between distributions at consecutive time points KL distance w.r.t. the final distribution
T T T T T T T T T T T T
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Fig. 5.4 A (left). Kullback-Leibler divergence between tag freqogmlistributions at consecutive
time steps for 500 "Popular” sites. B (right). Kullback-b&r divergence of tag frequency distri-
bution at each time step with respect to the final distributio

There is a clear effect in the dynamics of the above distiobsf At the begin-
ning of the process when the distributions contain only a tiegs, there is a high
degree of randomness, indicated by early data points. Henvgvmost cases this
converges relatively quickly to a very small value, and thretine final ten steps, to
a Kullback-Leibler distance which is graphically indigfiishable from zero (with
only a few outliers). If the Kullback-Leibler divergencetiveen two consecutive
time points (in Figure 5.4A) or between each step and thedinelFigure 5.4B) be-
comes zero or close to zero, itindicates that the shape distréution has stopped
changing. The results here suggest that the power law mayratively early on
in the process for most sites and persist throughout. Exha fiumber of tags added
by the users increases many-fold, the new tags reinforcaltbady-formed power
law. Interestingly, there is a substantial amount of vatain the initial values of
the Kullback-Leibler distance prior to the convergenceauFeiwork might explore
the factors underlying this variation and whether it is actiion of the content of the
sites or of the mechanism behind the tagging of the site. thaldilly, convergence
to zero occurs at approximately the same time period (oftémma few months)
for these sites.

5 Note that in Figure 5.4, the first two time points were omittegause their distribution involved
few tags and were thus very highly random.




5.2 Detecting Power Laws in Tags 119

The results of the Kullback-Leibler analysis provide a pdweool for analyz-
ing the dynamics of tagging distributions. This very wellgii be the result of the
“scale-free” property of tagging networks, so that oncettigging of users have
reached a certain threshold, regardless of how many tagsldes, the distribution
remains stable Shen and Wu (2005). This method can be imigarsaful in ana-
lyzing real-world tagging systems where the stability af tategorization scheme
produced by the tagging needs to be confirmed.

5.2.4.4 Examining the dynamics of the entire tag distributbn

In the previous sections, we focused on the distributiontheftags in the top 25
positions. However, heavily tagged or popular resouragsh as those considered
in our analysis, can be tagged several tens of thousandses$ teach, producing
hundreds or even thousands of distinct tags. It is true thatynof these distinct
tags are simply personal bookmarks which have no meanintpéoother users in
the system. However, it is still crucial to understand ttdginamics and the role
they play in tagging, especially with respect to the top eftég distribution. Some
sources (e.g. Anderson Anderson (2006)), have arguedhbatynamics of long
tails are a fundamental feature of Internet-scale systelaie we were particularly
interested in two questions. First, how does the humbemodégia site is tagged
(including the long tail) evolve in time? Second, how doesriblative importance
of the head (top 25 tags) to the long tail change as tags aexlddd resource?

Results for the same set of 500 “Popular” sites describesteaboe shown in
Figure 5.5. Note that the tag distributions were reconstdithrough viewing the
tagging history of the individual site as available throutghicio.us and collecting
the growth of this tagging distribution over time, thus waliog us to record the
growth of tags outside the 25 most popular.

As seen in Figure 5.5, the total number of times a site is ggews contin-
uously at a rate that is specific to each site and this probddghends on its do-
main and particular context. Though the results are not shoeve due to space
constraints, a similar conclusion can be formulated forthmber of distinct tags,
given that the number of distinct tags varies considerabhsfie and does not seem
to stabilize in time. However for virtually all of the sites the data set considered,
the proportion of times a tag from the top 25 positions is usdative to the total
number of times that a resource is tagged did stabilize aver. 1So, while the total
number of tags per resource grows continuously, the relatiight of the tags in
the head of the tag distribution compared to the those inahg tail does stabilize
to a constant ratio. This is an important effect and it repmésa significant addition
to our analysis of the stability analysis of the top 25 posi$, since it shows the
relative importance of the long tail with respect to the hehthe distribution does
eventually stabilize regardless of the growth of tags indimg tail.
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Fig. 5.5 A (left). Cumulative number of times a resource is taggecefeh time point. B (right).
Proportion of times a tag in the top 25 spots of the distritutias been used to tag a resource to
the total number of times the resource has been tagged wjttagn

5.3 The Effect of Suggestions on Tagging

So far, we have explored the important question of wheth@h&mnt, stable way
of characterizing sense can emerge from collaborativerggystems and has pre-
sented several novel methods for analyzing data from sustesyg. We have shown
that tagging distributions of heavily tagged resourcesl tenstabilize into power
law distributions and present a method for detecting poassrdistributions in tag-
ging data, and see the emergence of stable power law disbrilsuas an aspect of
what may be seen as collective consensus around the catggmriof information
driven by tagging behaviour. Thus groups of tags are indeeatlaquate candidate
for a notion of Fregean sense.

However, one could argue that the stabilization is just aemaetifact of tag sug-
gestions. Tag suggestions are when a tagging system, dnstéetting the user tag
the resource, automatically (as the product of some algujitpresents a list of
‘suggested’ tags for the user. The user can then easily attuege tags or choose
through them, rather than choose their own. This could le#ukt stabilization of the
tagging system not as a product of the actual collaboratimeesmaking of users,
but as an artificial and predictable result of the tag suggesigorithm. However,
the reasons behind the emergence of a power-law distribuidagging systems
are yet unknown, although explanations fall into two geheategories. The first of
these explanations is relatively simple: the tags stabilizo a power-law because
users are imitating each other via tag suggestions put fdriwa the tagging sys-
tem Golder and Huberman (2006). The second and more recglanation is that
in addition to imitation, the users share through a siméayr generation procedure
based on the informationon the webpage, most likely bectheseisers have the
same background knowled@e However, drawing these two influences apart has
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not yet been tested scientifically, which we will do. HoweViest let's inspect these
the existing explanations for tagging stabilization moeely.

5.3.1 Models of collaborative tag behavior

5.3.1.1 A simple model: The Polya Urn

The most elementary model of how a user selects tags whetedimyoa resource is
simple imitation of other users. Note that ‘imitation’ irgiging systems means that
the tags are being reinforced via a ‘tag suggestion’ meshanand so the terms
“imitation”, “reinforcement”, “feedback”, and ‘tag suggion’ can be considered to
be synonymous in the context of tagging systems. The usendtate other users
precisely because the tagging systems tries to supporisereuthe tag selection
process by providing tag suggestions based on tags othplepesed when tagging
the same resource. There are minor variants of this therok egithe possibility of
using a combination of tags of other users in combinatioh witiser’'s own previ-
ously used tags. In most tagging systems like del.icio.asdahag suggestions are
presented as a list of tags that the user can select in or@eidtithem to their tag-
ging instance. The selections of tags from the tag recomatendforms a positive
feedback loop in which more frequent tags are being reiefrthus causing an
increase in their popularity, which in turn causes them todeforced further and
exposed to ever greater numbers of users. This simple typepdédnation is easily
amendable to preferential attachment models, also knowithget richer’ expla-
nations, which are well-known to produce power-law disttibns. Intuitively, the
earliest studies of tagging observed that users imitater gite-existing tags Golder
and Huberman (2006). Golder and Huberman proposed thaintipéest model that
results in a “power-law” would be the classical Polya urn eid&8older and Huber-
man (2006). Imagine that there is urn containing balls, edcdome finite number
of colors. At every time-step, a ball is chosen at random.eOmball is chosen, it
is put back in the urn along with another ball of the same coltiich formalizes
the process of feedback given by tag suggestions. As put IljeGand Huberman,
“replacement of a ball with another ball of the same color barseen as a kind
of imitation” where each color of a ball is made equal to a reltlanguage tag
and since “the interface through which users add bookmdréws users the tags
most commonly used by others who bookmarked that URL alraahrs can easily
select those tags for use in their own bookmarks, thus imgalhe choices of previ-
ous users” Golder and Huberman (2006). Yet, this model idinoited to describe
tagging, as it features only reinforcement of existing tange the addition ohew
tags.
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5.3.1.2 Imitation and The Yule-Simon Model

The first model that formalized the notion of new tags was psep by Cattuto et
al. ?. In order for new tags to be added, a single paramgtaust be added to the
model, which represents the probability of a new tag beirtpddwith the probabil-
ity p= (1— p) that an already-existing tag is reinforced by random unifohoice
over all already-existing tags. This results in a Yule-Simmodel, a model first em-
ployed by Yule Yule (1925) to model biological genera an@d&imon to model
the construction of a text as a stream of words Simon (193%% Model has been
shown to be equivalent to the famous Barabasi and Albertriéthgo for growing
networks Bornholdt and Ebel (2001). Yet the standard Yuiee® process does not
model vocabulary growth in tagging systems very well, agcedtby Cattuto et al.
as it produces exponents “lower than the exponents we abgeactual data?.

Cattuto et al. hypothesize that this is because the YuleSimodel assumes
users are choosing to reinforcp) (tags uniformly from a distribution oall tags
that have been used previously, so Cattuto concludes ths¢éms more realistic
to assume that users tend to apply recently added tags reapeefntly than old
ones”?. This behavior could be caused by the exposure of a user tedbéek
mechanism, such as del.icio.us tag suggestion systemsigigestions exposes the
user only to a subset of previously existing tags, such asethwst recently added.
Since the tag suggestion mechanism only encourages mametiieadded tags to
be re-enforced with a higher probability, Cattuto et al.edld memory kernel with a
power-law exponentto standard Yule-Simon model. This radiaai the weight of a
previously existing tag being reinforced is weighted adawg to a power-law itself,
so that a tag that has been appliesteps in the past is chosen with a probability
p(x) = a(t)/(x+ 1), wherea(t) is a normalization factor and “is a characteris-
tic time scale over which recently added words have compaiaiobabilities”?.
While the parametep controls the probability of reinforcing an existing tagisth
second parameter, controls how fast the memory kernel decays and so over what
time-scale a tag may likely count as ‘new’ and so be moreyikelbe reinforced.
As Cattuto et al. notes, “the average user is exposed to adaghty equivalent
top-ranked tags and this is translated mathematicallyantmw-rank cutoff of the
power-law”?. This model produces an “excellent agreement” with theltesfitag-
correlation graph8. It should be clear that the original Yule-Simon model siynpl
parametrizes the probability of the imitation of existiragy$. The modified Yule-
Simon model with a power-law memory kernel also depends erirttitation of
existing tags, where the probability of a previously-useglis decaying according
to a power-law function.

5.3.1.3 Adding Parameters and Background Knowledge
Although Cattuto et al.'s model is without a doubt an elegairtimal model that

captures tag-correlation distributions well, it was nestéel against tag-resource dis-
tributions?. Furthermore, as noticed by Dellschaft and Staab, Cattiab®model
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also does not explain the sub-linear tag vocabulary groWentagging systen?.
Dellschaft and Staab propose an alternative model, whids adnumber of new
parameters that fit the data produced by tag-growth distoibs and tag-resource
distributions better than Cattuto et al.'s mo@eThe main points of interest in their
model is that instead of a new tag being chosen uniformlynéhe tag is chosen
from a power-law distribution that is meant to approximabackground knowl-
edge.” So besides “background knowledggy, their model also features the inverse
of “background knowledge,” i.e. the “probability that a ugeitates a previous tag
assignment” ) ?. In essence, Dellschaft and Staab have added (at least)emo n
parameters to a Yule-Simon process, and these additioreahgters allows the re-
inforcement of existing tags to be more finely tuned. Instafaal single power-law
memory kernel with a single parameterthese additional parameters allow the
modeling of “an effect that is comparable to the fat-tailedess of the Yule-Simon
model with memory” while keeping tag-growth sub-linéarThe model proposed
by Cattuto et al. kept the tag-growth parameter equal to 1sandakes tag growth
linear top ?. Yet for us, most important advantage of Dellschaft and IStager
Cattuto et al.'s model is that their added parameters leis thodel match the pre-
viously unmatched observation by Halpin et al. of the fregpyerank distribution
of resources being a power-law Halpin et al (2007). The miatdlot as close as the
match with vocabulary growth and tag correlations, as nesstag frequency dis-
tributions vary highly per resource, with the exceptionted trop in slope around
rank 7-10 Halpin et al (2007).

5.3.2 Research Questions

What unifies all of these models is that they assume thattimitausually assumed
to be tag suggestions from the tagging system, has a majaicimop the emergence
of a power-law distribution. With concern to the modified &8$imon model and the
more highly parametrized model that takes into accountkbesmund knowledge,
different claims are made of where the imitated tags conma f@attuto et al. pro-
poses that they come from a random uniform distribution g§ tachile Dellschaft
and Staab propose a more topic-related distribution thelfihas a power-law dis-
tribution ?. However, just because a simple model based on imitaticexgp$tigges-
tions can lead to a power-law distribution does not necégsaean that tag sug-
gestions are actually the causal mechanism that causeswse-faw distribution to
arise in tagging systems. The research question posedshisrtiie tag suggestion
mechanism, the main force behind the observed power-lavitdigons in tagging
systems?

In order to measure the effects of tag suggestions on thesfa@vior of users we
developed a Web-based experiment in which users were askad L1 websites,
with two varying conditions: the ‘tag suggestion’ conditi@Condition A) in which
7 tag suggestions were presented to the user, and a ‘no tggstian’ condition
(Condition B) in which no tag suggestions were presentelddaser.
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In this experiment we focus on del.icio.us which is the on¢hef earliest and
well-known tagging systems. Del.icio.us was the first toddtice a tag based col-
laborative bookmark system. Del.icio.us has more than filliom users and 150
million tagged URIs and so provides a vast data-set. Theins&face used in our
experiment presented the tag suggestions in a similar walaio.us to avoid
confusion.

The 11 websites used in the experiment were selected angawiwo criteria.
First, the topics of the websites needed to appeal to therglepeblic. Second,
the website needed to have over 200 tagging instances. Treakip the general
public was operationalized by randomly choosing sites Were tagged with the
tag “lifestyle” on del.icio.us. The tag “lifestyle” is a pafar tag with 72,889 tagged
web-pages as of October 2008. This was chosen in order toia®bhr study to
one particular specialized subject matter, and so excluatepages on del.icio.us
that have a highly technical content. Specialized conteay not lead to normal
tagging behavior from users in the experiment who might mofamiliar with the
specialist subject matter. The second criteria of using welb-pages with over 200
tagging instances was chosen since it has been shown thé p@mver-law tag
distributions emerge around the 100-150th tagging Golddrtéuberman (2006).
We did not want the tag suggestions to be from non-stable isghiitions, as it
has been shown that the variance between the top populaotad eary widely
before 100-150th tag. The 11 websites selected for thisrarpat, with the popular
tags provided from del.icio.us and the number tags. Notevthde the number of
URIs 11 may appear to be small, it is larger than previous rxm@ats over tag
suggestions Suchanek et al (2008) and was enough to givepleeiment enough
power to be statistically significant. It was far more catifor this experimentto get
enough subjects in order for power-law distributions to lveigythe chance to arise
without tag suggestion, and this would require at least d2emental subjects
tagging each URI.

I Condition A | | Condition B ‘

Tag
Interface - 1 U1 Turi)1, T(ur1)2,... T(url)7
nterface - url2 url2 T(uri2)1, T(url2)2,..., T(uri2)7
Experiment website url url
url 11 U1 || Trt)1, Turt)2,... Tur11)7

Fig. 5.6 Experimental Design

Figure 5.6 shows the experimental design. In the ‘no tag estiygn’ condition
(Condition A), as shown in Figure 5.6, a user is presented theebsites he needs
to tag without any form of tag suggestions. In the ‘tag sutigescondition (Con-
dition B), also shown in Figure 5.6, a user is presented thedlisites with 7 sug-
gested tags. While the details of the tag suggestion algorépplied by del.icio.us
is unknown, for our experiment the suggested tags in candBi were aggregated
from del.icio.us and the 7 suggested tags given by delusifor each of the 11
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websites. For the experiment the 7 popular tags were aggegad presented to
the participants in manner similar to how tags are suggestaders of del.icio.us,

being shown to the user before they commence their taggimch Bf the 300 par-

ticipants was randomly assigned to either the ‘tag sugg@sir ‘no tag suggestion’

condition. Of these 300 users, 78 did not tag any websiten37e ‘tag suggestion’

condition, 41 in the ‘tag suggestion’ condition) and are¢fere excluded from fur-

ther analysis. The users were randomized over age, gemheputer, Internet and
their past tagging usage.

5.4 Results

In total the 222 participants applied 7,250 tags over all sitels in both condi-
tions, with 3,694 tags applied in the ‘tag suggestion’ ctindiand 3,556 in the ‘no
tag suggestion’ condition. On average every user in thestaggestion’ condition
applied 3269 (SD. = 9.77) tags over all 11 URIs and for the no tag suggestion
conditions 3261 (SD. = 6.80) tags over 11 URIs.

5.4.1 Detecting Power-Law Distributions

The power-law distribution is defined by the function:
y=cx “+b (5.5)

in whichcanda are the constants that characterize the power-lavbdiging some
constant or variable dependent withat becomes constant asymptotically. Tohe
exponent is the scaling exponent that determines the sldpe distribution before
the long tail behavior begins. A power-law function can lamsformed to a log-log
scale as in the following equation:

log(y) = —alog(x) +log(c) (5.6)

This equation shows the characteristic property of poaerflinction is that when
transformed to a log-log scale the power-law distributikes the shape of a linear
function with slopea. So transforming a function to a log-log scale and determin-
ing the slopea is one of the first steps in examining whether a distributias &
power-law. We averaged the tag-resource distributionsaliot1 web-pages, and
this distribution in log-log space is given in Figure 5.7 altog-log scalebothcon-
ditions appear visually to exhibit power-law behavior.
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Fig. 5.7 Averaged tag-resource distributions for both experinmergaditions on a log-log scale.
The solid line depicts the ‘tag suggestion’ condition, tb&ed line the ‘no tag suggestion’ condi-
tion.

5.4.1.1 Parameter Estimation via Maximum-Likelihood

The most widely used method to check whether a distributilos a power-law
is to apply a logarithmic transformation, and then perfoimedr regression, esti-
mating the slope of the function in logarithmic space tabélowever, this least-
square regression method has been shown to produce syistbiaaf in particular
due to fluctuations of the long tail Clauset et al (2007). Teedaine a power-law
accurately requires minimizing the bias in the value of tbaling exponent and
the beginning of the long tail via maximum likelihood estiina. See Newman
Newman (2005b) for the technical details. To determineaths the observed dis-
tributions, we fitted the data using the maximum likelihooethod recommended
by Newman Newman (2005b). Figure 5.8 shows the diffeceparameters for the
‘tag suggestion’ and ‘no tag suggestion’ conditions, ad asthea determined via
aggregation of tagging data from del.icio.us for the 11 URkgerall, for the ‘no tag
suggestion’ condition, the averagewas 2.1827 (S.D. 0.0799) while for the ‘tag
suggestion’ condition the averagewas 2.0682 (S.D. 0.0941). Ttee values for
both conditions and the aggregated data from del.icio@sitwated in the interval
[1.732391< a < 2.249359. Figure 5.8 shows that both experimental conditions
and the aggregated data from del.icio.us have similar expsnOur results shows
that a similara holds for both the ‘tag suggestion’ and ‘no tag suggesti@mdi-
tion. Further updates to determine if there is an actuaérbfice between the two
conditions as regards if a power-law distribution actubtyds.
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Fig. 5.8 X axis depicts the URI used in the experiment, Y axis deplesdifferenta values

5.4.1.2 Kolmogorov-Smirnov Complexity

Determining whether a particular distribution is a ‘good fiir a power-law is
difficult, as most goodness-of-fit tests employ some sortafmal Gaussian as-
sumption that is inappropriate for non-normal power-lastrithutions. However,
the Kolmogorov-Smirnov Test (abbreviated as the ‘KS Test) be employed as
a ‘goodness-of-fit’ test for any distribution without imgili parametric assumptions
and is thus ideal for use measuring goodness-of-fit of a dimée distribution to a
power-law function. Intuitively, given a reference dibtrtion P (perhaps produced
by some well-known function like a power-law) and a samp#griiutionQ of size
n, where one is testing the null hypothesis tQes drawn fromP, then one simply
compares the cumulative frequency of b&tlandQ and then the greatest discrep-
ancy (theD-statistic) between the two distributions is tested agaimescritical value
for n, which varies per function.

For a power-law distribution generating function, we cah aeritical p-value
by generating artificial data using the scaling expomeand lower-bound equal to
those found in the supposed fitted power-law distributiopotver-law is fit to this
artificial data, and then the KS test is then done for eachilligion that was artifi-
cially generated comparing it to itsvnfitted power-law. Theg-value is then just the
fraction of the amount of times tHe-statistic is larger for the artificially-generated
distribution than thé®-statistic of the empirically-found distribution. Theoeg, the
larger thep-value, the more likely a genuine power-law has been fourtdérem-
pirical data. According to Clauset, “once we have calculater p-value, we need to
make a decision about whether itsi;all enough to rule ouhe power-law hypoth-
esis” (emphasis added) Clauset et al (2007). The power-gwthesis is simply
that the distribution was generated by a power-law gemggdtinction. The null
hypothesis is that by chance a function would generate theeptaw distribution
observed in the empirical data. We shall also pse0.1.

The KS test for all 11 tagged web-pages, testing both thesitggestion’ and ‘no
tag suggestion’ condition, is given in Figure 5.9. The agerB statistic for the ‘no
tag suggestion’ condition is 0.0313 (S.D. 0.0118) wotk- .48(p > .1, power-law
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found). For the ‘tag suggestion’ condition the aver&yetatistic is 0.0724 (S.D.
0.0256) withp = .08(p < .1, no power-law found). These results show that the
power-law function exhibitednly in the ‘no tag suggestion’ conditions is signifi-
cant, the fit is closer for the ‘no tag suggestion’ conditibart the ‘tag suggestion’
condition. TheD-statistic showed a range from 0.0170 to 0.0552 for ‘no tag su
gestion’ condition yet a range of 0.0428 to 0.1318 for ‘taggmstion.’ Thus, the
power-law only significantly appears without tag suggesj@nd with tag sugges-
tions a power-law cannot be reliably found. This is surpdsias tag suggestions
do not onlynot cause the power-law to form, but they seems that they somehow
prevent it from being formed. On the other hand, the ‘no taggsstion’ condition
results in a significantly good fit to a power-law. Therefdhe result is somewhat
counter-intuitive, as according to our experimental dagar®le tag-based sugges-
tion mechanism is unlikely the main cause of the power-laumftion.

0.1f

0.081

D-statistic

0.06

0.041

0.021

URI Number

Fig. 5.9 X axis depicts the URI used in the experiment, Y axis depiotsdifferent D Statistics
from the KS Test. The dotted line is the ‘no tag suggestiomditoon, while the solid line is the
‘tag suggestion’ condition.

5.4.2 Influence of tag suggestion on the tag distribution

Given that the KS test shows that there is a significant anagparcounter-intuitive

difference in the emergence of the power-law distributibetsveen the conditions,
we need a more fine-grained way to tell what the differencegathe distributions

for the two conditions. A number of differing techniquesis# deployed to answer
this question.
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5.4.2.1 Kullback Leibler Divergence

The Kullback-Leibler divergence (also known eative entropy, which we ab-
breviate as ‘KL divergence,’ can be used an intuitive infation-theoretic measure
of the distance between two distributioReand Q. Unlike many other methods, it
takes the entire distribution (in our case, the long tailfiparticular interest) into
account. Note that it is not a true metric as it is an asymmdtawever, it is a useful
measure of the difference between two distributions asdtrisn-negative, convex
function with well-known properties. The KL divergence &ra if and only if the
two distributions are the same, otherwise a positive degaasults that is larger the
greater the divergence between the distributions. Intlitiin information theory,
the KL divergence is the expected difference in bits reqliceencode to distribu-
tion Q when using a code based on distributnThe KL divergence betweeh
andQis given as:

PX)
Dt (PIQ) = 3 P(I0g( i) (5.7)

The KL divergence (using the ‘tag suggestion’ condition Foand the ‘no tag
suggestion’ condition foR) for each URI in the experiment are given in Figure
5.10. While some URIs (like number 6 and 7) have almost nedifice between
the ‘tag suggestion’ and ‘no tag suggestion’ conditionseotJRIs like number 11
have large differences. This average KL divergence betwleertag suggestion’
condition and ‘no tag suggestion’ condition is 0.1617 (M820 ). This is small
but not insubstantial. As shown in the observation of Fidui the long tail of the
‘tag suggestion’ condition is often shorter than the ‘no saggestion’ condition,
while the top of the ‘tag suggestion’ distribution has a legfiequency than the top
of the ‘no tag suggestion’ distribution. The KL divergenakés this into account,
while merely finding thex does not. The effect on the top of the distribution should
be investigated further.

5.4.2.2 Ranked frequency distribution

In order to observe the micro-behavior of the ‘tag suggesand ‘no tag sugges-
tion’ distributions, we investigate whether or not the taggestion tags are ‘forced’
higher in the distribution, so leading to a more sparse laiigahd an exaggerated
top of the distribution in the ‘tag suggestion’ condition.drder to provide a mea-
surement of the number of suggested tags in the top of théhditon, the percent-

age of suggested tags that were found in the top 7 and top $vax@ calculated.

We compared the percentage of suggested tags in the top @@h@ tanks for both

conditions with del.icio.us. For this we assume that the ggssted tags provided
by del.icio.us represent the top 7 tags in the ranked fregudistribution so that

the percentage of suggested tags in the top 7 and top 10 mardkeslficio.us is equal

to 100%. We averaged the percentages for all URIs per expatahcondition.
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Fig. 5.11 Ranked Frequency Distribution Repeating Suggested Tags

Figure 5.11 shows that for the percentage of suggested vagjalzde in the top
7 rank for the ‘tag suggestion’ condition is .80% and for the ‘no tag’ suggestion
condition 5193%. This means that only half of the suggested tags can bl fou
in the top 7 of the ranked frequency distribution in the ‘ng suggestion’ condi-
tion. So unsurprisingly, in the ‘tag suggestion’ conditiore observed more of the
suggested tags than in the ‘no tag suggestion’ conditioeré’ s an influence of
tag suggestions on the ranked position and the frequentyeditggested tags. Tag
suggestions do influence the tag-resource distributiciagasuggestion causes a net
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gain of nearly one in three tags being imitated that woulentlise not be. How-
ever, when users are not guided by tag suggestions and ty fihey still choose
for themselves half of the tags that would have been othersuggested had they
had a ‘tag suggestion’ mechanism available. Further we &idke availability of
suggested tags in the top 10 as an indication how dispersesutjgested tags are
in the ranked frequency distribution for both conditionsr Ehe top 10 rank figure
5.11 shows that the percentage of suggested tags in theug@gstion’ condition is
88.30% and for the “no tag suggestion” condition is@®3%.

5.4.2.3 Imitation Rates

Another metric that measures the influence of tag suggestidghe tag distribution
is the matching and imitation rate as proposed by Suchanak 8uchanek et al
(2008). The matching rate measure the proportion of appdigsl that are available
in the suggested tags. This metric provides insight in hawter is influenced by
the tag suggestion provided by the tagging system. For quer@rent thanatching
rate (mr) is being defined as:

X denotes the tag suggestion method that is being used in bottoaditions. The
‘tag suggestion’ condition provides 7 suggested tags whieno tag suggestion’
condition provided no suggested tags. For a given URK, i) denotes the set of
tags at thath tag entry and5(X) denotes the suggested tags for that URI. For a
tagging instance in which all tags are given by the suggeatgithe matching rate
will be 1.

The matching rate for the 11 URIs in the experiment and ovebtth conditions
was calculated. The resulting matching rates can be foumdbie 5.1. The ‘no tag
suggestion’ condition serves as a reference point. ThdtseisuTable 5.1 show
that users in the ‘tag suggestion’ condition are being imfbeel by the appearance
of tag suggestions. The average matching rate for the ‘tggestion’ condition is
0.57 (S.D. 0.086) and for the ‘no tag suggestion’ conditiddb('S.D. 0.068). The
main drawback of the matching rate is that it can’t accounttie application of
suggested tags when tag suggestion is absent.

This ability to account for tag repetition even when the tamissing is given by
theimitation rate(ir), defined as Suchanek et al (2008):

_ preg(X,S) — prec,(NONE, S)

on(S) 1— prec,(NONES)

(5.9)

With preg,(X,S) defined as:
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Table 5.1 Matching rate

URI No.|Tag SuggestigiNo Tag Suggestign
1 0.47 0.31
2 0.57 0.34
3 0.53 0.32
4 0.65 0.48
5 0.45 0.29
6 0.52 0.29
7 0.58 0.38
8 0.65 0.38
9 0.74 0.46
10 0.63 0.30
11 0.59 0.31
n . .
prqu(X,S): ZI:1|T(X5|)HS| [S(le) S] (510)

S | TG [[S(X,1) =

The termpre,(X,S) defines the proportion of applied tags that are available in
the single tag suggestion s&tSince the tagSin our experiment is always static,
prec(X,S) is equal to the calculation of the matching rate for the taggsstion
condition in Equation 5.8orec,(NONE, S) defines the proportion of suggested tags
that are available in the tags applied by the user when nouggestion is given.
This is similar to the calculation of the matching rate foe tho tag suggestion’
condition. Therefore we can rewrite the imitation rate as:

o mr(ConditionA —mr(ConditionB
B 1— mr(ConditionB

(5.11)

Table 5.2 shows the imitation rates for the different experital URIs. An imi-
tation rate of 1 will denote full imitation. The results shdwat users tend to select
suggested tags when the are available with a chance of 1 @uvith a mean imi-
tation rate of 0.36 (S.D. 0.097).

Table 5.2 Imitation rate

URI No.|Imitation Ratg
1 0.22
0.35
0.29
0.35
0.20
0.34
0.31
0.42
0.50
0.48
0.43

=
PEBoo~vouorwn
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Combining this insight with our previous work in KL divergemand looking at
Figure 5.7, it appears that ‘tag suggestion’ condition ‘poesses’ the distribution
that naturally arises without tag suggestions. This ‘caapion’ of the distribution
that the ‘no tag suggestion’ generates can be defined ag/tigljuent tags being
reinforced more and less frequent tags reinforced less tansed at all, leading to
more imitation in the top of the distribution and a ‘shortleng tail. It is because
of this ‘compression’ caused by tag suggestions that theagee ‘tag suggestion’
distributions does not significantly fit power-law distrilmns while the averaged
‘tag suggestion’ distribution does fit a power-law disttibn. Taking a ‘scale-free’
power-law as an ideal stable tag distribution, rather cewimtuitively a simple tag
suggestion scheme based on frequency may actually huer ithtin help the stabi-
lization of tagging as a power-law distribution.

5.4.2.4 Tag Suggestions Do Not Cause Tag Stabilization

This experiment provides a first step that leads to a newprg&ation of the ac-
cepted theories and models that explain the emergence adrdaws in tagging
systems. Common wisdom in tagging suggested that the pewesas unlikely to
form without tag suggestions. As put by Marlow, Boyd, andeogh “a convergent
folksonomy is likely to be generated when tagging is notdhfiblind tagging being
tagging without tag suggestions Marlow et al (2006b). Tisailits show that the tags
of userswithouttag suggestions converge into a power-law distributioncédaer,
a power-law function fitgnore closelythe behavior of users when the usersraoe
given tag suggestions than when the users are given tagstigyge This means that
tag suggestions distorts the power-law function that walldady naturally occur
when users tag blindly without tag suggestions. These teeatg not unexpected.
After all, words in natural language naturally follow a power-laand there exists
purely information-theoretic arguments why this is theecandelbrot (1953).
This helps clarify a number of experimental results fronvjes experiments
in tagging. First, this result clarifies how the power-lawtdbution was observed
by Cattuto et al. even before del.icio.us began using tagestgpn via the tag in-
terface?. Second, it also helps explain how the majority of users inhaunek et
al’s experiment had a high matching rate, even when in tle@iort-back most of
them said they didn’t use or even notice tag suggestionseattet al (2008). Our
experiment does have a number of limitations, in particatarexperiment should
be extended to deal with more web-pages as well as expert@m@éxpert users
dealing with different kinds of expert subject matters.Histsituation, tag sugges-
tions may have more of an influence on tagging behavior. Algfnothe presented
results indicate that some of the previous assumptionsrlyagthe emergence of
power-laws do not hold, a power-law distribution alone doesprovide the nec-
essary information needed to determine the role of tag |tiggeon tag behavior.
One line of research that seems promising is to understaméhbman categorize in
general, which could easily influence how they decide whagfs to use to annotate
web-pages. While the large amount of tagging data on the waaterit easy to de-
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velop simple mathematical models of human behavior, it sg@at a more detailed
understanding of what users @etuallydoing is needed, the role of language in the
use of the Web by human agents. Therefore, we need to ingpecbtlective use
of language in tags more thoroughly to get a grasp of whatdsrieg with tagging
systems as a kind of sense.

5.5 Constructing Tag Correlation Graphs

While earlier we have discovered the kinds of of tag freqyettistributions that
emerge from the collective tagging actions of individuagnss as well as the dy-
namics of this process of sense-making, we have come inty aroblem. If the
tag stabilization simply reflects the large-scale dynami¢snglish language usage,
then the result is not very surprising. However, tags arenadiomain specific terms,
and thus may not actually reflect English language use. Tdrexat would be uesful
to see if ay latent structure could be extracted from theilstad tag distributions,
and if those latent structures reflected the domain-spexijanization of informa-
tion. We look at one of the most simple latent structures¢hatbe derived through
collaborative tagging: inter-tag correlation graphs f@thaps more simply, “folk-
sonomy graphs”) . We discuss the methodology used for dhtasuch graphs and
then illustrate our approach through an example domairystud

5.5.1 Methodology

The act of tagging resources by different users induces$ieatay level, a simple
distance measure between any pair of tags. This distancauneeegaptures a degree
of co-occurrence which we interpret as a similarity metbetween the content
represented by the two tags. The collaborative filteringv@aet al (2001); Robu
and Poutré (2006) and natural language processing MaramdgSchutze (2002)
literature proposes several distance or similarity messstinat can be employed
for such problems. The metric we found most useful for thisbpgm iscosine
distance Note that this should not be interpreted as a conclusionusrpart that
cosine distance is always an optimal choice for this probl€nis issue probably
requires further research on larger data sets.

Formally, letT;, Tj represent two random tags. We denoteNy{fi) andN(T;)
respectively the number of times each of the tags was uséddodlly to tag all
resources, and bM(T;, Tj) the number of times two tags are used to tag the same
resource. Then the similarity between any pair of fagsd | is defined as:

N(Ti, Tj)

similarity(T;, Tj) = RN
i)* i

(5.12)
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In the rest of the paper, we use the shorthaird; to denotesimilarity(T;, Tj). From
these similarities we can construct a tag-tag correlatiaplyor network, where the
nodes represent the tags themselves weighed by their &b$mquencies, while
the edges are weighed with the cosine distance measure. Mieabtisualization
of this weighed tag-tag correlation, by using a “spring-ehtber” or "spring re-
laxation” type of algorithm. We tested two such algorithriewada-Kawai and
Fruchterman-Reingold Batagelj and Mrvar (1998); the twapdis included in this
paper are based on the latter. An analysis of the structuoglepties of such tag
graphs may provide important insights into both how peogadeand how structure
emerges in collaborative tagging.

5.5.2 Constructing the tag correlation (folksonomy) graph

In order to exemplify our approach, we collected the datacamstructed visualiza-
tions for a restricted class of 50 tags, all related to thé'¢agplexity.” Our goal in
this example was to examine which sciences the user comyrafrdel.icio.us sees
as most related to “complexity” science, a problem whichtheditionally elicited
some discussion. The visualizations were made on Pajek8atand Mrvar (1998).
The purpose of the visualization was to study whether thpgsed method retrieves
connection between a central tag “complexity” and relatediplines. We consid-
ered two cases:

e Only the dependencies between the tag “complexity” and thkmotags in the
subset are taken into account when building the graph (FIg)5

e The weights of all the 1175 possible edges between the 50atagsonsidered
(Fig. 5.13).

In both figures, the size of the nodes is proportional to tleehibe frequencies of
each tag, while the distances are, roughly speaking, ialyerslated to the distance
measure as returned by the “spring-embedder” algorftiwre tested two energy
measures for the “springs” attached to the edges in thelizatian: Kamada-Kawai
and Fruchterman-Reingold Batagelj and Mrvar (1998). Fok taf space, only the
visualization returned by Kamada-Kawai is presented tsénee we found it more
faithful to the proportions in the data.

The results from the visualization algorithm match relalvell with the intu-
itions of an expert in the organization of content in thisdi€dome nodes are much
larger than others which again shows that taggers prefesédaigeneral, heavily
used tags (e.g. the tag “art” was used 25 times more than $hatags such as
“chaos”, “alife”, “evolution” or “networks” which correspnd to topics generally
seen as close to complexity science are close to it. At ther@ihd, the tag “art” is
a large, distant node from “complexity.” This is not so mucledo the absence of

6 For two of the tags, namely “algorithms” and “networks,” misological stemming was em-
ployed. So both absolute frequencies and co-dependeneires summed over the singular form
tag, i.e. “network” and the plural “networks,” since botinrfts occur with relatively high frequency.
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sites discussing aspects of complexity in art as there ate guew of such sites,
but instead due to the fact that they represent only a smafigstion of the total
sites tagged with “art,” leading to a large distance measure

In Figure 5.13, the distances to “complexity” change sigaifitly, due to the ad-
dition of the correlations to all other tags. However, one abserve several clusters
emerging which match reasonably well with intuitions retjiag the way these dis-
ciplines should be clustered. Thus, in the upper-left coome can find tags such
as “mathematics”, “algorithmics”, “optimization”, “conapation”, while immedi-
ately below are the disciplines related to Al (“neural” [wetks], “evolutionary”
[algorithms] and the like). The bottom left is occupied bggavith biology-related
subjects, such as “biology”, “life”, “genetics”, “ecologgtc, while the right-hand
side consists of tags with more “social” disciplines (“metX, “economics”, “or-
ganization”, “society” etc.). Finally, some tags are battgk and central, pertaining
to all topics (“research”, “science”, “information”).

We also observed some tags that are non-standard Englisis yaithough we
filtered most out as not relevant to this analysis. One examspgcomplexsystems”
(spelled as one word), which was kept as such, although ge"taomplex” and
“system” taken individually are also present in the sethBps unsurprisingly, the
similarity computed between the tags “complexsystems”‘@odplex” is one of
the strongest between any tag pair in this set. One impticati this finding is
that tag distances could be used to find tags that have mintacic variance with
more well-known tags, such as “complesystems,” but whictmoasimply detected

by morphological stemming.

5.6 ldentifying tag vocabularies in folksonomies using
community detection algorithms

The previous sections analyzed the temporal dynamics tfldison convergence
and stabilization in collaborative tagging as well as soaterit information struc-
tures, like tag correlation (or folksonomy) graphs, that be created from these tag
distributions. In this section, we look at how these folksmry graphs could be used
to identifying shared tag vocabularies.

The problem considered in this section can be summarizeghas a heteroge-
neous set of tags (which can be represented as a folksonapi)gthow can we
partition this set into subsets of related tags? We call ghiblem a “vocabulary
identification” problem. It is important to note that we ubse term “vocabulary”
only in a restricted sense, i.e. as a collection of relatadgerelevant to a specific
domain. For instance, a list of tropical diseases is a “volzalp”, a list of electronic
components in a given electronic device is a vocabulary,alist of specialized
terms connected to a given scientific subfield would all becallaries” in our
definition. We acknowledge that this is a restricted definitihe type of structural
information from formal ontologies is difficult to extrachly from tags, given the
simple structure of folksonomies. Nevertheless, our apghia@ould still prove use-
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fulin such applications: for example, one could constrhetdet of related terms as
a first rough step and then a human expert (or, perhaps, arjetmi]-automated
method) could be used to add more more detail to the extractbulary set.

Note that the complexity-related disciplines data seegy introduced in Sect.
4) is a useful tool to examine this question, since the i of tags are heteroge-
neous (complexity science is, by its very nature, an ingeigiinary field), but there
are natural divisions into sub-fields, based on differeitéiga. This allows easier
intuitive interpretation of the obtained results (besittessmathematical modularity
criteria described below). The technique we will use in qapraach is based on the
so-called “community detection” algorithms, developedtia context of complex
systems and network analysis theory Newman and Girvan {28@dvman (2004).
Such techniques have been well studied at a formal level amd heen used to
study large-scale networks in a variety of fields from soei@lysis (e.g. analy-
sis of co-citation networks), analysis of biological netsg( food chains) to gene
interaction networks. Newman and Girvan (2004) provide \&rvew of existing
applications of this theory, while Newman (2004) preserftsraal analysis of the
algorithm class used.

5.6.1 Using community detection algorithms to partitionggraphs

In network analysis theory, a community is defined as a sulfsetdes that are con-
nected more strongly to each other than to the rest of theanktin this interpre-
tation, a community is related to clusters in the networkhé& network analyzed is
a social network (i.e. vertexes represent people), themfeonity” has an intuitive
interpretation. For example, in a social network where peeano know each other
are connected by edges, a group of friends are likely to batifiel as a commu-
nity, or people attending the same school may form a commuive should stress,
however, that the network-theoretic notion of communityisch broader, and is not
exclusively applied to people. Some examples Newman an@&{2004); Jin et al
(2007) are networks of items on Ebay, physics publicatianarXiv, or even food
webs in biology. We will use a community detection algorittenidentify “vocabu-
laries” within a folksonomy graph, identifying “commures” as “vocabularies.”

5.6.1.1 Community detection: a formal discussion

Let the network considered be represented a gfaph(V,E), when|V| = n and
|[E| = m. The community detection problem can be formalized as atjoaing
problem, subject to a constraint. The partitioning aldomitwill result in a finite
number of explicit partitions, based on clusters in the wekwthat will considered
“‘communities.” Eachv € V must be assigned to exactly one clusigrCs,...Cp.,
where all clusters are disjoint, ié¢ve V,ve G,veCj=i=j.
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Generally speaking, determining the optimal partitionhwiéspect to a given
metric is intractable, as the number of possible ways tatmarta graphG is very
large. Newman (2004) shows there are more thirt 2vays to form a partition,
thus the problem is at least exponentiahirFurthermore, in many real life applica-
tions (including tagging), the optimal number of disjoihistersnc is generally not
known in advance.

In order to compare which partition is “optimal”, the glolmaétric used isnod-
ularity, henceforth denoted b. Intuitively, any edge that in a given partition
has both ends in the same cluster contributes to increasouylarity, while any
edge that “cuts across” clusters has a negative effect orulady. Formally, let
&j,1, ] = 1..nc be the fraction of all edges in the graph that connect clast@nd j
and leta; = % ¥ j &j be the fraction of the ends of edges in the graph that falliwith
clusteri (thus, we havgaj =3, j&; = m).

The modularityQ of a graph/G| with respect to a partitio@ is defined as:

QG.C) =3 (ai—a) (5.13)

Informally, soQ is defined as the fraction of edges in the network that fatiwia
partition, minus the expected value of the fraction of edgaswould fall within the
same partition if all edges would be assigned using a unifeamdom distribution.
These partitions are identified as communities by NewmanGingan (2004). In
tagging, each of these partitions is identified as a vocapula

As shown in Newman (2004), i = 0, then the chosen partitionshows the
same modularity as a random divisior value of Q closer to 1 is an indicator
of stronger community structure - in real networks, howgtres highest reported
value isQ = 0.75. In practice, Newman (2004) found (based on a wide range of
empirical studies) that values @f above around 0.3 indicate a strong community
structure for the given network. We will return shortly tofide the algorithm by
which this optimal partition can actually be computed, brgtfsome additional
steps are needed to link this formal definition to our taggiomain.

5.6.2 Edge filtering step

As shown in tag graph construction step above, for our datdneenitial inter-tag

graph contain 50) = 1225 pairwise similarities (edges), one for each potential

2
tag pair.

In this paper, we make the choice to filter and use in furtheiyasis only the
topm = kg x n edges, corresponding to the strongest pairwise siméaritiereky
is a parameter that controls the density of the given graphi{ow many edges are

7 Note thatQ can also take values smaller than 0, which would indicatettieechosen partition is
worse than expected at random.
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there to be considered vs. the number of vertexes in the priappractice, we take
values ofky = 1..10, which for the tag graph we consider means a number of edges
from 500 down to 50.

5.6.3 Normalized vs. non-normalized edge weights

The graph community identification literature Newman andvéi (2004) gener-
ally considers considers graphs consisting of discreteg(fgr example, in a social
network graph, people either know or do not know each otligies do not usually
encode a “degree” of friendship). In our graph, howevergsdgpresent similarities
between pairs of tags (c.f. Eq. 5.12). There are two ways ¢gi§pedge weights.

The non-normalized case assigns each edge that is retaitteglgraph, after filter-

ing, a weight of 1. Edges filtered out are implicitly assigredeight of zero. The

normalized case assigns each edge a weight proportiortad tsirhilarity between

the tags corresponding to the ends. Formally, using theiootsfrom Eq. 5.12 and
5.13 from above, we initialize the values as:

8j = im; (5.14)

m
———s
Yij Simj

moo — . _—
Wherem is simply a normalization factor, which assures thgteij; = m.

5.6.4 The graph partitioning algorithm

Since we have established our framework, we can now fornafine the graph
partitioning algorithm. As already shown, the number ofgilole partitions for this
problemis at least? (e.g. for our 50 tag setting®2> 10'%). Therefore, to explore
all these partitions exhaustively would be clearly unfetsiThe algorithm we use
to determine the optimal partition (Alg. 1) is based on Newr(2004), and it falls
into the category of “greedy” clustering heuristics.

Informally described, the algorithm runs as follows. lally, each of the vertexes
(in our case, the tags) are assigned to their own individusiter. Then, at each
iteration of the algorithm, two clusters are selected whitimerged, lead to the
highest increase in the modularifyof the partition. As can be seen from lines 5-6
of Alg. 1, because exactly two clusters are merged at eaphisis easy to compute
this increase iQ as:AQ = (g + €ji — 2a;aj) or AQ = 2x (g; — &a,) (the value of
&; being symmetric). The algorithm stops when no further iasesinQ is possible
by further merging.

Note that it is possible to specify another stopping crétémi Alg. 1, line 9, e.g.
it is possible to ask the algorithm to return a minimum nundfedusters (subsets),
by letting the algorithm run untitc reaches this minimum value.
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Algorithm 1 GreedyQ DeterminatiarGiven a graplc = (V,E),|V| =n,|E| =m
returns partition< Cy,...Cq . >

1.C={w},vi=1n

2. Nnc=n

3. Vi, j, g initialized as in Eq. 5.14
4. repeat

5. <G.Cj>=argmax c;(aj +ej —2aa;)
6 AQ:ma&i‘cj(e.j-keji—Zaiaj)

7. G =GUC;,Cj=0//merge Gand G

8. nc=n-1

9. untilAQ<0

10maxQ= Q(C1, . Cr)

5.6.5 Experimental results

The experimental results from applying Alg. 1 to our dateasetshown in Fig. 5.15.
In Fig. 5.14 we present a detailed “snapshot” of the partitibtained for one of the
experimental configurations. There are several intergsénults. First, it becomes
clear that using normalized edge weights produces parsitioth higher modularity
than assigning all the top edges the same weight of 1. Thismuaisively hypoth-
esized by us, since edge weights represent additionahivation we can use, but
it was confirmed experimentally. Second, we are clearly &bldentify partitions
with a modularity higher than around 0.3, which exhibit @ty community struc-
ture according to Newman and Girvan (2004). Yet perhaps tost moteworthy
feature of the patrtitions is the rapid increase both in theufearity factorQ and
in the number of partitions, as the number of edges filteretdedses (from left to
right, in our figure). The filtering decision represents, actf a trade-off. Having
too many edges in the graph may stop us from finding a partitittna reasonable
modularity, due to the high volume of “noise” representeduMaaker edges. How-
ever, keeping only a small proportion of the strongest edgaes 100 or 50 for a
50-tag graph, in our example), may also have disadvantages we risk throw-
ing away useful information. While a high modularity padit can be obtained this
way, the graph may become too “fragmented”: arguably, dig&0 tags into 10 or
15 vocabularies may not be a very useful.

Note that it is difficult to establish a general rule for wh&gaod” or universally
“correct” partition should be in this setting. For exampgeen the trivial partition
that assigns each tag to its own individual cluster cannogjeeted as “wrong” but
such a trivial partition would not be considered a usefuliltedfer most purposes. In
this paper we generally report the partitions found to h&eshighest modularity
for the setting. However, for many applications, having dipan with a certain
number of clusters, or some average cluster size, may bedesiable. The clus-
tering algorithm propose here (Alg. 1) can be easily modifteeccount for such
desiderata, by changing the stop criteria in line 9.
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Fig. 5.14 shows the solution with the highest modulagtyor a graph with
200 edges, in which 7 clusters are identified. This partiiesigns tags related to
mathematics and computer science to Cluster 1, tags refatsatial science and
phenomena to Cluster 2, complexity-related topics to @luétetc., while “art” is
assigned to its own individual cluster. This matches quigd wur intuition, and its
modularityQ = 0.34 is above (albeit close) to the theoretical relevancestiolel of
0.3.

5.6.5.1 Eliminating tags from resulting partitions to improve modularity

The analysis in the previous section shows that communitgctien algorithms
were able to produce useful partitions, with above-releeanodularity. Still, there
are a few general-meaning tags that would fit well into anyhefdubsets resulting
after the partition. These tags generally reduce@wmodularity measure signifi-
cantly, since they increase the inter-cluster edges. Torerenve hypothesized that
the modularity of the resulting partitions could be gredthproved by removing
just a few tags from the set under consideration. In ordezgbthis hypothesis, we
tested another greedy tag elimination algorithm, formdé#§ined as Alg. 2. Result
graphs are shown in Fig 5.16, while in Fig. 5.14 we show theGdpgs that, if
eliminated, would increase modularifyfrom 0.34 to 0.43.

Algorithm 2 GreedyQ EliminationGiven a partitiorCy, ...Cn of graphG = (V,E)
removes all vertexeg € V that increas€&)

1. repeat

2. vi = argmay, [Q(..,Cc\ {Vi},..) — Q(..,Ck, )]

3. AQ=max,[Q(.Cc\ {W},-.) = Q,Ci..)]
wherev; € Cy //Cy is the partition of vertex i

4. untilAQ<0

As seen in Fig. 2, for this data set only 5-6 tags need to barmdited as eliminat-
ing more does not lead to a further increase®inn the example in Fig. 5.14, we
see which these are, in order of elimination: theory, s@enesearch, simulation,
networks. In fact, these tags, that are marked for elimamagiutomatically by Alg.
2, are exactly those that are the most general in meaning anld\it well into any
of the subsets.

Regarding scalability, it is relatively straightforwaral $how that both Alg. 1
and 2 have linear running time the number of vertexeise. in this case, number
of tags considered in the initial set. In the case of Alg.Jaatly two clusters of
tags are merged at each step, so one cluster increases by sizainimum of one,
until the algorithm terminates. In case of Alg. 2, one tadimi@ated per step, until
termination. In practice, this scalability property me#mesy are easily applicable to
analyze much larger folksonomy systems.
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We leave some aspects open to further work. For instancdeirctrrent ap-
proach, similarity distances between pairs of tags are coedsing all the tagging
instances in the data set. In some applications, it mighské&ulito first partition the
set of users that do the tagging, and then consider only ¢fseatssigned by a certain
class of users. For example, for tags related to a giventfoidield, expert taggers
may come up with a different vocabulary partition than newisers. This may re-
quire a two-fold application of this algorithm: first to piéidn and select the set of
users, and then the set of tags based on the most promisegpcabf users.

5.7 Comparing Tags to Search Keywords

While these applications of tagging distributions havexsinpromise, one question
that can be reasonably asked is how well these applicatibteyging compare
to some benchmark that does not use tagging distributiansthier words, is the
notion of a Fregean sense inherently limited to only tag$i@iy created in tagging
systems? The most compelling other in which natural langtegns are attached to
URIs is that of search engines. One can consider the queng t&fra user in a search
engine as the implicit tagging of a resource, as is done int\wha been termed
‘query flow graphs™?. Thus, the main difference between search engine terms and
tags is that in search engines natural language terms atdadéscover a resource
a priori, while tagging are terms attached to a resoyrost-hoc Regardless, this
also means that the Fregean notion of a sense does not hagectmfined to the
collective tags attached to a resource, but can includels¢éanms as well. However,
as the data for the stabilization of search terms is not palbjiavailable like tagging
systems, for the time being we will have to compare taggirgetrch terms using
the more limited correlation graph techniques.

The idea of approximating semantics by using search engitee lths, in fact,
been proposed before, and is usually found in existingaiitee under the name
of “Google distance.” Cilibrasi and Vitanyi (2007) were tfiest to introduce the
concept of “Google distance” from an information-thearstandpoint, while other
researchers Gligorov et al (2008) have recently proposied) itsfor tasks such as
approximate ontology matching. It is fair to assume (altftowe have no way of
knowing this with certainty), that current search engined eelated applications,
such as Google Sets http://labs.google.com/sets (2088)uae text or query log
mining techniques (as opposed to collaborative taggingdbee similar problems.

There are two ways of comparing terms (in this case, keywarsiag a search
engine. One method would be to compare the number of resotivaeare retrieved
using each of the keywords and their combinations. Anothethod is to use the
query log data itself, where the co-occurrence of the termikeé same queries vs.
their individual frequency is the indicator of semantictdizce. We employ this lat-
ter method as it is more amendable to comparison with our worlagging. In the
latter method, the query terms are comparable to tags, vih&ead of basing our
folksonomy graphs and vocabulary extraction on tags, we gsery terms. In gen-
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eral, query log data is considered proprietary and much whiffieult to obtain than

tagging data. We were fortunate to have access to a lar¢edata set of query log
data, from two separate proposals awarded through Midres&eyond Search”

awards. In the following we describe our methodology andigng results.

5.7.1 Data set and methodology employed

The data set we used consists of 101,000,000 organic seaecies), produced from
Microsoft search engine Live.com, during a 3-month inteirv2006. Based on this
set of queries, we computed the bilateral correlation betved! pairs from the set of
of complexity related terms considered in Sect. 5.5 and Boye The set of terms
are, however, no longer treated as tags, but as search kégfv@he correlation
between any two keywordg andT; is computed using the cosine distance formula
in Equation 5.12 from Section 5.5 above. However, Hé(&,T;) represents the
number of queries in which the keywor@sandT; appear in together, whild(T;)
andN(T;) are the numbers of queries in whigh respectivelyT; appear in total
(irrespective of other terms in the query), from the 100 ionillqueries in the data
set.

The rest of the analysis mirrors closely the steps desciib&#ctions 5.5 and
5.6, but optimizing the learning parameters which best fit ttata set, in order to
give both methods a fair chance in the comparison. More palty, the Pajek
visualization of the keyword graphs in Figs.5.17 and 5.18evedso built by using
a spring-embedder algorithm based on the Kamada-Kawaidist while Fig. 5.19
shows the keyword vocabulary partition that maximizes tloelatarity coefficient
Q in the new setting, considering the top 200 edges. For gldhie graph pictures
are depicted in a different color scheme, to clearly show tiesult from entirely
different data sets: Figures 5.12 and 5.13 from del.iciocalisborative tagging data,
and Figures 5.17 and 5.18 from Microsoft’s Live.com quegslo

5.7.2 Discussion of the results from the query log data and
comparison

When comparing the graphs in Figures 5.12 and 5.17 (i.e. ties avhich only
depict the relations to the central term “complexity”) arpontant difference can be
observed. While the graph in Fig. 5.12, based on collaba#tigging data, shows
48 terms related to complexity, the one is Fig. 5.17, basegueny log data, shows
just 6. The basic reason is that no relationship betweeretine tcomplexity” and

8 We acknowledge this method has some drawbacks, as a fewitethescomplexity-related set,
such as “powerlaw” and “complexsystems” (spelled as onayvor “alife” (for “artificial life”)
are natural to use as tags, but not very natural as searclok@gwHowever, since there are only 3
such non-word tags, they do not significantly affect our gsial
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the other 40+ terms can be inferred from the query log datas@helationships
either do not appear in the query logs or are statisticathyweak (only based on a
few instances).

It is important to emphasize here that this result is not #ifaat of the cosine
similarity measure we use. Even if we use another, more aatgpistance measure
between keywords, such as some suggested in the previetaguite Cilibrasi and
Vitanyi (2007), we get very similar results. The fundamérgason for the sparse-
ness of the resulting graph is that the query log data itsmsdot contain enough
relevant information about complexity-related discipbn For example, among the
101,000,000 queries, the term complexity appears exa88ytiines, a term such
as “networks” 1074 times. Important terms such as “cognitar “semantics” are
even less common, featuring only 47 and 26 times respegtarabng more than
100 million queries. Therefore, it is fair to conclude tha tquery log data, while
very large in size, is quite poor in useful information abtihé complexity-related
sciences domain. As a caveat, we do note that more commos,tsuch as “com-
munity” (78,862 times), “information” (36,520 times), ‘taover 52.000), or even
“agent” (about 7,000) do appear more frequently, but them@lsvhave a more gen-
eral language usage and are not restricted to the scientifiath. Therefore, these
higher frequencies do not actually prove very useful fontidging the relationship
of these terms to complexity science, which was our initiegjét question.

Turning our attention to the second graph in Fig. 5.18 andotirétion in Fig.
5.19, we can see that query logs can also produce good rasatisparison with
tagging, although they are somewhat different from the obégined from tagging.
For example, if we compare the partitions obtained in Fi@45resulting from
tagging data) and the one in Fig. 5.19 (from query log dat&)see that tagging
produces a more precise partition of the disciplines intergific sub-fields. For
instance, it is clear from Fig. 5.14 that cluster 1 corresisoio mathematics, opti-
mization and computation, cluster 2 to markets and ecorgroligster 5 to biology
and genetics, cluster 4 to disciplines very related to cexipl science and so forth.
The partition obtained from query log data in Fig. 5.19, wlislstill very reasonable,
reflects perhaps how a general user would classify the diiseq) rather than a spe-
cialist: organization is related to both information, gyt and community (cluster
2), research is either qualitative or quantitative (clugbe and the like. There are
also some counter-intuitive associations, such as putimiggy and markets in the
same cluster (number 1). Note that the clustering (or matyjacoefficientQ is
higherin Fig. 5.19 than 5.14, but this is only because thex¢egs inter-connections
between terms in general in the query log data, thus theressedges to “cut” in
the clustering algorithm.

5.8 Conclusions

To conclude, user-generated collaborative tags can serad-segeasenseUsing
KL divergence, we can show that tagging distributions psouece do indeed stabi-
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lize the a scale-free power law distribution, so that thg tkoud’ of a resource after
a certain point stabilizes into what is widely-accepted padicular community to
be a good description of the resource. Furthermore, thia\behof stabilization is
a function of time and number of users, and does not simplgaedin artifact of the
tag suggestion mechanism. Tagging can indeed be the faandet a sense-based
semantics on the Web.

Also, it seems tagging produces a richer notion of sensegbarch terms. This
can probably be explained by the fact the del.icio.us usave more expertise and
interest in complexity-related topics than general webicdeas. Furthermore, they
are probably more careful in selecting resources to tag aselecting labels for
them that would be useful to other users as well (general walrhkers are known
to be “lazy” in typing queries). As a caveat, we note that taiget domain (i.e.
complexity-related disciplines) is scientific and veryapézed. If the target would
be more general (for example, if we selected a set of termasedto pop-culture),
the comparison might lead to different results. Also, peopho sign up to use a
collaborative tagging system are implicitly more willing share their knowledge
and expertise with a community of other users. By contrash search is implicitly
a private activity, where not only may tracing users’ acidahtity may be unde-
sirable to the user, but also the user is not even aware ttt@iita is being tracked
and the keywords they use can then be used by search engiotaepprograms to
change the results for other users.

The question remains: while one can operationalize somemaff Fregean
sense-based semantics on the Web in the form of collabetatis, is this enough?
After all, many URI are not tagged at all' Superficially, thelgminary results from
search engine keyword analysis seem to show that keywoeda aruch sparser
source of sense than tags. However, these results only Wwevenon a tiny group
of keywords gathered from a search engine on a particulac.tdp think more
broadly, perhapall associated keywords with a particular resource could s&sve
a better sense-based semantics for a URI. This may includenhpthe keywords
from tags explicitly given to that URI and from keywords ugedreach a URI,
but also from the terms accessible from the web representatiosted at the URI,
ranging from Semantic Web documents to hypertext web-pdgessto this more
comprehensive notion of computational sense that we tunexa
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Cluster1 | Cluster 2 | Cluster 3|  Cluster 4 Cluster 5 | Cluster 6 Cluster 7
computation] markets |semantic powerlaw genetics |robustness art
optimization| economics| cognition nonlinear biology
visualization| society neural complexsysterds evolution

physics | community ai dynamics |evolutionary
mathematicgorganization alife chaos science

math ecology | artificial emergence
computationdl ecosystem| life networks

algorithms |environment behavior systems
information simulatior]  complex

computing research| complexity

theory
Tags that increase modularity the most, if eliminated: thescience, research, simulation, networks.

Fig. 5.14 Optimal partition in tag clusters (i.e. “communities”) bietfolksonomy graph, when the
top 200 edges are considered. This partition has a Q=0.3dr dliminating the 5 tags mentioned
at the bottom, Q can increase to 0.43.

Modularity of the optimal partition for different filtering and normalization criteria
0.6 T T T T T T T T T
—A— Same edge weights
0551 | o Normalized weights )

0.1
500

I
450

I I I
400 350 300

I
250

I I
200 150

.
100 50 0
Number of edges selected for the tag graph (50 tags)

Number of subsets in the optimal partition, for different filtering an normalization criteria

22 T

N
=)
T

—A— Same edge weights
—e— Normalized weights

= = = = I~
o N > o ©

©

Number of tag subsets in the optimal partition

2 I
500 450

. . . . . . .
400 350 300 250 200 150 100
Number of edges selected for the tag graph (50 tags)

Fig. 5.15 Modularity (Q-factor) and number of partitions obtainednfr applying community de-
tection algorithms to the scientific disciplines data set

50




Modularity (Q-factor) of the resulting optimal partition

0.55

05

0.45

0.4

0.35

0.3

148

Modularity of the optimal partition, as general tags are removed
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Fig. 5.16 Modularity (Q-factors) and number of partitions obtaindteragradually eliminating
tags from the data set, such as to increase the modularigadtt step, the tag that produced the
highest increase in modularity between the initial and Itegy partition was selected. In these

results, all edge weights are normalized.
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Cluster 1 | Cluster 2 | Cluster 3| Cluster4 | Cluster5 Cluster 6
complexity| systems | networks| algorithms| mathematics research
evolution |visualizatiorn ai ecology physics quantitative
evolutionaryorganizationnemergence  math economics qualitative

chaos |[information| neural | computing art society
cognition | community optimizationp  science

biology computation simulation

theory environmenf dynamics

behavior nonlinear

markets computationdl

genetics ecosystem

agent

Terms left unclassified (i.e. one word clusters): complexnglexsystems, robustn

SS,
multi-agent, life, artificial, semantics, powerlaw, alife

Fig. 5.19 Optimal partition into clusters, obtained from the Micréisguery data, when the top

200 edges are considered. The resulting partition has a5Q60However, 9 terms were assigned
to their own cluster, thus basically left unclassified.



Chapter 6
The Semantics of Search

The solution to any problem in Al may be found in the writinf$\ittgenstein,
though the details of implementations are rather skeiRhiyl. Duck-Lewis (Hirst,
2000)

6.1 Introduction

What kinds of information should be used in the constructibthe sense of a re-
source? Given our previous work, there appears to be a peason why we should
confine ourselves to tags when constructing the sense obarces Up till now,
we have been considering the sense-based semantics ofailpatt/RI in terms
of a term frequency distribution. However, this seems kahitThere is always the
case of co-referential URIs, where a single resource idifisghby multiple URIs.
Should the semantics somehow combined the distributiottseofarious Web rep-
resentations? If so, precisely how - and in particular ifred representations are
in multiple encodings? If one wanted the most thorough dieson of a resource,
would it not make sense to define the semantics of these mget®ns in terms
of as many representations as possible, as it is well-knovgtatistical machine-
learning that there’s ‘no data like more data,’ such thatpginadding more data
under the right conditions can increase the likelihood dfable and rich distribu-
tional semantic8.

Yet the intuition that simply adding more representatianghie sense will in-
crease its effectivness needs to be operationalized atedi tés number of difficult
questions immediately appear, such as how to identify pysso-referential URIs
for the same reosurce? Or to make matters worse, how to liveikinds of en-
codings that the sense will be constructed with? These ignsstan be answered
by attempting to fit the intuition within a well-understooxiperimental paradigm,
which we believe can be the well-studied paradigm of infdiameretrieval. To ex-
tend furtherrelevance feedbacks the use of explicit relevance judgments from
users of a query in order to expand the queBy ‘expand the query,’ we mean that

151
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the usually rather short query is expanded into a much laygeny by adding words
from known relevant documents. For example, a query on tipertgxt Web for
the Eiffel Tower given as ‘eiffel’ might be expanded into fjmfrance eiffel tour.’
If the relevant pages instead were about an Eiffel Toweiiceph Texas, the same
results query could be expanded into ‘paris texas eiffdlcap The same principle
applies to the Semantic Web, except that the natural larggtexgns may include
Semantic Web URIs and terms resulting from inference or UBt@ssing. The hy-
pothesis of relevance feedback, as pioneered by RocchiteilsMART retrieval
system, is that the relevant documents will disambiguatkimigeneral give a bet-
ter description of the information need of the query thandgbery itself Rocchio
(1971). Relevance feedback has been shown in certain casepitove retrieval
performance significantly. Extending this classical waekibfrelevance modelas
formalized by Lavrenko et al. Lavrenko (2008)) create ratee models directly
from the indexed documents rather than explicitly waiting the user to make a
relevance judgment. Relevance models are especiallysui#d to our hypothesis
that multiple kinds of encodings should be part of the sameeses relevance mod-
els consider each source of data (query, documents, pezliapsags and Semantic
Web data) as ‘snapshots’ from some underlying generativaeno

Since we will use representations from different sourcegatd, we cannot sim-
ply contain the notion of resource to a single URI, as culyerds content negotia-
tion amongst various encodings is currently barely demlayethe Web - hypertext
web-pages and Semantic Web documents encoded in RDF wékeeption almost
always have different URIs. However, a web-page for theeEfbwer encoded in
HTML and a Semantic Web document encoded in RDF can stillestitee same
content of the Eiffel Tower, despite having differing URB, the information per-
taining to a resource will be spread amongst multiple cesregfal URIs. Therefore,
the best way to determine the set of URIs relevant to a pdaticasource is to at-
tach the resource to theformation needf a ordinary web user as expressed by a
query in a search engine. Then the next step is to have humdgs a set of web
representations - either Semantic Web documents, hyparégxdocument, or both
- and consider the set of these web representations andaitdRIs to be a partial
snapshot of the relevant information pertaining to a sense.

This technique can be transformed into a testable hypathts hypothesis
put forward by Baeza-Yates that search on the Semantic Welbeaised to im-
prove traditional ad-hoc information retrieval for hypxtWeb search engines and
vice-versa Baeza-Yates (2008). Currently, there exigtrsdwnascent Semantic Web
search engines that specifically index and return rankeleldrData in RDF in
response to keyword queries. Yet their rankings are mushaed-studied than hy-
pertext Web rankings, and so are thought likely to be subvadt While we realize
the amount and sources of structured data on the Web are tougsstrict and test
the hypothesis of Baeza-Yates, from hereon we will assuiae sekmantic search’
refers to indexing and retrieving of Linked Data by searchiees like Sindice and
FALCON-S Cheng et al (2008), and hypertext search refertigoiridexing and
retrieval of hypertext documents on the World Wide Web byraeangines like
Google and Yahoo! Search. Our experimental hypothesisaisttte statistical se-
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mantics of sense created from Semantic Web documents camyygbrtext search
and vice versa, and this can be empirically shown via the fisgevance feedback.

On an aside, we realize that our reduction of ‘semantic $étr&eyword-based
information retrieval over the Semantic Web is very resitré&; as many people use
‘semantic search’ to mean simply search that relies on amytieyond surface syn-
tax, including the categorization of complex queries Ba¥ages and Tiberi (2007)
and entity-recognition using Semantic Web ontologies Gethel (2003). We will
not delve into an extended explanation of the diverse kifdemantic search, as
surveys of this kind already exist Mangold (2007). Yet gitka relative paucity
of publicly accessible data-sets about the wider notioneofiantics and the need
to start with a simple rather than complex paradigm, we veiitrict ourselves to
the Semantic Web and assume a traditional, keyword-basbd@ohformation re-
trieval paradigm for both kinds of search, leaving issuks tomplex queries and
natural language semantics for future research. Keywattbeconsisting of 1-2
terms should also be explored as it is the most common kindiefygin today’s
Web search regardless of whether any results from this empat can generalize
to other kinds of semantic search Silverstein et al (1999prter to thoroughly
test our system, Until recently semantic search sufferaah fa lack of a thorough
and neutral Cranfield-style evaluation, and so we care&dplain and employ the
traditional information retrieval evaluation frameworiksour experiment to eval-
uate semantic search. At the time of the experiment, oumatiah was the first
Cranfield-style evaluation for searching on the Semantib.\Wis evaluation later
generalized into the annual ‘Semantic Search’ competttiaich has since be-
come a standard evaluation for search over RDF data Blaradld2011). However,
our particular evaluation presented here is still the oublation to determine rel-
evance judgments over both hypertext and RDF using the senoé gueries.

In Section 6.2 we first elucidate the general nature of sfanch hypertext doc-
uments tosemantic searchver Semantic Web documents. A general open-domain
collection of user queries from a real hypertext query-lgaiast the Semantic Web
and then have human judges construct a ‘gold-standar@atah of queries and re-
sults judged for relevance, from both the Semantic and hgpEWeb. Then in Sec-
tion 6.3 we give a brief overview of information retrievahfmneworks and ranking
algorithms. While this section may be of interest to SentaMeb researchers unfa-
miliar with such techniques, information retrieval resdsars may wish to proceed
immediately past this section. Our system is describeddti@e6.4. In Section 6.5,
these techniques are applied to the ‘gold standard’ cadiecreated in Section 6.2
so that the best parameters and algorithms for relevandbde& for both hypertext
and semantic search can be determined. In Section 6.6 atidr86< the effects
of using pseudo-feedback and Semantic Web inference aligad®d. The system is
evaluated against ‘real-world’ deployed systems in Saddi®. Finally, in Section
6.9 future work on this particular system is detailed, andctasion on the veracity
of our method of sense-making are given in Section 6.10.

1 Sponsored by Yahoo! Research for both 2010 and 2011.
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6.2 Is There Anything Worth Finding on the Semantic Web?

In this section we demonstrate that the Semantic Web doegihdontain infor-
mation relevant to ordinary users by sampling the Semangb ¥tcording to a
real-world queries referring to entities and concepts ftbenquery log of a major
search engine. The main problem confronting of any studh@fRemantic Web is
one ofsampling As almost any large-data database can easily be exporkidfp
statistics demonstrating the actual deployment of the 8&m#/eb can be biased
by the automated release of large, if useless, data-setegthivalent of ‘Semantic
Web’ spam. Also, large specialized databases like Bio2R&teaasily dwarf the
rest of the Semantic Web in size. A more appropriate strategyld be to try to
answer the question: What information is available on the&wic Web that users
are actually interested in? The first large-scale analylsieeo Semantic Web was
done via an inspection of the index of Swoogle by Ding andrFiDing and Finin
(2006). The primary limitation of that study was that thegamajority of the Se-
mantic Web resources sampled did not contain rich inforonatthat many people
would find interesting. For example, the vast majority ofedait the Semantic Web
in 2006 was Livejournal exporting every user’s profile as Fo#d RSS 1.0 data
that used Semantic Web techniques to structure the syntagves feeds. Yet with
information-rich and interlinked databases like Wikipedeing exported to the Se-
mantic Web, today the Semantic Web may contain informatieeded by actual
users. As there is no agreed-upon fashion to sample the Sienvgeb (and the
entire Web) in a fair manner, we will for our evaluation cesatsample driven by
queries from real-users using easily-accessible seagihesnthat claim to have a
Web-scale index, although independent verification ofighiifficult if not impos-
sible.

6.2.1 Inspecting the Semantic Web

In order to select real queries from users for our experimeatused the query log
of a popular hypertext search engine, the Web search quergflapproximately
15 million distinct queries from Microsoft Live Search. $hguery log contained
6,623,635 unique queries corrected for capitalizatiore ain issue in using a
query log is to get rid of navigational and transactionalréggge A straightforward
gazetteer-based and rule-based named entity recognizegmployed to discover
the names of people and places Mikheev et al (1998), basadisfiof names main-
tained by the Social Security Administration and a place eaatabase provided
by the Alexandria Digital Library Project. From the quergla total of 509,659
queries were identified as either (fundamentally analogpfgeor places by the
named-entity recognizer, and we call these quenigiy queriesEmploying Word-
Net to represent abstract concepts, we chose queries iigeddry WordNet that
havebotha hyponym and hypernym in WordNet. This resulted in a moreictsd
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16,698 queries that are supposed to be about abstract aemealized by multiple
entities, which we caltoncept queries

A sample entity query from our list would be ‘charles dariwwhile a sample
concept query would be ‘violin.” In our data-set using hytpgt search, both queries
return almost all relevant results. The query ‘charles d@rgives results that are
entirely encyclopedia pages (Wikipedia, eHalar wi n- onl i ne. or g. uk) and
other factual sources of information, while ‘violin’ rens 8 out of 10 factual pages,
with 2 results just being advertisements for violin maké&ra.the contrary for the
Semantic Web, the query ‘charles darwin’ had 6 relevantitgswith the rest being
for places such as the city of Darwin and books or productstim@ng Darwin.
For ‘violin,” only 3 contain relevant factual data, with timest being the names
of albums called ‘Violin’ and movies such as ‘The Violin Makeé~rom inspec-
tion of entities with relevant results, it appears the usaale for semantic search
is that DBpedia and WordNet have a substantial amount ofl@wven the con-
cepts to which they give URIs. For example, they have distisRls for such
concepts as ‘violin’ it t p: / / dbpedi a. or g/ resour ce/ Vi ol i n vs. W3C
WordNet'ssynset - vi ol i n- noun- 1). Likewise, most repetition of entity URIs
comes from WordNet and DBpedia, both of which have distineisSfor famous
people like Charles Darwin. In many cases, these URIs dolwalya appear at the
top, but in the second or third position, with often an irvelet URI at top. Lastly,
much of the RDF that is retrieved seems to have little infdromain it, with DBPe-
dia and WordNet being the most rich sources of information.

The results of running the selected queries against a Semabb search en-
gine, FALCON-S’s Object Search Cheng et al (2008), werergingly fruitful. For
entity queries, there was an average of 1,339 URIs (S.DO8@@urned for each
query. On the other hand, for concept queries, there wereaaage of 26,294 URIs
(S.D. 14,1580) returned per query, with no queries retgraaro documents. Such
a high standard deviation in comparison to the average ieessggn of a non-normal
distribution such as a power-law distribution, and norntafistics such as average
and standard deviation are not good characteristic measfirguch distributions.
As shown in Figure 6.1, when plotted in logarithmic spacehlemtity queries and
concept queries show a distribution that is heavily skewae@tds a very large num-
ber of high-frequency results, with a steep drop-off to atreero results instead of
the characteristic long tail of a power law. For the vast migjof queries, far from
having no information, the Semantic Web of Linked Data app&ahaveioo much
data, but for a minority of queries there is jusb data This is likely the result of
the releasing of Linked Data in large ‘chunks’ from datasihbout specific topics
rather than the more organic development of the hypertekttié&t typically results
in power-law distributions. Also, note that hypertext wedges are updated as re-
gards trends and current events much more quickly than tavedy slow-moving
world of Linked Data.

Another question is whether or not there is any correlatiemveen the amount
of URIs returned from the Semantic Web and the popularithefquery. As shown
by Figure 6.2, there iso correlation between the amount of URIs returned from
the Semantic Web and the query popularity. For entity gsetiee correlation co-
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Frequency of Semantic Web URIs returned

0 I I

10 1 2 3
10 10 10 10 10
Frequency-ordered Returned Semantic Web URIs

Fig. 6.1 The rank-ordered frequency distribution of the number ofdJRturned from entity and
concept queries, with the entity queries given by green heddoncept queries by blue.

efficient was 0.0077, while for concept queries, the cotiabecoefficient was still
insignificant, at 0.0125. The popularity of query is not tetato how much in-
formation the Semantic Web possesses on the informatioth e@garessed by the
query: Popular queries may have little data, while infretjugieries may have a lot.
This is likely due to the rapidly changing and event-dep@andature of hypertext
Web queries versus the Semantic Web'’s preference for moregment and less
temporally-dependent data. For a more full exploratiorhefdata-set used in this
experiment, including types of URIs, see the paper on ‘A @i@niven Character-
ization of Linked Data’ Halpin (2009a). Since this data waflected in spring of
2009 it may not be currently accurate as a characterizafieitreer FALCON-S or
the state of Linked Data currently, but for evaluation psgmthis sample should
suffice, and using random selections from a real human qogrisla definite ad-
vance, as randomly sampling all of Linked Data would resulamn easily biased
evaluation, away from what human users are interested irt@mards what hap-
pens to be available as Linked Data.

Surprisingly, there is a large amount of information thatyrba of interest to
ordinary hypertext users on the Semantic Web, althougle tisaro correlation be-
tween the popularity of queries and the availability of timibrmation on the Se-
mantic Web. The Semantic Web is not irrelevant to ordinagrsias there is data on
the Semantic Web ordinary users are interested in, eversiflistributed unevenly
and does not correlate with the popularity of their queries.
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Fig. 6.2 The rank-ordered popularity of the queries is onxtexis, with they axis displaying the
number of Semantic Web URIs returned, with the entity qegigen by green and the concept
queries by blue.

6.2.2 Selecting Queries for Evaluation

In order to select a subset of informational queries foruatidn, we randomly se-
lected 100 queries identified as abstract concepts by Waraiikethen 100 queries
identified as either people or places by the named entitygrazer, for a total of
200 queries to be used in evaluation. Constraints were glacehe URIS resulting
from semantic search, such that at least 10 Semantic Webrdots (a file contain-
ing a valid RDF graph) had to be retrieved from the URI retdrhg the Semantic
Web search engine. This was necessary as some querieseceagnm or less than
10 URIs, as explained in Section 6.2.1. For each query, lgytesearch always re-
turned more than 10 URIs. So for each query, 10 Semantic Webndents were
retrieved using the FALCON-S Object Search engine Cheniy(2088), leading to
a total of 1,000 Semantic Web documents about entities a@fD1Semantic Web
documents about concepts, for a total of 2,000 Semantic Webrdents for rele-
vance judgments. Then, the same experimental query log sedkta retrieve pages
from the hypertext Web using Yahoo! Web search, resultingénsame number of
web-pages about concepts and entities (2,000 total) fevaiate judgments. The to-
tal number of all Semantic Web documents and hypertext vegfepgathered from
the queries is 4,000.

The queries about entities and concepts are spread acritssligaerse domains,
ranging from entities about both locations (El Salvadod people (both fictional
such as Harry Potter and non-fictional such as Earl May) taepts ranging over a



158 6 The Semantics of Search

large degree of abstraction, from sociology to ale. A randetaction of ten queries
from the entity and concept queries is given in Table 1. Thiso§4,000 hypertext
web-pages and Semantic Web documents are then used totevaluraesults in

Section 6.5.

[Entity [Concept]
ashville north carolingsociolog
harry potter clutch
orlando florida telephonc{s
ellis college ale
university of phoenix|pillar
keith urban sequoia
carolina aster

el salvador bedroom
san antonio tent

earl may cinch

Table 6.1 10 Selected Entity and Concept Queries

6.2.3 Relevance Judgments

For each of the 200 queries selected in Section 6.2.2, 10texpeveb-pages and 10
Semantic Web documents need to be judged for relevance &g ttuman judges,
leading to a total of 12,000 judgments for relevance for auire experiment, with
the correct relevance determined by ‘voting’ amongst thegfudges per document.
Human judges each judged 25 queries presented in a randborider, and were
given a total of 3 hours to judge the entire sample for releyaNo researchers
were part of the rating. The judges were each presented fitistten hypertext
web-pages and then with ten Semantic documents that couébet the same
query. Before starting judging, the judges were given udtons and trained on 10
sample results (5 web-pages and 5 Semantic Web documeh&shuman judges
were forced to make binary judgments of relevance, so eatlitnaust be either
relevant or irrelevant to the query. They were given the wabe selected by the
human user from the query log as a ‘gold standard’ to detexithie@ meaning of the
keyword.

The standard TREC definition for relevance is “If you wereting a report on
the subject of the topic and would use the information comdiin the document in
the report, then the document is relevant” Hawking et al (Q0As semantic search
is supposed to be about entities and concepts rather thamamts, semantic search
needs an definition of relevance based around informatioutantities or concepts
independent of documents. In one sense, this entity-cemtievance should have
both a wider remit than document-centric relevance definjtas any information
about the entity that could be relevant should be includedirvanother sense, this
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definition is more restrictive, as if one considers the wdpdrhaps fuzzily) parti-
tioned into distinct entities and concepts, then merelgtesl information would not
count. In the instructions, relevance was definedvhether or not a result is about
the same thing as the query, which can be determined by whatmet accurate
information about the information need is expressed by #salt The following
example was given to the judges: “Given a query for ‘EiffeWgs,” a result entitled
‘Monuments in Paris’ would likely be relevant if there wa$armation about the
Eiffel Tower in the page, but a result entitled ‘The Restatiia the Eiffel Tower’
containing only the address and menus of the restaurantivatibe relevant.”

Kinds of Web results that would ordinarily be considereévaht are therefore
excluded. In particular, there is a restriction that thevaht information must be
presentin the result itself. This excludes possibly releurg@ormation that is acces-
sible via outbound links, even a single link. All manner cfulks that are collections
of links are thus excluded from relevancy, including bothkIfarms’ purposely de-
signed to be highly ranked by page-rank based search engmesll as legitimate
directories of high-quality links to relevant informatiofihese hubs are excluded
precisely because the information, even if it is only a lirdnsversal away, is still
not directly present in the retrieved result. By this sameqgiple, results that merely
redirect to another resource via some method besides theéestized HTTP meth-
ods are excluded, since a redirection can be considered akiimk. They would be
considered relevant only if additional information wadlirted in the result besides
the redirection itself.

In order to aid the judges, a Web-based interface was craatpdesent the
queries and results to the judges. Although an interfacepitesented the queries
and the search interface in a manner similar to search engias created, human
judges preferred an interface that presented them thetsdsufjudgments one-at-
a-time, forcing them to view a rendering of the web-page @ased with each URI
originally offered by the search engine. For each hypertett-page, the web-page
was rendered using the Firefox Web Browser and PageSave.@rbor each Se-
mantic Web document, the result was rendered (i.e. theetriphd any associated
text in the subject) by using the open-source Disco HyparBabwser with Fire-
fox.2 In both cases, the resulting rendering of the Web representaas saved at
469 x 631 pixel resolution. The reason that the web-page was reddestead of
a link given directly to the URI is because of the unstabléestd the Web, espe-
cially the hypertext Web. Even caching the HTML would hasked losing much
of the graphic element of the hypertext Web. By creating pshat’ renderings,
each judge at any given time was guaranteed to be preserntetheiresult in the
same visual form. One side-effect of this is that web-pabastieavily depend on
non-standardized technologies or plug-ins would not readd were thus presented
as blank screen shots to the user, but this formed a smallrityirod the data. The
user-interface divided the evaluation into two steps:

2 The Disco Hyperdata Browser, a browser that renders Sefeth data to HTML, is available
athttp://ww4. wi wi ss. fu-berlin.de/bizer/ng4j/discol.
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e Judging relevant results from a hypertext Web seafidie judge was given the
search terms created by an actual human user for a query axd@aple relevant
web-page whose full snapshot could be viewed by clicking.ohfull rendering
of the retrieved web-page was presented to the user witilésahd summary
(as produced by Yahoo! Search) easily viewed by the judge Bgjure 6.3. The
judge clicked on the check-box if the result is considerdevant. Otherwise,
the web-page was by default recorded as not relevant. Thepagé results were
presented to the judge one at a time, ten times for each query.

e Judging relevant results from a Semantic Web seal#xt, the judge assessed
all the Semantic Web results for relevancy. These results vetrieved from the
Semantic Web using the same interface displayed to the jurdtiee first step
as shown in Figure 6.4, and a title was displayed by retrgeainy literal values
fromr df s: | abel properties and a summary by retrieving any literal values
from r df s: conment values. Using the same interface as in the first step, the
judge had to determine whether or not the Semantic Web saselte relevant.

SearCh query 1: sociology Log out and resume ater

Example of Relevant Result

URI: http:/fen.wikipedia.org/wiki/Sociology
Sociology

From Wikipedia. the fr

Title: Sociology - Wikipedia

Summary: Encyclopedia article on the origin, study and research
methods, subflelds, and important figures of sociology.

Tick this box if the result is 5
relevant

Comments

-
6o | sesnen
; Next

Fig. 6.3 The interface used to judge web-page results for relevancy.

After the ratings were completed, Fleigsstatistic was taken in order to test the
reliability of inter-judge agreement on relevancy judgtserleiss (1971). Simple
percentage agreement is not sufficient, as it does not tageagtount the likeli-
hood of purely coincidental agreement by the judges. Flaissoth corrects for
chance agreement and can be used for more than two judgss @eéir1). The null
hypothesis is that the judges cannot distinguish relevant frrelevant results, and
so are judging results randomly. Overall, for both releegndgments over Seman-
tic Web results and web-page results= 0.5724 (p < .05, 95% Confidence inter-
val [0.5678 0.5771)), indicating the rejection of the null hypothesis and ‘made’
agreement. For web-page results orly: 0.5216 (p < .05, 95% Confidence inter-
val [.51500.5282), also indicating the rejection of the null hypothesis amdder-
ate’ agreement. Lastly, for only Semantic Web resuits; 0.5925 (p < .05, 95%
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Search q uery: SOCIOo IOgy Log out and resume later
- % URL: http://dbpedia.org/resource/Timeline_of sociology
About: Timeline of sociology Y] =
An Entlty In Data Space: bpedia.org Title: Timeline of sociclogy
This s & timeline of sociology, See the anicls histary of socioloay for a descrption ef the Summary: This is & timeline of sociclogy. See the article history
deveiopmant of the subjact. and the article sociolagy for a genaral dascription of the of sociology for a description of the development of the subject,

e and the article sociology for a general description of the subject
Property Value

abstract = This 15 a timeiine of saciology. See the article history of sociology for &
l - e ooy Tickthis boxif the resultis

relevant

b hasphotoCalke f Apptip cloqy  COMMeNts

rifscomment  ® This is a timeline of saciclogy. See the arti
description of the develogment of the subject, and Lhe ar

Next

ronclag
énements se ragparcant & la
Iées par annde. (11)

v label

skassubject

fost page = hitpiren.

Browse using: GpenLink Data Explarar | Zgist Data Viewer | Matkles | DISCR | Bbulater
Raw Data in: i3 | BEDEOML  About

Fig. 6.4 The interface used to judge Semantic Web results for retgvan

Confidence interval0.58590.5991)), also indicating the null hypothesis is to be
rejected and ‘moderate’ agreement. So, in all cases thémoderate’ agreement,
which is sufficient given the general difficulty of producipgrfectly reliable rele-
vancy judgments. Interestingly enough, the difference inetween the web-page
results and Semantic Web results show that the judges werallgcslightly more
reliable in their relevancy judgments of information fronetSemantic Web rather
than the hypertext Web. This is likely due to the more widedyying nature of
the hypertext results, as compared to the more consistiErmational nature of
Semantic Web results.

Were judges more reliable with entities or concepts? Ratatiog thek for
all results based on entity queries= 0.5989 (p < .05, 95% Confidence interval
[0.59230.6053), while for all results based on concept queries was 0.5447
(p < .05, 95% Confidence interv#.5381 0.5517). So it appears that judges are
slightly more reliable discovering information about ¢e8 rather than concepts,
backing the claim made by Hayes and Halpin that there is mgneeaent in gen-
eral about ‘less’ abstract things like people and placdserathan abstract con-
cepts Hayes and Halpin (2008). However, agreement is stijl similar and ‘mod-
erate’ for both information about entities and conceptss Iperhaps due to the
entity-centric and concept-centric definition of relevarbat the agreement was
not higher.

For the queries, much of the data is summarized in TallRe3olvedjueries are
queries that return at least one relevant resualthe top 10 results, whilenresolved
queries argueries that return no relevant queries in the top 10 resultgpertext’
means that the result was taken only over the hypertext Wabtseand ‘Semantic
Web’ indicates the same for the Semantic Web results. Theeptages for resolved
and unresolved for ‘hypertext’ and ‘Semantic Web’ were rakgerall the hyper-
text and Semantic Web relevancy corpora in order to allo@alicomparison. On
the contrary, the percentages for ‘Top Relevant’ and ‘Top{R&levant’ were com-
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puted as percentages over only resolved queries, and saleseinresolved queries.
For ease of reference, a pie-chart for the hypertext relgvasngiven in Figure 6.5
and for the Semantic Web relevancy in Figure 6.6.

Results: Hypertext|Semantic Wep
Resolved: 197 (98%)132 (66%)
Unresolved: 3(2%) (68 (34%)

Top Relevant: 121 (61%)76 (58%)
Top Non-Relevani76 (39%) |56 (42%)

Table 6.2 Results of Hypertext and Semantic Web Search Relevancemirdg: Raw numbers
followed by percentages. The top two row percentages ate negpect to all queries, while the
latter two columns are with respect to the total of resolveelrigs.

Non-Top Relevant

Unresolved

Top Relevant

Fig. 6.5 Results of Querying the Hypertext Web.

For both hypertext and Semantic search, there were 71 (18eé3olved queries
that did not have any results. For the hypertext Web seardly, 3(2%) queries
were unresolved, while 68 (34%) of the queries were unresbler the Semantic
Web. This simply means that the hypertext search enginessamways returned at
least one relevant result in the top 10, but that for the Sém¥§veb almost a third
of all queries did not return any relevant result in the topTliis only means there
is much information that does not yet have a relevant formhenSemantic Web,
unless it is hidden by the perhaps sub-optimal ranking by GAN-S.

Another question is how many queries had a relevant resthiegstop result? In
general, 197 queries (50%) had top-ranked relevant resedisboth Semantic Web
and hypertext search. While the hypertext Web search had@l2s) top-ranked
relevant results, the Semantic Web only had 76 (58%) toge@mnesults. What is
more compelling for relevance feedback is the number ofagleresults that were
notthe top-ranked result. Again for both kinds of searchesgthere 132 (33.0%)
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Non-Top Relevant

Unresolved

Top Relevant

Fig. 6.6 Results of Querying the Semantic Web.

queries where a relevant result wast in the top position of the returned results.
For the hypertext Web, there were 76 (39%) queries with a tapnelevant result.
Yet for the Semantic Web there were 56 (42%) queries that ag aon-relevant
result. So queries on the Semantic Web are more likely totpmo relevant results
in the top 10. When a relevant query is returned in the top 40lt®it is quite likely
that a non-relevant result will be in the top position fortbtite hypertext Web and
the Semantic Web.

6.3 Information Retrieval for Web Search

In our evaluation we tested two general kinds of informatietnieval frameworks:
vector-space models and language models. Invdator-space modetocument
models are considered to be vectors of terms (usually calledds’ as they are
usually, although not exclusively, from natural languagewe transform URIs into
‘pseudo-words’) where the weighing function and query @gi@n has no prin-
cipled basis besides empirical results. Ranking is uswdlye via a comparison
using the cosine distance, a natural comparison metricématwectors. The key to
success with vector-space models tends to be the tuningegfatameters of their
weighing function. While fine-turning these parameters ledsto much practical
success in information retrieval, the parameters have fitrmally-proven basis
but are instead based on common-sense heuristics like dotdength and aver-
age document length.

Another approach, thanguage modedpproach, takes a formally principled and
probabilistic approach to determining the ranking and Wiy function. Instead
of each document being considered some parametrized weqddncy vector, the
documents are each considered to be samples from an umdgplygibabilistic lan-
guage modeMp, of which D itself is only a single observation. In this manner,
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the queryQ can itself also be considered a sample from a language nmadsrly
language modeling efforts the probability that the languampdel of a document
would generate the query is given by the ranking functioefdocument. A more
sophisticated approach to language models considershthafuery was a sample
from an underlyingelevance modebf unknown relevant documents, but that the
model could be estimated by computing the co-occurrendesofitiery terms with
every term in the vocabulary. In this way, the query itselfsviast considered a
limited sample that is automatically expanded before tleckehas even begun by
re-sampling the underlying relevance model.

In detail, we will now inspect the various weighting and rargkfunctions of the
two frameworks. A number of different options for the pargengof each weighting
function and the appropriate ranking function will be caiesed.

6.3.1 Vector Space Models

6.3.1.1 Representation

Each vector-space model has as a parameter the fadiioe maximunwindow size
which is the number of words, ranked in descending ordeegjifency, that are used
in the document models. In other words, the size of the vedtothe vector-space
model ism. Words with a zero frequency are excluded from the documeiliein

6.3.1.2 Weighting Function: BM25

The current state of the art weighting function for vectpase models i8M25,

one of a family of weighting functions explored by RobersabBrtson et al (1994)
and a descendant of thkidf weighting scheme pioneered by Sparck Jones and
Robertson Robertson and Sparck Jones (1976). In partiewawill use a version

of BM25with the slight performance-enhancing modifications usetthé InQuery
system Allan et al (2000). This weighting scheme has beesfuéy optimized and
routinely shows excellent performance in TREC compet#iGraswell et al (2005).
The InQuery BM25 function assigns the following weight to ardiq occurring in

a documenbD:

n(q,D) log(0.5+N/df(q))

" n(q,D)+05+ 15595 109(1.0+logN)

Dq (6.1)

The BM25 weighting function is summed for every tewre Q. For everyq,
BM25 calculates the number of occurrences of a tefirom the query in the doc-
umentD, n(qg,D), and then weighs this by the length of documehof document
D in comparison to the average document lenatiy(dl). This is in essence the
equivalent of term frequency itff.id f. The BM25 weighting function then takes
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into account the total number of documeNtsnd the document frequencie$(q)
of the query term. This second component isithecomponent of classicaf.id f.

6.3.1.3 Ranking Function: Cosine and InQuery

The vector-space models have an intuitive ranking fundtiotine form of cosine
measurements. In particular, the cosine ranking funcsagivien by Equation 6.2,
for a documenb with queryQ, where botlD andQ containq words, iterating over
all words.

2qQ0Dq

_DbQ_
Pl /3408 /5403

The only question is whether or not the vectors should be alized to have
a Euclidean weight of 1, and whether or not the query termm#eéves should be
weighted. We investigate both options. The classical &isigiven agosine which
normalizes the vector lengths and then proceeds to weighttbe query terms and
the vector terms bBM25. The version without normalization is calledjueryafter
thelnQuerysystem Allan et al (2000). Thaqueryranking function is the same as
cosineexcept without normalization each word in the query can besicered to
have uniform weighing.

cogD,Q)

(6.2)

6.3.1.4 Relevance Feedback Algorithms: Okapi, LCA, and Pdr

There are quite a few options on how to expand queries in arspace model.
One popular and straightforward method, first proposeRa@gchioRocchio (1971)
and at one point used by ti@kapi system Robertson et al (1994), is to expand
the query by taking the average of thé¢otal relevant document mode®s with a
documenD € R, and then simply replacing the que@with the topm words from
averaged relevant document models. This process is givétgbgtion 6.3 and is
referred to askapi

okapiQ) = TlDZRD (6.3)

Another state of the art query expansion technique is knasmaal Content
Analysis(Ica) Xu and Croft (1996). Given a quef with query termgy;...qx and
a set of result® and a set of relevant documeiRsthenlca ranks everyw € V by
Equation 6.4, whera is the size of the relevant documesid f, is the inverse
document frequency of wond, andDq andDy, are the frequencies of the words
andg € Qin relevant documerd € R.
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id fq
o~ 1/logn
Ica(w;Q) = qEL (0.1+ 1/idfw IogrgRDqDW> (6.4)

After each wordwv € V has been ranked Hga, then the query expanded by LCA is
just the topmwords given bylca. Local Content Analysis attempts to select words
from relevant documents to expand the query that have lkihgitebiguity, and so it
does extra processing compared to dkapimethod that simply averages the most
frequent words in the relevant documents. In comparisonalL@ontent Analysis
performs an operation similar in effect té.id f on the possibly relevant terms,
and so attempting by virtue of weighing to select only wondthat both appear
frequently with terms in querg but have a low overall frequencid(fy,) in all the
results.

The final method we will use is the heuristic method develdpe&onte Ponte
(1998), which we calponte Like Ica, ponteranks each wordv € V, but it does so
differently. Instead of taking a heuristic-approach kBkapior LCA, it takes a prob-
abilistic approach. Given a set of relevant docum&usD, Ponte’s approach esti-
mates the probability of each wowde V being in the relevant documeri(w|D),
divided by its overall probability of the word to occur in thesultsP(w). Then the
Ponteapproach gives eachc V a score as given in Equation 6.5 and then expands
the query by using theamost relevant words as ranked by their scores.

Pontgw;R) = nglog (P|(3V(v\,|\,[)))) (6.5)

6.3.2 Language Models

6.3.2.1 Representation

Language modeling frameworks in information retrievalressent each document
as a language model given by an underlying multinomial poditya distribution
of word occurrences. Thus, for each woxde V there is a value that gives how
likely an observation of worav is givenD, i.e. P(wjup(Vv)). The document model
distributionup (v) is then estimated using the paramedgr which allows a linear
interpolation that takes into account the background gribaof observingw in
the entire collectiol€. This is given in Equation 6.6.

n(w,D) n(w,C)
D Svev N(V,C)
The parametegp just takes into account the relative likelihood of the wosd a
observed in the given documebtcompared to the word given the entire collection
of document€. |D| is the total number of words in documéddtwhile n(w, D) is the
frequency of wordl in documenD. Furthern(w,C) is the frequency of occurrence

up(W) = & +(1-—¢p) (6.6)
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of the wordw in the entire collectioiC divided by the occurrence of all wordsn
collectionC.

6.3.2.2 Language Modeling Baseline

When no relevance judgments are available, the languagelmg@pproach ranks
document® by the probability that the quel® could be observed during repeated
random sampling from the distributiam(-). The typical sampling process assumes
that words are drawn independently, with replacementjtegtd the following re-
trieval score being assigned to document

P(QD) = 6.7
(QIb) qELuD(Q) (6.7)

The ranking function in Equation 6.7 is callediery-likelihoodranking and is
used as a baseline for our language-modeling experiments.

6.3.2.3 Language Models and Relevance Feedback

The classical language-modeling approach to IR does netde@ natural mecha-
nism to perform relevance feedback. However, a populansita of the approach
involves estimating a relevance-based maggin addition to the document-based
modelup, and comparing the resulting language models using infoomdheoretic
measures. Estimation of has been described above, so this section will describe
two ways of estimating the relevance modg| and a way of measuring distance
betweerug andup for the purposes of document ranking.

LetR=r1...r be the set ok relevant documents, identified during the feedback
process. One way of constructing a language modRlisto average the document
models of each document in the set:

UR avg(W) = %_iu” (w) = %i

Heren(w,r;) is the number of times the womdoccurs in the’th relevant document,
and|ri| is the length of that document. Another way to estimate theesdistribution
would be toconcatenateall relevant documents into one long string of text, and
count word frequencies in that string:

n(w,ri)
i (6.8)

_ Zik:ln(vvv ri) 6.9
UR,con(W) 72}(:1'”' (6.9)

Here the numeratog¥_; n(w,r;) represents the total number of times the ward
occurs in the concatenated string, and the denominatoe ilettyth of the concate-
nated string. The difference between Equations 6.8 ands@ttat the former treats
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every document equally, regardless of its length, whereadatter favors longer
documents (they are not individually penalized by dividthgir contributing fre-
quencie\(w, ri) by their lengthri|).

6.3.2.4 Ranking Function: Cross Entropy

We now want to re-compute the retrieval score of docuniebtised on the esti-
mated language model of the relevant clagsWhat is needed is a principled way
of comparing a relevance modeat against a document language modgl One
way of comparing probability that has shown the best peréoroe in empirical
information retrieval research Lavrenko (2008) is crossagy. Intuitively, cross
entropy is an information-theoretic measure that meashesverage number of
bits needed to identify the probability of distributignbeing generated ip was
encoded using given probability distributigrrather tharg itself. For the discrete
case this is defined as:

H(p,a) = =3 p(x)log(q(x)) (6.10)

If one considers that theg = p and that document model distributiap =
g, then the two models can be compared directly using crossgmn as shown
in Equation 6.11. This use of cross entropy also fulfills tmebRbility Ranking
Principle and so is directly comparable to vector-spackingrvia cosine Lavrenko
(2008).

—H(ug||up) = Z/UR(W)|OguD(W) (6.11)
we
Note that either theveragedrelevance modelir avg OF the concatenatedele-
vance modelr con Can be used in Equation 6.11. We refer to the formemaand
to the latter asf in the following experiments.

6.4 System Description

We present a novel system that uses the same underlyingriafion retrieval sys-
tem on both hypertext and Semantic Web data so that relefardback can be
done in a principled manner from both sources of data witijuage models. In
our system, the query is run first against the hypertext Webralevant hypertext
results can then be used to expand a Semantic Web searchwgtietgrms from
resulting hypertext web-pages. The expanded query is #reagainst the Semantic
Web, resulting in a different ranking of results than the+eapanded query. We can
also then run the process backwards, using relevant Semvdeli data as relevance
feedback to improve hypertext Web search.
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This process is described using pseudo-code in Figure 6erenthe set of all
queries to be ran on the system is given by @werySeparameter. The two dif-
ferent kinds of relevance feedback are given by SsarchTypgarameter, with
SearchType=RDFor searching over RDF data using HTML documents as data for
relevance feedback-based query expansion,HiRdL for searching over HTML
documents with RDF as the data for relevance-feedback gxpansionRepresen-
tationis the internal data model used to represent the documéthes, eector-space
models or language models. The feedback used to expand &g igugiven by
Feedbackvith the kind of relevance feedback algorithm used to expghadjuery is
given byAlgorithm, which for relevance models are directly built into the e=g@En-
tation. The ranking function (cross-entropy for languageleis, or some variation
of cosine for vector-space models) is given®gnking The final results for each
query are presented to the usePiresentResults

We can compare both Semantic Web data and hypertext docsiimgnonsider-
ing both to be ‘bags of words’ and using relevance modellgaphiques to expand
the queries Lavrenko and Croft (2001). We consider both tthbhgs of words.’
Semantic Web data can be flattened, and URIs can be reducetds’ by the
following steps:

Reduce to the rightmost hierarchical component.
If the rightmost component contains a fragment identifi@y ¢@nsider all char-
acters right of the fragment identifier the rightmost hiendzal component.

e Tokenize the rightmost component on space, capitalizagiod underscore.

So, htt p: // ww. exanpl e. or g/ hasAr chi t ect would be reduced to
two tokens, ‘has’ and ‘architect.” Using this system, weleated both the vector-
space and language models described in Section 6.3 on ggetéxted in Section
6.2.2 with relevance judgments on these queries select®edtion 6.2.3.

Algorithm 6.4.1: SEARCH(QuerySetSearchTypge

if SearchType= RDF
Datal € RepresentatiofiH T MLdata)
Data2 € RepresentatiofRDF datg
elseSearchType= HT ML
FeedbackData RepresentatiofRDF datg
ResultDatac RepresentatiofH T MLdata)

for each Querye QuerySet
FeedbackResults- FeedbackQueryDatal)
ExpandedQuery— Algorithm(FeedbackResulis
FinalResults— RankindExpandedQueryata2)
PresentResultFinalResult$

Fig. 6.7 Feedback-Driven Semantic Search
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6.5 Feedback Evaluation

In this section we evaluate algorithms and parameters ugleyance feedback
against the same system without relevance feedback. Ino8e&8 we evaluate
against deployed systems such as FALCON-S and Yahoo! WeblS8a preview

our final results in Section 6.8, relevance feedback fromSmantic Web shows
an impressive 25% gain in average precision over Yahoo! VWetrc® with a 16%

gain in precision over FALCON-S without relevance feedback

6.5.1 Hypertext to Semantic Web Feedback

6.5.1.1 Results

A number of parameters for our system were evaluated tord@tewhich parame-
ters provide the best results. For each of the parameteriocatidns, we compared
the use of relevance feedback to a baseline system whiclotligse relevance feed-
back, yet used the same parameters with the exception ofedéewance feedback-
related parameters. The baseline system without feedtzatlalso be considered
an unsupervised algorithm, while a relevance feedbaclesysan be thought of
as a supervised algorithm. For example, the relevant hgxtesteb-page® can be
considered to be training data, while the Semantic Web dectsd we wish to
re-rank can be considered to be test data. The hypertexpagés and Semantic
Web documents are disjoint sei3(1R= 0). For evaluation we used mean average
precision (MAP) with the standard Wilcoxon sign-test, whige will often just call
‘average precision.’

For vector-space models, tlo&kapi Ica, and ponterelevance weighting func-
tions were all run, each trying both tlrequeryandcosineranking functions. The
primary parameter to be varied was twendow size(m), the number of top fre-
quency words to be used in the vectors for both the query narttbthe document
models. Baselines for bottosineandinquerywere run with no relevance feedback.
The parametem was varied over 5.0,20,50,100,300,1000 3000. Mean average
precision results are given in Figure 6.8.

Interestingly enoughokapirelevance feedback weighting with a window size
of 100 and aninquerycomparison was the best, with a mean average precision of
0.8914 p < .05). It outperformed the baseline mfquery, which has an average
precision of 0.5595 < .05). Overall,lca did not perform as well, often perform-
ing below the baseline, although its performance increasetie window size in-
creased, reaching an average precision of 0.6262m##B8000 (p < .05). However,
given that a window size of 10,000 covered most documerdse@sing the window
size will not likely result in better performance frdca. The ponterelevance feed-
back performed very well, reaching a maximum MAP 0.8756 witlvindow size
of 300 usinginqueryweighing, and so was insignificantly different franquery
(p > .05). Lastly, bothponteand okapiexperienced a significant decrease in per-
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Fig. 6.8 Average Precision Scores for Vector-space Model Paramdtetevance Feedback From
Hypertext to Semantic Web

formance asnwas increased, so it appears that the window sizes of 300Ghdr
indeed optimal. Also, as regards comparing baselingsieryoutperformeaosine
(p < .05).

For language models, both averaged relevance mouedsid concatenated rele-
vance modelsf were investigated, with the primary parameter bemghe number
of non-zero probability words used in the relevance modek parametem was
varied between 100, 300, 1000, 3000,and 10000. Rememhéhéhguery moddk
the relevance model for the language model-based framewaAskis best practice
in relevance modeling, the relevance models were not sradpthut a number of
different smoothing parameters ferwere investigated for the cross entropy rank-
ing function, ranging fronz between .01, .1, .2, .5, .8, .9, and 0.99. The results are
given in Figure 6.9.

The highest performing language model wésvith a cross-entropy of .2 and
am of 10,000, which produced an average precision of 0.861ichwmiias signifi-
cantly higher than the language model baseline of 0.5@043 (05) using again an
m of 10,000 for document models and with a cross entropf .99). Rather in-
terestinglytf always outperformedm, andrm’'s best performance had a MAP of
0.7223 using ag of .1 and amof 10,000.

6.5.1.2 Discussion

Of all parameter combinations, tie&apirelevance feedback works best in combi-
nation with a moderate sized word-windom £ 100) and with thenqueryweight-
ing scheme. It should be noted its performance is identioah fa statistical stand-
point with ponte but as both relevance feedback components are similar@thd b
useinquerycomparison an®M25 weighing, and not surprisingly the algorithms
are very similar. Why wouldnqueryand BM25 be the best performing? The area
of optimizing information retrieval is infamously a blacktaln fact, BM25 and
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Fig. 6.9 Average Precision Scores for Language Model Parametetevdee Feedback From
Hypertext to Semantic Web

inquery combined present the height of heuristic-driven inforomatietrieval al-
gorithms as explored in Robertson and Sparck Jones Robeatsd Sparck Jones
(1976). While its performance increase ole is well-known and not surprising, it
is interesting thaBM25 andinqueryperform significantly better than the language
model approach.

The answer is rather subtle. Another observation is in gnuate that for vec-
tor models,jnqueryalways outperformedosing and that for language modédl§
always outperformedm. Despite the differing frameworks of vector-space mod-
els and language models, batbsineandrm share the common characteristic of
normalization. In essence, batbsineandrm normalize by documentsosinenor-
malizes term frequencies per vector before comparing v&otdhilerm constructs
a relevance model on a per-relevant document basis befeetirmy the average
relevance model. In contrashqueryandtf do not normalizeinquerycompares
weighted term frequencies, ahél constructs a relevance model by combining all
the relevance documents and then creating the relevancelinooh theraw pool
of all relevant document models.

Thus it appears the answer is that any kind of normalizatiptehgth of the
document hurts performance. The reason for this is likelyabse the text auto-
matically extracted from hypertext documents is ‘messgihg of low quality and
bursty, with highly varying document lengths. As observédimally earlier Ding
and Finin (2006) and more formally later Halpin (2009a), &ineount of triples in
Semantic Web documents follow a power-law, so there arelywildrying docu-
ment lengths of both the relevance model and the documenglsiddue to these
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factors, it is unwise to normalize the models, as that with@dt certainly dampen
the effect of valuable features like crucial keywords (sashParis’ and ‘tourist’ in
disambiguating various ‘eiffel’-related queries).

Then the reasoBM25-based vector models in particular perform so well is,that
due to its heuristics, it is able to effectively keep trackaakerm’s both document
frequency and inverse document frequency accurately., Alstike most other al-
gorithms,BM25 provides a slight amount of rather unprincipled nondrity in the
importance of the various variables Robertson et al (20D4ix is important, as it
provides a way of extenuating the effect of one particulanpeeter (in our case,
likely term frequency and inverse term frequency) and thessively lowering the
power of another parameter (in our case, likely the docureagth). WhileBM25
can be outperformed normally by language models Lavren®&@&pin TREC com-
petitions featuring high-quality samples of English, i thon-normal conditions
of comparing natural language and pseudo-natural langieages extracted from
structured data in RDF, it is not surprising tlekapi whose non-linearity allows
certain highly relevant terms to have their frequency ‘tioearly’ heightened, pro-
vides better results than more principled methods thaveeheir parameters by
regarding the messy RDF and HTML-based corpus as a samphegfigeneral un-
derlying language model.

6.5.2 Semantic Web to Hypertext Feedback

In this section, we assume that the user or agent prograncthassed or otherwise
examined the Semantic Web documents from the URIs resutimg a Semantic

Web search, and these Semantic Web documents then be usddvasnce feed-

back to expand a query for the hypertext Web so that the feddtyacle has been
reversed.

6.5.2.1 Results

The results for using Semantic Web documents as relevaedbdek for hyper-
text Web search are surprisingly promising. The same pasamas explored in
Section 6.5.1.1 were again explored. The average predisguits for vector-space
models are given in Figure 6.10. The general trends fromi@e6t5.1.1 were sim-
ilar in this new data-set. In particulavkapi with a window size of 100 and the
inquery comparison function again performed best with an averageigion of
0.6423 p < .05). Also ponteperformed almost the same, again an insignificant
difference fromokapi producing with the same window size of 100 an average
precision of 0.6131f > .05). Utilizing again a large window of 3,00z;a had an
average precision of.8359 (p < .05). Similarly,inqueryconsistently outperformed
cosinein comparison, witlinqueryhaving a baseline average precision of 0.4643
(p < .05) in comparison with the average precisioro$inebeing 0.3470( < .05).
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The results for language modeling were similar to the resolSection 6.5.1.1
and are given in Figure 6.11, although a few differences amehacomment. The
best performing language model wialswith a m of 10,000 and a cross entropy
smoothing factok to .5, which produced an average precision of .6529 (.05).

In contrast, the best-performimgn, with am of 3,000 ance=.5, only had an aver-
age precision of 0.485&(< .05). Thet f relevance models consistently performed
better tharrm relevance modelg(< .05). The baseline for language modeling was
also fairly poor with an average performance of 0.42B84<(.05). This was the
‘best’ baseline using again anof 10,000 for document models and cross entropy
smoothinge of .99. The general trends from the previous experiment kiedeh, ex-
cept the smoothing factor was more moderate and the differbetween f and

rm was even more pronounced. However, the primary differerar¢hwoting was
that best performingf language model outperformed, if barely, thieapi (BM25
andinquery) vector model by a relatively small but still significant rgarof .0126.
Statistically, the difference was significamt€ .05).

6.5.2.2 Discussion

Why istf relevance modeling better th&M25 andinqueryvector-space models

in using relevance feedback from the Semantic Web to hyxt€rine high perfor-
mance 0BM25 andinqueryhas already been explained, and that explanation about
why document-based normalization leads to worse perfocmatill holds. Yet the
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rise in performance off language models seems odd. However, it makes sense

if one considers the nature of the data involved. Recallireyipus work Halpin
(2009a), there are two distinct conditions that separédtisciata-set from the more
typical natural language samples as encountered in TREKidgwet al (2000). In
the case of using relevant hypertext results as feedbadkéoBemantic Web, the
relevant document model was constructed from a very limamdunt of messy hy-
pertext data, which had many text fragments, with a largegrgage coming from
irrelevant textual data to deal with issues like web-pagégadion. However, in us-
ing the Semantic Web for relevance feedback, these issaes\arsed: the relevant
document model is constructed out of relatively pristinen8etic Web documents
and compared against noisy hypertext documents.

Rather shockingly, as the Semantic Web is mostly manuadiy-ljuality curated
data from sources like DBpedia, the actual natural langdieggments found on
the Semantic Web, such as Wikipedia abstracts, are mudr sathples of natural
language than the natural language samples found in hypefgrthermore, the
distribution of ‘natural’ language terms extracted from RErms (such as ‘sub
class of’ fromr df s: subCl assOf ), while often irregular, will either be repeated
very heavily or fall into the sparse long tail. These two dtinds can then be dealt

with by the generativef relevance models, since the long tail of automatically gen-

erated words from RDF will blend into the long tail of natulahguage terms, and
the probabilistic model can properly ‘dampen’ without nésm to heuristic-driven
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non-linearities. Therefore, it is on some level not suipgshat even hypertext Web
search results can be improved by Semantic Web searchselsattause used in
combination with the right relevance feedback parameiteesssence the hypertext
search engine is being ‘seeded’ with high-quality struedusind accurate descrip-
tions of the information need of the query to be used for qe&pansion.

6.6 Pseudo-feedback

In this section we explore a very easy-to-implement andliémag/ay to take advan-
tage of relevance feedback without manual selection ofaeleresults by human
users. One of the major problems of relevance feedbacldmgggoaches is their
dependence on manual selection of relevant results by huses. For example, in
our experiments we used judges manually determining if peipes were relevant
using an experimental set-up that forced them to judge ene=yit as relevant or
not, which is not feasible for actual search engine use.

A well-known technique within relevance feedbaclp&eudo-feedbackamely
simply assuming that the topdocuments returned are relevant. Then, one can use
this as a corpus of relevance documents to expand the qureties same manner
using language models as described in Section 6.3. Howievggneral pseudo-
relevance feedback is a more feasible method, as humawenten is not required.

Using the same optimal parameters as discovered in Sectoh. Bt f with a
m = 10,000 ands = .2 was again deployed, but this time using pseudo-feedback.
Can pseudo-feedback from hypertext Web search help imptowveankings of
Semantic Web data? The answer is clearly positive. Empipglhten results as
pseudo-relevance feedback and the same previously optirparameters, the best
pseudo-relevance feedback result had an average precof$da240. This was con-
siderably better than the baseline of just using relevaseeqo-feedback from the
Semantic Web to itself, which only had an average precisidh%?51 ( < .05),
and also clearly above the ‘best’ baseline of 0.50#3 (05). However, as shown by
Figure 6.12, the results are still not nearly as good as ugypgrtext pages judged
relevant by humans, which had an average precision of 0.86%1.05). This is
likely because, not surprisingly, the hypertext Web resotintain many irrelevant
text fragments that serve as noise, preventing the reldégadback from boosting
the results.

Can pseudo-feedback from the Semantic Web improve hypeséaech? The
answer is yes, but barely. The best result for average [iweds0.4321 p < .05),
which is better than the baseline of just using pseudo-faekifsom hypertext Web
results to to themselves, which has an average precisio 3848 ( < .05) and the
baseline without feedback at all of 0.4284< .05). However, the pseudo-feedback
results are both still significantly worse performance bgargé margin than using
Semantic Web documents judged relevant by humans, whiclhmaslerage preci-
sion of 0.6549 < .05). These results can be explained because, given the usual
ambiguous and short one or two word queries, the Semantictévets to return
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HTML to RDF HTML to RDF RDF to HTML RDF to HTML
Pseudo-Feedback Pseudo-Feedback

Fig. 6.12 Comparing Relevance Feedback (red) to Pseudo-Relevaecthdek (blue) on the Se-
mantic Web (RDF) and Hypertext Web (HTML)

structured data spread out of over multiple subjects evaesodhan the hypertext
Web. Therefore, adding pseudo-relevance feedback ires¢las amount of noise in
the language model as opposed to using actual relevandeaeecdhurting perfor-
mance while still keeping it above baseline.

6.7 Inference

In this section the effect of inference on relevance feekiisaevaluated by consider-
ing inference to be document expansion. One of the charstiterof the Semantic
Web is that the structure should allow one ‘in theory’ to diger more relevant
data. The Semantic Web formalizes this in terms of type abectass hierarchies
in RDF using RDF Schema Brickley and Guha (2004). While iefiee routines are
quite complicated as regards the various Semantic Webfgjaicns, in practice
the vast majority of inference that can be used is on the Sgm¥@feb is of two
types (as shown by our survey of Linked Data Halpin (2009d))subClassOthat
indicates a simple sub-class inheritance hierarchyrdhtypethat indicates a sim-
ple type. For our experiment, we followed all expliaitf:subClassOfstatements
up one level in the sub-class hierarchy and explfitypelinks. The resulting re-
trieved Semantic Web data was all concatenated togethethan concatenated yet
again with their source document from the Semantic Web. isvlay, Semantic
Web inference is considered dscument expansion

Inference was first tried using normal relevant feedbackjrawith the same
best-performing parametetd (with m= 10,000 ance = .2). In the first case, the in-
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ference is used to expand Semantic Web documents in sersaatith, and then the
hypertext results are used as relevance feedback to imgev@nking. However,
as shown in Figure 6.13, deploying inference only cause®p itr performance.
In particular, using hypertext Web results as relevancdlfaek to the Semantic
Web, the system drops from a performance of 0.8611 to a pedioce of 0.4991
(p < .05). With pseudo-feedback over the top 10 documents, tHenpegince drops
even more, from 0.6240to 0.455F £ .05). The use of inference actually makes the
results worse than the baseline performance of languagelsofi0.5043 jp < .05)
without either relevance feedback or inference.
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Fig. 6.13 Comparing the Relevance Feedback on the Semantic Web (Ri2Fgpertext Web
(HTML) both without (blue) and with (green) Semantic Webeirgnce

The results of using inference to boost hypertext Web resiging Semantic Web
equally fail to materialize any performance gains. In tlase; inference is used to
expand Semantic Web documents, which are then used viearelefeedback to
improve the ranking of hypertext search. Using the samenpeters as above, the
feedback from the expanded Semantic Web data to the hyp&¥exresults in an
average precision of 0.4273, which is insignificantly diet from the baseline of
not using relevance feedback at all of 0.42p4{(.05) and considerably worse than
not using inference at all, which has a MAP of 0.6549< .05). When pseudo-
feedback is used, the results fall to the rather low score38@&lL, which is clearly
below the baseline of 0.428p4 & .05). So, at least one obvious way of use of simple
type and sub-class based Semantic Web inference seemyteadto a decline in
performance.

Why does inference hurt rather than help performance? Onddwively as-
sume that adding more knowledge in the form of Semantic Welddveelp the re-
sults. However, this assumes the knowledge gained thraiigrence would some-
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how lead to the discovery of new relevant terms. Howevehércase of much infer-
ence with the Semantic Web, this is not the case. For exasipip)y consider the
Semantic Web data about the query for the singer ‘Britneya&pewhile the first
Semantic Web document about Britney Spears gives a numlosedil facts about
her, such as the fact that she is a singer, determining thizeBrSpears is a person
via inference is of vastly less utility. For example, the @yttology Lenat (1990)
declares that Britney Spears is a person, namely that “Songeis an instance of
Person if it is an individual Intelligent Agent with percept sensibility, capable
of complex social relationships, and possessing a certairalnsophistication and
an intrinsic moral value.” In this regard, inference onlyv&s as noise, adding ir-
relevant terms to the language models. For example, addoyghistication’ to a
query about ‘Britney Spears’ will likely not help discoveevant documents. In-
ference would be useful if it produced surprising inforraator reduced ambiguity.
However, it appears that at least for simple RDF Schema wiages, information
higher in the class hierarchy is usually knowledge that ther of the search en-
gine already possesses (like Brithey Spears is a personthahthe reduction of
ambiguity is already done by the user in their selection gfd@ds. However, it is
possible that more sophisticated inference techniquasssa@ed, and that inference
may help in specialized domains rather than open-ended ¥&ebls Further exper-
iments in parametrization of inference would be useful gitreat our exploration in
this direction showed no performance increase, only peréoice decrease.

6.8 Deployed Systems

In this section we evaluate our system against ‘real-watéployed systems. One
area we have not explored is how systems based on relevatizsiek perform rel-
ative to systems that are actually deployed, as our previauk has always been
evaluated against systems and parameters we created cgicifor experimen-
tal evaluation. Our performance in Section 6.5.1.1 andi@e@&.5.2.1 was only
compared to baselines that were versions of our weightingtion without a rel-
evance feedback component. While that particular bas&ipancipled, the obvi-
ous needed comparison is against actual deployed cominareieademic systems
where the precise parameters deployed may not be publieijable and so not
easily simulated experimentally.

6.8.1 Results

The obvious baseline to choose to test against is the Ses\&rb search engine,
FALCON-S, from which we derived our original Semantic Weltedia the experi-
ment. The decision to use FALCON-S as opposed to any othea®@web search
engine was based on the fact that FALCON-S returned moreamieesults in the
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top 10 than other existing semantic search engines at tleeusimg a random sam-
ple of 20 queries from the set of queries described in Seétidr2. Combined with
the explosive growth of Linked Data over the last year andcifenges in rank-
ing algorithms of various semantic search engines, it ificdif to judge whether
a given Semantic Web search engine is representative ofngiensgarch. How-
ever, we would find it reasonable that if our proposed hymitherorks well on
FALCON-S, it can be generalized to other Semantic Web sezmgnes.

We used the original ranking of the top 10 results given by ESIN-S to cal-
culate its average precision, 0.6985. We then comparedthethest baselinem,
as well as the best system with feedback in Figure 6.14. Asnishour system
with feedback had significantlyp(< .05) better average precision (0.8611) than
FALCON-S (0.6985), as well bettep (< .05) than the ‘best’ language model base-
line without feedback (0.5043) as reported earlier as giveSection 6.5.1.1.

Baseline

Relevance Feedback FALCON-S

Fig. 6.14 Summary of Best Average Precision Scores: Relevance Feledivam Hypertext to
Semantic Web

Average precision does not have an intuitive interpretatizesides the simple
fact that a system with better average precision will in galhgeliver more accurate
results closer to the top. In particular, one scenario werdegested in is having
only the most relevant RDF data accessible from a single URImetlias the top
result, so that this result is easily consumed by some pnogFar example, given
the search ‘amnesia nightclub, a program should be ablerisuume RDF returned
from the Semantic Web to produce with high reliability a $&nmap and opening
times for a particular nightclub in Ibiza in the limited serespace of the browser,
instead of trying to display structured data for every nigitt called ‘amnesia’ in
the entire world. In Table 3, we show that for a significant onity of URIs (42%),
FALCONS-S returned a non-relevant Semantic Web URI as thedsplt. Our feed-
back system achieves an average precision gain of 16% oMe€BN-S. While
a 16% gain in average precision may not seem huge, in rehiteffect is quite
dramatic, in particular as regards boosting relevant URkh¢ top rank. So in Ta-
ble 3, we present results of how our best parametemsith m = 10,000 lead to
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the most relevant Semantic data in the top result. In paaticnotice that now 89%
of resolved queries now have relevant data at the top posii® opposed to 58%
without feedback. This would result in a noticeable gainénfprmance for users,
which we would argue allows Semantic Web data to be retrigwddhigh-enough
accuracy for actual deployment.

While performance is boosted for both entities and con¢épesmain improve-
ment comes from concept queries. Indeed, as concept quedeasten one word
and ambiguous, not to mention the case where the name of egidms been taken
over by some company, music band, or product, it should nsubgrising that re-
sults for concept queries are considerably boosted byaete/feedback. Results
for entity queries are also boosted. A quick inspection efrésults reveals that the
entity queries were the most troublesome, and that the#y eukries gave both
FALCON-S and our feedback system problems. These probiematries were
mainly very difficult queries where a number of Semantic Webuinents all share
similar natural language content. An example would be aygjieefsonny and cher,
which results in a number of distinct Semantic Web URIs: an€her, another one
for Sonny and Chethe band, and another for ‘The Sonny Side of Cher,’ an album
by Cher. For concepts, one difficult concept was the quegk't@lthough the sys-
tem was able to disambiguate the musical sense from the gjealsense, there
was a large cluster of Semantic Web URIs for rock music, ramfiomHard Rock
to Rock Musido Alternative RockThese types of queries seem to present the most
difficulties for Semantic Web search engines.

[Results: |[Feedbackl FALCON-§
Top Relevant: 118 (89%)76 (58%)
Non-Relevant Top: 14 (11%) |56 (42%)

Non-Relevant Top Entity9 (64%) (23 (41%)
Non-Relevant Concept:|5 (36%) |33 (59%)

Table 6.3 Table Comparing Hypertext-based Relevance Feedback an@®GN-S

Although less impressive than the results for using hypeveb-pages for rel-
evance feedback for the Semantic Web, the feedback cyctetfie Semantic Web
to hypertext does improve significantly the results of evemmercial hypertext
web-engines, at least for our set of queries about conceptematities. Given the
unlimited API-based access offered by Yahoo! Web Searcbrimparison to Google
and Microsoft web search, we used Yahoo! Web Search for bgytesearching in
this experiment, and we expect that the results in a coamiaegl manner should
generalize to other Web search engines. The hypertexttsesulour experiment
were given by Yahoo! Web Search, and we calculated a meaageerecision for
Yahoo! Web Search to be 0.4039. This is slightly less thanbaseline language
model ranking, which had an average precision of of 0.42&4skown in Figure
6.15, given that our feedback based had an average precisi@$549, our rel-
evance feedback system performs significanply(.05) better than Yahoo! Web
Search andf < .05) the baselinem system.
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Relevance Feedback Yahoo Web Search

Fig. 6.15 Summary of Best Average Precision Scores: Relevance Feledioam Semantic Web
to Hypertext

6.8.2 Discussion

These results show our relevance feedback method worksiségnly better than
various baselines, both internal baselines and state afrtteommercial hypertext
search engines and Semantic Web search engines. The pazatiwet of the pre-
cise information retrieval components used in our systemoigntirely arbitrary, as
argued above in Section 6.5.1.2 and Section 6.5.2.2. Tineo§aur relevance feed-
back system, a respectable 16% in average precision oventlinse FALCON-S,
intuitively makes the system'’s ability to place a relevanicured Semantic Web
data in the top rank acceptable for most users.

More surprisingly, by incorporating human relevance juégts of Semantic
Web documents, we make substantial gains over state oftlsgsiems for hyper-
text Web search, a 25% gain in average precision over Yaleaotk. One important
factor is the constant assault of hypertext search enginepédmmers and others.
Given the prevalence of a search engine optimization anchispiag industry, it is
not surprising that the average precision of even a comidrgpertext engine is
not the best, and that it performs less well than Semantic $&elch engines. Se-
mantic Web search engines have a much smaller and cleanker e¥atata to deal
with than the unruly hypertext Web, and hypertext Web seamolst be very fast
and efficient. Even without feedback from the Semantic Wela\erage precision
of 40% is impressive, although far from the 65% precisiomgselevance feedback
from the Semantic Web.

Interestingly enough, it seemed that pseudo-feedbacklogllys marginally in
improving hypertext Web search using Semantic Web datareftwe, it is some-
what unrealistic to expect the Semantic Web to instantlyrowe hypertext Web
search. Even with the help of the Semantic Web, hypertextbdaa unlikely to
achieve near perfect results anytime soon. This shouldeatdurprise, as pseudo-
feedback in general performs worse than relevance feedblkever, the loss of
performance given by pseudo-feedback in comparison watittonal relevance
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feedback show that for the Semantic Web using pseudo-fekdbaconcepts and
entities is difficult, as many results that are about higliffiecent things and subject
matters may be returned. However, both pseudo-feedbackaudtitdonal relevance
feedback help a fair amount in improving Semantic Web seasihg hypertext
results, and as relevance judgments can be approximatelitkytirough logs of
hypertext Web search engines, it is realistic and feasibteytto improve semantic
search using relevance feedback from hypertext searclactnif is simple to im-
plement pseudo-feedback from hypertext Web search usipgrtext search engine
APIs, as no manual relevance judgments must be made at athar@P| simply
can produce the top 10 results of any query quickly.

6.9 Future Work on Relevance Feedback

There are a number of areas where our project needs to be haymighly inte-
grated with other approaches and improved. The expecticism of this work is
likely the choice of FALCON-S and Yahoo! Web search as a lr@sehnd that we
should try this methodology over other Semantic Web seangfines and hyper-
text Web search engines. Lastly, currently it is unknown tmaombine traditional
word-based techniques from information retrieval withustaral techniques from
the Semantic Web, and while our experiment with using infeeeas document ex-
pansion did not succeed, a more subtle approach may prawlfrit this point,
we are currently pursuing this in context of creating a séadided evaluation frame-
work for all Semantic search engines. The evaluation fraonkewresented here has
led to the first systematic evaluation of Semantic Web seartite Semantic Search
2010 workshop over Structured Web Data (2011). Yet in ouniopithe most excit-
ing work is to be done as regards scaling our approach to withkiwe large-scale
hypertext Web search engines.

While language models, particularly generative models liélevance models
Lavrenko (2008), should have theoretically higher perfamce than vector-space
models, the reason why large-scale search engines do naniera implement
language models for information retrieval is that the cotapanal complexity of
calculating distributions over billions of documents does scale. However, there
is reason to believe that relevance models could be scaledrtowith Web search
if they built their language sample from suitably large &é sample of natural
language and also compressed the models by various means.

One of the looming deficits of our system is that for a subsaaimount of
our queries there aneo relevant Semantic Web URIs with accessible RDF data.
This amount is estimated to be 34% of all queries. Howevesdhyueries with
no Semantic Web URIs in generdb have relevant information on the hypertext
Web, if not the Semantic Web. The automatic generation ofeBeim \Web triples
from natural language text could be used in combination withsystem to create
automatically generated Semantic Web data, in responsetaqueries.
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Another issue is how to determine judgments for relevanca manner that
scales to actual search engine use. Manual feedback, wbiémng the more ac-
curate experimental set-up for testing relevance feedbdmés not work in real
search scenarios because users do not exhaustively ggelts based on relevance,
but select on a small subset. However, pseudo-feedbackabéske advantage of
users selecting web-pages, but just assumes theaoprelevant. A better approach
would be to consider click-through logs of search enginesrinplete approxima-
tions of manual relevance feedback Cui et al (2002). As we loadl a small sample
of the Microsoft Live Query log, this was unfeasible for ouperiments, but would
be compelling future work. There is a massive amount of huasan click-through
data available to commercial hypertext search engineswtin Semantic Web data
has little relevance feedback data itself. While it is easyugyh to use query logs
to determine relevant hypertext Web data, no such optiostefdr the Semantic
Web. However, there are possible methodologies for detengiihe ‘relevance’ of
Semantic Web data, even if machines rather than humans aseming the data.
For example, Semantic Web data that is consumed by applisaltike maps and
calendar programs can be ascertained to be actually relevan

Finally, while generic Semantic Web inference may not helpnswering sim-
ple keyword-based queries for entities and concepts, dursearch needs to be
done to determine if inference can help answer complex gsewWhile in most
keyword-based searches the name of the information needriioned directly in
the query, which in our experiment results from choosinggheries via a named
entity recognizer, in complex queries only the type or btttés of the information
need are mentioned directly. The name of particular ansigarsually unknown.
Therefore, some kind of inference may be crucial in deteimginvhat entities or
concepts match the attributes or type mentioned in the queenys. For example,
the SemSearch 2011 competition’s ‘complex query’ task vea difficult for sys-
tems that did well on keyword search, and the winning systset & customized
crawling of the Wikipedia type hierarchy over Structuredd/Bata (2011).

6.10 The Representational Nexus

This study features a number of results that impact the tdigkl of semantic
search. First, it shows a rigorous information retrievadleation, the ‘Cranfield
paradigm’, can be applied to semantic search despite theretices between the
Semantic Web and hypertext. These differences are wedkded in our sample of
the Semantic Web as taken via FALCON-S using a query log, evehis a number
of large differences between the Semantic Web data and texpelata, in partic-
ular that while relevant data for ordinary open-domain gggedoes appear on the
Semantic Web, Semantic Web data is in general more sparsehjipertext data
when given a keyword query from an ordinary user’'s hypeitéab search. How-
ever, when the Semantic Web does contain data relevant tea guery, that data
is likely to be accurate information, a fact we exploit in éechniques.



6.10 The Representational Nexus 185

Unlike previous work in semantic search that focuses uguwallsome form of
PageRank or other link-based ranking, we concentrate arguschniques from
information retrieval, including language models and gespace models, over Se-
mantic Web data. Relevance feedback from hypertext Webcdatanprove Seman-
tic Web search, and evefice versaas we have rigorously and empirically shown.
While relevance feedback is known to in general improveltgsour use of wildly
disparate sources of data such as the structured SemaritiaMidghe unstructured
hypertext Web to serve as relevance feedback for each sthevel. Furthermore as
regards relevance feedback, we show using vector-spacelsmeer hypertext data
is optimal while language models are optimal when operativey Semantic Web.
These techniques (as evidenced by the failure of relevarembhck to beat base-
line results with incorrect parametrizations) must be petized correctly and use
the correct weighting and ranking algorithm to be succéskfis shown by our
results to be simply false to state that relevance feedblackya improves perfor-
mance over hypertext and Semantic Web search, but only wediin (although
easily obtainable) parameters. We do this by treating bath sources as ‘bags of
words’ and links in order to make them compatible and find ftbenSemantic Web
high quality terms for use in language models. Also, untiawally, we turn the
URIs themselves into words. Our results of demonstrateatiagpproach of using
feedback from hypertext Web search helps users discoverami Semantic Web
data. The gain is significant over both baseline systemsowitfeedback and the
state of the art page-rank based mechanism used by FALCON}S&hoo! Web
search. Furthermore, the finding of relevant structurede®in\Web data can even
be improved by pseudo-feedback from hypertext search.

More exciting to the majority of users of the Web is the fadtthpparently
relevance feedback from the Semantic Web can improve hgygéNeb. However,
pseudo-feedback also improves the quality of results oehgmt Web search en-
gines, albeit to a lesser degree. Interestingly enoughgusference only hurt per-
formance, due to the rather obscure terms from higher-&welogies serving func-
tionally as ‘noise’ in the feedback. Lastly, pseudo-feedifeom the hypertext Web
can help Semantic Web search today and can be easily implechémdeed, the key
to high performance for search engines is the use of hightygwkta of any kind
for query expansion, whether it is stored in a structured &8gim Web format or
the hypertext Web. However, the Semantic Web, by its natieessurce of curated
and formalized data, seems to be a better source of hightgjdalia than the hy-
pertext Web itself, albeit with less coverage. While it isiil to observe that as the
Semantic Web grows, semantic search will have more impeetahis even more
interesting to demonstrate that as the Semantic Web groesSeémantic Web can
actually improve hypertext search.

The operative philosophical question is: Why does doesaelee feedback work
between such diverse encodings? Although there appeaesadbge gulf between
the Semantic Web and the hypertext Web, it is precisely lxxthe sameontent
is encoded in the unstructured hypertext and the structeatantic Web represen-
tations that these two disparate sets of data can be usetkeanee feedback for
each other. This leads to an exciting conclusion, and ortectitaplexifies the ear-
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lier picture of semantics considerably. If the Semantic \igsfundamentally about
extending the Web to those things outside the Web, then we teascknowledge
thatmost of the current hypertext Web is already representation

We callthe multitude of representations that share the same cbatehso can be
used to compose its senthe representational nexusf the referent, a potentially
large collection of representations in a variety of fornmatural, and even iconic
languages that all share the same referent. For exampleg ifises a search engine
to look for the ‘Eiffel Tower, one gets a large number of weages that are to some
extent allaboutthe Eiffel Tower by virtue of having some meaningful relasbip
with it, ranging from pictures of the Eiffel Tower, maps t@thiffel Tower, and even
possibly even videos of the Eiffel Tower. These would allmioas representations
of the Eiffel Tower, and so would be part of the representatioexus of the Eiffel
Tower. Therefore, the aggregate ‘bag-of-words’ of all thespresentations would
be an even more adequate notion of sense than just the taljstgxgiven to a
resource. Yet imagine how large of a landscape this opersefwe, for it allows us
to apply search terms, documents, queries, Semantic Websergations - almost
anything! - as part of the creation of sense in aggregate. [@hje aggregation has
been phrased as the “database of intentions” by John Bdtiléeaggregate results
of every search ever entered, every result list ever teddaral every path taken as
a result.” (2003). This should remind us that behind all efsthrepresentations are
the concrete needs of ordinary users of the Web. What ouigasknow attempt to
phrase a philosophical theory of meaning adequate to thasged position of sense
on the Web: the position of social semantics.
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This glossary presents the technical terminology usedignbthok, both from Web
architecture and work in philosophy. Some of this termigglés presented as a
formal Semantic Web ontology in Chapter 3, which my clarfig telationships of
various sundry terms to each other.

absolute URI A URI in which there must a single scheme and the scheme must
identify a name of a resource.

access The use of a identifier to create immediately a causal coioreit the thing
identified.

agent A thing capable of having an interpretation.
analog Every thing that is not digital.

arc role The URI of a link that provides information about what kindliok the
link itself belongs to.

authority In a URI, a name that is usually a domain name, naming aughoria
raw IP address, and so is often the name of the server

AWWW TheArchitecture of théVorld Wide Wel a W3C Recommendation pro-
duced by the W3C to describe the defining characteristickeieb, available at
http://ww. w3. org/ TR webar ch/ .

cache When a user-agent has a local copy of a Web representatibit #taesses
in response to a request rather than getting a Web repréisenftamm the server
itself.

causal If one thing is connected with another thing and a changedifidhmer thing
is follows a change in the latter process in an interpretatio

causal theory of reference Any name refers via some causal chain directly to a
referent

187
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channel The physical substrate that determines whether or not foenation is
preserved over time or space.

client-server architecture Protocols that take the form of a request for information
and a response with information.

client The agent that is requesting information. In the contexhef\Web, called a
user-agentwhich may be a Web browser or Web spider.

complete The inference procedure of a language if every satisifietteer can be
shown to be entailed.

compositionality The content of a sentence is related systematically to terthe
which it is composed.

concept The regularities of the thing or set of things at a level oftedudion that
are different than a realization. Often formalizectlssesn formal ontologies and
languages such as OWL and RDF Schema.

connected Those things that are not separated by time and space. Aled peox-
imal andlocal.

content Whatever is held in common between the source and the recaiva
result of the conveyance of a particular information-begmessage.

consistent A sentence or sentence that can not be satisified.

content negotiation A mechanism defined in a protocol that makes it possible to
respond to a request with different web representationb@fsame resource de-
pending on the preference of the user-agent

content types The types of formal languages that can be explicitly givea ire-
sponse or request in HTTP.

convention The use of a thing based purely on previous history, withegard to
imitation or natural selection.

depictions A sentence or sentences in a natural or formal language wirosary
purpose is to be a visual representation.

descriptions A sentence or sentences in an iconic language whose priragrgge
is to be a linguistic or formal representation.

disconnected Things that are separated by time and space. Also cdittal.

descriptivist theory of reference The referent of a name is given by whatever
satisfies the descriptions associated with the name.

dialect A language created with or as a subset of another language.

digital When the boundaries in a particular encoding converge widigalarity in
a physical realization. So there must be some finitely dfiéable physical regu-
larities that serves as a boundary.
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direct reference position : A theory of semantics on the Web where the meaning
of a URI is whatever was intended by the owner.

domain names A specification for a tree-structured namespace, where eaoh

ponent of the domain name (part of the name separated by @dpeould direct
the user-agent to more specific “domain name server” urgittiinslation from an
identifier to the name to IP address was complete.

encoding A set of regularities that can then be used to realize cotfteating mes-
sages.

ending resource The resource a link is directed to. @ @OBJECT
endpoint Any thing that either requests or responds to a protocol.

entailment Where an interpretation of one sentence to some contenysisais-
fies the interpretation of another sentence.

entity A thing where the regularities of the thing can only be readiby the thing
itself, not in another realization. For the use of the terril TP, seeHTTP entity

entity body SeeHTTP entity body
expression A particular message in a language.
extension Things that satisfy a description. @ @RIGHT?

generic resource Web resources that vary over time, media type, and natural la
guage.

graph merge When two formerly separate RDF graphs combine with eachrothe
when they use any of the same URI.

finitely differentiable When itis possible to determine for any given mark whether
it is identical to another mark or marks. From @ @GOODMAN

fixed resource A Web resource equivalent to a particular realization, a Végive-
sentation that should not change.

follow-your-nose algorithm An agent can follow the following steps in to help in-
tepret a resource identified by a URI: dispose of any fragndemtifier, inspect the
media type of the retrieved Web representation, follow ayespace declarations,
and follow any links. Available in full in Section 2.3.3.

formal languages A language with an explicitly defined syntax and possibly
model-theoretic semantics, so suitable for interpretatypcomputers.

format A synonym forformal languageparticularly for on computer-based digital
formal language.

fragment identifier In a URI, either identifies fragment of a hypertext document
in the case of media-typeext / ht m being returned, or identifies some other
resource that has has some relationship to the URI witheutr#dgement identifier.
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headers In HTTP, the part of the method that specify some informatfat may
be of used by the server to determine the response or thafispdo the client
information about the response.

hierarchical component The left to right dominant component of the URI that
syntactically identifies the resource.

holism A sentence has meaning only in the context of a whole lang@@MOLEC-
ULARISM?

HTTP HyperTextTransferProtocol, a protocol originally purposed for the trans-
fer of hypertext documents, although its now ubiquitousirebften lets it be used
for the transfer of almost any encoding over the Web.

HTTP Entity The information transferred as the payload of a requestspomse
excluding any optional headers. Confusingly, also sormesiaiso called the ‘con-
tent,” although we use that term in a different sense cee¢entfor our use.

iconic language A language based on visual images.

identifier A term that can be used to either access, refer to, or botlsserel refer
to a thing.

inbound links Where the ending resource is a local Web representationhend t
distal starting resource is given by an identifier.

inconsistent A statement or statements that can not be satisified.
intension Kind of thing may only be described. @ @NOT right EXTENSION?

inference A syntactic relationship where one sentence can be usednsiroot
another sentence in a language

information Whatever in common between two things, where one thing isdal
thesenderand the other is called threceiver To have something in common means
to share the same regularities, e.g. parcels of time ancespat cannot be distin-
guished at a given level of abstraction. Information hagast oneencodingthat
has someontentin relationship to an agent capable inferpretation When the
term ‘information’ by itself is used, we are referring to batbstract information
and any of its particularalizations as well as both theontentof any information
as well as angncodinghat transmits the content.

information resource A resource that is information with the possibility of a digi
tal encoding.

interpretation The relationship between an encoding and its content. mdibse-
mantics this is deployed in two distinct but related waysird@rpretation mapping
that denotes the relationship between a language and a raodehenterpretation
structureis a model that satisfies a particular interpretation magppin

knowledge representation languageA language whose primary purpose is the
representation of non-digital content in a digital formaaidguage.



Glossary 191

level of abstraction The set of certain physical differences and regularities th
have a causal effect on an agent and so may have a causal @fféloe agent’s
meaningful behavior and may be captured in an interpretatio

link A connection between resources. @ @predicate

linkbase Where the links can be represented outside of any Web reyedig of
the starting or ending resource. @ @RDF

location An identifier that can be used to access a thing.

logicist position For the Semantic Web, the meaning of a URI is given by whatever
model(s) satisfy the formal semantics of the Semantic Web.

mark A physical characteristic.

meaning The causal effect of information on agents, often demotestray the
behavior of agents.

media type A generalization of content types to any Internet protottatonsists
of a two-part scheme (separated by thihat separates the type and a subtype of an
encoding.

messageln HTTP, messages are also things that have headers andapgdd TP
entity bodies. For its wider use in information theory, sgermationandrealiza-
tion, although HTTP messages also realize information, andesinline with the
broader user of the term.

method A request for a certain type of response from a user-agehetedrver.
model A mathematical representation of the world or the langutsgsfi

model-theoretic semanticsWhen an interpretation of a language’s sentences is to
a mathematical model

monotonic In a system capable of inference, when the inference relstiopH
is monotonic if and only if for all sets of statemergsands,, and all inferred
statementss, if 5 - s3 ands, O s3 thens, F s3.

language A system in which information is related to other informatisystem-
atically. In a language, this is a relationship is betweew hwe encoding of some
information can change the interpretation of other enagslin

name An identifier that can be used to refer to a thing.

namespace declarationwithin a given Web representation in a particular dialect,
the information that specifies the namespace URI of thediale

namespace documentA Web representation that provides more information about
the dialect.

namespace URI A URI that identifies that particular language or dialectréud.

natural language A language based on human linguistic expressions.
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non-monotonic When montonocity does not hold for a system capable of infer-
ence.

payload The information transmitted by a protocol.

path component A number of text strings delimited by special reserved ctiara
that identify a resource.

Principle of Least Power A Web representation given by a resource can be de-
scribed in the least powerful but adequate language.

Principle of Linking Any URI or Web representation can be linked to another
resource identified by a URI.

Principle of the Open World The number of resources on the Web can always
increase.

Principle of Self-Description The information an agent needs to have an inter-
pretation of a resource should be accessible from its URk iBhoften informally
called the “follow-your-nose” algorithm.

Principle of Universality Any resource can be identified by a URI.

proper function Whatever characteristics which a a thing has in lieu of tlobse-
acteristics promoting the reproduction or imitation of thimg. From Millikan @ @.

protocol A convention for transmitting information between two orloile agents.

proxy A cache that is not stored on the user-agent itself, but aaeeshamong
multiple user-agents by a server or group of servers.

public language position The Web is a form of language, and language exists as
a public mechanism among multiple agents, then the meariiadJiI is the use
of the URI, which must be a public mechanism that easily fitheform of life of
agents on the Web, which lets them in turn establish, findyenge URIs.

@ @Social Semantics

purpose The intended meaning of information, often given by the béiraf the
receiver intended by the sender of a message.

Open World Assumption Statements that cannot be proven to be true can not be
assumed to be false.

Open World Principle SeePrinciple of the Open World

owner The agent that have the ability to create and alter the Weleseptation
accessible from the URI.

outbound links Links that are inserted into Web representations direcitigo be-
yond the local Web representation to an distal ending ressu@® @PREDICATE?

realization The physical thing that realizes the regularities of theinfation due
to its local characteristics.
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receiver Seeinformation
regularity A lack of difference in time and space at a given level of augion.

relative URI A URI in a scheme where the path component itself is enough to
identify a resource within certain contexts.

reference The relationship of an thing to another thing to which oneimiediately
causually disconnected.

referent The distal thing referred to by a representation. Also dallenotation

representation Any encoding of information that has distal content in some r
spect. Also calledymbol Note that this word “representation” has a distinct mean-
ing in terms of its usage in Web standards, which we disanabégjoy using the term
Web representatiorBeeWeb representatiofor details.

resource Any thing capable of having identity. A resource is typigaibt a partic-
ular encoding of the information but the content of the infation that can be given
by many encodings.

request In HTTP, the method used by the agent and the headers, aloimg Wbiank
line and an optional message body.

response In HTTP, the combination of the status code and the entities.

REST (Representationaftate Transfer, an architectural style in which all state
where the information state of the interaction between #twéen the server and
client is stored on the client.

role A URI that can be attached to a link to provide information@ftbe ending
resource. @@predicate

satisfaction An interpretation to a mathematical that defines whethewooerery
sentence in the language can be interpreted to content.

scheme The name of a protocol or other naming convention, used afrgtgart
of a URI.

sentence any combination of terms that is valid according the langiggyntax.
@@FORMAL? @@DIGITAL

semantics A system in which the content of information is related toteather
systematically.

Semantic Web The use of the Web as a formal language to represent things, in
cluding things not accessible from the Web.

Semantic Web resourceA resource that is analog.
Semantic Web URI A URI for a Semantic Web resource.

server the agent That is responding to the request.
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specific resource Web resources that does not vary over one or more of the di-
mensions of time, media type, or natural language. Theseaflegltime invariant
media-type invariantandnatural language invariantespectively.

standard A convention for the encoding and possibly interpretatiinformation,
often created by the explicit consensus of multiple pastiasg standards body like
the IETF or W3C.

statement Any combination of terms that has an interpretation to cotrdecording
to the language’s semantic

status code One of a finite number of codes gives the user-agent infoonatbout
the server’s HTTP response itself.

sound The inference procedure of a language if every inferredeseet can be
satisfied.

source Seeinformation Also calledsender

starting resource The resource that the link is directed from, also calledstitgect
in RDF.

state Information about a resource that is not given as part oigmiity, so it is
information that may change over time.

syntax A system in which the encoding of information is related teaheather
systematically.

term regularities in marks @@.

thing Events, processes, objects, and proto-objects whereitigedan be defined
by having some regularity in time and space that can disisfgitifrom other pos-
sible thing.

user-agent A client in the context of the Web.

URI Uniform Resourcel dentifier) A unique identifier whose syntax is given in
Berners-Lee et al (January 2005) that may be used to eithbotbr refer to or
access a resource.

URI Collision When the same resource has multiple URIs.

URI Opacity A URI should never itself have an interpretation, only thisima-
tion referred to or accessed by that URI should have an irg&afion.

URL U niform Resourcé_ocations) A scheme for locations that allows user-agents
to via an Internet protocol access an realization of infdiroma

URN Uniform ResourceName) A scheme whose names that could refer to things
outside of the causal reach of the Internet.

@@web-page

@ @web-resource
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Web representation The content given by a resource given in response to a request
whose encoding is capable of being determined by contemitia¢ign.

WWW TheWorld Wide Weh an information space in which resources are identi-
fied by URIs.
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