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Preface

While there may seem to be no more abstract and theoretical pursuit that the study
of meaningitself, the calling of such a simultaneously overly dramatic and likely
ill-fated project nonetheless emerges out of a very concrete struggle with a particu-
lar subject matter - the World Wide Web, which is already is now becoming almost
a transparent part of our everyday activity. In fact, at thisjuncture I would hold the
Web to part of the very social and cognitive fabric that maintain our very being. As
has been noticed by - ofcourse! - Wittgenstein, the aspects of things that are most
important for us are hidden because of their simplicity and familiarity. Far from
feeling alone and isolated in a lonely world devoid of meaning, I take it for granted
that we strive to live in a meaningful world, a world burstingapart at the seams
with undiscovered facets; the Web being a particular popular manner of intertwin-
gling these facets together at this moment. Even though there’s no a priori reason
why that our individual human ‘minds’ can escape whatever framework they are
inhabit to understand the process, respectably calledsemantics, by which meaning
somehow exists in a world that is, at least according to the more mature science of
physics, ultimately atomic in nature. Yet I do not exist in a world of atoms (or even
bytes) but a world rich in of full-blooded coffee, tables, chairs, web-pages, trees,
family, and friends.Representationsare key to my world, from the warmth in my
heart the mental image of parents invokes to a tangible relaxation looking upon the
Mediterranean from my window.

A friend once said that the world is not composed of atoms, it is composed of
stories. Across the Mediterranean, I find the courage of Egypt contagious and I fol-
low their stories, one by one, as external digital photos andtext in my Web browser.
So this book can be considered the trace of my particular story. Writing a thesis
on the Web was sternly looked down upon at my University, and Ieven remem-
ber the Principal distinctly asking me why one would ever want to write a thesis
about this newfangled and quite hacked together thing called “the Web.” Yet the
kindness and support of those mentioned in my acknowledgments, ranging from
my Ph.D. advisors Henry S. Thompson and Andy Clark, to my parents, and even to
Tim Berners-Lee, who kept my sanity even when it appeared most of the rest of the
graduate school at the University of Edinburgh thought I hadclearly lost the plot.
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x Preface

There are memories that make the bleak moments of writing endless chapters in my
little stone villa in Old Burdiehouse Road worthwhile. One in particular was when
I presented the Representational State Transfer architecture to a group of theoret-
ical computer scientists and so explained why the ‘back’ button on a browser did
not work. When Phil Wadler agreed that that inventor of the Web had been correct
about how the Web should work, I felt I was perhaps on to something in this study
of the Web.

The story I am telling in this book is not exactly the story I had hoped to tell as a
graduate student. This book is to a large extent a reworked and re-edited version of
my thesis, and as such suffers from the problems that any thesis has, namely that the
studies it compromises were done as small shots in the dark inorder to reveal some
aspect of a much larger and more sophisticated question. Of these studies, the ones I
did most quickly such as my study on tagging have so far received the most acclaim,
while the ones I was most intellectually attached to have so far only garnered a
small but eager group of fellow travelers in the ‘philosophyof the Web’ around me.
Looking back on this book, I can only notice that it is essentially a preface to a much
larger work that can properly do justice to the question of the Web means not only
to our notion of representation and semantics, but to largerquestions of cognition
and intelligence, which ultimately always are always profoundly ethical questions.
This larger endeavor will no doubt be another book in due course. However, in this
book we point to the hypothesis that all of these questions are social, and take a
stab at what that entails. At the time of writing these studies I did not have access to
the massive Web-scale data-sets or processing power neededto formulate a testable
theory of social computation, and as I sit here in Yahoo! Research, I cannot but be
amazed at the seemingly unlimited amount of computational power I have and the
fact that I have an entire copy of the Web accessible from my desktop. So I will
simply deliver this book to clear space for this future theoretical framework and
sketch the components of an adequate computational operationalization of social
semantics. The idea came upon me in a visit to Amsterdam when Ifirst arrived
in Europe: Meaning is not something we possess alone, but something we create
together. To this day, I can still not think of a better way to phrase the hypothesis of
social semantics.

Barcelona, April 2011 Harry Halpin
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Chapter 1
Introduction

You have abandoned the old domain, the old concepts. Here youare in a new do-
main, for which new concepts will give you the knowledge. Thesign that a real
change in locus and problematic has occurred, and that a new adventure is begin-
ning, the adventure of science in development.Louis Althusser (1963)

This book is an inquiry into representation. Given the almost impossibly wide
scope of possible kinds of questions pertaining to representations, we will deploy
an analysis that is simultaneously both historical and scientific by restricting our
inquiry to the an investigation of representations on the World Wide Web. Yet re-
gardless of our careful scoping, we will nonetheless be blindly driven into the realm
of semantics, the hard question of how meaning is assigned to representation - a
question that is as hard it seems as that of the more popular hard problem of con-
sciousness Chalmers (1995). The nature of representation is no longer fashionable
to even pursue in philosophy or even in artificial intelligence; it is a problem whose
immensity overwhelms us. As a subject matter the apparent phenomenon ofrefer-
ence, the suspiciously mysterious - and so perhaps even non-existent! - connection
between a representation and that which it represents, verges upon the totality of our
social relationship with the world. From Plato’s theory of Forms to the evolution of
representation in artificial life Halpin (2006), science islittered with theories of the
semantics, all of which equally purport to solve this thornymatter in one way or
another. One would be forgiven in given the lack of clear success of any theory so
far that perhaps the question is unscientific or simply intractable in nature, yet that
compels us with only a more irresistible attraction.

At first glance, representation and semantics seems strangely old-fashioned, par-
ticularly given the current enthusiasm for embodiment in cognitive science, which
in its more extreme versions leads to claims of “intelligence without representation”
Brooks (1991). Yet this fetish for embodiment may be strangely disciplinary and
- although radical on the surface - actually end up being a reactionary fad when
viewed within context of a larger landscape outside academic philosophy and cog-
nitive science. In particular, computer science - with the exception of the peculiarly
anthropomorphic line of research of AI in robotics - does notseem to care about
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2 1 Introduction

embodiment. In hisOne Hundred Billion Lines of C++, computer scientist-turned-
philosopher Brian Cantwell Smith notes that in artificial intelligence debates over
representation tend to frame the debate as if it were between“classical” logic-based
symbolic reasoners and some “connectionist” and “embodied” alternative ranging
from neural networks to epigenetic robotics (1997). Smith then goes on to aptly
state that the kinds of computational systems discussed in artificial intelligence and
philosophy tend to ignore the vast majority of existing systems, for “it is impossible
to make an exact estimate, but there are probably something on the order of 10, or
one hundred billion lines of C++ in the world. And we are barely started. In sum:
symbolic AI systems constitute approximately 0.01% of written software” (1997).
What Smith fails to mention is that the same small fraction likely holds true of “non-
symbolic AI” computational systems such as robots, artificial life, and old-fashioned
connectionist networks (an exception may soon be made for the machine-learning
that runs phenomena such as advertising and search on the Web). As raw statis-
tics of deployed systems by themselves hold little intellectual weight, no doubt a
philosopher could argue that the vast majority of computational systems may have
no impact on our understanding of representation and intelligence. In other words,
what the vast majority of the planet is doing with computation and representation
- which is increasingly focused on the World Wide Web - is simply intellectually
uninteresting. In this book we argue otherwise.

Yet while one can easily deny if anything resembling digitalrepresentations ex-
ists ‘inside the brain,’ it is much harder to argue that thereare no digital represen-
tations on the Web. As one clicks from web-page to web-page, it seems that the
Web is nothing but a vast network of digital representations. The thesis of this book
is that the wide class of computational systems outside of those traditionally con-
sidered by artificial intelligence or philosophy present what Cantwell Smith calls a
“middle distance” where questions of representation (and perhaps even intelligence)
come to the forefront in a peculiarly obvious manner and are likely more tractable
than in the case for humans, given the relative complexity ofcomputers and humans
(Smith, 1995). At the present moment, with all the totalizing attraction of a black
hole, computational systems the world over are becoming part and parcel of the
World Wide Web, described by Tim Berners-Lee - the person widely acclaimed to
be the ‘inventor’ of the Web - as “a universal information space”(1992). We further
argue that not only may the Web may not only reveal some general insights about
representation, but its unique historical status as the first actualuniversal informa-
tion space may prompt an entire re-thinking of semantics. When asked to consider
this hypothesis, Michael Wheeler - a philosopher who is well-known for his Hei-
deggerian defense of embodiment - surmises that while “the power of the Web as
a technological innovation is now beyond doubt” but “what isless well appreci-
ated is the potential power of the Web to have a conceptual impact on cognitive
science” and so may provide a new “fourth way” in addition to the “three kinds of
cognitive science or artificial intelligence: classical, connectionist, and (something
like) embodied-embedded” (2008). While countless papers have been produced on
the technical aspects of the Web, very little has been done explicitly on the Web
qua Web as a subject matter of interest to philosophy. This does not mean there
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has not been interest, although the interest has come in particular more from the
side of those engineers working on developing the Web ratherthan those already
entrenched in philosophy, linguistics, and artificial intelligence (Halpin et al, 2006;
Bouquet et al, 2007, 2008). In this spirit, what we will undertake in this thesis as a
whole is to apply many well-known philosophical theories ofreference and repre-
sentation to the phenomenon of the Web, and see which theory survives - and lastly,
if the Web points a way to anewtheory of semantics, which we surmise may be a
social semantics.

1.1 Scope

The World Wide Web is without a doubt one of the most significant computational
phenomena to date. Yet there are some questions that cannot be answered without a
theoreticalunderstanding of the Web. Although the Web is impressive as apractical
success story, there has been little in the way of developinga theoretical framework
to understand what – if anything – is different about the Web from the standpoint of
long-standing questions of representation and semantics in philosophy. While this
situation may have been tolerable so far, serving as no real barrier to the further
growth of the Web, with the development of the Semantic Web, anext generation
of the Web “in which information is given well-defined meaning, better enabling
computers and people to work in cooperation,” these philosophical questions come
to the forefront, and only a practical solution to them can help the Semantic Web
repeat the success of the hypertext Web (Berners-Lee et al, 2001). At this moment,
there is little doubt that the Semantic Web faces gloomy prospects - and perhaps
for good reason. On first inspection, the Semantic Web appears to be a close cousin
to another intellectual project, known politely as ‘classical artificial intelligence’
(also known as ‘Good-Old Fashioned AI’) an ambitious project whose progress has
been relatively glacial and whose assumptions have been found to be cognitively
questionable (Clark, 1997). The initial bet of the SemanticWeb was that somehow
the Webpart of the Semantic Web would somehow overcome whatever problems
the Semantic Web inherited from classical artificial intelligence, in particular, its
reliance on logic and inference as the basis of meaning (Halpin, 2004).

This thesis is explicitly limited in scope, concentrating only on the terminology
necessary to phrase a single, if broad, question: How can we determine the meaning
of a URI on the Web? Although the thesis is interdisciplinary, as it involves elements
as diverse as the philosophy of language and machine-learning, these elements are
only harnessed insofar as they are necessary to phrase our central thesis and present
a possible solution. Due to constraining ourselves to the scope of the Web and the
topic of representation, this thesis is not an attempt to develop a philosophy of com-
putation (Smith, 2002), or a philosophy of information (Floridi, 2004), or even a
comprehensive “philosophy of the Web” (Halpin, 2008b). These are much larger
projects outside the scope of a single book, and even a singleindividual’s life-long
calling. However, in combination with more fully-formed work in the philosophy,
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we hope that at least this book provides a starting point for future work in these ar-
eas. So we use notions from philosophy selectively, and thendefine the terms in lieu
of our goal of articulating the principles of Web architecture and the Semantic Web,
rather than attempting to articulate or define the terms of a systematic philosophy
or with reference to the many arguments over these terms in analytic philosophy.
Many of the terms in this thesis could be explored much further, but by virtue of
our scoping not explored, as to constrain the book to a reasonable size. Unlike a
philosophical work, in this book counter-arguments and arguments are generally
not given for terminological definitions, but instead references are given to the key
works that explicate these terms further.

This thesis does not inspect every single possible answer tothe question ofWhat
is the meaning of a URI?, but only three distinct positions. An inspection of every
possible theory of meaning and reference is beyond the scopeof the thesis, as is an
inspection of the tremendous secondary literature that hasaccrued over the years.
Instead, we will focus only on theories of meaning and representation that have
been brought up explicitly in the various arguments over this question in the Web
by the primary architects of the Web and the Semantic Web. Ourproposed solution
of social semantics rests on a theory of meaning, a neo-Wittgensteinian theory, that
is one of the most infamously dense and infuriatingly obscure theories of meaning.

Finally, while the experimental components of this book hasdone its best to be
realistic, they are in no way complete. Pains have been takento ensure that the ex-
periments, unlike much work in the Semantic Web, at least uses real data, feedback
from real users, and is properly evaluated over a range of algorithms and parame-
ters. Work on tagging systems takes its data from a real system, del.icio.us, as well.
While various parts of the experiments could no doubt be optimized and scaled up
still further, these experiment should be sufficient to motivate our movement to-
wards social semantics, although a full formalization of such a theory and testing it
of would require access to the data of a large-scale search engine such as Google,
which for the time being it outside of scope. For future work,we would like to
pursue the formalization and large-scale testing of socialsemantics.

1.2 Summary

The thesis of this book must be stated in a two-fold fashion, first to analyze the
problem and then to propose a solution. To analyze the problem of representation
on the Web, one must ask the question:What is the meaning of a URI?. First,
we will must clarify the problem that the Web is a kind of new language that can
be defined by its engineering conformance to the principles of Web architecture,
but nonetheless inherits the problems regarding sense and reference from the phi-
losophy of natural language. So there is no easy way out of thehard question of
representation. Our proposed answer is then that only a theory of representation
and semantics that takes into account the socially groundeduse of a multiplicity
of representations is sufficient to provide the meaning of a representation on the
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Web, from which the meaning of a peculiar URI can be derived. In essence, we turn
the question on its head; instead of saying that a URI can haveits meaning only
by virtue of what representations can be accessed from it, weinstead say that the
network of representations and their use provides the meaning of a URI.

In order to orient the reader to the Web, we give an extended introduction to its
history and its architecture in Chapter 2, while introducing the philosophical termi-
nology in concert with examples from the Web that undergirdsthe rest of the book.
In Chapter 3 we propose that the Semantic Web, as embodied by the Resource De-
scription Framework (RDF), is a kind of URI-based knowledgerepresentation lan-
guage for data integration based on the principles of Web architecture, and illustrate
it by providing the elements of Web architecture in terms of aformal Semantic
Web ontology. These works have in earlier forms been published asAn Ontology
of Resources: Solving the Identity CrisisHalpin and Presutti (2009) with Valentina
Presutti and my very early essayThe Semantic Web: The Origins of Artificial Intel-
ligence ReduxHalpin (2004).

In 4 we illustrate the crisis of the Semantic Web: There is no answer to the afore-
mentioned question of how to assign meaning to a URI. There are at least two dis-
tinct positions to this question on the Semantic Web, each corresponding to a distinct
philosophical theory of semantics. The first response is thelogicist position, which
states thatthe meaning of a URI is determined by whatever model(s) satisfy the for-
mal semantics of the Semantic Web(Hayes, 2004). This answer is identified with
both the formal semantics of the Semantic Web itself and the traditional Russel-
lian theory of names and its descriptivist descendants (Russell, 1905). While this
answer may be sufficient for automated inference engines, this answer is insuffi-
cient for humans, as it often crucially under-determines what kind of things the URI
identifies. As the prevailing position in early Semantic Webresearch, this position
has borne little fruit. Another response is thedirect reference positionfor the Web,
which states thatthe meaning of a URI is whatever was intended by the owner.This
answer is identified with the intuitive understanding of many of the original Web
architects like Berners-Lee and a special case of Putnam’s ‘natural kind’ theory of
meaning. This position is also a near relative to Kripke’s famous response to Rus-
sell (Kripke, 1972; Putnam, 1975). Further positions that have been marginal to the
debate on the Web, such as that of semiotics, are not explored. An earlier version of
this work has been previously published asSense and Reference on the Webin the
journalMinds and MachinesHalpin (2011).

Then we dive from the heights of theory to the depths of experimental work. In
Chapter??, we begin the exploration of an alternative form of discovering the mean-
ing of a representation, namely that of ‘bottom-up’ collaborative tagging systems,
where users simply ‘tag’ a resource with a term they find useful or descriptive and
so define the ‘sense’ of a URI as a set of terms. We commit a number of experiments
to determine if these tags converge over time and over a diversity of resources. Then
in Chapter??we extend this exploration to search engines, considering the ‘bag-of-
words’ produced by a document to be equivalent to a set of tags, and so, the sense
of the URI. In particular, we explore this using documents from both the Seman-
tic Web and the hypertext Web, and use relevance models to combine them. The
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study of tagging was previously published asThe Complex Dynamics of Collobora-
tive Taggingin ACM Transactions on the Webwith Valentin Robu and Hana Shepard
Halpin et al (2007); Robu et al (2009), while the short user study was published with
Dirk Bollen asAn Experimental Analysis of Suggestions in Collaborative Tagging
Bollen and Halpin (2009). The study of search engines and relevance feedback was
previously published asRelevance Feedback between Web Search and the Semantic
Webwith Victor Lavrenko Halpin and Lavrenko (2011).

We finally turn to formulate a third position in Chapter??, thesocial semantics,
which states that since the Webis a form of language, and as language exists as
a public mechanism among multiple agents, then the meaning of a URI is deter-
mined by the socially-grounded use of networks of representations on the Web by
ordinary users. As vague as this position seems at first glance, we argue thisanal-
ysis of meaning and representation is the best fit to how natural language works,
and it supersedes and even subsumes the two other positions.Furthermore, it goes
beyond a certain quietism about natural language attributed to Wittgenstein as well
as a certain belief in the occult powers of some ‘mental’ lexicon. Ideas in this ver-
sion were previously published with Andy Clark and Michael Wheeler asTowards
a Philosophy of the Web: Representation, Enaction, Collective IntelligenceHalpin
et al (2010). The entire Ph.D. thesis was submitted and approved to University of
Edinburgh, with Yorick Wilks being the external examiner, as Sense and Reference
on the WebHalpin (2009b), with the precis being published with Henry S. Thomp-
son asSocial Meaning on the Web: From Wittgenstein to Search Engines in IEEE
Intelligent SystemsHalpin and Thompson (2009). Note that all previously published
versions of work in this book have been edited, amended, and otherwise expanded.

As Wittgenstein would say, one must remember that every “language game”
comes with, a “form of life” (Wittgenstein, 1953), and the Web is a new form of
life that goes beyond the philosophy of natural language, and leads us straight into
a new philosophy of dynamic machinic and human assemblages,a philosophy-to-
come of collective intelligence.

1.3 Notational Conventions

In order to aid the reader, this book employs a number of notational conventions. In
particular, we only use “double” quotes to quote a particular author or other work.
When a new word is introduced and used in an unusual manner to be clarified later,
we use ‘single’ quotes. The use of ‘single’ quotes is also used when a word is sup-
posed to be understood as the wordquaword, a mention of the word, rather than
a use of the word. When a term is defined, the word is first labeled usingbold and
italic fonts, and either immediately followed or preceded by the definition given in
italics. Mathematical or formal terms areitalicized, as is the use ofemphasisin
any sentence. Finally, the names of books and other works areoften italicized. In
general, technical terms like HyperText Transport Protocol (HTTP) are often abbre-
viated by their capitalized initials. The World Wide Web is usually referred to by
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the web. One of the largest problems of this whole area historically has had a rather
ad-hoc use of terms, and we hope this fairly rigorous notational convention helps
separate the use, mention, definition, and direct quotations of words.





Chapter 2
Architecture of the World Wide Web

All the important revolutions that leap into view must be preceded in the spirit of
the era by a secret revolution that is not visible to everyone, and still less observable
by contemporaries, and that is as difficult to express in words as it is to understand.
G.W. F. Hegel(1959)

In order to establish the relative autonomy of the Web as a subject matter, we
recount its origins and so its relationship to other projects, both intellectual such as
Engelbart’s Human Augmentation Project, as well as more purely technical projects
such as the Internet (1962). It may seem odd to begin this book, which involves
very specific questions about representation and meaning onthe Web, with a his-
torical analysis of the Web. To understand these questions we must first have an
understanding of the boundaries of the Web and the normativedocuments that de-
fine the Web. The Web is a fuzzy and ill-defined subject matter -often considered
a ill-defined ‘hack’ by both academic philosophers and computer scientists - whose
precise boundaries and even definition are unclear. Unlike some subject matters like
chemistry, the subject matter of the Web is not necessarily very stable, like a ‘natu-
ral kind,’ as it is a technical artifact subject to constant change. So we will take the
advice of the philosopher of technology Gilbert Simondon, “Instead of starting from
the individuality of the technical object, or even from its specificity, which is very
unstable, try to define the laws of its genesis in the framework of this individuality
or specificity, it is better to invert the problem: it is from the criterion of the genesis
that we can define the individuality and the specificity of thetechnical object: the
technical object is not this or that thing, givenhic et nuncbut that which is gen-
erated” (1958). In other words, we must first trace the creation of the Web before
attempting to define it, imposing on the Web what Fredric Jameson calls “the one
absolute and we may even say ‘transhistorical’ imperative,that is: Always histori-
cize!” (1981). Only once we understand the history and signficance of the Web, will
we then proceed to dissect its components one-by-one, and attempt to align them
with certain still-subterranean notions from philosophy.

9
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2.1 The History of the Web

What is the Web, and what is its significance? At first, it appears to be a relative
upstart upon the historical scene, with little connection to anything before it, an
ahistorical and unprincipled ‘hack’ that came unto the world unforeseen and with
dubious academic credentials. The intellectual trajectory of the Web is a fascinat-
ing, if unknown, revolution whose impact has yet to be historically comprehended,
perhaps even by its creators. Although it is well-known thatthe Web bears some
striking similarity to Vannevar Bush’s ‘Memex’ idea from 1945, the Web is itself
usually thought more of as a technological innovation rather than an intellectually
rich subject matter such as artificial intelligence or cognitive science (1945). How-
ever, the Web’s heritage is just as rich as artificial intelligence and cognitive science,
and can be traced back to the selfsame root, namely the ‘Man-Machine Symbiosis’
project of Licklider (1960).

2.1.1 The Man-Machine Symbiosis Project

The first precursor to the Web was glimpsed, although never implemented, by Van-
nevar Bush, chief architect of the military-industrial complex of the United States
of America. For Bush, the primary barrier to increased productivity was the lack of
an ability to easily recall and create records, and Bush saw in microfiche the basic
element needed to create what he termed the “Memex,” a systemthat lets any in-
formation be stored, recalled, and annotated through a series of “associative trails”
(1945). The Memex would lead to “wholly new forms of encyclopedias with a mesh
of associative trails,” a feature that became the inspiration for “linking” in hypertext
(Bush, 1945). However, Bush could not implement his vision on the analogue com-
puters of his day.

The Web had to wait for the invention of digital computers andthe Internet,
the latter of which bears no small manner to debt to the work ofJ.C.R. Licklider,
a disciple of Norbert Wiener (Licklider, 1960). Wiener thought of feedback as an
overarching principle of organization in any science, one that was equally universal
among humans and machines (1948). Licklider expanded this notion of feedback
loops to that of feedback between humans and digital computers. This vision of
‘Man-Machine Symbiosis’ is distinct and prior to cognitivescience and artificial
intelligence, both of which were very infantile disciplines at the time of Licklider,
and both of which are conjoined at the hip by hypothesizing that the human mind
can be construed as either computational itself or even implemented on a computer.
Licklider was not a true believer in the computational mind,but held that while
the human mind itself might not be computational (Licklidercleverly remained ag-
nostic on that particular gambit), the human mind was definitely complementedby
computers. As Licklider himself put it, “The fig tree is pollinated only by the in-
sect Blastophaga grossorun. The larva of the insect lives inthe ovary of the fig tree,
and there it gets its food. The tree and the insect are thus heavily interdependent:
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the tree cannot reproduce without the insect; the insect cannot eat without the tree;
together, they constitute not only a viable but a productiveand thriving partnership.
This cooperative ‘living together in intimate association, or even close union, of two
dissimilar organisms’ is called symbiosis. The hope is that, in not too many years,
human brains and computing machines will be coupled together very tightly, and
that the resulting partnership will think as no human brain has ever thought and
process data in a way not approached by the information-handling machines we
know today” (1960). The goal of ‘Man-Machine Symbiosis’ is then the enabling of
reliable coupling between the humans and their ‘external’ information as given in
digital computers. To obtain this coupling, the barriers oftime and space needed to
be overcome so that the symbiosis could operate as a single process. This required
the invention of ever decreasing low latency feedback loopsbetween humans and
their machines.

In pursuit of that goal, the ‘Man-Machine Symbiosis’ project was not merely a
hypothetical theoretical project, but an concrete engineering project. In order to pro-
vide the funding needed to assemble what Licklider termed his “galactic network”
of researchers to implement the first step of the project, Licklider became the insti-
tutional architect of the Information Processing Techniques Office at the Advanced
Research Projects Agency (ARPA) (Waldrop, 2001). Licklider first tackled the bar-
rier of time. Early computers had large time lags in between the input of a program
to a computer on a medium such as punch-cards and the reception of the program’s
output. This lag could then be overcome via the use of time-sharing, taking advan-
tage of the fact that the computer, despite its centralized single processor, could run
multiple programs in a non-linear fashion. Instead of idling while waiting for the
next program or human interaction, in moments nearly imperceptible to the human
eye, a computer would share its time among multiple humans (McCarthy, 1992).

In further pursuit of its goal of human-machine symbiosis, in which some over-
enthusiastic science-fiction fans or academics with a penchance for the literal might
see the idea of a cyborg, the ‘Man-Machine Symbiosis’ project gave funding to
two streams of research: artificial intelligence and another lesser-known strand, the
work on ‘human augmentation’ exemplified by the Human Augmentation Project
of Engelbart (1962). Human augmentation, instead of hopingto replicate human in-
telligence as artificial intelligence did, only thought to enhance it. At the same time
Licklider was beginning his ‘Man-Machine Symbiosis’ project, Douglas Engelbart
had independently generated a proposal for a “Human Augmentation Framework’
that shared the same goal as the ‘Man-Machine Symbiosis’ idea of Licklider, al-
though it differed by placing the human at the centre of the system, focusing on the
ability of the machine to extend to the human user. In contrast, Licklider imagined
a more egalitarian partnership between humans and digital computers, more akin to
having a somewhat intelligence machine as a conversationalpartner for the human
(1962). This focus on human factors led Engelbart to the realization that the primary
reason for the high latency between the human and the machinewas the interface
of the human user to the machine itself, as a keyboard was at best a limited channel
even compared to punchcards. After extensive testing of what devices enabled the
lowest latency between humans and machines, Engelbart invented the mouse and
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other, less successful interfaces, like the one-handed ‘chord’ keyboard (Waldrop,
2001). By employing these interfaces, the temporal latencybetween humans and
computers was decreased even further. Strangely enough, wehave not - despite all
the hyperbole around tactile or haptic interfaces from various media-labs - gone far
beyond keyboards, mice, and touch-screens in fifty years.

2.1.2 The Internet

The second barrier to be overcome was space, so that any computer should be ac-
cessible regardless of its physical location. The Internet“came out of our frustra-
tion that there were only a limited number of large, powerfulresearch computers in
the country, and that many research investigators who should have access to them
were geographically separated from them” (Leiner et al, 2003). Licklider’s lieu-
tenant Bob Taylor and his successor Larry Roberts contracted out Bolt, Beranek,
and Newman (BBN) to create the Interface Message Processor,the hardware needed
to connect the various time-sharing computers of Licklider’s “galactic network” that
evolved into the ARPANet Waldrop (2001). While BBN providedthe hardware for
the ARPANet, the software was left undetermined, so an informal group of graduate
students constituted the Internet Engineering Task Force (IETF) to create software
to run the Internet (Waldrop, 2001).

The IETF has historically been the main standardization body that creates the
protocols that run the Internet. It still maintains the informal nature of its founda-
tion, with no formal structure such as a board of directors, although it is officially
overseen by the Internet Society. The IETF informally credits as their main orga-
nizing principle the credo “We reject kings, presidents, and voting. We believe in
rough consensus and running code” (Hafner and Lyons, 1996).Decisions do not
have to be ratified by consensus or even majority voting, but require only a rough
measure of agreement on an idea. The most important product of these list-serv dis-
cussions and meetings are IETF RFCs (Request for Comments) which differ in their
degree of reliability, from the unstable ‘Experimental’ tothe most stable ‘Standards
Track.’ The RFCs define Internet standards such as URIs and HTTP (Berners-Lee
et al, 1996, January 2005). RFCs, while not strictly academic publications, have a
de factonormative force on the Internet and therefore on the Web, andso they will
be referenced considerably throughout this book.

Before the Internet, networks were assumed to be static and closed systems, so
one either communicated with a network or not. However, early network researchers
determined that there could be “open architecture networking” where a meta-level
“internetworking architecture” would allow diverse networks to connect to each
other, so that “they required that one be used as a component of the other, rather
than acting as a peer of the other in offering end-to-end service” (Leiner et al, 2003).
In the IETF, Robert Kahn and Vint Cerf devised a protocol thattook into account,
among others, four key factors, as cited below (Leiner et al,2003):
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1. Each distinct network would have to stand on its own and no internal changes
could be required to any such network to connect it to the Internet.

2. Communications would be on a best effort basis. If a packetdidn’t make it to the
final destination, it would shortly be retransmitted from the source.

3. Black boxes would be used to connect the networks; these would later be called
gateways and routers. There would be no information retained by the gateways
about the individual flows of packets passing through them, thereby keeping them
simple and avoiding complicated adaptation and recovery from various failure
modes.

4. There would be no global control at the operations level.

In this protocol, data is subdivided into ‘packets’ that areall treated indepen-
dently by the network. Data is first divided into relatively equal sized packets by
TCP (Transmission Control Protocol), which then sends the packets over the net-
work using IP (Internet Protocol). Together, these two protocols form a single pro-
tocol, TCP/IP (Cerf and Kahn, 1974). Each computer is named by an Internet Num-
ber, a four byte destination address such as152.2.210.122, and IP routes the system
through various black-boxes, like gateways and routers, that do not try to reconstruct
the original data from the packet. At the recipients end, TCPcollects the incoming
packets and then reconstructs the data.

The Internet connects computers over space, and so providesthe physical layer
over which the universal information space of the Web is implemented. However, it
was a number of decades before the latency of space and time became low enough
for something like the Web to become not only universalizingin theory, but uni-
versalizing in practice, and so actually come into being rather than being merely
a glimpse in a researcher’s eye. An historical example of attempting a Web-like
system before the latency was acceptable would be the NLS (oNLine System) of
Engelbart (1962). The NLS was literally built as the second node of the Internet,
the Network Information Centre, the ancestor of the domain name system. The NLS
allowed any text to be hierarchically organized in a series of outlines, with sum-
maries, giving the user freedom to move through various levels of information and
link information together. The most innovative feature of the NLS was a journal for
users to publish information in and a journal for others tolink and comment upon,
a precursor of blogs and wikis (Waldrop, 2001). However, Engelbart’s vision could
not be realized on the slow computers of his day. Although time-sharing computers
reduced temporal latency on single machines, too many userssharing a single ma-
chine made the latency unacceptably high, especially when using an application like
NLS. Furthermore, his zeal for reducing latency made the NLSfar too difficult to
use, as it depended on obscure commands that were far too complex for the average
user to master within a reasonable amount of time. It was onlyafter the failure of
the NLS that researchers at Xerox PARC developed the personal computer, which
by providing each user their own computer reduced the temporal latency to an ac-
ceptable amount (Waldrop, 2001). When these computers wereconnected with the
Internet and given easy-to-use interfaces as developed at Xerox PARC, both tem-
poral and spatial latencies were made low enough for ordinary users to access the
Internet. This convergence of technologies, the personal computer and the Internet,
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is what allowed the Web to be implemented successfully and enabled its wildfire
growth, while previous attempts like NLS were doomed to failure as they were con-
ceived before the technological infrastructure to supportthem had matured.

2.1.3 The Modern World Wide Web

Perhaps due to its own anarchic nature, the IETF had produceda multitude of in-
compatible protocols such as FTP (File Transfer Protocol) and Gopher (Postel and
Reynolds, October 1985; Anklesaria et al, 1993). While protocols could each com-
municate with other computers over the Internet, there was no universal format to
identify information regardless of protocol. One IETF participant, Tim Berners-Lee,
had the concept of a “universal information space” which he dubbed the “World
Wide Web” (1992). His original proposal to his employer CERNbrings his belief
in universality to the forefront, “We should work towards a universal linked infor-
mation system, in which generality and portability are moreimportant than fancy
graphics and complex extra facilities” (Berners-Lee, 1989). The practical reason for
Berners-Lee’s proposal was to connect the tremendous amounts of data generated
by physicists at CERN together. Later as he developed his ideas he came into direct
contact with Engelbart, who encouraged him to continue his work despite his work
being rejected at conferences like ACM Hypertext 1991.1

In the IETF, Berners-Lee, Fielding, Connolly, Masinter, and others spear-headed
the development of URIs (Universal Resource Identifiers), HTML (HyperText
Markup Language) and HTTP (HyperText Transfer Protocol). Since by being able
to reference anything with equal ease due to URIs, a web of information would form
based on “the few basic, common rules of ‘protocol’ that would allow one computer
to talk to another, in such a way that when all computers everywhere did it, the sys-
tem would thrive, not break down” (Berners-Lee, 2000). The Web is avirtual space
for naming informationbuilt on top of the physical infrastructure of the Internet
that could move bits around, and it was built through specifications that could be
implemented by anyone, “What was often difficult for people to understand about
the design was that there was nothing else beyond URIs, HTTP,and HTML. There
was no central computer ‘controlling’ the Web, no single network on which these
protocols worked, not even an organization anywhere that ‘ran’ the Web. The Web
was not a physical ‘thing’ that existed in a certain ‘place.’It was a ‘space’ in which
information could exist” (Berners-Lee, 2000).

The very idea of auniversalinformation space seemed at least ambitious, if not
de factoimpossible, to many. The IETF rejected Berners-Lee’s idea that any identi-
fication scheme could be universal. In order to get the initiative of the Web off the
ground, Berners-Lee surrendered to the IETF and renamed URIs from Universal
Resource Identifiers(URIs) to Uniform Resource Locators(URLs) (Berners-Lee,
2000). The Web begin growing at a prodigious rate once the employer of Berners-

1 Personal communication with Berners-Lee.



2.1 The History of the Web 15

Lee, CERN, released any intellectual property rights they had to the Web and after
Mosaic, the first graphical browser, was released. However,browser vendors started
adding supposed ‘new features’ that soon led to a ‘lock-in’ where certain sites could
only be viewed by one particular corporate browser. These ‘browser wars’ began to
fracture the rapidly growing Web into incompatible information spaces, thus nearly
defeating the proposed universality of the Web (Berners-Lee, 2000).

Berners-Lee in particular realized it was in the long-term interest of the Web to
have a new form of standards body that would preserve its universality by allow-
ing corporations and others to have a more structured contribution than possible
with the IETF. With the informal position of merit Berners-Lee had as the sup-
posed inventor of the Web (although he freely admits that theinvention of the Web
was a collective endeavour), he and others constituted the World Wide Web Con-
sortium (W3C); a non-profit dedicated to “leading the Web to its full potential by
developing protocols and guidelines that ensure long-termgrowth for the Web” (Ja-
cobs, 1999). In the W3C, membership was open to any organization, commercial
or non-profit organization. Unlike the IETF, W3C membershipcame at a consider-
able membership fee. The W3C is organized as a strict representative democracy,
with each member organization sending one member to the Advisory Committee of
the W3C, although decisions technically are always made by the Director, Berners-
Lee himself. By opening up a “vendor neutral” space, companies who previously
were interested primarily in advancing the technology for their own benefit could
be brought to the table. The primary product of the World WideWeb Consortium
is a W3C Recommendation, a standard for the Web that is explicitly voted on and
endorsed by the W3C membership. W3C Recommendations are thought to be sim-
ilar to IETF RFCs, with normative force due to the degree of formal verification
given via voting by the W3C Membership and a set number of implementations
to prove interoperability. A number of W3C Recommendationshave become very
well known technologies, ranging from the vendor-neutral later versions of HTML
(Raggett et al, 1999), which stopped the fracture of the universal information space,
to XML, which has become a prominent transfer syntax for manytypes of data
(Bray et al, 1998).

This book will cite W3C Recommendations when appropriate, as these are one of
the main normative documents that define the Web. With IETF RFCs, these norma-
tive standards collectively define the foundations of the Web. It is by agreement on
these standards that the Web functions as a whole. However, the rough-and-ready
process of the IETF and the more bureaucratic process of the W3C has led to a
terminological confusion that must be sorted in order to grasp the nature of repre-
sentations on the Web, causing even the most well-meaning ofsouls to fall into a
conceptual swamp of undefined and fuzzy terms. This is true inspades in particular
over the hotly-contested term ‘representation.’
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2.2 The Terminology of the Web

Can the various technologies that go under the rubric of the World Wide Web be
found to have common principles and terminology? This question would at first
seem to be shallow, for one could say that any technology thatis described by its
creators, or even the public at large, can be considered trivially ‘part of the Web.’ To
further complicate the matter, the terms like the ‘Web’ and the ‘Internet’ are elided
together in common parlance, and so are often deployed as synonyms. In a single
broad stroke, we can distinguish the Web and the Internet. The Internet is a type of
packet-switching network as defined by its use of the TCP/IP protocol. The purpose
of the Internet is to get bits from one computer to another. Incontrast, the Web is a
space of names defined by its usage of URIs. So, the purpose of the Web is the use of
URIs for accessing and referring to information. The Web andthe Internet are then
strictly separable, for the Web, as a space of URIs, could be realized on top of other
types of networks that move bits around, much as the same virtual machine can be
realized on top of differing physical computers. For example, one could imagine the
Web being built on top of a network built on principles different from TCP/IP, such
as OSI, an early competitor to the TCP/IP stack of networkingprotocols (Zimmer-
man, 1980). Likewise, before the Web, there were a number of different protocols
with their own naming schemes built upon the Internet like Gopher (Anklesaria et al,
1993).

Is it not presumptuous of us to even hope that such an unruly phenomenon such as
the Web even has guiding principles? Again we must appeal to the fact that unlike
natural language or chemistry, the Web is like other engineered artifacts, created
by particular individuals with a purpose, and designed withthis purpose in mind.
Unlike the case of the proper function of natural language, where natural selection
itself will forever remain silent to our questions, the principal designers of the Web
are still alive to be questioned in person, and their design rationale is overtly written
down on various notes, often scribbled on some of the earliest web-pages of the Web
itself. It is generally thought of that the core of the Web consists of the following
standards, given in their earliest incarnation, HTTP (Berners-Lee et al, 1996), URI
(Berners-Lee, 1994a), and HTML (Berners-Lee and Connolly,June 1993). So the
basic protocols and data formats that proved to be successful were the creation of
a fairly small number of people, such as Tim Berners-Lee, RoyFielding, and Dan
Connolly.

The primary source for our terminology and principles of Webarchitecture is
a document entitledThe Architecture of the World Wide Web(AWWW), a W3C
Recommendation edited by Ian Jacobs and Norm Walsh to “describe the proper-
ties we desire of the Web and the design choices that have beenmade to achieve
them” (Jacobs and Walsh, 2004). The AWWW is an attempt to systematize the
thinking that went into the design of the Web by some of its primary architects, and
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as such is both close to our project and an inspiration..2 In particular, AWWW is
an exegesis of Tim Berners-Lee’s notes on “Design Issues: Architectural and philo-
sophical points”3 and Roy Fielding’s dissertation “Architectural Styles andthe De-
sign of Network-based Software Architectures” (Fielding,2010), often abbreviated
as REST. The rationale for the creation of such a document of principles devel-
oped organically over the existence of the W3C, as new proposed technologies were
sometimes considered to be either informally compliant or non-compliant with Web
architecture. When the proponents of some technology were told that their particu-
lar technology was not compliant with Web architecture, they would often demand
that somewhere there be a description of this elusive Web architecture. The W3C
in response set up the Technical Architecture Group (TAG) to“document and build
consensus” upon “the underlying principles that should be adhered to by all Web
components, whether developed inside or outside W3C,” as stated in its charter.4

The TAG also maintains a numbered list of problems (althoughthe numbers are in
no way sequential) that attempts to resolve issues in Web architecture by consensus,
with the results released as notes called ‘W3C TAG findings,’which are also referred
to in this discussion. The TAG’s only Recommendation at the time of writing is the
aforementionedArchitecture of the Web: Volume 1but it is reasonable to assume
that more volumes ofArchitecture of the Webmay be produced after enough find-
ings have been accumulated. The W3C TAG’s AWWW is a blend of common-sense
and sometimes surprising conclusions about Web architecture that attempts to unify
diverse web technologies with a finite set of core design principles, constraints, and
good practices (Jacobs and Walsh, 2004). However, the terminology is AWWW is
often thought to be too informal and ungrounded to use by many, and we attempt to
remedy this in the next few chapters by fusing the terminology of Web architecture
with our own peculiar brand of philosophical terminology.

To begin our reconstruction of Web architecture, the first task is the definition
of terms, as otherwise the technical terminology of the Web can lead to as much
misunderstanding as understanding. To cite an extreme example, people coming
from communities like the artificial intelligence community use terms like ‘repre-
sentation’ in a way that is different from those involved in Web architecture. We
begin with the terms commonly associated with a typical exemplary Web interac-
tion. For an agent to learn about theresourceknown as the Eiffel Tower in Paris,
a person can access itsrepresentationusing itsUniform Resource Identifier (URI)
http://www.tour-eiffel.fr/and retrieve a webpage in the HTMLencod-
ing whosecontentis the Eiffel Tower using the HTTPprotocol.

2 Although to what extent the Web as it actually exists followsthese design choices is still a matter
for debate, and it is very clear some of the more important parts of the Web such as the ubiquity of
scripting languages, and thus HTML as mobile code, are left unmentioned.
3 There exist a collection of unordered personal notes available at:
http://www.w3.org/DesignIssues/, which we also refer directly to in the course
of this chapter.
4 Quoted from their charter, available on the Web at:
http://www.w3.org/2001/07/19-tag (last accessed April 20th, 2007).
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2.2.1 Protocols

A protocol is a convention for transmitting information between two or more
agents, a broad definition that encompasses everything from computer protocols
like TCP/IP to conventions in natural language like those employed in diplomacy. A
protocol often specifies more than just the particular encoding, but also may attempt
to specify the interpretation of this encoding and the meaningful behaviour that the
sense of the information should engender in an agent. Anagentis any thing capable
of interacting via a protocol. These are often called a ‘user agent’ on the Web, and
the term covers both web-browsers, humans, web spiders, andeven combinations
such as humans operating web-browsers. Apayloadis the information transmitted
by a protocol. Galloway notes that protocols are “the principle of organization na-
tive to computers in distributed networks” and that agreement on protocols are nec-
essary for any sort of network to succeed in the acts of communication (2004).5 The
paradigmatic case of a protocol is TCP/IP, where the payloadtransmitted is just bits
in the body of the message, with the header being used by TCP toensure the lossless
delivery of said bits. TCP/IP transmits strictly an encoding of data as bits and does
not force any particular interpretation on the bits; the payload could be a picture
of the Eiffel Tower, web-pages about the Eiffel Tower, or just meaningless random
bits. All TCP/IP does is move some particular bits from one individual computer to
another, and any language that is built on top of the bit-level are strictly outside the
bounds of TCP/IP. Since these bits are usually communication with some purpose,
the payload of the protocol is almost always an encoding on a level of abstraction
above and beyond that of the raw bits themselves.

The Web is based on aclient-server architecture, meaning thatprotocols take
the form of a request for information and a response with information. Theclient is
defined asthe agent that is requesting informationand theserveris defined asthe
agent that is responding to the request. In a protocol, anendpointis any process that
either requests or responds to a protocol, and so includes both client and servers.
The client is often called auser-agentsince it is the user of the Web. A user-agent
may be anything from a web-browser to some sort of automated reasoning engine
that is working on behalf of another agent, often the specifically human user. The
main protocol in this exposition will be theHyperText Transfer Protocol(HTTP),
as most recently defined by IETF RFC 2616 (Fielding et al, 1999). HTTP is a pro-
tocol originally intended for the transfer of hypertext documents, although its now
ubiquitous nature often lets it be used for the transfer of almost any encoding over
the Web, such as its use to transfer XML-based SOAP (originally theSimple Object
Access Protocol) messages in Web Services (Box et al, 2000). HTTP consists of
sending amethod, a request for a certain type of response from a user-agent to the
server, including information that may change the state of the server. These meth-
ods have a list ofheadersthatspecify some information that may be of used by the

5 Although unlike Galloway, instead of descending into a sortof postmodern paranoia of protocols,
we recognize them as the very conditions of collectivity.
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server to determine the response. Therequestis the method used by the agent and
the headers, along with a blank line and an optional message body.

The methods in HTTP are HEAD, GET, POST, PUT, DELETE, TRACE, OP-
TIONS, and CONNECT. We will only be concerned with the most frequently
used HTTP method, GET. GET is informally considered ‘commitment-free,’ which
means that the method has no side effects for either the user-agent or the server, be-
sides the receiving of the response (Berners-Lee et al, 1996). So a GET method
should not be used to change the state of a user-agent, such ascharging some-
one for buying a plane ticket to Paris. To change the state of the information on
the server or the user-agent, either PUT (for uploading datadirectly to the server)
or POST (for transferring data to the server that will require additional process-
ing, such as when one fills in a HTML form) should be used. A sample request to
http:///www.example.org from a Web browser user-agent is given in Fig-
ure 2.1.

GET /index.html HTTP/1.0
User-Agent: Mozilla/5.0
Accept: */*
Host: www.example.org
Connection: Keep-Alive

Fig. 2.1 An HTTP Request from a client

The first part of an HTTP response from the server then consists of an HTTP
status codewhich is one of a finite number of codes which gives the user-agent
information about the server’s HTTP response itself.The two most known status
codes are HTTP 200, which means that the request was successful, or 404, which
means the user-agent asked for data that was not found on the server. The first digit
of the status code indicates what general class of response it is. For example, the
two hundred series (2xx) response codes mean a successful request, although 206
means partial success. The4xx codes indicate that the user-agent asked for a request
that the server could not fulfill, while1xx is informational,3xx is redirectional,
and5xx means server error. After the status codes there is anHTTP entity which
is “the information transferred as the payload of a request or response” (Fielding
et al, 1999). This technical use of the word ‘entity’ should be distinguished from our
earlier use of the term ‘entity’ like the Eiffel Tower who canonly be realized by the
thing itself, not in another realization. In order to do so, we will take care to preface
the protocol name ‘HTTP’ before any ‘HTTP entity,’ while theterm ‘entity’ by itself
refers to the philosophical notion of an entity. An HTTP entity consists of “entity-
header fields and... an entity-body” (Fielding et al, 1999) An HTTP responsecon-
sists ofthe combination of the status code and the HTTP entity. These responses
from the server can include an additional header, which specifies the date and last
modified date as well as optional information that can determine if the desired repre-
sentation is in the cache and the content-type of the representation. A sample HTTP
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response to the previous example request, excluding the HTTP entity-body, is given
in Figure 2.2.

HTTP/1.1 200 OK
Date: Wed, 16 Apr 2008 14:12:09 GMT
Server: Apache/2.2.4 (Fedora)
Accept-Ranges: bytes
Connection: close
Content-Type: text/html; charset=ISO-8859-1
Content-Language: fr

Fig. 2.2 An HTTP Response from a server

In the HTTP response, an HTTP entity body is returned. The encoding of
the HTTP entity body is given by the HTTP entity header fields that specify its
Content-type andContent-language. These are both considered different
languages, as a single webpage can be composed in multiple languages, such as the
text being given in English with various formatting given inHTML. Every HTTP
entity body should have its particular encoding specified bytheContent-type.
The formal languages that can be explicitly given in a response or request in HTTP
are calledcontent types. In the example response, based on the header that the con-
tent type istext/html a user-agent can interpret (‘display as a web-page’) the
encoding of the HTTP entity body as HTML. Since the same encoding can theo-
retically represent many different languages besides HTML, a user-agent can only
know definitely how to process a message through the content type. If no content
type is provided, the agent can guess the content type through various heuristics
including looking at the bytes themselves, a process informally calledsniffing. A
user-agent can specify what media types they (can) prefer, so that a web-server that
can only present JPEG images can specify this by also asking for the content type
image/jpeg in the request.

Content-types in HTTP were later generalized as ‘Internet Media Types’ so they
could be applied with any Internet protocol, not just HTTP and MIME (Multime-
dia Internet Message Extensions, an e-mail protocol) (Postel, March 1994). Amedia
typeconsists ofa two-part scheme that separates the type and a subtype of an encod-
ing, with a slash indicating the distinction. Internet media types are centrally regis-
tered with IANA athttp://www.iana.org/assignments/media-types/,
although certain ‘experimental’ media types (those beginning with ‘x-’) can be cre-
ated in a decentralized manner (Postel, March 1994). A central registry of media
types guarantees the interoperability of the Web, althoughincreasingly new media-
types are dependent on extensions to specific applications (plug-ins) in order to run.
Support for everything from new markup languages to programming languages such
as Javascript can be declared via support of its media type.

To move from concrete bits to abstract definitions, a protocol can be defined and
implemented in many different types of way. In the early ARPANet, the first wide-
area network and foundation of the Internet, the protocol was ‘hard-wired’ in the
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hardware of the Interface Message Processor (IMP), a separate machine attached to
computers in order to interface them with ARPANet (Hafner and Lyons, 1996). As
more and more networks multiplied, these heterogeneous networks began using dif-
ferent protocols. While the invention of TCP/IP let these heterogeneous networks
communicate, TCP/IP does not interpret messages beyond bits. Further protocols
built on top of TCP/IP, such as FTP (File Transfer Protocol) for the retrieval of files
(Postel and Reynolds, October 1985), Gopher for the retrieval of documents (An-
klesaria et al, 1993), and SMTP (Simple Mail Transfer Protocol) for the transfer of
mail (Postel, August 1982). Since one computer might hold many different kinds of
information, IP addresses were not enough as they only identified where a particular
device was on the network. Thus each protocol created its ownnaming scheme to
allow it to identify and access things on a more fine-grained level than IP addresses.
Furthermore, each of these protocols was often associated (via registration with a
governing body like IANA, theInternet Assigned Numbers Authority) with partic-
ular ports, such that port 25 was used by SMTP and port 70 by Gopher. With this
explosion of protocols and naming schemes, each Internet application was its own
‘walled garden.’ Names created using a particular protocolwere incapable of being
used outside the original protocol, until the advent of the naming scheme of the Web
(Berners-Lee, 2000).

2.2.2 Information Encoding and Content

There is a relationship between a server sending a message - such as a web-page
about the Eiffel Tower - to a client in response to an HTTP request and certain no-
tions from information theory, however hazy and qualitative. To phrase informally,
information is whatever regularities held in common between asourceand are-
ceiver(Shannon and Weaver, 1963). Note that the source and receiver do not have
to be spatially separate, but can also be temporally separate, and thus the notion of
a self-contained ‘message’ resembling a postcard being sent between sender and re-
ceiver is incomplete if not incorrect.6 To have something in common means to share
the same regularities, e.g. parcels of time and space that cannot be distinguished
at a given level of abstraction. This definition correlates with information being the
inverse of the amount of ‘noise’ or randomness in a system, and the amount of infor-
mation being equivalent to a reduction in uncertainty. It isprecisely this preservation
or failure to preserve information that can be thought of theas sending of amessage
between the source and the receiver over a channel, where thechannel is over time,
space, and - most likely - both.Whether or not the information is preserved over
time or space is due to the properties of a physical substrateknown as thechannel.
So in our example, the channel is the fiber-optic or copper wires that must accurately
carry the voltages which the bits consist of. Themessageis the physical thing that
realizes the regularities of the information due to its local characteristics, which in

6 Imagine that your eye color not changing is a message from yourself at ten years old to yourself
at seventy!
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this case would be particular patterns of bits being preserved over multiple channels
as they are popped from an electro-magnetic hard-disk on a server to fibre-optic then
over the air via wireless and finally back to the electric charges stored in memory
chips in a client device, such as a web browser on a mobile phone. These messages
are often called therealizationof some abstract informational content.

Already, information reveals itself to be not just a singular thing, but something
that exists at multiple levels: How do the bits become a message in HTTP? In partic-
ular, we are interested in the distinction in information between content and encod-
ing. Here our vague analogy with Shannon’s information theory fails, as Shannon’s
theory deals with finding the optimal encoding and size of channel so that the mes-
sage can be guaranteed to get from the sender to the receiver,which in our case is
taken care of by the clever behavior of the TCP/IP protocol operating over a variety
of computational devices (Shannon and Weaver, 1963). Yet, how can an encoding
be distinguished from the content of information itself in aparticular HTTP mes-
sage? Let’s go back to bits by leaning on aesthetic theory of all things; art critic and
philosopher Nelson Goodman defines amark as a physical characteristicranging
from marks on paper one can use to discern alphabetic characters to ranges of volt-
age that can be thought of as bits (1968). To be reliable in conveying information,
an encoding should be physically ‘differentiable’ and thusmaintain what Goodman
calls ‘character indifference’ so that (at least within some context) each character
(as in ‘characteristic’) can not be mistaken for another character. One cannot re-
construct a message in bits if one cannot tell apart 1 and 0, much as one cannot
reconstruct a HTML web-page if one cannot tell the various characters in text apart.
So, anencodingis a set of precise regularities that can be realized by the message.
Thus, one can think of multiple levels of encoding, with the very basic encoding
of bits being handled by the protocol TCP/IP, and then the protocol HTTP handing
higher-level encodings in textual encodings such as HTML.

Unforunately, we are not out of the conceptual thicket yet; there is more to infor-
mation than encoding. Shannon’s theory does not explain thenotion of information
fully, since giving someone the number of bits that a messagecontains does not tell
the receiverwhat information is encoded. Shannon explicitly states, “The funda-
mental problem of communication is that of reproducing at one point either exactly
or approximately a message selected at another point. Frequently the messages have
meaning; that is they refer to or are correlated according tosome system with cer-
tain physical or conceptual entities. These semantic aspects of communication are
irrelevant to the engineering problem” (1963). He is correct, at least for his partic-
ular engineering problem. However, Shannon’s use of the term ‘information’ is for
our purposes the same as the ‘encoding’ of information, but amore fully-fledged
notion of information is needed. Many intuitions about the notion of information
have to deal with not only how the information is encoded or how to encode it, but
what a particular message is about, thecontentof an information-bearing message.7

7 An example of the distinguishment between content and encoding: Imagine Daniel sending Amy
a secret message about which one of her co-employees won a trip to the Eiffel Tower. Just deter-
mining that a single employee out of eight won the lottery requires at least a three bit encoding and
does not tell Amy (the receiver) which employee in particular won the lottery. Shannon’s theory
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‘Content’ is a term we adopt from Israel and Perry, as opposedto the more con-
fusing term ‘semantic information’ as employed by Floridi and Dretske (Israel and
Perry, 1990; Dretske, 1981; Floridi, 2004). One of the first attempts to formulate a
theory of informational content was due to Carnap and Bar-Hillel (1952). Their the-
ory attempted to bind a theory of content closely to first-order predicate logic, and
so while their “theory lies explicitly and wholly within semantics” they explicitly
do not address “the information which the sender intended toconvey by transmit-
ting a certain message nor about the information a receiver obtained with a certain
message,” since they believed these notions could eventually be derived from their
formal apparatus (Carnap and Bar-Hillel, 1952). Their overly restrictive notion of
the content of information as logic did not gain widespread traction, and neither did
other attempts to develop alternative theories of information such as that of Don-
ald McKay (1955). In contrast, Dretske’ssemantic theory of informationdefines
the notion of content to be compatible with Shannon’s information theory, and his
notions have gained some traction within the philosophicalcommunity (Dretske,
1981). To him, the content of a message and the amount of information – the num-
ber of bits an encoding would require – are different, for “saying ‘There is a gnu in
my backyard’ does not have more content than the utterance ‘There is a dog in my
backyard’ since the former is, statistically, less probable” (Dretske, 1981). Accord-
ing to Shannon, there is more information in the former case precisely because it is
less likely than the latter (Dretske, 1981). So while information that is less frequent
may require a larger number of bits in encoding, the content of information should
be viewed as to some extent separable if compatible with Shannon’s information
theory, since otherwise one is led to the “absurd view that among competent speak-
ers of language, gibberish has more meaning than semantic discourse because it is
much more less frequent” (Dretske, 1981). Simply put, Shannon and Dretkse are
talking about distinct notions that should be separated, the notions of encoding and
content respectively.

Is there a way to precisely define the content of a message? Dretske defines the
content of information as “a signalr carries the information thats is F when the
conditional probability ofs’s beingF , givenr (andk) is 1 (but, givenk alone, less
than 1).k is the knowledge of the receiver” (1981). To simplify, thecontentof any
information-bearing message iswhatever is held in common between the source

only measures how many bits are needed to tell Amy precisely who won. After all, the false mes-
sage that her office-mate Sandro won a trip to Paris is also three bits. Yet content is not independent
of the encoding, for content is conveyed by virtue of a particular encoding and a particular encod-
ing imposes constraints on what content can be sent (Shannonand Weaver, 1963). Let’s imagine
that Daniel is using a code of bits specially designed for this problem, rather than natural language,
to tell Amy who won the free plane ticket to Paris. The contentof the encoding001 could be yet
another co-employee Ralph while the content of the encoding010 could be Sandro. If there are
only two possible bits of information and all eight employees need one unique encoding, Daniel
cannot send a message specifying which friend got the trip since there aren’t enough options in
the encodings to go round. An encoding of at least three bits is needed to give each employee a
unique encoding. If01 has the content that ‘either Sandro or Ralph won the ticket’ the message
has not been successfully transferred if the purpose of the message is to tell Amypreciselywhich
employee won the ticket.
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and the receiver as a result of the conveyance of a particularmessage. While this is
similar to our definition of information itself, it is different. The content is whatever
is shared in common as a result of aparticular message, such as the conveyance
of sentence ‘The Eiffel Tower is 300 meters high.’ The content of a message is
called the “facts” by Dretske, (F). This content is conveyed from the source (s)
successfully to the receiver (r) when the content can be used by the receiver with
certainty,and that before the receipt of the message the receiver was not certain of
that particular content. Daniel can only successfully convey the content that ‘Ralph
won a trip to Paris’ if before receiving the message Amy does not know ‘Ralph
won the trip to Paris’ and after receiving the message Amy does know that fact.
Dretkse himself notes that information “does not mean that asignal must tell us
everything about a source to tell us something,” it just has to tell enough so that
the receiver is now certain about the content within the domain (1981). Millikan
rightfully notes that Dretske states his definition too strongly, for this probability
of 1 is just an approximation of a statistically “good bet” indexed to some domain
where the information was learned to be recognized (2004). For example, lightening
carries the content that “a thunderstorm is nearby” in rainyclimes but in an arid
prairie lightning can convey a dust-storm. However, often the reverse is true, as
the same content is carried by messages in different encodings, like a web-page
about the Eiffel Tower being encoded in either English or French. These notions of
encoding and content are not strictly separable, which is why they together compose
the notion of information. An updated famous maxim of Hegel could be applied: For
information, there is no encoding without content, and no content without encoding
(1959).

The relationship of an encoding to its content, is an interpretation. The inter-
pretation ‘fills’ in the necessary background left out of theencoding, and maps the
encoding to some content. In our previous example using binary digits as an encod-
ing scheme, a mapping could be made between the encoding001 to the content
of the Eiffel Tower while the encoding010 could be mapped to the content of the
Washington Monument. When the word ‘interpretation’ is used as a noun, we mean
the content given by a particular relationship between an agent and an encoding, i.e.
the interpretation. Usual definitions of “interpretation”tend to conflate these issues.
In formal semantics, the word “interpretation” often can beused either in the sense
of “an interpretation structure, which is a ‘possible world’ considered as something
independent of any particular vocabulary” (and so any agent) or “an interpretation
mapping from a vocabulary into the structure” or as shorthand for both (Hayes,
2004). The difference in use of the term seems somewhat divided by fields. For
example, computational linguistics often use “interpretation” to mean what Hayes
called the “interpretation structure.” In contrast, we usethe term ‘interpretation’ to
mean what Hayes called the “interpretation mapping,” reserving the word ‘content’
for the “interpretation structure” or structures selectedby a particular agent in re-
lationship to some encoding. Also, this quick aside into matters of interpretation
does not explicitly take on a formal definition of interpretation as done in model
theory, although our general definition has been designed tobe compatible with
model-theoretic and other formal approaches to interpretation.
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These terms are all illustrated in Figure 2.3. A source is sending a receiver a
message. The information-bearing message realizes some particular encoding such
as a few sentences in English and a picture of the Eiffel Tower, and the content of
the message can be interpreted to be about the Eiffel Tower.

Fig. 2.3 Information, Encoding, Content

The encodings and content of information do not in general come in self-
contained bundles, with each encoding being interpreted tosome free-standing
propositional content. Instead, encodingevs and content come in entire interlocking
informational systems. One feature of these systems is thatencodings are layered
inside of each other and content is also layered upon other content. The perfect ex-
ample would be an English sentence in an e-mail message, where a series of bits
are used to encode the letters of the alphabet, and the alphabet is then used to en-
code words. Likewise, the content of a sentence may depend onthe content of the
words in the sentence. When this happens, one is no longer dealing with a sim-
ple message, but some form of language. Alanguagecan be defined asa system
in which information is related to other information systematically. In a language,
this is a relationship between how the encoding of some information can change
the interpretation of other encodings. Messages always have encodings, and usually
these encodings are part of languages. To be more brief, information isencoded in
languages. The relationships between encodings and content are usually taken to be
based on some form of (not necessarily formalizable or even understood) rules. If
one is referring toa system in which the encoding of information is related to each
other systematically, then one is talking about thesyntaxof a language. If one is
referring toa system in which the content of information is related to each other
systematically, then one is referring to thesemanticsof the language.The lower-
level of a language can beterms, regularities in marks, that may or may not have
their own interpretation, such as the words or alphabet.Any combination of terms
that is valid according to the language’s syntaxis a sentence(sometimes an ‘ex-
pression’) in the language, andany combination of terms that has an interpretation
to content according to the language’s semanticsis astatementin the language.

Particular encodings and content then are accepted by or considered vlaid by the
syntax and semantics of a language respectively (and thus the normative importance
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of standardization on the Web in determining these criteria. Also, we do not restrict
our use of the word ‘language’ to primarily linguistic forms, but use the term ‘lan-
guage’ for anything where there is a systematic relationship between syntax and
(even an informal) semantics. For example HTML is a languagefor mapping a set
of textual tags to renderings of bits on a screen in a web browser. One principle
used in the study of languages, attributed to Frege, is the principle of composition-
ality, wherethe content of a sentence is related systematically to termsin which it
is composed. Indeed, while the debate is still out if human languages aretruly com-
positional (Dowty, 2007), computer languages almost always are compositional. In
English, the content of the sentence such as ‘Tim has a plane ticket to Paris so he
should go to the airport!’ can then be composed from the more elementary content
of the sub-statements, such as ‘Tim has a plane ticket’ whichin turn can have its
content impacted by words such as ‘Paris’ and ‘ticket.’ The argument about whether
sentences, words, or clauses are the minimal building blockof content is beyond
our scope. Do note one result of the distinction between encoding and content is
that sentences that are accepted by the syntax (encoding) ofa language, such as
Chomsky’s famous “Colourless green ideas sleep furiously’may have no obvious
interpretation (to content) outside of the pragmatics of Chomsky’s particular expo-
sition (1957).

2.2.3 Uniform Resource Identifiers

The World Wide Web is defined by the AWWW as “an information space in which
the items of interest, referred to as resources, are identified by global identifiers
called Uniform Resource Identifiers (URI)” (Jacobs and Walsh, 2004). This naming
scheme, not any particular language like HTML, is the primary identifying charac-
teristic of the Web. URIs arose from a need to organize the “many protocols and
systems for document search and retrieval” that were in use on the Internet, espe-
cially considering that “many more protocols or refinementsof existing protocols
are to be expected in a field whose expansion is explosive” (Berners-Lee, 1994a).
Despite the “plethora of protocols and data formats,” if anysystem was “to achieve
global search and readership of documents across differingcomputing platforms,”
gateways that can “allow global access” should “remain possible” (Berners-Lee,
1994a). The obvious answer was to consider all data on the Internet to be a single
space of names with global scope.

URIs accomplish their universality over protocols by moving all the information
used by the protocol within the name itself. The information needed to identify any
protocol-specific information is all specified in the name itself: the name of the
protocol, the port used by the protocol, any queries the protocol is responding to, and
the hierarchical structure used by the protocol. The Web is then first and foremost
a naming initiative “to encode the names and addresses of objects on the Internet”
rather than anything to do with hypertext (Berners-Lee, 1994a). The notion of a
URI can be viewed as a “meta-name,” a name which takes the existing protocol-
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specific Internet addresses and wraps them in the name itself, a process analogous
to reflection in programming languages (Smith, 1984). Instead of limiting itself to
only existing protocols, the URI scheme also abstracts awayfrom any particular
set of protocols, so that even protocols in the future or non-Internet protocols can be
given a URI; “the web is considered to include objects accessed using an extendable
number of protocols, existing, invented for the web itself,or to be invented in the
future” (Berners-Lee, 1994a).

One could question why one would want to name information outside the context
of a particular protocol. The benefit is that the use of URIs “allows different types of
resource identifiers to be used in the same context, even whenthe mechanisms used
to access those resources may differ” (Berners-Lee et al, January 2005). This is an
advantage precisely because it “allows the identifiers to bereused in many different
contexts, thus permitting new applications or protocols toleverage a pre-existing,
large, and widely used set of resource identifiers” (Berners-Lee et al, January 2005).
This ability to access with a single naming convention the immense amount of data
on the entire Internet gives an application such as the ubiquitous Web browser a vast
advantage over an application that can only consume application-specific informa-
tion.

Although the full syntax in Backus-Naur form is given in IETFRFC 3986
(Berners-Lee et al, January 2005), a URI can be given as the regular expression
URI= [scheme ":"] [hierarchical component]* [ "?" query ]?
[ "#" fragment]?. First, aschemeis a name of the protocol or other nam-
ing convention used in the URI.Note that the scheme of a URI does not deter-
mine the protocol that a user-agent has to employ to use the URI. For example,
a HTTP request may be used onftp://www.example.org. The scheme of
a URI merely indicates a preferred protocol for use with the URI. A hierarchi-
cal componentis the left to right dominant component of the URI that syntac-
tically identifies the resource.URIs are federated, insofar as each scheme identi-
fies the syntax of its hierarchical component. For example, with HTTP the hier-
archical component is given by[authority] [//] [":" port]? ["/"
path component]*. The authority is a name that is usually a domain name,
naming authority, or a raw IP address, and so is often the nameof the server.
However, in URI schemes liketel for telephone numbers, there is no notion
of an authority in the scheme. The hierarchical component contains special re-
served characters that are in HTTP characters such as the backslash for locations
as in a file system. Forabsolute URIs, there must be a single scheme and the
scheme and the hierarchical component must together identify a resourcesuch
as http://www.example.com:80/monument/EiffelTower in HTTP,
which signals port 80 of the authoritywww.example.com with the path com-
ponent/monument/EiffelTower. The port authority is usually left out, and
assumed to be 80 by HTTP-enabled clients. Interestingly enough there are alsorel-
ative URIsin some schemes like HTTP, where the path component itself isenough to
identify a resource within certain contexts, like that of a web-page. This is because
the scheme and authority itself may have substituted some special characters that
serve as indexical expressions, such as ‘.’ for the current place in the path compo-
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nent and ‘..’ as the previous level in the path component. So,../EiffelTower
is a perfectly acceptable relative URI. Relative URIs have astraightforward trans-
lation into absolute URIs, and it is trivial to compare absolute URIs for equality
(Berners-Lee et al, January 2005).

The ‘hash’ (#) and ‘question mark’ (?) are special characters at the end of
URI. The question mark denotes ‘query string.’ The ‘query string’ allows for the
parameterization of the HTTP request, typically in the cases where the HTTP re-
sponse is created dynamically in response to specifics in theHTTP request. The
‘hash’ traditionally declares afragment identifier, which identifies fragments of a
hypertext documentbut according to the TAG, it can also identify a “secondary
resource,” which is defined as “some portion or subset of the primary resource,
some view on representations of the primary resource, or some other resource de-
fined or described by those representations” where the “primary resource” is the
resource identified by the URI without reference to either a hash or question mark
(Jacobs and Walsh, 2004). The fragment identifier (specifiedby a ‘hash’ followed
by some string of characters) is stripped off for the requestto the server, and
handled on the client side. Often the fragment identifier causes the local client
to go to a particular part of the accessed HTTP entity. If there was a web-page
about Gustave Eiffel, its introductory paragraph could be identified with the URI
http://www.example.com/EiffelTower#intro. Figure 2.4 examines a
sample URI,http://www.example.org/EiffelTower#intro:

Fig. 2.4 An example URI, with components labelled.

The first feature of URIs, the most noticeable in comparison to IP addresses,
is that they can be human-readable, although they do not haveto be. As an idiom
goes, URIs can be ‘written on the side of a bus.’ URIs can then have an interpretation
due to their use of terms from natural language, such aswww.whitehouse.gov
referring to the White House or the entire executive branch of the United States
government. Yet it is considered by the W3C TAG to be bad practice for any agent
to depend on whatever information they can glean from the URIitself, since to a
machine the natural language terms used by the URI have no interpretation. For
an agent, all URIs are opaque, with each URI being just a string of characters that
can be used to either refer to or access information, and so syntactically it can only
be checked for equality with other URIs and nothing more. This is captured well
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by the good practice ofURI opacity, which states that “agents making use of URIs
should not attempt to infer properties of the referenced resource” (Jacobs and Walsh,
2004). So, just because a URI sayshttp://www.eiffel-tower.comdoes not mean it will
not lead one to a web-page trying to sell one cheap trinkets and snake oil, as most
users of the Web know. Second, a URI has an owner. Theowner is the agent that is
accountable for a URI. Interestingly enough, the domain name system that assigns
control of domain names in URIs is a legally-binding techno-social system, and
thus to some extent a complex notion of accountability for the name is built into
URIs. Usually for URIs schemes such as HTTP, where the hierarchical component
begins with an authority, the owner of the URI is simply whoever controls that
authority. In HTTP, since URIs can delegate their relative components to other users,
the owner can also be considered the agent that has the ability to create and alter
the information accessible from the URI, not just the owner of the authority. Each
scheme should in theory specify what ownership of a URI meansin context of the
particular scheme.

2.2.4 Resources

While we have explained how a URI is formed, we have yet to define what a URI is.
To inspect the acronym itself, a Uniform Resource Identifier(URI) is an identifier
for a ‘resource.’ Yet this does not solve any terminologicalwoes, for the term ‘re-
source’ is undefined in the earliest specification for “Universal Resource Identifiers”
(Berners-Lee, 1994a). Berners-Lee has remarked that one ofthe best things about
resources is that for so long he never had to define them (Berners-Lee, 2000). Even-
tually Berners-Lee attempted to define a resource as “anything that has an identity”
(Berners-Lee et al, 1998). Other specifications were slightly more detailed, with
Roy Fielding, one of the editors of HTTP, defining (apparently without the notice of
Berners-Lee) a resource as “a network data object or service” (Fielding et al, 1999).
However, at some later point Berners-Lee decided to generalize this notion, and in
some of his later works on defining this slippery notion of ‘resource,’ Berners-Lee
was careful not to define a resource only as information that is accessible via the
Web, since not only may resources be “electronic documents”and “images” but
also “not all resources are network retrievable; e.g., human beings, corporations,
and bound books in a library” (Berners-Lee et al, 1998). Also, resources do not
have to be singular but can be a “collection of other resources” (Berners-Lee et al,
1998).

Resources are not only a concrete messages or sets of possible messages at
a given temporal junction, but are a looser category that includes individuals
changing over time, as “resources are further carefully defined to be information
that may change over time, such as a service for today’s weather report for Los
Angeles”(Berners-Lee et al, 1998). Obviously, a web-page with “today’s weather
report” is going to change its content over time, so what is itthat unites the notion
of a resource over time? The URI specification defines this tentatively as a ‘concep-
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tual mapping’ (presumably located in the head of an individual creating the repre-
sentations for the resource) such that “the resource is the conceptual mapping to an
entity or set of entities, not necessarily the entity which corresponds to that map-
ping at any particular instance in time. Thus, a resource canremain constant even
when its content – the entities to which it currently corresponds – changes over time,
provided that the conceptual mapping is not changed in the process” (Berners-Lee
et al, 1998). This obviously begs an important question: If resources are identified as
conceptual mappings in the head of an individual(s), then how does an agent know,
given a URI, what the resource is? Is it our conceptual mapping, or the conceptual
mapping of the owner, or some consensus conceptual mapping?This question and
further questions of identity come to centre stage in Chapter ??. The latest version
of the URI specification deletes the confusing jargon of “conceptual mappings” and
instead re-iterates that URIs can also be things above and beyond concrete individ-
uals, for “abstract concepts can be resources, such as the operators and operands of
a mathematical equation” (Berners-Lee et al, January 2005). After providing a few
telling examples of precisely how wide the notion of a resource is, the URI specifi-
cation finally ties the notion of resource directly to the actof identification given by
a URI, for “this specification does not limit the scope of whatmight be a resource;
rather, the term ‘resource’ is used in a general sense for whatever might be identified
by a URI” (Berners-Lee et al, January 2005). Although this definition seems at best
tautological, the intent should be clear. Aresourceis any thing capable of having a
sense(content), or in other words, an ‘identity’ in a language. Since a sense is not
bound to particular encoding, in practice within certain protocols that allow access
to information,a resource is typically not a particular encoding of some content but
some content that can be given by many encodings. To rephrase in terms of sense,
the URI identifies content on a level of abstraction, not the encoding of the content.
So, a URI identifies the ‘content’ of the Eiffel Tower, not just a particular web-
page which is subject to change. However, there is nothing toforbid someone from
identifying a particular encoding of information with its own URI and resource. For
example, one could also have a distinct URI for a webpage about the Eiffel Tower in
English, or a webpage about the Eiffel Tower in English in HTML. In other words,
a resource can be givenmultiple URIs, each corresponding to a different encoding
or even different levels of abstraction. Furthermore, due to the decentralized nature
of URIs, often different agents createmultiple URIs for the same content, which are
then called in Web architectureco-referential URIs.

We illustrate these distinctions in a typical HTTP interaction in Figure 2.5, where
an agent via a web browser wants to access some information about the Eiffel Tower
via its URI. While on a level of abstraction a protocol allowsa user-agent to identify
some resource, what the user-agent usually accesses concretely is some realization
of that resource in a particular encoding, such as a webpage in HTML or a picture
in the JPEG language (Pennebaker and Mitchell, 1992). In ourexample, the URI is
resolved using the domain name system to an IP address of a concrete server, which
then transmits to the user-agent some concrete bits that realizes the resource, i.e.
that can be interpreted to the sense identified by the URI. In this example, all the
interactions are local, since the webpageencodesthe content of the resource. This
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HTTP entity can then be interpreted by a browser as a rendering on the screen of
Ralph’s browser. Note this is a simplified example, as some status codes like307
may cause a redirection to yet another URI and so another server, and so on possibly
multiple times, until an HTTP entity may finally be retrieved.

Fig. 2.5 A user agent accessing a resource

One of the most confusing issues of the Web is that a URI does not necessarily
retrieve a single HTTP entity, but can retrieve multiple HTTP entities. This leads
to a surprising and little-known aspect of Web architectureknown as content ne-
gotiation.Content Negotiationis a mechanism defined in a protocol that makes it
possible to respond to a request with different Web representations of the same re-
source depending on the preference of the user-agent. This is because information
may have multiple encodings in different languages that allencode the same sense,
and thus the same resource which should have a singular URI. A“representation”
on the Web is then just “an entity that is subject to content negotiation” (Fielding
et al, 1999). Historically, the term “representation” on the Web was originally de-
fined in HTML as “the encoding of information for interchange” (Berners-Lee and
Connolly, June 1993). A later definition given by the W3C did not mention content
negotiation explicitly, defining a representation on the Web as just “data that en-
codes information about resource state” (Jacobs and Walsh,2004). To descend fur-
ther into a conceptual swamp, “representation” is one of themost confusing terms
in Web architecture, as the term “representation” is used differently across philos-
ophy. In order to distinguish the technical use of the term “representation” within
Web architecture from the standard philosophical use of theterm “representation,”
we shall use the term “Web representation” to distinguish itfrom the ordinary use
of the term “representation” as given earlier in Section 2.2.6. A Web representation
is the encoding of the content given by a resource given in response to a request that
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is subject to content negotiation, which must then include any headers that specify
an interpretation, such as character encoding and media type. So a Web representa-
tion can be considered to havetwodistinct components, and the headers such as the
media type that lets us interpret the encoding, and the payload itself, which is the
encoding of the state of the resource at a given point in time (i.e. the HTML itself).
So,web-pagesareweb representations given in HTML. Web resources can be con-
sidered resources that under ‘normal’ conditions result inthe delivery of web-pages.

Our typical Web transaction, as given earlier in Figure 2.5,can become more
complex due to this possible separation between content andencoding on the Web.
Different kinds of Web representations can be specified by user-agents as pre-
ferred or acceptable, based on the preferences of its users or its capabilities, as
given in HTTP. The owner of a web-site about the Eiffel Tower decides to host
a resource for images of the Eiffel Tower. The owner creates aURI for this re-
source,http://www.eiffeltower.example.org/image. Since a single
URI is used, the sense (the depiction) that is encoded in either SVG or JPEG is
the same, namely that of an image of the Eiffel Tower, that is,there are two dis-
tinct encodings of the image of the Eiffel Tower available ona server in two dif-
ferent iconic languages, one in a vector graphic language known as SVG and one
in a bitmap language known as JPEG (Ferraiolo, 2002; Pennebaker and Mitchell,
1992). These encodings are rendered identically on the screen for the user. If
a web-browser only accepted JPEG images and not SVG images, the browser
could request a JPEG by sending a request forAccept: image/jpeg in the
headers. Ideally, the server would then return the JPEG-encoded image with the
HTTP entity headerContent-Type: image/jpeg. Had the browser wished
to accept the SVG picture as well, it could have putAccept: image/jpeg,
image/svg+xml and received the SVG version. In Figure 2.6, the user agent
specifies its preferred media type asimage/jpeg. So, both the SVG and JPEG
images are Web representations of the same resource, an image of the Eiffel Tower,
since both the SVG and JPEG information realize the same information, albeit us-
ing different languages for encoding. Since while a single resource is identified by
the same URIhttp://www.example.org/EiffelTower/image, differ-
ent user-agents can get a Web representation of the resourcein a language they
can interpret, even if they cannot all interpret the same language. In Web archi-
tecture, content negotiation can also be deployed over not only differing computa-
tional languages such as JPG or SVG, but differing natural languages, as the same
content can be encoded in different natural languages such as French and English.
An agent could request the description about the Eiffel Tower from its URI and
set the preferred media type to ‘Accept-Language: fr’ so that they receive a
French version of the webpage as opposed to an English version. Or they could set
their preferred language as English but by using ‘Accept-Language: en.’ The
preferences specified in the headers are not mandatory for the server to follow, the
server may only have a French version of the resource available, and so send the
agent a French version of the description, encoded in HTML orsome other formal
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language, regardless of their preference.8 Figure 2.6 shows is that the Web repre-
sentations are distinct from the resource, even if the Web representations are bound
together by realizing the same information given by a resource, since accessing a
resource via a single URI can returndifferentWeb representations depending on
content negotiation.

Fig. 2.6 A user agent accessing a resource using content negotiation

The only architectural constraint that connects Web representations to resources
is that they are retrieved by the same URI. So one could imagine a resource with a
URI calledhttp://www.example.org/Moon, that upon accessing using En-
glish as the preferred language would provide a web-page with a picture of the
moon, and upon accessing with something other than English as the preferred lan-
guage would provide a picture of blue cheese. While this seems odd, this situation
is definitely possible. What binds Web representations to a resource? Is a resource
really just a random bag of Web representations? Remember that the answer is that
the Web representations should have the samecontentregardless of their particular
encoding if it is accessible from the same URI. This notion depends on our notion of
informational content (sense) as given in Section??, which we define by an appeal
to Dretske’s semantic theory of information (Dretske, 1981). To recall, Dretske’s

8 It is well-known there are some words in French that are difficult if not impossible to translate into
English, such as ‘frileusement.’ Indeed, saying that one natural language encodes the same content
as another natural language is akin to hubris in the general case. If this is the case, then it is perfectly
reasonable to establish different resources and so URIs forthe French and English language encod-
ings of the resource, such ashttp://www.eiffeltower.example.org/francais and
http://www.eiffeltower.example.org/english. In fact, if one believes the same
image cannot be truly expressed by both SVG and JPEG image formats, one could give them
distinct URIs as well.
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definition of semantic information, “a signalr carries the information thats is F
when the conditional probability ofs’s beingF , given r (andk) is 1 (but, givenk
alone, less than 1).k is the knowledge of the receiver” (Dretske, 1981). We can then
consider the signalr to be a Web representation, withs being a resource and the
receiver being the user-agent. However, instead of some fact F about the resource,
we want an interpretation of the Web representation bydifferentuser-agents to be
to the same content.9 From a purely normative viewpoint in terms of relevant IETF
and W3C standards, it is left to the owner to determine whether or not two Web
representations are equivalent and so can be hosted using content negotiation at the
same URI. The key to content negotiation is that the owner of aURI never knows
what the capabilities of the user-agent are, what natural and formal languages are
supported by it. This is analogous to what Dretske calls the “knowledge” ork of the
receiver (1981). The responsibility of the owner of a URI should be, in order to share
their resource by as many user-agents as possible, to provide as many Web repre-
sentations in a variety of formats as they believe are reasonably necessary. So, the
owner of the URI for a website about the Eiffel Tower may wish to have a number of
Web representations in a wide variety of languages and formats. By failing to pro-
vide a Web representation in Spanish, they prevent speakersof only Spanish from
accessing their resource. Since the maintainer of a resource cannot reasonably be
expected to predict the capabilities of all possible user-agents, the maintainer of the
resource should try their best to communicate their interpretation within their finite
means. The reason URIs identify resources, and not individual Web representations,
is that Web representations are too ephemeral to want to identify in of themselves,
being by definition the response of a server to aparticular response and request
for information. While one could imagine wanting to access aparticular Web rep-
resentation, in reality what is usually wanted by the user-agent is the content of the
resource, which may be present in a wide variety of languages. What is important is
that the sense gets transferred and interpreted by the user agent, not the individual
bytes of a particular encoding in a particular language at a particular time.

2.2.5 Digitality

The Web is composed of not just representations, but digitalrepresentations. One
of the defining characteristics of information on the Web is that this information is

9 Of course, one cannot control the interpretations of yet unknown agents, so all sorts of absurdities
are possible in theory. As the interpretation of the same encoding can differ among agents, there is
a possibility that the owner of the URIhttp://www.example.org/Moon really thinks that
for French speakers a picture of blue cheese has the same sense as a picture of the Moon for English
speakers, even if users of the resource disagree. However, it should be remembered that the Web is
a space of communication, and that for communication to be successful over the Web using URIs,
it is in the interest of the owner of the resource to deploy Webrepresentations that they believe
the users will share their interpretation of. So content negotiation between a picture of blue cheese
and a picture of the moon for a resource that depicts the Moon is, under normal circumstances, the
Web equivalent of insanity at worse, or bad manners at best.
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digital, bits and bytes being shipped around by various protocols. Yet there is no
clear notion of what ‘being’ digital consists of, and a working notion of digitality
is necessary to understand what can and can not be shipped around as bytes on the
Web. Much like the Web itself, we can know something digital when we spot it, and
we can build digital devices, but developing an encompassing notion of digitality is
a difficult task, one that we only characterize briefly here.

Goodman defined marks as “finitely differentiable” when it is possible to deter-
mine for any given mark whether it is identical to another mark or marksGoodman
(1968). This can be considered equivalent to how in categorical perception, despite
variation in handwriting, a person perceives hand-writtenletters as being from a fi-
nite alphabet. So,equivalence classes of marks can be thought of as an application
of the philosophical notion of types. This seems close to ‘digital,’ so that given a
number of types of content in a language, a system is digital if any mark of the
encoding can be interpreted to a one and only one type of content. Therefore, in
between any two types of content or encoding there can not be an infinite number
of other types. Digital systems are the opposite of Bateson’s famous definition of
information: Being digital is simply having a difference that does not make differ-
ence (Bateson, 2001). This is not to say there are characteristics of a mark which do
not reflect its assignment in a type, and these are precisely the characteristics which
are lost in digital systems. So in an analogue system, every difference in some mark
makes a difference, since between any two types there is another type that subsumes
a unique characteristic of the token. In this manner, the prototypical digital system is
the discrete distribution of integers, while the continuous numbers are the analogue
system par excellence, since between any real number there is another real number.

Lewis took aim at Goodman’s interpretation of digitality interms of determin-
ism by arguing that digitality was actually a way to represent possibly continuous
systems using the combinatorics of discrete digital states(1971). To take a less lit-
eral example, discrete mathematics can represent continuous subject matters. This
insight caused Haugeland to point out that digital systems are always abstractions
built on top of analog systems (1981). The reason we build these abstractions is be-
cause digital systems allow perfect reliability, so that once a system is in a digital
type (also called a ‘digital state’), it does not change unless it is explicitly made to
change, allowing both flawless copying and perfect reliability. Haugeland reveals
the purpose of digitality to be “a mundane engineering notion, root and branch. It
only makes sense as a practical means to cope with the vagarities and vicissitudes,
the noise and drift, of earthy existence” (Haugeland, 1981). Yet Haugeland does not
tell us what digitality actually is, although he tells us what it does, and so it is un-
clear why certain systems like computers have been wildly successful due to their
digitally (as in the success of analogue computers was not sowidespread), while
others like ‘integer personality ratings’ have not been as successful. Without a co-
herent definition of digitality, it is impossible to even in principle answer questions
like whether or not digitality ispurelysubjective (Mueller, 2007). Any information
is digital whenthe boundaries in a particular encoding can converge with a regu-
larity in a physical realization. This would include sentences in a language that can
be realized by sound-waves or the text in an e-mail message that can be re-encoded
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as bits, and then this encoding realized by a series of voltages. Since the encoding
of the information can be captured perfectly by a digital system, it can be copied
safely and effectively, just as an e-mail message can be sentmany times or a digital
image reproduced countlessly.

To implement a digital system, there must be a small chance that the information
realization can be considered to be in a state that is not partof the discrete types
given by the encoding. The regularities that compose the physical boundary allows
within a margin of error a discrete boundary decision to be made in the interpreta-
tion of the encoding. So, anything is capable of upholding digitality if that buffer
created by the margin of error has an infinitesimal chance at any given time of being
in a state that is not part of the encoding’s discrete state. For example, the hands
on a clock can be on the precise boundary between the markingson the clock, just
not for very long. In a digital system, on a given level of abstraction, the margin of
error does not propagate upwards to other levels of abstraction that rest on the ear-
lier level of abstractions. Since we can create physical systems through engineering,
we can create physical substrata that have low probabilities of being in states that
do not map to digital at a given level of abstraction. As put byTuring, “The digital
computers ... may be classified amongst the ‘discrete state machines,’ these are the
machines which move by sudden jumps or clicks from one quite definite state to
another. These states are sufficiently different for the possibility of confusion be-
tween them to be ignored. Strictly speaking there are no suchmachines. Everything
really moves continuously” (Turing, 1950).Analogueis the rather large and hetero-
geneous set ofeverything that is not digital. This would include people, such as Tim
Berners-Lee himself, who can be represented but not realized as a message, as well
as places, like Mount Everest, whose precise boundaries arerather indeterminate.
While, according to Hayles, “the world as we sense it on the human scale is basi-
cally analogue,” and the Web is yet another development in a long-line of biological
modifications and technological prostheses to impose digitalization on an analogue
world (2005). The vast proliferation of digital technologies is possible because there
are physical substrata, some more so than others, which support the realization of
digital information and give us the advantages that Haugeland rightfully points out
is the purpose of the digital: flawless copying and perfect reliability in a flawed and
imperfect world (1981).

2.2.6 Representations

A web-page about the Eiffel Tower seems to be an obvious representation. One can
sit at home on one’s computer far away from Paris and access a web-page that fea-
tures a clear picture of - a representation! - of the Eiffel Tower. Furthermore, others
from Japan to Egypt should be able to access the exact same representation by ac-
cessing the same URI. By claiming to be a “universal space of information,” the
Web is asserting to be a space where any encoding can be transferred about any
content (Berners-Lee et al, 1992). However, there are some distinct differences be-
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tween kinds of content, for some content can be distal and other content can be local.
Things that are separated by time and spacearedistal while those things that are
not separated by time and space areproximal. As synonyms for distal and proximal,
we will usenon-localandlocal, or justdisconnectedandconnected. Although this
may seem to be an excess of adjectives to describe a simple distinction, this afore-
mentioned distinction will underpin our notions of representation. In a message be-
tween two computers, if the content is a set of commands to ‘display these bytes
on the screen’ then the client can translate these bytes to the screen directly without
any worry about what those bytes represent to a human user. However, the content
of the message may involve some distal components, such as the string “The Eiffel
Tower is in Paris,” which refers to many things outside of thecomputer. Differences
between receivers allow the self-same content of a message to be both distal and lo-
cal, depending on the interpreting agent. The message to ‘display these bytes on the
screen’ could cause a rendering of a depiction of the Eiffel Tower to be displayed
on the screen, so the self-same message causes not only a computer to display some
bytes but also causes a human agent to receive information about what the Eiffel
Tower in Paris looks like.

Any encoding of information that has distal contentis called arepresentation,
regardless of the particular encoding of the information. Representations are then
a subset of information, and inherit the characteristics outlined of all information,
such as having one or more possible encodings and often a purpose and the ability
to evoke normative behaviour from agents. To have some relationship to a thing that
one is disconnected from is to beaboutsomething else. Generally,the relationship
of a thing to another thing to which one is immediately causally disconnectedis
a relationship ofreferenceto a referentor referents, the distal thing or things re-
ferred to by a representation. The thing which refers to the referent(s) we call the
‘representation,’ and take this to be equivalent to being asymbol. Linguistic expres-
sions of an natural or formal languageare calleddescriptionswhile the expressions
of a iconic languageis calleddepictions. To refer to something is todenotesome-
thing, so the content of a representation is itsdenotation. In the tradition of Bretano,
the reference relation is consideredintentionaldue to its apparent physical spooki-
ness. After all, it appears there is some great looming contradiction: if the content
is whatever is held in common between the source and the receiver as a result of
the conveyance of a particular message, then how can the source and receiver share
some information they are disconnected from?

On the surface this aspect of ‘representation’ seems to be what Brian Cantwell
Smith calls “physically spooky,” since a representation can refer to something with
which it is not in physical contact (Smith, 1995). This spookiness is a consequence
of a violation ofcommon-sensephysics, since representations allow us to have some
sort of what appears to be a non-physical relationship with things that are far away
in time and space. This relationship of ‘aboutness’ orintentionalityis often called
‘reference.’ While it would be premature to define ‘reference,’ a few examples will
illustrate its usage: someone can think about the Eiffel Tower in Paris without being
in Paris, or even having ever set foot in France; a human can imagine what the Eiffel
Tower would look like if it were painted blue, and one can eventhink of a situation
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where the Eiffel Tower wasn’t called the Eiffel Tower. Furthermore, a human can
dream about the Eiffel Tower, make a plan to visit it, all while being distant from the
Eiffel Tower. Reference also works temporally as well as distally, for one can talk
about someone who is no longer living such as Gustave Eiffel.Despite appearances,
reference is not epiphenomenal, for reference has real effects on the behaviour of
agents. Specifically, one can remember what one had for dinner yesterday, and this
may impact on what one wants for dinner today, and one can booka plane ticket to
visit the Eiffel Tower after making a plan to visit it.

We will have to make a somewhat convoluted trek to resolve this paradox. The
very idea of representation is usually left under-defined asa “standing-in” intu-
ition, that a representation is a representation by virtue of “standing-in” for its ref-
erent (Haugeland, 1991). The classic definition of a symbol from the Physical Sym-
bol Systems Hypothesis is the genesis of this intuition regarding representations
(Newell, 1980): “An entityX designates an entityY relative to a processP, if, when
P takesX as input, its behaviour depends onY.” There are two subtleties to Newell’s
definition. Firstly, the notion of a representation is grounded in the behaviour of an
agent. So, what precisely counts as a representation is never context-free, but depen-
dent upon the agent completing some purpose with the representation. Secondly, the
representationsimulatesits referent, and so the representation must be local to an
agent while the referent may be non-local: “This is the symbolic aspect, that having
X (the symbol) is tantamount to havingY (the thing designated) for the purposes
of processP” (Newell, 1980). We will callX a representation,Y thereferentof the
representation, a processP the representation-usingagent. This definition does not
seem to help us in our goal of avoiding physical spookiness, since it pre-supposes
a strangely Cartesian dichotomy between the referent and its representation. To the
extent that this distinction is held a priori, then it is physically spooky, as it seems
to require the referent and representation to somehow magically line up in order for
the representation to serve as a substitute for its missing referent.

The only way to escape this trap is to give a non-spooky theoryof how repre-
sentations arise from referents. Brian Cantwell Smith tackles this challenge by de-
veloping a theory of representations that explains how theyarise temporally (1995).
Imagine Ralph, the owner of a URI for that he wants to host a picture of the Eiffel
Tower, finally gets to Paris and is trying to get to the Eiffel Tower in order to take
a digital photo. In the distance, Ralph sees the Eiffel Tower. At that very moment,
Ralph and the Eiffel Tower are both physically connected vialight-rays. At the mo-
ment of tracking, connected as they are by light, Ralph, its light cone, and the Eiffel
Tower are a system, not distinct individuals. An alien visitor might even think they
were a single individual, a ‘Ralph-Eiffel Tower’ system. While walking towards the
Eiffel Tower, when the Eiffel Tower disappears from view (such as from being too
close to it and having the view blocked by other buildings), Ralph keeps staring into
the horizon, focused not on the point the Eiffel Tower was at before it went out of
view, but the point where he thinks the Eiffel Tower would be,given his own walk-
ing towards it. Only when parts of the physical world, Ralph and the Eiffel Tower,
are now physically separated can the agent then use a representation, such as the
case of Ralph using an internal “mental image” of the Eiffel Tower or the external
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digital photo to direct his walking towards it, even though he cannot see it. The agent
is distinguished from the referent of its representation byvirtue of not only discon-
nection but by the agent’s attempt to track the referent, “a long-distance coupling
against all the laws of physics” (Smith, 1995). The local physical processes used to
track the object by the subject are the representation, be they ‘inside’ a human in
terms of a memory or ‘outside’ the agent like a photo in a digital camera.

This notion of representation is independent of the representation being either in-
ternal or external to the particular agent, regardless of how one defines these bound-
aries.10 Imagine that Ralph had been to the Eiffel Tower once before. He could have
marked its location on a piece of paper by scribbling a small map. Then, the mark-
ing on the map could help guide him back as the Eiffel Tower disappears behind
other buildings in the distance. This characteristic of thedefinition of representation
being capable of including ‘external’ representations is especially important for any
definition of a representation to be suitable for the Web, since the Web is composed
of information that is considered to be external to its humanusers.

However fuzzy the details of Smith’s story about representations may be, what
is clear is that instead of positing a connection between a referent and a represen-
tation a priori, they are introduced as products of a temporal process. This pro-
cess is at least theoretically non-spooky since the entire process is capable of being
grounded out in physics without any spooky action at a distance. To be grounded
out in physics, all changes must be given in terms of connection in space and time,
or in other words, via effective reach. Representations are“a way of exploiting lo-
cal freedom or slop in order to establish coordination with what is beyond effective
reach” (Smith, 1996). In order to clarify Smith’s story and improve the definition of
the Physical Symbol Systems Hypothesis, we consider Smith’s theory of the “origin
of objects” to be areferential chainwith distinct stages (Halpin, 2006):

• Presentation: ProcessS is connected with processO.
• Input : The processS is connected withR. Some local connection ofSputsR in

some causal relationship with processO via an encoding. This is entirely non-
spooky sinceSandO are both connected withR. R eventually becomes the rep-
resentation.

• Separation: ProcessesO andSchange in such a way that the processes are dis-
connected.

• Output : Due to some local change in processS, Suses its connection withR to
initiate local meaningful behaviour that is in part caused by R.11

In the ‘input’ stage, thereferentis the cause of some characteristic(s) of the in-
formation. The relationship ofreferenceis the relationship between the encoding of
the information (the representation) and the referent. Therelationship of interpreta-
tion becomes one of reference when the distal aspects of the content are crucial for
the meaningful behaviour of the agent, as given by the ‘output’ stage. So we have

10 The defining of “external” and “internal” boundaries is actually non-trivial, as shown in (Halpin,
2008a).
11 In terms of Newell’s earlier definition, 0 isX while S is P andR isY.
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Fig. 2.7 The Referential Chain

constructed an ability to talk about representations and reference while not presup-
posing that behaviour depends on internal representationsor that representations
exist a priori at all. Representations are only needed when the relevant intelligent
behaviour requires some sort of distal co-ordination with adisconnected thing.

So the interpretation of a representation – a particular kind of encoding of content
– results in behavior by the user-agent that is dependent on adistal referent via the
referential chain. In this manner, the act of reference can then be defined as the
interpretation of a representation. This would make our notion of representation
susceptible to being labelled acorrespondence theory of truth(Smith, 1986), where
a representation refers by some sort of structural correspondence to some referent.
However, our notion of representation is much weaker, requiring only a causation
between the referent and the representation - and not just any causal relationship, but
one that is meaningful for the interpreting agent - as opposed to some tighter notion
of correspondence such as some structural ‘isomorphism’ between a representation
and its “target,” the term used by Cummins to describe what wehave called the
“referent” of a representation (1996). So an interpretation or an act of reference
should therefore not be viewed as mapping to referents, but amapping to some
content where that content leads to meaningful behaviour precisely because of some
referential chain. This leads to the notion of a Fregean ‘objective’ sense, which we
turn to later.

Up until now, it has been implicitly assumed that the referent is some physical
entity that is non-local to the representation, but the physical entity was still exis-
tent, such as the Eiffel Tower. However, remember that the definition of non-local
includesanythingthe representation is disconnected from, and so includes physi-
cal entities that may exist in the past or the future. The existence of a representation
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does not imply the existence of the referent or the direct acquaintance of the referent
by the agent using a representation – a representation only implies that some aspect
of the content is non-local. However, this seems to contradict our ‘input’ stage in the
representational cycle, which implies that part of our definition of representation is
historical: for everyre-presentation there must be a presentation, an encounter with
the thing presented. By these conditions, the famous example of Putnam’s example
of an ant tracing a picture of Winston Churchill by sheer accident in the sand would
not count as a representation (1975). If a tourist didn’t know where the Eiffel Tower
was, but navigated the streets of Paris and found the Eiffel Tower by reference to a
tracing of a Kandinsky painting in his notebook, then the tourist would not then be
engaged in any representation-dependent meaningful behaviour, since the Kandin-
sky painting lacks the initial presentation with the EiffelTower. The presentation
does not have to be done by the subject that encountered the thing directly. How-
ever, the definition of a representation does not mean that the sameagent using the
representation had to be the agent with the original presentation. A representation
that is created by one agent in the presence of a referent can be used by another
agent as a ‘stand-in’ for that referent if the second agent shares the same interpre-
tation from encoding to distal content. So, instead of relying on his own vision, a
tourist buys a map and so relies on the ‘second-order’ representation of the map-
maker, who has some historical connection to someone who actually travelled the
streets of Paris and figured out where the Eiffel Tower was. Inthis regard, our defi-
nition of representation is very much historical, and the original presentation of the
referent can be far back in time, even evolutionary time, as given by accounts like
those of Millikan (1984). One can obviously refer to GustaveEiffel even though he
is long dead and buried, and so no longer exists.

Also, the referent of a representation may be to what we thinkof as real-world
patches of space and time like people and places, to abstractions like the concept
of a horse, to unicorns and other imaginary things, to futurestates such as ‘see you
next year,’ and descriptive phrases whose supposedexactreferent is unknown, such
as ‘the longest hair on your head on your next birthday.’ While all these types of
concepts are quite diverse, they are united by the fact that they cannot be completely
realized by local information, as they depend on partial aspects of an agent’s local
information, the future, or things that do not exist. Concepts that are constructed
by definition, including imaginary referents, also have a type of ‘presence,’ it is
just that the ‘presentation’ of the referent is created via the initial description of the
referent. Just because a referent is a concept – as opposed toa physical entity – does
not mean the content of the representation cannot have an meaningful effect on the
interpreter. For example, exchanging representations of ‘ghosts’ - even if they do
not quite identify a coherent class of referents - can governthe behaviour of ghost-
hunters. Indeed, it is the power and flexibility of representations of these sorts that
provide humans the capability to escape the causal prison oftheir local environment,
to plan and imagine the future.
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2.3 The Principles of Web Architecture

It is now possible to show how the various Web terms are related to each other
in a more systematic way. These relationships are phrased asfive finite principles
that serve as the normative Principles of Web architecture:The Principles of Uni-
versality, Linking, Self-Description, the Open World, andLeast Power. In practice
many applications violate these principles, and by virtue of their use of URIs and the
HTTP protocol, many of these applications would be in some sense ‘on the Web.’
However, these principles are normative insofar as they define what could be con-
sidered as compliance with Web architecture, and so an application that embodies
them is compliant with Web architecture.

2.3.1 Principle of Universality

ThePrinciple of Universalitycan be defined as thatany resource that can be iden-
tified by a URI. The notion of both a resource and a URI was from their onset
universal in its ambition, as Berners-Lee said, “a common feature of almost all the
data models of past and proposed systems is something which can be mapped onto
a concept of ’object’ and some kind of name, address, or identifier for that object.
One can therefore define a set of name spaces in which these objects can be said to
exist. In order to abstract the idea of a generic object, the web needs the concepts
of the universal set of objects, and of the universal set of names or addresses of
objects” (1994a). The more informal notes of Berners-Lee are even more startling
in their claims for universality, stating that the first ‘axiom’ of Web architecture is
“Universality” where “by universal’ I mean that the Web is declared to be able to
contain in principle every bit of information accessible bynetworks” (1996b). Al-
though it appears he may be constraining himself to only talkabout digital ‘objects’
that are accessible over the Internet in this early IETF RFCs, in later IETF RFCs
the principle quickly ran amok, as users of the Web wanted to use URIs to refer
to “human beings, corporations, and bound books in a library” (Berners-Lee et al,
1998).

There seems to be a certain way that web-pages are ‘on the Web’in a way that
human beings, corporations, unicorns, and the Eiffel Towerare not. Accessing a
web-page in a browser means to receive some bits, while one cannot easily imag-
ine what accessing the Eiffel Tower itself or the concept of aunicorn in a browser
even means. This property of being ‘on the Web’ is a common-sense distinction
that separates things like a web-page about the Eiffel Towerfrom things like the
Eiffel Tower itself. This distinction is a matter of betweenthe use of URIs toac-
cessandreference, between the local and the distal. The early notes of Berners-Lee
that pre-date the notion of URIs itself address this distinction between access and
reference, phrasing it as a distinction between locations and names. As Berners-Lee
states, “conventionally, a ‘name’ has tended to mean a logical way of referring to
an object in some abstract name space, while the term ‘address’ has been used for
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something which specifies the physical location” (1991). So, a location is a term
that can be used to access the thing, while anameis a term that can be used to refer
to a thing. Unlike access, reference is the use of an identifier for a thing to which
one is immediately causally disconnected. Accessis the use of an identifier to create
immediately a causal connection to the thing identified(Hayes and Halpin, 2008).
The difference between the use of a URI to access a hypertext web-page or other
sort of information-based resource and the use of a URI to refer to some non-Web
accessible entity or concept ends up being quite important,as this ability to repre-
sentationally use URIs as ‘stands-in’ for referents forms the basis of the distinction
between the hypertext Web and the Semantic Web.

Names can serve as identifiers and even representations for distal things. How-
ever, Berners-Lee immediately puts forward the hypothesisthat “with wide-area
distributed systems, this distinction blurs” so that “things which at first look like
physical addresses...cease to give the actual location of the object. At the same time,
a logical name...must contain some information which allows the name server to
know where to start looking” (1991). He posits a third neutral term, “identifier” that
was “generally referred to a name which was guaranteed to be unique but had little
significance as regards the logical name or physical address” (Berners-Lee, 1991).
In other words, anidentifier is a term that can be used to either access or refer, or
both access and refer to, a thing. The problem at hand for Berners-Lee was how to
provide a name for his distributed hypertext system that could get “over the prob-
lem of documents being physically moved” (1991). Using simple IP addresses or
any scheme that was tied to a single server would be a mistake,as the thing that was
identified on the Web should be able to move from server to server without having
to change identifier.

For at least the first generation of the Web, the way to overcome this problem was
to provide a translation mechanism for the Web that could provide a methodology
for transforming “unique identifiers into addresses” (Berners-Lee, 1991). Mecha-
nisms for translating unique identifiers into addresses already existed in the form
of the domain name system that was instituted by the IETF in the early days of the
expansion of ARPANet (Mockapetris, Novemeber 1983). Before the advent of the
domain name system, the ARPANet contained one large mappingof identifiers to
IP addresses that was accessed through the Network Information Centre, created
and maintained by Engelbart (Hafner and Lyons, 1996). However, this centralized
table of identifier-to-address mappings became too unwieldy for a single machine as
ARPANet grew, so a decentralized version was conceived based ondomain names,
where each domain name isa specification for a tree structured name space, where
each component of the domain name (part of the name separatedby a period) could
direct the user-agent to a more specific “domain name server”until the translation
from an identifier to the name to IP address was complete.

Many participants in the IETF felt like the blurring of this distinction that
Berners-Lee made was incorrect, so URIs were bifurcated into two distinct spec-
ifications.A scheme for locations that allowed user-agents via an Internet protocol
to access informationwere calledUniform Resource Locations(URLs) (Berners-
Lee et al, 1994) whilea scheme whose names that could refer to things outside of the
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causal reach of the Internetwere calledUniform Resource Names(URNs) (Sollins
and Masinter, 1994). Analogue things like concepts and entities naturally had to be
given URNs, and digital information that can be transmittedover the Internet, like
web-pages, were given URLs. Interestingly enough, URNs count only as a nam-
ing scheme, as opposed to a protocol like HTTP, because they cannot access any
information. While one could imagine a particular Web-accessible realization, like
a web-page, disappearing from the Web, it was felt that identifiers for things that
were not accessible over the Web should “be globally unique forever, and may well
be used as a reference to a resource well beyond the lifetime of the resource it iden-
tifies or of any naming authority involved in the assignment of its name” (Mealling
and Daniel, 1999).

Precisely because of their lack of ability to access information, URNs never
gained much traction, while URLs to access web-pages becamethe norm. Building
on this observation about the “blurring of identifiers,” thenotion of URIs implodes
the distinction between identifiers used only for access (URLs) and the identifiers
used for reference (URNs). AUniform Resource Identifieris a unique identifier
whose syntax is given in (Berners-Lee et al, January 2005), that may be used to
either or both refer to or access a resource. URIs subsume both URIs and URNs,
as shown in Figure 2.8. Berners-Lee and others were only ableto push this standard
through the IETF process years after the take-off of the Web.Indeed, early propos-
als for universal names, ranging from Raymond Lull to Engelbart’s ‘Every Object
Addressable’ principle (1990), all missed the crucial advantage of the Web; while
classically names in natural language are used for reference, on the Web names
can be used to access information. In a decentralized environment this is crucial
for discovering the sense of a URI, as illustrated by the notions of ‘linking’ and
‘self-description’ detailed next in Section 2.3.2 and Section 2.3.3.

Fig. 2.8 A Venn Diagram describing the relationships between URIs, URNs, and URLs
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2.3.2 Principle of Linking

ThePrinciple of Linking states thatany resource can be linked to another resource
identified by a URI. No resource is an island, and the relationships between re-
sources are captured by the linking, transforming lone resources into a Web. Alink
is a connection between resources. The resource that the link is directed fromis
called itsstarting resourcewhile the resource a link is directed tois theending
resource(DeRose et al, 2001).

What are links for? Just as URIs links may be used for either access or reference,
or even both. In particular, in HTML the purpose of links is for access to additional
hypertext documents, and so they are sometimes called hyperlinks. This access is
often calledfollowingthe link, a transversal from one Web representation to another,
that results in access to Web representations of the ending resource. A unidirectional
link that allows access of one resource from another is the predominant kind of link
in hypertext. Furthermore, access by linking is transitive, for if a user-agent can ac-
cess a Web representation of the ending resource from the starting resource, then it
can access any links present in the Web representation, and thereby access a Web
representation of an ending resource. It is precisely this ability to transitively access
documents by following links that led the original Web to be aseamless Web of hy-
pertext. While links can start in Web representations, the main motivation for using
URIs as the ending resource of a link as opposed to a specific Web representation
is to preventbroken links, where a user-agent follows a link to a resource that is
no longer there, due to the Web representation itself changing. As put by the TAG,
“Resource state may evolve over time. Requiring a URI owner to publish a new
URI for each change in resource state would lead to a significant number of bro-
ken references. For robustness, Web architecture promotesindependence between
an identifier and the state of the identified resource” (Jacobs and Walsh, 2004).

However, one of the distinguishing features of the Web is that links may be bro-
ken by having any access to a Web representation disappear, due to simply the lack
of hosting a Web representation, loss of ownership of the domain name, or some
other reason. These reasons are given in HTTP status codes, such as the infamous
404 Not Found that signals that while there is communication with a server, the
server does not host the resource. Further kinds of broken links are possible, such
as301 Moved Permanently or a5xx server error, or an inability to even con-
nect with the server leading to a time-out error. This ability of links to be ‘broken’
contrasts to previous hypertext systems. Links were not invented by the Web, but
by the hypertext research community. Constructs similar tolinks were enshrined in
the earliest of pre-Web systems, such as Engelbart’soNLine System(NLS) (1962),
and were given as part of the early hypertext work by Theodor Nelson (1965). The
plethora of pre-Web hypertext systems were systematized into the Dexter Reference
Model (Halasz and Schwartz, 1994). According to the Dexter Reference Model, the
Web would not even qualify as hypertext, but as “proto-hypertext,” since the Web
did not fulfill the criteria of “consistency,” which requires “in creating a link, we
must ensure that all of its component specifiers resolve to existing components”
(Halasz and Schwartz, 1994). To ensure a link must resolve and therefore not be
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broken, this mechanism requires a centralized link index that could maintain the
state of each resource and not allow links to be created to non-existent or non-
accessible resources. Many early competitors to the Web like HyperG had a central-
ized link index (Andrews et al, 1995). As an interesting historical aside, it appears
that the violation of this principle of maintaining a centralized link index was the
main reason why the World Wide Web was rejected from its first academic con-
ference, ACM Hypertext 1991, although Engelbart did encourage Berners-Lee and
Connolly to pursue the Web further.12 While a centralized link index would have
the benefit of not allowing a link to be broken, the lack of a centralized link index
removes a bottleneck to growth by allowing the owners of resources to link to other
resources without updating any index besides their own Web representations. This
was doubtless important in enabling the explosive growth oflinking. The lack of
any centralized link index, and index of Web representations, is also precisely what
search engines like Google create post-hoc through spidering, in order to have an
index of links and web-pages that enable their keyword search and page ranking
algorithms. As put by Dan Connolly in response to Engelbart,“the design of the
Web trades link consistency guarantees for global scalability” (2002). So, broken
links and404 Not Found status codes are purposefulfeatures, not defects, of
the Web.

2.3.3 Principle of Self-Description

One of the goals of the Web is for resources to be ‘self-describing,’ currently de-
fined as “individual documents become self-describing, in the sense that only widely
available information is necessary for understanding them” (Mendelsohn, 2006).
While it is unclear what “widely-available” means, one way for information to be
widely-available is for it to be linked to from the Web representation itself. The
Principle of Self Descriptionstates thatthe information an agent needs to have
an interpretation of a Web Representation (resource) should be accessible from the
Web representation itself (URI).

How many and what sort of links are necessary to adequately describe a resource?
A resource is successfully described if an interpretation of a sense is a possible.
Any representation can have links to other resources which in turn can determine
valid interpretations for the original resource. This process of following whatever
data is linked in order to determine the interpretation of a URI is informally called
‘following your nose’ in Web architecture.

TheFollow-Your-Nose algorithmstates that if a user-agent encounters a repre-
sentation in a language that the user-agent cannot interpret, the user-agent should,
in order:

1. Dispose of Fragment Identifiers:As mandated by the URI specification (Berners-
Lee et al, January 2005), user-agents can dispose of the fragment identifier in

12 Personal communication with Tim Berners-Lee.
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order to retrieve whatever Web representations are available from the racine (the
URI without fragment identifier). For example, in HTML the fragment identi-
fier of the URI is stripped off when retrieving the webpage, and then when the
browser retrieves a Web representation, the fragment identifier can be used to
locate a particular place within the Web representation.

2. Inspect the Media Type: The media type of a Web representation provides a
normative declaration of how to interpret a Web representation. Since the number
of IETF media-types is finite and controlled by the IETF, a user-agent should be
able to interpret these media types.13

3. Follow any Namespace Declarations:Many Web representations use a generic
format like XML to in turn specify a customized dialect. In this case, a lan-
guage or dialect is itself given a URI, called anamespace URI, a URI that
identifies that particular dialect. A namespace URI then in turn allows access
to anamespace document, a Web representation that provides more information
about the dialect. In a Web representation using this dialect, anamespace decla-
ration thenspecifies the namespace URI. In this case, the user-agent may follow
these namespace declarations in order to get the extra information needed to in-
terpret the Web representation. As a single Web representation may be encoded
in multiple languages, it may have multiple namespace URIs to follow.

4. Follow any links: The user-agent can follow any links. There are some links
in particular languages that may be preferred, such as the ending resource of a
link header in HTML or in RDF Schema links such asrdfs:isDefinedBylinks,
or links like OWL by theowl:imports(See Chapter?? for the definition of RDF
and OWL). If links are typed in some fashion, each language may define or rec-
ommend links that have the normative status, and normative links should be pre-
ferred. However, for many kinds of links, their normative status is unclear, so the
user-agent may have to follow any sort of link as a last resort.

Using this algorithm, the user-agent can begin searching for some information
that allows it to interpret the Web representation. It can follow the first three guide-
lines and then follow the fourth, applying the above guidelines recursively. Even-
tually, this recursive search should bottom out either in a program that allows an
interpretation of the Web representation (such as a rendering of a web-page or in-
ferences given by a Semantic Web language) or specificationsgiven by the IETF
in plain, human-readable text, the natural bottoming pointof self-description. This
final fact brings up the point that the information that gets one an interpretation is
not necessarily a program, but could be a human-readable specification that requires
a human to make the mapping from the names to the intended sense.

13 The finite list is available athttp://www.iana.org/assignments/media-types/, and a mapping from
media types to URIs has been proposed athttp://www.w3.org/2001/tag/2002/01-uriMediaType-9.
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2.3.4 The Open World Principle

TheOpen World Principlestates thatthe number of resources on the Web can al-
ways increase. There can always be new acts of identification, carving out anew
resource from the world and identifying it with a URI. At any given moment, a new
webpage may appear on the Web, and it may or may not be linked to. This is a
consequence of the relatively decentralized creation of URIs for resources given by
the Principle of Universality and the decentralized creation of links by the Principle
of Linking. Without any centralized link index, there is no central repository of the
state of theentireWeb. While approximations of the state of the entire Web are cre-
ated by indexing and caching web-pages by search engines like Google, due to the
Open World Principle, none of these alternatives will necessarily ever be guaranteed
to be complete. Imagine a web-spider updating a search engine index. At any given
moment, a new resource could be added to the Web that the web-spider may not
have crawled. So to assume that any collection of resources of the Web can be a
complete picture of the whole Web is at best impudent.

The ramifications of the Open World Principle are surprising, and most clear in
terms of judging whether a statement is true or false. This repercussions transform
the Open World Principle into its logical counterpart, theOpen World Assumption,
which logically states thatstatements that cannot be proven to be true cannot be
assumed to be false. Intuitively, this means that the world cannot be bound. On the
Web, the Open World Principle holds that since the Web can always be made larger,
with any given set of statements that allows an inference, a new statement relevant to
that inference may be found. So any agent’s knowledge of the Web is always partial
and incomplete, and thus the Open World Assumption is a safe bet for agents on the
Web. The Open World Principle is one of the most influential yet challenging princi-
ples of the Web, the one that arguably separates the Web from traditional research in
artificial intelligence and databases in practice. In thesefields, systems tend to make
the opposite of the Open World Assumption, the Closed World Assumption. The
Closed World Assumptionstates that logicallystatements that cannot be proven to
be true can be assumed to be false. Intuitively, this means that somehow the world
can be bounded. The Closed World Assumption has been formalized on a num-
ber of different occasions, with the first formalization being due to Reiter (1978).
This assumption has often been phrased as an appeal to the Lawof the Excluded
Middle (∀p.p∨¬p) in classical logic (Detlefsen, 1990).Negation as failureis an
implementation of the Closed World assumption in both logicprogramming and
databases, where failure for the program to prove a statement is true implies the
statement is false (Clark, 1978).

2.3.5 Principle of Least Power

The Principle of Least Powerstates that aWeb representation given by a resource
should be described in the least powerful but adequate language. This principle
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is also normative, for if there are multiple possible Web representations for a re-
source, the owner should chose the Web representation that is given in the ‘least
powerful’ language. The Principle of Least Power seems odd,but it is motivated by
Berners-Lee’s observation that “we have to appreciate the reasons for picking not
the most powerful solution but the least powerful language”(1996b). The reasons
for this principle are rather subtle. The receiver of the information accessible from
a URI has to be able to decode the language that the information is encoded in so
the receiver can determine the sense of the encoding. Furthermore, an agent may be
able to decode multiple languages, but the owner of the URI does not know what
languages an agent wanting to access their URI may possess. Also, the same agent
may be able to interpret multiple languages that can expressthe same sense. So, the
question always facing any agent trying to communicate is what language to use?
In closed and centralized systems, this is ordinarily not a problem, since each agent
can be guaranteed to use the same language. In an open system like the Web, where
one may wish to communicate a resource to an unknown number ofagents, each
of which may have different language capabilities, the question of which language
to deploy becomes nearly insurmountable. Obviously, if an agent is trying to con-
vey some sense, then it should minimally choose a language toencode that sense
which is capable of conveying that sense. Yet as the same sense can be conveyed by
different languages, what language to choose?

The Principle of Least-Power is a common-sense engineeringsolution to this
problem of language choice. The solution is simply to build first a common core
language that fulfills the minimal requirements to communicate whatever sense one
wishes to communicate, and then extend this core language. Using HTML as an
example, one builds first a common core of useful features such as the ability to
have text be bold and have images inserted in general areas ofthe text, and then as
the technology matures, to slowly add features such as the precise positioning of
images and the ability to specify font size. The Principle ofLeast Power allows a
straightforward story about compatibility to be built to honor the“be strict when
sending and tolerant when receiving” maxim of the Internet,since it makes the
design of a new version an exercise in strictly extending theprevious version of
the language (Carpenter, June 1996). A gaping hole in the middle of the Principle
of Least Power is no consistent definition of the concept of ‘power,’ and the W3C
TAG seems to conflate power with the Chomsky Hierarchy, the problem of defining
‘power’ formally must be left as an open research question.

2.4 Conclusions

The Web, while to a large extent being an undisciplined and poorly-defined space,
does contain a set of defining terms and principles. While previously these terms and
principles have been scattered throughout various informal notes, IETF RFCs, and
W3C Recommendations, in this chapter we have systematized both the terminology
and the principles in a way that reveals how they internally build of each other. In
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general, when we are referring to thehypertext Web, we are referringto the use
of URIs and links to access hypertext web-pages using HTTP. Yet there is more to
the Web than hypertext. The next question is how can these principles be applied to
domains outside the hypertext Web, and this will be the topicof Chapter 3, as we
apply these principles to the Semantic Web, a knowledge representation language
for the Web.



Chapter 3
The Semantic Web

The task of classifying all the words of language, or what’s the same thing, all the
ideas that seek expression, is the most stupendous of logical tasks. Anybody but the
most accomplished logician must break down in it utterly; and even for the strongest
man, it is the severest possible tax on the logical equipmentand faculty.Charles
Sanders Peirce, letter to editor B. E. Smith of the Century Dictionary

The Web is a universal information space, but so far it has been one composed
entirely of hypertext documents. As said by Berners-Lee at the World Wide Web
conference in 1994, “to a computer, then, the web is a flat, boring world devoid
of meaning...this is a pity, as in fact documents on the web describe real objects
and imaginary concepts, and give particular relationshipsbetween them” (1994b).
The heart of this particular insight is the realization thatit is the content of the
information, not its encoding in hypertext, that is of central importance to the Web.
The purpose of the architecture of the Web is to connect information of any kind in
a decentralized manner, and this architecture can be applied beyond the hypertext
documents of its initial incarnation.

The next step in Berners-Lee’s programme to expand the Web beyond hypertext
is called theSemantic Web, a term first used by Foucault inThe Order of Things
(Foucault, 1970). The most cited definition of the Semantic Web is given by Berners-
Lee et al. as “the Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling computers
and people to work in cooperation” (2001). How can information be added to the
Web without encoding it in hypertext? The answer is to find a language capable of
representing the information about the aforementioned real objects and imaginary
concepts. This requires aknowledge representation language, a language whose
primary purpose is the representation of non-digital content in a digital encoding.
So instead of the Eiffel Tower, we will have a number of facts about the Semantic
Web, ranging from pictures to its height, encoded in a knowledge representation
language available via a URI for the Eiffel Tower.

As the previous exposition of Web architecture explained indetail, resources on
the Web are given by a URI that identifies the same content on the Web across dif-
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ferent encodings. What drives the Semantic Web is the realization that at least some
of the information on the Web is representational, i.e. information about distal con-
tent. Then instead of HTML, which is mainly concerned with the presentation and
linking of natural language for humans, the Web needs a knowledge representation
language which describes the represented content as fully as possible without regard
to presentation for humans. The mixture of content and encodings for presentation
forces web-spiders to “scrape” valuable content out of hypertext. In theory, encod-
ing information directly in a knowledge representation language gives a spider more
reliable and direct access to the information. As Berners-Lee puts it, “most informa-
tion on the Web is designed for human consumption, and even ifit was derived from
a database with well defined meanings (in at least some terms)for its columns, that
the structure of the data is not evident to a robot browsing the web” (1998b). This
has led him to consider the Semantic Web to a Web “for expressing information
in a machine processable form” and so making the Web “machine-understandable”
(Berners-Lee, 1998b). This leads to the contrast between the Semantic Web as a
‘web of data’ as opposed to the hypertext ‘web of documents.’W3C standards such
as XML were originally created, albeit rarely used, precisely in order to separate
content and presentation (Connolly, 1998).

Furthermore, the purpose of the Semantic Web is to expand thescope of the Web
itself. Most of the world’s digital information is not natively stored in hypertext. In-
stead, it is stored in databases and other non-hypertext documents and spreadsheets.
While this information is slowly but surely migrating towards the Web, as more and
more of this information is being exposed to the Web via scripts that automatically
and dynamically convert data from databases into HTML, the Semantic Web imag-
ines that by having a common knowledge representation language across the entire
Web, all sorts of information that previously were not on theWeb can become part
of the Web. This makes the Semantic Web not a different and parallel Web to the
hypertext Web, but an extension of the current Web, where hypertext serves as just
one possible language.

3.1 A Brief History of Knowledge Representation

The creation of the Semantic Web then depends on the creationof at least one (if
not multiple!) knowledge representation language for the Web, and so the Semantic
Web inherits both the successes and failures of previous efforts to create knowl-
edge representation languages in artificial intelligence.The earliest work in digital
knowledge representations was spear-headed by John McCarthy’s attempts to for-
malize elements of human knowledge in first-order predicatelogic, where the pri-
mary vehicle of intelligence was to be considered some form of inference (1959).
These efforts reached their apex in Hayes’s “Naive Physics Manifesto,” which called
for parts of human understanding to be formalized as first-order logic. Although ac-
tual physics was best understood using mathematical techniques such as differential
equations, Hayes conjectured that most of the human knowledge of physics, such
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as “water must be in a container for it not to spill” could be conceptualized better
in first-order logic (1979). Hayes took formalization as a grand long-term challenge
for the entire AI community to pursue, “we are never going to get an adequate for-
malization of common sense by making short forays into smallareas, no matter how
many of them we make” (Hayes, 1979). While many researchers took up the grand
challenge of Hayes in various domains, soon a large number ofinsidious problems
were encountered, primarily in terms of the expressivity offirst-order logic and
its undecidability of inference. In particular, first-order logic formalizations were
viewed as not expressive enough, being unable to cope with temporal reasoning as
shown by the Frame Problem, and so had to be extended with fluents and other
techniques (McCarthy and Hayes, 1969). Since the goal of artificial intelligence
was to create an autonomous human-level intelligence, another central concern was
that predicate calculus did not match very well with how humans actually reasoned.
For example, humans often use default reasoning, and various amendments must
be made for predicate calculus to support this (McCarthy, 1980). Further efforts
were made to improve first-order logic with temporal reasoning to overcome the
Frame Problem, as well as the use of fuzzy and probabilistic logic to overcome is-
sues brought up by default reasoning and the uncertain nature of some knowledge
(Koller and Pfeffer, 1998). Yet as predicted by Hubert Dreyfus, it seemed none of
these formal solutions could solve the fundamental epistemological problem that all
knowledge was in front of an immense background of a world that itself seemed to
resist formalization (Dreyfus, 1979).

Under increasing criticism from its own former champions like McDermott, first-
order predicate calculus was increasingly abandoned by those in the field of knowl-
edge representation (1987). McDermott pointed out that formalizing knowledge in
logic requires that all knowledge be formalized as a set of axioms and that “it must
be the case that a significant portion of the inferences we want...are deductions, or it
will simply be irrelevant how many theorems follow deductively from a given axiom
set” (1987). McDermott found that in practice neither can all knowledge be formal-
ized and that even given some fragment of formalized knowledge, the inferences
drawn are usually trivial or irrelevant (1987). Moving awayfrom first-order logic,
the debate focused on what was the most appropriate manner for AI to model hu-
man intelligence. Some researchers championed aproceduralview of intelligence
that regarded the representation as itself irrelevant if the program could successfully
solve some task given some input and output. This contrastedheavily with earlier
attempts to formalize human knowledge that it was called thedeclarative versus
proceduraldebate. Champion of procedural semantics Terry Winograd stated that
“the operations on symbol structures in a procedural semantics need not correspond
to valid logical inferences about the entities they represent” since “the symbol ma-
nipulation processes themselves are primary, and the rulesof logic and mathematics
are seen as an abstraction from a limited set of them” (1976).While the procedural
view of semantics first delivered impressive results through programs like SHRDLU
(Winograd, 1972), since the ‘semantics’ were ad-hoc and task-dependent, proce-
dural semantics could not be used outside the limited domainin which they were
created. Furthermore, there became a series of intense debates on whether these pro-
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grams often purported to do what they wanted even within their domain, as Dreyfus
critiqued that it was ridiculous that just because a programwas labelled ‘under-
stand’ that it did actually in any way understand (1979). Interestingly enough, the
debate between declarative and procedural semantics is, under the right formal con-
ditions, a red herring since the Curry-Howard Isomorphism states that given the
right programming language, there is a tight coupling between logical proofs and
programs so that the simplification of proofs can be equivalent to steps of computa-
tion (Wadler, 2001).

Within AI, research began into other forms of declarative knowledge represen-
tation languages besides first-order logic that were supposed to be in greater con-
cordance with human intelligence and that could serve as more stable substrates
for procedural knowledge-based systems. Most prominent among these alterna-
tives weresemantic networks, “a graphic notation for representing knowledge in
patterns of interconnected nodes and arcs” (1987). Semantic networks are as old
as classical logic, dating back to Porphyry’s explanation of Aristotelian categories
(Sowa, 1987), although their first self-described usage wasas a common knowledge-
representation system for machine-translation systems byMasterman (1961). Moti-
vated by a correspondence with natural language, semantic networks were used by
many systems in natural language processing, such as the work of Wilks in resolving
ambiguities using preference semantics and the work of Schank using conceptual
dependency graphs to discover identical sentences regardless of their syntactic form
(Schank, 1972; Wilks, 1975). Soon semantic networks were being used to represent
everything from human memory to first-order logic itself (Quillian, 1968; Sowa,
1976). The approach of semantic networks was given some credence by the fact
that often when attempting to make diagrams of ‘knowledge,’humans often start
by drawing circles connected by lines, with each component labelled with some
human-readable description. A semantic network about ‘Thearchitect of the Eiffel
Tower was Gustave Eiffel’ is given in Figure 3.1. Note that itrefers declaratively to
things in the world, but uses ‘natural-language-like’ labels on its nodes and edges.

Fig. 3.1 An example semantic network
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When researchers attempted to communicate or combine theirknowledge rep-
resentation schemes, no-one really knew what the natural language description
‘meant’ except the author, even when semantic networks wereused as a formal
language. The ‘link’ in semantic networks was interpreted in at least three different
ways (Woods, 1975) and no widespread agreement existed on the most common
sort-of link, theIS-A link, which could represent both subclassing, instantiation,
close similarity, and more. This led to an assault on semantic networks by champions
of first-order logic like Hayes, who believed that by providing a formal semantics
that defined ‘meaning’, first-order logic at least allowed knowledge representations
to be transportable across domains, and that many alternative knowledge represen-
tations could be re-expressed in first order-logic (Hayes, 1977a). In response, the
field of knowledge representation bifurcated into separatedisciplines. Many of the
former champions of logic currently do not believe that human intelligence can be
construed as logical inference, but researchers still actively pursue the field as it
is of crucial importance to many systems such as mathematical proof-proving and
it is still used in many less ambitious knowledge-reasoningsystems such as ISO
Common Logic (Delugach, 2007).

The classical artificial intelligence programme, while fixated on finding a for-
mal language capable of expressing human knowledge, had ignored the problem
of tractable inference. This problem came to attention abruptly when KRL, one of
the most flexible knowledge representation languages pioneered by Winograd was
found to have intractable inference even on simple problemsof cryptarithmetic, de-
spite its representational richness.1 Furthermore, while highly optimized inference
mechanisms existed for first-order logic, first-order predicate logic was proven to be
undecidable. These disadvantages of alternative representational formats and first-
order logic led many researchers, particularly those interested inan alternative “slot
and value” knowledge representation languageknown asframesto begin research-
ing the decidability of their inference mechanisms (Minsky, 1975). This research
into frames then evolved into research ondescription logics, where the trade-offs
between the tractability and expressivity where carefullystudied (Levensque and
Brachman, 1987). The goal of the field was to produce a logic with decidable infer-
ence while maintaining maximum expressivity. Although thefirst description-logic
system, KL-ONE, was proven to have undecidable inference for even subsump-
tion, later research produced a vast proliferation of description logics with carefully
categorized decidability and features (Brachman and Schmolze, 171-216; Schmidt-
Schauss, 1989).

Ultimately, the project of artificial intelligence to design a single knowledge rep-
resentation system suitable for creating human-level intelligence has not yet suc-
ceeded and progress, despite occassional bursts of enthusiasm, is doubtful at best.
With no unifying framework, the field of artificial intelligence itself fragmented
into many different diverse communities, each with its own family of languages and
techniques. Researchers into natural language embraced statistical techniques and
went back to practical language processing tasks, while logicians have produced

1 Personal communication with Henry S. Thompson.
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an astounding variety of different knowledge representation languages, and cog-
nitive scientists moved their interests towards dynamicalsystems and specialized
biologically-inspired simulations. The lone hold-out seemed to be the Cyc project,
which continued to pursue the task of formalizing all ‘common-sense’ knowledge
in a single knowledge representation language (Lenat, 1990). In one critique of Cyc,
Smith instead asked what lessons knowledge representationlanguages could learn
from hypertext, “Forget intelligence completely, in otherwords; take the project as
one of constructing the world’s largest hypertext system, with Cyc functioning as
a radically improved (and active) counterpart for the Deweydecimal system. Such
a system might facilitate what numerous projects are struggling to implement: reli-
able, content-based searching and indexing schemes for massive textual databases,”
a statement that strangely prefigures not only search engines, but the revitalization
of knowledge representation languages due to the Semantic Web (1991).

3.2 The Resource Description Framework (RDF)

What makes knowledge representation language on the Webdifferent from clas-
sical knowledge representation? Berners-Lee’s early thoughts, as given in the first
World Wide Web Conference in Geneva in 1994, were that “adding semantics to the
Web involves two things: allowing documents which have information in machine-
readable forms, and allowing links to be created with relationship values” (Berners-
Lee, 1994b). Having information in “machine-readable forms” requires a knowl-
edge representation language that has some sort of relatively content-neutral lan-
guage for encoding (Berners-Lee, 1994b). The parallel to knowledge representation
in artificial intelligence is striking, as it also sought to find one universal encoding,
albeit encoding human-intelligence. The second point, of “allowing links,” means
that the basic model of the Semantic Web will be a reflection ofthe Web itself:
the Semantic Web consists of connecting resources by links.The Semantic Web is
then easily construed as a descendant of semantic networks from classical artificial
intelligence, where nodes are resources and arcs are links.Under the aegis of the
W3C, the first knowledge representation language for the Semantic Web, theRe-
source Description Language(RDF) was made a W3C Recommendation, and it is
clearly inspired by work in AI on semantic networks. This should come as no sur-
prise, for RDF was heavily inspired by the work of R.V. Guha onthe Meta-Content
Framework (Guha, 1996). Before working on MCF, Guha was chief lieutenant of
the Cyc project, the last-ditch Manhattan project of classical artificial intelligence
(R.V.Guha and D.Lenat, 1993). There are nonetheless some key differences between
semantic networks and RDF, as RDF was built in accordance with the Principles of
Web Architecture as given in Chapter??, as detailed in the next subsections.
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3.2.1 RDF and the Principle of Universality

Semantic networks fell out of favour because of their use of ambiguous natural
language terms to identify their nodes and arcs, which became a problem when
semantic networks were transported between domains and different users, a problem
that would be fatal in the decentralized and multi-lingual environment of the Web
Woods (1975). According to the Principle of Universality, since a resource can be
anything, then a component of the knowledge representation languageshould be
considered a resource, and thus can be given a URI. Instead oflabelling the arcs and
nodes with natural language terms, in RDF all the arcs and nodes can be labelled
with URIs. Although few applications had ever taken advantage of the fact before
RDF, URIs could be minted for things like the Eiffel Towerqua Eiffel-Tower, an
absolute necessity for knowledge representation. Since the sense of statements in
knowledge representation is usually about content in the world outside the Web,
this means that the Semantic Web crucially depends on the rather strange fact that
URIs can refer to things outside the Web.

This does not restrict the knowledge-representation language to merely refer to
things that we would normally consider outside of the Web, since normal web-pages
use URIs as well, and so the Semantic Web can easily be used to refer to normal
web-pages. This has some advantages, as it allows RDF to be used to model the re-
lationships between web-accessible resources, and even mix kinds of relationships.
This sort of “meta-data” is exemplified by the relationship between a web-page and
its human author, which in with RDF would both be denoted by URIs. Lastly, this
ability to describe everything with URIs leads to some unusual features, for RDF
can then model its own language constructs using URIs, and make statements about
its own core language constructs. However, just as all components of RDF may be
considered resources, just as all resources may not have URIs, all components of
RDF may not have URIs. For example, a string of text or a numbermay be a com-
ponent of RDF, and these are calledliterals by RDF. In RDF specified anonymous
resources are not given a URI, and these are calledblank nodes. Yet it would be
premature to declare that the deployment of URIs in RDF signal a major improve-
ment over the natural language labels, for URIs can be just asambiguous as natural
language labels by themselves. However, various theories of semantics as well as
engineering like the ‘follow-your-nose’ principle were theorized to solve the prob-
lem of ambiguity.

3.2.2 RDF and the Principle of Linking

The second step in Berners-Lee’s vision for the Semantic Web, “allowing links to be
created with relationship values,” follows straightforwardly from the application of
the Principle of Universality to knowledge representation. Since RDF is composed
of resources, and any resource may link to another resource,then any term in RDF
may be linked to another term. This linking forms the heart ofRDF, as it allows
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disparate URIs to be linked together in order for statementsin RDF to be made.
The precise form of a statement in RDF is atriple, which consists of two resources
connected by a link, as shown in Figure 3.2. This use of RDF shows off the flexibility
of using URIs and links for reference instead of access. Lastly, this use of URIs
and linksoutsideWeb representations like those of hypertext web-pages shows the
flexibility of the linking paradigm, as RDF is an example of the use of the idea
of a linkbasethat was developed in the hypertext community, in particular in the
Microcosmhypertext system (a pre-Web forebear that failed due to not being based
on open standards and also not being based on the Internet) (Fountain et al, 1990).

Any Web representationin some form of Semantic Web languagesuch as RDF
are calledSemantic Web documents. There are several options for encoding Se-
mantic Web documents. The W3C standardized an encoding of RDF is in a ver-
bose XML format called ‘RDF/XML’ and a simpler encoding called Turtle for
triples. In Turtle, a triple is three space-delimited terms(the subject, predicate,
and object) ended in a period:http://www.example.org/EiffelTower
http://www.example.org/hasArchitect
http://www.example.org/Gustave Eiffel.Using namespaces, withex="http://www.example.org/"
one abbreviates the example triple toex:EiffelTower ex:hasArchitect
ex:Gustave Eiffel. As compared to Figure 3.1, theonlynoticeable difference
between RDF and a classical semantic network is the use of URIs.

Fig. 3.2 An example RDF statement

There are some restrictions to linking on the Semantic Web. As opposed to the
vast numbers and kinds of links possible in XLink, linking onthe Semantic Web is
directed, like hyperlinks (DeRose et al, 2001) .The starting resource in the triple
is called thesubject, while the link itself is called thepredicate, and the ending
resource in the tripleis theobject. The predicate is usually a role as opposed to
an arc role. The major restriction on the Semantic Web is thatthe subject must be
a URI or a blank node, and the predicate must also be a URI. The object, on the
other hand, is given the most flexibility, as it may either be aURI, a blank node,
or a literal. This predicate-argument structure is a well-known and familiar structure
from logic, linguistics, and cognitive science. Triples resemble the binary predicates
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in propositional logic needed to express facts, relationships, and the properties of
individuals. Furthermore, triples seem similar to simple natural language sentences,
where the subject and objects are nouns and the predicate is averb.

From the perspective of the traditional Web, the main feature of RDF is that links
in RDF themselves have a required role URI. It is through thisrole that URIs are
given to relationships outside the Web in RDF. For example, the relationship of ‘is
architect of’ between Gustave Eiffel and the Eiffel Tower could be formalized as
a link (as shown in Figure 3.2), as could the relationship between Tim Berners-
Lee and the creation of his web-page. Since the relationships are abstract, these
URIs then refer to these relationships, the URIs may not be accessible, and RDF
predicates are unlike links in traditional hypertext systems. Similarly, a triple by
itself can only state a simple assertion, but webs of links may be made between
triples to explain complex statements. A set of triples thatshare resources is called
a graph, as illustrated in Figure 3.3 by two triples having the same subject, namely
that ‘The Eiffel Tower in Paris has as an architect called Gustave Eiffel.’

Fig. 3.3 Merging RDF triples

With the ability to make separate statements using URIs, themain purpose of
RDF is revealed to beinformation integration. Due to their reliance on URIs, RDF
graphs cangraph merge, whentwo formerly separate graphs combine with each
other when they use any of the same URIs. The central purpose of URIs is to allow
independent agents to make statements about the same referent. With a common
language of URIs, agents can merge information about the referents of the URIs
in a decentralized manner. This is one of the most important applications of the
Semantic Web, and it will be further explored in Chapter??.

3.2.3 RDF and the Principle of Self-Description

Once the Principle of Universality and the Principle of Linking are obeyed, the
Principle of Self-Description naturally follows, and RDF is no exception. Self-
description is a crucial advantage of RDF in decentralized environments, since an
agent by following links can discover the context of a tripleneeded for its interpreta-
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tion. As witnessed by the Brachman and Smith survey of knowledge representation
systems, a bugbear of semantic networks was their inabilityto be transferred outside
of the closed domain and centralized research group that designed them (Brachman
and Smith, 1980). The crucial context for usage of a particular semantic network
was always lost in transfer, so that what precisely “IS-A” means could vary im-
mensely between contexts, such as the difference between a sub-class relationship
or individual identity (Brachman, 1983). By providing self-description, RDF triples
can be transported from one context to another, at least in anideal world where nor-
mal conditions, such as when the URIs in the triple can be usedto access a web-page
describing its content, and correct media types are used.

The hypertext Web, when every resource is linked together, provides a seam-
less space of linked documents. For example, the W3C tries todeploy its own
internal infrastructure in a manner compatible with the principles of Web archi-
tecture. Its e-mail lists are archived to the Web, and each e-mail is given a URI,
so an agent may follow links seamlessly from one e-mail message to another, and
by following links can launch applications to send e-mail, discover more about the
group, and in new e-mails reference previous topics. Likewise, an initiative called
“Linked Data” attempts to deploy massive public data-sets as RDF, and its main
tenet is to follow the Principle of Self Description (Bizer et al, 2008). The hope
is that the Semantic Web can be thought of as a seamless web of linked data, so
that an agent can discover the interpretation of Semantic Web data by just follow-
ing links. These links will then go to more data which may hostformal definitions
or informal natural language descriptions and multimedia depictions. For exam-
ple, if one finds an RDF triple such asex:EiffelTower ex:hasArchitect
ex:Gustave Eiffel and discover more information about the Eiffel Tower,
like a picture of it or the fact that construction was finishedin 1889 by accessing
http://www.example.org/EiffelTower.

Since RDF is supposed to be an all-purpose knowledge representation system for
the Web, RDF statements themselves can also be described using RDF. RDF itself
has a namespace document athttp://www.w3.org/1999/02/22-rdf-syntax-ns#,
which provides a description of RDF in RDF itself. In other words, RDF can be
meta-modeled using RDF itself, in a similar manner to the useof reflection in knowl-
edge representation and programming languages (Smith, 1984). For example, the
notion of a RDF predicate ishttp://www.w3.org/1999/02/22-rdf-syntax-ns#predicate,
and is defined there as “the predicate of the subject RDF statement.” The same
holds for almost all RDF constructs, and a conformant RDF processor can de-
rive from any RDF triple a set of axiomatic triples that defineRDF itself, such as
rdf:predicate rdf:type rdf:Property (all RDF predicates are of the
type property). For any RDF statement likeex:EiffelTower ex:hasArchitect
ex:Gustave Eiffel, an RDF-aware agent can then infer thatex:hasArchitect
rdf:type rdf:predicate, which states in RDF that an architect relationship
is a predicate in a RDF triple. However, usually RDF is not hosted according to the
Principle of Self-Description. Use of the media typeapplication/rdf+xml
is not consistent usually, and the namespaces URI of specifications like the RDF
Syntax namespace just allow access of to some RDF triples, which is useless to a
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machine incapable of understanding RDF in the first place, instead of a more use-
ful RDDL document Borden and Bray (2002). A version of RDDL inRDF (Walsh
and Thompson, 2007) with an associated GRDDL transform in order to make it
even easier for Semantic Web agents to follow namespace documents to associated
resources (Connolly, 2007).

3.2.4 RDF and the Open World Principle

The Principle of the Open World is the fundamental principleof inference on the
Semantic Web. A relatively simple language for declaring sub-classes and sub-
properties, RDF Schema, abbreviated as RDF(S), was from thebeginning part of
the vision of the Semantic Web and developed simultaneouslywith RDF. Yet deter-
mining how to specify exactly what other triples may be inferred from a given RDF
triple is a non-trivial design problem, since it required adding an inference mecha-
nism to a semantic network, which historically in AI featured little or no inference.
Those that do not remember the history of artificial intelligence are bound to repeat
it, and the process of specifying inference in RDF led to an almost complete repeat
of the ‘procedural versus declarative’ semantics debate. As originally as defined,
the original RDF specification defined its inference procedure by natural language
and examples. Yet differing interpretations of the original RDF specification led to
decidedly different inference results, and so incompatible RDF processors. This be-
ing unacceptable for a Web standards organization, the original defender of formal
semantics in artificial intelligence, Pat Hayes, oversaw the creation of a declarative,
formal semantics for RDF and RDF(S) in order to give them a principled inference
mechanism.

The Open World principle was considered to be a consequence of the lack of
centralized knowledge implied by the decentralized creation of URIs and links as
given by the Principles of Universality and Linking. The parallel to the removal
of centralized link indexes is that on the Semantic Web, “we remove the central-
ized concepts of absolute truth, total knowledge, and totalprovability, and see what
we can do with limited knowledge” (1998c). Hayes argued, in asimilar fashion as
he had argued in the original ‘procedural versus declarative’ semantics debate in
AI, that the Semantic Web should just use standard first-order predicate logic. Yet
while Berners-Lee accepted the need for a logic-based semantics, he argued against
Hayes for the Principle of Open World and monotonicity, and the formal semantics
of RDF was designed to obey the Open World Assumption (Hayes,2002). The rea-
son for maintaining the Open World Assumption was that adding triples in a graph
merge should never change the meaning of a graph so one could never retract infor-
mation by simply adding more triples, or invalidate previously-made conclusions.
This monotonicity is considered key, since otherwise everytime a RDF triple was
merged into a graph the interpretation of the graph could change and so the en-
tire graph might have to be re-interpreted, a potentially computationally expensive
operation. By having a design that allows only monotonic reasoning, RDF allows
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interpretations to be changed incrementally in order to scale well in the potentially
unbounded partial information of the Web. Hayes himself eventually came to agree
with Berners-Lee on the issue, noting that reasoning on the Semantic Web “needs
to always take place in a potentially open-ended situation:there is always the pos-
sibility that new information might arise from some other source, so one is never
justified in assuming that one has ’all’ the facts about some topic” (2002).

RDF Schema is on the surface a very simple modeling and inference language
(Brickley and Guha, 2004). Due to the Open World assumption,unlike schemas
in relational databases or XML Schemas, RDF Schemas are not prescriptive, but
merely descriptive, and so an agent cannot validate RDF triples as being either con-
sistent or inconsistent with an RDF Schema (Thompson et al, 2004). They cannot
make the information given by a triple itself change, but only enrich the description
of an existing triple. RDF Schema adds two main features to RDF. First, RDF(S)
provides a notion ofclass, or a set of resources. Then RDF(S) allows any resource
to be given membership in classes and declare sub-classes (or subsets) of a class
that inherit all the triples created to describe the class. Second, RDF(S) also al-
lows properties to have sub-properties and for properties to have types for domains
and ranges, such that in for a triple the subject is the domainand the object is the
range of a property. Imagine that the propertyex:hasArchitect has the range
ex:Person and domainex:Building. Note that RDF Schemas are not auto-
matically applied to triples even if they are mentioned in a triple, such that for a state-
ment likeex:Eiffel Tower ex:hasArchitect ex:Gustave Eiffel,
the fact that the domain ofex:hasArchitect is buildings and the range is peo-
ple, is not known unless the RDF Schema is automatically imported and so merged
with the triple itself. An RDF(S)-aware agent that has retrieved the RDF Schema can
deduce from the triple thatex:Gustave Eiffel rdf:type ex:Person,
namely that Gustave Eiffel is indeed a person. This sort of simple reasoning is again
encoded as a set of axiomatic triples and rules for inferenceand semantic conditions
for applying these axioms to infer more triples. See the RDF Formal Semantics for
full details (Hayes, 2004). From here on out, the acronym ‘RDF’ refers to both RDF
and RDF(S), whose formal semantics are given together (Hayes, 2004).

In practice, the Principle of the Open World has surprising results. One of the
ramifications in RDF is that there is no proper notion of false, but only the notion that
something is either inferred or not, and if it is not inferred, it may simply be unde-
fined. Although it seems straightforward, in practice this leads to surprising results.
Take the following example: “Gustave is the father of Valentine,” which in RDF is
ex:Gustave ex:fatherOf ex:Valentine Eiffel. Is George also the
father of Valentine (ex:George ex:fatherOf ex:Valentine? Operating
under the closed world assumption, the answer would be no. Yet operating under the
Open World Principle, that statement would be possible, forthere is no restriction
that the there someone can only have a single father, and in RDF(S) stating such a
restriction is impossible. This restriction is possible intheWeb Ontology Language
(abbreviated OWL, in an obscure reference to A.A. Milne), anopen-world exten-
sion of RDF that allows restrictions, such as cardinality, to be placed on predicates.
However, even if one set the cardinality of theex:fatherOf predicate to one (so
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that one could have at most one father), the results will be surprising: the reasoner
will conclude thatex:George andex:Gustave refer to the same individual. In
contrast to the expected behaviour of many other inference engines, including peo-
ple, there is noUnique Name Assumption, the assumption is that each unique name
refers to a unique individual, due to the Open World Principle. The Unique Name
Assumption, while very useful for counting, makes an implicit assumption about
each name referring to only one individual, and if an individual cannot be found
that satisfies the name then that individual must not exist. This further reinforces the
tendency of URIs on the Semantic Web, despite their global scope, to be ambiguous,
a point we shall return to.

3.2.5 RDF and the Principle of Least Power

Insofar as it is applied to the Semantic Web, the Principle ofLeast Power is strangely
counter-intuitive: traditionally knowledge representation languages were always
striving for greater power, yet the Semantic Web begins withRDF, a language pur-
posefully designed to be the least powerful language. The true bet of the Semantic
Web is then on triples as the most basic language upon which other languages can
be based. The challenge for the Principle of Least Power is how to build the rest of
the Semantic Web by expanding on the language of triples.

Inspired by the Principle of Least Power, he envisaged that each language would
extend and build upon lower-level languages. On top of RDF, Berners-Lee envis-
aged a whole stack of more expressive languages being constructed. Although the
vagarities of the standardization process have caused various changes in the ‘Se-
mantic Web stack’ and numerous conflicting versions exist, the original and most
popular version of the Semantic Web stack is given in Figure 3.4 (Gerber et al,
2008). The W3C has commenced standardization efforts in a number of these ar-
eas, and research in almost all levels of the stack has begun.The majority of the
research has focused on extending the Semantic Web with “ontologies” based on
description logic like OWL. As should be suspected given their heritage in artificial
intelligence, most of the work in description logic appliedto OWL has focused on
determining the most expressive possible language that preserves decidable infer-
ence. OWL itself works well with the Open World Principle, since it only makes an
inference by adding inferred statements and classifications, and so remains mono-
tonic. While almost any possible triple is acceptable in RDF, OWL allows users
to design ontologies that can even add constraints, such as cardinality and data-
typing, that can make some RDF triples inconsistent with a given OWL ontology.
Another part of the Semantic Web, originally unforeseen, isthe query language
SPARQL, a query language for RDF similar to the popular database query language
SQL (Prud’hommeaux and Seaborne, 2008). Current work is focused onRule Inter-
change Format) (RIF), a rule-language similar to Prolog for both serializing normal
rules and operating over RDF data (Boley and Kifer, 2008). Other higher-levels on



64 3 The Semantic Web

the Semantic Web stack such as ‘Unifying Logic’ remain mysterious, if poetic and
evocative.

Fig. 3.4 The Semantic Web stack

3.3 Information and Non-Information Resources

One question is whether or not there should be some way to distinguish between
URIs used to access web-pages and Semantic Web documents, and URIs used as
names for things like physical entities and abstract concepts that are not ‘on the
Web.’ This latter class of URIs, URIs that are used as names for entities and abstract
concepts, are calledSemantic Web URIs. Should a URI be able to both name a non-
Web accessible thing in addition to accessing a representation of the thing? This is
a difficult question, as it seems the class of web-pages and physical people should
be disjointed (Connolly, 2006). The W3C TAG took on this question, calling it the
httpRange-14issue, which was phrased as the question: what is the range ofthe
HTTP dereference function? (Connolly, 2006)

The TAG defined a class of resources on the Web called aninformation resource,
which is a resource “whose essential characteristics can beconveyed in a message”
(Jacobs and Walsh, 2004). In particular, this means that aninformation resourceis
a resource that can be realized as an information-bearing message, even with mul-
tiple encodings.A resource is defined by its sense (content), not the encodingof its
Web representations. So information resources would naturally include web-pages
and so resources on the hypertext Web, as well as most digitalthings. However,
there arethings that cannot be realized digitally by a message, but only described or
depicted by digital information. These things arenon-information resources. Their
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only realization is themselves. Many analogue things therefore are non-information
resources. It appears that this distinction between information resources and non-
information resources is trying to get at the heart of the distinction between a re-
source being a web-pageaboutthe Eiffel Tower and a resourcefor the Eiffel Tower
itself. A web-page is an information resource, but the Eiffel Tower itself is a non-
information resource, as is the text ofMoby Dickor the concept of red.

The distinction is more subtle than it first appears. The question is not whether
somethingis accessible on the Web, but whether itcan be accessible on the
Web by beingin theory transmitted as an encoding, and therefore Web repre-
sentation, in a message. For example, imagine a possible world where the Eiffel
Tower does not have a web-page. In this world, it would seem counter-intuitive
to claim that the web-page of the Eiffel Tower is then not an information re-
source just because it happens not toexistat this moment. This is not as implau-
sible as it sounds, for imagine if the Eiffel Tower’s web server went down, so that
http://www.tour-eiffel.fr returned a404 status code. A more intuitive
case is that of the text ofMoby Dick. Is the text ofMoby Dickan information re-
source? If the complete text of Moby Dick isn’t on the Web, oneday it might be.
However, a particular collector’s edition ofMoby Dickcould not be an information
resource, since the part of that resource isn’t the text, butthe physical book itself.
Are ordinary web developers expected to have remarkably scholastic discussions
about whether or not something isessentiallyinformation before creating a Seman-
tic Web URI?

Both a web-page about the Eiffel Tower and the text ofMoby Dickare, on some
level of abstraction, carrying information about some content in some encoding. So,
if any information resource is any resource which can have its content realized as a
Web representation, then information resourcesmustbe on some level digital so that
they can be encoded as Web representations. Then both the text of Moby Dickand
a web-page about the Eiffel Tower are information resources, even if they are not
currently Web-accessible. Digital information can be transmitted via digital encod-
ings, and socan in theory be on the Web by being realized as Web representations,
even if the resource does not allow access to Web representations at a given time.
Lastly, a particular edition of Moby Dick, or Moby Dick in French, or even some
RDF triples aboutMoby Dick, are all information resources, with various encodings
specified at certain levels of abstraction. It appears that the best story we have to tell
about the rather clumsy term ‘non-information resource’ isthat a non-information
resource is a thing that isanalogueand so resists direct digital encoding, but can
only be indirectly encoded via representations of the thingin a suitable language.
This would then at least be the rather odd combination of physical entities and ab-
stract concepts. So the Eiffel Tower itself, Tim Berners-Lee himself, the integers,
and a particular book at a given point in space-time (i.e. on aparticular shelf!) are
all non-information resources.

Should there be a class to which a web-page about the Eiffel Tower belongs
but the text of some as-of-yet unwritten novel does not? In other words, it seems
that the class ofinformation resourcesis too large, and we need a term for things
that are actually accessible over the Web at a given time. We call this kind of thing a
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Web resource, an information resource that has accessible Web representations that
realize its information.A Web resource can then be thought of as a mapping from
time of request to a series of Web representation responses,where the information
realized by those Web representationsare the Web resource. This definition is close
in spirit to the original pre-Semantic Web thinking behind resources in IETF 1630,
as well as in IETF RFC 2616 where a ‘resource’ is defined as “a network data
object or service ” and coherent with Engelbart’s original use of the term ‘resource’
(Engelbart and Ruilifson, 1999; Fielding et al, 1999). ASemantic Web resourceis
a resource that allows access to Semantic Web documents.

The distinction between information resources and non-information resources
has real effects. When the average hacker on the streets wants to add some informa-
tion to the Semantic Web, the first task is to mint a new URI for the resource at hand,
and the second task is to make some of this new information available as a Web rep-
resentation. However, should a Web representation be accessible from a URI for
a non-information resource? If not, should Web representations be accessed from
such a non-information resource, as it might confuse the non-information resource
itself with a Web resource that merely represents that resource. Yet how else would
fulfilling the Principle of Self-Description for Semantic Web resources be possible?
To refuse to allow access to any Web representations would make the Semantic Web
completely separate from the Web. Non-information resources needassociated de-
scriptions, resources that have as their primary purpose the representation, however
incomplete, of some non-information resource. In other words, associated descrip-
tions are classical examples of metadata. According to the TAG, since the associated
description is a separate thing from the non-information resource it represents, the
non-information should be given a separate URI. This would fulfill the common-
sense requirement that the URI for a thing itself on the Semantic Web should be
separatefrom the URI for some information about the thing.

The TAG officially resolvedhttpRange-14by saying that disambiguation be-
tween these two types of resource should be done through the303 See Other
HTTP header. The official resolution to Identity Crisis by the TAG is given below
as:

• If an HTTP resource responds to a GET request with a2xx response, then the
resource identified by that URI is an information resource;

• If an HTTP resource responds to a GET request with a303 (See Other)
response, then the resource identified by that URI could be any resource;

• If an HTTP resource responds to a GET request with a4xx (error) response,
then the nature of the resource is unknown.

To give an example, let’s say an agent is trying to access a Semantic Web URI
that names a non-information resource, the Eiffel Tower itself, as illustrated in Fig-
ure 3.5. Upon attempting to access that resource with a HTTP GET request using
its Semantic Web URI, since the Eiffel Tower itself is not an information resource,
no Web representations are directly available. Instead, the agent gets a303 See
Other that in turn redirects them to a documentation resource thathosts Web rep-
resentations about the Eiffel Tower, such as the information resource for the home-
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page of the Eiffel Tower. When this URI returns the 200 statuscode in response
to an HTTP GET request, the agent can infer that the homepage is actually an in-
formation resource. The Semantic Web URI used to refer to theEiffel Tower itself,
http://www.example.org/EiffelTower, could be any kind of resource,
and so could be a Semantic Web resource. This303 redirection then allows the
Semantic Web resource given by a Semantic Web URI for the Eiffel Tower itself to
comply with the Principle of Self-Description.

Fig. 3.5 The 303 redirection for URIs

An alternative to the obtuse303 redirection is thehash convention, where one
uses the fragment identifier of a URI to get redirection for free. If one wanted
a Semantic Web URI that referred to a non-information resource like the Eif-
fel Tower itself without the hassle of a 303 redirection, onewould use the URI
http://www.tour-eiffel.fr/# to refer to the Eiffel Tower itself. Since
browsers, following the follow-your-nose algorithm, either dispose of it or treat the
fragment identifier as a fragment of a document or some other Web representation,
if an agent tries to access via HTTP GET a Semantic Web URI thatuses the hash
convention, the server will not return a404 Not Found status code, but instead
resolve to the URI before the hash,http://www.tour-eiffel, which can
then be treated as a documentation resource. In this way, Semantic Web inference
engines can keep the Semantic Web URI that refers to the Eiffel Tower itself and an
associated description about the Eiffel Tower separate by taking advantage of some
predefined behaviour in web browsers.

While at first these distinctions between Semantic Web resources and informa-
tion resources seems ludicrously fine-grained, clarifyingthem and pronouncing an
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official W3C policy on them had an immense impact on the Semantic Web, since
once there was definite guidelines on how to publish information on the Semantic
Web, users could start creating Semantic Web URIs and connecting them to relevant
documentation resources. The TAG’s decision on redirection was made part of a tu-
torial for publishing Semantic Web information calledHow to Publish Linked Data
on the Web(Bizer et al, 2007).

3.4 An Ontology of Web architecture

The primary use of a formal ontology in the context of Web architecture is to allow
us to formally model the various distinctions used in specifications and debates.
Although some other formal logic that deals with actions andevents may be more
suitable for modelling the temporal transactions of client-server interactions on the
Web, an ontology is necessary in order to capture the variousdistinctions given
in specifications first. As even the primary architects of theWeb find themselves
confused about the distinctions between ‘entities’ in HTTPand ‘representations’
in Web architecture (Mogul, 2002), this ontology could be ofuse as a reference to
anyone interested in understanding or even extending existing Web specifications as
well as those interested in correctly implementing best practices that are dependent
on rather obscure corners of Web architecture, such as Linked Data’s 303 redirects.
A first attempt to formally model Web concepts was theIdentity, Resources, and
Entityontology (IRE) (Presutti and Gangemi, 2008), which has evolved in the IRW
ontology presented here via several iterations Halpin and Presutti (2009).

IRW is a small ontology at the core of an ontology network. More specifically,
IRW defines the core concepts of the Web architecture and can be extended by
specialized ontology modules in order to address more specific Web domains such
as HTTP transactions and Linked Data. IRW reuses existing ontologies, some of
which are ontology design patterns (Gangemi and Presutti, 2009). The following list
summarizes the prefixes that are used in the ontology and associates them with their
respective ontologies. Terms in IRW ontology will be given inteletype font, and
if no namespace is given, we will assume theirw: namespace. Namespace URIs
are given in the footnotes.
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Prefix Ontology name

irw:2 Identity of Resources on the Web
ir:3 Information Realization
comp:4 Composition
http:5 HTTP concepts based on IRW
ldow:6 Linked Data concepts based on IRW
tag:7 ‘Identity Crisis’ concepts based on IRW
ont:8 Generic Resource
rdfs:9 RDF Schema
rdf:10 RDF
owl:11 OWL

Notice that the stable version of the ontology can also be accessed via its PURL. The
latest version of the IRW ontology is athttp://ontologydesignpatterns.org/ont/web/irw.owl#.
While the IRW ontology in full cannot be graphically explicated due to lack of

Fig. 3.6 The main elements of the IRW network of ontologies is illustrated as a graph. Boxes with
the symbol “C” are classes, while those with a small arrow inside are datatypes. Arcs labelled as
“subClassOf” representrdfs:subClassOf relations between classes. The other arcs are either
object properties or datatype properties, depending on therange node. The direction of an arc
indicates the domain and range of the property. Two arrows that meet on their edges indicate a
relation whose domain and range is the given by the same class.

space on a printed page, the primary classes and properties are given in Figure 3.6.
The IRW-related elements needed for the example of 303 redirection are given in
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Figure 3.5. The IRW ontology defines the classResource to be equivalent to
rdfs:Resource12 as it expresses the same intuition.

3.4.1 Resources and URIs

The notion of a URI is modeled as a class,URI As XML Schema data-types for
URIs are not extensible, modeling URIs as a class allows us totalk about different
kinds of URIs, such as IRIs (Internationalized Resource Identifiers) and Seman-
tic Web URIs. A propertyidentifies can then connect a URI to a resource.
Since we want to associate a URI with character strings (possibly with the XML
Schema data-type for URIs) such as ‘http://www.example.org,’we also have a prop-
erty calledhasURIString. This property has various (functional) sibling chil-
dren such one relating IRIs to URIs, so that a IRI given in the Japanese character
can be a URI. The core properties we include arehasRelativeURIString and
hasAbsoluteURIString for the conversion of relative URIs to absolute URIs.

• Resource: An OWL Class. “Anything that might be identified by a URI” (Ja-
cobs and Walsh, 2004). This class is meant to express the sameintuition of
rdfs:Resource hence it is defined as equivalent tordfs:Resource.

– owl:equivalentTo rdfs:Resource

• URI: An OWL Class. An abbreviation for Uniform Resource Identifier. “A global
identifier in the context of the World Wide Web” (Jacobs and Walsh, 2004). Any
identifier that follows the role given in IETF RFC 3986 can be an instance of this
class, even if it is an IRI that has a conversion to a URI or usesa scheme such as
URN (Moats, 1997) or URL (Berners-Lee et al, 1994) that has been subsumed
by the concept of URIs.13

– rdfs:subClassOf Resource
– identifies exactly 1 Resource

• identifies: An OWL Object Property. The relationship between a URI and
a resource. It can be functional as one should “assign distinct URIs to distinct re-
sources” although some users of this ontology may wish to notuse this constraint
and so use therefersTo property (Jacobs and Walsh, 2004).

– owl:inverseOf isIdentifiedBy
– rdfs:domain URI
– rdfs:range Resource
– rdfs:subPropertyOf refersTo
– owl:FunctionalProperty

12 Notice that the ontology is encoded in OWL2.
13 Note that this class has itself a URI that is theirw class name for URI in the IRW namespace,
but concrete individual URIs are instances of this class andcould be any URI.
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• accesses: An OWL Object Property. The relationship between a resource and
another resource where the former provides a causal pathwayto the latter.

– owl:inverseOf isAccessedBy
– rdfs:domain Resource
– rdfs:range Resource
– owl:TransitiveProperty

• refersTo: An OWL Object Property. The relationship between a resource and
another resource where the former may be immediately causally disconnected
from the latter but still ’stand in’ for it in a syntactic expression. Note that ref-
erence in the logicist position is an aspect of an interpretation of the syntax of
an ontology, not a property of the use of an ontology itself. So this is actually
a meta-property that attempts to make explicit theintendedinterpretation of an
agent.

– owl:inverseOf isReferencedBy
– rdfs:domain Resource
– rdfs:range Resource

3.4.2 Information Resources

There is a controversial sub-class ofResource outlined in AWWW known as ‘in-
formation resources.’ The AWWW defines the notion ofinformation resource as
“a resource which has the property that all of its essential characteristics can be con-
veyed in a message” (Jacobs and Walsh, 2004), which we model asInformationResource.
This definition has widely been thought of as unclear, and defining what set of indi-
viduals belong in this class and what do not has been a source of perpetual debate
on various list-servs. In order to clarify this notion we decided to reuse a known
ontology pattern i.e. theInformation Realizationcontent ontology pattern, referred
to with prefixir:. Remarkably, this content ontology pattern is extracted from the
DOLCE Ultra Light ontology14 and is implemented also in the Core Ontology for
Multimedia (COMM)15 for addressing a similar modeling issue. The reuse of such
a content pattern also supports interoperability with other ontologies that reuse it.
This pattern-based approach to ontology design is a strength of IRW.

Notice that their: is very small, two classes and two object properties, hence
it is convenient to simply directly import all of theInformation Realizationpat-
tern. AnInformationResource is viewed to be equivalent to the notion of
information objectfrom ir:, such as a musical composition, a text, a word, or a
picture. An information object is an object defined at a levelof abstraction, inde-
pendently from how it is concretely realized. This means an information resource
has, via their:realizes property (with inverseir:isRealizedBy), at least

14 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
15 http://comm.semanticweb.org/
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oneir:InformationRealization, a concreterealization. The fact that any
information resource’s “essential characteristics can beconveyed in a single mes-
sage” implies that everything from a bound book to the electric voltages that encode
a HTTP message can be a realization of an information resource (Jacobs and Walsh,
2004). Furthermore, the propertyabout (and inverse property,isTopicOf) ex-
presses the relationship between an information resource and other resource (or re-
sources) that an information resource is ‘about.’

Examples of realizations are descriptions of a resource using natural language or
depictions of a resource using images. Information resources can, but not necessar-
ily, be identified (accessed or referred to) by a URI. In this manner, the text of Moby
Dick can be an information resource since it could be conveyed as a single message
in English, and can be realized by both a particular book or a web-page containing
that text. Thus, the definition of information object and information realization can
be thought of as similar to the classic ‘type-token’ division in philosophy of mind
between an object given on a level of abstraction and some concrete thing which re-
alizes that abstraction, where that single abstraction mayhave multiple realizations.
This is similar, but broader than the class-individual distinction as one may want to
model the ‘token’ or ‘realization’ itself as a class. As such, it’s also broader than
TBoxandABoxdistinction from description logic.

• InformationResource: An OWL Class. “A resource which has the prop-
erty that all of its essential characteristics can be conveyed in a message” (Jacobs
and Walsh, 2004).

– rdfs:subClassOf Resource
– ir:isRealizedBy min 1 ir:InformationRealization
– owl:equivalentTo ont:InformationResource
– owl:equivalentTo ir:InformationObject, which is defined by
ir: as “A piece of information, such as a musical composition, a text, a word,
a picture, independently from how it is concretely realized” (Gangemi, 2008).

• ir:InformationRealization: An OWL Class. Imported fromir:. “A
concrete realization of an expression, e.g. the written document containing the
text of a law” (Gangemi, 2008). This is equivalent to the broader notion of
representationas defined in AWWW, “data that encodes information about
resource state” (Jacobs and Walsh, 2004).

• ir:realizes: An OWL Object Property. Imported fromir:. “A relation be-
tween an information realization and an information object, e.g. the paper copy
of the Italian Constitution realizes the text of the Constitution” (Gangemi, 2008).

– owl:inverseOf ir:isRealizedBy
– rdfs:domain ir:InformationRealization
– rdfs:range ir:InformationObject

• about: An OWL Object Property. An intentional relationship between an infor-
mation resource and another resource. Note that this property is wider than the
inverse functionalfoaf:primaryTopic andfoaf:isPrimaryTopicOf
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properties of theFriend of a Friend (FOAF) vocabulary,16which could
be considered sub-properties of this property, as theabout property makes no
claims about whether a topic is primary or not.

– owl:inverseOf: isTopicOf
– rdfs:domain InformationResource
– rdfs:range Resource

3.4.3 Web Resources and Web Representations

Up until this section, the work done by IRW has, outside of mentioning URIs, not
been specific to the Web per se, but explicating the more general ideas of information
and resources that apply equally as well to books as to web-pages. In this section,
we further specialize IRW to the Web domain by considering the notion of ‘repre-
sentations’ that can be transferred over a protocol such as HTTP. To avoid confusion
with the broader philosophical notion of representation, we call this term from Web
architectureweb representationsinstead. Also, it is possible our use of the term
‘representation’ is narrower than the AWWW’s use, which could be equivalent to
the notion of any information realization in the large, while our use of the term is
instead for representations sent over the Web using HTTP. Furthermore, one can
distinguishweb resources(WebResource) as a subset of information resources
that areunder normal conditionsusually web-accessible, i.e. the server is not down,
the browser works normally, etc.

In terms of HTTP, aWebRepresentation is an entity (associated with vari-
ous entity headers and an entity body) that is also subject tocontent negotiation and
so may be transferred as multiple entities. This is because,as given in IETF RFC
2616, a web representation may be defined as “an entity included with a response
that is subject to content negotiation” such that “there mayexist multiple representa-
tions associated with a particular response status” (Fielding et al, 1999). Therefore,
we defineWebRepresentation as a sub-class of a more generalEntity class
as defined by HTTP RFC 2616 (Fielding et al, 1999). The term ‘entity’ could be
confusing as it is often used in many other philosophical andtechnical contexts.
However, in HTTP anentity may be the information given by either a HTTP re-
quest or response, but a web representation, by virtue of being a ‘representation’
of a resource, is only for a HTTP response. A web representation is thus a kind
of entity that is about the state of a resource as defined in AWWW (Jacobs and
Walsh, 2004), but there are entities that only request the state of resources or indi-
cate that requests can or cannot be fulfilled. For example, a HTTP POST request or
even a 404 response are entities but they do not necessarily represent the state of
a particular web resource. An entity may be transferred as the request or response
of many particular actions by a client. For example, different URIs may return the
same entity, such as when one URI hosts a copy of a resource given by another

16 Thefoaf: prefix stands forhttp://xmlns.com/foaf/0.1/
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URI. In order to model the complexity of headers and bodies inHTTP entities, we
use another popular content ontology pattern, theCompositionpattern, referred to
ascomp:. This pattern, extracted from the DOLCE Ultra Lite ontology,17 allows
us to model a non-transitive component-whole relationship, which however implies
(by subsumption) a transitive part-of relation.

• http:Entity: An OWL Class. “The information transferred as the payload of
a request or response” (Fielding et al, 1999). “An entity consists of metainforma-
tion in the form of entity-header fields and content in the form of an entity-body”
(Fielding et al, 1999).

– rdfs:subClassOf ir:InformationRealization
– comp:hasComponent exactly 1 http:EntityHeader
– comp:hasComponent max 1 http:EntityBody

• http:EntityBody: An OWL Class. Whatever information is sent in the re-
quest or response is in “a format and encoding defined by the entity-header fields”
(Fielding et al, 1999). Also called in HTTP the ‘content’ of amessage (Fielding
et al, 1999).

– http:hasMediaType some http:MediaType

• http:EntityHeader: An OWL Class. “Entity-header fields define meta-
information about the entity-body or, if no body is present,about the resource
identified by the request” (Fielding et al, 1999). Sometimescalled in HTTP
“meta-information” (Fielding et al, 1999). Various fields of the entity header can
define HTTP status codes (http:StatusCode), content encoding (http:MediaType),
content language (http:ContentLanguage), date of creation (http:CreationDate),
date of modification (http:ModificationDate), and so on.

– rdfs:subClassOf ir:InformationRealization
– http:hasComponent min 1 http:EntityHeaderField

• http:hasHeaderFieldValue: An OWL Object Property. A relation be-
tween an entity header field and its field values. It is specialized by several prop-
erties, each representing a typical entity header field suchashttp:hasStatusCode
andhttp:hasContentType.

– rdfs:domain http:HeaderField

• WebRepresentation: An OWL Class. A sequence of octets, along with rep-
resentation metadata describing those octets, that constitutes a record of the state
of the resource at the time when the representation is generated (Berners-Lee
et al, January 2005). Note that the term ‘representation’ isused for this class
in IETF RFC 3968, but has been changed to ‘web representation’ to separate
it from the more general notion of ‘representation’ in philosophy (Jacobs and
Walsh, 2004)

17 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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– rdfs:subClassOf http:Entity
– locatedOn min 1 WebServer

• WebResource: An OWL Class. “A network data object or service” (Fielding
et al, 1999). As such, this is a resource that is accessible via the Web (Hayes
and Halpin, 2008). Therefore, a web resource must have at least one URI and be
realized by at least one web representation.

– rdfs:subClassOf InformationResource
– isIdentifiedBy min 1 URI
– ir:isRealizedBy min 1 WebRepresentation

3.4.4 Media Types, Generic, and Fixed Resources

One intriguing problem, central to the notion of web representations and resources,
is the connection between media types and resources. Very little work has been done
in this area, likely due to the lack of use of content negotiation in general on the
hypertext Web. For example, instead of using content negotiation to return versions
of the same resource in multiple languages, many sites use explicit links. The only
substantial work so far on this issue has been Berners-Lee’snoteGeneric Resources
where he outlines an ontology of types of resources conditioned by how the resource
varies over HTTP requests (Berners-Lee, 1996a). Berners-Lee has informally said
that ageneric resourceis equivalent to information resources, since the important
part of a generic resource is the information itself, not anyparticular realization of
the information. For example, a resource like ‘the weather report for Los Angeles’
is a generic resource, as is the text of Moby Dick in any language. However, the
‘weather report for Los Angeles today’ is not a generic resource as it is indexed to a
particular temporal junction nor is Moby Dick in a particular language like English.
Resources may also vary over time. For example, the text of Moby Dick will be
the same over time and so betime-invariant , but the resource for the ‘weather
report for Los Angeles’ will change over time and so betime-specific (Berners-
Lee, 1996a). Furthermore, resources may vary over media-types. For example, the
same information may be given in some custom XML dialect or RDF or the same
depiction may be given in different formats like JPG and SVG.These resources
are all imported from Berners-Lee’sont ontology.18 There are alsofixed resources
that regardless of aspects like time and natural language always return the same
representation. For example, a resource for Moby Dick that always provided the
same edition in the same language as plain text would be a fixedresource. The idea
of a fixed resource is surprisingly common, as it equates a single web-page with a
resource and so matches the folk psychology of most users of the Web.

• ont:TimeSpecificResource: An OWL Class. A resource of which all
representations are in the same version. Representations of the resource will not

18 http://www.w3.org/2006/gen/ont
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change as a result of the resource being updated to a version with time. The dates
of creation and of last modification of such a resource would be expected to be
the same.

– rdfs:subClassOf InformationResource
– owl:disjointWith ont:TimeGenericResource
– ir:realizedBy only (WebRepresentation ∧
(comp:hasComponent exaclty 1 CreationDate) ∧
(comp:hasComponent exactly 1 LastModificationDate))

• ont:LanguageSpecificResource: An OWL Class. A resource of which
all representations are in the same natural language.

– rdfs:subClassOf InformationResource
– owl:disjointWith ont:LanguageGenericResource
– ir:realizedBy only (WebRepresentation ∧
(comp:hasComponent exactly 1 ContentLanguage))

• ont:ContentTypeSpecificResource: An OWL Class. A resource of
which all representations are encoded in the same Internet media-type, also called
‘content-type.’

– rdfs:subClassOf InformationResource
– owl:disjointWith ont:ContentGenericResource
– realizedBy only (WebRepresentation ∧
(comp:hasComponent only (EntityBody encodedIn exactly
1 MediaType)))

• ont:FixedResource: An OWL Class. A resource whose representation type
and content will not change under any circumstances.

– owl:equivalentTo (ont:ContentTypeSpecificResource ∧
ont:LanguageSpecificResource ∧ ont:TimeSpecificResource)

3.4.5 Hypertext Web Transactions

The typical web transaction is started by an agent, given in IRW by a class
Agent, which is some client like a browser in the context of the Web (Jacobs
and Walsh, 2004). This agent can issue arequest (requests) through an entity
(http:sendsEntity) containing a header field with, as value, the URI that the
request is acting upon (hasRequestedURI). This path is modeled in IRW by
means of a property chain axiom, asserted in the module devoted to HTTP, i.e.
http:. Note thatrequests serves as a hook to the alignment of IRW withHTTP
in RDF19 as a URI corresponds a response executed by a server which returns an

19 http://www.w3.org/TR/HTTP-in-RDF10/
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entity which includes a status code (http:StatusCode). Hence, we also intro-
duce the classWebServer for the generic notion of aweb server, which has a
resolves property. The property represents the resolution of a URI toa concrete
web server, which currently is done by mapping a URI to an IP address or addresses
via the Domain Name System (DNS).20

EachWebServer resolves at least oneURI, and for the resolution to be
successful, the web server has also to be thelocation of i.e. it hosts, at least one
WebRepresentation. This indicates that a web server concretely can respond
to an HTTP request with a particular web representation. Since requests and
resolves are all sub-properties of the transitive propertyaccesses, this part of
the ontology models the physical and causal pathway betweena given request for a
URI and a response with a web representation.

The entity given in the request may have a preferred media-type, and the response
should have a media-type as well. The media-type, such as ‘application/xml’ or ‘ap-
plication/rdf+xml,’ tells the agent how to interpret the entity body of the response.
Media-types are modeled in IRW through the classMediaType. The relationship
between ahttp:MediaType and anhttp:Entity is given by theencodes
relationship. Note that each web representation has a single media-type.

A URI may also have aredirectsTo property, a sub-property ofaccesses,
that we can use to model HTTP redirection. This can be done viaa number of dif-
ferent techniques, ranging from a ‘Content-Location’ HTTPentity header to a 300-
hundred level HTTP status code, and to model these we rely on theHTTP-in-RDF
ontology.21 Note that, even in the light of the W3C TAG’shttpRange-14decision,
redirection can be also used between information resourcesthat have nothing to do
with the Semantic Web. So, the domain and range say nothing about the type of
resource.

• Agent: An OWL Class. A human or a program that establishes connections
for the purpose of sending requests (Fielding et al, 1999). In the W3C AWWW,
an agent is “a person or a piece of software acting on the information space on
behalf of a person, entity, or process” (Jacobs and Walsh, 2004).

– rdfs:subClassOf Resource

• requests: An OWL Object Property. “The act of issuing a request message
from a client to a server that includes, within the first line of that message, the
method to be applied to the resource, the identifier of the resource, and the pro-
tocol version in use” (Fielding et al, 1999). A request action is a flow itself char-
acterized by an agent that sends an entity that includes a URI; this is expressed
in IRW by a property chain axiom.

– rdfs:subPropertyOf accesses
– rdfs:domain Agent
– rdfs:range URI

20 Although caching complicates this in actual situations.
21 http://www.w3.org/TR/HTTP-in-RDF10/
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– http:sendsEntity o comp:hasComponent o http:hasRequestedURI

• WebServer: An OWL Class. “An application program that accepts connections
in order to service requests by sending back responses”(Fielding et al, 1999).
Note that “any server may act as an origin server, proxy, gateway, or tunnel,
switching behavior based on the nature of each request” (Fielding et al, 1999). A
web server hosts at least one web representation and resolves at least one URI.

– rdfs:subClassOf Agent
– hosts min 1 WebRepresentation
– resolves min URI

• resolves: An OWL Object Property. The relationship between a web server
that hosts a web representation, and the URI of the resource realized by that web
representation.

– owl:inverseOf resolvesTo
– rdfs:subPropertyOf accesses
– rdfs:domain WebServer
– rdfs:range URI
– hosts o ir:realizes o isIdentifiedBy

• locatedOn: An OWL Object Property. A relation between a web representa-
tion and a web server, indicating that the entity can be obtained by an HTTP
request to the web server.

– owl:inverseOf hosts
– rdfs:domain WebRepresentation
– rdfs:range WebServer

• encodedIn: An OWL Object Property. The relationship between an informa-
tion realization and its encoding. In the case of entities its range is the entity’s
media type. So given an entity that has a component with a content type header
field set to a certain media type, that entity isencodedIn that media type.

– owl:inverseOf encodes
– rdfs:domain ir:InformationRealization
– comp:hasComponent o comp:hasComponent o irw:hasValueMediaType

• redirectsTo: An OWL Object Property. The relationship between two URIs
wherein any requested entity is forwarded to the URI given asthe object of this
property.

– owl:inverseOf redirectedFrom
– rdfs:subPropertyOf accesses
– rdfs:domain URI
– rdfs:range URI



3.4 An Ontology of Web architecture 79

3.4.6 Modeling the Semantic Web and Linked Data

The Semantic Web is supposed to use URIs not only for hypertext documents but
also for abstract concepts and things. In order to model explicitly the redirection
solution to the ‘Identity Crisis’ by the W3C TAG, two distinct sub-properties of
redirectsTo have been added in a specific module of IRW22 associated with
prefixtag:. This module contains thetag:redirects303To property and the
tag:redirectsHashTo property. The former models the TAG’s ‘solution’ to
httpRange-14while the latter represents the hash convention. With thesekinds of
re-directions in hand, we can now model the typical SemanticWeb transaction. A
new sub-class ofURI, SemanticWebURI is given. ASemantic Web URIrefers
to a resource that is not accessible on the Web such as the Eiffel Tower, and so the
URI must redirect to another URI that can access an information resource containing
data encoded in some Semantic Web language like RDF. Therefore, this kind of URI
also has a constraint that it must have at least oneredirectsTo property.

As mentioned earlier, in the ‘Linked Data Tutorial’ note, the kinds of resources
referred to by a Semantic Web URI are callednon-information resources(Bizer
et al, 2007). Although this term is controversial (and explicitly not endorsed by
Berners-Lee) and hard to define abstractly, operationally it simply means a re-
source that is not web-accessible that therefore should, tocomply with the Linked
Data initiative, use redirection to resolve to an information resource describing
the non-information resource. Although the space of non-information resources is
relatively large and hard to draw precise boundaries around, we list a few exem-
plars in order to serve a what Dennett would call “intuition-pumps” in order to
help us understand this concept (Dennett, 1981). In particular a new class called
ldow:NonInformationResource is introduced, which represents things that
can not themselves - for whatever reason - be realized as a single digitally encoded
message. Naturally, this class is disjoint withInformationResource. A num-
ber of different kinds of things may beNonInformationResources. Since
this concept is the cause of much confusion and debate, it canobviously range over
physical people, artifacts, places, bodies, chemical substances, biological entities,
and the like - or to resources that are created in a social process and can not be com-
pletely realized digitally such as legal entities, political entities, social relations, as
well as the concept of a horse, and imaginary objects like unicorns or even functions
over the integers.

An associated descriptions(ldow:AssociatedDescription) is an in-
formation resource that can be accessed via redirection from a Semantic Web URI
(Bizer et al, 2007). In DBpedia23 the resourcedbpedia:/resource/Eiffel Tower
redirects todbpedia:/data/Eiffel Tower in RDF/XML, and to an HTML
page atdbpedia:/page/Eiffel Tower depending on the requested me-
dia type (Auer et al, 2007). This Linked Data typical scenario can be general-
ized as follows: aWebClient requests a SemanticWebURI x and the re-

22 http://www.ontologydesignpatterns.org/ont/web/tag2irw.owl
23 Prefixdbpedia: is used for the namespacehttp://dpedia.org



80 3 The Semantic Web

quest is redirected (via hash or 303 redirection) to anotherURI that identifies a
ldow:AssociatedDescription24, which has oneabout property to a non-
information resource. The associated description is typically created in order to de-
scribe its associated non-information resource. We modelldow:AssociatedDescription
as a subclass ofWebResource. For an illustrated example of these classes in ac-
tion, refer to Figure 3.5.

• SemanticWebURI: An OWL Class. A URI used to identify any resource that
is not accessible on the Web.

– rdfs:subClassOf URI
– identifies only NonInformationResource
– redirectsTo min 1 (URI and identifies only ldow:AssociatedDescription)

• NonInformationResource: An OWL Class. All resources that are not in-
formation resources.

– rdfs:subClassOf Resource
– owl:disjointWith InformationResource

• ldow:AssociatedDescription: An OWL Class. A resource that exists
primarily to describe a non-web accessible resource.

– rdfs:subClassOf WebResource
– redirectedFrom some SemanticWebURI
– isAbout exactly 1 ldow:NonInformationResource

• tag:redirects303To: An OWL Object Property. A redirection that uses
the HTTP 303 status code.

– owl:inverseOf redirected303From
– rdfs:domain URI
– rdfs:range URI
– rdf:type owl:FunctionalProperty

• tag:redirectsHashTo: An OWL Object Property. A redirection that works
via the fragment identifier being removed from the URI.

– owl:inverseOf redirectedHashFrom
– rdfs:domain URI
– rdfs:range URI

24 Typical Linked Data terminology is represented in a specificmodule of
IRW referred to here by the prefixldow:, which stands for the namespace
http://ontologydesignpatterns.org/ont/web/ldow2irw.owl
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3.5 The Semantic Web: Good Old Fashioned AI Redux?

Despite its apparent utility in crafting formal ontologies, at the present moment the
Semantic Web has not taken off as part of the wider Web. To many, it has seemed
that the Semantic Web was nothing but a second coming of classical artificial intel-
ligence. As put by Yorick Wilks, “Some have taken the initialpresentation of the
Semantic Web by Berners-Lee, Hendler and Lassila to be a restatement of the Good
Old Fashioned AI agenda in new and fashionable World Wide Webterms” (2008).
So why would the Semantic Web succeed where classical knowledge representa-
tions failed? The first reason would be a difference in the underlying intellectual
project. A second reason would be a difference in technology.

The difference of the project is one both of scope and goal. The Semantic Web is,
at first glance at least, a more modest project than artificialintelligence. To review
the claims of artificial intelligence in order to clarify their relation to the Semantic
Web, we are best served by remembering the goal of AI as statedby John McCarthy
at the 1956 Dartmouth Conference, “the study is to proceed onthe basis of the
conjecture that every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it” (Mc-
Carthy et al, 1955). However, ‘intelligence’ itself is not even vaguely defined. The
proposal put forward by McCarthy gave a central role to “common-sense,” so that
“a program has common sense if it automatically deduces for itself a sufficient wide
class of immediate consequences of anything it is told and what it already knows”
(1959).

In contrast, the Semantic Web does not seek to replicate human intelligence and
encode all common-sense knowledge in some universal representational scheme.
The Semantic Web instead leaves “aside the artificial intelligence problem of train-
ing machines to behave like people” but instead tries to develop a representation
language that cancomplementhuman intelligence, for “the Web was designed as
an information space, with the goal that it should be useful not only for human-
human communication, but also that machines would be able toparticipate and
help” (Berners-Lee, 1998c). Despite appearances, the Semantic Web is in the spirit
of Licklider and Engelbart rather than McCarthy, Minsky, and even latter-day pro-
ponents of AI like Brooks. Berners-Lee is explicit that the project of encoding hu-
man intelligence is not part of the problem, as the Semantic Web “does not imply
some magical artificial intelligence which allows machinesto comprehend human
mumblings. It only indicates a machine’s ability to solve a well-defined problem
by performing well-defined operations on existing well-defined data” (Berners-Lee,
1998c). Instead, the Semantic Web is an intellectual project whose goal is philosoph-
ically the opposite of artificial intelligence, the creation of new forms of collective
intelligence. As phrased by Licklider, this would be a “man-machine symbiosis,”
in which in “the anticipated symbiotic partnership, men will set the goals, formu-
late the hypotheses, determine the criteria, and perform the evaluations. Computing
machines will do the routinizable work that must be done to prepare the way for
insights and decisions” (1960).
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While the goals of the Semantic Web are different, it does still employ the same
fundamental technology as classical artificial intelligence: knowledge representa-
tion languages. As put by Berners-Lee, “The Semantic Web is what we will get
if we perform the same globalization process to knowledge representation that the
Web initially did to hypertext” (Berners-Lee, 1998c). Yet there is a question about
whether or not knowledge representationitself might be the problem, not just scale.
As put by Karen Spärck Jones, one of the founders of information retrieval, “there
are serious problems about the core [Semantic Web] idea of combining substantive
formal description with world-wide reach, i.e. having yourcake and eating it, even
if the cake is only envisaged as more like a modest sponge cakethan the rich fruit
cake that AI would like to have” (2004). So the problem may liein the very use
of knowledge representation languageitself. So far we have shown that the proper-
ties of at least RDF as a a knowledge representation languageputs the emphasis on
‘Web’ as opposed to ‘Semantic’ in the Semantic Web, as it has anumber of proper-
ties — a graph structure, the ability to make unconstrained statements, and the like
– that have their basis in the tradition of the Web, rather than knowledge represen-
tation in AI. As the Web has proved to be extraordinarily successful, the hope of
the Semantic Web is that any knowledge representation language which is based on
the same principles as the Web may fare better than its ancestors in artificial intel-
ligence. However, these changes in the formalism of RDF due to the influence of
the Web are all relatively minor, and while counter-intuitive to traditional knowl-
edge representation, they have yet to be vindicated as the Semantic Web has not yet
reached widespread use.

Overlooked by Spärck Jones in her critique of the Semantic Web, the only sub-
stantive difference between traditional knowledge representation and the Semantic
Web is the central role of URIs. Just as the later principles of Web architecture build
upon the Principle of Universality, so the Semantic Web builds on top of the use
of URIs as well. The true bet of the Semantic Web isnot a bet on the return of
knowledge representation languages, but a bet on the universality of URIs, namely
that agents in a decentralized and global manner can use URIsto share meaning
even about non-Web accessible things. As this use of URIs as the basic element of
meaning is central to the Semantic Web, and as it is a genuinely newtechnical claim,
it is precisely in the understanding of the status of meaningand reference of URIs
that any newtheoreticalclaim must be made. Furthermore, it is precisely within the
realm of URIs that anytechnicalclaim to advance must be made.



Chapter 4
Theories of Semantics on the Web

Meaning is what essence becomes when it is divorced from the object of reference
and wedded to the word.W.V.O. Quine (1951).

4.1 The Identity Crisis

How can agents determine what a URI identifies? To use a word more familiar
to philosophers, how can anyone determine what a URI refers to or means? On
the pre-Semantic Web, a URI trivially identify the hypertext web-pages that the
URI accesses. On the Semantic Web, a whole new cluster of questions, dubbed the
Identity Crisis, emerges. Can a URI for the Eiffel Tower be used to refer to the
Eiffel Tower in Paris itself? If one just re-uses a URI for a web-page of the Eiffel
Tower, then one risks the URI being ambiguous between the Eiffel Tower itself and
a particular representation of the Eiffel Tower. If one gives the Eiffel Towerqua
Eiffel Tower its own URI, should that URI allow access to any information, such
as a hypertext web-page? In the realm of official Web standards, the jury is still
out. In the specification of RDF, Hayes notes that “exactly what is considered to be
the ‘meaning’ of an assertion in RDF or RDF(S) in some broad sense may depend
on many factors, including social conventions, comments innatural language” so
unfortunately “much of this meaning will be inaccessible tomachine processing”
such that a “a full analysis of meaning” is “a large research topic” (Hayes, 2004).

The comment in the RDF Semantics specification glosses over ahuge argument.
Unsurprisingly, the reason there is no standardized way to determine the meaning
of a URI is because, instead of a single clear answer, there isa conceptual quagmire
dominated by two positions in the development of RDF. The first position, thedi-
rect reference position, is that the meaning of a URI is whatever was intended by the
owner. The owner of the URI should be able to unambiguously declare and com-
municate the meaning of any URI, including a Semantic Web URI. In this position,
the referent is generally considered to be some individual unambiguoussinglething,
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like the Eiffel Tower or the concept of a unicorn. This viewpoint is the one generally
held by many Web architects, like Berners-Lee, who imagine it holds not just for the
Semantic Web, but the entire Web. The second position, whichwe call thelogicist
positiondue to its more clear roots in non-modal logic, is that for theSemantic Web,
the meaning of a URI is given by whatever things satisfy the model(s) given by the
formal semantics of the Semantic Web. Adherents of this position hold that the ref-
erent of a URI is ambiguous, as many different things can satisfy whatever model
is given by the interpretation of some sets of sentences using the URI. This position
is generally held by logicians, who claim that the Semantic Web is entirely distinct
from the hypertext Web, with URIs serving as nothing more than particularly funny
symbols.

These two antagonistic positions were subterranean in the development of the Se-
mantic Web, until a critical point was reached in an argumentbetween Pat Hayes, the
AI researcher primarily responsible for the formal semantics of the Semantic Web,
and Berners-Lee. This argument was provoked by an issue called ‘Social Meaning
and RDF’ and was brought about by the following draft statement in theRDF Con-
cepts and Abstract Syntax Recommendation, “the meaning of an RDF document
includes the social meaning, the formal meaning, and the social meaning of the for-
mal entailments” so that “when an RDF graph is asserted in theWeb, its publisher
is saying something about their view of the world” and “such an assertion should be
understood to carry the same social import and responsibilities as an assertion in any
other format” (2004). During the period of comments for the RDF Working Drafts,
Bijan Parsia commented that the above-mentioned sentencesdo not “really specify
anything and thus can be ignored” or are “dangerously underthought and under-
specified” and so should be removed (Parsia, 2003). While at first these sentences
about the meaning of RDF seemed to be rather harmless and in concordance with
common-sense, the repercussions on the actual implementation of the Semantic Web
are surprisingly large, since “an RDF graph may contain ‘defining information’ that
is opaque to logical reasoners. This information may be usedby human interpreters
of RDF information, or programmers writing software to perform specialized forms
of deduction in the Semantic Web” (Klyne and Carroll, 2004).In other words, a
special type ofnon-logicalreasoning can therefore be used by the Semantic Web.

An example of this extra-logical reasoning engendered by the fact that URIs iden-
tify ‘one thing’ is as follows. Assume that a human agent has found a URI for the
Eiffel Tower from DBpedia, and so by accessing the URI a Semantic Web agent can
discover a number of facts about the Eiffel Tower, such that it is in Paris and that its
architect is Gustave Eiffel, and these statements are accessed as an RDF graph (Auer
et al, 2007). However, a human can have considerable background knowledge about
the Eiffel Tower, such as a vague belief that at some point in time it was the tallest
building in the world. This information is confirmed by the human agent employing
the follow-your-nose algorithm, where by following the subject of any triple, the hu-
man would be redirected to the hypertext Wikipedia article about the Eiffel Tower,
where the agent discovers via a human-readable descriptionthat the Eiffel Tower
was in fact the tallest building until 1930, when it was superseded in height by New
York City’s Chrysler building. This information isnot explicitly in the RDF graphs
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provided. It is furthermore difficult to even phrase this sort of temporal information
in RDF. Furthermore, the human agent discovers another URI for the Eiffel Tower,
a RDF version of Wordnet in the filesynset-Eiffel Tower-noun-1.rdf
(van Assem et al, 2006). When the human agent accesses this URI, there is little
information in the RDF graph except that this URI is used for anoun. However,
the human-readablegloss property explains that the referent of this URI is ‘a
wrought iron tower 300 metres high that was constructed in Paris in 1889; for many
years it was the tallest man-made structure.’ Therefore, the human agent believes
that there is indeed a singular entity called the ‘Eiffel Tower’ in Paris, and that this
entity was in fact at some point the tallest building in the world, and so the two
URIs are equivalent in some sense, although the URIs do not formally match. What
the ‘Social Meaning’ clause was trying to state is that the human should be able
to non-logically infer that both URIs refer to the Eiffel Tower in Paris, and they
use this information to merge the RDF graphs, resulting in perhaps some improved
inferences in the future.

This use-case was put forward primarily by Berners-Lee, andthe W3C RDF
Working Group decided that deciding on the relationship between the social and
formal meaning of RDF was beyond the scope of the RDF Working Group to decide,
so the RDF Working Group appealed to the W3C TAG for a decision. As TAG
member Connolly noticed, they “didn’t see a way to specify how this works for RDF
without specifying how it works for the rest of the Web at the same time” (Berners-
Lee, 2003b). In particular, Berners-Lee then put forward his own viewpoint that “a
single meaning is given to each URI,” which is summarized by the slogan that a URI
“identifies one thing.” (2003c). In response, Hayes said that “it is simply untenable
to claim that all names identify one thing” (2003a). Furthermore, he goes on to state
that this is one of the basic results of the knowledge representation community and
20th century linguistic semantics, and so that the W3C cannot by fiat render the
judgment that a URI identifies one thing. Berners-Lee rejects Hayes’s claim that the
Semantic Web must somehow build upon the results of logic andnatural language,
instead claiming that “this system is different from natural language: we designed
it such that each URI identifies one and only one concrete thing in the real world or
one and only one globally shared concept” (2003a). At this point, in exasperation,
Hayes retorted that “I’m not saying that the ‘unique identification’ condition is an
unattainable ideal: I’m saying that it doesn’t make sense, that it isn’t true, and that
it could not possibly be true. I’m saying that it iscrazy” (2003b). While Hayes did
not explain his own position fully, as he was the editor of theformal semantics of
RDF and had the support of other logicians in the RDF Working Group, the issue
deadlocked and the RDF Working Group was unable to come to a consensus. In
order to move RDF from a Working Draft to a Recommendation, the W3C RDF
Working Group removed all references to social meaning fromthe RDF documents.

One should be worried when two prominent researchers such asBerners-Lee
and Hayes have such a titanic disagreement, where no sort of consensus agreement
seems forthcoming. Yet who is right? Berners-Lee’s viewpoint seems intuitive and
easy to understand. However, from the standpoint of the formal semantics of logic,
the argument would seem to have been won by Hayes. Still, there is reason to pause
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to consider the possibility that Berners-Lee is correct. First, while his notion may
seem counter to ‘common-sense’ within formal logic, it should be remembered that
as far as practical results are concerned, the project of logic-based modelling of
common-sense knowledge in classical artificial intelligence inaugurated by Hayes
earlier is commonly viewed to be a failure by current researchers in AI and cognitive
science (Wheeler, 2005). In contrast, despite the earlier and eerily similar argument
that Berners-Lee had with original hypertext academic researchers about broken
links and with the IETF about the impossibility of a single naming scheme for the
entire Internet, the Web is without a doubt an unparalleled success. While in general
the intuitions of Berners-Lee may seem to be wrong accordingto academia, history
has proven him right in the past. Therefore, one should take his pronouncements
seriously.

The Identity Crisis is not just a conflict between merely two differing individ-
ual opinions, but a conflict between two entire disciplines:the nascent discipline of
‘Web Science’ as given by the principles of Web architecture, and that of knowledge
representation in AI and logic (Berners-Lee et al, 2006). Berners-Lee’s background
is in the Internet standardization bodies like the IETF, andit is primarily his intu-
itions behind Web architecture. Hayes, whose background inlogic jumpstarted the
field of knowledge representation in artificial intelligence, should be taken equally
seriously. If two entire fields, who have joined common-cause in the Semantic Web,
are at odds, then trouble at the level oftheoryis afoot.

Troubles at levels of theory invariably cause trouble in practice. So this disagree-
ment would not be nearly as worrisome were not the Semantic Web itself not in
such a state of perpetual disrepair, making it practically unusable. In a manner
disturbingly similar to classical artificial intelligence, the Semantic Web is always
thought of as soon-to-be arriving, the ‘next’ big thing, butits actual uses are few and
far between. The reason given by Semantic Web advocates is that the Semantic Web
is suffering from simple engineering problems, such as a lack of some new standard,
some easily-accessible list of vocabularies, or a dearth ofSemantic Web-enabled
programs. Given that the Semantic Web has not yet experienced the dizzying growth
of the original hypertext Web, even after an even longer period of gestation, points
to the fact that something is fundamentally awry. The root ofthe problem is the
dependence of the Semantic Web on using URIs as names for things non-accessible
from the Web.

Far from being a mandarin metaphysical pursuit, this problem is the very first
practical issue one encounters as soon as one wants to actually use the Semantic
Web. If an agent receives a graph in RDF, then the agent shouldbe able to determine
an interpretation. The inference procedure itself may helpthis problem, but it may
instead make it worse, simply producing more uninterpretable RDF statements. The
agent could employ the follow-your-nose algorithm, but what information, if any,
should be accessible at these Semantic Web-enabled URIs? Ifa user wants to add
some information to the Semantic Web, how many URIs should they create? One for
the representation, and another for the referent the representation isabout? Should
the same URI for the Eiffel Tower itself be the one that is usedto access a web-page
about the Eiffel Tower?
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URIs on the Semantic Web can be thought of as analogous to natural language
names, as names in natural language can be used to refer as well. Therefore, what
needs to be done is to distinguish within analytic philosophy the various theories
on naming and reference in general, and then see how these various theories either
do or do not apply to the Semantic Web. What is remarkable is that the position of
Hayes, the logicist position, corresponds to a well-known theory of meaning and
reference, the ‘descriptivist theory of reference’ attributed to early Wittgenstein,
Carnap, Russell, and turned into its pure logical form by Tarski (Luntley, 1999).
However, it is common currency in philosophical circles that the descriptivist theory
of reference was overthrown by the ‘causal theory of reference’ championed by
Kripke and extended by Putnam (Luntley, 1999). It is precisely this causal theory
of reference that Berners-Lee justifies in his direct reference position. Thus, the
curious coincidence is that both opposing positions on the Semantic Web correspond
to equallyopposing positions in philosophy. Understanding these positions belongs
primarily to the domain of philosophy, even if Hayes and especially Berners-Lee do
not articulate their positions with the relevant academic citations. In this manner, the
precise domain of philosophy that the Identity Crisis fallsunder is the philosophy
of language. The purpose of the rest of this chapter is then the full explication of
these two theories of reference in philosophy of language, and then to inspect their
practical success (or lack thereof) in the context of the Semantic Web, while at the
end offering a critique of both, paving the way for a third theory of meaning.

4.2 Sense and Reference

The original theory of meaning we shall return to is Frege’s original controversial
theory of sense and reference as given inSinn und Bedeutung(Frege, 1892).1 This
theory is no longer particularly popular, although it has had some revival with an odd
dualist variation under the ‘two-dimensionalism’ of Chalmers Chalmers (2006),2

and this is likely because Frege himself was quite cryptic with regards to any def-
inition of ‘sense.’ The key idea lies in Frege’s contention that the meaning of any
representational term in a language is determined by what Frege calls the “sense” of
the sentences that use the term, rather than any direct reference of the term (1892).
According to Frege, two sentences could be the same only if they shared the same
sense. Take for example the two sentences “Hesperus is the Evening Star” and
“Phosphorus is the Morning Star.” (Frege, 1892). Since the ancient Greeks did not

1 The ambiguous translation of this work from original Germanhas been a source of great philo-
sophical confusion. While the word ‘Sinn’ has almost alwaysbeen translated into ‘sense,’ the word
‘Bedeutung’ has been translated intoeither ‘reference’ or ‘meaning,’ depending on the translator.
While ‘Bedeutung’ is most usually translated into the fuzzyEnglish word ‘meaning’ by most Ger-
man speakers, theuseto which Frege puts it is much more in line with how the word ‘reference’ is
used in philosophy. So in the tradition of Michael Dummett, we will translate Frege’s ‘Bedeutung”
into ‘reference’ Dummett (1973).
2 Likely Frege himself would not be considered a dualist, but amonist with objective meaning
given in the world.
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know that ‘The Morning Star is the same as the Evening Star,’ they did not know that
the names ‘Hesperus’ and ‘Phosphorus’ share the same referent when they baptized
the same star, the planet Venus, with two different names (Frege, 1892). Therefore,
Frege says that these two sentences have distinct ‘senses’ even if they share the same
referent. Frege pointed out that, far from being meaningless, statements of identity
that would be mere tautologies from the point of view of a theory of reference are
actually meaningful if one realizes different terms can have distinct senses. One can
understand a statement like ‘The Morning Star is the EveningStar’ without know-
ing that both refer to Venus, and one may only know that the ‘Morning Star’ refers
to Venus and by learning the ‘Morning Star’ and the ‘Evening Star’ are not distinct
senses but a single sense, one can do actualmeaningful cognitive workby putting
these two senses together. While the idea of a notion of ‘sense’ seems intuitive from
the example, it is famously hard to define, even informally. Frege defines ‘sense’ in
terms of the mysteriousmode of presentation, for “to think of then being connected
with a sign (name, combination of words, letters), besides that to which the sign
refers, which may be called the reference of the sign, also what I should like to call
the sense of the sign, wherein the mode of presentation is contained” (1892). This
statement has caused multiple decades of debate by philosophers of language like
Russell and Kripke who have attempted to banish the notion ofsense and simply
build a theory of meaning from the concept of reference.

Regardless of what precisely ‘sense’ is, Frege believed that the notion of sense
is what allows an agent to understand sentences that may not have a referent, for
“the words ‘the celestial body most distant from Earth’ has asense, but it is very
doubtful there is also a thing they refer to...in grasping a sense, one certainly is not
assured of referring to anything” (Frege, 1892). So it is theconcept of sense that
should be given a priority over reference. This is not to denythe role of reference
whatsoever, since “to say that reference is not an ingredient in meaning is not to deny
that reference is a consequence of meaning ... it is only to say that understanding
which speaker of a language has a word in that language ... cannever consist merely
in his associating a certain thing with it as its referent; there must be some particular
meansby which this association is effected, the knowledge of which constitutes his
grasp of its sense” (Dummett, 1973).

Sense is in no way an ‘encoded’ referent, since the referent is distal from the
sense. Instead, the sense of a sentence should naturally lead an agent to correctly
guess the referents of the representational sentence. Yet how could this be detected?
Again, sense is sense strictly ‘in the head’ with no effect onbehaviour. As put by
Wittgenstein, “When I think in language, there aren’t ‘meanings’ going through
my mind in addition to the verbal expressions: the language is itself the vehicle of
thought” (Wittgenstein, 1953). Sense is the bedrock upon which meaning is con-
structed, and must be encoded in a language. In fact, according to Frege, sense can
only be determined from a sentence in a language, and the sense of a sentence al-
most always requires an understanding of a whole network of other sentences in a
given discourse. Furthermore, without determining which sense of a number of pos-
sible senses a sentencemayhave the sentencesdoeshave, one cannot meaningfully
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act, even if the sense used by the agent is incorrect according to the creator of the
sentence’s purpose.

So, how can sense be determined, or at least detected? After all, almost any-
thing counts as meaningful behaviour. While sense determinationis a difficult and
context-ridden question that seems to require some full or at least ‘molecular’ lan-
guage understanding, one account of sense detection so far is given by the ear-
lier notion of assertoric content of Dummett, which is simply that an agent can be
thought of as interpreting to a sense if they can answer a number of “yes-no” binary
questions about the sense in a way that makes ‘sense’ to otheragents speaking the
language (Dummett, 1973). There is a tantalizing connection of Dummett’s asser-
toric content as answers to binary questions to the information-theoretic reduction
of uncertainty through binary choices (bits), as the content of information cannot be
derived without enough bits in the encoding. Overall, Dummett’s notion of sense as
grounded in actual language use naturally leads to another question: Is sense objec-
tive?

The reason the notion of sense was thought of as so objectionable by many
philosophers like Russell and Kripke was that sense was viewed as a private, in-
dividual notion, much like the Lockean notion of anidea. Frege himself clearly
rejects this, strictly separating the notion of a sense froman individual subjective
idea of a referent, which he refers to as an ‘idea.’ Far from a mere subjective idea
or impression of a referent, Frege believed that sense was inherentlyobjective, “the
reference of a proper name is the object itself which we designate by using it; the
idea which we have in that case is wholly subjective, in between lies the sense,
which is indeed no longer subjective like the idea, but is yetnot the object itself”
(1892). A sense is objective insofar as it is a shared part of an inherently public
language, since a sense is the “common property of many people, and so is not a
part of a mode of the individual mind. For one can hardly deny that mankind has
a common store of thoughts which is transmitted from one generation to another”
(1892). While the exact nature of a sense is still unclear, its main characteristic is
that it should be whatever isobjectively sharedbetween the competent in the use of
names in a language.

It is precisely this notion that sense - and therefore meaning as whole - is ‘ob-
jective’ that is crucial for our project of reconstructing meaning on the Web. The
Fregean notion of sense isidenticalwith our reconstructed notion of informational
content. These terms should be viewed as identical. The content of information is
precisely what is shared between the source and the receiveras a result of the con-
veyance of a particular message. By definition, this holdingof content in common
which is the result of the transmission of an information-bearing messagemustby
definition involve at leasttwo things: a source and a receiver. Furthermore, if the
source and receiver are considered to be human agents capable of speaking natural
language, then by the act of sharing sentences, which are just encodings shared over
written letters or acoustic waves in natural language, the two speakers of language
are sharing the content of those sentences. Since the content is possessed by two
people, and is by definition of information thesamecontent, insofar assubjectiveis
defined to be that which is only possessed by a single agent andobjectiveis defined
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to be that which is possessed by more than one agent (althoughnot necessarily all
agents), thencontent is objective.

Most of the productive concepts from Web architecture and philosophy map into
the notion of a Fregean sense rather easily. Sentences and terms natural in a language
have both a syntactic encoding and a semantic content or sense, that can multiply
realized over differing mediums. A sentence is a fully-fledged information-carrying
message, that can have multiple realizations in the form of different utterances at
different points in space and time. The Gricean notion of a speaker’s intentions then
maps to the meaningful behavior a sentence is supposed to engender Grice (1957a).
The problem of word senses is now revealed to be much larger than previously
supposed, as it now stretches across to all sorts of non-natural languages. Every-
thing from messages in computer protocols (formal languages) to paintings (iconic
languages) are now just encodings of information, and thesetoo have senses and
possible sense ambiguities.

Representations are not just then ‘in the head’ but also present as an objective
component of sentences as thesenseof names. In particular, a name in natural lan-
guage is no more than some encoding that has as its interpretation the sense of a
(possibly and usually distal!) referent. The class ofproper names, long a source of
interest, is just a representation in natural language whose referent is an entity, such
that the name ‘TimBL’ refers to the person Tim Berners-Lee, while the larger class
of names such as ‘towers’ or ‘integers’ can refer to groups ofentities and concepts.
There may be some objection that a merenamein a sentence is a full-blooded repre-
sentation. However, unlike some theories of representation such as those put forward
by Cummins, we do not require that there be some “isomorphism” or other struc-
tured relationship between the representation and its referent (1996), we require the
much less-demanding causal relationship with some impact upon the sense (con-
tent) and thus the meaningful behaviour of the agent. While it is obvious there is
nothing inherent in the term ‘Eiffel Tower’ that leads the letters or phonemes in the
name to correspond in any significant structural way with theEiffel Tower itself, as
long as the sense of the name is dependent onthere being a referentthat the name
‘stands-in’ for, so a name like the ‘Eiffel Tower’ is still a representation of the Eiffel
Tower itself. The referent itself or some ‘image’ thereof does not have to be bundled
along and carried with the sentence in any meaningful way, asour previous work
on the representational cycle shows that is primarily an historical chain with causal
efficacy that is the role of the referent.

However, since Frege’s time find this notion of meaning as an objective sense
has been considered counter-intuitive and controversial,and so with a few excep-
tions most philosophers of language would throw the notion of sense out the window
by grounding theories of meaning in subjective impressionsof ‘sense-data.’ Further-
more, unlike Fregean sense, these theories of semantics have actually been debated
in the context of the Web. So before buying into a Fregean notion of sense on the
Web, let’s see how they fare in their encounter with the Web.
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4.3 The Logicist Position and the Descriptivist Theory of
Reference

The origin of the logicist semantics is in what is popularly known as ‘the descrip-
tivist theory of reference’. In this theory of reference, the referent of a name is given
by whatever satisfies the descriptions associated with the name. Usually, the descrip-
tions are thought to be logical statements, so a name is actually a disguised logical
description. The referent of the name is then equivalent to the set of possible things,
given normally by a mathematical model, such that all statements containing the
name are satisfied. To explain a bit further,formal languagesare languages with an
explicitly defined syntax at least, and also possibly (although not always) a model-
theoretic semantics. The purpose of these formal languagescan be interpretation by
computers. Many computer languages not considered to be programming languages
are languages insofar as they have some normative or even informal interpretation,
such as HTML. Furthermore, due to some biases against computer languages being
put on the same footing as natural language, sometimes the term format is a used as
synonym for computer-based language.

As mentioned earlier, an act of interpretation is usually thought of as a mapping
from some sentences in a language to the content of some state-of-affairs in a world.
This world is often thought to be the everyday world of concrete trees, houses, and
landscapes that humans inhabit. Informally an interpretation can be considered to
be a mapping from sentences to the physical world itself, a mapping rather ironi-
cally and appropriately labelled ‘God Forthcoming’ (Halpin, 2004). However, often
we do not have access to the world itself and it is unclear if a simplistic definition
such as “the truth of a sentence consists in its agreement with (or correspondence
to) reality” makes any sense, for “all these formulations can lead to various mis-
understandings, for none of them is sufficiently precise andclear” Tarski (1944).
In an attempt to define a formal notion of truth, Tarksi definedthe interpretation of
a language, which he terms the “object” language, in terms ofa “meta-language”
(1944). If both the language and the meta-language are suitably formalized, the in-
terpretation of the language can then be expressed in terms of a satisfaction of a
mathematical model, wheresatisfactioncan be defined asan interpretation to a
mathematical model that defines whether or not every sentence in the language can
be interpreted to content, which in the tradition of Frege is usually thought of as a
‘truth’ value (i.e. the content is simply the value ’true.’). In this way, formal seman-
tics is distinguished from the jungle of informal semanticsby having a precisely
defined mathematical model ‘stand-in’ for the vague and fuzzy world or some por-
tion thereof. While Tarksi originally applied this only to suitably formal languages,
others such as Montague have tried to apply this approach, with varying degrees of
success and failure, to natural language. To summarize,model-theoretic semantics
is a semantics wherean interpretation of a language’s sentences is to a mathemat-
ical model. Themodelis a mathematical structure, possibly a representation of the
world or the language itself. The relationship is summarized below in Figure 4.1,
where the relationship between the model and the world is thought to be distal (such



92 4 Theories of Semantics on the Web

that the modelrepresentsthe world). This is not always the case, as in the model
can be thought of as ranging over the world itself.

The adequacy of models is usually judged by whether or not they fulfill the pur-
poses to which the language is designed, or whether or not their behaviour ade-
quately serves as a model of some portion of the world. Given amodel-theoretic
semantics, an interpretation can be given as “a minimal formal description of those
aspects of a world which is just sufficient to establish the truth or falsity of any ex-
pression” in the language (Hayes, 2004). While again the history and debate over
these terms is outside the scope of this thesis, in general the original notion, as pi-
oneered by Carnap (1947), is that a certainkind of thing may only be described,
and so given anintension, while thethings that satisfy this description(which may
be more than one thing) areextensions. Sentences areconsistentif they can be sat-
isfied, it is inconsistentif otherwise. Lastly, note that anentailment is where an
interpretation of one sentence to some content always satisfies the interpretation
of another sentence to some content, i.e. the first statement entails the second. In
contrast, aninferenceis asyntactic relationship where one sentence can be used to
construct another sentence in a language. In detail, as shown in Figure 4.1, the syn-
tactic inference mechanisms over time produce more valid inferences, and because
these inferences ‘line up’ with entailments, they also may accurately describe the
world outside the formal system. Ideally, this model also ‘lines-up’ with the world,
so the inferences give one more correct statements about theworld. Models can
be captured in various ways, of which we have primarily described a denotational
semantics, but often an axiomatic and operational semantics are equally powerful
formalisms. Inference can usually be accomplished by some local inference pro-
cedure, like a computer program. The inference procedure ofa language issound
if every inferred sentence can be satisfied(i.e. the inference mechanism preserves
‘truth’), and it is completeif every satisfied sentence can be shown to be entailed
(i.e. all ‘true’ statements can be proven). This is necessarily a quick overview of the
large field of formal semantics, but the general notions are illustrated in Figure 4.1
as the parallel between the causal relationships of the syntactic sentences and their
interpretations to a model thatsemanticallyrefers to the world.

4.3.1 Logical Atomism

Obviously, the use of some kind of formal logic to determine what could satisfy a
name was appealing, as it appeared that semantics could possibly become a science
on the same footing as, say, physics. The roots of the descriptivist theory of refer-
ence lay with the confluence of philosophers inspired by thisvision who are known
aslogical positivistsandlogical atomists, whose most systematic proponents were
Rudolf Carnap and Bertrand Russell respectively. Althoughlogical positivism is a
vast school of thought that has proven tremendously influential, even in its current
discredited state, for our purposes we will only concern ourselves with one particu-
lar doctrine common to both logical positivism and logical atomism, the problem of
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Fig. 4.1 Models, Entailment, and Inference

how natural language terms relate to the logic descriptions, and logical descriptions
to the world. The difference between the two schools is mainly one of focus, for
the logical positivists hoped to rid the world of metaphysical and epistemological
statements through the use of logic and empiricism, while logical atomists thought
that the basics metaphysics and even our epistemology should be phrased in terms
of logic over elementary sense-data.

The logical positivists and Bertrand Russell were inspiredby Wittgenstein’s
early philosophical work in theTractatus Logico-Philosophicus. In it, Wittgenstein
strongly argues forlogical atomism, that logic is the true language of the world;
“logic is not a body of doctrine, but a mirror image of the world” for “the facts in
logical space” are the world (1921). So logical statements are “laid against reality
like a measure” (1921). This is possible because the world ismetaphysically deter-
minate at its base, being composed of “simple” and “unalterable” objects that “make
up the substance of the world” so that “the configuration of objects produces states
of affairs” where “the totality of existing states of affairs is the world” (Wittgenstein,
1921). In other words, there is no – as Brian Cantwell Smith would put it – “flex”
or “slop” in this picture, no underlying “metaphysical flux”that somehow resists
easily being constrained into these fully determinate “objects” (1996). Although the
nature of the world consists oftrue logical facts, humans, since they “picture facts”
to themselves, can nonetheless makefalse logical statements, since these pictures
merely “model reality” (Wittgenstein, 1921). Contrary to his own logical atomist
teacher Russell, Wittgenstein thought that the primary jobof the logician is then
to state true facts, and “what we cannot speak about” in the form of true logical
statements “we must pass over in silence,” a phrase he believed was consistently
misinterpreted by logical positivism (Wittgenstein, 1921). Note that unlike the more
mature standpoint of Hayes, the early logical atomism of Wittgenstein allowedlogi-
cal statementsto directly refer to single things in the world, i.e. young Wittgenstein
and the logical positivists reifiedthe formal modelto be the worlditself.
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Carnap’s ultimate goal was to use this logical empiricism torender any scientific
hypothesis either verifiable by sense experience or not. According to Carnap, in his
The Logical Structure of the World, all statements (at least, “scientific” statements
with “cognitive content”) can be reduced to logical statements, where the content
of this logical language is given by sensory experiences (1928). These “elementary
experiences” (calledeigenpsychischeby Carnap) cannot be directly described, as
they are irreducible, but only described by a network of logical predicates that treat
these experiences as logical constants (Carnap, 1928). Forexamples of these kinds
of sentences, one would not say “The Eiffel Tower is made of reddish iron.” One
would say something more elementary like ‘hard thing here now’ or ‘redness here
now’ when bumping one’s toe against the brute fact of the Eiffel Tower. Then these
sense-data - which were considereda priori true due to their verification by sense
experience - could be built up into larger complex sentencesand names via logic.
Since natural language is part of the world, the structure oflanguage too must be
logical, and range over these elementary sense experiences. In this regard, names are
given to their referents by concordance with a logical structure ranging over these
elementary sensory experiences. Carnap’s project was similar in spirit to Chomsky’s
syntactic theory of language, but focused on semantics rather than syntax: Carnap
hoped to develop a semantic and logical definition of meaningthat would validate
only sentences with ‘meaning’ and dispose of all metaphysical notions, which would
naturally include likely most of Hegel and perhaps even Fregean sense.

Bertrand Russell begins the logical atomist investigationof the connection be-
tween logic and names in language is his landmark investigation On Denotingwith
a deceptively simple question: “is the King of France bald?”(Russell, 1905). To
what referent does the description “the King of France” refer to? (Russell, 1905)
Since in Russell’s time there was no King of France, it could not refer to anything
like what Carnap later called “elementary sense data” (Carnap, 1928). In this re-
gard, Russell makes a crucial distinction. According to Russell, elementary sensory
experiences are known throughacquaintance, in which we have some sort of direct
‘presentation of’ the thing (Russell, 1905). According to Russell, these statements of
acquaintance with directly present sensory data employ what are known as Russel-
lian demonstratives (such as ‘this’ or ‘that’) as exemplified by the statement “That is
the Eiffel Tower.” Yet knowledge of a thing can be based ondescription, which are
those “things we only reach by means of denoting phrases” (Russell, 1905). Russell
believed that “all thinking has to start from acquaintance,but it succeeds in thinking
aboutmany things with which we have no acquaintance” via the use ofdescription
(Russell, 1905). Russell was most interested in whether those things with which we
have direct acquaintance can be considered true or false, orwhether a more mys-
terious third category such as ‘nonsense’ is needed. Russell opts to reject creating
imaginary but true ‘things’ as well as any third category, but instead holds that state-
ments such as “the King of France is bald” are false, since “itis false that there is an
entity which is now the King of France and is bald” (Russell, 1905). This solution
then raises the alarming possibility that “the King of France is not bald” may also
come out false, which would seem to violate the Law of the Excluded Middle. So,
Russell counters this move by introducing the fact that “theKing of France is bald”
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is actually a complex logical statement involving scope andquantification, namely
(∃x.F(x)∧G(x))∧ (∀y.F (y)→ x= y), whereF is “being the King of France” and
G is “being bald” (Russell, 1905). According to the analysis,‘The King of France’
is merely adisguisedcomplex logical statement. Furthermore, this treatment can be
extended to proper names such as ‘Sir Walter Scott,’ who can be identified with ‘the
author of Waverly,’ so that instead of being a tautology, even a proper name of a per-
son, even if known through acquaintance, is sort of short-hand for a large cluster of
logical statements. To use our previous example, the ‘Eiffel Tower’ can be thought
of as a short-hand for not only that ‘there exists an entity known as the Eiffel Tower’
but also the logical statement was ‘the aforementioned entity had Gustave Eiffel as
its architect.’ If someone did not know that ‘the aforementioned entity was also the
tallest building in the world up until 1930,’ one could then make a statement such as
‘The Eiffel Tower is identical to the tallest building in theworld up until 1930’ with-
out merely stating a tautology, and such a statement would add true and consistent
knowledge to a hearer who was not aware of the statement.

As sensible as Russell’s programme appeared, there are difficulties in building
any theory of reference on, as Quine put it, such a “slender basis” as elementary
sense data and logic (1951). One obvious problem for any descriptive theory of
names comes for the use of names of any “kind of abstract entities like properties,
classes, relations, numbers, propositions,” for such entities could not have an inter-
pretation for any content using such a simple sensory epistemology (Carnap, 1950).
Carnap’sEmpiricism, Semantics, and Ontologymade an argument for basing such
entities purely on linguistic form itself. Carnap believedthat, despite the difficulty
of determining the interpretation of names for abstract entities, “such a language
does not imply embracing a Platonic ontology but is perfectly compatible with em-
piricism” (1950). His position was that while “if someone wishes to speak in his
language about a new kind of entity, he has to introduce a system of new ways of
speaking, subject to new rules,” which Carnap calls the “construction of a linguistic
framework for the new entities in question.” Fromwithin a linguistic framework,
Carnap believed to commit to any statement about the “existence or reality of the
total system of the new entities” was to make a “pseudo-statement without cogni-
tive content” (1950). This particular position of Carnap’swas eventually devastated,
as Quine showed that even the most unremarkable of sensory expressions such as
‘redness here now’ were undermined by multiple problems. For example, there is
the issue of indeterminacy of translation, in which even theverbal expression of
sense experiences assumes a common background, but one can imagine many cases
where two creatures would utter “redness here now” in reaction to actually different
sensory stimuli (imagine a human with color-blindness). Also, there is the problem
where even our sense experiences are not ‘raw’ but influencedby a complex holis-
tic network of propositions - one does not experience ‘hard iron here now’ but the
Eiffel Tower itself (Quine, 1951).
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4.3.2 Tarski’s Formal Semantics

Tarski abandoned the quaint epistemology of logical atomism in terms of direct ac-
quaintance with sensory data and defined reference purely interms of mathematical
logic in his The Concept of Truth in Formal Languages(Tarski, 1935). Reference
was just defined as a consequence of the truthonly in terms of satisfaction of a
formal language (Tarski, 1935). To set up his exposition, Tarski defines two lan-
guages, the first being the syntacticobject language Land the second being the
meta-languageM. Themeta-languageshould be more expressive such that it can
describe every sentence in the object language, and furthermore, that it contain ax-
ioms that allow the truth of every sentence in the object language to be defined.
In his first move, Tarski defines the formal conception of truth as ‘Convention T,’
namely that for a given sentences in L, there is a statementp in M that is a theorem
defining the truth ofs, that is, the truth ofs is determined via a translation ofs into
M (Tarski, 1935). Tarski then later shows that truth can be formally defined as “s is
true if and only ifp” (Tarski, 1944). For example, if the object language is exempli-
fied by a sentence uttered by some speaker of English and the meta-language was
an English description of the real world; ‘The Eiffel Tower is in Paris’ is true if and
only if the Eiffel Tower is in Paris. The sentence ‘The EiffelTower is in Paris’ must
be satisfied by the Eiffel Toweractually beingin Paris. While this would at first
seem circular, its non-circularity is better seen through when the object language is
not English, but another language such as German. In this case, “‘Der Eiffelturm ist
in Paris’ is true if and only if the Eiffel Tower is in Paris.” However, Tarksi was not
interested in informal languages such as English, but in determining the meaning of
a new formal language via translations to mathematical models or other formal lan-
guages with well-known models. If one was defining a formal semantics for some
fragment of a knowledge representation language like RDF, astatement such as
http://www.eiffeltower.example.org ex:location ex:Paris is true if and
only if ∃ab.R(a,b) whereR, a, andb are given in first-order predicate logic.

If one is defining a formal Tarski-style semantics for a language, what should
one do when one encounters complex statements, such as ‘the Eiffel Tower is in
Paris and had as an architect Gustave Eiffel’? The answer is at the heart of Tarksi’s
project, the second component of Tarski’s formal semanticsis to use the principle
of compositionality so that any complex sentence can have its truth conditions de-
rived from the truth conditions of its constituents. To do this, the meta-language
has to have finitely many axioms, and each of the truth-defining theorems produced
by the meta-language have to be generated from the axioms (Tarski, 1935). So, the
aforementioned complex sentence is true if and only if∃ab.R(a,b)∧Q(a,c), where
Q can be thearchitect of relationship,c can be Gustave Eiffel anda the Eiffel
Tower. Tarksi’s theory as explained so far only deals with ‘closed’ sentences, i.e.
sentences containing no variables or quantification. The third, and final component
of Tarski’s formal semantics is to use the notion of satisfaction via extension to de-
fine truth (Tarski, 1935). For a sentence such as ‘all monuments have a location,’ we
can translate the sentence to∀a, l .monument(a)→ hasLocation(a, l)which is true if
and only if there is an extensionx from the world that satisfies the logical statements
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made abouta. In particular, Tarksi has as his preferred extensions infinite ordered
pairs, where the ordered set could be anything (Tarski, 1935). For formal languages,
a model-theoretic semantics with a model composed by set theory was standard. For
example, the ordered pairs in some model of(Ei f f elTower,Paris) would satisfy, as
would (ScottMonument,Edinburgh)but not(Paris,Ei f f elTower). However, there
is no reason why these models could not be “God Forthcoming,”things in the the
real world itself, albeit given in set-theoretic terms (Smith, 1995). To summarize
Tarksi’s remarkably successful programme, model-theoretic semantics can produce
a theory of truth that defines the semantics of a sentence in terms of the use of a
translation of the sentence into some formal language with afinite number of ax-
ioms, then using compositionality to define the truth of complex sentences in terms
of basic sentences, and finally determining the truth of those basic sentences in terms
of what things in a model satisfy the extensions of the basic sentences as given by the
axioms. This work marks the high-point of the logical programme, as all questions
of meaning are reduced to questions about giving the interpretation of a sentence
in terms of a formal notion of truth. This notion of truth is not restricted by the
logical atomist’s epistemology of elementary sense data, but instead can range over
any possible formal language and any possible world. This victory is not without
its costs, since while Tarski provides the best account of the relationship between
logical descriptions and the world by simply removing all questions that cannot be
phrased formally, formal semantics by itself leaves unsolved the fundamental ques-
tion about how natural language relates to our experience ofthe world. Ignoring a
problem does not make it go away. So when confronted with thisvexing problem,
champions of formal semantics often revert to the Russellian doctrine of direct ac-
quaintance, thereby returning to the original problems that caused Tarski to abandon
epistemology.

4.3.3 Logical Descriptions Unbound on the Web

While the descriptivist theory of reference seems distant from the Identity Crisis of
the Web, it is in fact central to the position of Hayes and the Semantic Web as a
whole. This is primarily because Hayes’s background was in formal logic, with his
particular specialty being the creation of Tarski-style semantics for knowledge rep-
resentation languages. What Hayes calls the “basic resultsin 20th century linguistic
semantics” that Berners-Lee’s dictum that “URIs identify one thing” violates is the
interpretation of URIs in a Tarski-style formal semantics (Hayes, 2003a). For the
logicist position, thesemanticsin the Semantic Web derive from the Tarski-style
formal semantics Hayes created for the Semantic Web (Hayes,2004).

Before delving into the formal semantics of RDF, it should benoticed that these
semantics are done by extension, like most other formal languages Hayes (2004).
However, the semantics of RDF are purposefully quite weak asnot to allow arith-
metic or constructs like the negation of a class, and so RDF avoids logical para-
doxes like the encoding of Gödel sentences. Yet in order to make RDF triples as
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flexible as possible, RDF includes features normally associated with higher-order
logic such as “a property may be applied to itself” and classes “may contain them-
selves” (Hayes, 2004). This is handled semantically by having first an interpretation
map the URI to an individual. Then unlike standard first-order logic, this individ-
ual then maps to different extensions depending on the role the URI is playing as
a property or class in the triple. A simple example should suffice to give a flavour
of the formal semantics, where a relation is just another kind of individual. What is
the formal semantics ofex:EiffelTower ex:architect ex:Gustave Eiffel?
To simplify slightly, Hayes defines the formal semantics in terms of set theory,
where there is a set of resources that compose the model of thelanguage, a set
of properties, and a set of URIs that can refer to resources. The interpretation of
any RDF statement is then given as an extensional mapping from the set of prop-
erties to the powerset of resources, to the set of pairs of resources. So, given a set-
theoretic model consisting of elements (given by italics)Gustave Eiffelandthe Eif-
fel Towerandbeing the architect of, then ex:EiffelTower |= the Eiffel Tower,
ex:Gustave Eiffel |= Gustave Eiffeland ex:architect |= being the architect
of, so that the entire triple maps to a set of pairs:ex:EiffelTower ex:architect

ex:Gustave Eiffel |= (..., (the Eiffel Tower, Gustave Eiffel), ...). Common-sense
human intuitions will likely have this interpretation mapsto ex:EiffelTower

ex:architect ex:Gustave EiffelTower, and using the axioms defined in the
RDF formal semantics, a few new triples can be inferred, suchas ex:architect

rdf:type rdf:Property, i.e.being an architect ofis a property of something.
However, the inherent pluralism of the Tarski approach to models also means

that another equally valid interpretation would be the inverse, i.e. the mapping of
ex:EiffelTower to Gustave Eiffeland ex:Gustave Eiffel to the Eiffel Tower.
In other words, ex:architect |= being the architect of, so that the entire triple
maps to a set of pairsex:EiffelTower ex:architect ex:Gustave Eiffel |=
..., (Gustave Eiffel, Eiffel Tower), ...). Due to the unconstrained nature of RDF,
ex:architect has no ‘natural’ relationship to anything in particular, but could
easily be assigned eitherthe Eiffel Toweror Gustave Eiffeljust as easily asbe-
ing the architect of. Furthermore, the model could just as easily be given by
something as abstract as the integers1 and 2, and an equally valid mapping
would be for ex:EiffelTower |= 1 and ex:Gustave Eiffel |= 2, so that
ex:architect |= being the architect of, so that the entire triple maps to a set of
pairs ex:EiffelTower ex:architect ex:Gustave Eiffel |= (..., (1,2), ...). In-
deed, the extreme pluralism of a Tarski-style semantics shows that, at least if all one
has is a single lone triple statement, that triple can be satisfied by any model. This
is no mere oddity of formal languages, this would also hold for any lone sentence
in a language like English – such as “Gustave Eiffel is the architect of the Eiffel
Tower” – as long as one subscribed to a Tarski-style semantics for natural language.
As the number of triples increased, the amount of possible things that satisfy the
model is thought to decrease, but in such a loose language as RDF, Hayes notes
that it is “usually impossible to assert enough in any language to completely con-
strain the interpretations to a single possible world, so there is no such thing as ‘the’
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unique interpretation” (Hayes, 2004). This descriptivisttheory of reference, where
descriptions are logical statements in RDF, is illustratedin Figure 4.2.

Fig. 4.2 The descriptivist theory of reference for URIs

While Hayes makes no claim that access to some web-pages via URIs is not pos-
sible, he claims that such access to Web representations is orthogonal to the question
of what a URI could refer to, since “the architecture of the Web determines access,
but has no direct influence on reference” (Hayes and Halpin, 2008). Furthermore,
Hayes’s logical understanding of ambiguity parts path withnatural language un-
derstandings of ambiguity: Hayes claims that reference to resources is completely
independentof whatever Web representations can be accessed, even if those contain
logical expressions. While much credit should be given to Hayes for creating a log-
ical semantics for RDF, the problem of connecting these descriptions to the world
outside of the Web falls outside formal semantics and so opens up a seemingly un-
crossable abyss between the logical descriptions and sensory data. One seemingly
easy way out of this abyss is to revert to the doctrine of Russellian direct acquain-
tance, also known as ostentation. In moments, Hayes himselfseems to subscribe to
the logical atomist epistemology of Russell, as he says that“reference can either
be established by either description or ostention” with ostention being defined as
the use of a Russellian demonstrative (like ‘that’ or ‘this’) identifying a particular
“patch of sense data” via a statement such as ‘that is the Eiffel Tower’ (Hayes, 2006).
Since most of the things referred to by names are not accessible, reference can only
be determined by description, and these descriptions are inherently ambiguous as
regards any sense data (Hayes and Halpin, 2008).

As our example showed, RDF in general says so little inferentially that many
different models can satisfy almost any given RDF statement. Therefore, Hayes
considers it essential to ditch the vague word ‘identify’ asused in URIs, and distin-
guish between the ability of URIs to access and refer. While access is constrained
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by Web architecture, according to Hayes, reference is absolutely unconstrained ex-
cept by formal semantics, and so “the relationship between access and reference is
essentially arbitrary” (Hayes and Halpin, 2008). From thisphilosophical position,
the Identity Crisis dissolves into a pseudo-problem, for the same URI can indeed
access a web-page and refer to a person unproblematically, as they no longer have
to obey the dictum to identify one thing. Hayes compares thissituation to that of
overloading, using a single name to refer to multiple referents, and instead of being
a problem, “it is a way of using names efficiently” and not a problem for commu-
nication, as “natural language is rife with lexical ambiguity which does not hinder
normal communication,” as these ambiguities can almost always be resolved by
sufficient context (Hayes and Halpin, 2008). Overall, the argument of Hayes against
Berners-Lee in the Identity Crisis is the position of keeping the formal semantics of
reference separate from the engineering of the Web.

4.4 The Direct Reference Position and the Causal Theory of
Reference

The alternative slogan of Berners-Lee, that “URIs identifyone thing,” may not be
completely untenable after all (Berners-Lee, 2003c). It appears to even be intuitive,
for when one says ‘I went to visit the Eiffel Tower,’ one believes one is talking about
a veryparticular thing in thereal world called the ‘Eiffel Tower,’ not a cluster of
descriptions or model of the world. The direct theory of reference of Berners-Lee
has a parallel in philosophy, namely Saul Kripke’s ‘causal theory of reference,’ the
widely-known argument against the descriptivist theory ofreference, and so the
reliance upon the purely formal semantics of Hayes (Kripke,1972). In contrast to
the descriptivist theory of reference, where the content ofany name is determined
by ambiguous interpretation of logical descriptions, in thecausal theory of reference
any name refers via some causal chain directly to a referent (Kripke, 1972).

4.4.1 Kripke’s Causal Theory of Proper Names

The causal theory of reference was meant to be an attack on thedescriptivist theory
of reference attributed to Russell, and its effect in philosophy has been to discredit
any neo-Russellian descriptivist semantics for proper names. Unsurprisingly, the
causal theory of reference also has its origin in logic, since Kripke as a modal logi-
cian felt a theory of reference was needed that could make logical statements about
things in different logically possible worlds (Kripke, 1972). However, while Kripke
did not directly confront the related position of Tarski, his argument does nonethe-
less attempt to undermine the ambiguity inherent in Tarski’s model-theoretic se-
mantics, although a Tarski-style semantics can merely ‘flatten’ models of possible
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worlds into a singular model. Still, as a response in philosophy of language, it is
accepted as a classical refutation of the descriptivist theory of reference.

In Kripke’s Naming and Necessity, an agent fixes a name to a referent by a pro-
cess calledbaptism, in which the referent, known through direct acquaintance is
associated with a name via some local and causally effectiveaction by the agent
(Kripke, 1972). Afterwards, a historical and causal chain between a current user of
the name and past users allows the referent of a name to be transmitted unambigu-
ously through time, even inother possible worlds. For example, a certain historical
personage was given the name ‘Gustave Eiffel’ via a rather literal baptism, and the
name ‘Gustave Eiffel’ would still refer to that baptized person, even if he had not
been the architect of the Eiffel Tower, and so failed to satisfy that definite descrip-
tion. Later, the causal chain of people talking about ‘Gustave Eiffel’ would identify
that very person, even after Gustave Eiffel was dead and gone. Descriptions aren’t
entirely out of the picture on Kripke’s account; they are necessary for disambigua-
tion when the context of use allows more than one interpretation of a name, and they
figure in the process by which things actually get their names, if the thing cannot
be directly identified. However, this use of descriptions isa mere afterthought with
no causal bearing on determining the referent of the name itself, for as Kripke puts
it, “let us suppose that we do fix the reference of a name by a description. Even if
we do so, we do not then make the name synonymous with the description, but in-
stead we use the name rigidly to refer to the object so named, even in talking about
counterfactual situations where the thing named would not satisfy the description in
question” (Kripke, 1972). So what is crucial is not satisfying any description, but
the act of baptism and the causal transmission of the name.

4.4.2 Putnam’s Theory of Natural Kinds

Kripke’s examples of the causal theory of reference used proper names, such as ‘Ci-
cero’ or ‘Aristotle,’ and he did not extend his analysis to the whole of language in a
principled manner. However, Hilary Putnam, in hisThe Meaning of ‘Meaning,’ex-
tends Kripke’s analysis to all sorts of names outside traditional proper names, and in
particular Putnam uses for his examples the names of naturalkinds (Putnam, 1975).
Putnam was motivated by an attempt to defeat what he believesis the false distinc-
tion between intension and extension. The set of logical descriptions, which Putnam
identifies with a “psychological state,” that something must satisfy to be given a
name is theintension, while those things in a given interpretation that actuallysat-
isfy these descriptions, is theextension(Putnam, 1975). Putnam notices that while
a single extension can have multiple intensions it satisfies, such as the Eiffel Tower
both being “in Paris” and “a monument,” a single intension issupposed to have the
same extension in a given interpretation. If two people are looking for a “monument
in Paris,” the Eiffel Tower should satisfy them both, even though the Eiffel Tower
can also have many other possible descriptions.
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Putnam’s analysis can be summarized as follows: Imagine that there is a world
“very much like Earth” called ‘Twin Earth.’ On Twin Earth “the liquid called ‘wa-
ter’ is not H20 but a different liquid” whose chemical formula is abbreviated as
XYZ, and that thisXYZ is “indistinguishable from water at normal temperatures
and pressures” since it “tastes like water and quenches thirst like water” (Putnam,
1975). A person from Earth wouldincorrectly identify XYZ for their normal refer-
ent of water, as it would satisfy all their descriptions. In this regard, this shows that
meanings “ain’t in the head” but are in fact determined, not by individual language
use or descriptions, but by some indexical relationship to “stuff that is like water
around here” normally. That “stuff”shouldget its name and meaning fromexperts,
since “probably every adult speaker even knows the necessary and sufficient con-
dition ‘water isH20,’ but only a few adult speakers could distinguish water from
liquids which superficially resembled water...in case of doubt, other speakers would
rely on the judgment of these ‘expert’ speakers” who would ideally testXYZ and
determine that it was indeed, not water” (Putnam, 1975). Indeed, less outlandish
examples, such as the difference between “beech trees” and “elm trees” are trotted
out by Putnam to show that a large amount of our names for things, perhaps even
extending beyond natural kinds, are actually determined byexpert knowledge (Put-
nam, 1975). In this way, Kripke’s baptism can extend to almost all languages, and
scientists can be considered a special sort of naming authority capable of baptiz-
ing all sorts of things with a greater authority than everyone else. As even Putnam
explicitly acknowledges “Kripke’s doctrine that natural-kind words are rigid desig-
nators and our doctrine that they are indexical are but two ways of making the same
point” (Putnam, 1975).

4.4.3 Direct Reference on the Web

This causal theory of reference is naturally close to the direct reference position
of Berners-Lee, whose background is in expert-created databases. He naturally as-
sumes the causal theory of reference is uncontroversial, for in database schemas,
what a termrefers to is a matter best left to the expert designer of the database.
So Kripke and Putnam’s account of unambiguous names can thenbe transposed to
the Web with a few minor variations in order to obey Berners-Lee’s “crazy” dictum
that “URIs identify one thing” regardless of interpretation or even accessible web-
page (Berners-Lee, 2003c). While it may be a surprise to find Berners-Lee to be a
closet Kripkean, Berners-Lee says as much, “that the Web is not the final arbiter
of meaning, because URI ownership is primary, and the look-up system of HTTP
is...secondary” (Berners-Lee, 2003c). There is also an element of Grice in the di-
rect theory of reference, for theintendedinterpretation and perhaps even purpose of
the owner is the one that really matters to Berners-Lee, not any publicly accessible
particular Web representation (Grice, 1957b). However, ultimately Berners-Lee has
far more in common with the causal theory of reference, sincealthough the URI
owner’s intention determines the referent, after the minting of the new URI for the
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resource, the intended interpretation is somehow never supposed to vary (Berners-
Lee, 1998a).

To apply the causal theory of reference as to URIs, baptism isgiven by the reg-
istration of the domain names, which gives a domain name and legally binding set
of IP addresses, such asexample.org, a legally binding owner. Of course, the natu-
ral question then would be if this Kripkean practice can thenbe extended to entire
URIs such ashttp://www.example.org/Eiffel? For most domain names a specific pol-
icy given by the owner could set the allowed referents for thecreation of URIs that
involve the domain name in question, perhaps as embodied in some software system.
One could imagine several variations on this theme, from theURIs being controlled
indirectly by systems-programmers or even outsourced to the general public in the
form of a user-generated URI registry with a single top-level domain. Regardless of
the details, the referent of a URI is established by fiat by theowner(s), and then op-
tionally can be communicated to others in a causal chain in the form of publishing
web-page accessible from the URI or by creating Semantic Webstatements about
the URI. This causal theory of reference for URIs is illustrated in Figure 4.3.

Fig. 4.3 The causal theory of reference for URIs

In this manner, the owner of the URI can thereby determine thereferent of the
URI and communicate it to others, but ultimately the act of baptism and so the
determination of the referent are in the hands of the owner ofthe URI, the self-
professed ‘expert’ in the new vocabulary term introduced tothe Semantic Web by
his URI, and the owner has no real responsibility to host any Web representations
at the URI. Since the owner can causally establish a name for anon-Web accessi-
ble thing via simply minting a new URI without hostinganyweb-page, under the
causal theory of reference the Semantic Web can be treated ashaving a giant trans-
lation manual mapping URIs directly to referents, where theURIs refer directly to
objects in the world outside of the Web. Realistically, if anagent got a URI like
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http://www.example.org/Gustave Eiffel and one wanted to know what the
URI referred to, one could use a service such aswhois to look up the owner of the
URI, and then contact the owner of the URI if there was any doubt in the matter.
Yet since obviously such URIs cannot access things outside the Web and contacting
the owner every time a URI is to be used is absurd, what kinds ofweb-pages, if
any, should this giant Semantic Web dictionary return? If itreturns no web-page,
how can a user-agent distinguish a URI for a referent outsidethe Web from that of a
URI for a web-page? This question is partially answered by Berners-Lee in a solu-
tion called ‘303 redirection,’ where a distinct URI is given to the thing-in-of-itself,
and then when this URI is accessed by an agent such as a web-browser, a particular
Web mechanism called the 303 Header redirects to the agent toanother URI for
a web-page describing the resource, either in RDF or in HTML,or both. However,
this mechanism has been considered difficult to use and understand, “analogous to
requiring the postman dance a jig when delivering an officialletter” (Hayes, 1977b).

4.5 Sense and Reference on the Web

The Semantic Web has still not experienced the tremendous growth of the hypertext
Web, and the primary reason appears to be this impasse at the Identity Crisis. For the
first few years of its existence (2001-2006), in general the arguments of Hayes pre-
vailed, and the URIs used in RDF graphs did not access any web-pages. However,
in this phase of its existence, the Semantic Web did not progress beyond yet another
little-used knowledge representation language. In the last few years (2006-2009), the
Semantic Web has experienced phenomenal growth under the term ‘Linked Data,’
as Berners-Lee’s position has had more acceptance and usershave started deploy-
ing RDF using actual URIs. This growth of estimated billionstriples, including
large-scale projects by biomedical community and in government data in using the
Semantic Web, seems to have implicitly validated Berners-Lee’s direct reference
position. Yet that is far from true; what is apparent from anyanalysis of the Seman-
tic Web is that there appear to betoo manyURIs for some things, whilenoURIs for
other things (Halpin and Lavrenko, 2009). As differing users export their data to the
Web in a decentralized manner, new URIs are always minted, and so running the risk
of fracturing the Semantic Web into isolated ‘semantic’ islands instead of becoming
a unified web, as the same URIs are not re-used. The critical missing element of the
Semantic Web is some mechanism that allows users to come to agreement on URIs
and then share and re-use them, a problem ignored both by the logical and direct ref-
erence positions on semantics. Given the practical failureof both approaches, one
should be suspicious that something istheoreticallywrong as well.

The philosophical root of the problem may be that both Russell and Kripke - and
so both Berners-Lee and Hayes - reject the notion of ‘sense.’The Fregean distinction
between ‘sense’ and ‘reference’ that provoked both Russelland Kripke’s intellectual
projects to build an entire theory of meaning on top of only reference, where Frege
held that the the meaning of any term in a language is determined by the “sense” of
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the sentences that use the term, rather than any direct reference of the term (Frege,
1892). It is precisely this notion that sense is ‘objective’that allows us to construct
a new position in the next chapter. Yet how does this notion ofsense play out?
Dummett provides an insightful hint, “Frege’s thesis that sense is objective is thus
implicitly an anticipation of Wittgenstein’s doctrine that meaning is use” (Dummett,
1993). So we must outline a third position, the position of social semantics takes the
objective notion of ‘sense’ and Wittgenstein’s analysis of“meaning as use” as its
foundation (Wittgenstein, 1953) .





Chapter 5
The Semantics of Tagging

You philosophers ask questions without answers, questionsthat have to remain
unanswered to deserve being called philosophical. According to you, answered
questions are only technical matters. That’s what they wereto begin with.Jean
Lyotard (1988)

5.1 Making Sense of Tagging

During the last decade the Web has become a space where increasing numbers of
users create, share and store content, leading it to be viewed not only as an “in-
formation space” Berners-Lee (1996b) but also a “social space” ?. This new step
in the evolution of the Web, often referred to as the “Web 2.0,” was shaped by the
arrival of the different services that came into existence to support users to eas-
ily publish content on the Web, such as photos (Flickr), bookmarks (del.icio.us),
movies (YouTube), blogging (Wordpress), and others allow users totag URIs with
keywords to facilitate retrieval both for the acting user and for other users.?. Almost
simultaneously with the growth of user-generated content on the Web came a need
create order in this fast growing unstructured data. Tagging refers to the labeling of
resources by means of free-form descriptive natural language keywords, and tagging
has become the predominant method for organizing, searching and browsing online
web-pages, as well as any other resource. Sets of categoriesderived based on the
tags used to characterize some resource are commonly referred to as folksonomies.
This approach to organizing online information is usually contrasted with the fom-
ral ontolgoies used by the Semantic Web, as in collaborativetagging systems users
themselves annotate resources by tags they freely chose andthus forms a ‘flat space
of names’ without the predefined and hierarchical structurecharacteristic of the Se-
mantic Web ontologies.

As shown earlier, the Semantic Web has so far been attached toclassical theo-
ries of semantics that are based on a rejection of the notion of an objective Fregean
‘sense’ in favor of an approach based purely on reference. The usual critique of
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Fregean sense has been that the notion of some objective yet common notion of
sense in at least cryptic and even anti-scientific. Yet with the development of col-
laborative tagging systems, it seems we at long last have an organic notion of a
Fregean sense developing that is both objective and common in the form of tagging.
In tagging, for each URI a number of users attach tags to a particular URIs, and
this common set of tags can be considered the Fregean sense ofthe URI?. While
there are some difficulties with this viewpoint, namely thatcollaborative tagging
systems usually conflate a URI with whatever web representations are accessible
by that URI (and thus violate the Semantic Web dictum to separate representations
from resources and their URIs), such conflation does not at all disqualify tagging
as a candidate for a computational theory of sense. First, one can imagine that tag-
ging could be applied to the associated descriptions of Semantic Web URIs, and that
these tags would then directly apply to the non-informationresource of that URI.
To strike deeper, one could also hold that the entire division between Semantic Web
URIs and URIs for ordinary hypertext web-pages is fundamentally misbegotten,
with 303 redirection being akin to @@DANCING QUOTE. However, it should be
also noted that while the Semantic Web has yet to reach widespread usage, collab-
orative tagging systems are now part and parcel of most majorweb-sites, and their
use seems to be increasing rather than decreasing.

There are concrete benefits to the tagging approach comparedto the Semantic
Web’s traditional focus on formal ontologies. The flexibility of tagging systems is
thought to be an asset; tagging is a post-hoc categorizationprocess, in contrast to a
pre-optimized classification process such as expert-generated taxonomies. In defin-
ing this distinction, Jacob (2004) believes that “categorization divides the world of
experience into groups or categories whose members share some perceptible simi-
larity within a given context. That this context may vary andwith it the composition
of the category is the very basis for both the flexibility and the power of cogni-
tive categorization.” Philosophically, tagging is akin tolate Wittgenstein’s notion
of ‘family-resemblance.’? Classification, on the other hand “involves the orderly
and systematic assignment of each entity to one and only one class within a system
of mutually exclusive and non-overlapping classes; it mandates consistent applica-
tion of these principles within the framework of a prescribed ordering of reality”
Jacob (2004), a tradition going back to Aristotle?. Other authors argue that tag-
ging enables users to order and share data more efficiently than using classification
schemes; the free-association process involved in taggingis cognitively much more
simple than are decisions about finding and matching existing categories Butterfield
(2004). Additionally, proponents of tagging systems show that users of tagging sys-
tems only need to agree on the general meaning of a tag in orderto provide shared
value instead of the more difficult task of agreeing on a specific, detailed taxonomy
Mathes (2004).

Yet, what are thesemanticsof a tagging system? A number of problems stem
from organizing information through tagging systems, including ambiguity in the
meaning of tags and the use of synonyms which creates informational redundancy.
Interestingly, Semantic Web ontologies likeNiceTaghave been developed to ad-
dress the issues of ambiguity in tagging systems by formalizing the tagging process
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itself, often by linking a particular tag to a Semantic Web URI ? . While this may
clarify the intended meaning of the tag, this approach does not thereby in some
semi-magical manner give semantics to the tag. Also, it seems the most interesting
question for our approach is not what the referent of a particular tag act, but whether
or not thecollectivesum of individual tagging acts can serve as an objective notion
of sense. Since each tag for a given web resource (such as a webpage) is repeated
a number of times by different users, for any given tagged resource there is a distri-
bution of tags and their associated frequencies. The collection of all tags and their
frequencies ordered by rank frequency for a given resource is thetag distributionof
that resource, which is our candidate for a Fregean sense.

So then, the important open question concerning the use of collaborative tagging
to organize metadata is whether the system becomesstableover time. Bystable, we
mean that users have collectively developed some implicit consensus about which
tags best describe a site, and these tags do not vary much overtime. Only this will al-
low tags to be used as an adequate computational theory of neo-Fregean sense, since
otherwise tagging would be subjective rather than objective. We will assume that
these tags that best describe a resource will be those that used most often, and new
users mostly reinforce already-present tags with similar frequencies. Since users of a
tagging system are not acting under a centralized controlling vocabulary, one might
imagine that no coherent categorization schemes would emerge at all from collab-
orative tagging. In this case, tagging systems, especiallythose with an open-ended
number of non-expert users like del.icio.us, would be inherently unstable such that
the tags used and their frequency of use would be in a constantstate of flux. If this
were the case, identifying coherent, stable structures of collective sense produced
by users with respect to a site would be difficult or impossible.

The hope among proponents of collaborative tagging systemsis that stable tag
distributions, and thus, possibly, stable categorizationschemes, might arise from
these systems. Again, bystablewe do not mean that users stop tagging the resource,
but instead that users collectively settle on a group of tagsthat describe the resource
well and new users mostly reinforce already-present tags with the same frequency as
they are represented in the existing distribution. Online tagging systems have a vari-
ety of features that are often associated with complex systems such as a large num-
ber of users and a lack of central coordination. These types of systems are known to
produce a distribution known as a power law over time. A crucial feature of some
power laws - and one that we also exploit in this work - is that they can be produced
by scale-free networks. So regardless of how large the system grows, the shape of
the distribution remains the same and thusstable. Researchers have observed, some
casually and some more rigorously, that the distribution oftags applied to particular
resources in tagging systems follows a power law distribution where there are a rel-
atively small number of tags that are used with great frequency and a great number
of tags that are used infrequently Mathes (2004). If this is the case, tag distributions
may provide the stability necessary to draw out useful information structures.

This chapter is organized as follows. In the first part of the paper, we examine
how to detect the emergence of stable “consensus” distributions of tags assigned to
individual resources. In Section 5.2 we demonstrate a method for empirically ex-
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amining whether tagging distributions follows a power law distribution. In Section
5.2.4 we show how this convergence to a power law distribution can be detected
over time by using the Kullback-Leibler divergence. We further empirically analyze
the trajectory of tagging distributions before they have stabilized, as well as the dy-
namics of the “long tail” of tag distributions. In the secondpart of the paper, we
examine the applications of these stable power law distributions.In Section??, we
@@ In Section 5.5 we demonstrate how the most frequent tags ina distribution can
be used in inter-tag correlation graphs (or folksonomy graphs) to chart their relation
to one another. Section 5.6 shows how these folksonomy graphs can be (automat-
ically) partitioned, using community-based methods, in order to extract shared tag
vocabularies. Finally, Section 5.7 provides an independent benchmark to compare
our empirical results from collaborative tagging, by solving the same problems us-
ing a completely different data set: search engine query logs.

5.1.1 Related Work

Existing research on tagging has explored a wide variety of problems, ranging from
fundamental to more practical concerns - and much of this research is not relevant
to our task at hand, such as discovering the best interfaces for presenting tags to
users Halvey and Keane (2007) our using tags to extract data such as event and
place locations from tagged photos Rattenbury et al (2007).In a direction of work
that bears directly on the larger question of the semantics of collective tagging sys-
tems, Mika (2005) addresses the problem of extracting taxonomic information from
tagging systems in the form of Semantic Web ontologies, but fails to address the sta-
bility of collective tagging. More of interest is studies onthe structure of a tagging
network for del.icio.us data which examine network characteristics of the tagging
system such as the degree distribution (the distribution ofthe number of other nodes
each node is connected to) and the clustering coefficient (based on a ratio of the
total number of edges in a subgraph to the number of all possible edges) of this
network. Shen and Wu do indeed find that the a snapshot of an entire tagging net-
work is indeed “scale-free” and has the features Watts and Strogatz (1998) found to
be characteristic of small world networks: small average path length and relatively
high clustering coefficient.

However, we are more interested in the tags applied to individual URIs. An early
line of research that has attempted to formalize and quantify the underlying dynam-
ics of a collaborative tagging systems is Golder and Huberman (2006), which also
make use of del.ici.ous data. They show the majority of sitesreach their peak pop-
ularity, the highest frequency of tagging in a given time period, within ten days of
being saved on del.icio.us (67% in their data set), though some sites are “rediscov-
ered” by users (about 17% in their data set), suggesting stability in most sites but
some degree of “burstiness” in the dynamics that could lead to cyclical patterns of
stability characteristic of chaotic systems. Importantly, Golder and Huberman find
that the distribution of tags within a given site stabilizesover time, usually around
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one hundred tagging events. They do not, however, examine what type of distri-
bution arises from a stabilized tagging process, nor do theypresent a method for
determining the stability of the distribution which we see as central to understand-
ing the possible utility of tagging systems. Thus, the first task should be determine
the stability of tagging systems.

5.1.2 The Tripartite Structure of Tagging

To begin, we review the conceptual model of generic collaborative tagging systems
theorized by Marlow et al (2006a); Mika (2005) in order to make predictions about
collaborative tagging systems based on empirical data and based on generative fea-
tures of the model.

There are three main types of entities that compose any tagging system:

• The users of the system (people who actually do the tagging)
• The tags themselves
• The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces consisting of sets of nodes,
which are linked together by edges (see Fig. 5.1). The first space, theuser space,
consists of the set of all users of the tagging system, where each node is a user.
The second space is thetag space, the set of all tags, where a tag corresponds to a
term (“music”) or neologism (“toread”) in natural language. The third space is the
resource space, the set of all resources, where usually each resource is a website
denoted by a unique URI.1 A tagging instance can be seen as the two edges that
links a user to a tag and that tag to a given website or resource. Note that a tagging
instance can associate a date with its tuple of user, tag(s),and resource.

From Figure 5.1, we observe that tags provide the link between the users of the
system and the resources or concepts they search for. This analysis reveals a number
of dimensions of tagging that are often under-emphasized. In particular, tagging is
oftena methodology for information retrieval, much like traditional search engines,
but with a number of key differences. To simplify drastically, with a traditional
search engine a user enters a number of tags and then an automatic algorithm labels
the resources with some measure of relevance to the tagspre-discovery, displaying
relevant resources to the user. In contrast, with collaborative tagging a user finds a
resource and then adds one or more tags to the resource manually, with the system
storing the resource and the tagspost-discovery. When faced with a case of retrieval,
an automatic algorithm does not have to assign tags to the resource automatically,
but can follow the tags used by the user. The difference between this and traditional
searching algorithms is two-fold: collaborative tagging relies on human knowledge,

1 A URI is a “Universal Resource Identifier” such ashttp://www.example.comthat can return a
webpage when accessed. Some tagging based systems store theentire document, not the URI,
but most systems such as del.icio.us store only the URI. The resource space, in this definition,
represents whatever is being tagged, which may or may not be websites per se.
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Fig. 5.1 Tripartite graph structure of a tagging system. An edge linking a user, a tag and a resource
(website) represents one tagging instance

as opposed to an algorithm, to directly connect terms to documents before a search
begins, and thus relies on the collective intelligence of its human users topre-filter
the search results for relevance. When a search is complete and a resource of interest
is found, collaborative tagging often requires the user to tag the resource in order
to store the result in his or her personal collection. This causes afeedback cycle.
These characteristics motivate many systems like del.icio.us and it is well-known
that feedback cycles are one ingredient of complex systems Bar-Yam (2003), giving
further indication that a power law in the tagging distribution might emerge.

5.2 Detecting Power Laws in Tags

This section uses data from del.icio.us to empirically examine whether intuitions
regarding tagging systems as complex systems exhibiting power law distributions
hold.

5.2.1 Power Law Distributions: Definition

A power lawis a relationship between two scalar quantitiesx andy of the form:

y= cxα (5.1)

whereα andc are constants characterizing the given power law. Eq. 5.1 can also be
written as:

logy= α logx+ logc (5.2)

When written in this form, a fundamental property of power laws becomes appar-
ent; when plotted in log-log space, power laws are straight lines. Therefore, the most
simple and widely used method to check whether a distribution follows a power law
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and to deduce its parameters is to apply a logarithmic transformation, and then per-
form linear regression in the resulting log-log space. In this paper we used a more
powerful regression method to deriveα that minimizes the bias in the value of the
exponent (see Newman (2005a) for the technical details).

The intuitive explanation of power law parameters in the domain of tagging is
as follows:c represents the number of times the most common tag for that website
is used, whileα gives the power law decay parameter for the frequency of tagsat
subsequent positions. Thus, the number of times the tag in position p is used (where
p= 1..25, since we considered the tags in the top 25 positions) can be approximated
by a function of the form:

Frequency(p) =
c

p−α (5.3)

where−α > 0 and c = Frequency(p = 1) is the frequency of the tag in the
first position in the tag distribution (thus, it is a constantthat is specific for each
site/resource).

5.2.2 Empirical Results for Power Law Regression for Individual
Sites

For this analysis, we used two different data sets. The first data set contained a sub-
set of 500 “Popular” sites from del.icio.us that were taggedat least 2000 times (i.e.
where we would expect a “converged”power law distribution to appear). The second
data set considers a subset of another 500 sites selected randomly from the “Recent”
section of del.icio.us. Both sections are prominently displayed on the del.icio.us site,
though “Recent” sites are those tagged within the short timeperiod immediately
prior to viewing by the user and “Popular” sites are those which are heavily tagged
in general.2 While the exact algorithms used by del.icio.us to determinethese cate-
gories are unknown, they are currently the best available approximations for random
sampling of del.icio.us, both of heavily tagged sites and ofa wider set of sites that
may not be heavily tagged.

The mean number of users who tagged resources in the “Popular” data set was
2074.8 with a standard deviation of 92.9, while the mean number of users of the
“Recent” data set was 286.1 with a standard deviation of 18.2. In all cases, the tags
in the top 25 positions in the distributions have been considered and thus all of our
claims refer to these tags. Since the tags are rank-ordered by frequency and the top
25 is the subset of tags that are actually available to del.icio.us users to examine for
each site, we argue that using the top 25 tags is adequate for this examination.

2 All data used in the convergence analysis was collected in the week immediately prior to 19 Nov
2006.
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Results are presented in Figure 5.2. In all cases, logarithmof base 2 was used in
the log-log transformation.3
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Fig. 5.2 Frequency of tag usage relative to tag position. For each site, the 25 most frequently used
tags were considered. The plot uses a double logarithmic (log-log) scale. The data is shown for a
set of 500 randomly-selected, heavily tagged sites (left) and for a set of 500 randomly-selected,
less-heavily tagged sites (right).

As shown by Newman (2005a) and others, the main characteristic of a power law
is its slope parameterα. On a log-log scale, the constant parameterc only gives the
“vertical shift” of the distribution with respect to the y-axis. For each of the sites
in the data set, the corresponding power law function was derived and the slopes of
each (α parameters) were compared. The slopes indicate the fundamental charac-
teristic of the power laws, as vertical shifts can and do varysignificantly between
different sites.

Our analysis shows that for the subset of heavily tagged sites, the slope param-
eters are very similar to one another, with an average ofα = −1.22 and a standard
deviation±0.03. Thus, it appears that the power law decay slope is relatively con-
sistent across all sites. This is quite remarkable, given that these sites were chosen
randomly with the only criteria being that they were heavilytagged. This pattern
where the top tags are considerably more popular than the rest of the tags seems to
indicate a fundamental effect of the way tags are distributed in individual websites
which is independent of the content of individual websites.The specific content of
the tags themselves can be very different from one website tothe other and this
obviously depends on the content of the tagged site.

3 Note that the base of the logarithm does not actually appear in the power law equation (c.f.
Eq. 5.1), but because we use empirical and thus possibly noisy data, this choice might introduce
errors in the fitting of the regression phase. However, we didnot find significant differences from
changing the base of the logarithm toeor 10.
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For the set of less-heavily tagged sites, we found the slopesdiffered from each
other to a much greater extent than with the heavily tagged data, with an average
α = −5.06 and standard deviation±6.10. Clearly, the power law effect is much
less pronounced for the less-heavily tagged sites as opposed to the heavily tagged
sites, as the standard deviation reveals a much poorer fit of the regression line to the
log-log plotted aggregate data. For sites with relatively few instances of tagging, the
results reveal mostly noise.

5.2.3 Empirical Results for Power Law Regression Using Relative
Frequencies

In the previous section, we applied power law regression techniques to individual
sites, using the number of hits for a tag in a given position inthe distribution. In
this section, we examine the aggregate case where we no longer use the raw number
of tags (because these are not directly comparable across sites), and instead use the
relative frequencies of tags. The relative frequency is defined as the ratio between
the number of times a tag in a particular position is used for aresource and the total
number of times that resource is tagged4. Thus, relative frequencies for a given site
always sum to one. These relative frequencies based on data from all 500 sites of
the “Popular” data set were then averaged. Results are presented in Figure 5.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−7

−6

−5

−4

−3

−2

−1

Position of a tag in the distribution (log
2
 scale)

Lo
g 2 o

f t
he

 a
ve

ra
ge

 r
el

at
iv

e 
fr

eq
ue

nc
y

Relative frequency of tags per position and the derived power law (log−log scale)

Fig. 5.3 Average relative frequency of tag usage, for the set of 500 “Popular” sites from above. On
the y-axis, the logarithm of the relative frequency (probability) is given. (The plot uses a double
logarithmic (log-log) scale, thus on the y-axis values are negative since relative frequencies are less
than one.)

4 To be more precise, the denominator is taken as the total number of times the resource is tagged
with a tag from the top 25 positions, given available data.
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As before, a power law was derived in the log-log space using least-means
squares (LMS) regression. This power law was found to have the slopeα =−1.25.
The regression error, computed through the LMS method in thenormal, not logarith-
mic space, was found to be 0.038. Note that the LMS regressionerror computation
only makes sense when converted back in the normal space, since in the log-log
space exponents are negative and, furthermore, deviationson the y-axis only denote
actual error only after theexp2 function is applied. This corresponds to a LMS error
rate in the power law regression of 3.8% over the total numberof tags in the distri-
bution, which is low enough to allow us to conclude that tag distributions do follow
power laws.

We note, however, that there is a deviation from a perfect power law in the
del.icio.us data in the sense that there is a change of slope after the top seven or
eight positions in the distribution. This effect is also relatively consistent across the
sites in the data set. This may be due to the cognitive constraints of the users them-
selves or an artifact of the way the del.icio.us interface isconstructed, since that
number of tags are offered to the users as a suggestion to guide their search process.
Nevertheless, given that the LMS regression error is ratherlow, we argue the effect
is not strong enough to change the overall conclusion that tag distributions follow
power laws.

5.2.4 The Dynamics of Tag Distributions

In Section 5.2, we provide a method for detecting a power law distribution in the
tags of a site or collection of sites. In this section, we study another aspect of the
problem, namely how the shape of these distributions develops in time from the
tagging actions of the individual users. First, we examine the how power law distri-
butions form at the top (the first 25 positions) of tag distributions for each site. For
this, we employ a method from information theory, namely theKullback-Leibler
divergence. Second, we study the dynamics of the entire tag distributions, including
all tags used for a site, and we show that the relative weightsof the top and tail of
tag distributions converge to stable ratios in the data sets.

5.2.4.1 Kullback-Leibler Divergence: Definition

In probability and information theory, the Kullback-Leibler divergence (also known
“relative entropy” or “information divergence”) represents a natural distance mea-
sure between two probability distributionsPandQ (in our case,PandQare two vec-
tors representing discrete probability distributions). Formally, the Kullback-Leibler
divergence betweenP andQ is defined as:

DKL(P||Q) = ∑
x

P(x)log(
P(x)
Q(x)

) (5.4)
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The Kullback-Leibler distance is a non-negative, convex function, i.e.
DKL(P,Q) ≥ 0,∀P,Q (note thatDKL(P,Q) = 0 iff. P and Q coincide). Also, unlike
other distance measures it is not symmetric, i.e. in generalDKL(P,Q) 6= DKL(Q,P).

5.2.4.2 Application to Tag Dynamics

We use two complementary ways to detect whether a distribution has converged to
a steady state using the Kullback-Leibler divergence:

• The first is to take the relative entropy between every two consecutive points in
time of the distribution, where each point in time represents some change in the
distribution. Again, in our data, tag distributions are based on the rank-ordered
tag frequencies for the top 25 highest-ranked unique tags for any one website.
Each point in time was a given month where the tag distribution had changed;
months where there was no tagging change were not counted as time points. Us-
ing this methodology, a tag distribution that was “stable” would show the relative
entropy converging to and remaining at zero over time. If theKullback-Leibler
divergence between two consecutive time points becomes zero (or close to zero),
it suggests that the shape of the distribution has stopped evolving. This technique
may be most useful when it is completely unknown whether or not the tagging
of a particular site has stabilized at all.

• The second method involves taking the relative entropy of the tag distribution
for each time step with respect to the final tag distribution,the distribution at the
time the measurement was taken or the last observation in thedata, for that site.
This method is most useful for heavily tagged sites where it is already known or
suspected that the final distribution has already convergedto a power law.

The two methods are complementary; the first methodology would converge to
zero if the two consecutive distributions are the same, and thus one could detect
whether distributions converged if even temporarily. Cyclical patterns of stabiliza-
tion and destabilization may be detected using this first method. The second method
assumes that the final time point is the stable distribution so this method detects
convergence only towards the final distribution. If both of these methods produce
relative entropies that approach zero, then one can claim that the distributions have
converged over time to a single distribution, the distribution at the final time point.
Given our interest in distributions that have converged to power laws, we are actu-
ally examining the dynamics of convergence to a power law.

5.2.4.3 Empirical Results for Tag Dynamics

The analysis of the intermediate dynamics of tagging is considerably more involved
than the analysis of final tag distributions. Because the length of the histories varies
widely, there is no meaningful way to compute a cumulative measure across all
sites as in Section 5.2, so our analysis has to consider each resource individually. In
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Figure 5.4 (A and B), we plot the results for the convergence of the 500 “Popular”
sites, on the basis that their final distribution must have converged to a power law,
that their complete tagging history was available from the first tagging instances,
and that this history was of substantial length. In the data set considered, up to 35
time points are available for some sites (which roughly corresponds to three years
of data, since one time point represents one month).
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Fig. 5.4 A (left). Kullback-Leibler divergence between tag frequency distributions at consecutive
time steps for 500 ”Popular” sites. B (right). Kullback-Leibler divergence of tag frequency distri-
bution at each time step with respect to the final distribution.

There is a clear effect in the dynamics of the above distributions.5 At the begin-
ning of the process when the distributions contain only a fewtags, there is a high
degree of randomness, indicated by early data points. However, in most cases this
converges relatively quickly to a very small value, and thenin the final ten steps, to
a Kullback-Leibler distance which is graphically indistinguishable from zero (with
only a few outliers). If the Kullback-Leibler divergence between two consecutive
time points (in Figure 5.4A) or between each step and the finalone (Figure 5.4B) be-
comes zero or close to zero, it indicates that the shape of thedistribution has stopped
changing. The results here suggest that the power law may form relatively early on
in the process for most sites and persist throughout. Even ifthe number of tags added
by the users increases many-fold, the new tags reinforce thealready-formed power
law. Interestingly, there is a substantial amount of variation in the initial values of
the Kullback-Leibler distance prior to the convergence. Future work might explore
the factors underlying this variation and whether it is a function of the content of the
sites or of the mechanism behind the tagging of the site. Additionally, convergence
to zero occurs at approximately the same time period (often within a few months)
for these sites.

5 Note that in Figure 5.4, the first two time points were omittedbecause their distribution involved
few tags and were thus very highly random.
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The results of the Kullback-Leibler analysis provide a powerful tool for analyz-
ing the dynamics of tagging distributions. This very well might be the result of the
“scale-free” property of tagging networks, so that once thetagging of users have
reached a certain threshold, regardless of how many tags areadded, the distribution
remains stable Shen and Wu (2005). This method can be immensely useful in ana-
lyzing real-world tagging systems where the stability of the categorization scheme
produced by the tagging needs to be confirmed.

5.2.4.4 Examining the dynamics of the entire tag distribution

In the previous sections, we focused on the distributions ofthe tags in the top 25
positions. However, heavily tagged or popular resources, such as those considered
in our analysis, can be tagged several tens of thousands of times each, producing
hundreds or even thousands of distinct tags. It is true that many of these distinct
tags are simply personal bookmarks which have no meaning forthe other users in
the system. However, it is still crucial to understand theirdynamics and the role
they play in tagging, especially with respect to the top of the tag distribution. Some
sources (e.g. Anderson Anderson (2006)), have argued that the dynamics of long
tails are a fundamental feature of Internet-scale systems.Here we were particularly
interested in two questions. First, how does the number of times a site is tagged
(including the long tail) evolve in time? Second, how does the relative importance
of the head (top 25 tags) to the long tail change as tags are added to a resource?

Results for the same set of 500 “Popular” sites described above are shown in
Figure 5.5. Note that the tag distributions were reconstructed through viewing the
tagging history of the individual site as available throughdel.icio.us and collecting
the growth of this tagging distribution over time, thus allowing us to record the
growth of tags outside the 25 most popular.

As seen in Figure 5.5, the total number of times a site is tagged grows contin-
uously at a rate that is specific to each site and this probablydepends on its do-
main and particular context. Though the results are not shown here due to space
constraints, a similar conclusion can be formulated for thenumber of distinct tags,
given that the number of distinct tags varies considerably per site and does not seem
to stabilize in time. However for virtually all of the sites in the data set considered,
the proportion of times a tag from the top 25 positions is usedrelative to the total
number of times that a resource is tagged did stabilize over time. So, while the total
number of tags per resource grows continuously, the relative weight of the tags in
the head of the tag distribution compared to the those in the long tail does stabilize
to a constant ratio. This is an important effect and it represents a significant addition
to our analysis of the stability analysis of the top 25 positions, since it shows the
relative importance of the long tail with respect to the headof the distribution does
eventually stabilize regardless of the growth of tags in thelong tail.
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Fig. 5.5 A (left). Cumulative number of times a resource is tagged foreach time point. B (right).
Proportion of times a tag in the top 25 spots of the distribution has been used to tag a resource to
the total number of times the resource has been tagged with any tag.

5.3 The Effect of Suggestions on Tagging

So far, we have explored the important question of whether a coherent, stable way
of characterizing sense can emerge from collaborative tagging systems and has pre-
sented several novel methods for analyzing data from such systems. We have shown
that tagging distributions of heavily tagged resources tend to stabilize into power
law distributions and present a method for detecting power law distributions in tag-
ging data, and see the emergence of stable power law distributions as an aspect of
what may be seen as collective consensus around the categorization of information
driven by tagging behaviour. Thus groups of tags are indeed an adequate candidate
for a notion of Fregean sense.

However, one could argue that the stabilization is just a mere artifact of tag sug-
gestions. Tag suggestions are when a tagging system, instead of letting the user tag
the resource, automatically (as the product of some algorithm) presents a list of
‘suggested’ tags for the user. The user can then easily accept these tags or choose
through them, rather than choose their own. This could lead to the stabilization of the
tagging system not as a product of the actual collaborative sense-making of users,
but as an artificial and predictable result of the tag suggestion algorithm. However,
the reasons behind the emergence of a power-law distribution in tagging systems
are yet unknown, although explanations fall into two general categories. The first of
these explanations is relatively simple: the tags stabilize into a power-law because
users are imitating each other via tag suggestions put forward by the tagging sys-
tem Golder and Huberman (2006). The second and more recent explanation is that
in addition to imitation, the users share through a similar tag generation procedure
based on the informationon the webpage, most likely becausethe users have the
same background knowledge?. However, drawing these two influences apart has



5.3 The Effect of Suggestions on Tagging 121

not yet been tested scientifically, which we will do. However, first let’s inspect these
the existing explanations for tagging stabilization more deeply.

5.3.1 Models of collaborative tag behavior

5.3.1.1 A simple model: The Polya Urn

The most elementary model of how a user selects tags when annotating a resource is
simple imitation of other users. Note that ‘imitation’ in tagging systems means that
the tags are being reinforced via a ‘tag suggestion’ mechanism, and so the terms
“imitation”, “reinforcement”, “feedback”, and ‘tag suggestion’ can be considered to
be synonymous in the context of tagging systems. The user canimitate other users
precisely because the tagging systems tries to support the user in the tag selection
process by providing tag suggestions based on tags other people used when tagging
the same resource. There are minor variants of this theme, such as the possibility of
using a combination of tags of other users in combination with a user’s own previ-
ously used tags. In most tagging systems like del.icio.us these tag suggestions are
presented as a list of tags that the user can select in order toadd them to their tag-
ging instance. The selections of tags from the tag recommendation forms a positive
feedback loop in which more frequent tags are being reinforced, thus causing an
increase in their popularity, which in turn causes them to bereinforced further and
exposed to ever greater numbers of users. This simple type ofexplanation is easily
amendable to preferential attachment models, also known as‘rich get richer’ expla-
nations, which are well-known to produce power-law distributions. Intuitively, the
earliest studies of tagging observed that users imitate other pre-existing tags Golder
and Huberman (2006). Golder and Huberman proposed that the simplest model that
results in a “power-law” would be the classical Polya urn model Golder and Huber-
man (2006). Imagine that there is urn containing balls, eachof some finite number
of colors. At every time-step, a ball is chosen at random. Once a ball is chosen, it
is put back in the urn along with another ball of the same color, which formalizes
the process of feedback given by tag suggestions. As put by Golder and Huberman,
“replacement of a ball with another ball of the same color canbe seen as a kind
of imitation” where each color of a ball is made equal to a natural language tag
and since “the interface through which users add bookmarks shows users the tags
most commonly used by others who bookmarked that URL already; users can easily
select those tags for use in their own bookmarks, thus imitating the choices of previ-
ous users” Golder and Huberman (2006). Yet, this model is toolimited to describe
tagging, as it features only reinforcement of existing tags, not the addition ofnew
tags.
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5.3.1.2 Imitation and The Yule-Simon Model

The first model that formalized the notion of new tags was proposed by Cattuto et
al. ?. In order for new tags to be added, a single parameterp must be added to the
model, which represents the probability of a new tag being added, with the probabil-
ity p̄= (1− p) that an already-existing tag is reinforced by random uniform choice
over all already-existing tags. This results in a Yule-Simon model, a model first em-
ployed by Yule Yule (1925) to model biological genera and later Simon to model
the construction of a text as a stream of words Simon (1955). This model has been
shown to be equivalent to the famous Barabasi and Albert algorithm for growing
networks Bornholdt and Ebel (2001). Yet the standard Yule-Simon process does not
model vocabulary growth in tagging systems very well, as noticed by Cattuto et al.
as it produces exponents “lower than the exponents we observe in actual data”?.

Cattuto et al. hypothesize that this is because the Yule-Simon model assumes
users are choosing to reinforce ( ¯p) tags uniformly from a distribution ofall tags
that have been used previously, so Cattuto concludes that “it seems more realistic
to assume that users tend to apply recently added tags more frequently than old
ones”?. This behavior could be caused by the exposure of a user to a feedback
mechanism, such as del.icio.us tag suggestion system. Thissuggestions exposes the
user only to a subset of previously existing tags, such as those most recently added.
Since the tag suggestion mechanism only encourages more recently-added tags to
be re-enforced with a higher probability, Cattuto et al. added a memory kernel with a
power-law exponent to standard Yule-Simon model. This means that the weight of a
previously existing tag being reinforced is weighted according to a power-law itself,
so that a tag that has been appliedx steps in the past is chosen with a probability
p̄(x) = a(t)/(x+ τ), wherea(t) is a normalization factor andτ “is a characteris-
tic time scale over which recently added words have comparable probabilities”?.
While the parameterp controls the probability of reinforcing an existing tag, this
second parameterτ, controls how fast the memory kernel decays and so over what
time-scale a tag may likely count as ‘new’ and so be more likely to be reinforced.
As Cattuto et al. notes, “the average user is exposed to a few roughly equivalent
top-ranked tags and this is translated mathematically intoa low-rank cutoff of the
power-law”?. This model produces an “excellent agreement” with the results of tag-
correlation graphs?. It should be clear that the original Yule-Simon model simply
parametrizes the probability of the imitation of existing tags. The modified Yule-
Simon model with a power-law memory kernel also depends on the imitation of
existing tags, where the probability of a previously-used tag is decaying according
to a power-law function.

5.3.1.3 Adding Parameters and Background Knowledge

Although Cattuto et al.’s model is without a doubt an elegantminimal model that
captures tag-correlation distributions well, it was not tested against tag-resource dis-
tributions?. Furthermore, as noticed by Dellschaft and Staab, Cattuto et al.’s model
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also does not explain the sub-linear tag vocabulary growth of a tagging system?.
Dellschaft and Staab propose an alternative model, which adds a number of new
parameters that fit the data produced by tag-growth distributions and tag-resource
distributions better than Cattuto et al.’s model?. The main points of interest in their
model is that instead of a new tag being chosen uniformly, thenew tag is chosen
from a power-law distribution that is meant to approximate “background knowl-
edge.” So besides “background knowledge” ( ¯p), their model also features the inverse
of “background knowledge,” i.e. the “probability that a user imitates a previous tag
assignment” (p) ?. In essence, Dellschaft and Staab have added (at least) two new
parameters to a Yule-Simon process, and these additional parameters allows the re-
inforcement of existing tags to be more finely tuned. Insteadof a single power-law
memory kernel with a single parameterτ, these additional parameters allow the
modeling of “an effect that is comparable to the fat-tailed access of the Yule-Simon
model with memory” while keeping tag-growth sub-linear?. The model proposed
by Cattuto et al. kept the tag-growth parameter equal to 1 andso makes tag growth
linear to p ?. Yet for us, most important advantage of Dellschaft and Staab over
Cattuto et al.’s model is that their added parameters lets their model match the pre-
viously unmatched observation by Halpin et al. of the frequency rank distribution
of resources being a power-law Halpin et al (2007). The matchis not as close as the
match with vocabulary growth and tag correlations, as resource-tag frequency dis-
tributions vary highly per resource, with the exception of the drop in slope around
rank 7-10 Halpin et al (2007).

5.3.2 Research Questions

What unifies all of these models is that they assume that imitation, usually assumed
to be tag suggestions from the tagging system, has a major impact on the emergence
of a power-law distribution. With concern to the modified Yule-Simon model and the
more highly parametrized model that takes into account ‘background knowledge,’
different claims are made of where the imitated tags come from. Cattuto et al. pro-
poses that they come from a random uniform distribution of tags while Dellschaft
and Staab propose a more topic-related distribution that itself has a power-law dis-
tribution?. However, just because a simple model based on imitation of tag sugges-
tions can lead to a power-law distribution does not necessarily mean that tag sug-
gestions are actually the causal mechanism that causes the power-law distribution to
arise in tagging systems. The research question posed then is: Is the tag suggestion
mechanism, the main force behind the observed power-law distributions in tagging
systems?

In order to measure the effects of tag suggestions on the tag behavior of users we
developed a Web-based experiment in which users were asked to tag 11 websites,
with two varying conditions: the ‘tag suggestion’ condition (Condition A) in which
7 tag suggestions were presented to the user, and a ‘no tag suggestion’ condition
(Condition B) in which no tag suggestions were presented to the user.
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In this experiment we focus on del.icio.us which is the one ofthe earliest and
well-known tagging systems. Del.icio.us was the first to introduce a tag based col-
laborative bookmark system. Del.icio.us has more than five million users and 150
million tagged URIs and so provides a vast data-set. The userinterface used in our
experiment presented the tag suggestions in a similar way todel.icio.us to avoid
confusion.

The 11 websites used in the experiment were selected according to two criteria.
First, the topics of the websites needed to appeal to the general public. Second,
the website needed to have over 200 tagging instances. The appeal to the general
public was operationalized by randomly choosing sites thatwere tagged with the
tag “lifestyle” on del.icio.us. The tag “lifestyle” is a popular tag with 72,889 tagged
web-pages as of October 2008. This was chosen in order to not bias our study to
one particular specialized subject matter, and so exclude web-pages on del.icio.us
that have a highly technical content. Specialized content may not lead to normal
tagging behavior from users in the experiment who might not be familiar with the
specialist subject matter. The second criteria of using only web-pages with over 200
tagging instances was chosen since it has been shown that stable power-law tag
distributions emerge around the 100-150th tagging Golder and Huberman (2006).
We did not want the tag suggestions to be from non-stable tag distributions, as it
has been shown that the variance between the top popular tag could vary widely
before 100-150th tag. The 11 websites selected for this experiment, with the popular
tags provided from del.icio.us and the number tags. Note that while the number of
URIs 11 may appear to be small, it is larger than previous experiments over tag
suggestions Suchanek et al (2008) and was enough to give the experiment enough
power to be statistically significant. It was far more critical for this experiment to get
enough subjects in order for power-law distributions to be given the chance to arise
without tag suggestion, and this would require at least 100 experimental subjects
tagging each URI.

Fig. 5.6 Experimental Design

Figure 5.6 shows the experimental design. In the ‘no tag suggestion’ condition
(Condition A), as shown in Figure 5.6, a user is presented the11 websites he needs
to tag without any form of tag suggestions. In the ‘tag suggestion’ condition (Con-
dition B), also shown in Figure 5.6, a user is presented the 11websites with 7 sug-
gested tags. While the details of the tag suggestion algorithm applied by del.icio.us
is unknown, for our experiment the suggested tags in condition B were aggregated
from del.icio.us and the 7 suggested tags given by del.icio.us for each of the 11
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websites. For the experiment the 7 popular tags were aggregated and presented to
the participants in manner similar to how tags are suggestedto users of del.icio.us,
being shown to the user before they commence their tagging. Each of the 300 par-
ticipants was randomly assigned to either the ‘tag suggestion’ or ‘no tag suggestion’
condition. Of these 300 users, 78 did not tag any website (37 in the ‘tag suggestion’
condition, 41 in the ‘tag suggestion’ condition) and are therefore excluded from fur-
ther analysis. The users were randomized over age, gender, computer, Internet and
their past tagging usage.

5.4 Results

In total the 222 participants applied 7,250 tags over all websites in both condi-
tions, with 3,694 tags applied in the ‘tag suggestion’ condition and 3,556 in the ‘no
tag suggestion’ condition. On average every user in the ‘tagsuggestion’ condition
applied 32.69 (S.D. = 9.77) tags over all 11 URIs and for the no tag suggestion
conditions 32.61 (S.D.= 6.80) tags over 11 URIs.

5.4.1 Detecting Power-Law Distributions

The power-law distribution is defined by the function:

y= cx−α +b (5.5)

in whichc andα are the constants that characterize the power-law andb being some
constant or variable dependent onx that becomes constant asymptotically. Theα
exponent is the scaling exponent that determines the slope of the distribution before
the long tail behavior begins. A power-law function can be transformed to a log-log
scale as in the following equation:

log(y) =−α log(x)+ log(c) (5.6)

This equation shows the characteristic property of power-law function is that when
transformed to a log-log scale the power-law distribution takes the shape of a linear
function with slopeα. So transforming a function to a log-log scale and determin-
ing the slopeα is one of the first steps in examining whether a distribution has a
power-law. We averaged the tag-resource distributions forall 11 web-pages, and
this distribution in log-log space is given in Figure 5.7. Ina log-log scale,bothcon-
ditions appear visually to exhibit power-law behavior.
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Fig. 5.7 Averaged tag-resource distributions for both experimental conditions on a log-log scale.
The solid line depicts the ‘tag suggestion’ condition, the dotted line the ‘no tag suggestion’ condi-
tion.

5.4.1.1 Parameter Estimation via Maximum-Likelihood

The most widely used method to check whether a distribution follows a power-law
is to apply a logarithmic transformation, and then perform linear regression, esti-
mating the slope of the function in logarithmic space to beα. However, this least-
square regression method has been shown to produce systematic bias, in particular
due to fluctuations of the long tail Clauset et al (2007). To determine a power-law
accurately requires minimizing the bias in the value of the scaling exponent and
the beginning of the long tail via maximum likelihood estimation. See Newman
Newman (2005b) for the technical details. To determine theα of the observed dis-
tributions, we fitted the data using the maximum likelihood method recommended
by Newman Newman (2005b). Figure 5.8 shows the differentα parameters for the
‘tag suggestion’ and ‘no tag suggestion’ conditions, as well as theα determined via
aggregation of tagging data from del.icio.us for the 11 URIs. Overall, for the ‘no tag
suggestion’ condition, the averageα was 2.1827 (S.D. 0.0799) while for the ‘tag
suggestion’ condition the averageα was 2.0682 (S.D. 0.0941). Theα values for
both conditions and the aggregated data from del.icio.us are situated in the interval
[1.732391< α < 2.249359]. Figure 5.8 shows that both experimental conditions
and the aggregated data from del.icio.us have similar exponents. Our results shows
that a similarα holds for both the ‘tag suggestion’ and ‘no tag suggestion’ condi-
tion. Further updates to determine if there is an actual difference between the two
conditions as regards if a power-law distribution actuallyholds.
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Fig. 5.8 X axis depicts the URI used in the experiment, Y axis depicts the differentα values

5.4.1.2 Kolmogorov-Smirnov Complexity

Determining whether a particular distribution is a ‘good fit’ for a power-law is
difficult, as most goodness-of-fit tests employ some sort of normal Gaussian as-
sumption that is inappropriate for non-normal power-law distributions. However,
the Kolmogorov-Smirnov Test (abbreviated as the ‘KS Test’)can be employed as
a ‘goodness-of-fit’ test for any distribution without implicit parametric assumptions
and is thus ideal for use measuring goodness-of-fit of a givenfinite distribution to a
power-law function. Intuitively, given a reference distributionP (perhaps produced
by some well-known function like a power-law) and a sample distributionQ of size
n, where one is testing the null hypothesis thatQ is drawn fromP, then one simply
compares the cumulative frequency of bothP andQ and then the greatest discrep-
ancy (theD-statistic) between the two distributions is tested against the critical value
for n, which varies per function.

For a power-law distribution generating function, we can get a critical p-value
by generating artificial data using the scaling exponentα and lower-bound equal to
those found in the supposed fitted power-law distribution. Apower-law is fit to this
artificial data, and then the KS test is then done for each distribution that was artifi-
cially generated comparing it to itsownfitted power-law. Thep-value is then just the
fraction of the amount of times theD-statistic is larger for the artificially-generated
distribution than theD-statistic of the empirically-found distribution. Therefore, the
larger thep-value, the more likely a genuine power-law has been found inthe em-
pirical data. According to Clauset, “once we have calculated ourp-value, we need to
make a decision about whether it issmall enough to rule outthe power-law hypoth-
esis” (emphasis added) Clauset et al (2007). The power-law hypothesis is simply
that the distribution was generated by a power-law generating function. The null
hypothesis is that by chance a function would generate the power-law distribution
observed in the empirical data. We shall also usep≤ 0.1.

The KS test for all 11 tagged web-pages, testing both the ‘tagsuggestion’ and ‘no
tag suggestion’ condition, is given in Figure 5.9. The average D statistic for the ‘no
tag suggestion’ condition is 0.0313 (S.D. 0.0118) withp = .48(p> .1, power-law
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found). For the ‘tag suggestion’ condition the averageD-statistic is 0.0724 (S.D.
0.0256) with p = .08(p ≤ .1, no power-law found). These results show that the
power-law function exhibitedonly in the ‘no tag suggestion’ conditions is signifi-
cant, the fit is closer for the ‘no tag suggestion’ condition than the ‘tag suggestion’
condition. TheD-statistic showed a range from 0.0170 to 0.0552 for ‘no tag sug-
gestion’ condition yet a range of 0.0428 to 0.1318 for ‘tag suggestion.’ Thus, the
power-law only significantly appears without tag suggestions, and with tag sugges-
tions a power-law cannot be reliably found. This is surprising, as tag suggestions
do not onlynot cause the power-law to form, but they seems that they somehow
prevent it from being formed. On the other hand, the ‘no tag suggestion’ condition
results in a significantly good fit to a power-law. Therefore,the result is somewhat
counter-intuitive, as according to our experimental data asimple tag-based sugges-
tion mechanism is unlikely the main cause of the power-law formation.
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Fig. 5.9 X axis depicts the URI used in the experiment, Y axis depicts the different D Statistics
from the KS Test. The dotted line is the ‘no tag suggestion’ condition, while the solid line is the
‘tag suggestion’ condition.

5.4.2 Influence of tag suggestion on the tag distribution

Given that the KS test shows that there is a significant and perhaps counter-intuitive
difference in the emergence of the power-law distributionsbetween the conditions,
we need a more fine-grained way to tell what the differences are in the distributions
for the two conditions. A number of differing techniques will be deployed to answer
this question.
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5.4.2.1 Kullback Leibler Divergence

The Kullback-Leibler divergence (also known asrelative entropy), which we ab-
breviate as ‘KL divergence,’ can be used an intuitive information-theoretic measure
of the distance between two distributionsP andQ. Unlike many other methods, it
takes the entire distribution (in our case, the long tail is of particular interest) into
account. Note that it is not a true metric as it is an asymmetric, however, it is a useful
measure of the difference between two distributions as it isa non-negative, convex
function with well-known properties. The KL divergence is zero if and only if the
two distributions are the same, otherwise a positive distance results that is larger the
greater the divergence between the distributions. Intuitively in information theory,
the KL divergence is the expected difference in bits required to encode to distribu-
tion Q when using a code based on distributionP. The KL divergence betweenP
andQ is given as:

DKL(P||Q) = ∑
x

P(x)log(
P(x)
Q(x)

) (5.7)

The KL divergence (using the ‘tag suggestion’ condition forP and the ‘no tag
suggestion’ condition forQ) for each URI in the experiment are given in Figure
5.10. While some URIs (like number 6 and 7) have almost no difference between
the ‘tag suggestion’ and ‘no tag suggestion’ conditions, other URIs like number 11
have large differences. This average KL divergence betweenthe ‘tag suggestion’
condition and ‘no tag suggestion’ condition is 0.1617 (S.D.0.0820 ). This is small
but not insubstantial. As shown in the observation of Figure5.7, the long tail of the
‘tag suggestion’ condition is often shorter than the ‘no tagsuggestion’ condition,
while the top of the ‘tag suggestion’ distribution has a higher frequency than the top
of the ‘no tag suggestion’ distribution. The KL divergence takes this into account,
while merely finding theα does not. The effect on the top of the distribution should
be investigated further.

5.4.2.2 Ranked frequency distribution

In order to observe the micro-behavior of the ‘tag suggestion’ and ‘no tag sugges-
tion’ distributions, we investigate whether or not the tag suggestion tags are ‘forced’
higher in the distribution, so leading to a more sparse long tail and an exaggerated
top of the distribution in the ‘tag suggestion’ condition. In order to provide a mea-
surement of the number of suggested tags in the top of the distribution, the percent-
age of suggested tags that were found in the top 7 and top 10 tags were calculated.
We compared the percentage of suggested tags in the top 7 and top 10 ranks for both
conditions with del.icio.us. For this we assume that the 7 suggested tags provided
by del.icio.us represent the top 7 tags in the ranked frequency distribution so that
the percentage of suggested tags in the top 7 and top 10 ranks for del.icio.us is equal
to 100%. We averaged the percentages for all URIs per experimental condition.
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Fig. 5.10 X axis depicts the URI used in the experiment, Y axis depicts the different KL Diver-
gence values

Fig. 5.11 Ranked Frequency Distribution Repeating Suggested Tags

Figure 5.11 shows that for the percentage of suggested tags available in the top
7 rank for the ‘tag suggestion’ condition is 80.51% and for the ‘no tag’ suggestion
condition 51.93%. This means that only half of the suggested tags can be found
in the top 7 of the ranked frequency distribution in the ‘no tag suggestion’ condi-
tion. So unsurprisingly, in the ‘tag suggestion’ condition, we observed more of the
suggested tags than in the ‘no tag suggestion’ condition. There is an influence of
tag suggestions on the ranked position and the frequency of the suggested tags. Tag
suggestions do influence the tag-resource distribution, astag suggestion causes a net
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gain of nearly one in three tags being imitated that would otherwise not be. How-
ever, when users are not guided by tag suggestions and tag freely they still choose
for themselves half of the tags that would have been otherwise suggested had they
had a ‘tag suggestion’ mechanism available. Further we lookat the availability of
suggested tags in the top 10 as an indication how dispersed the suggested tags are
in the ranked frequency distribution for both conditions. For the top 10 rank figure
5.11 shows that the percentage of suggested tags in the ‘tag suggestion’ condition is
88.30% and for the “no tag suggestion” condition is 61.03%.

5.4.2.3 Imitation Rates

Another metric that measures the influence of tag suggestionon the tag distribution
is the matching and imitation rate as proposed by Suchanek etal. Suchanek et al
(2008). The matching rate measure the proportion of appliedtags that are available
in the suggested tags. This metric provides insight in how the user is influenced by
the tag suggestion provided by the tagging system. For our experiment thematching
rate (mr) is being defined as:

mr(X) =
∑n

i=1 | T(X, i)∩S(X) |

∑n
i=1 | T(X, i) |

(5.8)

X denotes the tag suggestion method that is being used in both our conditions. The
‘tag suggestion’ condition provides 7 suggested tags whilethe ‘no tag suggestion’
condition provided no suggested tags. For a given URI,T(X, i) denotes the set of
tags at theith tag entry andS(X) denotes the suggested tags for that URI. For a
tagging instance in which all tags are given by the suggestedtags the matching rate
will be 1.

The matching rate for the 11 URIs in the experiment and over the both conditions
was calculated. The resulting matching rates can be found inTable 5.1. The ‘no tag
suggestion’ condition serves as a reference point. The results in Table 5.1 show
that users in the ‘tag suggestion’ condition are being influenced by the appearance
of tag suggestions. The average matching rate for the ‘tag suggestion’ condition is
0.57 (S.D. 0.086) and for the ‘no tag suggestion’ condition 0.35 (S.D. 0.068). The
main drawback of the matching rate is that it can’t account for the application of
suggested tags when tag suggestion is absent.

This ability to account for tag repetition even when the tag is missing is given by
the imitation rate(ir ), defined as Suchanek et al (2008):

αn(S) =
precn(X,S)− precn(NONE,S)

1− precn(NONE,S)
(5.9)

With precn(X,S) defined as:
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Table 5.1 Matching rate

URI No. Tag SuggestionNo Tag Suggestion
1 0.47 0.31
2 0.57 0.34
3 0.53 0.32
4 0.65 0.48
5 0.45 0.29
6 0.52 0.29
7 0.58 0.38
8 0.65 0.38
9 0.74 0.46
10 0.63 0.30
11 0.59 0.31

precn(X,S) =
∑n

i=1 | T(X, i)∩S| [S(X, i) = S]

∑n
i=1 | T(X, i) | [S(X, i) = S]

(5.10)

The termprecn(X,S) defines the proportion of applied tags that are available in
the single tag suggestion setS. Since the tagsS in our experiment is always static,
precn(X,S) is equal to the calculation of the matching rate for the tag suggestion
condition in Equation 5.8.precn(NONE,S) defines the proportion of suggested tags
that are available in the tags applied by the user when no tag suggestion is given.
This is similar to the calculation of the matching rate for the ‘no tag suggestion’
condition. Therefore we can rewrite the imitation rate as:

ir =
mr(ConditionA)−mr(ConditionB)

1−mr(ConditionB)
(5.11)

Table 5.2 shows the imitation rates for the different experimental URIs. An imi-
tation rate of 1 will denote full imitation. The results showthat users tend to select
suggested tags when the are available with a chance of 1 out of3 with a mean imi-
tation rate of 0.36 (S.D. 0.097).

Table 5.2 Imitation rate
URI No. Imitation Rate

1 0.22
2 0.35
3 0.29
4 0.35
5 0.20
6 0.34
7 0.31
8 0.42
9 0.50
10 0.48
11 0.43
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Combining this insight with our previous work in KL divergence and looking at
Figure 5.7, it appears that ‘tag suggestion’ condition ‘compresses’ the distribution
that naturally arises without tag suggestions. This ‘compression’ of the distribution
that the ‘no tag suggestion’ generates can be defined as highly frequent tags being
reinforced more and less frequent tags reinforced less or not used at all, leading to
more imitation in the top of the distribution and a ‘shorter’long tail. It is because
of this ‘compression’ caused by tag suggestions that the averaged ‘tag suggestion’
distributions does not significantly fit power-law distributions while the averaged
‘tag suggestion’ distribution does fit a power-law distribution. Taking a ‘scale-free’
power-law as an ideal stable tag distribution, rather counter-intuitively a simple tag
suggestion scheme based on frequency may actually hurt rather than help the stabi-
lization of tagging as a power-law distribution.

5.4.2.4 Tag Suggestions Do Not Cause Tag Stabilization

This experiment provides a first step that leads to a new interpretation of the ac-
cepted theories and models that explain the emergence of power-laws in tagging
systems. Common wisdom in tagging suggested that the power-law was unlikely to
form without tag suggestions. As put by Marlow, Boyd, and others, “a convergent
folksonomy is likely to be generated when tagging is not blind,” blind tagging being
tagging without tag suggestions Marlow et al (2006b). The results show that the tags
of userswithout tag suggestions converge into a power-law distribution. Moreover,
a power-law function fitsmore closelythe behavior of users when the users arenot
given tag suggestions than when the users are given tag suggestions. This means that
tag suggestions distorts the power-law function that wouldalready naturally occur
when users tag blindly without tag suggestions. These results are not unexpected.
After all, words in natural language naturally follow a power-law, and there exists
purely information-theoretic arguments why this is the case Mandelbrot (1953).

This helps clarify a number of experimental results from previous experiments
in tagging. First, this result clarifies how the power-law distribution was observed
by Cattuto et al. even before del.icio.us began using tag suggestion via the tag in-
terface?. Second, it also helps explain how the majority of users in Suchanek et
al.’s experiment had a high matching rate, even when in theirreport-back most of
them said they didn’t use or even notice tag suggestions Suchanek et al (2008). Our
experiment does have a number of limitations, in particularour experiment should
be extended to deal with more web-pages as well as expert and non-expert users
dealing with different kinds of expert subject matters. In this situation, tag sugges-
tions may have more of an influence on tagging behavior. Although the presented
results indicate that some of the previous assumptions underlying the emergence of
power-laws do not hold, a power-law distribution alone doesnot provide the nec-
essary information needed to determine the role of tag suggestion on tag behavior.
One line of research that seems promising is to understand how human categorize in
general, which could easily influence how they decide which tags to use to annotate
web-pages. While the large amount of tagging data on the web made it easy to de-
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velop simple mathematical models of human behavior, it seems that a more detailed
understanding of what users areactuallydoing is needed, the role of language in the
use of the Web by human agents. Therefore, we need to inspect the collective use
of language in tags more thoroughly to get a grasp of what is occuring with tagging
systems as a kind of sense.

5.5 Constructing Tag Correlation Graphs

While earlier we have discovered the kinds of of tag frequency distributions that
emerge from the collective tagging actions of individual users, as well as the dy-
namics of this process of sense-making, we have come into a key problem. If the
tag stabilization simply reflects the large-scale dynamicsof English language usage,
then the result is not very surprising. However, tags are often domain specific terms,
and thus may not actually reflect English language use. Therefore, it would be uesful
to see if ay latent structure could be extracted from the stabilized tag distributions,
and if those latent structures reflected the domain-specificorganization of informa-
tion. We look at one of the most simple latent structures thatcan be derived through
collaborative tagging: inter-tag correlation graphs (or,perhaps more simply, “folk-
sonomy graphs”) . We discuss the methodology used for obtaining such graphs and
then illustrate our approach through an example domain study.

5.5.1 Methodology

The act of tagging resources by different users induces, at the tag level, a simple
distance measure between any pair of tags. This distance measure captures a degree
of co-occurrence which we interpret as a similarity metric,between the content
represented by the two tags. The collaborative filtering Sarwar et al (2001); Robu
and Poutré (2006) and natural language processing Manningand Schutze (2002)
literature proposes several distance or similarity measures that can be employed
for such problems. The metric we found most useful for this problem iscosine
distance. Note that this should not be interpreted as a conclusion on our part that
cosine distance is always an optimal choice for this problem. This issue probably
requires further research on larger data sets.

Formally, letTi ,Tj represent two random tags. We denote byN(Ti) andN(Tj )
respectively the number of times each of the tags was used individually to tag all
resources, and byN(Ti ,Tj) the number of times two tags are used to tag the same
resource. Then the similarity between any pair of tagsi and j is defined as:

similarity(Ti ,Tj) =
N(Ti ,Tj)

√

N(Ti)∗N(Tj)
(5.12)
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In the rest of the paper, we use the shorthand:simi j to denotesimilarity(Ti ,Tj). From
these similarities we can construct a tag-tag correlation graph or network, where the
nodes represent the tags themselves weighed by their absolute frequencies, while
the edges are weighed with the cosine distance measure. We build a visualization
of this weighed tag-tag correlation, by using a “spring-embedder” or ”spring re-
laxation” type of algorithm. We tested two such algorithms:Kawada-Kawai and
Fruchterman-Reingold Batagelj and Mrvar (1998); the two graphs included in this
paper are based on the latter. An analysis of the structural properties of such tag
graphs may provide important insights into both how people tag and how structure
emerges in collaborative tagging.

5.5.2 Constructing the tag correlation (folksonomy) graphs

In order to exemplify our approach, we collected the data andconstructed visualiza-
tions for a restricted class of 50 tags, all related to the tag“complexity.” Our goal in
this example was to examine which sciences the user community of del.icio.us sees
as most related to “complexity” science, a problem which hastraditionally elicited
some discussion. The visualizations were made on Pajek Batagelj and Mrvar (1998).
The purpose of the visualization was to study whether the proposed method retrieves
connection between a central tag “complexity” and related disciplines. We consid-
ered two cases:

• Only the dependencies between the tag “complexity” and all other tags in the
subset are taken into account when building the graph (Fig. 5.12).

• The weights of all the 1175 possible edges between the 50 tagsare considered
(Fig. 5.13).

In both figures, the size of the nodes is proportional to the absolute frequencies of
each tag, while the distances are, roughly speaking, inversely related to the distance
measure as returned by the “spring-embedder” algorithm.6 We tested two energy
measures for the “springs” attached to the edges in the visualization: Kamada-Kawai
and Fruchterman-Reingold Batagelj and Mrvar (1998). For lack of space, only the
visualization returned by Kamada-Kawai is presented here,since we found it more
faithful to the proportions in the data.

The results from the visualization algorithm match relatively well with the intu-
itions of an expert in the organization of content in this field. Some nodes are much
larger than others which again shows that taggers prefer to use to general, heavily
used tags (e.g. the tag “art” was used 25 times more than “chaos”). Tags such as
“chaos”, “alife”, “evolution” or “networks” which correspond to topics generally
seen as close to complexity science are close to it. At the other end, the tag “art” is
a large, distant node from “complexity.” This is not so much due to the absence of

6 For two of the tags, namely “algorithms” and “networks,” morphological stemming was em-
ployed. So both absolute frequencies and co-dependencies were summed over the singular form
tag, i.e. “network” and the plural “networks,” since both forms occur with relatively high frequency.
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sites discussing aspects of complexity in art as there are quite a few of such sites,
but instead due to the fact that they represent only a small proportion of the total
sites tagged with “art,” leading to a large distance measure.

In Figure 5.13, the distances to “complexity” change significantly, due to the ad-
dition of the correlations to all other tags. However, one can observe several clusters
emerging which match reasonably well with intuitions regarding the way these dis-
ciplines should be clustered. Thus, in the upper-left corner one can find tags such
as “mathematics”, “algorithmics”, “optimization”, “computation”, while immedi-
ately below are the disciplines related to AI (“neural” [networks], “evolutionary”
[algorithms] and the like). The bottom left is occupied by tags with biology-related
subjects, such as “biology”, “life”, “genetics”, “ecology” etc, while the right-hand
side consists of tags with more “social” disciplines (“markets”, “economics”, “or-
ganization”, “society” etc.). Finally, some tags are both large and central, pertaining
to all topics (“research”, “science”, “information”).

We also observed some tags that are non-standard English words, although we
filtered most out as not relevant to this analysis. One example is “complexsystems”
(spelled as one word), which was kept as such, although the tags ”“complex” and
“system” taken individually are also present in the set. Perhaps unsurprisingly, the
similarity computed between the tags “complexsystems” and“complex” is one of
the strongest between any tag pair in this set. One implication of this finding is
that tag distances could be used to find tags that have minor syntactic variance with
more well-known tags, such as “complesystems,” but which cannot simply detected
by morphological stemming.

5.6 Identifying tag vocabularies in folksonomies using
community detection algorithms

The previous sections analyzed the temporal dynamics of distribution convergence
and stabilization in collaborative tagging as well as some latent information struc-
tures, like tag correlation (or folksonomy) graphs, that can be created from these tag
distributions. In this section, we look at how these folksonomy graphs could be used
to identifying shared tag vocabularies.

The problem considered in this section can be summarized as:given a heteroge-
neous set of tags (which can be represented as a folksonomy graph), how can we
partition this set into subsets of related tags? We call thisproblem a “vocabulary
identification” problem. It is important to note that we use the term “vocabulary”
only in a restricted sense, i.e. as a collection of related terms, relevant to a specific
domain. For instance, a list of tropical diseases is a “vocabulary”, a list of electronic
components in a given electronic device is a vocabulary, anda list of specialized
terms connected to a given scientific subfield would all be “vocabularies” in our
definition. We acknowledge that this is a restricted definition the type of structural
information from formal ontologies is difficult to extract only from tags, given the
simple structure of folksonomies. Nevertheless, our approach could still prove use-



5.6 Identifying tag vocabularies in folksonomies using community detection algorithms 137

ful in such applications: for example, one could construct the set of related terms as
a first rough step and then a human expert (or, perhaps, another [semi]-automated
method) could be used to add more more detail to the extractedvocabulary set.

Note that the complexity-related disciplines data set (already introduced in Sect.
4) is a useful tool to examine this question, since the initial set of tags are heteroge-
neous (complexity science is, by its very nature, an interdisciplinary field), but there
are natural divisions into sub-fields, based on different criteria. This allows easier
intuitive interpretation of the obtained results (besidesthe mathematical modularity
criteria described below). The technique we will use in our approach is based on the
so-called “community detection” algorithms, developed inthe context of complex
systems and network analysis theory Newman and Girvan (2004); Newman (2004).
Such techniques have been well studied at a formal level and have been used to
study large-scale networks in a variety of fields from socialanalysis (e.g. analy-
sis of co-citation networks), analysis of biological nets (e.g. food chains) to gene
interaction networks. Newman and Girvan (2004) provide an overview of existing
applications of this theory, while Newman (2004) presents aformal analysis of the
algorithm class used.

5.6.1 Using community detection algorithms to partition tag graphs

In network analysis theory, a community is defined as a subsetof nodes that are con-
nected more strongly to each other than to the rest of the network. In this interpre-
tation, a community is related to clusters in the network. Ifthe network analyzed is
a social network (i.e. vertexes represent people), then “community” has an intuitive
interpretation. For example, in a social network where people who know each other
are connected by edges, a group of friends are likely to be identified as a commu-
nity, or people attending the same school may form a community. We should stress,
however, that the network-theoretic notion of community ismuch broader, and is not
exclusively applied to people. Some examples Newman and Girvan (2004); Jin et al
(2007) are networks of items on Ebay, physics publications on arXiv, or even food
webs in biology. We will use a community detection algorithmto identify “vocabu-
laries” within a folksonomy graph, identifying “communities” as “vocabularies.”

5.6.1.1 Community detection: a formal discussion

Let the network considered be represented a graphG = (V,E), when|V| = n and
|E| = m. The community detection problem can be formalized as a partitioning
problem, subject to a constraint. The partitioning algorithm will result in a finite
number of explicit partitions, based on clusters in the network, that will considered
“communities.” Eachv ∈ V must be assigned to exactly one clusterC1,C2, ...CnC,
where all clusters are disjoint, i.e.∀v∈V,v∈Ci ,v∈Cj ⇒ i = j.
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Generally speaking, determining the optimal partition with respect to a given
metric is intractable, as the number of possible ways to partition a graphG is very
large. Newman (2004) shows there are more than 2n−1 ways to form a partition,
thus the problem is at least exponential inn. Furthermore, in many real life applica-
tions (including tagging), the optimal number of disjoint clustersnC is generally not
known in advance.

In order to compare which partition is “optimal”, the globalmetric used ismod-
ularity, henceforth denoted byQ. Intuitively, any edge that in a given partition
has both ends in the same cluster contributes to increasing modularity, while any
edge that “cuts across” clusters has a negative effect on modularity. Formally, let
ei j , i, j = 1..nC be the fraction of all edges in the graph that connect clusters i and j
and letai =

1
2 ∑ j ei j be the fraction of the ends of edges in the graph that fall within

clusteri (thus, we have∑i ai = ∑i, j ei j = m).
The modularityQ of a graph|G| with respect to a partitionC is defined as:

Q(G,C) = ∑
i
(ei,i −a2

i ) (5.13)

Informally, soQ is defined as the fraction of edges in the network that fall within a
partition, minus the expected value of the fraction of edgesthat would fall within the
same partition if all edges would be assigned using a uniform, random distribution.
These partitions are identified as communities by Newman andGirvan (2004). In
tagging, each of these partitions is identified as a vocabulary.

As shown in Newman (2004), ifQ = 0, then the chosen partitionc shows the
same modularity as a random division.7 A value of Q closer to 1 is an indicator
of stronger community structure - in real networks, however, the highest reported
value isQ = 0.75. In practice, Newman (2004) found (based on a wide range of
empirical studies) that values ofQ above around 0.3 indicate a strong community
structure for the given network. We will return shortly to define the algorithm by
which this optimal partition can actually be computed, but first some additional
steps are needed to link this formal definition to our taggingdomain.

5.6.2 Edge filtering step

As shown in tag graph construction step above, for our data set the initial inter-tag

graph contains

(

50
2

)

= 1225 pairwise similarities (edges), one for each potential

tag pair.
In this paper, we make the choice to filter and use in further analysis only the

top m= kd ∗n edges, corresponding to the strongest pairwise similarities. Here,kd

is a parameter that controls the density of the given graph (i.e. how many edges are

7 Note thatQ can also take values smaller than 0, which would indicate that the chosen partition is
worse than expected at random.
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there to be considered vs. the number of vertexes in the graph). In practice, we take
values ofkd = 1..10, which for the tag graph we consider means a number of edges
from 500 down to 50.

5.6.3 Normalized vs. non-normalized edge weights

The graph community identification literature Newman and Girvan (2004) gener-
ally considers considers graphs consisting of discrete edges (for example, in a social
network graph, people either know or do not know each other, edges do not usually
encode a “degree” of friendship). In our graph, however, edges represent similarities
between pairs of tags (c.f. Eq. 5.12). There are two ways to specify edge weights.
The non-normalized case assigns each edge that is retained in the graph, after filter-
ing, a weight of 1. Edges filtered out are implicitly assigneda weight of zero. The
normalized case assigns each edge a weight proportional to the similarity between
the tags corresponding to the ends. Formally, using the notations from Eq. 5.12 and
5.13 from above, we initialize the valuesei j as:

ei j =
m

∑i j simi j
simi j (5.14)

Where m
∑i j simi j

is simply a normalization factor, which assures that∑i j eii j = m.

5.6.4 The graph partitioning algorithm

Since we have established our framework, we can now formallydefine the graph
partitioning algorithm. As already shown, the number of possible partitions for this
problem is at least 2n−1 (e.g. for our 50 tag setting 250> 1015). Therefore, to explore
all these partitions exhaustively would be clearly unfeasible. The algorithm we use
to determine the optimal partition (Alg. 1) is based on Newman (2004), and it falls
into the category of “greedy” clustering heuristics.

Informally described, the algorithm runs as follows. Initially, each of the vertexes
(in our case, the tags) are assigned to their own individual cluster. Then, at each
iteration of the algorithm, two clusters are selected which, if merged, lead to the
highest increase in the modularityQ of the partition. As can be seen from lines 5-6
of Alg. 1, because exactly two clusters are merged at each step, it is easy to compute
this increase inQ as:∆Q= (ei j +eji −2aia j) or ∆Q= 2∗ (ei j −aia j) (the value of
ei j being symmetric). The algorithm stops when no further increase inQ is possible
by further merging.

Note that it is possible to specify another stopping criteria in Alg. 1, line 9, e.g.
it is possible to ask the algorithm to return a minimum numberof clusters (subsets),
by letting the algorithm run untilnC reaches this minimum value.
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Algorithm 1 GreedyQ Determination: Given a graphG= (V,E), |V| = n, |E| = m
returns partition<C1, ...CnC >

1. Ci = {vi}, ∀i = 1,n
2. nC = n
3. ∀i, j , ei j initialized as in Eq. 5.14
4. repeat
5. <Ci ,Cj >= argmaxci ,c j (ei j +eji −2aia j )
6. ∆Q= maxci ,c j (ei j +eji −2aia j )
7. Ci =Ci

⋃

Cj , Cj = /0 //merge Ci and Cj

8. nC = nC−1
9. until ∆Q≤ 0
10.maxQ= Q(C1, ..CnC)

5.6.5 Experimental results

The experimental results from applying Alg. 1 to our data setare shown in Fig. 5.15.
In Fig. 5.14 we present a detailed “snapshot” of the partition obtained for one of the
experimental configurations. There are several interesting results. First, it becomes
clear that using normalized edge weights produces partitions with higher modularity
than assigning all the top edges the same weight of 1. This wasintuitively hypoth-
esized by us, since edge weights represent additional information we can use, but
it was confirmed experimentally. Second, we are clearly ableto identify partitions
with a modularity higher than around 0.3, which exhibit a strong community struc-
ture according to Newman and Girvan (2004). Yet perhaps the most noteworthy
feature of the partitions is the rapid increase both in the modularity factorQ and
in the number of partitions, as the number of edges filtered decreases (from left to
right, in our figure). The filtering decision represents, in fact, a trade-off. Having
too many edges in the graph may stop us from finding a partitionwith a reasonable
modularity, due to the high volume of “noise” represented byweaker edges. How-
ever, keeping only a small proportion of the strongest edges(e.g. 100 or 50 for a
50-tag graph, in our example), may also have disadvantages,since we risk throw-
ing away useful information. While a high modularity partition can be obtained this
way, the graph may become too “fragmented”: arguably, dividing 50 tags into 10 or
15 vocabularies may not be a very useful.

Note that it is difficult to establish a general rule for what a“good” or universally
“correct” partition should be in this setting. For example,even the trivial partition
that assigns each tag to its own individual cluster cannot berejected as “wrong” but
such a trivial partition would not be considered a useful result for most purposes. In
this paper we generally report the partitions found to have the highest modularity
for the setting. However, for many applications, having a partition with a certain
number of clusters, or some average cluster size, may be moredesirable. The clus-
tering algorithm propose here (Alg. 1) can be easily modifiedto account for such
desiderata, by changing the stop criteria in line 9.
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Fig. 5.14 shows the solution with the highest modularityQ for a graph with
200 edges, in which 7 clusters are identified. This partitionassigns tags related to
mathematics and computer science to Cluster 1, tags relatedto social science and
phenomena to Cluster 2, complexity-related topics to Cluster 4 etc., while “art” is
assigned to its own individual cluster. This matches quite well our intuition, and its
modularityQ= 0.34 is above (albeit close) to the theoretical relevance threshold of
0.3.

5.6.5.1 Eliminating tags from resulting partitions to improve modularity

The analysis in the previous section shows that community detection algorithms
were able to produce useful partitions, with above-relevance modularity. Still, there
are a few general-meaning tags that would fit well into any of the subsets resulting
after the partition. These tags generally reduce theQ modularity measure signifi-
cantly, since they increase the inter-cluster edges. Therefore, we hypothesized that
the modularity of the resulting partitions could be greatlyimproved by removing
just a few tags from the set under consideration. In order to test this hypothesis, we
tested another greedy tag elimination algorithm, formallydefined as Alg. 2. Result
graphs are shown in Fig 5.16, while in Fig. 5.14 we show the top5 tags that, if
eliminated, would increase modularityQ from 0.34 to 0.43.

Algorithm 2 GreedyQ Elimination: Given a partitionC1, ...CnC of graphG= (V,E)
removes all vertexesvi ∈V that increaseQ
1. repeat
2. vi = argmaxvi [Q(..,Ck \{vi}, ..)−Q(..,Ck, ..)]
3. ∆Q= maxvi [Q(..,Ck \{vi}, ..)−Q(..,Ck, ..)]

wherevi ∈Ck //Ck is the partition of vertex i
4. until ∆Q≤ 0

As seen in Fig. 2, for this data set only 5-6 tags need to be eliminated as eliminat-
ing more does not lead to a further increases inQ. In the example in Fig. 5.14, we
see which these are, in order of elimination: theory, science, research, simulation,
networks. In fact, these tags, that are marked for elimination automatically by Alg.
2, are exactly those that are the most general in meaning and would fit well into any
of the subsets.

Regarding scalability, it is relatively straightforward to show that both Alg. 1
and 2 have linear running time the number of vertexesn, i.e. in this case, number
of tags considered in the initial set. In the case of Alg.1, exactly two clusters of
tags are merged at each step, so one cluster increases in sizeby a minimum of one,
until the algorithm terminates. In case of Alg. 2, one tag is eliminated per step, until
termination. In practice, this scalability property meansthey are easily applicable to
analyze much larger folksonomy systems.
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We leave some aspects open to further work. For instance, in the current ap-
proach, similarity distances between pairs of tags are computed using all the tagging
instances in the data set. In some applications, it might be useful to first partition the
set of users that do the tagging, and then consider only the tags assigned by a certain
class of users. For example, for tags related to a given scientific field, expert taggers
may come up with a different vocabulary partition than novice users. This may re-
quire a two-fold application of this algorithm: first to partition and select the set of
users, and then the set of tags based on the most promising category of users.

5.7 Comparing Tags to Search Keywords

While these applications of tagging distributions have shown promise, one question
that can be reasonably asked is how well these applications of tagging compare
to some benchmark that does not use tagging distributions? In other words, is the
notion of a Fregean sense inherently limited to only tags explicitly created in tagging
systems? The most compelling other in which natural language terms are attached to
URIs is that of search engines. One can consider the query terms of a user in a search
engine as the implicit tagging of a resource, as is done in what has been termed
‘query flow graphs’?. Thus, the main difference between search engine terms and
tags is that in search engines natural language terms are used to discover a resource
a priori, while tagging are terms attached to a resourcepost-hoc. Regardless, this
also means that the Fregean notion of a sense does not have to be confined to the
collective tags attached to a resource, but can include search terms as well. However,
as the data for the stabilization of search terms is not publically available like tagging
systems, for the time being we will have to compare tagging tosearch terms using
the more limited correlation graph techniques.

The idea of approximating semantics by using search engine data has, in fact,
been proposed before, and is usually found in existing literature under the name
of “Google distance.” Cilibrasi and Vitanyi (2007) were thefirst to introduce the
concept of “Google distance” from an information-theoretic standpoint, while other
researchers Gligorov et al (2008) have recently proposed using it for tasks such as
approximate ontology matching. It is fair to assume (although we have no way of
knowing this with certainty), that current search engines and related applications,
such as Google Sets http://labs.google.com/sets (2008), also use text or query log
mining techniques (as opposed to collaborative tagging) tosolve similar problems.

There are two ways of comparing terms (in this case, keywords) using a search
engine. One method would be to compare the number of resources that are retrieved
using each of the keywords and their combinations. Another method is to use the
query log data itself, where the co-occurrence of the terms in the same queries vs.
their individual frequency is the indicator of semantic distance. We employ this lat-
ter method as it is more amendable to comparison with our workon tagging. In the
latter method, the query terms are comparable to tags, whereinstead of basing our
folksonomy graphs and vocabulary extraction on tags, we used query terms. In gen-
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eral, query log data is considered proprietary and much moredifficult to obtain than
tagging data. We were fortunate to have access to a large-scale data set of query log
data, from two separate proposals awarded through Microsoft’s “Beyond Search”
awards. In the following we describe our methodology and empirical results.

5.7.1 Data set and methodology employed

The data set we used consists of 101,000,000 organic search queries, produced from
Microsoft search engine Live.com, during a 3-month interval in 2006. Based on this
set of queries, we computed the bilateral correlation between all pairs from the set of
of complexity related terms considered in Sect. 5.5 and 5.6 above. The set of terms
are, however, no longer treated as tags, but as search keywords.8 The correlation
between any two keywordsTi andTj is computed using the cosine distance formula
in Equation 5.12 from Section 5.5 above. However, hereN(Ti ,Tj) represents the
number of queries in which the keywordsTi andTj appear in together, whileN(Ti)
andN(Tj ) are the numbers of queries in whichTi , respectivelyTj appear in total
(irrespective of other terms in the query), from the 100 million queries in the data
set.

The rest of the analysis mirrors closely the steps describedin Sections 5.5 and
5.6, but optimizing the learning parameters which best fit this data set, in order to
give both methods a fair chance in the comparison. More specifically, the Pajek
visualization of the keyword graphs in Figs.5.17 and 5.18 were also built by using
a spring-embedder algorithm based on the Kamada-Kawai distance, while Fig. 5.19
shows the keyword vocabulary partition that maximizes the modularity coefficient
Q in the new setting, considering the top 200 edges. For clarity, the graph pictures
are depicted in a different color scheme, to clearly show they result from entirely
different data sets: Figures 5.12 and 5.13 from del.icio.uscollaborative tagging data,
and Figures 5.17 and 5.18 from Microsoft’s Live.com query logs.

5.7.2 Discussion of the results from the query log data and
comparison

When comparing the graphs in Figures 5.12 and 5.17 (i.e. the ones which only
depict the relations to the central term “complexity”) an important difference can be
observed. While the graph in Fig. 5.12, based on collaborative tagging data, shows
48 terms related to complexity, the one is Fig. 5.17, based onquery log data, shows
just 6. The basic reason is that no relationship between the term “complexity” and

8 We acknowledge this method has some drawbacks, as a few termsin the complexity-related set,
such as “powerlaw” and “complexsystems” (spelled as one word) or “alife” (for “artificial life”)
are natural to use as tags, but not very natural as search keywords. However, since there are only 3
such non-word tags, they do not significantly affect our analysis.
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the other 40+ terms can be inferred from the query log data. These relationships
either do not appear in the query logs or are statistically too weak (only based on a
few instances).

It is important to emphasize here that this result is not an artifact of the cosine
similarity measure we use. Even if we use another, more complex distance measure
between keywords, such as some suggested in the previous literature Cilibrasi and
Vitanyi (2007), we get very similar results. The fundamental reason for the sparse-
ness of the resulting graph is that the query log data itself does not contain enough
relevant information about complexity-related disciplines. For example, among the
101,000,000 queries, the term complexity appears exactly 138 times, a term such
as “networks” 1074 times. Important terms such as “cognition” or “semantics” are
even less common, featuring only 47 and 26 times respectively among more than
100 million queries. Therefore, it is fair to conclude that the query log data, while
very large in size, is quite poor in useful information aboutthe complexity-related
sciences domain. As a caveat, we do note that more common terms, such as “com-
munity” (78,862 times), “information” (36,520 times), “art” (over 52.000), or even
“agent” (about 7,000) do appear more frequently, but these words have a more gen-
eral language usage and are not restricted to the scientific domain. Therefore, these
higher frequencies do not actually prove very useful for identifying the relationship
of these terms to complexity science, which was our initial target question.

Turning our attention to the second graph in Fig. 5.18 and thepartition in Fig.
5.19, we can see that query logs can also produce good resultsin comparison with
tagging, although they are somewhat different from the onesobtained from tagging.
For example, if we compare the partitions obtained in Fig. 5.14 (resulting from
tagging data) and the one in Fig. 5.19 (from query log data), we see that tagging
produces a more precise partition of the disciplines into scientific sub-fields. For
instance, it is clear from Fig. 5.14 that cluster 1 corresponds to mathematics, opti-
mization and computation, cluster 2 to markets and economics, cluster 5 to biology
and genetics, cluster 4 to disciplines very related to complexity science and so forth.
The partition obtained from query log data in Fig. 5.19, while is still very reasonable,
reflects perhaps how a general user would classify the disciplines, rather than a spe-
cialist: organization is related to both information, systems and community (cluster
2), research is either qualitative or quantitative (cluster 6), and the like. There are
also some counter-intuitive associations, such as puttingbiology and markets in the
same cluster (number 1). Note that the clustering (or modularity) coefficientQ is
higher in Fig. 5.19 than 5.14, but this is only because there are less inter-connections
between terms in general in the query log data, thus there areless edges to “cut” in
the clustering algorithm.

5.8 Conclusions

To conclude, user-generated collaborative tags can serve as a Fregeansense. Using
KL divergence, we can show that tagging distributions per resource do indeed stabi-
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lize the a scale-free power law distribution, so that the ‘tag cloud’ of a resource after
a certain point stabilizes into what is widely-accepted in aparticular community to
be a good description of the resource. Furthermore, this behavior of stabilization is
a function of time and number of users, and does not simply reflect an artifact of the
tag suggestion mechanism. Tagging can indeed be the foundation for a sense-based
semantics on the Web.

Also, it seems tagging produces a richer notion of sense thansearch terms. This
can probably be explained by the fact the del.icio.us users have more expertise and
interest in complexity-related topics than general web searchers. Furthermore, they
are probably more careful in selecting resources to tag and in selecting labels for
them that would be useful to other users as well (general web searchers are known
to be “lazy” in typing queries). As a caveat, we note that thistarget domain (i.e.
complexity-related disciplines) is scientific and very specialized. If the target would
be more general (for example, if we selected a set of terms related to pop-culture),
the comparison might lead to different results. Also, people who sign up to use a
collaborative tagging system are implicitly more willing to share their knowledge
and expertise with a community of other users. By contrast, web search is implicitly
a private activity, where not only may tracing users’ actualidentity may be unde-
sirable to the user, but also the user is not even aware their activity is being tracked
and the keywords they use can then be used by search engines orother programs to
change the results for other users.

The question remains: while one can operationalize some notion of Fregean
sense-based semantics on the Web in the form of collaborative tags, is this enough?
After all, many URI are not tagged at all! Superficially, the preliminary results from
search engine keyword analysis seem to show that keywords are a much sparser
source of sense than tags. However, these results only were shown on a tiny group
of keywords gathered from a search engine on a particular topic. To think more
broadly, perhapsall associated keywords with a particular resource could serveas
a better sense-based semantics for a URI. This may include not only the keywords
from tags explicitly given to that URI and from keywords usedto reach a URI,
but also from the terms accessible from the web representations hosted at the URI,
ranging from Semantic Web documents to hypertext web-pages. It is to this more
comprehensive notion of computational sense that we turn tonext.
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Fig. 5.12 Folksonomy graph, considering only correlations corresponding to central tag “complexity”
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Fig. 5.13 Folksonomy graph, considering all relevant inter-tag correlations
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
computation markets semantics powerlaw genetics robustness art
optimization economics cognition nonlinear biology
visualization society neural complexsystems evolution

physics community ai dynamics evolutionary
mathematicsorganization alife chaos science

math ecology artificial emergence
computational ecosystem life networks

algorithms environment behavior systems
information simulation complex
computing research complexity

theory
Tags that increase modularity the most, if eliminated: theory, science, research, simulation, networks.

Fig. 5.14 Optimal partition in tag clusters (i.e. “communities”) of the folksonomy graph, when the
top 200 edges are considered. This partition has a Q=0.34. After eliminating the 5 tags mentioned
at the bottom, Q can increase to 0.43.
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Fig. 5.15 Modularity (Q-factor) and number of partitions obtained from applying community de-
tection algorithms to the scientific disciplines data set
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Fig. 5.16 Modularity (Q-factors) and number of partitions obtained after gradually eliminating
tags from the data set, such as to increase the modularity. Ateach step, the tag that produced the
highest increase in modularity between the initial and resulting partition was selected. In these
results, all edge weights are normalized.



5.8 Conclusions 149

Fig. 5.17 Correlation graph from Microsoft queries, showing only correlations to the term “complexity”.

Fig. 5.18 Correlation graph obtained from Microsoft query logs, considering all relevant search terms.



150 5 The Semantics of Tagging

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
complexity systems networks algorithms mathematics research
evolution visualization ai ecology physics quantitative

evolutionaryorganizationemergence math economics qualitative
chaos information neural computing art society

cognition community optimization science
biology computation simulation
theory environment dynamics

behavior nonlinear
markets computational
genetics ecosystem
agent

Terms left unclassified (i.e. one word clusters): complex, complexsystems, robustness,
multi-agent, life, artificial, semantics, powerlaw, alife.

Fig. 5.19 Optimal partition into clusters, obtained from the Microsoft query data, when the top
200 edges are considered. The resulting partition has a Q=0.536. However, 9 terms were assigned
to their own cluster, thus basically left unclassified.



Chapter 6
The Semantics of Search

The solution to any problem in AI may be found in the writings of Wittgenstein,
though the details of implementations are rather sketchyR.M. Duck-Lewis (Hirst,
2000)

6.1 Introduction

What kinds of information should be used in the constructionof the sense of a re-
source? Given our previous work, there appears to be a priorireason why we should
confine ourselves to tags when constructing the sense of a resource. Up till now,
we have been considering the sense-based semantics of a particular URI in terms
of a term frequency distribution. However, this seems limited. There is always the
case of co-referential URIs, where a single resource is identified by multiple URIs.
Should the semantics somehow combined the distributions ofthe various Web rep-
resentations? If so, precisely how - and in particular if theweb representations are
in multiple encodings? If one wanted the most thorough description of a resource,
would it not make sense to define the semantics of these representations in terms
of as many representations as possible, as it is well-known in statistical machine-
learning that there’s ‘no data like more data,’ such that simply adding more data
under the right conditions can increase the likelihood of a stable and rich distribu-
tional semantics?.

Yet the intuition that simply adding more representations to the sense will in-
crease its effectivness needs to be operationalized and tested. A number of difficult
questions immediately appear, such as how to identify possibly co-referential URIs
for the same reosurce? Or to make matters worse, how to limit the kinds of en-
codings that the sense will be constructed with? These questions can be answered
by attempting to fit the intuition within a well-understood experimental paradigm,
which we believe can be the well-studied paradigm of information retrieval. To ex-
tend further,relevance feedbackis the use of explicit relevance judgments from
users of a query in order to expand the query. By ‘expand the query,’ we mean that
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the usually rather short query is expanded into a much largerquery by adding words
from known relevant documents. For example, a query on the hypertext Web for
the Eiffel Tower given as ‘eiffel’ might be expanded into ‘paris france eiffel tour.’
If the relevant pages instead were about an Eiffel Tower replica in Texas, the same
results query could be expanded into ‘paris texas eiffel replica.’ The same principle
applies to the Semantic Web, except that the natural language terms may include
Semantic Web URIs and terms resulting from inference or URI processing. The hy-
pothesis of relevance feedback, as pioneered by Rocchio in the SMART retrieval
system, is that the relevant documents will disambiguate and in general give a bet-
ter description of the information need of the query than thequery itself Rocchio
(1971). Relevance feedback has been shown in certain cases to improve retrieval
performance significantly. Extending this classical work,textbfrelevance models, as
formalized by Lavrenko et al. Lavrenko (2008)) create relevance models directly
from the indexed documents rather than explicitly waiting for the user to make a
relevance judgment. Relevance models are especially well-suited to our hypothesis
that multiple kinds of encodings should be part of the same sense, as relevance mod-
els consider each source of data (query, documents, perhapseven tags and Semantic
Web data) as ‘snapshots’ from some underlying generative model.

Since we will use representations from different sources ofdata, we cannot sim-
ply contain the notion of resource to a single URI, as currently - as content negotia-
tion amongst various encodings is currently barely deployed on the Web - hypertext
web-pages and Semantic Web documents encoded in RDF withoutexception almost
always have different URIs. However, a web-page for the Eiffel Tower encoded in
HTML and a Semantic Web document encoded in RDF can still share the same
content of the Eiffel Tower, despite having differing URIs.So, the information per-
taining to a resource will be spread amongst multiple co-referntial URIs. Therefore,
the best way to determine the set of URIs relevant to a particular resource is to at-
tach the resource to theinformation needof a ordinary web user as expressed by a
query in a search engine. Then the next step is to have humans judge a set of web
representations - either Semantic Web documents, hypertext web document, or both
- and consider the set of these web representations and attendant URIs to be a partial
snapshot of the relevant information pertaining to a sense.

This technique can be transformed into a testable hypothesis; the hypothesis
put forward by Baeza-Yates that search on the Semantic Web can be used to im-
prove traditional ad-hoc information retrieval for hypertext Web search engines and
vice-versa Baeza-Yates (2008). Currently, there exist several nascent Semantic Web
search engines that specifically index and return ranked Linked Data in RDF in
response to keyword queries. Yet their rankings are much less well-studied than hy-
pertext Web rankings, and so are thought likely to be sub-optimal. While we realize
the amount and sources of structured data on the Web are huge,to restrict and test
the hypothesis of Baeza-Yates, from hereon we will assume that ‘semantic search’
refers to indexing and retrieving of Linked Data by search engines like Sindice and
FALCON-S Cheng et al (2008), and hypertext search refers to the indexing and
retrieval of hypertext documents on the World Wide Web by search engines like
Google and Yahoo! Search. Our experimental hypothesis is that the statistical se-
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mantics of sense created from Semantic Web documents can help hypertext search
and vice versa, and this can be empirically shown via the use of relevance feedback.

On an aside, we realize that our reduction of ‘semantic search’ to keyword-based
information retrieval over the Semantic Web is very restrictive, as many people use
‘semantic search’ to mean simply search that relies on anything beyond surface syn-
tax, including the categorization of complex queries Baeza-Yates and Tiberi (2007)
and entity-recognition using Semantic Web ontologies Guhaet al (2003). We will
not delve into an extended explanation of the diverse kinds of semantic search, as
surveys of this kind already exist Mangold (2007). Yet giventhe relative paucity
of publicly accessible data-sets about the wider notion of semantics and the need
to start with a simple rather than complex paradigm, we will restrict ourselves to
the Semantic Web and assume a traditional, keyword-based ad-hoc information re-
trieval paradigm for both kinds of search, leaving issues like complex queries and
natural language semantics for future research. Keyword search consisting of 1-2
terms should also be explored as it is the most common kind of query in today’s
Web search regardless of whether any results from this experiment can generalize
to other kinds of semantic search Silverstein et al (1999). In order to thoroughly
test our system, Until recently semantic search suffered from a lack of a thorough
and neutral Cranfield-style evaluation, and so we carefullyexplain and employ the
traditional information retrieval evaluation frameworksin our experiment to eval-
uate semantic search. At the time of the experiment, our evaluation was the first
Cranfield-style evaluation for searching on the Semantic Web. This evaluation later
generalized into the annual ‘Semantic Search’ competition,1 which has since be-
come a standard evaluation for search over RDF data Blanco etal (2011). However,
our particular evaluation presented here is still the only evaluation to determine rel-
evance judgments over both hypertext and RDF using the same set of queries.

In Section 6.2 we first elucidate the general nature of searchfrom hypertext doc-
uments tosemantic searchover Semantic Web documents. A general open-domain
collection of user queries from a real hypertext query-log against the Semantic Web
and then have human judges construct a ‘gold-standard’ collection of queries and re-
sults judged for relevance, from both the Semantic and hypertext Web. Then in Sec-
tion 6.3 we give a brief overview of information retrieval frameworks and ranking
algorithms. While this section may be of interest to Semantic Web researchers unfa-
miliar with such techniques, information retrieval researchers may wish to proceed
immediately past this section. Our system is described in Section 6.4. In Section 6.5,
these techniques are applied to the ‘gold standard’ collection created in Section 6.2
so that the best parameters and algorithms for relevance feedback for both hypertext
and semantic search can be determined. In Section 6.6 and Section 6.7 the effects
of using pseudo-feedback and Semantic Web inference are evaluated. The system is
evaluated against ‘real-world’ deployed systems in Section 6.8. Finally, in Section
6.9 future work on this particular system is detailed, and conclusion on the veracity
of our method of sense-making are given in Section 6.10.

1 Sponsored by Yahoo! Research for both 2010 and 2011.
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6.2 Is There Anything Worth Finding on the Semantic Web?

In this section we demonstrate that the Semantic Web does indeed contain infor-
mation relevant to ordinary users by sampling the Semantic Web according to a
real-world queries referring to entities and concepts fromthe query log of a major
search engine. The main problem confronting of any study of the Semantic Web is
one ofsampling. As almost any large-data database can easily be exported toRDF,
statistics demonstrating the actual deployment of the Semantic Web can be biased
by the automated release of large, if useless, data-sets, the equivalent of ‘Semantic
Web’ spam. Also, large specialized databases like Bio2RDF can easily dwarf the
rest of the Semantic Web in size. A more appropriate strategywould be to try to
answer the question: What information is available on the Semantic Web that users
are actually interested in? The first large-scale analysis of the Semantic Web was
done via an inspection of the index of Swoogle by Ding and Finin Ding and Finin
(2006). The primary limitation of that study was that the large majority of the Se-
mantic Web resources sampled did not contain rich information that many people
would find interesting. For example, the vast majority of data on the Semantic Web
in 2006 was Livejournal exporting every user’s profile as FOAF and RSS 1.0 data
that used Semantic Web techniques to structure the syntax ofnews feeds. Yet with
information-rich and interlinked databases like Wikipedia being exported to the Se-
mantic Web, today the Semantic Web may contain information needed by actual
users. As there is no agreed-upon fashion to sample the Semantic Web (and the
entire Web) in a fair manner, we will for our evaluation create a sample driven by
queries from real-users using easily-accessible search engines that claim to have a
Web-scale index, although independent verification of thisis difficult if not impos-
sible.

6.2.1 Inspecting the Semantic Web

In order to select real queries from users for our experiment, we used the query log
of a popular hypertext search engine, the Web search query log of approximately
15 million distinct queries from Microsoft Live Search. This query log contained
6,623,635 unique queries corrected for capitalization. The main issue in using a
query log is to get rid of navigational and transactional queries. A straightforward
gazetteer-based and rule-based named entity recognizer was employed to discover
the names of people and places Mikheev et al (1998), based offa list of names main-
tained by the Social Security Administration and a place name database provided
by the Alexandria Digital Library Project. From the query log a total of 509,659
queries were identified as either (fundamentally analog) people or places by the
named-entity recognizer, and we call these queriesentity queries. Employing Word-
Net to represent abstract concepts, we chose queries recognized by WordNet that
havebotha hyponym and hypernym in WordNet. This resulted in a more restricted
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16,698 queries that are supposed to be about abstract concepts realized by multiple
entities, which we callconcept queries.

A sample entity query from our list would be ‘charles darwin,’ while a sample
concept query would be ‘violin.’ In our data-set using hypertext search, both queries
return almost all relevant results. The query ‘charles darwin’ gives results that are
entirely encyclopedia pages (Wikipedia, eHow,darwin-online.org.uk) and
other factual sources of information, while ‘violin’ returns 8 out of 10 factual pages,
with 2 results just being advertisements for violin makers.On the contrary for the
Semantic Web, the query ‘charles darwin’ had 6 relevant results, with the rest being
for places such as the city of Darwin and books or products mentioning Darwin.
For ‘violin,’ only 3 contain relevant factual data, with therest being the names
of albums called ‘Violin’ and movies such as ‘The Violin Maker.’ From inspec-
tion of entities with relevant results, it appears the usualcase for semantic search
is that DBpedia and WordNet have a substantial amount of overlap in the con-
cepts to which they give URIs. For example, they have distinct URIs for such
concepts as ‘violin’ (http://dbpedia.org/resource/Violin vs. W3C
WordNet’ssynset-violin-noun-1). Likewise, most repetition of entity URIs
comes from WordNet and DBpedia, both of which have distinct URIs for famous
people like Charles Darwin. In many cases, these URIs do not always appear at the
top, but in the second or third position, with often an irrelevant URI at top. Lastly,
much of the RDF that is retrieved seems to have little information in it, with DBPe-
dia and WordNet being the most rich sources of information.

The results of running the selected queries against a Semantic Web search en-
gine, FALCON-S’s Object Search Cheng et al (2008), were surprisingly fruitful. For
entity queries, there was an average of 1,339 URIs (S.D. 8,000) returned for each
query. On the other hand, for concept queries, there were an average of 26,294 URIs
(S.D. 14,1580) returned per query, with no queries returning zero documents. Such
a high standard deviation in comparison to the average is a sure sign of a non-normal
distribution such as a power-law distribution, and normal statistics such as average
and standard deviation are not good characteristic measures of such distributions.
As shown in Figure 6.1, when plotted in logarithmic space, both entity queries and
concept queries show a distribution that is heavily skewed towards a very large num-
ber of high-frequency results, with a steep drop-off to almost zero results instead of
the characteristic long tail of a power law. For the vast majority of queries, far from
having no information, the Semantic Web of Linked Data appears to havetoo much
data, but for a minority of queries there is justno data. This is likely the result of
the releasing of Linked Data in large ‘chunks’ from data-silos about specific topics
rather than the more organic development of the hypertext Web that typically results
in power-law distributions. Also, note that hypertext web-pages are updated as re-
gards trends and current events much more quickly than the relatively slow-moving
world of Linked Data.

Another question is whether or not there is any correlation between the amount
of URIs returned from the Semantic Web and the popularity of the query. As shown
by Figure 6.2, there isno correlation between the amount of URIs returned from
the Semantic Web and the query popularity. For entity queries, the correlation co-
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Fig. 6.1 The rank-ordered frequency distribution of the number of URIs returned from entity and
concept queries, with the entity queries given by green and the concept queries by blue.

efficient was 0.0077, while for concept queries, the correlation coefficient was still
insignificant, at 0.0125. The popularity of query is not related to how much in-
formation the Semantic Web possesses on the information need expressed by the
query: Popular queries may have little data, while infrequent queries may have a lot.
This is likely due to the rapidly changing and event-dependent nature of hypertext
Web queries versus the Semantic Web’s preference for more permanent and less
temporally-dependent data. For a more full exploration of the data-set used in this
experiment, including types of URIs, see the paper on ‘A Query-Driven Character-
ization of Linked Data’ Halpin (2009a). Since this data was collected in spring of
2009 it may not be currently accurate as a characterization of either FALCON-S or
the state of Linked Data currently, but for evaluation purposes this sample should
suffice, and using random selections from a real human query log is a definite ad-
vance, as randomly sampling all of Linked Data would result in an easily biased
evaluation, away from what human users are interested in andtowards what hap-
pens to be available as Linked Data.

Surprisingly, there is a large amount of information that may be of interest to
ordinary hypertext users on the Semantic Web, although there is no correlation be-
tween the popularity of queries and the availability of thatinformation on the Se-
mantic Web. The Semantic Web is not irrelevant to ordinary users as there is data on
the Semantic Web ordinary users are interested in, even if itis distributed unevenly
and does not correlate with the popularity of their queries.
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6.2.2 Selecting Queries for Evaluation

In order to select a subset of informational queries for evaluation, we randomly se-
lected 100 queries identified as abstract concepts by WordNet and then 100 queries
identified as either people or places by the named entity recognizer, for a total of
200 queries to be used in evaluation. Constraints were placed on the URIs resulting
from semantic search, such that at least 10 Semantic Web documents (a file contain-
ing a valid RDF graph) had to be retrieved from the URI returned by the Semantic
Web search engine. This was necessary as some queries returned zero or less than
10 URIs, as explained in Section 6.2.1. For each query, hypertext search always re-
turned more than 10 URIs. So for each query, 10 Semantic Web documents were
retrieved using the FALCON-S Object Search engine Cheng et al (2008), leading to
a total of 1,000 Semantic Web documents about entities and 1,000 Semantic Web
documents about concepts, for a total of 2,000 Semantic Web documents for rele-
vance judgments. Then, the same experimental query log was used to retrieve pages
from the hypertext Web using Yahoo! Web search, resulting inthe same number of
web-pages about concepts and entities (2,000 total) for relevance judgments. The to-
tal number of all Semantic Web documents and hypertext web-pages gathered from
the queries is 4,000.

The queries about entities and concepts are spread across quite diverse domains,
ranging from entities about both locations (El Salvador) and people (both fictional
such as Harry Potter and non-fictional such as Earl May) to concepts ranging over a
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large degree of abstraction, from sociology to ale. A randomselection of ten queries
from the entity and concept queries is given in Table 1. This set of 4,000 hypertext
web-pages and Semantic Web documents are then used to evaluate our results in
Section 6.5.

Entity Concept

ashville north carolinasociology
harry potter clutch
orlando florida telephone
ellis college ale
university of phoenix pillar
keith urban sequoia
carolina aster
el salvador bedroom
san antonio tent
earl may cinch

Table 6.1 10 Selected Entity and Concept Queries

6.2.3 Relevance Judgments

For each of the 200 queries selected in Section 6.2.2, 10 hypertext web-pages and 10
Semantic Web documents need to be judged for relevance by three human judges,
leading to a total of 12,000 judgments for relevance for our entire experiment, with
the correct relevance determined by ‘voting’ amongst the three judges per document.
Human judges each judged 25 queries presented in a randomized order, and were
given a total of 3 hours to judge the entire sample for relevancy. No researchers
were part of the rating. The judges were each presented first with ten hypertext
web-pages and then with ten Semantic documents that could beabout the same
query. Before starting judging, the judges were given instructions and trained on 10
sample results (5 web-pages and 5 Semantic Web documents). The human judges
were forced to make binary judgments of relevance, so each result must be either
relevant or irrelevant to the query. They were given the web-page selected by the
human user from the query log as a ‘gold standard’ to determine the meaning of the
keyword.

The standard TREC definition for relevance is “If you were writing a report on
the subject of the topic and would use the information contained in the document in
the report, then the document is relevant” Hawking et al (2000). As semantic search
is supposed to be about entities and concepts rather than documents, semantic search
needs an definition of relevance based around information about entities or concepts
independent of documents. In one sense, this entity-centric relevance should have
both a wider remit than document-centric relevance definition, as any information
about the entity that could be relevant should be included. Yet in another sense, this
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definition is more restrictive, as if one considers the world(perhaps fuzzily) parti-
tioned into distinct entities and concepts, then merely related information would not
count. In the instructions, relevance was definedas whether or not a result is about
the same thing as the query, which can be determined by whether or not accurate
information about the information need is expressed by the result. The following
example was given to the judges: “Given a query for ‘Eiffel Tower,’ a result entitled
‘Monuments in Paris’ would likely be relevant if there was information about the
Eiffel Tower in the page, but a result entitled ‘The Restaurant in the Eiffel Tower’
containing only the address and menus of the restaurant would not be relevant.”

Kinds of Web results that would ordinarily be considered relevant are therefore
excluded. In particular, there is a restriction that the relevant information must be
present in the result itself. This excludes possibly relevant information that is acces-
sible via outbound links, even a single link. All manner of results that are collections
of links are thus excluded from relevancy, including both ‘link farms’ purposely de-
signed to be highly ranked by page-rank based search engines, as well as legitimate
directories of high-quality links to relevant information. These hubs are excluded
precisely because the information, even if it is only a link transversal away, is still
not directly present in the retrieved result. By this same principle, results that merely
redirect to another resource via some method besides the standardized HTTP meth-
ods are excluded, since a redirection can be considered a kind of link. They would be
considered relevant only if additional information was included in the result besides
the redirection itself.

In order to aid the judges, a Web-based interface was createdto present the
queries and results to the judges. Although an interface that presented the queries
and the search interface in a manner similar to search engines was created, human
judges preferred an interface that presented them the results for judgments one-at-
a-time, forcing them to view a rendering of the web-page associated with each URI
originally offered by the search engine. For each hypertextweb-page, the web-page
was rendered using the Firefox Web Browser and PageSaver Pro2.0. For each Se-
mantic Web document, the result was rendered (i.e. the triples and any associated
text in the subject) by using the open-source Disco Hyperdata Browser with Fire-
fox.2 In both cases, the resulting rendering of the Web representation was saved at
469× 631 pixel resolution. The reason that the web-page was rendered instead of
a link given directly to the URI is because of the unstable state of the Web, espe-
cially the hypertext Web. Even caching the HTML would have risked losing much
of the graphic element of the hypertext Web. By creating ‘snapshot’ renderings,
each judge at any given time was guaranteed to be presented with the result in the
same visual form. One side-effect of this is that web-pages that heavily depend on
non-standardized technologies or plug-ins would not render and were thus presented
as blank screen shots to the user, but this formed a small minority of the data. The
user-interface divided the evaluation into two steps:

2 The Disco Hyperdata Browser, a browser that renders Semantic Web data to HTML, is available
athttp://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.
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• Judging relevant results from a hypertext Web search:The judge was given the
search terms created by an actual human user for a query and anexample relevant
web-page whose full snapshot could be viewed by clicking on it. A full rendering
of the retrieved web-page was presented to the user with its title and summary
(as produced by Yahoo! Search) easily viewed by the judge as in Figure 6.3. The
judge clicked on the check-box if the result is considered relevant. Otherwise,
the web-page was by default recorded as not relevant. The web-page results were
presented to the judge one at a time, ten times for each query.

• Judging relevant results from a Semantic Web search:Next, the judge assessed
all the Semantic Web results for relevancy. These results were retrieved from the
Semantic Web using the same interface displayed to the judgein the first step
as shown in Figure 6.4, and a title was displayed by retrieving any literal values
from rdfs:label properties and a summary by retrieving any literal values
from rdfs:comment values. Using the same interface as in the first step, the
judge had to determine whether or not the Semantic Web results were relevant.

Fig. 6.3 The interface used to judge web-page results for relevancy.

After the ratings were completed, Fleiss’κ statistic was taken in order to test the
reliability of inter-judge agreement on relevancy judgments Fleiss (1971). Simple
percentage agreement is not sufficient, as it does not take into account the likeli-
hood of purely coincidental agreement by the judges. Fleiss’ κ both corrects for
chance agreement and can be used for more than two judges Fleiss (1971). The null
hypothesis is that the judges cannot distinguish relevant from irrelevant results, and
so are judging results randomly. Overall, for both relevance judgments over Seman-
tic Web results and web-page results,κ = 0.5724 (p< .05, 95% Confidence inter-
val [0.5678,0.5771]), indicating the rejection of the null hypothesis and ‘moderate’
agreement. For web-page results only,κ = 0.5216 (p< .05, 95% Confidence inter-
val [.5150,0.5282]), also indicating the rejection of the null hypothesis and ‘moder-
ate’ agreement. Lastly, for only Semantic Web results,κ = 0.5925 (p< .05, 95%
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Fig. 6.4 The interface used to judge Semantic Web results for relevancy

Confidence interval[0.5859,0.5991]), also indicating the null hypothesis is to be
rejected and ‘moderate’ agreement. So, in all cases there is‘moderate’ agreement,
which is sufficient given the general difficulty of producingperfectly reliable rele-
vancy judgments. Interestingly enough, the difference inκ between the web-page
results and Semantic Web results show that the judges were actually slightly more
reliable in their relevancy judgments of information from the Semantic Web rather
than the hypertext Web. This is likely due to the more widely varying nature of
the hypertext results, as compared to the more consistent informational nature of
Semantic Web results.

Were judges more reliable with entities or concepts? Recalculating theκ for
all results based on entity queries,κ = 0.5989 (p < .05, 95% Confidence interval
[0.5923,0.6055]), while for all results based on concept queries wasκ = 0.5447
(p < .05, 95% Confidence interval[0.5381,0.5512]). So it appears that judges are
slightly more reliable discovering information about entities rather than concepts,
backing the claim made by Hayes and Halpin that there is more agreement in gen-
eral about ‘less’ abstract things like people and places rather than abstract con-
cepts Hayes and Halpin (2008). However, agreement is still very similar and ‘mod-
erate’ for both information about entities and concepts. Itis perhaps due to the
entity-centric and concept-centric definition of relevance that the agreement was
not higher.

For the queries, much of the data is summarized in Table 3.Resolvedqueries are
queries that return at least one relevant resultin the top 10 results, whileunresolved
queries arequeries that return no relevant queries in the top 10 results. ‘Hypertext’
means that the result was taken only over the hypertext Web results and ‘Semantic
Web’ indicates the same for the Semantic Web results. The percentages for resolved
and unresolved for ‘hypertext’ and ‘Semantic Web’ were taken overall the hyper-
text and Semantic Web relevancy corpora in order to allow direct comparison. On
the contrary, the percentages for ‘Top Relevant’ and ‘Top Non-Relevant’ were com-
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puted as percentages over only resolved queries, and so excludes unresolved queries.
For ease of reference, a pie-chart for the hypertext relevancy is given in Figure 6.5
and for the Semantic Web relevancy in Figure 6.6.

Results: Hypertext Semantic Web
Resolved: 197 (98%)132 (66%)
Unresolved: 3 (2%) 68 (34%)

Top Relevant: 121 (61%)76 (58%)
Top Non-Relevant:76 (39%) 56 (42%)

Table 6.2 Results of Hypertext and Semantic Web Search Relevance Judgments: Raw numbers
followed by percentages. The top two row percentages are with respect to all queries, while the
latter two columns are with respect to the total of resolved queries.

Non−Top Relevant

Top Relevant

Unresolved

Fig. 6.5 Results of Querying the Hypertext Web.

For both hypertext and Semantic search, there were 71 (18%) unresolved queries
that did not have any results. For the hypertext Web search, only 3 (2%) queries
were unresolved, while 68 (34%) of the queries were unresolved for the Semantic
Web. This simply means that the hypertext search engines almost always returned at
least one relevant result in the top 10, but that for the Semantic Web almost a third
of all queries did not return any relevant result in the top 10. This only means there
is much information that does not yet have a relevant form on the Semantic Web,
unless it is hidden by the perhaps sub-optimal ranking by FALCON-S.

Another question is how many queries had a relevant result astheir top result? In
general, 197 queries (50%) had top-ranked relevant resultsover both Semantic Web
and hypertext search. While the hypertext Web search had 121(61%) top-ranked
relevant results, the Semantic Web only had 76 (58%) top-ranked results. What is
more compelling for relevance feedback is the number of relevant results that were
not the top-ranked result. Again for both kinds of searches, there were 132 (33.0%)
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Top Relevant

Non−Top Relevant

Unresolved

Fig. 6.6 Results of Querying the Semantic Web.

queries where a relevant result wasnot in the top position of the returned results.
For the hypertext Web, there were 76 (39%) queries with a top non-relevant result.
Yet for the Semantic Web there were 56 (42%) queries that had atop non-relevant
result. So queries on the Semantic Web are more likely to turnup no relevant results
in the top 10. When a relevant query is returned in the top 10 results it is quite likely
that a non-relevant result will be in the top position for both the hypertext Web and
the Semantic Web.

6.3 Information Retrieval for Web Search

In our evaluation we tested two general kinds of informationretrieval frameworks:
vector-space models and language models. In thevector-space model, document
models are considered to be vectors of terms (usually called‘words’ as they are
usually, although not exclusively, from natural language,as we transform URIs into
‘pseudo-words’) where the weighing function and query expansion has no prin-
cipled basis besides empirical results. Ranking is usuallydone via a comparison
using the cosine distance, a natural comparison metric between vectors. The key to
success with vector-space models tends to be the tuning of the parameters of their
weighing function. While fine-turning these parameters hasled to much practical
success in information retrieval, the parameters have little formally-proven basis
but are instead based on common-sense heuristics like document length and aver-
age document length.

Another approach, thelanguage modelapproach, takes a formally principled and
probabilistic approach to determining the ranking and weighting function. Instead
of each document being considered some parametrized word-frequency vector, the
documents are each considered to be samples from an underlying probabilistic lan-
guage modelMD, of which D itself is only a single observation. In this manner,
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the queryQ can itself also be considered a sample from a language model.In early
language modeling efforts the probability that the language model of a document
would generate the query is given by the ranking function of the document. A more
sophisticated approach to language models considers that the query was a sample
from an underlyingrelevance modelof unknown relevant documents, but that the
model could be estimated by computing the co-occurrence of the query terms with
every term in the vocabulary. In this way, the query itself was just considered a
limited sample that is automatically expanded before the search has even begun by
re-sampling the underlying relevance model.

In detail, we will now inspect the various weighting and ranking functions of the
two frameworks. A number of different options for the parameters of each weighting
function and the appropriate ranking function will be considered.

6.3.1 Vector Space Models

6.3.1.1 Representation

Each vector-space model has as a parameter the factorm, the maximumwindow size,
which is the number of words, ranked in descending order of frequency, that are used
in the document models. In other words, the size of the vectors in the vector-space
model ism. Words with a zero frequency are excluded from the document model.

6.3.1.2 Weighting Function: BM25

The current state of the art weighting function for vector-space models isBM25,
one of a family of weighting functions explored by Roberson Robertson et al (1994)
and a descendant of thetf.idf weighting scheme pioneered by Spärck Jones and
Robertson Robertson and Spärck Jones (1976). In particular, we will use a version
of BM25with the slight performance-enhancing modifications used in the InQuery
system Allan et al (2000). This weighting scheme has been carefully optimized and
routinely shows excellent performance in TREC competitions Craswell et al (2005).
The InQuery BM25 function assigns the following weight to a word q occurring in
a documentD:

Dq =
n(q,D)

n(q,D)+0.5+1.5 dl
avg(dl)

log(0.5+N/d f(q))
log(1.0+ logN)

(6.1)

The BM25 weighting function is summed for every termq ∈ Q. For everyq,
BM25 calculates the number of occurrences of a termq from the query in the doc-
umentD, n(q,D), and then weighs this by the length of documentdl of document
D in comparison to the average document lengthavg(dl). This is in essence the
equivalent of term frequency int f .id f . TheBM25 weighting function then takes



6.3 Information Retrieval for Web Search 165

into account the total number of documentsN and the document frequenciesd f(q)
of the query term. This second component is theid f component of classicalt f .id f .

6.3.1.3 Ranking Function: Cosine and InQuery

The vector-space models have an intuitive ranking functionin the form of cosine
measurements. In particular, the cosine ranking function is given by Equation 6.2,
for a documentD with queryQ, where bothD andQ containq words, iterating over
all words.

cos(D,Q) =
D ·Q
|D||Q|

=
∑qQqDq

√

∑qQ2
q

√

∑qD2
q

(6.2)

The only question is whether or not the vectors should be normalized to have
a Euclidean weight of 1, and whether or not the query terms themselves should be
weighted. We investigate both options. The classical cosine is given ascosine, which
normalizes the vector lengths and then proceeds to weight both the query terms and
the vector terms byBM25. The version without normalization is calledinqueryafter
the InQuerysystem Allan et al (2000). Theinqueryranking function is the same as
cosineexcept without normalization each word in the query can be considered to
have uniform weighing.

6.3.1.4 Relevance Feedback Algorithms: Okapi, LCA, and Ponte

There are quite a few options on how to expand queries in a vector-space model.
One popular and straightforward method, first proposed byRocchioRocchio (1971)
and at one point used by theOkapi system Robertson et al (1994), is to expand
the query by taking the average of thej total relevant document modelsR, with a
documentD ∈ R, and then simply replacing the queryQ with the topm words from
averaged relevant document models. This process is given byEquation 6.3 and is
referred to asokapi:

okapi(Q) =
1
j ∑

D∈R

D (6.3)

Another state of the art query expansion technique is known as Local Content
Analysis(lca) Xu and Croft (1996). Given a queryQ with query termsq1...qk and
a set of resultsD and a set of relevant documentsR, thenlca ranks everyw∈V by
Equation 6.4, wheren is the size of the relevant documentsR, id fw is the inverse
document frequency of wordw, andDq andDw are the frequencies of the wordsw
andq∈Q in relevant documentD ∈ R.
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lca(w;Q) = ∏
q∈Q

(

0.1+
1/ logn
1/id fw

log ∑
r∈R

DqDw

)id fq

(6.4)

After each wordw∈V has been ranked bylca, then the query expanded by LCA is
just the topm words given bylca. Local Content Analysis attempts to select words
from relevant documents to expand the query that have limited ambiguity, and so it
does extra processing compared to theokapimethod that simply averages the most
frequent words in the relevant documents. In comparison, Local Content Analysis
performs an operation similar in effect tot f .id f on the possibly relevant terms,
and so attempting by virtue of weighing to select only wordsw that both appear
frequently with terms in queryq but have a low overall frequency (id fw) in all the
results.

The final method we will use is the heuristic method developedby Ponte Ponte
(1998), which we callponte. Like lca, ponteranks each wordw∈V, but it does so
differently. Instead of taking a heuristic-approach likeOkapior LCA, it takes a prob-
abilistic approach. Given a set of relevant documentsR∈ D, Ponte’s approach esti-
mates the probability of each wordw∈V being in the relevant document,P(w|D),
divided by its overall probability of the word to occur in theresultsP(w). Then the
Ponteapproach gives eachw∈V a score as given in Equation 6.5 and then expands
the query by using themmost relevant words as ranked by their scores.

Ponte(w;R) = ∑
D∈R

log

(

P(w|D)

P(w)

)

(6.5)

6.3.2 Language Models

6.3.2.1 Representation

Language modeling frameworks in information retrieval represent each document
as a language model given by an underlying multinomial probability distribution
of word occurrences. Thus, for each wordw ∈ V there is a value that gives how
likely an observation of wordw is givenD, i.e. P(w|uD(v)). The document model
distributionuD(v) is then estimated using the parameterεD, which allows a linear
interpolation that takes into account the background probability of observingw in
the entire collectionC. This is given in Equation 6.6.

uD(w) = εD
n(w,D)

|D|
+(1− εD)

n(w,C)

∑v∈V n(v,C)
(6.6)

The parameterεD just takes into account the relative likelihood of the word as
observed in the given documentD compared to the word given the entire collection
of documentsC. |D| is the total number of words in documentD, whilen(w,D) is the
frequency of wordd in documentD. Further,n(w,C) is the frequency of occurrence
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of the wordw in the entire collectionC divided by the occurrence of all wordsv in
collectionC.

6.3.2.2 Language Modeling Baseline

When no relevance judgments are available, the language modeling approach ranks
documentsD by the probability that the queryQ could be observed during repeated
random sampling from the distributionuD(·). The typical sampling process assumes
that words are drawn independently, with replacement, leading to the following re-
trieval score being assigned to documentD:

P(Q|D) = ∏
q∈Q

uD(q) (6.7)

The ranking function in Equation 6.7 is calledquery-likelihoodranking and is
used as a baseline for our language-modeling experiments.

6.3.2.3 Language Models and Relevance Feedback

The classical language-modeling approach to IR does not provide a natural mecha-
nism to perform relevance feedback. However, a popular extension of the approach
involves estimating a relevance-based modeluR in addition to the document-based
modeluD, and comparing the resulting language models using information-theoretic
measures. Estimation ofuD has been described above, so this section will describe
two ways of estimating the relevance modeluR, and a way of measuring distance
betweenuQ anduD for the purposes of document ranking.

Let R= r1. . .rk be the set ofk relevant documents, identified during the feedback
process. One way of constructing a language model ofR is to average the document
models of each document in the set:

uR,avg(w) =
1
k

k

∑
i=1

ur i (w) =
1
k

k

∑
i=1

n(w, r i)

|r i |
(6.8)

Heren(w, r i) is the number of times the wordw occurs in thei′th relevant document,
and|r i | is the length of that document. Another way to estimate the same distribution
would be toconcatenateall relevant documents into one long string of text, and
count word frequencies in that string:

uR,con(w) =
∑k

i=1n(w, r i)

∑k
i=1 |r i |

(6.9)

Here the numerator∑k
i=1n(w, r i) represents the total number of times the wordw

occurs in the concatenated string, and the denominator is the length of the concate-
nated string. The difference between Equations 6.8 and 6.9 is that the former treats
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every document equally, regardless of its length, whereas the latter favors longer
documents (they are not individually penalized by dividingtheir contributing fre-
quenciesn(w, r i) by their length|r i |).

6.3.2.4 Ranking Function: Cross Entropy

We now want to re-compute the retrieval score of documentD based on the esti-
mated language model of the relevant classuR. What is needed is a principled way
of comparing a relevance modeluR against a document language modeluD. One
way of comparing probability that has shown the best performance in empirical
information retrieval research Lavrenko (2008) is cross entropy. Intuitively, cross
entropy is an information-theoretic measure that measuresthe average number of
bits needed to identify the probability of distributionp being generated ifp was
encoded using given probability distributionp rather thanq itself. For the discrete
case this is defined as:

H(p,q) =−∑
x

p(x)log(q(x)) (6.10)

If one considers that theuR = p and that document model distributionuD =
q, then the two models can be compared directly using cross-entropy, as shown
in Equation 6.11. This use of cross entropy also fulfills the Probability Ranking
Principle and so is directly comparable to vector-space ranking via cosine Lavrenko
(2008).

−H(uR||uD) = ∑
w∈V

uR(w) loguD(w) (6.11)

Note that either theaveragedrelevance modeluR,avg or theconcatenatedrele-
vance modeluR,con can be used in Equation 6.11. We refer to the former asrm and
to the latter ast f in the following experiments.

6.4 System Description

We present a novel system that uses the same underlying information retrieval sys-
tem on both hypertext and Semantic Web data so that relevancefeedback can be
done in a principled manner from both sources of data with language models. In
our system, the query is run first against the hypertext Web and relevant hypertext
results can then be used to expand a Semantic Web search querywith terms from
resulting hypertext web-pages. The expanded query is then ran against the Semantic
Web, resulting in a different ranking of results than the non-expanded query. We can
also then run the process backwards, using relevant Semantic Web data as relevance
feedback to improve hypertext Web search.
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This process is described using pseudo-code in Figure 6.7 where the set of all
queries to be ran on the system is given by theQuerySetparameter. The two dif-
ferent kinds of relevance feedback are given by theSearchTypeparameter, with
SearchType=RDFfor searching over RDF data using HTML documents as data for
relevance feedback-based query expansion, andHTML for searching over HTML
documents with RDF as the data for relevance-feedback queryexpansion.Represen-
tation is the internal data model used to represent the documents, either vector-space
models or language models. The feedback used to expand the query is given by
Feedbackwith the kind of relevance feedback algorithm used to expandthe query is
given byAlgorithm, which for relevance models are directly built into the represen-
tation. The ranking function (cross-entropy for language models, or some variation
of cosine for vector-space models) is given byRanking. The final results for each
query are presented to the user inPresentResults.

We can compare both Semantic Web data and hypertext documents by consider-
ing both to be ‘bags of words’ and using relevance modelling techniques to expand
the queries Lavrenko and Croft (2001). We consider both to be‘bags of words.’
Semantic Web data can be flattened, and URIs can be reduced to ‘words’ by the
following steps:

• Reduce to the rightmost hierarchical component.
• If the rightmost component contains a fragment identifier (#), consider all char-

acters right of the fragment identifier the rightmost hierarchical component.
• Tokenize the rightmost component on space, capitalization, and underscore.

So, http://www.example.org/hasArchitect would be reduced to
two tokens, ‘has’ and ‘architect.’ Using this system, we evaluated both the vector-
space and language models described in Section 6.3 on queries selected in Section
6.2.2 with relevance judgments on these queries selected inSection 6.2.3.

Algorithm 6.4.1: SEARCH(QuerySet,SearchType)

if SearchType= RDF
{

Data1∈ Representation(HT MLdata)
Data2∈ Representation(RDFdata)
elseSearchType= HTML
{

FeedbackData∈Representation(RDFdata)
ResultData∈ Representation(HT MLdata)

for each Query∈QuerySet














FeedbackResults← Feedback(Query,Data1)
ExpandedQuery← Algorithm(FeedbackResults)
FinalResults← Ranking(ExpandedQuery,Data2)
PresentResults(FinalResults)

Fig. 6.7 Feedback-Driven Semantic Search
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6.5 Feedback Evaluation

In this section we evaluate algorithms and parameters usingrelevance feedback
against the same system without relevance feedback. In Section 6.8 we evaluate
against deployed systems such as FALCON-S and Yahoo! Web Search. To preview
our final results in Section 6.8, relevance feedback from theSemantic Web shows
an impressive 25% gain in average precision over Yahoo! Web Search with a 16%
gain in precision over FALCON-S without relevance feedback.

6.5.1 Hypertext to Semantic Web Feedback

6.5.1.1 Results

A number of parameters for our system were evaluated to determine which parame-
ters provide the best results. For each of the parameter combinations, we compared
the use of relevance feedback to a baseline system which did not use relevance feed-
back, yet used the same parameters with the exception of any relevance feedback-
related parameters. The baseline system without feedback can also be considered
an unsupervised algorithm, while a relevance feedback system can be thought of
as a supervised algorithm. For example, the relevant hypertext web-pagesR can be
considered to be training data, while the Semantic Web documentsD we wish to
re-rank can be considered to be test data. The hypertext web-pages and Semantic
Web documents are disjoint sets (D∩R= /0). For evaluation we used mean average
precision (MAP) with the standard Wilcoxon sign-test, which we will often just call
‘average precision.’

For vector-space models, theokapi, lca, and ponterelevance weighting func-
tions were all run, each trying both theinqueryandcosineranking functions. The
primary parameter to be varied was thewindow size(m), the number of top fre-
quency words to be used in the vectors for both the query modeland the document
models. Baselines for bothcosineandinquerywere run with no relevance feedback.
The parameterm was varied over 5,10,20,50,100,300,1000,3000. Mean average
precision results are given in Figure 6.8.

Interestingly enough,okapi relevance feedback weighting with a window size
of 100 and aninquerycomparison was the best, with a mean average precision of
0.8914 (p < .05). It outperformed the baseline ofinquery, which has an average
precision of 0.5595 (p< .05). Overall,lca did not perform as well, often perform-
ing below the baseline, although its performance increasedas the window size in-
creased, reaching an average precision of 0.6262 withm= 3000 (p< .05). However,
given that a window size of 10,000 covered most documents, increasing the window
size will not likely result in better performance fromlca. Theponterelevance feed-
back performed very well, reaching a maximum MAP 0.8756 witha window size
of 300 usinginqueryweighing, and so was insignificantly different frominquery
(p > .05). Lastly, bothponteandokapiexperienced a significant decrease in per-
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Fig. 6.8 Average Precision Scores for Vector-space Model Parameters: Relevance Feedback From
Hypertext to Semantic Web

formance asmwas increased, so it appears that the window sizes of 300 and 100 are
indeed optimal. Also, as regards comparing baselines,inqueryoutperformedcosine
(p< .05).

For language models, both averaged relevance modelsrm and concatenated rele-
vance modelst f were investigated, with the primary parameter beingm, the number
of non-zero probability words used in the relevance model. The parameterm was
varied between 100, 300, 1000, 3000,and 10000. Remember that the query modelis
the relevance model for the language model-based frameworks. As is best practice
in relevance modeling, the relevance models were not smoothed, but a number of
different smoothing parameters forε were investigated for the cross entropy rank-
ing function, ranging fromε between .01, .1, .2, .5, .8, .9, and 0.99. The results are
given in Figure 6.9.

The highest performing language model wast f with a cross-entropyε of .2 and
a m of 10,000, which produced an average precision of 0.8611, which was signifi-
cantly higher than the language model baseline of 0.5043 (p< .05) using again an
m of 10,000 for document models and with a cross entropyε of .99). Rather in-
terestingly,t f always outperformedrm, andrm’s best performance had a MAP of
0.7223 using anε of .1 and am of 10,000.

6.5.1.2 Discussion

Of all parameter combinations, theokapirelevance feedback works best in combi-
nation with a moderate sized word-window (m= 100) and with theinqueryweight-
ing scheme. It should be noted its performance is identical from a statistical stand-
point with ponte, but as both relevance feedback components are similar and both
useinquerycomparison andBM25 weighing, and not surprisingly the algorithms
are very similar. Why wouldinqueryandBM25 be the best performing? The area
of optimizing information retrieval is infamously a black art. In fact, BM25 and



172 6 The Semantics of Search

Fig. 6.9 Average Precision Scores for Language Model Parameters: Relevance Feedback From
Hypertext to Semantic Web

inquery combined present the height of heuristic-driven information retrieval al-
gorithms as explored in Robertson and Spärck Jones Robertson and Spärck Jones
(1976). While its performance increase overlca is well-known and not surprising, it
is interesting thatBM25 andinqueryperform significantly better than the language
model approach.

The answer is rather subtle. Another observation is in order; note that for vec-
tor models,inqueryalways outperformedcosine, and that for language modelst f
always outperformedrm. Despite the differing frameworks of vector-space mod-
els and language models, bothcosineand rm share the common characteristic of
normalization. In essence, bothcosineandrm normalize by documents:cosinenor-
malizes term frequencies per vector before comparing vectors, whilerm constructs
a relevance model on a per-relevant document basis before creating the average
relevance model. In contrast,inqueryandt f do not normalize:inquerycompares
weighted term frequencies, andt f constructs a relevance model by combining all
the relevance documents and then creating the relevance model from theraw pool
of all relevant document models.

Thus it appears the answer is that any kind of normalization by length of the
document hurts performance. The reason for this is likely because the text auto-
matically extracted from hypertext documents is ‘messy,’ being of low quality and
bursty, with highly varying document lengths. As observed informally earlier Ding
and Finin (2006) and more formally later Halpin (2009a), theamount of triples in
Semantic Web documents follow a power-law, so there are wildly varying docu-
ment lengths of both the relevance model and the document models. Due to these
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factors, it is unwise to normalize the models, as that will almost certainly dampen
the effect of valuable features like crucial keywords (suchas ‘Paris’ and ‘tourist’ in
disambiguating various ‘eiffel’-related queries).

Then the reasonBM25-based vector models in particular perform so well is that,
due to its heuristics, it is able to effectively keep track ofa term’s both document
frequency and inverse document frequency accurately. Also, unlike most other al-
gorithms,BM25 provides a slight amount of rather unprincipled non-linearity in the
importance of the various variables Robertson et al (2004).This is important, as it
provides a way of extenuating the effect of one particular parameter (in our case,
likely term frequency and inverse term frequency) and then massively lowering the
power of another parameter (in our case, likely the documentlength). WhileBM25
can be outperformed normally by language models Lavrenko (2008) in TREC com-
petitions featuring high-quality samples of English, in the non-normal conditions
of comparing natural language and pseudo-natural languageterms extracted from
structured data in RDF, it is not surprising thatokapi, whose non-linearity allows
certain highly relevant terms to have their frequency ‘non-linearly’ heightened, pro-
vides better results than more principled methods that derive their parameters by
regarding the messy RDF and HTML-based corpus as a sample from a general un-
derlying language model.

6.5.2 Semantic Web to Hypertext Feedback

In this section, we assume that the user or agent program has accessed or otherwise
examined the Semantic Web documents from the URIs resultingfrom a Semantic
Web search, and these Semantic Web documents then be used as relevance feed-
back to expand a query for the hypertext Web so that the feedback cycle has been
reversed.

6.5.2.1 Results

The results for using Semantic Web documents as relevance feedback for hyper-
text Web search are surprisingly promising. The same parameters as explored in
Section 6.5.1.1 were again explored. The average precisionresults for vector-space
models are given in Figure 6.10. The general trends from Section 6.5.1.1 were sim-
ilar in this new data-set. In particular,okapi with a window size of 100 and the
inquery comparison function again performed best with an average precision of
0.6423 (p < .05). Also ponteperformed almost the same, again an insignificant
difference fromokapi, producing with the same window size of 100 an average
precision of 0.6131 (p> .05). Utilizing again a large window of 3,000,lca had an
average precision of 0.5359 (p< .05). Similarly,inqueryconsistently outperformed
cosinein comparison, withinqueryhaving a baseline average precision of 0.4643
(p< .05) in comparison with the average precision ofcosinebeing 0.3470 (p< .05).
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Fig. 6.10 Average Precision Scores for Vector-space Model Parameters: Relevance Feedback
From Semantic Web to Hypertext

The results for language modeling were similar to the results in Section 6.5.1.1
and are given in Figure 6.11, although a few differences are worth comment. The
best performing language model wast f with a m of 10,000 and a cross entropy
smoothing factorε to .5, which produced an average precision of .6549 (p< .05).
In contrast, the best-performingrm, with a m of 3,000 andε=.5, only had an aver-
age precision of 0.4858 (p< .05). Thet f relevance models consistently performed
better thanrm relevance models (p< .05). The baseline for language modeling was
also fairly poor with an average performance of 0.4284 (p < .05). This was the
‘best’ baseline using again anm of 10,000 for document models and cross entropy
smoothingε of .99. The general trends from the previous experiment thenheld, ex-
cept the smoothing factor was more moderate and the difference betweent f and
rm was even more pronounced. However, the primary difference worth noting was
that best performingt f language model outperformed, if barely, theokapi (BM25
andinquery) vector model by a relatively small but still significant margin of .0126.
Statistically, the difference was significant (p< .05).

6.5.2.2 Discussion

Why is t f relevance modeling better thanBM25 andinqueryvector-space models
in using relevance feedback from the Semantic Web to hypertext? The high perfor-
mance ofBM25 andinqueryhas already been explained, and that explanation about
why document-based normalization leads to worse performance still holds. Yet the
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Fig. 6.11 Average Precision Scores for Language Model Parameters: Relevance Feedback From
Hypertext to Semantic Web

rise in performance oft f language models seems odd. However, it makes sense
if one considers the nature of the data involved. Recalling previous work Halpin
(2009a), there are two distinct conditions that separated this data-set from the more
typical natural language samples as encountered in TREC Hawking et al (2000). In
the case of using relevant hypertext results as feedback forthe Semantic Web, the
relevant document model was constructed from a very limitedamount of messy hy-
pertext data, which had many text fragments, with a large percentage coming from
irrelevant textual data to deal with issues like web-page navigation. However, in us-
ing the Semantic Web for relevance feedback, these issues are reversed: the relevant
document model is constructed out of relatively pristine Semantic Web documents
and compared against noisy hypertext documents.

Rather shockingly, as the Semantic Web is mostly manually high-quality curated
data from sources like DBpedia, the actual natural languagefragments found on
the Semantic Web, such as Wikipedia abstracts, are much better samples of natural
language than the natural language samples found in hypertext. Furthermore, the
distribution of ‘natural’ language terms extracted from RDF terms (such as ‘sub
class of’ fromrdfs:subClassOf), while often irregular, will either be repeated
very heavily or fall into the sparse long tail. These two conditions can then be dealt
with by the generativet f relevance models, since the long tail of automatically gen-
erated words from RDF will blend into the long tail of naturallanguage terms, and
the probabilistic model can properly ‘dampen’ without resorting to heuristic-driven
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non-linearities. Therefore, it is on some level not surprising that even hypertext Web
search results can be improved by Semantic Web search results, because used in
combination with the right relevance feedback parameters,in essence the hypertext
search engine is being ‘seeded’ with high-quality structured and accurate descrip-
tions of the information need of the query to be used for queryexpansion.

6.6 Pseudo-feedback

In this section we explore a very easy-to-implement and feasible way to take advan-
tage of relevance feedback without manual selection of relevant results by human
users. One of the major problems of relevance feedback-based approaches is their
dependence on manual selection of relevant results by humanusers. For example, in
our experiments we used judges manually determining if web-pages were relevant
using an experimental set-up that forced them to judge everyresult as relevant or
not, which is not feasible for actual search engine use.

A well-known technique within relevance feedback ispseudo-feedback, namely
simply assuming that the topx documents returned are relevant. Then, one can use
this as a corpus of relevance documents to expand the queriesin the same manner
using language models as described in Section 6.3. However,in general pseudo-
relevance feedback is a more feasible method, as human intervention is not required.

Using the same optimal parameters as discovered in Section 6.5.1.1,t f with a
m= 10,000 andε = .2 was again deployed, but this time using pseudo-feedback.
Can pseudo-feedback from hypertext Web search help improvethe rankings of
Semantic Web data? The answer is clearly positive. Employing all ten results as
pseudo-relevance feedback and the same previously optimized parameters, the best
pseudo-relevance feedback result had an average precisionof 0.6240. This was con-
siderably better than the baseline of just using relevance pseudo-feedback from the
Semantic Web to itself, which only had an average precision of 0.5251 (p < .05),
and also clearly above the ‘best’ baseline of 0.5043 (p< .05). However, as shown by
Figure 6.12, the results are still not nearly as good as usinghypertext pages judged
relevant by humans, which had an average precision of 0.8611(p < .05). This is
likely because, not surprisingly, the hypertext Web results contain many irrelevant
text fragments that serve as noise, preventing the relevantfeedback from boosting
the results.

Can pseudo-feedback from the Semantic Web improve hypertext search? The
answer is yes, but barely. The best result for average precision is 0.4321 (p< .05),
which is better than the baseline of just using pseudo-feedback from hypertext Web
results to to themselves, which has an average precision of 0.3945 (p< .05) and the
baseline without feedback at all of 0.4284 (p< .05). However, the pseudo-feedback
results are both still significantly worse performance by a large margin than using
Semantic Web documents judged relevant by humans, which hadan average preci-
sion of 0.6549 (p < .05). These results can be explained because, given the usual
ambiguous and short one or two word queries, the Semantic Webtends to return
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Fig. 6.12 Comparing Relevance Feedback (red) to Pseudo-Relevance Feedback (blue) on the Se-
mantic Web (RDF) and Hypertext Web (HTML)

structured data spread out of over multiple subjects even moreso than the hypertext
Web. Therefore, adding pseudo-relevance feedback increases the amount of noise in
the language model as opposed to using actual relevance feedback, hurting perfor-
mance while still keeping it above baseline.

6.7 Inference

In this section the effect of inference on relevance feedback is evaluated by consider-
ing inference to be document expansion. One of the characteristics of the Semantic
Web is that the structure should allow one ‘in theory’ to discover more relevant
data. The Semantic Web formalizes this in terms of type and sub-class hierarchies
in RDF using RDF Schema Brickley and Guha (2004). While inference routines are
quite complicated as regards the various Semantic Web specifications, in practice
the vast majority of inference that can be used is on the Semantic Web is of two
types (as shown by our survey of Linked Data Halpin (2009a)),rdf:subClassOfthat
indicates a simple sub-class inheritance hierarchy andrdf:typethat indicates a sim-
ple type. For our experiment, we followed all explicitrdf:subClassOfstatements
up one level in the sub-class hierarchy and explicitrdf:type links. The resulting re-
trieved Semantic Web data was all concatenated together, and then concatenated yet
again with their source document from the Semantic Web. In this way, Semantic
Web inference is considered asdocument expansion.

Inference was first tried using normal relevant feedback, again with the same
best-performing parameters (t f with m= 10,000 andε = .2). In the first case, the in-
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ference is used to expand Semantic Web documents in semanticsearch, and then the
hypertext results are used as relevance feedback to improvethe ranking. However,
as shown in Figure 6.13, deploying inference only causes a drop in performance.
In particular, using hypertext Web results as relevance feedback to the Semantic
Web, the system drops from a performance of 0.8611 to a performance of 0.4991
(p< .05). With pseudo-feedback over the top 10 documents, the performance drops
even more, from 0.6240 to 0.4557 (p< .05). The use of inference actually makes the
results worse than the baseline performance of language models of 0.5043 (p< .05)
without either relevance feedback or inference.

Fig. 6.13 Comparing the Relevance Feedback on the Semantic Web (RDF) and Hypertext Web
(HTML) both without (blue) and with (green) Semantic Web inference

The results of using inference to boost hypertext Web results using Semantic Web
equally fail to materialize any performance gains. In this case, inference is used to
expand Semantic Web documents, which are then used via relevance feedback to
improve the ranking of hypertext search. Using the same parameters as above, the
feedback from the expanded Semantic Web data to the hypertext Web results in an
average precision of 0.4273, which is insignificantly different from the baseline of
not using relevance feedback at all of 0.4284 (p< .05) and considerably worse than
not using inference at all, which has a MAP of 0.6549 (p < .05). When pseudo-
feedback is used, the results fall to the rather low score of 0.3861, which is clearly
below the baseline of 0.4284 (p< .05). So, at least one obvious way of use of simple
type and sub-class based Semantic Web inference seems to only lead to a decline in
performance.

Why does inference hurt rather than help performance? One would naively as-
sume that adding more knowledge in the form of Semantic Web would help the re-
sults. However, this assumes the knowledge gained through inference would some-
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how lead to the discovery of new relevant terms. However, in the case of much infer-
ence with the Semantic Web, this is not the case. For example,simply consider the
Semantic Web data about the query for the singer ‘Britney Spears.’ While the first
Semantic Web document about Britney Spears gives a number ofuseful facts about
her, such as the fact that she is a singer, determining that Britney Spears is a person
via inference is of vastly less utility. For example, the Cycontology Lenat (1990)
declares that Britney Spears is a person, namely that “Something is an instance of
Person if it is an individual Intelligent Agent with perceptual sensibility, capable
of complex social relationships, and possessing a certain moral sophistication and
an intrinsic moral value.” In this regard, inference only serves as noise, adding ir-
relevant terms to the language models. For example, adding ‘sophistication’ to a
query about ‘Britney Spears’ will likely not help discover relevant documents. In-
ference would be useful if it produced surprising information or reduced ambiguity.
However, it appears that at least for simple RDF Schema vocabularies, information
higher in the class hierarchy is usually knowledge that the user of the search en-
gine already possesses (like Britney Spears is a person) andthat the reduction of
ambiguity is already done by the user in their selection of keywords. However, it is
possible that more sophisticated inference techniques areneeded, and that inference
may help in specialized domains rather than open-ended Web search. Further exper-
iments in parametrization of inference would be useful given that our exploration in
this direction showed no performance increase, only performance decrease.

6.8 Deployed Systems

In this section we evaluate our system against ‘real-world’deployed systems. One
area we have not explored is how systems based on relevance feedback perform rel-
ative to systems that are actually deployed, as our previouswork has always been
evaluated against systems and parameters we created specifically for experimen-
tal evaluation. Our performance in Section 6.5.1.1 and Section 6.5.2.1 was only
compared to baselines that were versions of our weighting function without a rel-
evance feedback component. While that particular baselineis principled, the obvi-
ous needed comparison is against actual deployed commercial or academic systems
where the precise parameters deployed may not be publicly available and so not
easily simulated experimentally.

6.8.1 Results

The obvious baseline to choose to test against is the Semantic Web search engine,
FALCON-S, from which we derived our original Semantic Web data in the experi-
ment. The decision to use FALCON-S as opposed to any other Semantic Web search
engine was based on the fact that FALCON-S returned more relevant results in the
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top 10 than other existing semantic search engines at the time using a random sam-
ple of 20 queries from the set of queries described in Section6.2.2. Combined with
the explosive growth of Linked Data over the last year and thechanges in rank-
ing algorithms of various semantic search engines, it is difficult to judge whether
a given Semantic Web search engine is representative of semantic search. How-
ever, we would find it reasonable that if our proposed hypothesis works well on
FALCON-S, it can be generalized to other Semantic Web searchengines.

We used the original ranking of the top 10 results given by FALCON-S to cal-
culate its average precision, 0.6985. We then compared boththe best baseline,rm,
as well as the best system with feedback in Figure 6.14. As shown, our system
with feedback had significantly (p < .05) better average precision (0.8611) than
FALCON-S (0.6985), as well better (p< .05) than the ‘best’ language model base-
line without feedback (0.5043) as reported earlier as givenin Section 6.5.1.1.

Fig. 6.14 Summary of Best Average Precision Scores: Relevance Feedback From Hypertext to
Semantic Web

Average precision does not have an intuitive interpretation, besides the simple
fact that a system with better average precision will in general deliver more accurate
results closer to the top. In particular, one scenario we areinterested in is having
only the most relevant RDF data accessible from a single URI returned as the top
result, so that this result is easily consumed by some program. For example, given
the search ‘amnesia nightclub,’ a program should be able to consume RDF returned
from the Semantic Web to produce with high reliability a single map and opening
times for a particular nightclub in Ibiza in the limited screen space of the browser,
instead of trying to display structured data for every nightclub called ‘amnesia’ in
the entire world. In Table 3, we show that for a significant minority of URIs (42%),
FALCON-S returned a non-relevant Semantic Web URI as the topresult. Our feed-
back system achieves an average precision gain of 16% over FALCON-S. While
a 16% gain in average precision may not seem huge, in reality the effect is quite
dramatic, in particular as regards boosting relevant URIs to the top rank. So in Ta-
ble 3, we present results of how our best parameterst f with m= 10,000 lead to
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the most relevant Semantic data in the top result. In particular, notice that now 89%
of resolved queries now have relevant data at the top position, as opposed to 58%
without feedback. This would result in a noticeable gain in performance for users,
which we would argue allows Semantic Web data to be retrievedwith high-enough
accuracy for actual deployment.

While performance is boosted for both entities and concepts, the main improve-
ment comes from concept queries. Indeed, as concept queriesare often one word
and ambiguous, not to mention the case where the name of a concept has been taken
over by some company, music band, or product, it should not besurprising that re-
sults for concept queries are considerably boosted by relevance feedback. Results
for entity queries are also boosted. A quick inspection of the results reveals that the
entity queries were the most troublesome, and that these entity queries gave both
FALCON-S and our feedback system problems. These problematic queries were
mainly very difficult queries where a number of Semantic Web documents all share
similar natural language content. An example would be a query for ‘sonny and cher,’
which results in a number of distinct Semantic Web URIs: one for Cher, another one
for Sonny and Cherthe band, and another for ‘The Sonny Side of Cher,’ an album
by Cher. For concepts, one difficult concept was the query ‘rock.’ Although the sys-
tem was able to disambiguate the musical sense from the geological sense, there
was a large cluster of Semantic Web URIs for rock music, ranging fromHard Rock
to Rock Musicto Alternative Rock. These types of queries seem to present the most
difficulties for Semantic Web search engines.

Results: Feedback FALCON-S

Top Relevant: 118 (89%)76 (58%)
Non-Relevant Top: 14 (11%) 56 (42%)

Non-Relevant Top Entity:9 (64%) 23 (41%)
Non-Relevant Concept: 5 (36%) 33 (59%)

Table 6.3 Table Comparing Hypertext-based Relevance Feedback and FALCON-S

Although less impressive than the results for using hypertext web-pages for rel-
evance feedback for the Semantic Web, the feedback cycle from the Semantic Web
to hypertext does improve significantly the results of even commercial hypertext
web-engines, at least for our set of queries about concepts and entities. Given the
unlimited API-based access offered by Yahoo! Web Search in comparison to Google
and Microsoft web search, we used Yahoo! Web Search for hypertext searching in
this experiment, and we expect that the results in a coarse-grained manner should
generalize to other Web search engines. The hypertext results for our experiment
were given by Yahoo! Web Search, and we calculated a mean average precision for
Yahoo! Web Search to be 0.4039. This is slightly less than ourbaseline language
model ranking, which had an average precision of of 0.4284. As shown in Figure
6.15, given that our feedback based had an average precisionof 0.6549, our rel-
evance feedback system performs significantly (p < .05) better than Yahoo! Web
Search and (p< .05) the baselinerm system.
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Fig. 6.15 Summary of Best Average Precision Scores: Relevance Feedback From Semantic Web
to Hypertext

6.8.2 Discussion

These results show our relevance feedback method works significantly better than
various baselines, both internal baselines and state of theart commercial hypertext
search engines and Semantic Web search engines. The parametrization of the pre-
cise information retrieval components used in our system isnot entirely arbitrary, as
argued above in Section 6.5.1.2 and Section 6.5.2.2. The gain of our relevance feed-
back system, a respectable 16% in average precision over theengine FALCON-S,
intuitively makes the system’s ability to place a relevant structured Semantic Web
data in the top rank acceptable for most users.

More surprisingly, by incorporating human relevance judgments of Semantic
Web documents, we make substantial gains over state of the art systems for hyper-
text Web search, a 25% gain in average precision over Yahoo! search. One important
factor is the constant assault of hypertext search engines by spammers and others.
Given the prevalence of a search engine optimization and spamming industry, it is
not surprising that the average precision of even a commercial hypertext engine is
not the best, and that it performs less well than Semantic Websearch engines. Se-
mantic Web search engines have a much smaller and cleaner world of data to deal
with than the unruly hypertext Web, and hypertext Web searchmust be very fast
and efficient. Even without feedback from the Semantic Web, an average precision
of 40% is impressive, although far from the 65% precision using relevance feedback
from the Semantic Web.

Interestingly enough, it seemed that pseudo-feedback onlyhelps marginally in
improving hypertext Web search using Semantic Web data. Therefore, it is some-
what unrealistic to expect the Semantic Web to instantly improve hypertext Web
search. Even with the help of the Semantic Web, hypertext search is unlikely to
achieve near perfect results anytime soon. This should not be a surprise, as pseudo-
feedback in general performs worse than relevance feedback. However, the loss of
performance given by pseudo-feedback in comparison with traditional relevance
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feedback show that for the Semantic Web using pseudo-feedback for concepts and
entities is difficult, as many results that are about highly different things and subject
matters may be returned. However, both pseudo-feedback andtraditional relevance
feedback help a fair amount in improving Semantic Web searchusing hypertext
results, and as relevance judgments can be approximated by click-through logs of
hypertext Web search engines, it is realistic and feasible to try to improve semantic
search using relevance feedback from hypertext search. In fact, it is simple to im-
plement pseudo-feedback from hypertext Web search using hypertext search engine
APIs, as no manual relevance judgments must be made at all andthe API simply
can produce the top 10 results of any query quickly.

6.9 Future Work on Relevance Feedback

There are a number of areas where our project needs to be more thoroughly inte-
grated with other approaches and improved. The expected criticism of this work is
likely the choice of FALCON-S and Yahoo! Web search as a baseline, and that we
should try this methodology over other Semantic Web search engines and hyper-
text Web search engines. Lastly, currently it is unknown howto combine traditional
word-based techniques from information retrieval with structural techniques from
the Semantic Web, and while our experiment with using inference as document ex-
pansion did not succeed, a more subtle approach may prove fruitful. At this point,
we are currently pursuing this in context of creating a standardized evaluation frame-
work for all Semantic search engines. The evaluation framework presented here has
led to the first systematic evaluation of Semantic Web searchat the Semantic Search
2010 workshop over Structured Web Data (2011). Yet in our opinion the most excit-
ing work is to be done as regards scaling our approach to work with live large-scale
hypertext Web search engines.

While language models, particularly generative models like relevance models
Lavrenko (2008), should have theoretically higher performance than vector-space
models, the reason why large-scale search engines do not in general implement
language models for information retrieval is that the computational complexity of
calculating distributions over billions of documents doesnot scale. However, there
is reason to believe that relevance models could be scaled towork with Web search
if they built their language sample from suitably large ‘clean’ sample of natural
language and also compressed the models by various means.

One of the looming deficits of our system is that for a substantial amount of
our queries there areno relevant Semantic Web URIs with accessible RDF data.
This amount is estimated to be 34% of all queries. However, these queries with
no Semantic Web URIs in generaldo have relevant information on the hypertext
Web, if not the Semantic Web. The automatic generation of Semantic Web triples
from natural language text could be used in combination withour system to create
automatically generated Semantic Web data, in response to user queries.
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Another issue is how to determine judgments for relevance ina manner that
scales to actual search engine use. Manual feedback, while providing the more ac-
curate experimental set-up for testing relevance feedback, does not work in real
search scenarios because users do not exhaustively select results based on relevance,
but select on a small subset. However, pseudo-feedback doesnot take advantage of
users selecting web-pages, but just assumes the topx are relevant. A better approach
would be to consider click-through logs of search engines incomplete approxima-
tions of manual relevance feedback Cui et al (2002). As we only had a small sample
of the Microsoft Live Query log, this was unfeasible for our experiments, but would
be compelling future work. There is a massive amount of humanuser click-through
data available to commercial hypertext search engines although Semantic Web data
has little relevance feedback data itself. While it is easy enough to use query logs
to determine relevant hypertext Web data, no such option exists for the Semantic
Web. However, there are possible methodologies for determining the ‘relevance’ of
Semantic Web data, even if machines rather than humans are consuming the data.
For example, Semantic Web data that is consumed by applications like maps and
calendar programs can be ascertained to be actually relevant.

Finally, while generic Semantic Web inference may not help in answering sim-
ple keyword-based queries for entities and concepts, further research needs to be
done to determine if inference can help answer complex queries. While in most
keyword-based searches the name of the information need is mentioned directly in
the query, which in our experiment results from choosing thequeries via a named
entity recognizer, in complex queries only the type or attributes of the information
need are mentioned directly. The name of particular answersis usually unknown.
Therefore, some kind of inference may be crucial in determining what entities or
concepts match the attributes or type mentioned in the queryterms. For example,
the SemSearch 2011 competition’s ‘complex query’ task was very difficult for sys-
tems that did well on keyword search, and the winning system used a customized
crawling of the Wikipedia type hierarchy over Structured Web Data (2011).

6.10 The Representational Nexus

This study features a number of results that impact the larger field of semantic
search. First, it shows a rigorous information retrieval evaluation, the ‘Cranfield
paradigm’, can be applied to semantic search despite the differences between the
Semantic Web and hypertext. These differences are well-recorded in our sample of
the Semantic Web as taken via FALCON-S using a query log, and reveals a number
of large differences between the Semantic Web data and hypertext data, in partic-
ular that while relevant data for ordinary open-domain queries does appear on the
Semantic Web, Semantic Web data is in general more sparse than hypertext data
when given a keyword query from an ordinary user’s hypertextWeb search. How-
ever, when the Semantic Web does contain data relevant to a given query, that data
is likely to be accurate information, a fact we exploit in ourtechniques.
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Unlike previous work in semantic search that focuses usually on some form of
PageRank or other link-based ranking, we concentrate on using techniques from
information retrieval, including language models and vector-space models, over Se-
mantic Web data. Relevance feedback from hypertext Web datacan improve Seman-
tic Web search, and evenvice versa, as we have rigorously and empirically shown.
While relevance feedback is known to in general improve results, our use of wildly
disparate sources of data such as the structured Semantic Web and the unstructured
hypertext Web to serve as relevance feedback for each other is novel. Furthermore as
regards relevance feedback, we show using vector-space models over hypertext data
is optimal while language models are optimal when operatingover Semantic Web.
These techniques (as evidenced by the failure of relevance feedback to beat base-
line results with incorrect parametrizations) must be parametrized correctly and use
the correct weighting and ranking algorithm to be successful. It is shown by our
results to be simply false to state that relevance feedback always improves perfor-
mance over hypertext and Semantic Web search, but only undercertain (although
easily obtainable) parameters. We do this by treating both data sources as ‘bags of
words’ and links in order to make them compatible and find fromthe Semantic Web
high quality terms for use in language models. Also, untraditionally, we turn the
URIs themselves into words. Our results of demonstrate thatour approach of using
feedback from hypertext Web search helps users discover relevant Semantic Web
data. The gain is significant over both baseline systems without feedback and the
state of the art page-rank based mechanism used by FALCON-S and Yahoo! Web
search. Furthermore, the finding of relevant structured Semantic Web data can even
be improved by pseudo-feedback from hypertext search.

More exciting to the majority of users of the Web is the fact that apparently
relevance feedback from the Semantic Web can improve hypertext Web. However,
pseudo-feedback also improves the quality of results of hypertext Web search en-
gines, albeit to a lesser degree. Interestingly enough, using inference only hurt per-
formance, due to the rather obscure terms from higher-levelontologies serving func-
tionally as ‘noise’ in the feedback. Lastly, pseudo-feedback from the hypertext Web
can help Semantic Web search today and can be easily implemented. Indeed, the key
to high performance for search engines is the use of high quality data of any kind
for query expansion, whether it is stored in a structured Semantic Web format or
the hypertext Web. However, the Semantic Web, by its nature as a source of curated
and formalized data, seems to be a better source of high quality data than the hy-
pertext Web itself, albeit with less coverage. While it is trivial to observe that as the
Semantic Web grows, semantic search will have more importance, it is even more
interesting to demonstrate that as the Semantic Web grows, the Semantic Web can
actually improve hypertext search.

The operative philosophical question is: Why does does relevance feedback work
between such diverse encodings? Although there appears to be a huge gulf between
the Semantic Web and the hypertext Web, it is precisely because the samecontent
is encoded in the unstructured hypertext and the structuredSemantic Web represen-
tations that these two disparate sets of data can be used as relevance feedback for
each other. This leads to an exciting conclusion, and one that complexifies the ear-
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lier picture of semantics considerably. If the Semantic Webis fundamentally about
extending the Web to those things outside the Web, then we have to acknowledge
thatmost of the current hypertext Web is already representational.

We callthe multitude of representations that share the same content and so can be
used to compose its sensethe representational nexusof the referent, a potentially
large collection of representations in a variety of formal,natural, and even iconic
languages that all share the same referent. For example, if one uses a search engine
to look for the ‘Eiffel Tower,’ one gets a large number of web-pages that are to some
extent allaboutthe Eiffel Tower by virtue of having some meaningful relationship
with it, ranging from pictures of the Eiffel Tower, maps to the Eiffel Tower, and even
possibly even videos of the Eiffel Tower. These would all count as representations
of the Eiffel Tower, and so would be part of the representational nexus of the Eiffel
Tower. Therefore, the aggregate ‘bag-of-words’ of all these representations would
be an even more adequate notion of sense than just the tags explicitly given to a
resource. Yet imagine how large of a landscape this opens forsense, for it allows us
to apply search terms, documents, queries, Semantic Web representations - almost
anything! - as part of the creation of sense in aggregate. This large aggregation has
been phrased as the “database of intentions” by John Batelle, “the aggregate results
of every search ever entered, every result list ever tendered, and every path taken as
a result.” (2003). This should remind us that behind all of these representations are
the concrete needs of ordinary users of the Web. What our taskis to now attempt to
phrase a philosophical theory of meaning adequate to this enlarged position of sense
on the Web: the position of social semantics.
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This glossary presents the technical terminology used in this book, both from Web
architecture and work in philosophy. Some of this terminology is presented as a
formal Semantic Web ontology in Chapter 3, which my clarify the relationships of
various sundry terms to each other.

absolute URI A URI in which there must a single scheme and the scheme must
identify a name of a resource.

accessThe use of a identifier to create immediately a causal connection to the thing
identified.

agent A thing capable of having an interpretation.

analog Every thing that is not digital.

arc role The URI of a link that provides information about what kind oflink the
link itself belongs to.

authority In a URI, a name that is usually a domain name, naming authority, or a
raw IP address, and so is often the name of the server

AWWW TheArchitecture of theWorld Wide Web, a W3C Recommendation pro-
duced by the W3C to describe the defining characteristics of the Web, available at
http://www.w3.org/TR/webarch/.

cache When a user-agent has a local copy of a Web representation that it accesses
in response to a request rather than getting a Web representation from the server
itself.

causal If one thing is connected with another thing and a change in the former thing
is follows a change in the latter process in an interpretation.

causal theory of referenceAny name refers via some causal chain directly to a
referent
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channel The physical substrate that determines whether or not the information is
preserved over time or space.

client-server architecture Protocols that take the form of a request for information
and a response with information.

client The agent that is requesting information. In the context of the Web, called a
user-agent, which may be a Web browser or Web spider.

complete The inference procedure of a language if every satisified sentence can be
shown to be entailed.

compositionality The content of a sentence is related systematically to termsin the
which it is composed.

concept The regularities of the thing or set of things at a level of abstraction that
are different than a realization. Often formalized asclassesin formal ontologies and
languages such as OWL and RDF Schema.

connected Those things that are not separated by time and space. Also called prox-
imal andlocal.

content Whatever is held in common between the source and the receiver as a
result of the conveyance of a particular information-bearing message.

consistent A sentence or sentence that can not be satisified.

content negotiation A mechanism defined in a protocol that makes it possible to
respond to a request with different web representations of the same resource de-
pending on the preference of the user-agent

content types The types of formal languages that can be explicitly given ina re-
sponse or request in HTTP.

convention The use of a thing based purely on previous history, without regard to
imitation or natural selection.

depictions A sentence or sentences in a natural or formal language whoseprimary
purpose is to be a visual representation.

descriptions A sentence or sentences in an iconic language whose primary purpose
is to be a linguistic or formal representation.

disconnected Things that are separated by time and space. Also calleddistal.

descriptivist theory of reference The referent of a name is given by whatever
satisfies the descriptions associated with the name.

dialect A language created with or as a subset of another language.

digital When the boundaries in a particular encoding converge with aregularity in
a physical realization. So there must be some finitely differentiable physical regu-
larities that serves as a boundary.
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direct reference position : A theory of semantics on the Web where the meaning
of a URI is whatever was intended by the owner.

domain names A specification for a tree-structured namespace, where eachcom-
ponent of the domain name (part of the name separated by a period) could direct
the user-agent to more specific “domain name server” until the translation from an
identifier to the name to IP address was complete.

encoding A set of regularities that can then be used to realize content-bearing mes-
sages.

ending resource The resource a link is directed to. @@OBJECT

endpoint Any thing that either requests or responds to a protocol.

entailment Where an interpretation of one sentence to some content always satis-
fies the interpretation of another sentence.

entity A thing where the regularities of the thing can only be realized by the thing
itself, not in another realization. For the use of the term inHTTP, seeHTTP entity.

entity body SeeHTTP entity body.

expression A particular message in a language.

extension Things that satisfy a description. @@RIGHT?

generic resource Web resources that vary over time, media type, and natural lan-
guage.

graph merge When two formerly separate RDF graphs combine with each other
when they use any of the same URI.

finitely differentiable When it is possible to determine for any given mark whether
it is identical to another mark or marks. From @@GOODMAN

fixed resource A Web resource equivalent to a particular realization, a Webrepre-
sentation that should not change.

follow-your-nose algorithm An agent can follow the following steps in to help in-
tepret a resource identified by a URI: dispose of any fragmentidentifier, inspect the
media type of the retrieved Web representation, follow any namespace declarations,
and follow any links. Available in full in Section 2.3.3.

formal languages A language with an explicitly defined syntax and possibly
model-theoretic semantics, so suitable for interpretation by computers.

format A synonym forformal language, particularly for on computer-based digital
formal language.

fragment identifier In a URI, either identifies fragment of a hypertext document
in the case of media-typetext/html being returned, or identifies some other
resource that has has some relationship to the URI without the fragement identifier.
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headers In HTTP, the part of the method that specify some informationthat may
be of used by the server to determine the response or that specifies to the client
information about the response.

hierarchical component The left to right dominant component of the URI that
syntactically identifies the resource.

holism A sentence has meaning only in the context of a whole language. @@MOLEC-
ULARISM?

HTTP H yperTextTransferProtocol, a protocol originally purposed for the trans-
fer of hypertext documents, although its now ubiquitous nature often lets it be used
for the transfer of almost any encoding over the Web.

HTTP Entity The information transferred as the payload of a request or response
excluding any optional headers. Confusingly, also sometimes also called the ‘con-
tent,’ although we use that term in a different sense, seecontentfor our use.

iconic language A language based on visual images.

identifier A term that can be used to either access, refer to, or both access and refer
to a thing.

inbound links Where the ending resource is a local Web representation and the
distal starting resource is given by an identifier.

inconsistent A statement or statements that can not be satisified.

intension Kind of thing may only be described.@@NOT right EXTENSION?

inference A syntactic relationship where one sentence can be used to construct
another sentence in a language

information Whatever in common between two things, where one thing is called
thesenderand the other is called thereceiver. To have something in common means
to share the same regularities, e.g. parcels of time and space that cannot be distin-
guished at a given level of abstraction. Information has at least oneencodingthat
has somecontentin relationship to an agent capable ofinterpretation. When the
term ‘information’ by itself is used, we are referring to both abstract information
and any of its particularrealizations. as well as both thecontentof any information
as well as anyencodingthat transmits the content.

information resource A resource that is information with the possibility of a digi-
tal encoding.

interpretation The relationship between an encoding and its content. In formal se-
mantics this is deployed in two distinct but related ways, aninterpretation mapping
that denotes the relationship between a language and a model, and theinterpretation
structureis a model that satisfies a particular interpretation mapping.

knowledge representation languageA language whose primary purpose is the
representation of non-digital content in a digital formal language.
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level of abstraction The set of certain physical differences and regularities that
have a causal effect on an agent and so may have a causal effecton the agent’s
meaningful behavior and may be captured in an interpretation.

link A connection between resources. @@predicate

linkbase Where the links can be represented outside of any Web representation of
the starting or ending resource. @@RDF

location An identifier that can be used to access a thing.

logicist position For the Semantic Web, the meaning of a URI is given by whatever
model(s) satisfy the formal semantics of the Semantic Web.

mark A physical characteristic.

meaning The causal effect of information on agents, often demonstrated by the
behavior of agents.

media type A generalization of content types to any Internet protocol.It consists
of a two-part scheme (separated by the ’)́ that separates the type and a subtype of an
encoding.

messageIn HTTP, messages are also things that have headers and optional HTTP
entity bodies. For its wider use in information theory, seeinformationandrealiza-
tion, although HTTP messages also realize information, and so are inline with the
broader user of the term.

method A request for a certain type of response from a user-agent to the server.

model A mathematical representation of the world or the language itself.

model-theoretic semanticsWhen an interpretation of a language’s sentences is to
a mathematical model

monotonic In a system capable of inference, when the inference relationshiop⊢
is monotonic if and only if for all sets of statementss1 and s2, and all inferred
statementss3, if s1 ⊢ s3 ands2⊃ s3 thens2 ⊢ s3.

language A system in which information is related to other information system-
atically. In a language, this is a relationship is between how the encoding of some
information can change the interpretation of other encodings.

name An identifier that can be used to refer to a thing.

namespace declarationwithin a given Web representation in a particular dialect,
the information that specifies the namespace URI of the dialect.

namespace documentA Web representation that provides more information about
the dialect.

namespace URI A URI that identifies that particular language or dialect thereof.

natural language A language based on human linguistic expressions.



192 Glossary

non-monotonic When montonocity does not hold for a system capable of infer-
ence.

payload The information transmitted by a protocol.

path component A number of text strings delimited by special reserved characters
that identify a resource.

Principle of Least Power A Web representation given by a resource can be de-
scribed in the least powerful but adequate language.

Principle of Linking Any URI or Web representation can be linked to another
resource identified by a URI.

Principle of the Open World The number of resources on the Web can always
increase.

Principle of Self-Description The information an agent needs to have an inter-
pretation of a resource should be accessible from its URI. This is often informally
called the “follow-your-nose” algorithm.

Principle of Universality Any resource can be identified by a URI.

proper function Whatever characteristics which a a thing has in lieu of thosechar-
acteristics promoting the reproduction or imitation of thething. From Millikan @@.

protocol A convention for transmitting information between two or mobile agents.

proxy A cache that is not stored on the user-agent itself, but are shared among
multiple user-agents by a server or group of servers.

public language position The Web is a form of language, and language exists as
a public mechanism among multiple agents, then the meaning of a URI is the use
of the URI, which must be a public mechanism that easily fits inthe form of life of
agents on the Web, which lets them in turn establish, find, andre-use URIs.

@@Social Semantics

purpose The intended meaning of information, often given by the behavior of the
receiver intended by the sender of a message.

Open World Assumption Statements that cannot be proven to be true can not be
assumed to be false.

Open World Principle SeePrinciple of the Open World.

owner The agent that have the ability to create and alter the Web representation
accessible from the URI.

outbound links Links that are inserted into Web representations directly and go be-
yond the local Web representation to an distal ending resources @@PREDICATE?

realization The physical thing that realizes the regularities of the information due
to its local characteristics.
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receiver Seeinformation.

regularity A lack of difference in time and space at a given level of abstraction.

relative URI A URI in a scheme where the path component itself is enough to
identify a resource within certain contexts.

reference The relationship of an thing to another thing to which one is immediately
causually disconnected.

referent The distal thing referred to by a representation. Also called denotation.

representation Any encoding of information that has distal content in some re-
spect. Also calledsymbol. Note that this word “representation” has a distinct mean-
ing in terms of its usage in Web standards, which we disambiguate by using the term
Web representation. SeeWeb representationfor details.

resource Any thing capable of having identity. A resource is typically not a partic-
ular encoding of the information but the content of the information that can be given
by many encodings.

request In HTTP, the method used by the agent and the headers, along with a blank
line and an optional message body.

response In HTTP, the combination of the status code and the entities.

REST (RepresentationalState Transfer, an architectural style in which all state
where the information state of the interaction between the between the server and
client is stored on the client.

role A URI that can be attached to a link to provide information about the ending
resource. @@predicate

satisfaction An interpretation to a mathematical that defines whether or not every
sentence in the language can be interpreted to content.

scheme The name of a protocol or other naming convention, used as thefirst part
of a URI.

sentence any combination of terms that is valid according the language’s syntax.
@@FORMAL? @@DIGITAL

semantics A system in which the content of information is related to each other
systematically.

Semantic Web The use of the Web as a formal language to represent things, in-
cluding things not accessible from the Web.

Semantic Web resourceA resource that is analog.

Semantic Web URI A URI for a Semantic Web resource.

server the agent That is responding to the request.
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specific resourceWeb resources that does not vary over one or more of the di-
mensions of time, media type, or natural language. These arecalledtime invariant,
media-type invariant, andnatural language invariantrespectively.

standard A convention for the encoding and possibly interpretation of information,
often created by the explicit consensus of multiple partiesvia a standards body like
the IETF or W3C.

statement Any combination of terms that has an interpretation to content according
to the language’s semantic

status code One of a finite number of codes gives the user-agent information about
the server’s HTTP response itself.

sound The inference procedure of a language if every inferred sentence can be
satisfied.

source Seeinformation. Also calledsender.

starting resource The resource that the link is directed from, also called thesubject
in RDF.

state Information about a resource that is not given as part of its identity, so it is
information that may change over time.

syntax A system in which the encoding of information is related to each other
systematically.

term regularities in marks @@.

thing Events, processes, objects, and proto-objects where the thing can be defined
by having some regularity in time and space that can distinguish it from other pos-
sible thing.

user-agent A client in the context of the Web.

URI Uniform ResourceIdentifier) A unique identifier whose syntax is given in
Berners-Lee et al (January 2005) that may be used to either orboth refer to or
access a resource.

URI Collision When the same resource has multiple URIs.

URI Opacity A URI should never itself have an interpretation, only the informa-
tion referred to or accessed by that URI should have an interpretation.

URL Uniform ResourceLocations) A scheme for locations that allows user-agents
to via an Internet protocol access an realization of information.

URN Uniform ResourceName) A scheme whose names that could refer to things
outside of the causal reach of the Internet.

@@web-page
@@web-resource
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Web representation The content given by a resource given in response to a request
whose encoding is capable of being determined by content negotiation.

WWW TheWorld WideWeb, an information space in which resources are identi-
fied by URIs.
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