
NEXt generation Techno-social Legal Encryption Access and Privacy nextleap.eu
Grant No. 688722. Project started 2016-01-01. Duration 36 months.

DELIVERABLE D4.4

PrivacyPreservingMessaging Scalability Simulations

Carmela Troncoso, Wouter Lueks, Bogdan Kulynych

Bene�ciaries: EPFL (formerly IMDEA) (lead)
Workpackage: WP4: Validation via Formal Modeling and Simulation

Description: This deliverable summarizes the work on scalability of messaging
protocols performed within WP4. As the scalability and content
security of the NEXTLEAP secure messaging protocols was
established in other deliverables, we focus on technical
developments oriented to improving the anonymity and privacy of
communication and key-related operations. We present LoopTor
and Lightnion, two anonymous communications modules that can
be easily deployed on top of the Tor network. We include an
improved version of Claimchain that prevents a new attack
identi�ed in WP5. Finally, we propose a protocol that enables users
to securely perform cryptographic operations in untrusted devices.

Version: Draft
Nature: Report (R)
Dissemination level: Public (P)
Pages: 88
Date: 2019-1-17

Project co-funded by the European Commission within the Horizon 2020 Programme.

Deliverable D4.4 NEXTLEAP Grant No. 688722

Contents

1 Introduction 4

1.1 Anonymity on the network layer 4
1.2 Security and Privacy in key distribution 5
1.3 Security and privacy in key use . 6

2 LoopTor 6

2.1 Introduction . 6
2.2 System . 7

2.2.1 Goals and non-goals . 7
2.2.2 An overview of LoopTor 8

2.3 Building LoopTor . 8
2.3.1 One link to rule them all . 9
2.3.2 Back to the 90s . 9
2.3.3 Do clog the queue! . 9
2.3.4 Implementing LoopTor . 10

2.4 Evaluation . 12
2.4.1 Preliminary measurements 12

2.5 Conclusions . 12

3 Lightnion 13

3.1 Introduction . 13
3.2 Background . 15
3.3 System . 16

3.3.1 Parties and trust assumptions 17
3.4 Architecture . 17
3.5 Evaluation . 18

3.5.1 Implementation . 18
3.5.2 Performance . 18
3.5.3 Next steps . 20

3.6 Conclusions and future work . 20

4 Claimchain 20

4.1 Introduction . 21
4.2 Problem statement and goals . 22
4.3 ClaimChain design . 23

4.3.1 Cryptographic preliminaries and notation 23
4.3.2 Overview . 24
4.3.3 Low-level operations . 25
4.3.4 High-level operations . 28
4.3.5 Security and privacy properties 31

4.4 Using ClaimChains to secure in-band key distribution 32
4.4.1 Detecting inter-block equivocation 34

4.5 Evaluating the performance of ClaimChain 35
4.5.1 Experimental setup . 35
4.5.2 ClaimChain operations performance 36

4.6 Concluding remarks . 37

5 Tandem 38

5.1 Introduction . 38
5.2 Related Work . 40
5.3 Problem Statement . 41

2

Deliverable D4.4 NEXTLEAP Grant No. 688722

5.3.1 Tandem Properties and Threat model 41
5.3.2 Tandem at a Glance . 43

5.4 Cryptographic preliminaries . 44
5.4.1 Cryptographic Building Blocks 45
5.4.2 Threshold-Cryptographic Protocols 45

5.5 Tandem . 46
5.5.1 One-time-use Key-share Tokens 47
5.5.2 Alternative constructions 52

5.6 Security and Privacy of Tandem . 53
5.6.1 Security of Tandem . 53
5.6.2 Privacy of Tandem . 55

5.7 Securing protocols with Tandem . 56
5.7.1 The use-case of ABCs . 57
5.7.2 Rate-limiting in ABCs . 59

5.8 Performance Evaluation . 60
5.9 Conclusion . 62

6 Conclusion 63

References 63

A Claimchain security and privacy 68

A.1 Unique-resolution key-value Merkle tree 68
A.1.1 Algorithms . 68
A.1.2 Unique resolution . 69

A.2 Security of the ClaimChain data structure 71
A.2.1 Privacy . 71
A.2.2 Non-equivocation . 75

B Tandem security and privacy 78

B.1 Proofs of Lemmas . 78
B.2 Constructing Correctness Proof of xS 78
B.3 Security Proof . 82
B.4 Privacy Proof . 84

3

Deliverable D4.4 NEXTLEAP Grant No. 688722

1 Introduction

The NEXTLEAP partners have proposed two decentralized private messaging pro-
tocols designed within WP2 and WP5: The MLS messaging protocol described in
deliverable D2.3 and D4.4, and the Autocrypt protocol described across all deliv-
erables in WP5 together with D2.4. The security and privacy properties of these
protocols have been thoroughly analyzed in those deliverables. The properties of
MLS have been proven using strict formal methods. The new Autocrypt proposal,
being more complex and di�cult to fully model, has been carefully examined by the
NEXTLEAP partners as well as subjected to scrutiny by the security community.

The goal of task 4.2 is to evaluate the scalability of the NEXTLEAP private mes-
saging protocols, focusing on their capabilities to provide decentralization, privacy,
security, and anonymity. The three �rst properties, however, are intrinsic to the
nature of the �nal design of the protocols. For instance, Autocrypt has been built
on top of the email infrastructure, which is decentralized by nature. Autocrypt is
already integrated by a number of email clients, and by DeltaChat (an email-based
instant messaging application), to provide end-to-end encryption for their users.
The current pilots demonstrate that the protocols scale without a problem. In the
case of MLS, while keeping the centralized nature of Signal, it has been designed
to be more scalable than Signal’s double ratchet messaging protocol. In terms of
security and privacy, as mentioned above, both protocols have gone through a thor-
ough evaluation. Thus, we have focused our e�orts on producing modules that can
improve the anonymity properties of these systems, as well as on improving the
security and privacy of tasks complementary to the exchange of messages such as
key storage and exchange or key usage while preserving the decentralized nature
of NEXTLEAP protocols.

1.1 Anonymity on the network layer

While MLS and Autocrypt o�er strong con�dentiality for messages, they cannot
by themselves provide anonymity. If an adversary observes the communications
between users and the server (the email or messaging provider) the identities of
communication partners are revealed. In order to provide anonymity these proto-
cols must rely on anonymous communications networks to hide the relationships
among users, as well as their communication partners.

In this work-package we have developed two anonymous communication modules
aimed at augmenting the privacy of the messaging protocols. Instead of relying on
novel anonymous communication systems that may or may not get massive deploy-
ment [Pio+17], we choose to use the widely deployed anonymous communication
network Tor. Tor [DMS04a] is the most widely used anonymous communication
network. At any point in time, millions of users use Tor to anonymously communi-
cate on the Internet.1 Tor is an overlay anonymity network that provides anonymity
to users by routing their tra�c through di�erent Tor nodes. Currently, the Tor net-
work consists of more than 6000 nodes operated by volunteers. The NEXTLEAP
modules do not require any changes in the thousands of volunteer nodes that make
up the Tor network, and thus can immediately be integrated by applications to pro-
vide stronger anonymity for many protocols, including messaging.

Our modules tackle two properties that the current Tor deployment fails to address.
1https://metrics.torproject.org/userstats-relay-country.html

4

https://metrics.torproject.org/userstats-relay-country.html

Deliverable D4.4 NEXTLEAP Grant No. 688722

The �rst issue we address is that Tor is vulnerable to tra�c correlation attacks. The
design of Tor is optimized to reduce the bandwidth and latency overhead imposed
by the anonymous communication layer, so that Tor is suitable for a large variety of
tasks such as browsing the Internet, messaging, e-mail, and peer to peer data shar-
ing. The decision of keeping Tor low-latency at a low bandwidth overhead opens
the door to tra�c correlation attacks that enable network attackers to determine
who communicates with whom by correlating tra�c entering and existing the Tor
network.

Tor assumes that such an adversary is unlikely to exist. This is a reasonable as-
sumption when the communicating parties are located in geographically diverse
locations, because in that case the attacker needs to observe a large fraction of the
Internet to correlate tra�c. In messaging, however, the sender and recipient are
often in close geographic proximity (i.e., in the same country). Therefore, it is plau-
sible that within this geographic location a network adversary exists that can ob-
serve tra�c entering and exiting the Tor network (e.g., a national law enforcement
authority, or a national Internet Service Provider).

In Section 2 we introduce the LoopTor module. This module enables Tor clients to
resist tra�c correlation attack at a low cost for low-throughput application such as
messaging. LoopTor builds on top of the existing Tor network without requiring
any modi�cation and thus can be directly deployed. We show through simulation
that LoopTor mitigates the capability of an adversary to perform tra�c correlation
attacks.

A second issue with the current Tor deployment is usability. To securely enjoy the
advantages Tor provides, users need to access the Tor network via the Tor Browser.
This hinders adoption of this solution by service providers, since requiring an extra
browser to use a service is bound to reduce their user base. E�orts such as Proton-
mail illustrate the importance of o�ering solutions that are easy to use, for example,
by developing secure messaging clients that operate from a user’s web browser.
However, connecting a web-based client to the Tor network to enhance its privacy
properties is currently non-trivial due to the complexity of the Tor network.

In Section 3 we introduce Lightnion, a small Javascript client that can be used to
make anonymous requests from web sites, without requiring users to install any
custom software. Thereby, Lightnion enables the development of easy to use web-
based messaging clients that provide strong anonymity guarantees when, for exam-
ple, connecting to a key server, or other third parties.

1.2 Security and Privacy in key distribution

To send encrypted messages users need to know the keys of their communicating
parties. In D2.2 we showed that simply gossiping these keys, as Autocrypt version
1 proposes, leaks a lot of information about a user’s social graph. To protect this in-
formation we proposed a secure privacy-preserving key-sharing method approach
based on Claimchains2, the NEXTLEAP federated identity building block. Using
Claimchain, users can selectively give access to their contacts’ keys. The protocol
design proposed in D2.2 ensures that users cannot equivocate within a Claimchain
block. However, during the integration of Claimchains into Autocrypt version 2, we
realized that the original protocol allows malicious users to abuse the access con-
trol mechanism to equivocate accross blocks. In Section 4 we present an improved

2https://claimchain.github.io

5

https://claimchain.github.io

Deliverable D4.4 NEXTLEAP Grant No. 688722

version of the Claimchain protocols to make this attack detectable. Moreover, we
complemented the informal security arguments in the previous version with formal
security proofs.

1.3 Security and privacy in key use

An e�ect of decentralization is that critical parts of the protocols, and in particular
the cryptographic keys, move to the users’ devices. This move allows users to act
without needing to interact with or obtain permission from central parties, thereby
improving privacy. However, to maintain the security and privacy properties of
decentralized protocols, the keys on the users’ devices must be kept secure. If they
are not and an adversary gets access to the keys they might impersonate users, spend
their (digital) cash, or read their encrypted emails. The security of users’ devices is,
sadly, often limited, putting users’ keys at risk.

A common approach to avoid that a user’s device becomes a single point of failure
for security and privacy is the use of threshold cryptography. Instead of relying
on a single key, users split their key into di�erent parts in such a way all of these
parts are required to use the key. The user then stores these parts at di�erent loca-
tions. Threshold cryptography thereby mitigates the risk of a device compromise:
an attacker might obtain one part of the key, but will not obtain the other parts
needed to actually use the key. While threshold cryptography provides strong se-
crecy regarding the keys themselves, it does not hide the very action of using the
key. In particular, the user must contact the key share holders every time she wants
to perform an operation, revealing the existence of this operation to these entities.
In Section 5 we propose a scheme that permits users to hide their actions from key
holders, while at the same time preventing key holders from abusing the keys.

2 LoopTor

The secure messaging protocols designed within NEXTLEAP, MLS and Autocrypt,
provide strong security and privacy properties for message content. However, they
cannot by themselves provide users with anonymity against network adversaries.
In this section we introduce LoopTor, an anonymous communication system that
helps to protect messaging systems against strong network adversaries that can
observe both sides of the (anonymous) communication channel.

2.1 Introduction

Tor is a general-purpose anonymous communication network. It is low-latency to
support a wide variety of applications, including web browsing, at a low bandwidth
overhead. On the downside, this decision makes Tor vulnerable to tra�c-correlation
attacks. Passive observers that can observe tra�c entering and exiting the Tor net-
work can determine who communicates with who.

There are two main solutions for this issue [Das+18]. Either add signi�cant de-
lays in the communications to destroy timing patterns (e.g., traditional mix net-
works such as Mixmaster [Mul+] or Mixminion [DDM03]); or add a large amount
of cover tra�c to hide real communications patterns (e.g, modern mix networks
such as Loopix [Pio+17]). These solutions, however, either require the deployment

6

Deliverable D4.4 NEXTLEAP Grant No. 688722

Tor Network

Alice Bob

Entry guard

Figure 1: LoopTor’s system model. A user Alice communicates with a another user
Bob via the Tor network. Both users use LoopTor. The adversary can observe the
network tra�ic between the client and the Tor network and between the server and
the Tor network.

of new infrastructure, or impose a high overhead on the users and the network. As
a result, they are inconvenient and di�cult to deploy.

In this section we introduce LoopTor, a medium-latency communication scheme
built on top of Tor that protects users against powerful adversaries that can observe
tra�c entering and exiting the Tor network. LoopTor is designed with the two
following goals in mind to ease deployability:

• Minimal changes to the infrastructure: the design must not require any modi-
�cation in the onion routers, only on the client side that is under the control
of the users, so that LoopTor can fully bene�t from the existing Tor infras-
tructure.

• Minimal overhead on the network: the design must not impose a high cost in
terms of bandwidth or processing for the onion routers, so that its use does
not a�ect other Tor users.

To achieve this goals we need to increase latency and decrease throughput. While
this choice may seem controversial, we observe that many applications can actu-
ally tolerate medium latency and low throughput. For example, messaging, e-mail,
transactions of digital currencies, and electronic voting, can tolerate some delay and
do not have high bandwidth requirements.

2.2 System

In LoopTor a client, Alice, communicates with a server, Bob, via the Tor network.
The adversary can observe the network tra�c between Alice and the Tor network
and between Bob and the Tor network. See Figure 1.

2.2.1 Goals and non-goals

LoopTor aims to provide sender and receiver unobservability [Pio+17] against ad-
versaries that can observe the tra�c between the users, e.g., Alice or Bob, and the
Tor network. More precisely, we aim to achieve the following two properties:

Sender unobservability A network adversary observing the tra�c between an
online sender S (i.e., Alice) and the Tor network cannot decide whether S is
currently communicating with any receiver (i.e, Bob) or not.

7

Deliverable D4.4 NEXTLEAP Grant No. 688722

Alice Bob

Onion router Entry guard

Figure 2: Overview of LoopTor. Alice (blue) uses LoopTor to protect her connection
with Bob (green) against tra�ic analysis. LoopTor thro�les the link with the entry
guard and fills this link using dummy loop tra�ic (blue).

Receiver unobservability A network adversary observing the tra�c between an
online receiver R (i.e., Bob) and the Tor network cannot decide whether R is
currently communicating with any sender (i.e., Alice) or not.

We require that the sender respectively receiver is online. If they are not, then
obviously, that user cannot send respectively receive.

LoopTor routes dummy tra�c and real tra�c through the Tor entry node. An ad-
versary that can distinguish these can break the unobservability properties of Loop-
Tor. Therefore, we assume that the attacker has limited capabilities:

• The attacker is passive, in particular it cannot corrupt Tor entry nodes; and

• The attacker cannot observe tra�c between the Tor entry node and the rest
of the Tor network.

2.2.2 An overview of LoopTor

LoopTor builds on two key insights. The �rst insight is that if the link between
the user and the Tor network were very low bandwidth, think 90s modem speed,
�ooding the link with dummy tra�c should have low impact on the Tor network.
The second insight is that users can generate dummy tra�c by creating a connection
to themselves, and sending dummy packages on this link [Pio+17]. This loop tra�c
ensures that, without help from the network or other users, the link can be easily
saturated with tra�c in both directions. See Figure 2 for an overview of LoopTor.

2.3 Building LoopTor

To ease deployment, LoopTor aims to use the existing Tor network. Therefore, its
design cannot require any changes to the thousands of volunteer nodes that make
up the Tor network. Such a requirement on the core Tor infrastructure is unlikely
to be deployed. Changing software that connects to the Tor infrastructure, i.e., the
Tor clients running on users’ machines, however, is feasible. These user-side mod-
i�cations do not require changes in the global infrastructure and can be performed
locally by interested entities.

In this section we explain how we use functionalities provided by existing Tor nodes
to construct the link between the client and Tor network, how we slow it down, and

8

Deliverable D4.4 NEXTLEAP Grant No. 688722

how we generate loop tra�c.

2.3.1 One link to rule them all

LoopTor users send and receive both dummy loop tra�c and real tra�c. Our net-
work adversary can monitor the network between the user and the Tor entry guard.
As a result, the adversary should not be able to distinguish these two types of tra�c.
Normally, however, Tor creates a new TCP connection to Alice for every incoming
connection (including the loop connection). Hence, by just observing the number
of incoming connections a passive adversary can learn if and when Alice is commu-
nicating: precisely what LoopTor aims to hide.

Thus, to be safe, LoopTor must route all virtual connections, both incoming and
outgoing, via one TLS connection between the user and the entry guard. To imple-
ment this without changing any Tor protocol, LoopTor resorts to an existing Tor
primitive that already achieves what we want: a hidden service. Every user sets up
a hidden service to accept incoming tra�c. As a result, all incoming tra�c from
other users is automatically routed via the single TLS connection between the user
and the entry guard. LoopTor makes sure to use the same TLS connection to create
the loop connection back to its own hidden service, see Figure 3. As a result, all
LoopTor tra�c is routed via one TLS connection.

2.3.2 Back to the 90s

To arti�cially create a slow connection between the user and the Tor network, we
employ TCP’s existing congestion control algorithms to limit the speed at which
the entry guard sends tra�c to the user. In particular, we use the existing network
tool tc3, to set the incoming bandwidth limit for each LoopTor user.

To signal to the entry guard that it should send less tra�c, tc simply drops packets.
This causes some overhead, as the entry guard does eventually resend those packets
at a slower rate, thus increasing bandwidth usage, and creating a delay in the time
it takes for packets to reach their destination.

Telling the entry guard directly to send tra�c at a slow rate is more e�ective, as it
would bypass TCP’s congestion control algorithms. However, currently Tor nodes
do not support this feature, and since LoopTor aims to make no changes to existing
nodes, we cannot use this feature.

2.3.3 Do clog the queue!

Once the rate limit is imposed, sending dummy packets on the loop from the user
back to herself will clog the queue, ensuring that the entry guard always has queued
messages waiting to be sent to the user. To ensure that su�cient messages are avail-
able in the queue, LoopTor starts by sending a sizable number of dummy packets
that prime the entry guard’s bu�er. Whenever LoopTor receives a dummy packet,
it sends a new one to keep the bu�er �lled.

Since all communication with the entry guard is encrypted, attackers cannot dis-
tinguish dummy tra�c from real tra�c. Moreover, since regardless of tra�c from
other circuits there are always messages waiting to be sent to the user, the tra�c

3http://man7.org/linux/man-pages/man8/tc.8.html
9

Deliverable D4.4 NEXTLEAP Grant No. 688722

LoopTor

H
S

Entry
guard

Single TLS connection

what passive
adversary sees

Alice

dummy packet

real packet

Tor
networkTor client

Figure 3: Detailed view of LoopTor showing the loop connection and one client
connection. Both of these use the same TLS link to the entry guard. At the top: the
adversary’s view of this connection.

patterns observed by the passive adversary do not correlate to tra�c sent by other
users. See Figure 3.

While this construction prevents tra�c-correlation attacks, the di�erence in incom-
ing and outgoing tra�c can still reveal whether a user is communicating. Loop traf-
�c is symmetric by construction: every outgoing dummy packet eventually returns
to the sending user. However, real tra�c needs not to operate that way. To ensure
that real and dummy tra�c are indistinguishable, LoopTor ensures that for every
incoming real message, it sends an equal-sized reply.

To summarize, an attacker will always see an independent number of indistinguish-
able messages regardless of the number of real or dummy messages being sent.

2.3.4 Implementing LoopTor

We implemented a LoopTor client in Python4. The client builds on top of the ex-
isting Tor client to connect to the Tor network. As we described in the previous
section, the LoopTor client sets up a hidden service, publishes it, and then connects
to its own hidden service to start generating loop tra�c.

We have kept the changes to the Tor client to a minimum in our LoopTor proto-
type. However, one change was inevitable. Recall from Section 2.3.1 that all tra�c
between the user and the entry guard must share the same TLS connection between
the user and the guard. The default Tor client tries to use an additional Tor guard
when it detects that the current one is unavailable or too slow. In LoopTor, the
guard is slow by design. Therefore, if we use an unmodi�ed Tor client, multiple TLS
connections would be created simultaneously, contradicting the requirement that
all tra�c shares the same TLS connection. As a consequence, we needed to modify
the Tor client used by LoopTor to never switch guards.

10

Deliverable D4.4 NEXTLEAP Grant No. 688722

Figure 4: Inter-arrival time distributions for packages received by the observed
user Bob (top figure) and sent by the user Bob (bo�om figure). The graphs show
the distributions for the two situations we compare: without communication (i.e.,
padding only), and with communication to other users. The error-bars show 95%
confidence intervals. For a perfectly functioning LoopTor, the distributions should
be statistically close. For now, some significant di�erences between the two distri-
butions remain.

11

Deliverable D4.4 NEXTLEAP Grant No. 688722

2.4 Evaluation

The goal of LoopTor is to ensure sender and receiver unobservability against pas-
sive network attackers. We conduct the following experiment to evaluate that these
properties hold. A user, say Bob, uses LoopTor. The adversary monitors the connec-
tion between Bob and the Tor network. The task of the adversary is to distinguish
two situations:

1. Bob is not communicating with any other users. As a result, all tra�c observed
by the adversary is dummy tra�c.

2. Bob is communicating with other users using LoopTor. To simulate this, in
the experiment new users regularly connect to Bob and send a message. The
rate at which messages are sent is well below that of the cover tra�c rate.

In order to test the worst-case scenario we deliberately let many users repeatedly
communicate with Bob. As a result, the situations are easier to distinguish than in
the setting where Bob only receives one message.

2.4.1 Preliminary measurements

We ran 50 experiments of 6 minutes length for each of the situations, and captured
the network traces as they would be observed by the adversary. We then applied
statistical measurements to compare the two situations. Figure 4 compares the inter-
arrival time distributions for incoming and outgoing packages of Bob in the two
situations.

The graphs con�rm that the situations are close. Unfortunately, we still observe
di�erences that may allow an adversary to distinguish the case in which Bob is
communicating from the case in which he is not. We also observe that when Bob
communicates with actual clients, the number of sent and received messages goes
down.

We conjecture that these di�erences are caused by how incoming tra�c is handled
in both situations. When a new user connects to Bob it sets up a hidden-service
connection to Bob. When setting up a hidden service, packages are answered di-
rectly by Bob’s Tor client, without involving any LoopTor code written in Python.
As such, some the responses are sent faster than when packages need to be �rst
handled by LoopTor code. We are working on mitigating these issues in the next
version of LoopTor.

2.5 Conclusions

We have introduced LoopTor, a module that can be used on top of the existing
Tor network to provide a medium-latency low-bandwidth anonymous communi-
cation channel that resists passive network adversaries observing both ends of the
communication channel. Such adversaries are likely to exist when users are mes-
saging other users that are geographically close. Therefore, we believe that Loop-
Tor is a very important complement to the messaging protocols developed within
NEXTLEAP.

4We will make the code of LoopTor, as well as the code to reproduce our evaluations publicly
available under an open source license at https://github.com/spring-epfl/looptor.

12

https://github.com/spring-epfl/looptor

Deliverable D4.4 NEXTLEAP Grant No. 688722

User’s
browser

Trusted
server

Untrusted
server

Figure 5: Se�ing of trusted and untrusted parties

3 Lightnion

In this section we tackle another problem of existing anonymous communication
systems: They are often di�cult to integrate into existing software, and in particular
into software provided by online service providers. Therefore, in this section we
propose a new system, Lightnion, a small JavaScript client that can be used to make
anonymous requests from existing websites.

Both within and outside NEXTLEAP we have seen tools push for security by default
and as easy as possible to use for users. For example, Autocrypt aims to automate
security as much as possible, and only ask security related questions when users
expect them. Lightnion allows us to build online platforms and websites that follow
a similar paradigm for anonymity. Providers of platforms and websites can integrate
Lightnion to seamlessly provide network anonymity for users without requiring
users to do take any special actions.

3.1 Introduction

Users use Tor for a large variety of purposes, e.g., to browse websites, to share �les,
to send email, to use instant messaging services, or to visit hidden services (websites
that are not accessible via the normal Internet). These di�erent applications have
widely di�erent characteristics. E-mail requires low bandwidth and can tolerate a lot
of latency, and messaging is low bandwidth and tolerates some latency. Both require
only a few TCP connections. On the other hand, �le sharing and web browsing,
especially when visiting streaming websites, require a large number of concurrent
TCP connections, some of which require high bandwidth and low latency.

The Tor client has been optimized to work well in all of these scenarios. It supports
a large number of possibly long-term and high-bandwidth connections, and in addi-
tion to the normal protocols to communicate anonymously with existing servers it
also supports protocols to enable hidden services. All these features complicate the
Tor client. Most users experience Tor via the Tor Browser, a special browser that
focuses on user anonymity and that o�ers tight integration with the Tor client. The
Tor Browser, however, is not e�ortless for ordinary users. It requires them to install
special software, and remember to use it instead of their normal browser whenever
they require anonymity.

Using the Tor Browser ensures that all web activities from the user enjoy anonymity
at the network layer. However such all-encompassing anonymity is not always
necessary. Consider the following scenarios. In these, strong anonymity is only
required for particular actions or against particular third parties, see also Figure 5.

13

Deliverable D4.4 NEXTLEAP Grant No. 688722

• Secure webmail. Consider users using a webmail client for encrypted end-
to-end communication. Users trust the provider of their webmail client to
provide a secure service and software. However, the webmail client may need
to interact with external, untrusted services. For example, to encrypt an email,
the client needs to �nd the keys of the recipients. To do so, the webmail client
in the user’s browser makes requests to a key server. The user trusts the
webmail client to know about her actions, but not the key server (who learns
the communication partners of the user by virtue of seeing the key requests).

• Accessing medical resources. Consider doctors accessing the results of a
patient’s medical tests using a trusted online platform or email. To provide
extra information about the results, the trusted platform refers to untrusted
external websites. When a doctor visits these external sites, these sites might
learn which doctors, and/or patients, su�er from certain diseases. The doctor
trusts the online platform, but not the external websites.

• Privacy-preserving collaborative editing. Consider a privacy-preserving
collaborative editing service. The platform provides collaborative editing soft-
ware. This software uses cryptography to ensure that the platform does not
know the content of the documents. Users trust, or verify the software pro-
vided by the editing platform. However, the editing platform might also learn
who edits which sensitive �les. Users may trust the software provided by the
editing platform, but they do not necessarily trust the provider to know which
�les they edit.

• Anonymous questionnairewebsite. Consider an online questionnaire deal-
ing with sensitive personal questions. To ensure the privacy of participants,
the questionnaire platform does not want to be able to link the answers to
individual users. This linking can occur in two ways: (1) via data submit-
ted back to the server, and (2) via information implicitly sent at the network
layer as users submit answers. The platform can easily ensure that no explicit
identi�ers are submitted together with the answers. However, the network
layer identi�ers remain. Users trust the questionnaire website, but they do
not want to provide any identifying information when submitting their sen-
sitive answers. Nor does the questionnaire website want to every have the
user’s identi�ers for a set of answers in any form.

A centralized strawman approach. In all these scenarios users interact with
both trusted platforms and untrusted servers. One way to ensure that users can
anonymously access the untrusted server is to use a centralized and trusted proxy
server. This proxy server would mediate the communication between the user and
the untrusted server. As a result, the untrusted server only sees the network identi-
�er of the proxy, and not those of the user.

However, trusted proxy servers su�er from several problems. First, operating a
proxy server requires e�ort and expertise, and puts the operator of the proxy server
at risk [New96]. Second, the proxy server and the untrusted server must not collude,
as together they can break the user’s anonymity. The webmail provider, and the
trusted medical platform could themselves provide a trusted proxy to their clients,
if they are willing to put in the e�ort to provide the infrastructure. However, the
editing platform and the questionnaires site cannot. Doing so violates the non-
collusion assumption. Instead, they must �nd a non-colluding third party that is
willing to act as a proxy.

14

Deliverable D4.4 NEXTLEAP Grant No. 688722

Decentralizing anonymity. To alleviate these problems we propose Lightnion,
a web-friendly library for decentralized anonymous communication services. Us-
ing Lightnion, any trusted service provider can let their users communicate anony-
mously with untrusted third parties. Lightnion uses the existing Tor network to
provide anonymity for users. It consists of a small Javascript library that trusted
providers can embed in their websites. Websites can then take make anonymous
connections to untrusted servers using the Lightnion library. To do so, the library
connects to the Tor network via an untrusted proxy, and then sets up an anonymous
connection via the Tor network to the untrusted server.

In this section, we make the following contributions:

• We analyze the trust-assumptions required for an anonymous communication
library in the browser.

• We apply this analysis to derive a minimal Lightnion library that uses the Tor
network and protocols.

• We constructed a prototype implementation of Lightnion and analyze its per-
formance.

We note that while our e�orts have been so far put in constructing a minimal, yet
secure, Tor client for the web setting, the design principles and most of the code can
be reused in other non-browser settings (e.g., to enhance mobile applications with
anonymity).

3.2 Background

Tor is an overlay anonymity network consisting of many Tor nodes, or Onion Routers
(OR). Users can anonymously communicate with a server by routing their tra�c
through a sequence of onion routers called a path. By default, the Tor client uses
a path of three routers, called the guard, middle and exit nodes respectively. Each
router on the path only knows the identity of the two adjacent nodes. As a result,
none of the Tor nodes know both the user and the destination server. Tra�c be-
tween the Tor client, running on the user’s machine, and nodes in the Tor network
is onion encrypted. Each subsequent node along the path removes one layer of en-
cryption, until �nally the exit node removes the last layer and forwards the tra�c
to the destination server.

The Tor network consists of many Tor nodes, each with di�erent capabilities and
available bandwidth. A group of nine Tor directory authorities periodically (every
hour) publish a consensus of all the nodes in the network. Tor nodes themselves
publish micro descriptors describing their keys and other properties. Tor clients use
the consensus to pick a path and the descriptors to authenticate Tor nodes.

To create an anonymous connection to a destination server, the Tor client proceeds
as follows.

1. The client retrieves the latest consensus and veri�es the signatures by the
trusted directory authorities. It also retrieves micro descriptors for many Tor
nodes.

2. The client uses the consensus information to compute a path consisting of
three nodes: the guard, middle and exit nodes.

15

Deliverable D4.4 NEXTLEAP Grant No. 688722

Figure 6: High-level architecture of Lightnion.

3. The client makes a TLS connection, called a link, to the guard node. The
client authenticates the guard based on its micro descriptors and derives a
shared key. The guard and the client use this shared symmetric key to encrypt
subsequent tra�c between then. Finally, the client starts building a circuit.

4. The client then requests the guard node to extend the circuit to the middle
node. The client then authenticates the middle node (using the information
from the micro descriptor) by running a handshake protocol. The result is a
new symmetric key that the client and the middle node use to encrypt their
tra�c.

5. The client requests the middle node to extend the circuit to the exit node. The
client and exit node run the hand shake protocol again to derive a �nal key.

6. Finally, the client requests the exit node to open a TCP connection to the
target server.

Challenges in implementing a Tor client in the browser. Implementing a
simple Tor client directly in the browser is challenging. To connect to the Tor net-
work, a Tor client opens a TLS connection to the guard over TCP/IP. However,
browser scripts can only create HTTP and Websocket connections. Pure TCP/IP
connections are not allowed.5

Instead, in this work we use a simple, untrusted Lightion proxy that translates be-
tween a protocol that is available to the Javascript Lightnion client, such as HTTP
or Websockets, and the TCP protocol that Tor nodes understand.

3.3 System

Figure 6 shows a high-level overview of the Lightnion architecture. Lightnion con-
sists of two parts. The �rst part is a Javascript library that runs inside the user’s
browser. Websites can use this library to make anonymous web requests via the Tor
network. To do so, the Lightnion Javascript client connects to a Lightnion proxy,
the second Lightnion component, via a Websocket connection. The proxy relays Tor
cells it receives over the websocket connection to a corresponding TLS connection
that it maintains with guards in the Tor network.

5There exist some hacks such that circumvent these restrictions on some browsers, for example
using WebRTC, Flash plugins or Java applets. However, none of these are portable or supported in a
wide range of browsers.

16

Deliverable D4.4 NEXTLEAP Grant No. 688722

Figure 7: Interaction of Lightnion client running in the user’s browser and the Tor
network via the Lightnion proxy.

The Lightnion Javascript library authenticates the nodes on the circuit, deriving the
correct encryption keys for the symmetric encryption channel, and handles all the
necessary cryptographic operations. The proxy simply relays tra�c to the corre-
sponding Tor nodes.

The Lightnion Javascript library is provided by the trusted website that the user
visits. This website could for example be a secure webmail provider, the trusted
medical platform, a collaborative editing platform, or an anonymous questionnaire
website.

3.3.1 Parties and trust assumptions

A Lightnion system consists of the following parties.

Service Provider The website that the user visits. The website is trusted and
provides the Lightnion Javascript library to the user. Trusting the service
provider is natural. The user visits the website, and the user’s browser exe-
cutes any code provided by the service provider. The service provider could
always ship defected code, or ex�ltrate data using other mechanisms.

Lightnion proxy Untrusted party that proxies the communication between the
user’s browser and the Tor network. This party is trusted for availability but
not for privacy. The Lightnion proxy could even be c-located with a Tor entry
node.

End point Users use Lightnion to anonymous contact one of several end points.
These end points are untrusted and may try to identify users.

Anon-collusion assumption. We assume that the Lightnion proxy does not col-
lude with the end point. If they collude, they can perform a time-correlation attack
to deanonimize users. This assumption is also required by Tor to provide security:
Tor assumes that no adversary can observe simultaneously messages entering the
Tor network via the guard, and messages leaving the network via the exit node.

3.4 Architecture

In Section 3.2 we identi�ed six steps that a normal Tor client must perform to set
up an anonymous communication channel via the Tor network. The Lightnion
Javascript client retrieves and validates the consensus and Tor node descriptors,

17

Deliverable D4.4 NEXTLEAP Grant No. 688722

and selects a path. Then, it requests the Lightnion proxy to open a TLS connection
to the guard, the �rst node in the path. See also Figure 6.

Since the proxy, and not the Lightnion client, opens the TLS connection to the guard,
the Lightnion client cannot rely on the TLS layer to authenticate the guard. There-
fore, the Lightnion Javascript client runs a regular ntor handshake protocol with
the guard to authenticate it and to derive the �rst shared key. All cryptographic
operations are performed in the user’s browser. The proxy only forwards tra�c.

The client continues by requesting the guard to authenticate the circuit to the middle
node, and then requests the middle node to extend the circuit to the exit node. At
each step, the Lightnion client authenticates the node using an ntor handshake and
derives another symmetric encryption key. At the end, the client has established a
layered encrypted channel from the users browser, via the proxy, to the exit node.
See Figure 7. Note that the Lightnion proxy only sees encrypted tra�c.

Finally, the exit node opens a TCP connection to the destination server.

3.5 Evaluation

To evaluate the ease of use and performance of Lightnion we have developed a re-
search prototype of the client and the proxy. We are currently working on turning
this prototype into a robust and stable implementation that can be used in a large
variety of settings. We report here on the initial research prototype and its perfor-
mance.

3.5.1 Implementation

We implemented a research prototype of Lightnion. Implementing a minimal Tor
client is not easy. Therefore, initially, we developed a new minimal Tor client in
Python. This Python implementation parses and validates the consensus and micro
descriptors, builds Tor cells, does ntor handshakes to authenticate Tor nodes and
derives encryption keys, and handles communication via Tor circuits. This minimal
Python implementation highlighted the di�erent steps and complexities in imple-
menting a lightweight Tor client.

Starting from the minimal Python Tor client we split it into two parts: (1) the Light-
nion proxy responsible for creating TLS connections to Tor nodes and relaying traf-
�c from the Javascript client, and (2) the Javascript client responsible for the rest.
The Javascript client o�ers a convenient interface for making anonymous TCP con-
nections. This interface hides the complexities of communicating via the Tor net-
work from the developer. See Figure 1.

Currently, the Lightnion Javascript client does not implement all functionality. The
Javascript client already supports authenticating Tor nodes, constructing circuits
and sending anonymous tra�c but the code to validate the consensus and select a
path is still being integrated. See Table 1.

3.5.2 Performance

We performed a simple performance evaluation of the current implementation of
the Javascript Lightnion library in conjunction with the Python proxy. For these

18

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 1: Overview of current implementation status of the Lightnion client. The
components marked with a ‘P’ are implemented as prototypes, but they have not
yet been fully merged into the Javascript Lightnion client.

Feature Status

Parsing and validating consensus P
Path Selection P
Authenticate Tor nodes X
Constructing a circuit X
Communicating via circuit X

// create a channel through the proxy

lln.open('proxy.example.net', 4990, function(channel)

{

// callback-oriented interface (skip intermediate states)

if (lln.state != lln.state.success)

return

// create a TCP connection to api.ipify.org on port 80

tcp = lln.stream.tcp(channel, 'api.ipify.org', 80, handler)

tcp.send('GET / HTTP/1.1\r\nHost: api.ipify.org\r\n\r\n')
})

Listing 1: Sample usage of the Lightnion browser script to make an HTTP request
to an external service.

tests we used a small test Tor network constructed using chutney6. This network
runs 8 Tor nodes (or onion routers, containing at least 2 guards and 5 exit nodes).
All tests were performed locally, they therefore do not take network latency into
account.

First, we measured the round-trip latency of our implementation using a simple echo
server. We created a simple Javascript application running in a browser that uses
Lightnion to send packages to this echo service. We measure the time between trans-
mitting the package and when it returns to the Javascript application. We compare
the performance of this setup with the baseline of a simple client sending packages
using the regular Tor client. All clients, Tor nodes and the echo server run on the
same machine. Hence, these experiments measure computational overhead only.

We send packages of 498 bytes (so that they �t within a single Tor cell) at a rate of 250
packages per second. We noticed that the proxy su�ers from congestion. Therefore
we compare the e�ect of sending packages for a longer time: 50 package in total
(i.e., 200 miliseconds), 500 packages in total (i.e. 2 seconds), and 2500 packages in
total (i.e., 10 seconds). See Table 2.

The table shows that longer connections have no signi�cant e�ect on the latency for
clients sent using the regular Tor client. However, whereas the Lightnion Javascript
client initially keeps pace with the regular Tor client, sending more packages causes
a signi�cant increase in latency. We suspect that mismanaged bu�ers in the Light-
nion proxy are the cause of this. We aim to improve the proxy in the future.

We also pro�led our Javascript implementation. About 40% of the time is spent en-
6https://gitweb.torproject.org/chutney.git/tree/README

19

https://gitweb.torproject.org/chutney.git/tree/README

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 2: Experimental results of latency sending packages to an echo server. We
sent packages at a rate of 250 per second. We compare the baseline implementation
featuring the regular Tor client to the in browser Lightnion Javascript client. We also
measure the length of the total experiment.

Round-trip Time Total Time

#packets baseline in browser baseline in browser

50 101±18 135±30 200±0 376±10
500 119±77 452±462 2000±0 2493±277

2500 133±94 1397±835 10000±0 11353±522

crypting and decrypting tra�c, about 5% of the time is spent performing integrity
checks, about 20% is spent on garbage collection, and about 19% is spent on convert-
ing between di�erent low-level Javascript data structures. These results show that
we could further improve the Javascript library to more e�ciently handle garbage
collection and type conversion.

3.5.3 Next steps

The next steps for the implementation are as follows:

• Integrate the consensus parsing and validation into the Lightnion Javascript
client.

• Integrate the path selection code into the Lightnion Javascript client.

• Restructure the proxy to better deal with multiple current clients and higher
rate connections.

As soon as we have completed the above steps to create a fully functioning proto-
type, we will publish the code for the proxy and the Javascript library on https:

//github.com/epfl-spring/ under an open source license.

3.6 Conclusions and future work

In this section we have introduced Lightnion, a module to enable seamless anonyous
communication from a user’s browsers. The use of Lightnion is invisible users and
requires no active involvement from them. We show the feasibility of Lightnion
using a research prototype that con�rms that it is easy to use and can perform well
for many scenarios. We aim to turn the research prototype into a well-performing
piece of software that can be used in a large number of scenarios.

4 Claimchain

In order to encrypt messages, both MLS and Autocrypt require knowledge of the
keys of communication partners. In Deliverable 2.2 we presented Claimchains, that
support a federated identity system in which users can attest about the validity of
other users’ keys in a privacy-friendly manner. While integrating Claimchains into
Autocrypt we discovered that malicious users could abuse Claimchain’s privacy-
friendly sharing mechanisms to lie about the keys they gossip. We now present a

20

https://github.com/epfl-spring/
https://github.com/epfl-spring/

Deliverable D4.4 NEXTLEAP Grant No. 688722

new version of Claimchain that prevents this attack. We formally prove its security
and empirically show that the new additions have a negligible impact on perfor-
mance.

4.1 Introduction

A ClaimChain, as described in D2.2, is a cryptographic construction for privacy-
preserving authentication of public keys that can enable secure and privacy-friendly
decentralized key distribution. Users store claims about their own keys and their be-
lieves about other people’s keys in the ClaimChain data structure. These chains form
authenticated decentralized repositories that enable users to prove the authenticity
of both their keys and the keys of their contacts. ClaimChains are encrypted, and
therefore protect the stored information, such as keys and contact identities, from
prying eyes. At the same time, it contains mechanisms to reliably and e�ciently
prevent that a user can lie about identity-key bindings within a block.

ClaimChain’s decentralized approach alleviates the privacy problem of centralized
certi�cation authorities, such as SKS Keyservers7 for PGP keys, which can observe
users’ key look-ups, and thus can infer their communication patterns. However,
since no one has a global view of all the bindings in Autocrypt’s decentralized
approach, malicious users or providers can supply di�erent user-to-key bindings
to di�erent recipients, e�ectively opening the door to man-in-the-middle attacks.
ClaimChains includes mechanisms to reliably and e�ciently prevent equivocation
within a block.

While integrating ideas from ClaimChains into Autocrypt version 2, we discovered a
new attack that uses the privacy-enabling access control mechanism to allow Claim-
Chain owners to equivocate across blocks. We adjusted the ClaimChain data struc-
tures and cryptography to allow chain owners to prove that they did not equivocate
without needing to reveal any other private information. Using this proof, recipients
of claims can verify that the claim owner did not equivocate across blocks.

To ensure that the new ClaimChain datastructure is secure and private, we modeled
the security and privacy properties of the constructions and then proved its security.
These proofs, presented in Appendix A were also not present in deliverable “D2.2:
Federated Secure Identity Protocol”.

Changeswith respect to deliverable D2.2. In deliverable “D2.2: Federated Secure
Identity Protocol” we presented an earlier version of ClaimChains. In this deliver-
able we present an updated version of ClaimChain. This new version di�ers from
the original in the following aspects:

1. We changed the cryptographic data structures to allow chain owners to prove
that they did not equivocate between blocks without revealing any privacy-
sensitive information.

2. We show how to construct proofs of non inter-block equivocation, see Sec-
tion 4.4.1

3. We formally model and proof the security and privacy properties of the new
ClaimChain data structure. See Appendix A.

Allowing the proofs of non inter-block equivocation required many small changes
to the data structures. Therefore, we are presenting the entire construction rather

7https://sks-keyservers.net

21

https://sks-keyservers.net

Deliverable D4.4 NEXTLEAP Grant No. 688722

than focusing on the changes only.

Published at a scienti�c conference. The improved version of ClaimChain that
we present here has also been published at the Workshop on Privacy in the Elec-
tronic Society:

Bogdan Kulynych et al. “ClaimChain: Improving the Security and Pri-
vacy of In-band Key Distribution for Messaging”. In: WPES 2018. 2018,
pp. 86–103. doi: 10.1145/3267323.3268947

4.2 Problem statement and goals

We assume a messaging system in which users embed their cryptographic keys in-
band, i.e., into the messages themselves or into the message headers, as in Autocrypt.
These keys are used to provide message con�dentiality using opportunistic encryp-
tion [Duk14]. That is, the communication is encrypted when users know each oth-
ers’ keys, but falls back to plaintext when they do not.

Sending keys as part of message headers results in two problems. First, in terms of
privacy, adding such headers reveals users’ social ties. Second, in terms of security,
man-in-the-middle attackers can modify the header contents, since they are not
authenticated. Moreover, malicious users can equivocate about others’ keys.

Design goals. We assume that all actors in the system, users and providers, may act
maliciously. Our goal is to design a data structure that can store the binding between
keys and identities, and is suitable for integrating with in-band key distribution. The
purpose of the structure is to support key validation, i.e., help users establish the
authenticity of user-key bindings, as long as some users in the system are honest.
Furthermore, it must protect users’ privacy without relying on centralized parties.

More concretely, we aim at providing the following properties. First, the structure
must guarantee the integrity and authenticity of identity-key bindings, i.e., it should
not be possible to replace or inject bindings without being detected. Second, we
want to preserve the privacy of cross-referenced information and the privacy of the
social graph. These properties ensure that only authorized users can access the key
material in the structure and the identities of the bindings being distributed. Third,
the structure must prevent users from equivocating other users with respect to the
identity-key bindings that they share. That is, a user Owen should not be able to
show to Alice and Bob di�erent versions of a Charlie’s key, even if he withdraws
Alice’s access to see Charlie’s keys. In the latter case if Alice ever regains access,
she must be able to detect Owen’s misbehavior. Finally, our construction should not
entail signi�cant computational or communication overhead for the end users and
providers to enable adoption at large scale.

Non-goals. In-band key distribution cannot ensure full availability of public en-
cryption keys. The keys of one or more recipients may not be available to a sender
at a time of sending a message, and thus, because of the opportunistic encryption
operation, the message would be sent in the clear. We are therefore not concerned
with ensuring 100% availability of keys. Instead, our goal is to secure the keys that
are distributed without harming privacy. If guaranteeing encrypted communication
is absolutely necessary, parties must exchange keys in a reliable way, e.g. through
a centralized service or an out-of-band mechanism.

Furthermore, throughout this paper we consider that users have only one identity,

22

https://doi.org/10.1145/3267323.3268947

Deliverable D4.4 NEXTLEAP Grant No. 688722

and use one and only one structure to store key bindings of their contacts. If a user
wishes to have di�erent identities, she must create one structure per identity.

4.3 ClaimChain design

In this section we introduce ClaimChain, a structure to store key bindings in a secure
and privacy-friendly manner.

4.3.1 Cryptographic preliminaries and notation

We denote sampling uniformly at random from a set X as x ←$X , and the assign-
ment of an evaluation of a function f (x) to y as y ← f (x), regardless of whether f
is probabilistic or deterministic. We denote concatenation of strings by ‖.

Let λ be the security parameter. ClaimChain relies on the following standard cryp-
tographic primitives. Let Enc(k,m) 7→ c and Dec(k, c) denote an IND-CPA secure
symmetric authenticated encryption scheme. ClaimChain uses an existentially un-
forgeable signature given by the algorithms Sig.KeyGen(1λ) returning the keypair
(sksig, pksig), Sign(sksig,m) returning a signature σ , and the veri�cation function
Sig.Verify(pksig,σ ,m) 7→ {>,⊥}. We write DH.KeyGen(1λ) for the generation of
a Di�e-Hellman (DH) keypair (skDH, pkDH) using which we can non-interatively
compute the shared DH key s ∈ {0, 1}∗ using SharedSecret(skDH, pkRDH). Finally, let
H be a cryptographic hash function from which we derive a family of hash func-
tions Hi : {0, 1}∗ → {0, 1}2λ , i > 0.

All schemes use a cyclic group G of prime order q generated by д. We write Zq
for the integers modulo q. Moreover, we assume the existence of a cryptographic
hash function HG : {0, 1}∗ → G that hashes strings to group elements, and a hash
function Hq : {0, 1}∗ → Zq that hashes strings to the elements of Zq .

ClaimChains also require an information-theoretically hiding commitment scheme
Commit(r ,m) that commits to values m ∈ Zq given a randomizer r ∈ Zq . We
instantiate this scheme using Pedersen’s commitment scheme [Ped91]. Let д1,д2 ∈

G be random generators such that the discrete logarithms of д1 and д2 with respect
to each other are unknown. Then, Commit(r ,m) = дr1д

m
2 .

ClaimChains use standard zero-knowledge proofs of knowledge, and in particular
Schnorr’s proof of knowledge of discrete logarithms [Sch91], to prove correctness of
claims. We use the Fiat-Shamir heuristic [FS86] to derive non-interactive signature
proofs of knowledge. For example, we write:

SPK
{
(r ,m) : C = дr1д

m
2
}
(t)

to denote the non-interactive signature proof of knowledge on a random string t for
which the prover knows the commitment opening (r ,m). To focus on the semantics
of the proof, we write

SPK {(r ,m) : C = Commit(r ,m)} (t)

instead, to denote the same proof.

Finally, ClaimChains use a veri�able random function (VRF) [MRV99; FZ13], given
by the algorithms VRF.KeyGen and VRF.Eval. The function VRF.KeyGen(1λ) re-
turns a keypair (skVRF, pkVRF) = (skVRF,д

skVRF). Then, h = VRF.Eval(skVRF,m) =

23

Deliverable D4.4 NEXTLEAP Grant No. 688722

Xi+1 ptri+1 σi+1

Xi ptri σi

X0 − σ0

Bi+1

Bi

B0

Chain

Block index: i

Nonce: nonce

Metadata:
pksig, pkVRF, pkDH

Public data

Block map

Payload Xi

...

Figure 8: ClaimChain block structure

HG(m)
skVRF is the VRF of the value m. Users prove the that h was correctly com-

puted by constructing the proof

SPK
{
(skVRF) : pkVRF = д

skVRF ∧ h = VRF.Eval(skVRF,m)
}
().

The properties of VRF hashes are similar to that of cryptographic hashes: unique-
ness of h for a given message and private key, collision resistance, and pseudoran-
domness (assuming no access to the corresponding proof) [Pap+17].

4.3.2 Overview

We consider that each user has a state made of information about herself and her
beliefs about other users’ states. At a given point in time a users’ state is represented
as a set of statements, called claims. Claims can be of two kinds. The �rst type of
claim refers to a user’s own state. In particular, these may be statements on the user’s
encryption keys, identity information (screen name, real name, or e-mail), or other
cryptographic material such as veri�cation keys to support digital signatures. The
second type of claims, we call them cross-references, refer to other users’ states. A
claim owner creates a cross-reference to endorse the referenced user’s state as being
authoritative, i.e., a cross-reference indicates the owner’s belief that the self key
material found in those users’ state is correct. A user’s state evolves over time as she
rotates her keys and observes the evolution of others’ states. She stores snapshots
of her state in a cryptographic data structure called a ClaimChain.

The core element of a ClaimChain is a block. A block includes all claims that the
owner endorses at the time when she creates the block, i.e., a block is a snapshot
of the owner’s state. Blocks form a chain. A block contains a payload X , a pointer
to the previous block ptr , and a digital signature σi on the payload and the pointer.
See Figure 8. The payload of the previous block Xi−1 contains the veri�cation key
pk(i−1)

sig for the private key sk(i−1)
sig that signs σi .

We now describe each of the block components in detail.

The payload Xi has the following content (see Figure 8, left):

• Block index. The block’s position in the chain. The index of the genesis block
is 0.

• Nonce. A fresh cryptographic nonce used to ‘salt’ all cryptographic operations
within the block. It ensures that the information across blocks is not linkable.

24

Deliverable D4.4 NEXTLEAP Grant No. 688722

• Metadata. The current signature veri�cation key of the owner pksig, that is
used to authenticate the next block of the ClaimChain; the current key pkVRF
to compute a veri�able random function used to support non-equivocation;
and a Di�e-Hellman key pkDH used to provide claim privacy.

• Public data. Application-speci�c data the owner wishes to make publicly vis-
ible. For in-band key distribution we set this to the owner’s self-claim on her
current public encryption key.

• Block map. A high-integrity key-value map storing the claims, as well as ac-
cess tokens that express access-control rights. This map has two core prop-
erties: i) a key can only be resolved to a single value, and ii) it enables the
generation and veri�cation of e�cient proofs of inclusion of claims or ac-
cess tokens. We implement the map using unique-resolution key-value Merkle
trees, explained in more detail in Section 4.3.3. For our use case the map only
contains cross-references.

The signature σi = Sign(sk(i−1)
sig , (Xi , ptri)) authenticates the current block. A block

Bi must have a valid signature under the veri�cation key indicated in the payload
of the previous block Bi−1. The genesis block of a ClaimChain is ‘self-signed’. The
corresponding initial public signing key is included in the initial payload. Each block
in the chain contains enough information to authenticate past blocks as being part
of the chain, validate the next block, and, by transitivity, all future blocks as being
valid updates. Therefore, a user with access to a block of a chain that she believes is
authoritative, can both audit past states of the chain, and authenticate the validity
of newer blocks.

4.3.3 Low-level operations

We now describe how we implement claims and access tokens, and how they are
combined into the block map.

Claims. We model claims as a tuple composed of a label l and a body m. The
label is a well-known identi�er associated with the identity of the user to whom
the claim refers. The body is the state of that user at the time when the claim is
generated, represented as the latest block of this user’s ClaimChain. For instance,
a claim (‘bob@gmail.com’, B) represents the ClaimChain owner’s belief that the
current state of the user associated with this Gmail account is represented by the
block B.

For privacy reasons, claims in a ClaimChain are encrypted. Thus, they cannot be
found directly by other users. To enable e�cient search for concrete claims within
a ClaimChain block, we introduce a lookup key, or index, i for each claim.

We illustrate the encoding of claims in procedure EncClaim, see Figure 9. Consider
a claim (l ,m) that is to be included in a block. We �rst compute the unique VRF of its
label and derive the claim’s lookup key i [lines 2–3]. Note that the computation of
h includes a per-block nonce to ensure that the lookup keys for a given claim label
look di�erent across blocks, and therefore no patterns can be inferred from their
appearance.

Recall that VRF hashes are unique. We use them to derive lookup keys to ensure
that, given a label, all users retrieve the same claim, e�ectively supporting non-
equivocation within a block. This use of VRFs is inspired by CONIKS [Mel+15]. We

25

Deliverable D4.4 NEXTLEAP Grant No. 688722

1: procedure EncClaim(skVRF, l ,m, nonce)
2: h← VRF.Eval(skVRF, l ‖ nonce)
3: i ← H1(h)
4: r ←$ Zq , com← Commit(r ,Hq(m))
5: kπ ←$ {0, 1}λ
6: π ← SPK{(skVRF, r) : pkVRF = д

skVRF ∧

h = VRF.Eval(skVRF, l ‖ nonce) ∧
com = Commit(r ,Hq(m))}(kπ)

7: k ←$ {0, 1}λ , c ← Enc(k,π ‖ m) ‖ com
8: return r ,h,k,kπ , (i, c)

1: procedure EncCap(skDH, pkRDH, l ,h,k,kπ , nonce)
2: s ← SharedSecret(skDH, pkRDH)

3: icap← H3(s ‖ l ‖ nonce)
4: kcap← H4(s ‖ l ‖ nonce)
5: cap← Enc(kcap,h ‖ k ‖ kπ)
6: return (icap, cap)

1: procedure DecClaim(pkOVRF,h, l ,k,kπ , c, nonce)
2: c̄ ‖ com← c
3: π ‖ m← Dec(k, c̄)
4: . Note the veri�cation of π requires pkOVRF, h, l , kπ , com,m, and nonce.
5: if π is not a valid proof then
6: return ⊥

7: returnm

1: procedure DecCap(skDH, pkODH, l , cap, nonce)
2: s ← SharedSecret(skDH, pkODH)

3: kcap← H4(s ‖ l ‖ nonce)
4: h ‖ k ‖ kπ ← Dec(kcap, cap)
5: i ← H1(h)
6: return i,h,k,kπ

Figure 9: Low-level ClaimChain operations

26

Deliverable D4.4 NEXTLEAP Grant No. 688722

also include additional cryptographic elements in our encoded claims in order to ob-
tain a stronger non-equivocation property than CONIKS. Speci�cally, we guarantee
that equivocation is detectable across blocks without the need for key owners to in-
tervene. The need for a detection mechanism stems from the fact that ClaimChain
owners can give and withdraw access to claims at will. Thus, they can try to equiv-
ocate others by giving them access to di�erent information in di�erent blocks. To
make this misbehaviour detectable we provide ClaimChain owners with the ability
to prove statements about claims that other users cannot see. This way, if a proof
cannot be completed, equivocation is revealed (see Section 4.4.1 for more details).

To prove statements on claim contents without revealing them, we commit to the
claim bodym [line 4]. Moreover, we construct a non-interactive proof π on kπ prov-
ing that the VRFh is correct and that the commitment com commits tom [lines 5–6].
When decoding a claim, users verify the proof π . The proof veri�cation key kπ en-
sures that only authorized users can verify this proof.

Once π is computed, we encryptm and π with a random key k [line 7]. Finally, the
claim encoding consists of this ciphertext and the commitment com: c = Enc(k,π ‖
m) ‖ com.

The binding property of the commitment com and the validation provided by the
proof π also ensure that all users with access to an encoded claim c must recover the
same claim body m. This makes this encoding scheme an instance of committing,
or non-deniable, encryption [GLR17]. Hence, a malicious owner can not equivocate
by supplying two di�erent claim encryption keys to di�erent users.

The procedure DecClaim, see Figure 9, describes the decoding of a claim. It takes as
input the encryption key k , the VRF hash h, and the proof veri�cation key kπ from
the owner (see below). Then, users can decrypt the ciphertext using k [lines 2–3];
and verify the claim proof π , which includes the veri�cation of the correctness of
the VRF hash h and of the commitment com [lines 4–6].

Our claim encoding scheme o�ers four distinct security advantages. First, the use of
the VRF ensures that lookup keys can only be produced by the owner of the chain,
which as we describe below supports access control. Second, the lookup key is
unique for a given label, and thus can be used to support non-equivocation for claims
within a block. Third, the lookup key i and claim encoding c leak no information
about the claim label or body. Fourth, it supports zero-knowledge proofs about claim
contents, which enables the detection of equivocation across blocks.

Access capabilities. ClaimChain owners create cryptographic access tokens called
capabilities to ensure that only authorized users can access speci�c claims. A single
capability grants one authorized user access to one claim. We call the authorized
users readers.

An encoded capability is an encryption of all the values needed to obtain a claim
lookup key and decode the corresponding claim: the encryption key k , the VRF
hash h, and the proof veri�cation key kπ . We encrypt these using a key derived
from a shared secret s between the chain owner and the reader. Similarly to claims,
encoded capabilities have an associated lookup key icap, and a body cap.

The procedure EncCap, see Figure 9, describes how to encode capabilities. First, it
computes the shared Di�e-Hellman secret s using the owner’s private DH key skDH

and reader’s public DH key pkRDH [line 2]. The latter is available in the metadata of
the reader’s ClaimChain. We use the secret s to derive both the capability lookup
key icap [line 3], and the capability encryption key kcap [line 4]. Then we encrypt

27

Deliverable D4.4 NEXTLEAP Grant No. 688722

the values h, k , and kπ using the key kcap to obtain the capability encoding [line 5]:
cap = Enc(kcap,h ‖ k ‖ kπ).

Chain owners store the encoded claim c under the lookup key i in the block map.
Similarly, they store the encoded capability cap under the lookup key icap. To �nd a
capability corresponding to a claim with label l in a ClaimChain block, a reader �rst
computes the lookup key icap for label l using the shared secret with the ClaimChain
owner. If the corresponding capability cap is in the block, she decodes it using Dec-
Cap, see Figure 9. First, the reader derives the shared secret s [line 2], and computes
the capability encryption key kcap using the claim label l [line 3]. She can then de-
crypt cap using kcap [line 4], obtaining the label’s VRF hash h, the encryption key
k , and the proof veri�cation key kπ . With this information the reader can compute
the claim’s lookup key i = H1(h), �nd the claim, and decode it using DecClaim.

Block map. Encoded claims and capabilities are stored in the block map. We im-
plement the block map using a unique-resolution key-value Merkle tree. Unlike a
standard Merkle tree that implements an authenticated set data structure, a key-
value tree is an instance of an authenticated dictionary [CW11]. It can be e�ciently
queried for a value that corresponds to a given lookup key. Our construction is sim-
ilar to that of a binary search tree: the intermediate nodes contain pivots that de�ne
whether the querier should follow the left child or a right child; the leaf nodes con-
tain the values. The construction allows queriers to be sure that retrieved values are
unique, i.e., there cannot exist any other leaf nodes that correspond to the queried
lookup key. We call this the unique resolution property. We formally de�ne the prop-
erty in Experiment 1 and prove it in Theorem 3 (both in Appendix A.1). We refer to
Appendix A.1 for further details on the construction.

The unique-resolution property guarantees that for a given lookup key i , respec-
tively icap, there can only be one claim c , respectively capability cap. The unique-
ness of the VRF value h, the property of the tree, and the commitment in the claim
encoding, ensures that a ClaimChain owner can not equivocate within a block.

We note that ClaimChain blocks only need to include the root hash of the Merkle
tree, not the whole tree. This is because our Merkle tree construction allows to
produce an inclusion proof for items: a path from the root to the leaf node which
contains the item. Thus, providing others with this paths is enough to convince
them that the items are in the tree de�ned by the root in the block.

4.3.4 High-level operations

So far we have described how users can encode and decode claims. We now outline
how these claims can be included in a ClaimChain and read from it. At a glance,
owners create blocks with a set of encoded claims and corresponding encoded ca-
pabilities, and use them to extend their ClaimChains. Any user can validate the
authenticity and integrity of the chain. Moreover, readers can retrieve the claims
they are authorized to read. Section 4.4 illustrates how these operations can be used
in the context of in-band key distribution.

Content-addressable store. ClaimChain owners store their blocks and trees in
mutable content-addressable stores. These are key-value stores where the key must
be the hash of the corresponding value. They are a good �t for ClaimChains be-
cause i) it is easy to verify their integrity by checking that all keys are the hashes
of the respective objects they map to; and ii) an incomplete store cannot lead to an

28

Deliverable D4.4 NEXTLEAP Grant No. 688722

erroneous decision on the authenticity, inclusion or exclusion of any block or tree
node. The store supports two operations:

• Put(v). Record the value v in the store.

• Get(h). Return v such that h = H (v), if present in the store.

Extending a chain. Whenever an owner decides to add new claims to her Claim-
Chain she uses the procedure ExtendChain in Figure 10. This procedure takes as
input the public application data, a set of claims (lj ,mj) to add to the block, an ac-
cess control set acs consisting of the authorized reader-label pairs for these claims,
the cryptographic keys necessary to create the block (keypairs for signatures, DH
key exchange, and VRF), as well as the previous signing key sk′sig included in the
previous block, the pointer ptr to that block, and, �nally, the user’s store.

To create a block the user �rst generates a random nonce that is used for all encoding
operations [step 1]. She then encodes all the claims and capabilities [steps 2–3].
The set S of encoded values and their respective lookup keys are used to construct
a Merkle tree with root hash MTR, as described in Algorithm 1 in Appendix A.1
[steps 4–5]. She then constructs the block payload X using the nonce, the block
metadata containing the public keys (pkDH, pksig, pkVRF), the public application data,
and the root MTR of the Merkle tree. She signs the payload X and the pointer ptr
to the previous block using the previous signing key sk′sig (see Figure 8) [step 6].
Finally, she puts the obtained block, B = (X , ptr,σ), into the content-addressable
store [step 8].

Chain validation. Readers must always validate that new blocks correctly extend
the chain that they have previously seen. To do so, users run the procedure Vali-
dateBlocks, see Figure 11. The input to this procedure is a list of blocks Bi , where
B0 is the last validated block, and B1 through Bt are the new blocks to be validated.
For each new block Bi the reader �rst checks if the block includes all elements: the
payload, signature, and the pointer [step 1]. Next, she retrieves the public key pksig
from the preceding block Bi−1 and veri�es the signature in the block Bi [steps 2–3].
This veri�es the authenticity of the chain. Finally, she veri�es that the pointer in
the block Bi is a hash of the preceding block Bi−1, which veri�es the integrity of the
chain [step 4].

Retrieval of the claim by label. After having validated the ClaimChain of an
owner, the reader can query it to retrieve claims of interest using procedure Get-
Claim in Figure 10. This procedure takes as input the reader’s private Di�e-Hellman
key skDH, the claim label l , a pointer to the latest block ptr and the owner’s store.
The reader retrieves the block, and parses it to get the block’s nonce, the owner’s
public keys, and the block map hash [steps 1–2]. She then derives the capability
lookup key using the DH secret shared with the owner [step 3], queries the block
map to retrieve the corresponding capability [step 4]. We refer to Algorithm 2 in
Appendix A.1 for the details of the �eryTree algorithm. Next, she runs the decod-
ing procedure to obtain the claim lookup key i , the VRF hashh, the claim encryption
key k , and the proof veri�cation key kπ [steps 5]. She then obtains the claim encod-
ing c by querying the tree with the claim’s lookup key i [step 6]. Finally, the reader
decodes and veri�es the encrypted claim using h, k , kπ [step 7].

29

Deliverable D4.4 NEXTLEAP Grant No. 688722

procedure ExtendChain(data, claims, acs, keys, ptr, store)
1. Randomly generate a λ-bit nonce nonce.
2. For each claim (l ,m) in claims:

r ,h,k,kπ , (i, c) ← EncClaim(skVRF, l ,m, nonce),

Additionally, record each randomizer r .
3. For each tuple (pkRDH, l) in acs, encode a capability:

(icap, cap) ← EncCap(skDH, pkRDH, l ,h,k,kπ , nonce)

4. Construct a set S containing the encoded claims and capabilities.
5. Build a unique-resolution key-value Merkle tree from the set of entries S :

MTR← BuildTree(S, store).
6. Compute the block

B ←
(
(X , ptr),σ = Sign(sk′sig, (X , ptr))

)
where X contains the nonce, MTR, the block metadata (containing the public
keys pkDH, pksig, pkVRF), and the public application data.

7. Put the block B into the store using Put(B)
8. return H (B).

procedure GetClaim(skDH, l , ptr, store)
1. Get the block from the store: B ← Get(ptr).
2. Retrieve owner’s public keys (pkODH, pkOVRF, pkOsig), the block’s nonce nonce,

and the block map hash MTR from block B.
3. Compute the capability lookup key:

icap ← H3(s ‖ l ‖ nonce),

where s is the shared secret s = SharedSecret(skDH, pkODH).
4. Get the encoded capability from the tree:

cap←�eryTree(MTR, icap, store),

5. Obtain the claim lookup key i , the VRF hash h, the claim encryption key k ,
and the proof veri�cation key kπ :

i,h,k,kπ ← DecCap(skDH, pkODH, l , cap, nonce)

6. Get the encoded claim from the tree:

c ←�eryTree(MTR, i, store)

7. Decode c and verify the correctness of the claim:

m ← DecClaim(pkOVRF, l ,h,k,kπ , c, nonce)

8. If any of the lookups failed, return None. If the veri�cation failed, return ⊥.
Otherwise, returnm.

Figure 10: Extending and querying ClaimChains

30

Deliverable D4.4 NEXTLEAP Grant No. 688722

procedure ValidateBlocks({B0,B1,B2, ...,Bt })
For each i from 1 to t :

1. Check that block Bi is of the form ((Xi , ptri),σi).
2. Retrieve the public key pk(i−1)

sig from the block Bi−1.
3. Verify Bi ’s signature σi using the previous block’s key:

Sig.Verify(pk(i−1)
sig ,σi , (Xi , ptri))

4. Verify that the hash chain construction is correct:

ptri = H (Bi−1)

Return > if all checks were successful, otherwise return ⊥.

Figure 11: Block validation

4.3.5 Security and privacy properties

We now sketch why the ClaimChain design ful�lls the security and privacy objec-
tives established in Section 4.2.

We note that authenticity and integrity are guaranteed through the usage of signa-
ture and hash chains respectively. Signatures guarantee that the information stored
in a ClaimChain has been added by the owner of the chain. The usage of cryp-
tographic hash functions for constructing the pointers between blocks guarantees
that tampering with the ClaimChain content will be detected.

Privacy. ClaimChains provide privacy of content and privacy of the social graph. We
capture these through the following properties:

• Capability-reader unlinkability. The adversary cannot determine for which
honest user a capability has been created.

• Claim privacy. The adversary cannot learn anything about the labels and bod-
ies of claims for which it does not have the corresponding capabilities.

Informally, these properties are provided by ClaimChains because the adversary
can neither derive the capability lookup key, nor learn the contents of the encoded
capability without the knowledge of the shared secret used to encrypt the them.
This implies that an adversary without this key cannot read capabilities nor learn to
whom they are destined (capability-reader unlinkability). Since the adversary can-
not read the capability, it also does not learn the VRF hash h required to compute
the claim lookup key, nor the claim encryption key k . Moreover, the pseudoran-
domness of the VRF hash h ensures that the adversary cannot compute h without
the cooperation of the chain owner. Thus, the adversary cannot check whether a
particular claim is included in the block.

Following a similar reasoning, the adversary cannot learn the content of a claim
from its lookup key. Furthermore, the encoded claim c does not reveal anything
about the claim, except its length. Therefore, claim privacy holds, as long as all
claims are of the same length, or padded to the same length.

We formalize these properties in Experiments 2 and 3, and prove them in Theorems 4
and 5 in Appendix A.2.

31

Deliverable D4.4 NEXTLEAP Grant No. 688722

Non-equivocation. Our construction also prevents equivocation. Speci�cally, it
guarantees the following two properties:

• Intra-block non-equivocation. Within a given block, a ClaimChain owner can-
not include two di�erent bodies encrypted to di�erent readers, having the
same claim label.

• Detectable inter-block equivocation. For any subset of ClaimChain blocks the
owner can produce a proof that, for a given label l , all claims in these blocks
belong to some set of allowed claims M without revealing the claims them-
selves.

The latter property ensures that a user cannot selectively withdraw access rights be-
tween blocks to equivocate users. We detail this attack and the proof that mitigates
it in Section 4.4.1.

The intra-block non-equivocation relies on three properties of the ClaimChain con-
struction. First, the uniqueness of the VRF hash h ensures that for a given label
all readers will compute the same claim lookup key. Second, the unique-resolution
property of our Merkle tree ensures that for a given lookup key all readers obtain
the same claim encoding. Third, the claim commitment ensures that all readers will
decrypt the same claim body.

We formalize both properties in Experiments 4 and 5, and prove them in Theorems 6
and 7 respectively in Appendix A.2.2.

4.4 Using ClaimChains to secure in-band key distribution

Recall from Section 4.2 that the goal of the ClaimChain data structure is to improve
the security and privacy of in-band key distribution. In this section we describe how
this can be achieved.

Building a ClaimChain. To use a ClaimChain, a user has to build blocks, contain-
ing her claims. When to update the ClaimChain depends on the owner’s preferences.
For example, a user can update her chain whenever she rotates her own encryption
public key, or when she needs to distribute new cross-references that are not present
in her ClaimChain yet.

To update her chain, an owner runs the ExtendChain procedure (Figure 10). For
this purpose, she encodes a set of claims representing all her current views of other
users as cross-references in the following way. For each contact, she makes a cross-
claim (l ,m), where l is the contacts’ e-mail, andm is the contact’s latest block.

Then, the owner must decide which of these claims she intends to make available
to which of her contacts. This choice determines the access control set acs. The
access control policy is governed by the user’s privacy preferences. De�ning these
preferences is beyond the scope of this work.

Recall that to implement access control the owner uses shared DH secrets with each
of the readers. Thus, the owner needs to complete a round-trip of messages with a
contact before she can give this contact access to her claims.

Finally, the owner puts her own public encryption key into the public application
data section of the block. For our use case of in-band key distribution we assume
that all keys are constant size. Hence blocks, and therefore claims, are constant size

32

Deliverable D4.4 NEXTLEAP Grant No. 688722

too. This ensures claim privacy even though the encryption scheme leaks the length
of the plaintext.

Distributing ClaimChains. To ful�ll their purpose, ClaimChains must be made
available to other users. For this, a user includes a content-addressable store con-
taining blocks from her ClaimChain, and a subset of the Merkle tree nodes from her
latest ClaimChain block, in every message she sends. The user keeps a record of
which blocks they have sent to whom. To select the blocks to be sent, the sender
checks her record, and includes all her ClaimChain blocks that the recipients of the
current e-mail have not received yet.

The subset of the Merkle tree is selected to ensure that all information in the Claim-
Chain relevant to her message can be authenticated. More concretely, the sender
produces resolution paths on the tree (see the GetIncPath procedure in Algorithm 2
in Appendix A.1 for the details) for each relevant claim and capability.

Receiving messages and validating ClaimChains. Upon receiving a message
with a store containing ClaimChain data, a user �rst validates the received chain,
running the ValidateBlocks procedure (Figure 11) to check if the new blocks ex-
tend a chain that has been seen previously. If the validation succeeds, the owner
checks the consistency of the cross-references in the newly received part of the chain,
i.e., whether all the cross-references to Charlie point to the blocks on a single chain.
This partially prevents malicious chain owners from cross-referencing fake chains.
See Section 4.4.1 for an example of such an attack, and the details of a consistency
check procedure in case the receiver does not have access to the claim in some of the
received blocks. If both checks succeed, she stores all the received blocks and tree
nodes into her gossip storage. This enables her to query the sender’s ClaimChain
later. The gossip storage contains all the block and tree nodes the user has received
over time.

Message encryption. Following the opportunistic encryption paradigm, before
sending a message, the sender checks if she has learned the public keys of all of the
recipients through the ClaimChains she has received over time. If she cannot �nd
all keys, she sends the message in plaintext.

To �nd the encryption keys she proceeds as follows. For every recipient with e-mail
address l , and every ClaimChain with head ptr in her gossip storage gossip_store,
she runs GetClaim(skDH, l , ptr, gossip_store), see Figure 10, to �nd out whether it
includes cross-references to this recipient. For every hit, she parses the correspond-
ing claim and adds the cross-referenced ClaimChain block of the recipient to a social
evidence set for this recipient. She then identi�es the most recent block of the recip-
ient’s ClaimChain (out of those present in her evidence set), i.e., the one that forms
the longest hash chain, and uses the encryption public key in that block to encrypt
the message. As a result of this process, the sender may discover new blocks of the
recipient’s chain. She can then include the updated views as cross-references next
time the chain is extended.

Resolving con�icts. This key resolution process may reveal con�icting views. For
example, the blocks in the evidence set could point to two or more distinct chains.
Another possibility is there could be a ‘fork’: two valid blocks with the same block
index that extend a common parent block. In either case, ClaimChains con�icts are
detectable and generate cryptographically non-repudiable evidence. The design of
mechanisms for sharing such evidence and deciding how to act on it is out of scope
of this work.

33

Deliverable D4.4 NEXTLEAP Grant No. 688722

O1 O2 O3 O4

C1 C2 C3

F1 F2

Owen’s
chain

Real
Charlie’s
chain

Fake
Charlie’s
chain

xref to Charlie
for Alice

xref to Charlie
for Bob

xref to Charlie
for Bob

xref to Charlie
for Alice

Figure 12: Inter-block equivocation

4.4.1 Detecting inter-block equivocation

ClaimChain’s intra-block non-equivocation property ensures that all readers of cross-
references to Charlie’s chain see the same cross-reference in each block. However,
chain owners may try to present di�erent views to di�erent users in di�erent blocks
by abusing the access-control mechanism. Thereby, the chain owner can equivocate
between blocks.

Consider the following example, illustrated in Figure 12, in which the chain owner
Owen shows Bob a fake cross-reference to Charlie’s chain, while showing the cor-
rect cross-reference to Alice. To do so, he never lets Alice and Bob see claims about
Charlie’s chain in the same block. In block 1, he gives access to Alice, but not to Bob,
while in blocks 2 and 3, he gives access to Bob, but not to Alice. Finally, in block 4,
Owen again gives access to Alice but not Bob. If Owen has claims about Charlie’s
true chain in blocks 1 and 4—the ones that Alice can read—and false claims about
Charlie’s chain in blocks 2 and 3—the ones Bob can read—he is e�ectively launching
an equivocation attack.

A trivial solution to prevent this attack would be to, upon suspicion, allow Alice
and Bob to inquire about claims related to Charlie in the blocks where they do not
have access. However, this can leak information about if and when the chain owner
learned about Charlie’s updates. To be able to withdraw the access while preventing
the described attack in a privacy-preserving way, ClaimChain enables the chain
owner to prove, in zero knowledge, that she did not equivocate in the blocks where
the cross-references were not accessible by the reader.

Consider again our example in Figure 12. When Alice regains access to Charlie’s
references in block 4, she can use a detection mechanism to detect Owen’s equivo-
cation attempt. In other words, she can determine that in the intermediate blocks
2 and 3, where she did not have access to the cross-references about Charlie, Owen
referenced a di�erent chain than the one she sees. Bob would also detect the equiv-
ocation if he regains read access.

To enable detection, upon giving the access to Alice in block 4 again, Owen con-
structs a non-equivocation proof as follows.

1. Owen recomputes the VRF hashes hi = VRF.Eval(skVRF, l ‖ noncei) for all in-
termediate blocks, and computes proofs of correctness π (i)h :

π (i)h = SPK
{
(skVRF) : pkVRF = д

skVRF ∧ hi = VRF.Eval(skVRF, l ‖ noncei)
}
()

Alice can use the VRF hashes to locate the cross-reference to Charlie in the
34

Deliverable D4.4 NEXTLEAP Grant No. 688722

procedure ProveConsistency(skVRF, l , {Oi }
n
1 , {Ci }

t
1, {(ri ,xi)}

t
1)

for i = 1, . . . ,n do

hi ,π
(i)
h ← VRF.Eval(skVRF, l ‖ nonce)

π (i)ref ← SPK
{
(ri ,xi) : comi = Commit(ri ,xi) ∧
xi ∈ {Hq(C1), . . . ,Hq(Ct)}

}
()

return πconsist =
{
(hi ,π

(i)
h ,π

(i)
ref)

}n
1

procedure CheckConsistency(l , {Oi }
n
1 , {Ci }

t
1,πconsist, store){

(hi ,π
(i)
h ,π

(i)
ref)

}n
1 ← πconsist

for i = 1, . . . ,n do

Verify proof π (i)h for hi and pkVRF

Verify proof π (i)ref w.r.t. {Cj }
t
1 and Oi using store.

return > if all proofs veri�ed, otherwise ⊥

Figure 13: Proving and verifying that blocks Oi cross-reference the label l to the
correct chain Ci .

intermediate blocks of Owen. The proofs π (i)h con�rm that she found the correct
claims for Charlie’s label l .

2. Owen proves in zero-knowledge that comi commits to one of the intermediate
blocks C1, . . . ,Ct on Charlie’s chain:

π (i)ref = SPK
{
(ri ,xi) : comi = Commit(ri ,xi) ∧ xi ∈ {Hq(C1), . . . ,Hq(Ct)}

}
().

Owen compiles all the tuples (hi ,π (i)h ,π
(i)
ref) and sends them to Alice. Alice uses these

tuples to check that each of the intermediate blocks belong the same chain of Charlie
that she saw before. If Owen indeed equivocated as in the example, Alice can detect
this, since the proof veri�cation would have failed. A detailed description of this
procedure is given in Figure 13.

4.5 Evaluating the performance of ClaimChain

In this section we evaluate the performance of the new ClaimChain data structure.
For the e�ectiveness of using ClaimChain for in-band public key distribution we
refer to deliverable “D2.2: Federated Secure Identity Protocol”.

4.5.1 Experimental setup

We implemented a prototype of ClaimChains in Python.8 This implementation uses
the petlib library [Dan] for elliptic curve cryptography operations, which internally
relies on the OpenSSL C library. For the implementation of hash chains and unique-
resolution Merkle trees we use the hippiehug9 library, which is written in pure
Python. Our implementation uses AES128 in GCM mode for symmetric encryp-
tion; ECDSA, ECDH, and other elliptic curve operations with a SECG curve over a
256 bit prime �eld (“secp256k1”); and SHA256 as the base hash function.

8https://github.com/claimchain/claimchain-core
9https://github.com/gdanezis/rousseau-chain

35

https://github.com/claimchain/claimchain-core
https://github.com/gdanezis/rousseau-chain

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 3: ClaimChain basic operations timing

mean (ms) std. (ms)

Label capability lookup key computation 0.30 0.01
Label capability decoding 0.33 0.01
Label capability encoding 0.33 0.02
Claim encoding [π computation] 2.44 [2.38] 0.05 [0.05]
Claim decoding [π veri�cation] 3.03 [2.96] 0.05 [0.05]

All the lookup keys on the claim map are truncated to 8 bytes, which makes colli-
sions unlikely for up to 232 entries in the map. The size of the per-block nonce is set
to 16 bytes, and it is generated using the standard Linux urandom device.

Our experiments are also publicly available and reproducible.10 We extensively use
Jupyter notebooks [Klu+16] and GNU parallel [Tan11]. We run the experiments on
an Intel Core i7-7700 CPU @ 3.60GHz machine using CPython 3.5.2.

4.5.2 ClaimChain operations performance

We now evaluate the performance of ClaimChains in terms of computation time
and storage.

Timing. We �rst measure the computation time for encoding and decoding claims
and capabilities as described in Section 4.3.3. We encode and decode 1000 claims and
corresponding capabilities for random readers (i.e., encoded for a random DH public
key). Each claim has a 32-byte random label and 512-byte random content. This
re�ects a realistic e-mail setting: 32-byte labels can accommodate e-mail addresses
or their hash; and 512 bytes approximates the approx. 500-bytes block size in our
experiments below.

Table 3 reports our measurements. The time for encoding, decoding, and computing
lookup keys for capabilities is under 0.33 ms. The time to encode and decode claims
is around 3 ms, consisting mostly of the proof computation and veri�cation time.

The most computationally expensive operation that ClaimChain owners perform is
constructing the block map when a new block is created. The map is constructed
using the BuildTree procedure (see Algorithm 1 in Appendix A.1). We measure
the time to create a block map of n claims with one capability each, i.e., readable by
only one reader. We range n from 100 to 5,000. For each case we construct a unique-
resolution key-value Merkle tree with the encoded entries. Figure 14 (left) shows the
average time required to build the tree across 20 experiments. Even for 5,000 claim-
capability pairs the operation takes under 0.3 seconds. In reality, we expect users to
have much fewer entries per block (in our simulation using the Enron dataset this
number rarely exceeds 1,000).

Recall that along with the block, users send paths that prove the inclusion of rele-
vant claims and capabilities in the block map tree. These are computed using the
GetPath procedure (see Algorithm 2 in Appendix A.1). We measure the time to
compute and verify a proof for a single entry, as well as the proof size in terms
of number of tree nodes and bytes. We use the same setting as in the previous
experiment. Unsurprisingly, the computation and veri�cation time, and the proof

10https://github.com/claimchain/claimchain-simulations

36

Deliverable D4.4 NEXTLEAP Grant No. 688722

2000 4000
Claim-capability pairs

0.0

0.2

Ti
m

e
(s

)

Claim map construction
avg
1 st. dev.

0 2000 4000
Claim-capability pairs

2

4

6

Si
ze

 (M
B)

Storage breakdown
Tree nodes
Tree leaves
Block

Figure 14: Total storage size and claim map construction time

size scale logarithmically with the number of items in the map. For 5,000 items,
computation and veri�cation take on average about 150 milliseconds, and the proof
consists of on average 20 tree nodes and takes about 1.5 KB.

Storage. We measure the size of a ClaimChain block, a block map tree, and values
stored in the leaves of the tree (encrypted claims and capabilities). The size of the
block map depends on the number of entries in the map and the size of claims.
Figure 14 (right) shows the size breakdown depending on the number of items in
the map. Note that the block itself only includes the root of the tree. Thus, the
block size is constant (about 500 bytes), and can only grow if security parameters
change (size of cryptographic public keys, or hash length increases), or additional
data about the owner is added.

Inter-block equivocation detection. The cost of proving consistency is domi-
nated by the proof π (i)ref . Using a straightforward instantiation with ‘or’ proofs, the
prover and veri�er must compute approximately 5t exponentiations to construct
and verify π (i)ref , where t is the number of possible cross-referenced blocks. There-
fore, a full consistency proof requires approximately 5nt exponentiations, where n
is the number of intermediate blocks on the owner’s chain.

4.6 Concluding remarks

In-band key distribution, as proposed by Autocrypt, is a promising direction to-
wards achieving e-mail encryption without the collaboration from service providers.
However, it su�ers from security and privacy problems. To address these issues we
introduced ClaimChains, a construction that can be sent in-band with e-mails to
provide high-integrity evidence of key-identity bindings. Its cryptographic access
control enables users to selectively reveal their contacts, preserving their privacy,
while preventing equivocation attacks in which di�erent users are shown di�erent
bindings.

We demonstrate that key propagation, and thus the ability to encrypt messages, is
not a�ected much when using the privacy features of ClaimChains. However, users
do obtain less evidence about other users’ bindings, increasing the chances that
wrong keys go unnoticed. On the negative side, our study shows that the coverage
achieved by in-band key distribution is partial at best. In our realistic simulations we
could achieve a maximum of 66% of e-mail encrypted, even within a well-connected
social network.

However, we note that the design of ClaimChains is not tied to decentralized stor-

37

Deliverable D4.4 NEXTLEAP Grant No. 688722

age and distribution. Their strong security and privacy properties permit to host
the content-addressable storage in semi-trusted providers without relying on them
to return correct values. Such deployment of ClaimChains would greatly improve
availability of ClaimChain data. But, to obtain perfect privacy, such scheme requires
integration with privacy-preserving storage access [Cho+95; TDG16] to avoid leak-
age stemming from access patterns.

Finally, ClaimChain or its component data structures can have applications to use
cases beyond key distribution. The claim map data structure, for example, can be
applied in similar settings when a veri�able dictionary with cryptographic access
controls for its lookup keys is needed.

5 Tandem

The security and privacy properties of cryptographic schemes, including Claim-
chains, rely on the security of the underlying cryptographic keys. As a result of
decentralization, these keys move to the user’s devices, which are di�cult to se-
cure.

In this section we present Tandem, a system that allows users to increase the security
of their keys by sharing a part of their cryptographic keys with a central server
without having to give up any of their privacy to do so.

5.1 Introduction

The security of cryptographic schemes hinges on the security of the underlying
keys. However, secure solutions to store and process keys on users’ devices are
hard to deploy in practice. Software-based approaches are extremely di�cult to se-
cure [Her15; Vee+16; Kim16; Lip+18], and secure hardware [EKA14; Mar+13; SZ05]
might not be available on users’ devices, not accessible to developers [McG+15;
And17], or harmful to usability [DDC18].

As an alternative, users could use a secure central server to store their keys and
perform cryptographic operations on their behalf, and to block their keys if their
devices are compromised. The problem is that centralization introduces security
and privacy concerns that are not an issue when keys are stored on the user’s de-
vice. First, users must trust the central server to not impersonate them. Second, the
central server is in a privileged position to learn private information about users
from their interactions with other services. Brandão et al. illustrate these problems
in the context of nation-scale brokered-identi�cation systems [Bra+15]. They show
how a central hub that acts as the broker between users, identity providers, and
service providers can impersonate users, link users’ transactions across di�erent
service providers, and also learn private identi�able information about users.

A natural solution to the impersonation problem is to involve the user in the stor-
age and/or usage of the keys by using threshold cryptography. This approach ad-
ditionally strengthens authentication security as the user needs a second factor: a
key share. However, threshold cryptography does not address the privacy concerns
associated with centralization. The central server learns the users’ key-usage pat-
terns and, as the time of access and use of the key are almost the same, it can use this
information to deanonymize users’ anonymous transactions, e.g., correlating inter-
actions to public activities such as updates to a blockchain ledger [Jaw+18; Gol+18].

38

Deliverable D4.4 NEXTLEAP Grant No. 688722

In this work, we present Tandem, a set of protocols that augment threshold-cryptographic
schemes to enable secure and privacy-preserving usage of key shares managed by
a central server. To use a key, a user sends a one-time-use key-share token to the
central server using an anonymous communication channel. This token contains
a randomized version of the central server’s key share for this user. The server
uses this key share to run the threshold-cryptographic protocol without learning
the user’s identity.

The construction of key-share tokens permits to decouple the stages of obtaining
and using the tokens, eliminating the possibility of time-correlation attacks. Fur-
thermore, the one-time property enables two additional functionalities: the block-
ing of keys in case the user’s key share is compromised, and the rate limiting of key
usage to restrict how often an attacker can use an unblocked key. Tandem provides
these functionalities without the need to identify token owners.

Tandem can be used to secure the keys of any cryptographic scheme (e.g., encryp-
tion, signature, or payments) for which a linearly randomizable threshold-cryptographic
version of the scheme exists. As long as the threshold version is private, i.e., the
scheme does not require information that identi�es the user besides the key, Tandem
ensures that not even a malicious central server can learn with which user it is inter-
acting. For example, Tandem can be applied to threshold variants of Schnorr [Gen+07]
and RSA signatures [Sho00], ElGamal-based [ElG84; SG02] and RSA decryption [Sho00],
as well as threshold-cryptographic versions of electronic cash schemes [CHL05;
Mie+13] and attribute-based credential schemes [ASM06; Bra00; CH02; CL02]. We
note, however, that Tandem cannot be applied to existing threshold DSA schemes
because they are multiplicative [MR04] or require identifying auxiliary informa-
tion [GGN16].

To demonstrate the potential of Tandem we use it to secure keys in a threshold
version of BBS+ attribute-based credentials (ABCs). ABCs [ASM06; Bra00; CH02;
CL02] protect users’ anonymity during authentication on sensitive online services,
e.g., online health services11. Thus, enhancing them with a naïve centralized ap-
proach in which the central server could learn which sensitive services users access
would defeat the very purpose of ABCs. Using Tandem to secure her keys, the user
can show her credential to the online service without the Tandem server learning
who is using the key, preserving the user’s privacy even if the Tandem server and
the service provider collude. Moreover, the user never has the complete key in her
device.

The anonymity provided by ABCs opens the door to malicious users abusing service
providers. We also provide a simple modi�cation to the threshold ABC schemes that
enables service providers to con�rm that Tandem is used. Then, as long as all users
use Tandem, Tandem can replace the complex ad-hoc cryptographic techniques to
block users [ATK11; Tsa+10] or limit key-usage [Cam+06].

We validate the practicality of the Tandem protocols on a prototype C implemen-
tation. Using a key with Tandem induces a 50 – 100 ms overhead on the Tandem
server with respect to traditional threshold-cryptographic solutions, and only 5 ms
overhead on the user. The cost for the server is manageable. On the user side, the
overhead is negligible with respect to the delay imposed by the use of anonymous
communications necessary for typical uses of Tandem such as anonymous web-
based authentication.

11such as https://medical.mit.edu/services/mental-health-counseling and
https://www.nhs.uk/Conditions/online-mental-health-services/Pages/introduction.aspx

39

https://medical.mit.edu/services/mental-health-counseling
https://www.nhs.uk/Conditions/online-mental-health-services/Pages/introduction.aspx

Deliverable D4.4 NEXTLEAP Grant No. 688722

In summary, we make the following contributions:

X We introduce Tandem; it enables the use of threshold-cryptographic protocols
with a central server to secure cryptographic keys without this server learning what
keys are used by whom. Additionally, Tandem enables blocking and rate limiting
of key usage.

XWe provide a threshold version of an attribute-based credential system, and show
how Tandem can be used to augment its security. We show how the underlying
constructions in Tandem permit rate limiting and revocation of credentials without
relying on complex purpose-built cryptographic techniques.

X We prove the security and privacy of Tandem, and we use a prototype imple-
mentation to validate its practicality. All operations in Tandem take less than one
second, imposing a reasonable overhead on both server and users.

5.2 Related Work

Exisiting solutions to protect cryptographic keys fall into two coarse categories,
either single-party or decentralized. The former typically rely on secure hard-
ware [Mit05; SZ05; Mar+13; EKA14] that securely stores and processes crypto-
graphic keys within the secure environment. However, secure hardware is expen-
sive, is not always available (e.g., in laptops) or not accessible by application devel-
opers, and is often not �exible enough to run advanced protocols.

Threshold cryptography aims to strengthen general cryptographic protocols by dis-
tributing the user’s secret key among several parties. This approach was �rst pro-
posed by Desmedt [Des87] and Boyd [Boy89]. Several threshold encryption and
signature schemes have been proposed since then [DF91; Rab98; Gen+00; Gen+07;
Sho00; ADN06; PNP08; Haz+12]. More recently, Atwater et al. [AH16] built a library
to execute such protocols in users’ personal devices. Other works have tackled more
complicated protocols. For instance, Brands shows how to distribute the user’s se-
cret key in attribute-based credentials [Bra00], and Keller et al. [KMR12] show how
to make threshold-cryptographic versions of zero-knowledge proofs.

Many works propose systems in which the user’s secret key is shared between a
user’s device and a central server to protect the key and also to enable instant block-
ing of the key by the user [MR01; Cam+16; Bon+01; BDT04; LQ03; Bul+17]. How-
ever, none of these schemes provide privacy for the user towards the central server.
In all of these schemes users authenticate themselves to the server, making them sus-
ceptible to time-correlation attacks [Jaw+18]. Camenisch et al. [Cam+16] attempt to
ensure privacy to some extent in signature schemes by blinding the message being
signed during the threshold protocol with the server. Yet, the server learns when
and how often the user uses her signing key. Hence, users are still vulnerable to tim-
ing attacks. The scheme by Brands [Bra00] protects against these attacks as long as
the key-share holder is a smartcard, which cannot store a timed log of operations.
However, if the smartcard is replaced by an online server that holds the key share,
this server learns the key-usage patterns of users. Then, the cryptographic measures
proposed by Brands alone cannot prevent time-correlation attacks.

Tandem is designed to complement these threshold-cryptographic solutions to
make them privacy friendly. We compare the privacy properties obtained when
using Tandem with those in previous proposals in Table 4. We consider three pri-
vacy aspects: anonymity of the user when running the threshold protocol (i.e., need

40

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 4: Comparison of generic and special-purpose TCPs with TCPs augmented
with Tandem.

Generic Purpose with Tandem
e.g., [Gen+07; SG02] [Cam+16; Bra00]

Anonymous key usage × × X
Hide protocol data × X ×*

Hide key-usage patterns × × X

* This property is irrelevant for Tandem; see text.

to authenticate); hide the data used (e.g., signed message) in the protocol from the
server; and hide the usage pattern to avoid timing attacks. Generic schemes focus
on achieving security of the secret key and thus provide no privacy. Special-purpose
designs, have so far only focused on the protection of data involved in the protocol.
Tandem does not need to protect this data: the other two properties decouple the
data from the user’s identity.

Finally, similarly to Tandem, password-hardening services [Eve+15; CLN15] use
decentralization to increase security against brute-force attacks. These schemes in-
troduce a hardening server that rate limits, or even blocks, requests from the main
authentication server. However, the cryptographic techniques behind these solu-
tions cannot be directly applied to the problem tackled by Tandem. First, they are
designed for a particular task: securely verifying passwords, and adapting them to
run other protocols is non-trivial. Second, in the password scenario the hardening
server is only accessed by the authentication server. Therefore, there are no privacy
concerns, and these techniques do not provide any privacy protection.

5.3 Problem Statement

We consider a scenario in which users are required to perform cryptographic op-
erations to interact with a service provider (SP). Users use insecure devices, such as
smartphones, tablets, or laptops, without secure hardware, to run the cryptographic
protocols. To keep their keys safe, they use a centralized Tandem Server (TS) to run
threshold-cryptographic protocols (TCPs) in a distributed way. Users wish to keep
their key-use pattern and their use of other services private with respect to the TS.
We call an execution of the protocol between the user and the TS a transaction.

For simplicity, we assume that there is only one Tandem server. However, we note
secret-sharing the key with multiple Tandem servers would increase security. In
this case Tandem would ensure that keys can be blocked and rate limited as long as
at least one of the Tandem servers is honest. Privacy is not a�ected by the number
of servers.

5.3.1 Tandem Properties and Threat model

Property 1 (Key security). Tandem protects the use of the user’s key. No entity
other than the user is able to use the user’s key. Even if the user’s device is compro-
mised, the user can maintain this property by blocking the key at the Tandem server.
Thereafter, the attacker cannot further use her key. We formalize this property in
Game 1 in Section 5.6.

41

Deliverable D4.4 NEXTLEAP Grant No. 688722

Any solution that recomputes the full user’s key on the user’s device, e.g., by deriv-
ing it from a user-entered passphrase, does not satisfy this key-security property.
In such a solution, an attacker who compromises the user’s device can observe the
full key when it is used. Thereafter the attacker can use the key inde�nitely, making
blocking impossible.
Property 2 (Key rate-limiting). Tandem limits the rate of usage of keys. Users can
limit the number of times her key is used in a given interval of time. We call this
interval an epoch. We formalize this property in Game 2 in Section 5.6.

The security and rate-limiting properties are related to the revocation and n-times-
use concepts of attribute-based credentials [Cam+06], respectively. Yet, they are
not the same. Revocation and n-times-use credentials trust the service providers to
block credentials respectively to block a credential after n uses. Using Tandem on
the other hand, users need to trust only the TS, which they choose, to block and
rate-limit keys. Tandem can ensure this property for a large class of protocols, even
if a system does not rely on credentials.
Property 3 (Key-use privacy). Tandem protects the privacy of key use in transac-
tions. The Tandem server (TS) cannot distinguish between two users performing
transactions. Even if the TS colludes with the service provider (SP) it cannot distin-
guish users (unless the SP could distinguish the users, in which case collusion leads
to a trivial and unavoidable privacy breach). We formalize this property in Game 4
in Section 5.6.

We assume that the Tandem server is honest with respect to security. That is, it
follows the protocols so as to protect the security of users’ keys (Property 1) and to
ensure that keys are only used the allowed number of times (Property 2). Moreover,
we trust the Tandem server to be available, i.e., Tandem does not protect from denial
of service. However, the Tandem server may be malicious with respect to privacy:
It is interested in breaching the privacy of the users by trying to learn which keys
and services they use (Property 3).

Why naïve solutions do not work. Consider an approach in which a user naïvely
secret-shares her key with the Tandem server. When she needs to run a threshold-
cryptographic protocol, the user authenticates to the TS, the TS recognizes the user,
retrieves its share of the user’s key, and executes the TCP together with the user.
This scheme o�ers key security (Property 1): The TS alone cannot use the user’s
key, and if an attacker compromises the user’s device, the user can authenticate to
the TS and request it to block her key. This scheme also provides key rate limitation
(Property 2): the TS can observe when a user accesses her key. Hence, it can easily
enforce a limit on the number of times the key is used. However, since the user
is identi�ed while using the key for a TCP, the scheme does not achieve key-use
privacy (Property 3).

The lack of key-use privacy has further implications when the interactions between
the user and the SP are anonymous (e.g., showing an anonymous credential). The SP
can collude with the TS to learn the user’s identity, exploiting the fact that there is a
strong correlation between the time when the authenticated user interacts with the
TS, and when the anonymous user interacts with the SP. Thus, for every anonymous
transaction with the SP, the anonymity set of the user is reduced to the authenticated
users interacting with the TS around the transaction time. This attack has been
used in the early days of Tor to identify users and hidden services [Abb+07; ØS06].
The attack relies solely on time correlation between accesses. Therefore, the attack
cannot be prevented by making the messages seen by the TS and the SP during the
TCP cryptographically unlinkable [Bra00].

42

Deliverable D4.4 NEXTLEAP Grant No. 688722

User TS
RegisterUser

xU

auth passphrase

xS

User TS
ObtainKeyShareToken

auth

GenShares
~xSxU

~
User TSTCP

an
on
ym

ou
s

co
m
m
un
ic
at
io
n

P
SP

R
eg
is
te
r

O
bt
ai
n
to
ke
n

U
se
 to
ke
n

User TS
BlockShare

passphrase

B
lo
ck

Figure 15: Tandem process: a�er registration, a user can authenticate herself and
obtain key-share tokens, which can later be used anonymously to execute a TCP
(the user and SP run protocol P). The user can block her keys at any time. Inputs
are shown above the arrows, outputs below.

There are two straightforward approaches to prevent time-correlation attacks: in-
troducing delays and introducing dummy requests. These solutions are, however,
di�cult to use in practice. To signi�cantly increase the anonymity set for users,
operations may need to be delayed for a long time. This rules out applications that
require short delays, such as showing an anonymous credential or performing a
payment. Dummy tra�c not only imposes an overhead on users and the TS, but
it is widely known that generating dummy actions that are indistinguishable from
real activity is very di�cult [BTD12; CG09]—especially because it is unrealistic that
users would be always online so that their devices could produce such requests.

5.3.2 Tandem at a Glance

We now provide a high-level overview of how users can use the Tandem server to
perform threshold-cryptographic protocols in a privacy-preserving way, see Fig. 15.
We assume that users can use an anonymous communication channel [Pio+17;
DMS04b] to communicate with the Tandem server (TS) and service providers (SPs)
to protect their privacy at the network layer.

Registration. First, users register with the TS using the RegisterUser protocol.
During registration, the user and TS jointly compute long-term shares xU and xS of
a long-term key x appropriate for the threshold-cryptographic protocols they seek
to run later. The user obtains credentials to authenticate when obtaining a token
(e.g., a password) and also a means to block her keys (e.g., a passphrase); she stores
the latter outside her device.

Obtain Token. Key-share tokens enable the user to anonymously use her key later
(see below). To obtain a token, the user runs the ObtainKeyShareToken protocol
with the TS. First, the user authenticates herself to the TS. Then, the user and the
TS construct a one-time-use key-share token, containing a randomized version of
the TS’s key share xS . At this stage, the TS can limit the number of tokens it provides
the user, thus limiting how often the user can use her key.

43

Deliverable D4.4 NEXTLEAP Grant No. 688722

Key-share tokens may seem similar to passwords: both unlock functionality. How-
ever, unlike passwords, key-share tokens can be veri�ed and used without knowing
the user’s identity. Moreover, key-share tokens contain a randomized key share x̃S
essential for the TCP. Hence, Tandem cannot be replaced by a password-hardening
service [Eve+15; CLN15]. The randomized key shares contained in the tokens also
distinguish the tokens from traditional eCash tokens [CFN; CHL05; Mie+13].

Using Keys. After obtaining tokens, a user can run threshold-cryptographic pro-
tocols with the TS. First, the user and the TS use the token to derive fresh shares x̃U
and x̃S by running the GenShares protocol. The new share x̃S cannot be linked to
the long-term share xS , thus it does not reveal the user’s identity to the TS. The user
and the TS use the fresh shares x̃U and x̃S as input to the threshold-cryptographic
protocol TCP, allowing the user to use her key in the cryptographic protocol P with
the service provider.

The TS never communicates directly with service providers, but only via the user.
Therefore, the use of Tandem can remain invisible to the service provider, i.e., users
can use Tandem without the SP’s knowledge or consent.

Blocking keys. Whenever a user wants to block her key, she requests the TS to
block her key by using the BlockShare protocol with her blocking means (e.g., the
passphrase). Thereafter, unused tokens become invalid, and no new tokens can be
obtained (not even by an adversary that knows the authentication credential used
to obtain tokens). Hence, the user’s key cannot be used anymore.

Preventing Time Correlation. When obtaining tokens, the user is authenticated.
Hence, to preserve privacy, the actions of obtaining and using tokensmust be uncor-
related, i.e., tokens should not be obtained right before usage. To avoid correlation,
the user can con�gure her device to obtain tokens at random times or at regular
times (e.g., every night) such that tokens are always available. The user can authen-
ticate herself to the device at those times, or automate the process by storing her
authentication credential on the device. Note that the user’s key can still be blocked
at the TS if an attacker learns this authentication credential.

Here we show an example time line of registration (r), obtaining tokens (oi), using
tokens (si), and blocking the key (b) events:

timetime
r o1 o2 o3s1 s2 b

This example illustrates that obtain and use events do not necessarily follow each
other, but can be interleaved. As a result, the timing of these events needs not to
be correlated. The token o3, unused before the key is blocked by b, cannot be used
after time b.

In Section 5.5.2 we explain why private information retrieval is not a suitable alter-
native to decouple obtaining and using of key shares, and how Tandem outperforms
generic alternatives based on secure multi-party computation.

5.4 Cryptographic preliminaries

Let ` be a security parameter. Throughout this paper, G is a cyclic group of prime
order p (of 2` bits) generated by д.We write Zp for the integers modulo p. We use a
cryptographic hash function H : {0, 1}∗ → Zp that maps strings to integers modulo

44

Deliverable D4.4 NEXTLEAP Grant No. 688722

p. We write a ∈R A to denote that a is chosen uniformly at random from the set A.
Furthermore, we write [n] to denote the set {0, . . . ,n − 1}.

For reference, Table 5 in Section 5.5 summarizes the notation used by Tandem’s
building blocks, and Table 6 in Section 5.5 explains frequently-used symbols in Tan-
dem.

5.4.1 Cryptographic Building Blocks

Tandem relies on a couple of cryptographic building blocks. First, we use an addi-
tive homomorphic encryption scheme given by the algorithms E+pk ,D

+
sk with plain-

text space ZN (i.e., integers modulo N) and space of randomizers R. We write
c = E+pk (m;κ) to denote the homomorphic encryption of the messagem ∈ ZN using
randomness κ ∈ R. The scheme is additively homomorphic, so

E+pk (m1;κ1) · E+pk (m2;κ2) = E+pk (m1 +m2 (mod N);κ1κ2).

Our proof of concept uses Joye and Libert’s encryption scheme [JL13], but Paillier’s
scheme [Pai99] would also work.

Second, Tandem uses a CPA secure encryption scheme Epkid ,Dskid with plaintext
space G such as ElGamal [ElG85], that allows simple veri�able encryption.

Third, Tandem uses two computationally hiding and binding commitment schemes.
First, by Commit(m, r) we denote a commitment function that takes a message
m ∈ Zp and a randomizer r ∈ Zp . Analogously, we de�ne Commit((m1, . . . ,mk),

r) to commit to a tuple of messages. We instantiate this scheme using Pedersen’s
commitments [Ped91], because it enables users to obtain a blind signature on the
tuple (m1, . . . ,mk). However, any other commitment scheme with these properties
su�ces as well.

Second, we denote by ∆ = ExtCommit(m, r) with m ∈ {0, 1}∗, r ∈ {0, 1}2` an
extractable commitment scheme. That is, in our security reductions, we can ex-
tract the input m used to create a commitment ∆. For example, the instantiation
ExtCommit(m, r) = H (m‖r) is extractable in the random oracle model.

5.4.2 Threshold-Cryptographic Protocols

In this paper, we focus on cryptographic protocols run between a user and a service
provider, e.g., showing a credential to an SP or spending an electronic coin. The
threshold-cryptographic version of such a protocol splits the user’s key x and the
user’s side of the original protocol in two parts, run by di�erent parties. Each party
operates on a secret-share of the user’s key. Security of the threshold-cryptographic
protocol (TCP) ensures that a large enough subset of shares (two in the case of two
parties) are required to complete the protocol.

We consider TCPs where the user’s side of the protocol is distributed between the
user and the TS. After registration, the user and the TS hold the key shares xU and
xS of x, respectively. After running GenShares, the user and the TS hold the fresh
key shares x̃U and x̃S . They then run the TCP protocol, which we denote as:

P(inSP) ↔ TCP.U(x̃U , inU) ↔ TCP.TS(x̃S), (1)

where the SP, the user and the TS respectively run the interactive programs P, TCP.U
and TCP.TS. The user mediates all interactions between the service provider and the

45

Deliverable D4.4 NEXTLEAP Grant No. 688722

TS. The user and the SP take extra inputs needed for the execution of the target cryp-
tographic protocol denoted as inU and inSP . For simplicity, we denote the complete
protocol from (1) by TCP(x̃U , x̃S, inU , inSP).

Tandem can only enhance the privacy (Property 3) of certain TCPs. We formalize
the condition that these TCPs should satisfy. To avoid that the TS can recognize
the user based on the shares input to the TCP, we randomize the long-term secret
shares. Thus, we require that TCPs enhanced with Tandem still function with ran-
domized key shares. In addition, our privacy-friendly GenShares protocol requires
this randomization to be linear.

For simplicity, we assume that the user’s secret x ∈ Zp for some �eld Zp of prime
order p (e.g., corresponding to the group G we de�ned above). We note, however,
that our constructions can be modi�ed to settings with unknown order arising from
RSA assumptions. Formally, we require the TCP to be linearly randomizable:
Definition 1. Let xU , xS ∈ Zp be secret shares of the user’s secret x. Then,
we say that the TCP is linearly randomizable if for all δ we have that (1)
if TCP(xU , xS, inU , inSP) completes successfully, then so does TCP(xU − δ , xS +
δ , inU , inSP), and (2) xS + δ is independent from xS .

The �rst condition implies that the original secret sharing (xU , xS) and the random-
ized secret sharing (xU − δ , xS + δ) must share the same secret, whereas the second
implies that the TS cannot recognize the user from the randomized secret share
alone.

Security and privacy properties of TCPs. To ensure that a TCP with Tandem
satis�es the security properties (Property 1 and Property 2) we require that the TCP
itself is secure. That is, if the TS no longer uses its share xS to run its part of the TCP,
then no malicious user can successfully complete the TCP with the SP. We formalize
this notion in Game 3 in Section 5.6.

To ensure that a TCP with Tandem satis�es the privacy property (Property 3) we
require that the TCP itself o�ers privacy with respect to the TS respectively the TS
and the SP. That is, if the TS runs its part of the TCP using a randomized key-share
as input, then the TS respectively the TS and the SP cannot recognize the user. We
formalize this notion in Game 5 in Section 5.6.

5.5 Tandem

In this section, we present a construction that enables anonymous users to use
their keys with the TS without the TS learning which key is being accessed. It
uses homomorphic encryption to decouple the action of accessing the user’s long-
term key-share xS at the Tandem server from its subsequent use in the threshold-
cryptographic protocols. Thus, it prevents time-correlation attacks.

Initially, the TS generates a private-public key pair (sk,pk) for an additively homo-
morphic encryption scheme (see Section 5.4). The TS publishes the public key pk .
Upon registration with the TS, a user receives xS = E+pk (xS)—a homomorphic en-
cryption of the TS’s key-share xS . Because the ciphertext xS is encrypted against
the TS’ key, the user does not learn anything about the TS’ share xS .

When the user wants to use her key, she produces a randomized version of the TS’
key-share xS . To produce this randomization, she picks a large δ and computes
c = xS · E+pk (δ) = E+pk (xS + δ). On her side, she randomizes her key as x̃U = xU − δ

46

Deliverable D4.4 NEXTLEAP Grant No. 688722

(mod p). Then, she sends c to the TS via an anonymous channel. The TS decrypts
c to recover its key for the threshold cryptographic protocol, x̃S = xS + δ (mod p).
It is easy to see that a linear TCP with randomized shares completes successfully,
because x̃S + x̃U = xU + xS (mod p). Because c is randomized, the TS can no longer
recognize its share xS , e�ectively decoupling this action from the key-share gener-
ation.

In this approach, however, the TS cannot block or rate-limit keys. We present below
a construction for one-time-use key-share tokens containing signed and randomized
ciphertexts like c that enables blocking and rate-limiting while preserving users’
privacy.

5.5.1 One-time-use Key-share Tokens

To construct a token the user picks a large δ and homomorphically computes
c = xS · E+pk (δ), a randomized encryption of the TS’ key share. Then, she sends
a commitment to c to the TS, together with a proof that the committed c was con-
structed by additively randomizing xS . This proof is needed to enable secure block-
ing as we explain below. The user engages with the TS to obtain a blind signature
σ on c . The signature σ is only known to the user at this stage. The user stores the
token τ = (σ , c) and the randomizer δ .

To run a threshold-cryptographic protocol the user anonymously contacts the TS
and sends her key-share token τ = (σ , c). The TS checks the signature and makes
sure the token was not used before. Then, the TS recovers the randomized key-
share x̃S = D+sk (c) (mod p) = xS +δ (mod p) and uses it as the key for the threshold
cryptographic protocol. The user, on the other hand, uses x̃U = xU − δ (mod p)
as the key. As in the previous case, because c is fully randomized, the TS cannot
leverage it to identify users. Moreover, as σ is a blind signature on c the TS cannot
use σ or c to link the token creation to the token use.

When a user asks the TS to block her key, the TS no longer creates key-share tokens
for this user (we explain how the TS blocks unspent tokens below). This prevents
attackers from further running threshold-cryptographic protocols, even if they cor-
rupt the user’s device. For the blocking of keys to be e�ective, attackers must not
be able to construct key-share tokens for a blocked user. Here is where the proof
becomes handy that c is constructed as xS · E+pk (δ), where xS belongs to the current
user. Suppose that we omit the proof. Then, an attacker controlling an unblocked
user can create tokens for a corrupted blocked user. The attacker uses the unblocked
user’s account to make the TS blindly sign encrypted key shares for the blocked user.
The attacker can use the resulting token to use the blocked user’s key, defeating the
purpose of Tandem. Verifying which user’s key share is embedded into the cipher-
text blindly signed by the TS prevents the attack.

Finally, since tokens are one-use only, to restrict the number of times a user can
use her key (rate-limit), the TS just signs a limited number of key-share tokens per-
epoch per-user.

Registering Users. When a user �rst registers at the TS, the TS computes a key-
share xS for that user, and sends her an encrypted version xS = E+pk (xS). To ensure
that the TS cannot hide an identi�er in higher-order bits of xS that are not random-
ized by the user in the remainder of the protocol the TS proves that the plaintext xS
is in the correct range.

47

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 5: Notation and cryptographic building blocks used by Tandem.

Symbol Interpretation

[n] The set {0, . . . ,n − 1}
` The security parameter
G,д,p Cyclic group G = 〈д〉 of order p

Additively homomorphic encryption scheme
E+pk (m; r) Encrypt messagem ∈ ZN with randomizer r ∈ R
D+sk (c) Decrypt ciphertext c
N Size of additive plaintext domain
R Space of randomizers

CPA secure veri�able encryption scheme
Epkid (m) Encrypt messagem ∈ G
Dskid (c) Decrypt ciphertext c

Commitment schemes and hash function
Commit(m, r) Commit to m ∈ Zp (or a tuple of messages) with randomizer

r ∈ Zp
ExtCommit(m, r) Commit tom ∈ {0, 1}∗ with randomizer r ∈ {0, 1}2`
H (s) Hash function from s ∈ {0, 1}∗ to Zp

Protocol 1. The RegisterUser protocol is run between a user and the TS, and pro-
ceeds as follows.

1. The user U and the TS generate secret shares xU ∈R Zp and xS ∈R Zp , re-
spectively. The user also generates a public-private key-pair (pkid , skid) for
encrypting token identi�ers and sends pkid to the TS. The user needs the se-
cret key skid to block unspent tokens if needed. We assume that the user stores
skid externally so that it is available even after she loses her device. We pro-
pose that the user’s device generates skid based on a high-entropy passphrase
(such as a Diceware passphrase12), so that users can write down this string as
a stand-in for skid .

2. The TS picks κ ∈R R, computes xS = E+pk (xS ;κ) and sends xS to the user.
Moreover, the TS sends a range proof to the user that xS is constructed cor-
rectly, i.e., that

D+sk (xS) ∈ [0,p). (2)

See Appendix B.2 for how to instantiate this proof.

3. The TS records (xS ,xS ,pkid) for this user, and marks this user as active. The
user stores (xU ,xS ,pkid) on her device, and stores skid externally.

Obtain a Key-share Token. First, the user needs to randomize the ciphertext xS .
However, it seems di�cult to prove directly, for example in zero-knowledge, that
the randomized ciphertext produced by the user is of the correct form. Therefore,
we use a standard cut-and-choose approach [BCC88; CFN] to allow the TS to check
that the encrypted key share it is blindly signing is correct with overwhelming prob-
ability. The user constructs 2k randomized ciphertexts ci = xS ·E+pk (δi ;κi), and sends
commitments Ci to them to the TS. The TS then asks the user to open a subset D
of cardinality k , so that the TS can verify that these k ciphertexts were correctly
formed. Having checked all opened ciphertexts, the TS blindly signs the remaining

12http://world.std.com/~reinhold/diceware.html

48

http://world.std.com/~reinhold/diceware.html

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 6: Notation in Tandem protocols

Symbol Interpretation

D Disclose subset in cut-and-choose construction
δ ,δi Randomizers of key shares
id Token identi�er
k Token security parameter
`δ Length of randomizers δi in bits
x Long-term secret key for a user
pk, sk Public-private key-pair of TS
pkid , skid Public-private key-pair of the user U
p Order of the group G
xU Long-term key share held by the user
xS Long-term key share held by the TS
xS Homomorphic encryption of xS
x̃U User’s key share output by GenShares
x̃S TS’ key share output by GenShares
ϵ The current epoch
σ Blind signature of the TS

k ciphertexts. By nature of the cut-and-choose protocol at least one of the remaining
ciphertexts is a correct randomization of xS with high probability.

Let `δ = dlogpe + ` + logk + 2 be the bit-length of the randomizer such as δ . This
size ensures that the k unopened xS + δi values statistically hide xS . Furthermore,
we require that N > 3 · 2`δ to ensure no over�ows occur.

In our security proofs, see Section 5.6, we show that an adversary cannot learn any-
thing useful about xS despite seeing xS and having access to the TS. We reduce to
the CPA security of the homomorphic encryption scheme to show that an adversary
cannot use xS to learn something about xS . However, in the reduction to CPA se-
curity, we cannot decrypt ciphertexts. Yet, in the GenShares protocol, the TS must
decrypt a randomized version of xS to recover the randomized key share. To al-
low us to correctly answer GenShares queries without decrypting ciphertexts, the
user additionally creates a commitment ∆i to δi and κi . In our proof of security, we
use the extractability of ExtCommit(·, ·) to extract δi from these commitments, thus
allowing us to answer GenShares queries without actually decrypting.

Using an additively homomorphic CCA2 secure encryption scheme would obvi-
ate the need for the extractable commitments ∆i , simplifying the scheme. Unfor-
tunately, to the best of our knowledge no additively homomorphic CCA2 secure
scheme exists. The RCCA scheme by Canetti et al. [CKN03] is not homomorphic,
the schemes by Prabhakaran and Rosulek [PR08] are multiplicatively homomorphic,
and the fully homomorphic scheme by Lai et al. [Lai+16] is not CCA2 secure.
Protocol 2. The ObtainKeyShareToken protocol is run between a user and the TS.

1. The user recovers (xU ,xS ,pkid) from storage, and authenticates to the TS.
The TS aborts if this user exceeded the rate-limit for the current epoch,
was banned, or was blocked. Otherwise, the TS looks up the user’s record
(xS ,xS ,pkid).

2. The TS randomly chooses a subsetD ⊂ {1, . . . , 2k} of cardinality k of indices
of ciphertexts that it will check at step 5. The TS commits to D by picking

49

Deliverable D4.4 NEXTLEAP Grant No. 688722

θ ∈R {0, 1}2` and sending ∆ = ExtCommit(D,θ) to the user.

3. The user picks randomizers δ1, . . . ,δ2k ∈ {0, 1}`δ to randomize the encrypted
secret share xS , randomizers κ1, . . . ,κ2k ∈ R to create ciphertexts, and ran-
domizers r1, . . . , r2k ∈ Zp and ξ1, . . . , ξ2k ∈ {0, 1}2` for the commitments and
sets:

ci = xS · E+pk (δi ;κi)

Ci = Commit(H (ci), ri)

∆i = ExtCommit((δi ,κi), ξi),

(3)

for i = 1, . . . , 2k . Finally, she sends the commitments C1, . . . ,C2k and
∆1, . . . ,∆2k to the TS. Note that the commitments Ci and ∆i are computa-
tionally binding and hiding.

4. The TS opens the commitment ∆ by sending the subsetD and the randomizer
θ to the user. The user checks that ∆ = ExtCommit(D,θ), and aborts if the
check fails.

5. The user opens the requested commitments by sending (ci ,δi ,κi , ri , ξi)i ∈D to
the TS. The TS checks that all disclosed values are constructed as per equa-
tion (3) and that δi < 2`δ . If any check fails, the TS bans the user.

6. Next, the user generates a token identi�er id ∈R Zp at random. Let H =
{i1, . . . , ik } = {1, . . . , 2k} \D be the set of indices of unopened commitments.
For the blind signature the user picks r ∈R Zp and creates a commitment

C = Commit((id, ϵ,H (ci1), . . . ,H (cik)), r)

to the unopened ciphertexts, the epoch ϵ and id . Then, she encrypts the to-
ken identi�er id as id = Epkid (id), and sends C and id to the TS. Finally, she
proves in zero-knowledge to the TS that id encrypts the token identi�er id
in C against her own public key pkid and that C commits to the unopened
ciphertexts, i.e.,

PK{((ci , ri ,ηi)i ∈H, id, r) : id = Epkid (id)∧
∀i ∈ H [Ci = Commit(ηi , ri)] ∧

C = Commit((id, ϵ,ηi1 , . . . ,ηik), r)},

where ηi = H (ci). The TS checks this proof.

7. If any check fails, the TS bans the user and aborts the protocol. If all checks
pass, the TS runs a blind signature protocol with the user on the commitment
C so that the user obtains a signature σ on the tuple (id, ϵ,H (ci1), . . . ,H (cik)).
The user stores τ = (σ , ϵ, id, (ci ,κi ,δi)i ∈H). The TS stores id .

The following lemma states that even if a user is malicious, at least one of the ci-
phertexts ci must be correctly formed. (See Appendix B.1 for the proof.)
Lemma 1. Consider a token τ = (σ , ϵ, id, (ci ,κi ,δi)i=1, ...,k) obtained using the
above protocol by a (potentially malicious) userU with correspondingTS key-share
xS . Let ∆1, . . . ,∆k be the corresponding set of commitments used during the obtain
step. Then, with probability 1 − 1/

(2k
k

)
there exists an index i∗, and randomizers

δ ∗ < 2`δ , κ∗, and ξ ∗ such that:

ci∗ = E+pk (xS + δ
∗;κ∗)

∆i∗ = ExtCommit((δ ∗,κ∗), ξ ∗).
50

Deliverable D4.4 NEXTLEAP Grant No. 688722

Using a Key-share Token. When using a token, the user sends the tuple
(id, ϵ, ci1 , . . . , cik) and the signature σ to the TS, and provides an index j of the ci-
phertext c j that the TS should decrypt. The TS uses the corresponding plaintext as
the key in the threshold-cryptographic protocol. We know from Lemma 1 that at
least one index i∗ exists such that ci∗ is correctly formed. Key-share tokens resemble
Chaum et al.’s e-cash tokens [CFN]. For the e-cash tokens it su�ces if some indices
are correct, in Tandem, however, the user chooses the index j, and we must thus
ensure that c j in particular is correct. To enable the TS to check this, the user also
reveals the di�erences γi = δ j −δi for all i = 1, . . . ,k . If these di�erences are correct
then because ci∗ is a randomization of xS , so must be c j .
Protocol 3. The GenShares protocol is run between an anonymous user and the
TS.

1. The user a token τ = (σ , ϵ, id, (ci ,κi ,δi)i=1, ...,k) as input and connects to the
TS via an anonymous channel. She sends (id, ϵ, c1, . . . , ck) and the blind sig-
nature σ .

2. Next, the user �nds j such that δ j ≥ δi for all i and computes γi = δ j − δi ≥ 0
and νi = κj · κ−1

i such that

c j = ci · E+pk (γi ;νi) (4)

for i = 1, . . . ,k . Finally she sends j, and γ1, . . . ,γk ,ν1, . . . ,νk to the TS.

3. The TS veri�es that the γis and νis satisfy equation (4), that σ is a correct
signature on (id, ϵ,H (c1), . . . ,H (ck)), token id was not blocked, ϵ corresponds
to the current epoch, and that γi < 2`δ . The TS aborts if any check fails.

4. The TS decrypts c j to compute x̃S = D+sk (c j) (mod p).

5. The user calculates her key share x̃U as:

x̃U ≡ xU − δ j (mod p)

Using Lemma 1, we can show that the decrypted element c j must also be of the right
form. (See Appendix B.1 for the proof.)
Lemma 2. If revealed token (id, ϵ, c1, . . . , ck ,) with j, γ1, . . . ,γk and ν1, . . . ,νk sat-
is�es equation (4), then with probability 1 − 1/

(2k
k

)
there exists δ < 2`δ+1 such that

D+sk (c j) = xS + δ

where xS is the TS key-share for the corresponding user.

The range proof in registration is essential. The range proof in equation (2) in the
RegisterUser protocol ensures that the plaintext xS = D+sk (xS) is small compared
to the randomizers δi . As a result, the randomized ciphertexts ci statistically hide
xS . It is not su�cient to skip the range proof and instead choose the randomizers
δi from the full plaintext domain [N] to hide xS . Without the range proof, the TS
can construct tokens that it can later recognize by exploiting the fact that a large xS
results in a reduction modulo N . More precisely, the TS can set xS of its target user
somewhat large, so that xS + δ j > N (with a non-negligible probability). The user
believes that the TS derives xS + δ j (mod p) (because she believes no modular re-
duction took place) and compensates accordingly. However, the TS actually derives
x̃S = (xS + δ j mod N) (mod p) = xS + δ j − (N mod p). To test if the current token
is from its target user, the TS adds (N mod p) to x̃S . If the guess was correct, the

51

Deliverable D4.4 NEXTLEAP Grant No. 688722

TCP completes correctly, otherwise the protocol fails. This allows the TS to detect
speci�c users.

Blocking the Key. To block her key, the user runs the BlockShare protocol with
TS to ensure no new key-share tokens are created for her, and that all her unspent
tokens are blocked.
Protocol 4. The BlockShare protocol is run by a user and the TS. The user takes
as input her long-term key skid (which she recorded outside her device). The user
authenticates to the TS (possibly using skid). The TS marks the user as blocked, so
that it will no longer issue new tokens. Then they continue as follows to invalidate
unspent tokens. The TS sends a list of all encrypted token identi�ers id1, . . . , idt
that the user obtained in this epoch. The user looks up a list of all spent token
identi�ers (see below). The user then uses skid to decrypt id1, . . . , idt and sends the
decrypted token identi�ers that have not yet been spent to the TS. The TS will then
block all tokens with these identi�ers.

Since we assume the TS is honest with respect to blocking, the TS accurately pro-
vides the list of encrypted token identi�ers. In the ObtainKeyShareToken protocol,
the user veri�ably encrypts the token identi�er id . As a result, even if the user’s de-
vice is corrupted, the TS stores a correct encryption id of id , so the above procedure
blocks all unspent tokens.

In the unlikely case that a user cannot recover the identi�ers, the attacker can nev-
ertheless use the TS only a limited number of times, as the attacker is still subject
to the rate-limit.

List of spent tokens. The TS is malicious with respect to privacy. So, it might try
to trick the user into revealing the identi�ers of tokens she has already spent (thus
revealing that these tokens were hers). In particular, the TS is not trusted to provide
an accurate list of spent tokens. Therefore, we propose that users externally store
spent token identi�ers, so that they have a reliable record. Alternatively, the TS can
keep a veri�able log of spent tokens by appending spent token identi�ers to a public
append-only log (users must then verify that each spent token identi�er is in fact
added to the log). Users then use this log as a record of spent tokens. Finally, if
epochs are short, and users are willing to risk revealing their actions in the current
epoch, they can also use a list provided by the TS. If the TS cheats, users reveal at
most their actions within the most recent epoch when they block their keys.

5.5.2 Alternative constructions

An alternative method to construct tokens could be to use an authenticated encryp-
tion scheme that the user and the TS evaluate using secure multi-party computation
[Yao86]. The server inputs its key share xS while the user inputs the randomizer δ .
The user’s output is the authenticated encryption of xS + δ for the TS’s symmet-
ric key which serves as token. To ensure that the TS cannot recognize this token,
the protocol should resist malicious servers and the circuit should validate the TS’s
input (i.e., that they are always the same). Even though recent secure two-party
computation protocols that are secure against a malicious server boast impressive
performance [WRK17], they still require at least one order of magnitude more com-
putational power as well as more bandwidth than our custom scheme.

Another simple alternative construction is to let users retrieve xS = Enc(xS) using
private information retrieval (PIR) via an anonymous channel—the user must still
hide her identity. Then, users randomize xS similarly to our construction, and the

52

Deliverable D4.4 NEXTLEAP Grant No. 688722

TS decrypts the ciphertext to recover xS+δ , which it then uses in the TCP. To enable
blocking of keys, the TS needs to frequently refresh its encryption keys, e�ectively
invalidating previously retrieved ciphertexts xS . This simple protocol, however, has
serious drawbacks. First, blocking is only enforced upon key refreshing, thus the
timespan when compromised keys can be used depends on the refreshing schedule
of the TS. Second, because the encryption of xS for the current period can be ran-
domized as often as the user wants (and the use of PIR precludes record-keeping),
this scheme cannot provide rate-limiting. Third, because the TS acts as a decryption
oracle for a homomorphic encryption scheme, which is only CPA secure, proving
security in this setting requires very strong and non-standard assumptions.

5.6 Security and Privacy of Tandem

In this section we formalize the security and privacy properties o�ered by Tandem.
We refer to the appendix for the complete security and privacy proofs.

5.6.1 Security of Tandem

We capture the security of Tandem using the following game. It models that if the
user’s key is compromised (e.g., her device is stolen), the user can block the use of
her key, provided that the Tandem server remains honest.
Game 1. The Tandem security game is between a challenger controlling the TS and
the SP, and an adversary controlling up to n users. The adversary’s goal is to com-
plete a threshold-cryptographic protocol for a blocked user.

Setup phase The challenger sets up the TS and the SP. The challenger runs
RegisterUser with the adversary for each of the n users the adversary con-
trols.

Query phase During the query phase, the adversary can ask the TS to run the
RegisterUser, ObtainKeyShareToken and BlockShare protocols with users
controlled by the adversary. Moreover, the adversary can make RunTCP
queries to the challenger. In response, the TS �rst runs the GenShares proto-
col with the user (controlled by the adversary), followed by a run of the TCP
protocol.

Selection phase At some point the adversary outputs the identi�er of a blocked
user U ∗ on which it wants to be challenged later. To allow the challenger
to con�rm that all unspent tokens are blocked (to prevent trivial wins), the
adversary also outputs the long term secret skid of user U ∗. The challenger
checks skid against the recorded public key pkid and then blocks all tokens of
user U ∗ using skid . The adversary loses if skid is not correct.

Second query phase The adversary can keep asking the TS to run RegisterUser,
ObtainKeyShareToken, BlockShare protocols. The adversary can also make
RunTCP queries as before (however, following the protocols the TS will not
allow ObtainKeyShareToken queries of blocked users).

Challenge phase Finally, upon request of the adversary, the challenger acts as SP
in the TCP protocol. At the same time, the adversary may still make queries
and run protocols as in the previous phase. The adversary wins if it suc-
cessfully completes the TCP with the SP on behalf of the blocked userU ∗. To

53

Deliverable D4.4 NEXTLEAP Grant No. 688722

prevent trivial wins, this TCP protocol must be completable only by userU ∗.13

In this game, all users are automatically corrupted right from the moment they start
the registration protocol. This models the notion that users can even be blocked if
the adversary is present right from the start, and also implies that honest users—
which are only corrupted later—can still be blocked.
Game 2. The Tandem rate-limiting game is identical to the Tandem security game,
except that in the selection phase the adversary outputs a rate-limited user (i.e., a
user who is not allowed to obtain more tokens in this epoch).

Of course, to have security using Tandem, the TCP itself must be secure. Hence,
we require that even if a malicious user has interacted many times with the TS, she
cannot use her key when she does not have access to the TS. We formalize this using
the following game.
Game 3. The TCP security game is between a challenger controlling the TS and the
SP and the adversary controlling a malicious user.

Setup phase During the setup phase, the adversary generates xU ∈R Zp , whereas
the TS, controlled by the challenger, generates xS ∈R Zp .

Query phase In the query phase, the adversary can make TCP(δ) queries to re-
quest that the TS runs TCP.TS(xS + δ) with the user. The adversary is re-
sponsible for running TCP.U. Optionally, the adversary-controlled user can
communicate with the challenger-controlled SP running P() as well.

Challenge phase In the challenge phase, the adversary is not allowed to make TCP
queries. Instead, it interacts solely with the challenger-controlled SP running
P(). The adversary wins if the SP accepts.

Theorem 1. No PPT adversary can win the Tandem security game or the Tandem
rate-limiting game with non-negligible probability, provided that the TCP is secure
(i.e., no PPT adversary can win the TCP security game).

Proof sketch. We prove the security of the scheme by reducing it to the TCP secu-
rity property. First, we show how to run GenShares without decrypting ciphertexts.
During the ObtainKeyShareToken protocol, we model hash functions as random or-
acles to allow us to extract the token identi�er id from the proof of knowledge in
step 6, and the unopened randomizers δi from the extractable commitments ∆i in
step 3. Hence, during GenShares we can identify the user, and thus the correspond-
ing key share xS , as well as the randomizer δ j (with overwhelming probability, using
Lemma 2).

Knowing xS and δ j we no longer need to decrypt ciphertexts to run GenShares,
therefore, we can use the CPA security of the homomorphic encryption scheme to
replace the initial ciphertext xS = E+pk (xS) for the challenge user by xS = E+pk (0)
an encryption of 0. During GenShares we add xS to compensate. (To enable the
reduction to CPA, we simulate the range proof in step 2 of RegisterUser.)

Finally, we answer all queries for the challenge user using the TCP security oracle.
Hence, a break of the Tandem security game results in a break of the TCP security
game.

See Appendix B.3 for the full proof.
13One option is that the TCP protocol identi�es the user. So for example, for the attribute-based

credential TCPs, this means that the showing protocol must disclose an attribute that identi�es U ∗.
Another option is to make sure that user U ∗ is the only user who can successfully complete the pro-
tocol, e.g., by revoking all other credentials.

54

Deliverable D4.4 NEXTLEAP Grant No. 688722

5.6.2 Privacy of Tandem

The following game models that Tandem provides privacy for users. A malicious
Tandem server cannot distinguish between two honest users performing a transac-
tion using the Tandem server even if it colludes with the service provider, provided
that the service provider on its own cannot distinguish transactions by these two
honest users. The following privacy game asks the TS to recognize users for which
it earlier issued a key-share token.
Game 4. The Tandem privacy game with colluding SP is between a challenger, who
controls two honest users U0 and U1, and an adversary A who controls the TS and
the SP.

Setup phase The adversary A outputs the number of key-share tokens nT each
honest user should obtain. The adversary is responsible for setting up the
SP and the TS, i.e., it should publish a public key pk . Next, the honest users
U0 and U1 interact with the adversary-controlled TS to obtain nT key-share
tokens each. First, U0 runs ObtainKeyShareToken nT times to obtain tokens
τ0,1, . . . ,τ0,nT . Then, U1 runs the obtain protocol nT times to obtain tokens
τ1,1, . . . ,τ1,nT .

Query phase During the query phase, the adversary can make RunTCP(Ui , j, inU)
queries to request that user Ui uses token τi, j and then runs the TCP with
input inU . If i ∈ {0, 1} and user Ui did not use token τi, j before, then user
Ui , controlled by the challenger, �rst runs GenShares with the TS using token
τi, j and then runs TCP.U(inU) with the TS and the SP (running TCP.TS and P
respectively).

Challenge phase At some point, the adversary outputs a pair of token indices
(i0, i1) for user U0 and U1 respectively on which it wants to be challenged.
Let τ0 = τ0,i0 and τ1 = τ1,i1 be the corresponding tokens. The adversary loses
if either token τ0 or τ1 has been used before. Then, the challenger picks a bit
b ∈ {0, 1} and proceeds as if the adversary �rst made a RunTCP(Ub ,τb) query
and then a RunTCP(U1−b ,τ1−b) query.

Guess phase The adversary outputs a guess b ′ of b. The adversary wins if b ′ = b.

The privacy game models the fact that there is no time correlation between when
tokens are obtained by a user, and when they are spent by a user. At the same time,
the adversary has full control over the TS and the SP, so this game also models the
fact that the TS and the SP can correlate events that they see.

Since the SP is controlled by the adversary, the TCP must ensure privacy with re-
spect to the SP and the TS, if all that the TS sees are randomized secret shares. We
formalize this in the following game.
Game 5. The TCP privacy game with colluding SP is between a challenger controlling
two honest users U0 and U1 and an adversary A, controlling the TS and the SP.

Setup The adversary publishes the TS public key and is responsible for setting up
the SP. The challenger sets up its users. First, user U0 generates x0,U ∈R Zp
while the TS generates x0,S ∈R Zp , thenU1 and TS similarly generate x1,U and
x1,S . Finally, the TS sends x0,S and x1,S to users U0 and U1 respectively.

Queries Adversary A can make RunTCP(i, inU) queries, to request Ui to run the
TCP protocol using input inU with the TS and the SP (both controlled byA).
In the �rst step, the user picks δ ∈R Zp and sends the randomized secret-share

55

Deliverable D4.4 NEXTLEAP Grant No. 688722

x̃S = xi,S + δ (mod p) to the TS. The user then sets x̃U = xi,U − δ and runs
TCP.U(x̃U , inU) with the TS and the SP running TCP.TS and P respectively.

Challenge Adversary A outputs an input inU . Challenger picks a bit b ∈R {0, 1}.
Then the challenger acts as ifA �rst made a RunTCP(b, inU) query, and then
a RunTCP(1 − b, inU) query.

Guess The adversary outputs a guess b ′ for b, A wins if b = b ′.

Tandem also o�ers privacy for users against the TS alone. That is, even if the service
provider can identify users, the TS cannot observe their key-usage patterns as long
it does not collude with the service provider. (If the SP can identify users, then so
can a coalition of the TS and the SP, so we exclude this case to prevent a trivial win.)
We model this situation as a variant of the previous two games.
Definition 2. The Tandem privacy game with honest SP and the TCP privacy game
with honest SP are as in Game 4 and Game 5 above, however, the challenger controls
the SP. The adversary can interact with the SP as a normal user.
Theorem 2. No PPT adversary can win the Tandem privacy game with colluding
SP (respectively the Tandem privacy game with honest SP) with probability non-
negligibly better than 1/2, provided that the TCP is privacy-friendly (i.e., no PPT
adversary can win the TCP privacy game with colluding SP respectively the TCP
privacy game with honest SP).

Proof sketch. We �rst argue that we can remove all identifying information from the
key-share tokens of the challenge users. First, we extract the server’s key-shares x0,S
and x1,S from the proof of knowledge in step 2 of the RegisterUser protocol. Then
we simulate the proof of knowledge in step 6 of ObtainKeyShareToken, replace
the ciphertext id by the encryption of zero (using the CPA security of the ElGamal
encryption scheme), extract the subsetD so that we can send random commitments
Ci ,∆i for i < D (because the commitment schemes are computationally hiding), and
�nally, we set the unrevealed ciphertexts ci = E+pk (δi ,κi) for i < D. None of these
changes are detectable by the adversary during ObtainKeyShareToken.

To use tokens as requested by the adversary, the challenge users add xi,S to their
long-term share xU to compensate for the changes made so that GenShares com-
pletes successfully. Moreover, because the randomizers δi statistically hide xS , the
adversary cannot detect the �nal change to the ciphertexts during GenShares.

Therefore, by the blindness of the signature scheme, we can swap tokens between
the users and still simulate protocols perfectly. Therefore, any adversary that can
then still distinguish users must break the security of the TCP privacy game (with
a colluding SP or with a honest SP). To extract secrets from the proofs and commit-
ments, and to make the �nal reduction to TCP privacy, we model hash functions as
random oracles.

See Appendix B.4 for the full proof.

5.7 Securing protocols with Tandem

Recall that to use Tandem to protect the private key in a cryptographic scheme
we must convert the protocols into linearly randomizable threshold-cryptographic
protocols.

56

Deliverable D4.4 NEXTLEAP Grant No. 688722

TS User Issuer
x̃S ∈ Zp ,B0 x̃U ∈ Zp , s ′,д,B,B0,B1 skI

x̂S ∈R Zp x̂U , ŝ
′ ∈R Zp

uS = Bx̂S0
uS uU = Bx̂U0

Ũ = Bŝ
′

· uU · uS
Ũ

c c c ∈R Zp
rS = x̂S + c · x̃S

rS rs ′ = ŝ
′ + c · s ′

rU = x̂U + c · x̃U
r = rU + rS

rs ′, r Ũ
?
= U −c · Brs′ · Br0

Figure 16: Full details of the proof of knowledge of the user’s commitment U =
Bs
′

BxU
0 BxS

0 in the BBS+ TCP issuance protocol. The Tandem server only knows x̃S
and the user knows x̃U and the randomness s ′ (recall x̃S and x̃U are the respective
outputs of the GenShares protocol). The TS e�ectively creates a zero-knowledge
proof of knowing x̃S .

For this composition to be secure, the threshold-cryptographic protocols must sat-
isfy the natural security de�nition (see Game 3). For this composition to be private,
i.e., so that the Tandem server alone respectively by colluding with the SP cannot
identify the user, the threshold-cryptographic protocols must additionally be private
(see Game 5).

Many traditional threshold-cryptographic schemes already satisfy these require-
ments. Threshold variants of Schnorr [Gen+07] and RSA signatures [Sho00] as
well as ElGamal-based [ElG84; SG02] and RSA encryption [Sho00] schemes rely
on Shamir secret-sharing and are thus linearly randomizable. Moreover, the thresh-
old protocols are private, i.e., the server-side protocols for signing and decrypting,
respectively, operate solely on the secret-share and the common input, the message
or ciphertext.

Threshold-cryptographic versions of electronic cash schemes [CHL05; Mie+13] and
attribute-based credential (ABC) schemes [ASM06; Bra00; CH02; CL02] can also
be used with Tandem. For some of these, the threshold-cryptographic versions
already exist [Bra00]. For the others, the threshold-cryptographic versions of the
zero-knowledge proofs on which these schemes are based must be created. As an
example, we now show how convert the BBS+ ABC scheme [ASM06] into a Tan-
dem-suitable threshold-cryptographic scheme.

5.7.1 The use-case of ABCs

Attribute-based credentials can be conceptualized as digital equivalents to classic
documents like passports, driver’s license, student cards, etc. The owner of a cre-
dential can selectively disclose any subset of attributes to a service provider in such
a way that the the validity of the disclosed attributes can be validated. In many ABC
systems credentials are unlinkable, that is, users are anonymous within the set of
users having the same disclosed attributes.

To bind credentials to a user, and to ensure that only the owner can operate with
them, credentials contain the user’s secret key. Typically, all credentials of a user
contain the same secret key. When credentials are stored on insecure platforms
such as smart phones or personal computers Tandem can be used to strengthen the

57

Deliverable D4.4 NEXTLEAP Grant No. 688722

security of the secret key. This ensures that valuable credentials cannot be abused,
and can be blocked, while preserving users’ privacy.

To use ABCs with Tandem we need to convert the protocols for issuing and veri-
fying credentials into threshold-cryptographic alternatives that are secure, private,
and linearly randomizable. During issuance, the issuer (taking the place of the ser-
vice provider in Section 5.3) provides the user with a credential bound to the user’s
secret key. The issuer does not learn the user’s secret key. During veri�cation, a
user authenticates to a service provider by selectively disclosing attributes from her
ABCs.

In typical ABC schemes, these two protocols rely heavily on zero-knowledge proofs
over the user’s secret key. In the remainder of this section, we show how these non-
threshold protocols for BBS+ credentials [ASM06] can be converted to threshold-
cryptographic versions suitable for Tandem.

BBS+ credentials are anonymous credentials built from BBS+ signatures [ASM06].
BBS+ signatures operate in a pairing setting and rely on discrete-logarithm based
assumptions. Let (G1,G2) be a bilinear group pair, both of prime order p, generated
by д and h respectively. The pairing is given by ê : G1 × G2 → GT where GT ,
also of order p, is generated by ê(д,h). Let l be the number of attributes. In the
BBS+ credential scheme, an issuer randomly chooses generators B,B0, ..,Bl ∈R G1,
picks a private key skI ∈R Zp , and computes w = hskI . The issuer’s public key is
pkI = (w,B,B0, ..,Bl).

Obtaining a credential. Attribute-based credentials contain the user’s secret key
as an attribute. For simplicity, we describe the Tandem BBS+ issuance and show-
ing protocols below with two attributes: the secret key x and an issuer-determined
attribute a1. To obtain a credential, the user (and the Tandem server) run the fol-
lowing TCP version of the issuance protocol with the issuer. The issuance protocol
is run jointly by the user, TS, and an issuer. Let x̃U and x̃S be the two shares of the
user’s secret key x = x̃U + x̃S that are held by the user and the TS respectively after
running GenShares. The user �rst commits to her secret key x, to allow the issuer
to blindly sign it. As we share the user’s secret key between the user and the TS,
they both have to participate in creating the commitment. First, the user sends B0
to the TS so that it can compute Bx̃S

0 before sending back to the user. Then the user
and the TS create a commitment U = Bs

′

Bx̃U
0 Bx̃S

0 = Bs
′

Bx
0 where s ′ ∈R Zp . To prove

to the issuer that U is well-formed, the user and the TS construct the proof

PK{(x, s ′) : U = Bs
′

Bx
0 }. (5)

Fig. 16 shows how to construct this proof. If this proof of knowledge veri�es, the
issuer randomly generates s ′′, e ∈R Zp and calculates

A =
(
дBs

′′

UBa1
1

) 1
e+skI

∈ G1

and the tuple (A, e, s ′′) to the user. The user calculates s = s ′ + s ′′ and stores the
credential σ = (A, e, s).

Showing a credential. After the issuance protocol, the user can show the creden-
tial to a service provider to get access to a service or a resource. Again we convert
the showing protocol into a TCP that uses the Tandem server.

In the showing protocol, the user proves the possession of a credential σ = (A, e, s)
over her key x and the attribute a1. To show she possesses such a credential, while

58

Deliverable D4.4 NEXTLEAP Grant No. 688722

hiding her key and disclosing her attribute, she proves in zero-knowledge that

ê(A,hew) = ê(дBsBx
0B

a1
1 ,h). (6)

To prove the validity of this equation in zero-knowledge, without revealing any of
the values A, e, s (that would make the user linkable), we follow the approach by
Au et al. [ASM06]. Let д1,д2 be two extra generators in G1. First, the user creates a
commitment C1 = Aдr1

2 to A, where r1 is a randomizer chosen from Zp by the user.
The user then commits to her randomizer as well usingC2 = д

r1
1 д

r2
2 where r2 ∈R Zp .

The user sends these commitments to the service provider. These commitments
perfectly hide the value of A. Finally, she and the TS engage in the following zero-
knowledge proof with the service provider:

PK
{
(r1, r2,α1,α2, e, x, s) : C2 = д

r1
1 д

r2
2 ∧C

e
2 = д

α1
1 дα2

2 ∧

ê(C1,w) · ê(C1,h)
e = ê(д,h)ê(B,h)s ê(B0, h)x ·

ê(B1,h)
a1ê(д2,w)

r1ê(д2,h)
α1

}
to prove that she indeed posseses the signature over the hidden and the disclosed
attributes and that equation (6) is satis�ed. In the proof, α1 = er1 and α2 = er2.
The user can easily generate the proofs for the �rst two conjuncts. Only the third
conjuct contains the user’s secret key x of which the user only has a secret share.
Thus, the user has to contact the TS to construct this part of the proof. This proof
is just a proof of representation, like in equation 5, albeit a bit more complex. As a
result, a very similar construction as in Fig. 16 allows the user and the TS to jointly
compute this proof.

Security and privacy of the TCPs. These TCPs satisfy the TCP security and pri-
vacy notions de�ned in Section 5.6. For security (see Game 3), note that the TS
computes zero-knowledge proofs of knowing x̃S . A malicious user learns nothing
about x̃S (thus nor xS) as a result of the zero-knowledge property. Hence, the TCP
showing and issuance protocols satisfy the TCP security property.

For privacy (see Game 5), the TS operates on a fully randomized key x̃S , so the TS
cannot distinguish users based on the key if the SP is honest. The indistinguisha-
bility property of the credential scheme guarantees that the TS cannot distinguish
users based on the resulting showing proof by colluding with the SP either. Thus,
the TCP showing protocol is private for both honest and colluding SPs.

5.7.2 Rate-limiting in ABCs

Anonymous users can use the cover of privacy to misbehave, negatively impacting
the system. ABC systems are not exempt from such misbehavior. Suppose, for ex-
ample, that a user shares her “I am older than 18” credential with many under-aged
users who do not hold such a credential. Then, those under-aged users can incor-
rectly convince service providers that they are over 18 years of age. If this happens
often, service providers can no longer rely on these credentials to verify that a user
is older than 18.

To limit such misbehavior, ABCs could bene�t from rate-limiting. One method to
limit abuse is to rate-limit credentials by ensuring that credentials can only be used
a limited number of times. For instance, solutions such as n-times anonymous cre-
dentials [Cam+06] use custom cryptographic techniques to construct a special type
of ABC that can be used only a limited number of times.

59

Deliverable D4.4 NEXTLEAP Grant No. 688722

Tandem can achieve a similar type of rate-limiting without modifying the under-
lying cryptographic construction of ABCs. To rate-limit use of a system, the TS
enforces a per-user and per-epoch limit q on the number of tokens it issues per user
and per epoch. As a result, no credential can be shown more than q times per epoch.
This approach limits all credentials associated to a user’s key. If desired, Tandem
can equally be applied on a per-credential basis.

This rate-limiting strategy requires that all users use Tandem. However, recall that
the SPs (issuers and veri�ers) cannot detect the use of Tandem, allowing users to
forego sharing their keys with the TS, thus avoiding the rate limit. To enable the TS
to enforce a rate-limit on all credentials, issuers must only issue credentials on keys
that are shared with the TS.

A small change to the threshold-cryptographic version of the issuance protocol en-
ables the issuer to con�rm that users use Tandem. To signal its involvement, the TS
signs its proof (uS , c, rS) and sends the signature σ to the user. The user forwards the
messages uS , rS and σ from the TS to the issuer together with its own messages uU ,
rs ′ and rU . The issuer, rather than the user, combines the proofs and veri�es them.
Moreover, the issuer checks the signature σ . If the signature and proofs are correct,
then the user’s key was shared with the TS and the issuer signs the credential.

5.8 Performance Evaluation

In this section, we evaluate Tandem’s computational and bandwidth cost. We use
an attribute-based credential instantiation as a case study and compare the perfor-
mance when using no key protection, traditional threshold-cryptographic schemes,
and Tandem.

Tandem consists of four protocols: RegisterUser, ObtainKeyShareToken, Gen-
Shares, and BlockShare. We implemented in C the time-critical protocols, Obtain-
KeyShareToken and GenShares.14 We used Pedersen commitments [Ped91] as com-
mitment scheme, and BBS+ credentials [ASM06] to construct the blind signature.
We use the RELIC cryptographic library to implement them [AG].15 We use a re-
cent implementation [BCF17] of Joye and Libert’s additive homomorphic encryp-
tion scheme [JL13] for our protocols. We set the modulus size to 2048 bits and the
plaintext space to 394 bits, such that N > 3 · 2`δ for k ≤ 85. With this setting, en-
crypting a single 394 bits plaintext takes 0.9 ms whereas it takes 24.2 ms to decrypt a
ciphertext. We also experimented with an optimized implementation16 of Paillier’s
encryption scheme [Pai99], but our experiments show that Joye and Libert’s scheme
gives better performance. Finally, we use ElGamal’s encryption scheme [ElG85] to
encrypt token identi�ers.

We empirically measure performance on a single core of an Intel i7-7700 running at
3.6 GHz. Smart phones and tablets generally have slower processors. Yet, we believe
that given our measurements, Tandem’s performance would be practical on these
devices.

Obtaining a token. We �rst justify our choices for the value of the security param-
eters k in our experiments. Our security analysis shows that an attacker can break
Tandem’s security property by constructing a key-share token for a blocked user

14The code will be available upon publication.
15We set up RELIC to use a BLS curve over a 381 bits �eld. This setup ensures 128 bits security,

while the group order remains 255 bits.
16https://github.com/mcornejo/libpaillier

60

https://github.com/mcornejo/libpaillier

Deliverable D4.4 NEXTLEAP Grant No. 688722

0 10 20 30 40 50 60 70
0

50

100

150

200

Di�culty (k)

Ti
m

e
(m

s)

Obtain User
Obtain Server

GenShares Server

Figure 17: ObtainKeyShareToken protocol computing time at the user (black) and
the server side (blue), and GenShares protocol computation time at the server side
(red) for increasing di�iculty levels k .

with probability
(2k
k

)−1
. Hence, k = 42 gives 80 bits of security, and k = 66 gives

128 bits security. However, ObtainKeyShareToken is an interactive protocol. The
success probability of an attacker is limited by how often the TS lets the attacker try
to construct a malicious token rather than by the adversary’s computational power.
Because the TS bans users trying to construct malicious tokens, one can choose a
smaller k in practice. In a system with 100 000 users, k = 20 ensures that the proba-
bility that an attacker (corrupting all users) can at least once use any blocked key is
less than 10−6.

Fig. 17 shows the computing time (without communication) for the Obtain-
KeyShareToken protocol at the user (black) and server (blue) for di�erent values
of the parameter k . The homomorphic encryption scheme—creating the ciphertexts
(user), and checking a subset of these (TS)—dominates the computational cost. Our
experiments reveal that the timing variance accross executions is negligible. The
bandwidth cost is low. For a security level of k = 20, the user sends about 26 KiB
and receives less than 200 bytes.

Using the key. On the user side running GenShares is very cheap. Even for k = 60
the user requires less than 5 ms. In terms of bandwidth the user just needs to send
12 KiB for k = 20 and 36 KiB for k = 60. We show the server’s computational
cost for recovering the TS key-share from the token in Fig. 17. For a reasonable
security level of k = 20, the server computational overhead is around 50 ms. The
sending of the token in the GenShares protocol can be combined with the request
to start the TCP resulting in no extra latency on top of the delay incurred by the
Tor network [DMS04b] (1–2 s to send a small and receive amount of data on a fresh
circuit17). Note that the circuit creation and GenShares can be run preemptively,
thereby reducing the user-perceived delay.

Given the above measurements, a modern 4-core server can participate in approx-
imately 50 TCPs per second (not counting the cost of the application-dependent
TCP itself), i.e., serve 3 000 users per minute, requiring about 15 Mbit/s incoming
bandwidth.

RegisterUser and BlockShare. These protocols are run few times (only upon
registration and for blocking) and are thus not critical for scalability. We estimate the
cost for RegisterUser to be well below a second for both the user and the TS (given
its similarity with the ObtainKeyShareToken and GenShares protocols, and that the
cost of the range proof is around 500 ms). In BlockShare the ElGamal decryption the

17As reported by https://metrics.torproject.org/torperf.html, visited July 6, 2018.

61

https://metrics.torproject.org/torperf.html

Deliverable D4.4 NEXTLEAP Grant No. 688722

Table 7: Comparison of computational cost and properties between not using a
TCP, using a traditional TCP, and using a TCP with Tandem (k = 20).

No TCP Traditional TCP TCP + Tandem

Obtain Token
User - - 59 ms
Server - - 32 ms

Run Protocol
User 5 ms 5 ms 5 + 4 ms
Server - 1 ms 1 + 54 ms

Key blocking × X X
Rate limiting × X X
Privacy X × X

token identi�ers dominates the run-time cost, we estimate it to be in the order of
seconds for thousands of tokens.

Comparison. Table 7 compares the computational cost of creating a single BBS+
disclosure proof with 5 hidden attributes without key protection, using a traditional
TCP, and using a Tandem-augmented TCP con�gured with k = 20.

Without a TCP, the credential showing is very fast and, as there is no party involved
in the use of the key, the showing of the credential is perfectly private. However,
it is not possible to perform key blocking nor limit the key-usage unless speci�c
credentials (e.g. [Cam+06]) are used. When introducing a traditional TCP, the over-
head is minimal (only 1 ms at the server side) and key blocking and rate limiting
are possible, at the cost of privacy. Tandem provides the three properties. Without
taking into account the ObtainKeyShareToken operation that happens o�ine, the
user’s overhead is negligible (4 ms), and well below a second (54 ms) for the server.
In all cases, the cost of Tandem’s cryptographic operations are very small compared
to Tor’s network cost.

5.9 Conclusion

Protecting cryptographic keys is imperative to maintain the security of crypto-
graphic protocols. As users’ devices are most of the time insecure, the community
has turned to threshold-cryptographic protocols to strengthen the security of keys.
When run with a central server, however, these protocols raise privacy concerns. In
this paper, we have proposed Tandem, a provably secure scheme that, when com-
posed with threshold-cryptographic protocols, provides privacy-preserving access
to the keys. Tandem also enables users to block her keys and rate-limit their usage,
in ways that previous work could not handle. Our proof-of-concept implementation
of Tandem shows that for reasonable security parameters Tandem’s protocols run
in less than 60 ms, hence being suitable for use in practice.

Tandem is particularly suited for privacy-friendly applications such as eCash and
ABCs because it retains their inherent privacy properties. Yet, Tandem can be
used to strengthen a wide variety of primitives, including signature and encryption
schemes, as long as they can be transformed into linearly-randomizable threshold
protocols. Using attribute-based credentials we have shown that deriving such a
threshold protocol can be done with standard techniques, and that thereafter adding

62

Deliverable D4.4 NEXTLEAP Grant No. 688722

Tandem is straightforward.

6 Conclusion

In this deliverable we presented the technical developments regarding scalability of
messaging protocols resulting from activities within WP4. As the scalability and
content security of the NEXTLEAP secure messaging protocols was proven in other
deliverables, this document focuses on results aimed at improving the anonymity
and privacy of communications and key-related operations. We have produced two
anonymous communications modules that complement the Tor network to 1) make
it more robust against end-to-end correlation attacks, and 2) make it more usable
from the point of view of the service provider. For key management we have im-
proved the design of Claimchains to include protection against a new attack. We
have also developed a protocol that enables users to enjoy the advantages of thresh-
old threshold cryptography to improve key security while not losing any privacy.

All of the developments have an associated prototype that will be released under
an open source license. As a result of the move from IMDEA to EPFL of one of
the partners, the implementations of the anonymous communication modules were
delayed. They require more time before they can be released.

References

[Abb+07] Timothy G. Abbott et al. “Browser-Based Attacks on Tor”. In: PETS.
2007.

[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. “Simpli-
�ed Threshold-RSA with Adaptive and Proactive Security”. In: EURO-
CRYPT. 2006.

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an E�cient Library for Cryp-
tography. https://github.com/relic-toolkit/relic.

[AH16] Erinn Atwater and Urs Hengartner. “Shatter: Using Threshold Cryp-
tography to Protect Single Users with Multiple Devices”. In: WISEC.
2016.

[And17] Android security website. Developing third party applications with
Trusty TEE. https : / / source . android . com / security / trusty /
#third-party_trusty_applications. 2017.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. “Constant-Size Dynamic k-TAA”.
In: SCN. 2006.

[ATK11] Man Ho Au, Patrick P. Tsang, and Apu Kapadia. “PEREA: Practical TTP-
free Revocation of Repeatedly Misbehaving Anonymous Users”. In: TIS-
SEC (2011).

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum Disclo-
sure Proofs of Knowledge”. In: J. Comput. Syst. Sci. (1988).

[BCF17] Manuel Barbosa, Dario Catalano, and Dario Fiore. “Labeled Homomor-
phic Encryption: Scalable and Privacy-Preserving Processing of Out-
sourced Data”. In: ESORICS. 2017.

[BDT04] Dan Boneh, Xuhua Ding, and Gene Tsudik. “Fine-grained Control of
Security Capabilities”. In: TOIT (2004).

[BG97] Mihir Bellare and Sha� Goldwasser. “Veri�able Partial Key Escrow”. In:
CCS. 1997.

63

https://github.com/relic-toolkit/relic
https://source.android.com/security/trusty/#third-party_trusty_applications
https://source.android.com/security/trusty/#third-party_trusty_applications

Deliverable D4.4 NEXTLEAP Grant No. 688722

[Bon+01] Dan Boneh et al. “A Method for Fast Revocation of Public Key Certi�-
cates and Security Capabilities”. In: USENIX. 2001.

[Boy89] Colin Boyd. “Digital Multisignatures”. In: Cryptography and Coding
(1989).

[Bra+15] Luís T. A. N. Brandão et al. “Toward Mending Two Nation-Scale Bro-
kered Identi�cation Systems”. In: PoPETs (2015).

[Bra00] Stefan A Brands. Rethinking public key infrastructures and digital cer-
ti�cates: building in privacy. MIT Press, 2000.

[BTD12] Ero Balsa, Carmela Troncoso, and Claudia Díaz. “OB-PWS:
Obfuscation-Based Private Web Search”. In: S&P. 2012. isbn: 978-
0-7695-4681-0.

[Bul+17] Ahto Buldas et al. “Server-Supported RSA Signatures for Mobile De-
vices”. In: ESORICS. 2017.

[Cam+06] Jan Camenisch et al. “How to Win the Clone Wars: E�cient Periodic
n-times Anonymous Authentication”. In: CCS. 2006.

[Cam+16] Jan Camenisch et al. “Virtual Smart Cards: How to Sign with a Password
and a Server”. In: SCN. 2016.

[CFN] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic
Cash”. In: CRYPTO ’88.

[CG09] Richard Chow and Philippe Golle. “Faking Contextual Data for Fun,
Pro�t, and Privacy”. In: WPES. 2009. isbn: 978-1-60558-783-7.

[CH02] Jan Camenisch and Els Van Herreweghen. “Design and Implementation
of the Idemix Anonymous Credential System”. In: CCS. 2002.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Compact
E-Cash”. In: EUROCRYPT. 2005.

[Cho+95] Benny Chor et al. “Private Information Retrieval”. In: 36th Annual Sym-
posium on Foundations of Computer Science, Milwaukee,Wisconsin, USA,
23-25 October 1995. IEEE Computer Society, 1995, pp. 41–50. doi: 10.
1109/SFCS.1995.492461. url: https://doi.org/10.1109/SFCS.
1995.492461.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. “Relaxing
Chosen-Ciphertext Security”. In: CRYPTO. 2003.

[CL02] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme with Ef-
�cient Protocols”. In: SCN. 2002.

[CLN15] Jan Camenisch, Anja Lehmann, and Gregory Neven. “Optimal Dis-
tributed Password Veri�cation”. In: CCS. 2015. doi: 10.1145/2810103.
2813722.

[CW11] Scott A. Crosby and Dan S. Wallach. “Authenticated Dictionaries: Real-
World Costs and Trade-O�s”. In: ACM Trans. Inf. Syst. Secur. 14.2 (2011),
17:1–17:30. doi: 10.1145/2019599.2019602. url: http://doi.acm.
org/10.1145/2019599.2019602.

[Dan] George Danezis. Petlib: a Python library that implements a number of
Privacy Enhancing Technologies. https : / / github . com / gdanezis /
petlib. Last accessed: August 29, 2018.

[Das+18] D. Das et al. “Anonymity Trilemma: Strong Anonymity, Low Band-
width Overhead, Low Latency — Choose Two”. In: S&P 2018. IEEE Com-
puter Society, 2018, pp. 170–188. doi: 10.1109/SP.2018.00011. url:
doi.ieeecomputersociety.org/10.1109/SP.2018.00011.

[DDC18] Sanchari Das, Andrew Dingman, and L Jean Camp. “Why Johnny
Doesn’t Use Two Factor A Two-Phase Usability Study of the FIDO
U2FSecurity Key”. In: FC. 2018.

64

https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1145/2019599.2019602
http://doi.acm.org/10.1145/2019599.2019602
http://doi.acm.org/10.1145/2019599.2019602
https://github.com/gdanezis/petlib
https://github.com/gdanezis/petlib
https://doi.org/10.1109/SP.2018.00011
doi.ieeecomputersociety.org/10.1109/SP.2018.00011

Deliverable D4.4 NEXTLEAP Grant No. 688722

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. “Mixminion:
Design of a Type III Anonymous Remailer Protocol”. In: S&P 2003. 2003,
pp. 2–15. isbn: 0-7695-1940-7. url: http://dl.acm.org/citation.
cfm?id=829515.830555.

[Des87] Yvo Desmedt. “Society and Group Oriented Cryptography: A New Con-
cept”. In: CRYPTO. 1987.

[DF91] Yvo Desmedt and Yair Frankel. “Shared Generation of Authenticators
and Signatures (Extended Abstract)”. In: CRYPTO. 1991.

[DMS04a] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The
Second-Generation Onion Router”. In: Proceedings of the 13th USENIX
Security Symposium, August 9-13, 2004, San Diego, CA, USA. Ed. by Matt
Blaze. USENIX, 2004, pp. 303–320.

[DMS04b] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The
Second-Generation Onion Router”. In: USENIX. 2004.

[Duk14] V. Dukhovni. Opportunistic Security: Some Protection Most of the Time.
RFC 7435. Dec. 2014. url: https://rfc-editor.org/rfc/rfc7435.
txt.

[EKA14] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. “The Untapped Po-
tential of Trusted Execution Environments on Mobile Devices”. In: S&P.
2014.

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: CRYPTO. 1984.

[ElG85] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: Trans. Inf. Theory 31.4 (1985).

[Eve+15] Adam Everspaugh et al. “The Pythia PRF Service”. In: USENIX. 2015.
[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions

to Identi�cation and Signature Problems”. In: Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings. Ed.
by Andrew M. Odlyzko. Vol. 263. Lecture Notes in Computer Science.
Springer, 1986, pp. 186–194. doi: 10.1007/3-540-47721-7_12. url:
https://doi.org/10.1007/3-540-47721-7%5C_12.

[FZ13] Matthew K. Franklin and Haibin Zhang. “Unique Ring Signatures: A
Practical Construction”. In: Financial Cryptography and Data Security -
17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013,
Revised Selected Papers. Ed. by Ahmad-Reza Sadeghi. Vol. 7859. Lecture
Notes in Computer Science. Springer, 2013, pp. 162–170. isbn: 978-3-
642-39883-4. doi: 10.1007/978- 3- 642- 39884- 1_13. url: https:
//doi.org/10.1007/978-3-642-39884-1%5C_13.

[Gen+00] Rosario Gennaro et al. “Robust and E�cient Sharing of RSA Functions”.
In: J. of Cryptology (2000).

[Gen+07] Rosario Gennaro et al. “Secure Distributed Key Generation for Discrete-
Log Based Cryptosystems”. In: J. Cryptology (2007).

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan.
“Threshold-Optimal DSA/ECDSA Signatures and an Application
to Bitcoin Wallet Security”. In: ACNS. 2016.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. “Message Franking
via Committing Authenticated Encryption”. In: Advances in Cryptol-
ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10403. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 66–97. isbn: 978-3-319-63696-2. doi:

65

http://dl.acm.org/citation.cfm?id=829515.830555
http://dl.acm.org/citation.cfm?id=829515.830555
https://rfc-editor.org/rfc/rfc7435.txt
https://rfc-editor.org/rfc/rfc7435.txt
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7%5C_12
https://doi.org/10.1007/978-3-642-39884-1_13
https://doi.org/10.1007/978-3-642-39884-1%5C_13
https://doi.org/10.1007/978-3-642-39884-1%5C_13

Deliverable D4.4 NEXTLEAP Grant No. 688722

10.1007/978-3-319-63697-9_3. url: https://doi.org/10.1007/
978-3-319-63697-9%5C_3.

[Gol+18] Steven Goldfeder et al. “When the cookie meets the blockchain: Privacy
risks of web payments via cryptocurrencies”. In: PoPETs (2018).

[Haz+12] Carmit Hazay et al. “E�cient RSA Key Generation and Threshold Pail-
lier in the Two-Party Setting”. In: CT-RSA. 2012.

[Her15] Alex Hern. “Stagefright: new Android vulnerability dubbed ‘heart-
bleed for mobile’”. In: The Guardian (2015). url: https : / / www .

theguardian.com/technology/2015/jul/28/stagefright-android-

vulnerability-heartbleed-mobile.
[Jaw+18] Husam Al Jawaheri et al. “When A Small Leak Sinks A Great Ship:

Deanonymizing Tor Hidden Service Users Through Bitcoin Transac-
tions Analysis”. In: CoRR abs/1801.07501 (2018). arXiv: 1801.07501.

[JL13] Marc Joye and Benoît Libert. “E�cient Cryptosystems from 2k-th
Power Residue Symbols”. In: EUROCRYPT. 2013.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. “Security of Blind Digital
Signatures (Extended Abstract)”. In: CRYPTO. 1997.

[Kim16] Kim Zetter, WIRED magazine.How the top 5 PCmakers open your laptop
to hackers. https://www.wired.com/2016/05/2036876/. 2016.

[Klu+16] Thomas Kluyver et al. “Jupyter Notebooks - a publishing format for
reproducible computational work�ows”. In: Positioning and Power in
Academic Publishing: Players, Agents and Agendas, 20th International
Conference on Electronic Publishing, Göttingen, Germany, June 7-9, 2016.
Ed. by Fernando Loizides and Birgit Schmidt. IOS Press, 2016, pp. 87–
90. doi: 10.3233/978-1-61499-649-1-87. url: https://doi.org/10.
3233/978-1-61499-649-1-87.

[KMR12] Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp. “E�cient
Threshold Zero-Knowledge with Applications to User-Centric Proto-
cols”. In: ICITS. 2012.

[Kul+18] Bogdan Kulynych et al. “ClaimChain: Improving the Security and Pri-
vacy of In-band Key Distribution for Messaging”. In: WPES 2018. 2018,
pp. 86–103. doi: 10.1145/3267323.3268947.

[Lai+16] Junzuo Lai et al. “CCA-Secure Keyed-Fully Homomorphic Encryption”.
In: PKC. 2016.

[Lip+18] Moritz Lipp et al. “Meltdown”. In: ArXiv e-prints (Jan. 2018). arXiv:
1801.01207.

[LQ03] Benoît Libert and Jean-Jacques Quisquater. “E�cient Revocation and
Threshold Pairing-based Cryptosystems”. In: PODC. 2003.

[Mar+13] Claudio Marforio et al. “Secure Enrollment and Practical Migration for
Mobile Trusted Execution Environments”. In: SPSM. 2013.

[McG+15] Brian McGillion et al. “Open-TEE - An Open Virtual Trusted Execution
Environment”. In: TrustCom. 2015.

[Mel+15] Marcela S. Melara et al. “CONIKS: Bringing Key Transparency to End
Users”. In: 24th USENIX Security Symposium, USENIX Security 15, Wash-
ington, D.C., USA, August 12-14, 2015. Ed. by Jaeyeon Jung and Thorsten
Holz. USENIX Association, 2015, pp. 383–398. url: https : / / www .
usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/melara.
[Mie+13] Ian Miers et al. “Zerocoin: Anonymous Distributed E-Cash from Bit-

coin”. In: S&P. 2013.
[Mit05] Chris J. Mitchell. “What is trusted computing?” In: Trusted Computing.

Vol. 6. 2005.

66

https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9%5C_3
https://doi.org/10.1007/978-3-319-63697-9%5C_3
https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
http://arxiv.org/abs/1801.07501
https://www.wired.com/2016/05/2036876/
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/3267323.3268947
http://arxiv.org/abs/1801.01207
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara

Deliverable D4.4 NEXTLEAP Grant No. 688722

[MR01] Philip D. MacKenzie and Michael K. Reiter. “Networked Cryptographic
Devices Resilient to Capture”. In: S&P. 2001.

[MR04] Philip D. MacKenzie and Michael K. Reiter. “Two-party Generation of
DSA Signatures”. In: Int. J. Inf. Sec. (2004).

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. “Veri�able Random
Functions”. In: 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE Computer
Society, 1999, pp. 120–130. isbn: 0-7695-0409-4. doi: 10.1109/SFFCS.
1999.814584. url: https://doi.org/10.1109/SFFCS.1999.814584.

[Mul+] U. Muller et al. Mixmaster Protocol – Version 2. https://gnunet.org/
mixmaster-spec.

[New96] Ron Newman. The Church of Scientology vs. anon.penet.�. Sept. 1996.
url: https://www.spaink.net/cos/rnewman/anon/penet.html.

[ØS06] Lasse Øverlier and Paul F. Syverson. “Locating Hidden Servers”. In:
S&P. 2006.

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: EUROCRYPT. 1999.

[Pap+17] Dimitrios Papadopoulos et al. “Can NSEC5 be practical for DNSSEC
deployments?” In: IACR Cryptology ePrint Archive 2017 (2017), p. 99.
url: http://eprint.iacr.org/2017/099.

[Ped91] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Se-
cure Veri�able Secret Sharing”. In: CRYPTO. 1991.

[Pio+17] Ania M. Piotrowska et al. “The Loopix Anonymity System”. In:USENIX.
2017.

[PNP08] Roel Peeters, Svetla Nikova, and Bart Preneel. “Practical RSA threshold
decryption for things that think”. In: WISSec 2008. 2008.

[PR08] Manoj Prabhakaran and Mike Rosulek. “Homomorphic Encryption
with CCA Security”. In: ICALP. 2008.

[Rab98] Tal Rabin. “A Simpli�ed Approach to Threshold and Proactive RSA”.
In: CRYPTO. 1998.

[Sch91] Claus-Peter Schnorr. “E�cient Signature Generation by Smart Cards”.
In: J. Cryptology 4.3 (1991), pp. 161–174. doi: 10.1007/BF00196725.
url: https://doi.org/10.1007/BF00196725.

[SG02] Victor Shoup and Rosario Gennaro. “Securing Threshold Cryptosys-
tems against Chosen Ciphertext Attack”. In: J. Cryptology (2002).

[Sho00] Victor Shoup. “Practical Threshold Signatures”. In: EUROCRYPT. 2000.
[SU17] Dominique Schröder and Dominique Unruh. “Security of Blind Signa-

tures Revisited”. In: J. of Cryptol. (2017).
[SZ05] Ravi S. Sandhu and Xinwen Zhang. “Peer-to-peer access control archi-

tecture using trusted computing technology”. In: SACMAT. 2005.
[Tan11] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: The

USENIX Magazine 36.1 (Feb. 2011), pp. 42–47. url: http://www.gnu.
org/s/parallel.

[TDG16] Raphael R. Toledo, George Danezis, and Ian Goldberg. “Lower-Cost ϵ-
Private Information Retrieval”. In: PoPETs 2016.4 (2016), pp. 184–201.
doi: 10.1515/popets-2016-0035. url: https://doi.org/10.1515/
popets-2016-0035.

[Tsa+10] Patrick P. Tsang et al. “BLAC: Revoking Repeatedly Misbehaving
Anonymous Users without Relying on TTPs”. In: TISSEC (2010).

[Vee+16] Victor van der Veen et al. “Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms”. In: CCS. 2016.

67

https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://gnunet.org/mixmaster-spec
https://gnunet.org/mixmaster-spec
https://www.spaink.net/cos/rnewman/anon/penet.html
http://eprint.iacr.org/2017/099
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
https://doi.org/10.1515/popets-2016-0035
https://doi.org/10.1515/popets-2016-0035
https://doi.org/10.1515/popets-2016-0035

Deliverable D4.4 NEXTLEAP Grant No. 688722

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authenticated Gar-
bling and E�cient Maliciously Secure Two-Party Computation”. In:
SIGSAC. 2017.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Ex-
tended Abstract)”. In: FOCS. 1986.

A Claimchain security and privacy

In this appendix we �rst describe how we build Unique-resolution key-value Merkle
trees. Then, we formally model the security and privacy properties of the Claim-
Chain data structure and prove that ClaimChain satis�es these properties.

A.1 Unique-resolution key-value Merkle tree

Our unique-resolution key-value Merkle tree data structure is composed of two
types of nodes:

Internal = (pivot, le� : H (Node), right : H (Node))
Leaf = (key, value)

We denote the root of a tree as MTR. Each Internal node contains a pivot string
and the hashes of its two children. The invariant of the structure is that any nodes
in the le� sub-tree will have pivots or leaf keys smaller than the parent pivot, and
any nodes to the right sub-tree have pivots or leaf keys equal or larger than the
parent pivot. As in a normal Merkle tree, the hash of the root node is a succinct
authenticator committing to the full sub-tree (subject to the security of the hash
function).

A proof of inclusion, or authentication proof, of a key-value pair in the tree involves
disclosing the full resolution path of nodes from the root of the tree to the sought
leaf. We show that such path is indeed a proof of inclusion, and, moreover, is unique
in Section A.1.2.

A.1.1 Algorithms

Building the tree To build a tree from a set of key-value pairs S = {..., (ki ,vi), ...}
we run the BuildTree procedure (Algorithm 1) The procedure take as input a set
of claims S and a content-addressable store. It constructs the tree nodes and saves
them to the store. Finally, it returns the hash of the root node of the resulting tree.

Querying the tree The tree querying procedure �eryTree is described in Al-
gorithm 2. It takes as input the tree root MTR and store that contains the tree nodes.
The procedure traverses the tree starting from the root. For each intermediate node,
the procedures follows a left or right sub-tree depending on the pivot �eld. It con-
tinues until it ends up in a leaf node. If the leaf node has the correct key, �eryTree
returns the corresponding value, otherwise it returns ⊥.

68

Deliverable D4.4 NEXTLEAP Grant No. 688722

Algorithm 1 Tree construction
procedure BuildTree(S , store)

if |S | = 1 then

{(k,v)} ← S
leaf← Leaf(k,H (v))
Put(store, leaf)
Put(store, v) . Put the value itself into the store
return H (leaf)

else

(k∗,v∗) ←$ S . Pick the pivot arbitrarily
(S−, S+) ← Partition(k∗, S)
le�← BuildTree(S−, store)
right← BuildTree(S+, store)
node← Internal(k∗, le�, right)
store.Put(node)
return H (node)

procedure Partition(k∗, S)
S−, S+← { }, { }
for (k,v) in S do

if k < k∗ then . Lexicographic comparison of strings
S−← S− ∪ {(k,v)}

else

S+← S+ ∪ {(k,v)}

return (S−, S+)

A.1.2 Unique resolution

For a given key, only one value can be stored in the tree. Any violation of this
invariant will be detected when the tree is queried—thus the creator of the tree does
not need to be trusted to enforce this invariant. More formally, for a given key k
it is only possible to successfully prove the inclusion of one leaf node in the tree
with root MTR. We capture this notion in the UniqRes game in Experiment 1. The
following theorem states that no adversary can win this game.
Theorem 3. For any probabilistic polynomial time adversary A it holds that
PrA[b = 1] = negl(λ), where the bit b ∈ {0, 1} is the output of the UniqRes game
(Experiment 1).

Proof. Assume A wins the game. Then it is able to construct two stores such that
there are two di�erent valid paths:

π ← GetPath(MTR,k, store)

π ′← GetPath(MTR,k, store′),

that start with the same root MTR, but end with di�erent leaves containing (k,v)
and (k,v ′) respectively.

First, assume one of the paths, w.l.o.g. π , consists of a single leaf node t with (k,v).
Then the other path π ′ can contain either another leaf t ′ with (k ′,v), or start with
an internal node t ′. This implies a hash collision, since t , t ′, but MTR = H (t) =
H (t ′). By the collision resistance property of the cryptographic hash function H ,
this happens with negligible probability.

69

Deliverable D4.4 NEXTLEAP Grant No. 688722

Algorithm 2 Querying the tree
procedure �eryTree(MTR, k , store)

π ← GetPath(MTR, k , store)
[..., Leaf(k ′,v)] ← π
if k ′ = k then

return ⊥

else

return v

procedure GetPath(h, k , store)
node← store.Get(h)
if node is Leaf then

return [node]
else if node is Internal(pivot, le�, right) then

if k < pivot then
π ← GetPath(le�, k , store)

else

π ← GetPath(right, k , store)
return [node] + π . Prepend the current node to the list π

Experiment 1 Unique Resolution
UniqResA(λ)

MTR,k, store, store′←A()
if store = store′ then

return 0
v ←�eryTree(MTR,k, store)
v ′←�eryTree(MTR,k, store′)
b ← v , v ′

return b.

Now, assume that the paths have a common beginning. Let t , t ′ be the �rst nodes
along the paths that di�er, and let t∗ = Internal(p∗,h∗l ,h

∗
r) be their common parent.

Then, there are four possible options:

(a) Both t and t ′ are a left child of t∗. In this case, H (t) = H (t ′) = h∗l . This implies
a hash collision, which we assume to happen with negligible probability.

(b) Both t and t ′ are a right child of t∗. This is analogous to the previous case.

(c) The children t and t ′ are respectively the left child and the right child of t∗.
This situation cannot happen, because GetPath decides which child to follow
based on the value of the pivot p∗ and the lookup key k . Since the parent is
common, the procedure will always choose either the left, or the right child.

(d) The children t and t ′ are respectively the right child and the left child of t∗.
This is analogous to the previous case.

Thus, the probability thatA wins the game, PrA[b = 1], equals the probability of a
hash collision and is therefore negligible.

70

Deliverable D4.4 NEXTLEAP Grant No. 688722

Algorithm 3 Add user and extend chain oracles
. Add a new user
procedure AU(id)
(skid

sig, pkid
sig) ← Sig.KeyGen(1λ)

(skid
DH, pkid

DH) ← DH.KeyGen(1λ)
(skid

VRF, pkid
VRF) ← VRF.KeyGen(1λ)

keysid← (skid
∗ , pkid

∗)

(sk′idsig, ...) ← keysid . Separately record the signing key

. Extend the chain of an existing user
procedure EC(id, data, claims, acs, store)

if user id does not exist then return ⊥

ptrid← ExtendChain(
data, claims, acs, keysid ∪ sk′idsig, ptrid, store)

return ptrid

A.2 Security of the ClaimChain data structure

A.2.1 Privacy

Here we formally describe the privacy properties of ClaimChains.

Claim privacy. The adversary cannot learn anything about the content claims for
which it does not have the corresponding capabilities.

We formalize this in Experiment 2 using an indistinguishability game. The game
models that the adversary cannot distinguish between a claim containing one of
two equal-length messages of its choice. The experiment is executed by a challenger
that plays a game with the adversary A.

The game starts with creating a user that represents an honest reader, and another
user that represents the challenger. We then provide the adversary with an oracle
access that allows it to create users and request them to extend their chains with
adversary-supplied claims and access control sets (see Algorithm 3). Moreover, the
adversary is allowed to modify store.

Eventually, the adversary outputs two claims (l0,m0) and (l1,m1). The challenger
�ips a random coin b, and constructs a challenge block containing claim (lb ,mb),
readable by the honest reader, but not by the adversary. The adversary then has to
guess which of the two challenge claims were included in the challenge block. It
may make further oracle queries.

Note that this de�nition implies that the adversary cannot learn anything about
the claim neither from the claim encoding itself, not from any of the capabilities.
Additionally, the adversary could have access to the claim in the past, but not in the
challenge block.

The proof of knowledge π in the claim encoding c depends on the claim key k and
other public values, making it di�cult to prove directly that the adversary cannot
learn anything about the bit b. Therefore, in one of the steps we replace this proof
π with a completely random proof. The following lemma states that we may do so.
Lemma 3. To any distinguisher that does not know the value kπ ∈ {0, 1}2λ , the
proof π in EncClaim is indistinguishable from a randomly drawn proof in the ran-

71

Deliverable D4.4 NEXTLEAP Grant No. 688722

dom oracle model for Hq .

Proof. Without loss of generality, we focus on a simpler proof with only a single
conjunct, writingm for l ‖ nonce:

π ← SPK{(skVRF) : pkVRF = д
skVRF ∧ h = VRF.Eval(skVRF,m)}(kπ).

Which abbreviates the following proof:

π ← SPK{(skVRF) : pkVRF = д
skVRF ∧ h = HG(m)

skVRF}(kπ).

To construct this proof, pick a randomizer rsk ← Zp , and compute

Rpk = д
rsk

Rh = HG(m)
rsk

c = Hp (д ‖ HG(m) ‖ pkVRF ‖ h ‖ Rpk ‖ Rh ‖ kπ)

ssk = rsk + c · skVRF.

The proof is then given by (c, ssk). To verify the proof, compute

R′pk = д
sskpk−cVRF

R′h = HG(m)
sskh−c ,

and verify that c equals Hq(д ‖ HG(m) ‖ pkVRF ‖ h ‖ R
′
pk ‖ R

′
h ‖ kπ).

Suppose that the adversary does not know kπ . To randomly generate the proof,
draw (c ′, s ′sk) ← $ Z2

p at random. Since the adversary does not know kπ it can
never query the random oracle Hq with the correct value for kπ , therefore it cannot
distinguish the fake proof (c ′, s ′sk) from a real proof (c, ssk).

Theorem 4 (Claim privacy). For any probabilistic polynomial time adversaryA it
holds that Pr [b = 1] ≤ 1

2 +negl(λ),where b ∈ {0, 1} is the result of ClaimPriv game
(Experiment 2) run with A.

Proof. We construct a sequence of games and show thatA can distinguish between
them with negligible probability, starting with G0 = ClaimPrivA(λ).

First, we show that the adversary cannot extract any information about b from the
capability entry for lb because of security of the Di�e-Hellman key exchange and
the encryption scheme.

Recall from the EncCap (Figure 9) and ExtendChain procedures (Figure 10) that
the corresponding capability lookup key icap and the encryption key kcap are given
by:

icap = H3(s ‖ lb ‖ nonce)

kcap = H4(s ‖ lb ‖ nonce),

where s is the shared DH secret.

G1 In this game we substitute the shared Di�e-Hellman secret s with the random
string α ←$ {0, 1}λ in all capabilities for reader pk‘reader’

DH in all blocks on the
challenger’s chain. In particular, we set:

icap = H3(α ‖ lb ‖ nonce)

kcap = H4(α ‖ lb ‖ nonce),
72

Deliverable D4.4 NEXTLEAP Grant No. 688722

Experiment 2 Claim privacy
ClaimPrivA(λ)

. .Setup

AU(‘reader’) . Initialize reader’s chain

AU(‘challenger’) . Initialize challenger’s chain

. .Content to include in the challenge block

(l0,m0), (l1,m1), data, claims), acs, store) ←

← AEC(·),AU(·)
(
pk‘reader’

DH

)
if l0 or l1 in acs or |m0 | , |m1 | then return 0

. .Challenge block

b ←$ {0, 1}
claims′← claims ∪ {(lb ,mb)}

acs′← acs ∪ {(pk‘reader’
DH , lb)} . Give the reader the access to lb

ptrC ← EC(‘challenger’, data, claims′, acs′, store)

. .Response

b̂ ←AEC(·),AU(·) (ptrC
)

return b̂ = b

G2 In this game, we substitute the capability key kcap with a random string
β ←$ {0, 1}2λ . The capability becomes:

cap = E(β,h ‖ k ‖ kπ).

G3 In this game, we substitute the lookup index icap with a random string
γ ←$ {0, 1}2λ as well.

G4 In this game, we substitute the plaintext h ‖ k ‖ kπ with a random string γ of
the same length:

cap = E(β,γ).

The games G0 and G1 are indistinguishable by the decisional Di�e-Hellman as-
sumption. Games G1 and G2 are indistinguishable by the pseudorandomness of the
hash function H4. The indistinguishability of G2 and G3 follows from the pseudo-
randomness of H3. Since the encryption key β is random, distinguishing between
G3 andG4 can be trivially reduced the IND-CPA security for the encryption scheme.
Therefore, games G3 and G4 are indistinguishable as well.

The adversary is not allowed to give access to labels l0, l1 to any user (honest or not).
As a result, no other capability entries depend on the challenge bit b.

SinceG4 replaces the real plaintext with a random plaintext, the adversary also does
not learn anything about k and kπ .

Now we show that the adversary cannot extract information about b neither from
the claim encoding, nor from the claim lookup key. We use the IND-CPA security
of the encryption scheme and pseudorandomness of the VRF scheme.

73

Deliverable D4.4 NEXTLEAP Grant No. 688722

Recall from the EncClaim (Figure 9) and ExtendChain procedures (Figure 10) that
here the encoded claim c is given by:

c = E(k,π ‖ mb) ‖ com.

G5 In this game, we replace the non-interactive zero-knowledge proof π with a
uniformly random proof π ′ that does not depend on any of the secret values,
nor on any of the public values.

G6 In this game, we replace the commitment com by a random commitment
comR ← G.

Games G4 and G5 are indistinguishable because of Lemma 3. Since πcom no longer
depends on the randomness r , the commitment com is perfectly hiding. Therefore,
games G5 and G6 are indistinguishable as well.

Next, we change the claim encryption key k to a random key. Note that because
of the changes made in G4, the adversary does not learn anything about k from the
capability cap.

G7 In this game, we generate a random encryption key δ and use it to replace k :

c = E(δ ,π
′ ‖ mb) ‖ com.

G8 In this game, we replace the plaintext π ′ ‖ mb with a random message µ of
the same length:

c = E(δ , µ) ‖ comR .

Games G6 and G7 are indistinguishable since the adversary learns nothing about k
because of earlier transformations. Games G7 and G8 are indistinguishable because
of the CPA security of the encryption scheme.

The �nal dependency on the bit b is in the claim lookup key i = H1(hb), see Enc-
Claim (Figure 9). We remove this �nal reference.

G9 In this game, we substitute hb in i with a random value q′←$G:

i = H1(q
′)

The changes in gamesG4 andG5 ensure that the adversary does not learn anything
about hb directly. Also, indirectly the adversary cannot learn about hb . The adver-
sary can learn other VRF values by adding claims and giving itself access to them.
However, the pseudorandomness property of the VRF ensures that even if the adver-
sary makes many VRF queries, the remaining values remain pseudorandom. Hence,
the adversary cannot distinguish G8 from G9.

In game G9 none of the values depend on the challenge bit b, hence, the adversary
cannot have advantage better than random guessing.

Capability-reader unlinkability. The adversary should not be able to determine
who has been given access to a claim, i.e., for which honest user a capability has
been created. We model this using the indistinguishability game in Experiment 3.
The adversary can create users (using the AU oracle) and extend their chains (using
the EC oracle). It then outputs the public keys pk0

DH and pk1
DH of two honest users

it created using the AU and a description of a claim with label l on which it wants
to be challenged. The challenger picks one of the honest users at random, and adds
a capability to l for that user. The adversary must decide which user has been given
the capability.

74

Deliverable D4.4 NEXTLEAP Grant No. 688722

Experiment 3 Capability-reader unlinkability
CapReaderUnlinkA(λ)

. .Setup

AU(‘challenger’) . Initialize challenger’s chain

. .Content to include in the challenge block

pk0
DH, pk1

DH, l ,m, data, claims, acs, store←AEC(·),AU(·)()

if pk0
DH or pk1

DH not a honest user then return 0

. .Challenge block

b ←$ {0, 1}
claims′← claims ∪ {(l ,m)}

acs′← acs ∪ {(pkbDH, l)}

ptrC ← EC(‘challenger’, claims′, acs′, store)

. .Response

b̂ ←AEC(·),AU(·) (ptrC
)

return b̂ = b

Theorem 5. For any polynomially-boundedA it holds that Pr [b = 1] ≤ 1
2+negl(λ),

where b ∈ {0, 1} is the result of CapReaderUnlink game (Experiment 3).

Proof. We show that the adversary cannot extract any information about b from the
capability entry for l . The adversary may have given other readers access to label l ,
but the corresponding capabilities are independent of the bit b, so we ignore them.
We focus instead on the capability for reader pkbDH. Recall from the EncCap (Fig-
ure 9) and ExtendChain procedures (Figure 10) that the corresponding capability
lookup key icap and the encryption key kcap are given by:

icap = H3(s ‖ lb ‖ nonce)

kcap = H4(s ‖ lb ‖ nonce),

where s is the DH secret between the chain owner and the reader pkbDH. We apply the
sequence of games G0, . . . ,G4 in the proof of Theorem 4. The indistinguishability
of the games proves that the adversary does not learn anything about the bit b.
Therefore, we have capability-reader unlinkability.

A.2.2 Non-equivocation

Intra-blocknon-equivocation. Within a given block, a ClaimChain owner cannot
include two di�erent claims having the same label to di�erent readers.

We model this in Experiment 4. The adversary’s task is to produce a block pointed
to by ptr and a label l such that the two readers pkDH and pk′DH derive di�erent
claimsm andm′.
Theorem 6 (Intra-block non-equivocation). For any polynomially-bounded A it
holds that Pr [b = 1] ≤ negl(λ), where b ∈ {0, 1} is the result of BlockNonEq game
(Experiment 4).

75

Deliverable D4.4 NEXTLEAP Grant No. 688722

Experiment 4 Intra-block non-equivocation
BlockNonEqA(λ)

skDH, pkDH← DH.KeyGen(1λ)
sk′DH, pk′DH← DH.KeyGen(1λ)
l , ptr, store, store′←A(pkDH, pk′DH)

m← GetClaim(skDH, l , ptr, store)
m′← GetClaim(sk′DH, l , ptr, store′)
returnm ,m′ ∧m , ⊥ ∧m′ , ⊥

Proof. We �rst prove that both store and store′must contain the same block B. Sup-
pose not, i.e., store contains block B whereas store′ contains a di�erent block B′

that both hash to the same head ptr. Then the adversary breaks the collision resis-
tance of H . Since H is a cryptographic hash function, this happens with negligible
probability.

The remainder of this proof is also by contradiction. Assume adversary A wins
Experiment 4. We use the uniqueness of the VRF, �rst for the claim key k , then for
the lookup key h, to derive a contradiction, i.e., that m = m′. Both readers pkDH
and pk′DH �rst compute the capability lookup key (step 3), see GetClaim procedure
(Figure 10), retrieve the capability (step 4) and decode it (step 5). Capabilities are per
reader, and therefore di�erent. We continue the proof from step 5.

Let i and i ′ be the claim lookup keys derived in step 5 of the GetClaim() call by
respectively the �rst and second user. We �rst consider the case where i = i ′. By
the unique resolution property of the tree (see Experiment 1), we know that in step
6 both GetClaim() calls must then derive the same claim encoding c with over-
whelming probability.

Since the adversary wins, the derived messages m and m′ are di�erent and not ⊥,
therefore the calls to DecClaim() in step 7 returned di�erent messagesm ,m′:

m ← DecClaim(pkOVRF, l ,h,k,kπ , c, nonce)

m′← DecClaim(pkOVRF, l ,h
′,k ′,k ′π , c, nonce).

Since the encoding c is the same for bothm andm′, this situation is not possible by
the binding property of the commitment scheme. Indeed, the users verify proofs π ,
respectively π ′, in step 6, which verify the commitment com.

We now consider the case where the readers derive di�erent lookup keys i and i ′ in
step 5. Since i , i ′ and by the collision resistance ofH1, we have that the correspond-
ing VRF values h and h′ must be di�erent as well. However, by uniqueness of the
VRF, this cannot happen. More precisely, both users successfully verify the proofs
π , respectively π ′, in step 6, which prove that h = VRF.Eval(skVRF, l ‖ nonce) = k ′,
respectively h′ = VRF.Eval(skVRF, l ‖ nonce), and therefore h = h′, contradicting
the assumption that i , i ′.

Detectable inter-block equivocation. The game in Experiment 5 models that a
claim owner cannot make a non-consistent reference, yet produce a proof of consis-
tency that validates using CheckConsistency() (see Figure 13). More precisely, the
adversary outputs valid blocks on two chains: the blocks {Oi }

n
1 on its own chain,

and the blocks {Ci }
t
1 on the referenced chain. Moreover, the adversary outputs a

label l for the referenced chain, and a valid consistency proof πconsist.
76

Deliverable D4.4 NEXTLEAP Grant No. 688722

Experiment 5 Detectable inter-block equivocation
InterBlockEqDetectionA(λ)

. .Setup

AU(‘challenger’) . Initialize the challenger’s chain

. .Adversary-supplied blocks and validation of consistency

{Oi }
n
1 , {Ci }

t
1, store, l ,πconsist←A

AU(·),EC(·)()

if ValidateBlocks({Oi }
n
1) = ⊥ then return 0

if ValidateBlocks({Ci }
t
1) = ⊥ then return 0

if CheckConsistency(l , {Oi }
n
1 , {Ci }

t
1,πconsist) = ⊥ then

return 0

. .Final read phase

ptr, store′←A()

if Get(store′, ptr) < {Oi }
n
1 then return 0

m← GetClaim(sk‘challenger’
DH , l , ptr, store′)

returnm < {Ci }
t
1

To win, the adversary also outputs a pointer ptr to one of its own blocks such that
the challenger has access to label l . The adversary wins if the cross-referenced block
m di�ers from the legitimate cross referenced blocks {Ci }

t
1 .

Theorem 7. For any polynomially-bounded stateful A it holds that Pr [d = >] =
negl(λ), where d ∈ {>,⊥} is the result of DetEq game (Experiment 5).

Proof. Suppose the adversary wins the game. Let i be the index such that ptr corre-
sponds to block Oi . Since the adversary wins,

m = GetClaim(sk‘challenger’
DH , l , ptr, store′)

returned a message m < {Ci }
t
1 . Let h be the VRF hash that it computes in step 5,

and let ci = c̄i ‖ comi be the encoded claim that this algorithm retrieves in step 6.
In step 7, the algorithm calls DecClaim(), to verify the proof π . Since the proof is
valid, comi commits to Hq(m) and hi is the VRF hash of l ‖ noncei .

We now show that CheckConsistency() retrieves the same commitment comi to-
gether with a proof that the committed value x ′ ∈ {Hq(Ci)}

t
1 , contradicting the

binding property of the commitment scheme.

The proof πconsist contains the VRF hashh′i of l ‖ noncei and the proof of correctness
π (i)h . Since the proof veri�ed, h′i is the VRF hash of l ‖ noncei , and therefore h′i =
hi . By the unique resolution property of the tree, CheckConsistency() therefore
derived the same encoded claim ci = c̄i ‖ comi as the challenger did by calling
GetClaim(). Moreover, the proof π (i)ref proves that comi commits to x ′ such that
x ′ ∈ {Hq(Ci)}

t
1 .

This contradicts the binding property of the commitment scheme or the soundness
of the zero-knowledge proofs.

77

Deliverable D4.4 NEXTLEAP Grant No. 688722

B Tandem security and privacy

In this appendix we prove the security and privacy properties of Tandem.

B.1 Proofs of Lemmas

Proof of Lemma 1. Whenever a ciphertext ci is selected by the TS for opening, the
TS checks that it and the corresponding randomizers κi , δi , ξi , and ri are as in equa-
tion (3) and that δi < 2`δ , and hence as stated in the theorem.

Since the TS checks k tuples, every adversary needs to include at least k correct
tuples in its set of 2k tuples. If no index i∗ exists for the remaining tuples, then all
k of them were incorrectly formed. The probability that none of these k bad tuples
were selected during the cut and choose protocol is 1/

(2k
k

)
.

Proof of Lemma 2. From Lemma 1 we know that with probability 1 − 1/
(2k
k

)
there

exists i∗ and δ ∗, xS such that

D+sk (ci∗) = xS + δ ∗

Let c j = E+pk (α). From equation (4) we know that:

c j = ci∗ · E+pk (γi∗ ;κi∗)

By decrypting we �nd that α = xS + δ ∗ + γi∗ (mod N). Moreover, δ ∗ < 2`δ (by
Lemma 1), xS < p < 2`δ (by construction) and γi∗ < 2`δ as checked by the TS. Since
`δ = dlogpe+`+ logk +2 and N > 3 ·2`δ , we have that α = xS +δ ∗+γi∗ as integers,
and thus c j is a proper randomization, with randomizer δ ∗ + γi∗ < 2`δ+1, of xS as
well.

B.2 Constructing Correctness Proof of xS

In this section we describe the details of the range proof of D+sk (xS) in the Register-
User protocol. The range proof ensures that the TS cannot recognize anonymous
users by constructing specially crafted versions of xS as explained earlier. When us-
ing a homomorphic encryption scheme that supports zero-knowledge proofs, such
as Paillier’s encryption scheme, we can use standard techniques, see for example
the bitwise technique by Bellare and Goldwasser [BG97], to prove that D+sk (xS) is at
most 2` bits (which is a su�cient proxy for p in our schemes).

In our implementation, however, we use Joye and Libert’s encryption scheme which
does not readily allow zero-knowledge proofs. Therefore, we instantiate the range
proof using a construction that consists of two parts.

I. The TS constructs a commitmentC to xS using a commitment scheme whose
message space is at least as big as the plaintext space of the encryption scheme.
The TS then uses a traditional zero-knowledge proof to show that the value
xS committed in C is smaller than p.

II. Next, the TS uses a cut-and-choose technique to show that C commits to
D+sk (xS) = xS .

78

Deliverable D4.4 NEXTLEAP Grant No. 688722

The details are as follows. The user and TS take xS as input. The TS takes as private
input xS and the randomizer κ used to construct xS . LetG be a cyclic group of order
p generated by д such that p > N (recall, N is the size of the plaintext domain of the
homomorphic encryption scheme). Let h be another generator of G such that the
discrete logarithm of h with respect to д is unknown. We use this group to create a
commitment scheme with a large message space.

The details of the �rst step are as follows. Part I is represented by step 1, whereas part
II is represented by the cut-and-choose technique in steps 2 – 7. If at any step a ver-
i�cation fails, the protocol is aborted. The cut-and-choose technique is very similar
to the construction we use in the ObtainKeyShareToken and GenShares protocols.
Let k be the di�culty level of the cut-and-choose protocol.

1. The TS creates a non-interactive proof that the commitment C contains key-
share xS of the correct size:

PK{(xS , r) : C = дxSh
r
∧ xS ∈ [0,p)}. (7)

and sends this proof to the user. This proof can be implemented using a stan-
dard technique like the bitwise commitment technique of Bellare and Gold-
wasser [BG97]. The user checks the correctness of the proof.

2. The user randomly chooses a subset D ⊂ {1, . . . , 2k} of cardinality k . She
commits to D by picking θ ∈R {0, 1}` and sending ∆ = ExtCommit(D,θ) to
the TS.

3. The TS picks randomizers δ1, . . . ,δ2k ∈R {0, 1}`δ and κ1, . . . ,κ2k ∈R R to
construct ciphertexts, and r , r1, . . . , r2k ∈ Zp to create commitments. Then,
the TS computes a commitment C = дxSh

r
and sets:

ci = E+pk (δi ;κi)

Ci = д
δih

ri (8)

for i = 1, . . . , 2k . Finally, the TS sends the ciphertexts c1, . . . , c2k and commit-
mentsC,C1, . . . ,C2k to the user. The commitments are computationally bind-
ing and information theoretically hiding. (Contrary to the ObtainKeyShare-
Token protocol, the TS can safely send the ciphertexts, because the user can-
not decrypt them.)

4. The user sends the subset D and the commitment randomizer θ to the TS.

5. If ∆ = ExtCommit(D,θ), then the TS sends (δi ,κi , ri)i ∈D to the user (oth-
erwise, it aborts). The user veri�es that the values ci ,Ci for i ∈ D satisfy
equation (8). Moreover, the user checks that δi < 2`δ for i ∈ D.

6. Next, the TS computes

γi = δi − xS , ρi = ri − r , νi = κiκ
−1

for i < D, and sends them to the user.

7. Finally, the user checks that

ci = xS · E+pk (γi ;νi)

Ci = C · д
γih

ρi (9)

and that 0 ≤ γi < 2`δ for i < D, and accepts the proof if all veri�cations are
correct.

79

Deliverable D4.4 NEXTLEAP Grant No. 688722

Lemma 4. If the user does not reject in the above protocol, then with probability
1 − 1/

(2k
k

)
we have that D+sk (xS) ∈ [0,p) as required.

Proof. From the zero-knowledge proof in step 1, we know that the TS knows an
opening α ′, r ′ of C = дα

′

h
r ′

such that 0 ≤ α ′ < p. We complete the proof by
showing that α ′ = D+sk (xS).

We continue as per Lemma 1 and Lemma 2. We restate them here for completeness.
First, along the lines of Lemma 1, with probability 1 − 1/

(2k
k

)
there exists an index

i∗ such that the TS knows an opening δ ∗, r ∗ such that:

δ ∗ = D+sk (ci∗) < 2`δ

Ci∗ = д
δ ∗h

r ∗
.

(10)

The user checks that the TS knows an opening for the k pairs that are opened by
the TS in step 4. So, the TS must include at least k pairs for which it knows a correct
opening. Suppose, for contradiction, that the index i∗ does not exist, i.e., that the
remaining k pairs are incorrect or cannot be opened by the TS. Since the protocol
completed, the user did not detect foul play. This situation can only occur if the TS
correctly guesses the set D in advance. Since the TS does not learn anything about
D before step 3, the probability that none of the remaining pairs is correct is 1/

(2k
k

)
,

as required.

Assume now that this index i∗ as required above exists. We use this to show that C
commits to D+sk (c), i.e., that α ′ = D+sk (c). From equation (9) we know that:

Ci∗ = C · д
γi∗h

ρi∗

so, by using equation (10) and equating exponents, we �nd that δ ∗ = α ′ + γi∗

(mod p). We know from the zero-knowledge proof that α ′ < p and by direct in-
spection that γ < 2`δ therefore, the equality holds over the integers as well, and we
have

δ ∗ = α ′ + γi∗ < 2`δ+1 < N . (11)

From equation (9) we also know that:

ci∗ = xS · E+pk (γi∗ ;νi∗)

By decrypting and using equation (10) we �nd that:

δ ∗ = D+sk (xS · E
+
pk (γi∗ ;νi∗)) = D+sk (xS) + γi∗ (mod N).

Substituting δ ∗ from equation (11) and substracting γi∗ shows that α ′ = D+sk (xS)
(mod N), and therefore, by size of α ′ and D+sk (xS) < N , that α ′ = D+sk (xS) as re-
quired.

In the security proof, we replace xS with the encryption of 0, so that the adversary
who has corrupted a user learns nothing about xS (except what is revealed as a result
of the threshold-cryptographic protocol). The following lemma states that we can
do so, without the adversary detecting this change.
Lemma 5. TS can simulate the correctness proof given above such that xS = E+pk (0),
provided that the encryption scheme is CPA secure and the commitment scheme
ExtCommit(·, ·) is extractable. This simulation does not require any knowledge of
how xS was created.

80

Deliverable D4.4 NEXTLEAP Grant No. 688722

This proof uses a sequence of games that interpolates between the situation where
the RegisterUser protocol is executed normally, and the situation, where xS is an
encryption of 0. This game is as in the security game: the adversary can make
RegisterUser, ObtainKeyShareToken, GenShares, and BlockShare queries. It’s task
is to determine if xS is as in the original protocol, or xS = E+pk (0). In particular:

• Game 0. In Game 0, xS is constructed as per the protocol.

• Game 1. We proceed as in Game 0, but simulate the cut-and-choose proof in
steps 2 – 7 by extracting D.

• Game 2. As in Game 1, but simulate the zero-knowledge proof in step 1 of the
protocol.

• Game 3. As in Game 2, but replace the commitment C by a random commit-
ment.

• Game 4. As in Game 3, but replace xS with an encryption of 0.

We show that each pair of consecutive games is indistinguishable to a polynomially-
bounded adversary. Hence, no adversary can distinguish Game 0 from Game 4, thus
proving the lemma.

Proof of Lemma 5. We �rst show how to simulate the cut-and-choose proof in steps
2 – 7. The adverary sends a commitment ∆ to the TS in step 1. We use the ex-
tractability of ExtCommit(·, ·) to recover D from ∆ (for example, using the random
oracle model if it is implemented using a hash-function).

We change how TS acts in step 3. Let D ⊂ {1, . . . , 2k} be the subset of cardinality
k extracted from ∆. For all i ∈ D the TS sets ci andCi as per equation (8). For other
elements, i.e., for i ∈ {1, . . . , 2k} \ D, the TS generates γ ∈R {0, . . . , 2`δ − 1}, ρ ∈R
Zp ,ν ∈R R and sets ci and Ci as per equation (9).

In step 4, the adversary reveals D and θ . If ∆ = ExtCommit(D,θ) then with over-
whelming probability, we correctly extractedD. If we correctly extractedD, the TS
can open the tuples for i ∈ D in step 5 and return γi , ρi ,νi for the other elements.
Both satisfy the adversary’s checks in steps 5 and 7.

Games 0 is indistinguishable from Game 1. The simulated proof can go wrong for
two reasons. One, we can fail to extract the disclose set D, but this can only hap-
pen with negligible probability. Second, the distribution of γis for i < D is not
completely correct, however, the size of δ ensures that this di�erence is statistically
hidden from the adversary. So, from the point of view of the adversary, Games 0
and 1 are indistinguishable.

In Game 2 we simulate the zero-knowledge proof in step 1. By construction of the
simulator of this proof, the adversary cannot detect this change.

As a result of the changes we made in Game 1, the answers of TS do not depend
on the opening of C . So, in Game 3 the TS can generate a random commitment
C ∈R G. Since Pedersen’s commitment scheme is information-theoretically hiding,
the adversary cannot detect this change.

In Game 4, the TS sends xS = E+pk (0) to the user instead of an encryption of the key-
share xS . As a result of the changes we made in Game 1, the TS can still complete
the remaining part of the protocol.

81

Deliverable D4.4 NEXTLEAP Grant No. 688722

We claim that the adversary A cannot distinguish Games 3 and 4. Suppose to the
contrary that A can distinguish Games 3 and 4. We then show that A can break
the CPA security of the homomorphic encryption scheme.

To do so, we build an adversary B against the CPA security of the encryption
scheme. Recall that B can make a challenge query on two messages m0 and m1.
In our case, B picks m0 = xS and m1 = 0. Then, its challenger returns a ciphertext
c∗ = E+pk (pk,mb) for some bit b ∈R {0, 1}. Adversary B needs to guess b.

In RegisterUser queries for the challenge user U ∗, adversary B (which acts as a
challenger to A) uses xS = c∗. Clearly, if b = 0, then B perfectly simulates Game
3. If b = 1, it perfectly simulates Game 4. Therefore, if A can distinguish between
Games 3 and 4, it can break the CPA security of the encryption scheme.

B.3 Security Proof

In the security proof, the challenger controls the TS and the adversary tries to attack
a user. The security proof is a sequence of games. In the �nal game, the challenger
simulates the game using only the TCP oracle of the TCP security game, without
knowing the corresponding TS’ key-share xS . As a result, any adversary that man-
ages to use the blocked key of that user must therefore break the security of the
underlying threshold-cryptographic protocol.

We use the following sequence of games:

• Game 0: We play the game as described in the Tandem Security game, see
Game 1 on page 53.

• Game 1: We change the de�nition of GenShares. The challenger simulates the
workings of TS but does not decrypt any ciphertext. Instead, the TS uses the
extractability of ExtCommit(·, ·) and the ∆is (from the corresponding Obtain-
KeyShareToken protocol) to compute the plaintext corresponding to c j (with-
out decrypting), which it uses as x̃S . Finally, the TS constructs the proof of
knowledge of x̃S as before.

• Game 2: We guess the challenge user U ∗ and we change the de�nition of
RegisterUser for this user: we replace xS = E+pk (xS) by xS = E+pk (0).

• Game 3: For all non-challenge users we answer GenShares queries as in the
previous game. For U ∗ the TS simulates the TCP following GenShares using
the TCP security oracle (without knowing xS of U ∗).

We then prove the following:

• The adversary cannot distinguish Game 0 from Game 1. We prove that as long
as one of the tuples is as it should be—and Lemma 1 shows that this is the case
with high probability—then we correctly recover the plaintext of c j and thus
the TS extracts the correct x̃S , and therefore the TCP is correct as well.

• The adversary cannot distinguish Game 1 from Game 2. We no longer de-
crypt ciphertexts. Hence, we can use the CPA security of the encryption
scheme to show that the adversary cannot distinguish Game 1 from Game
2. More formally, we build a distinguisher that interpolates between Games
1 and 2. The distinguisher makes a query for m0 = xS and m1 = 0 to its
CPA challenger, and uses the answer as xS . Lemma 5 shows the adversary
cannot detect this change to RegisterUser. If the CPA challenger returned an

82

Deliverable D4.4 NEXTLEAP Grant No. 688722

encryption of xS then the distinguisher perfectly simulates Game 1, otherwise
it simulates Game 2. We can still answer GenShares queries correctly, since
we no longer need to decrypt any ciphertexts.

• The adversary cannot distinguish Game 2 from Game 3 because the TCP or-
acle simulates the same protocol.

• Finally, if we have an adversary that can win Game 3, then it breaks the secu-
rity of the TCP because by construction the challenger has no new tokens for
the challenge userU ∗ (because she is blocked or rate-limited) in the challenge
phase.

Proof of Theorem 1. This proof follows the sequence of games highlighted above.
Let U ∗ be the challenge user. We guess this user. If the guess turns out to be incor-
rect, we repeat the reduction with a new guess.

In Game 1 we change how the TS responds to RunTCP queries, in particular, we
change GenShares for the challenge user U ∗. The TS (controlled by the challenger)
no longer decrypts the ciphertext c j revealed in a token, but instead directly recovers
the plaintext using the ∆i values. The TS then continues as before.

To enable the TS to answer RunTCP queries without decrypting, the TS stores some
extra values whenever A runs the ObtainKeyShareToken protocol. Whenever the
TS blindly signs a token, it extracts, id , the token’s identi�er (normally, the TS
cannot learn this value). The challenger uses the extractability of ExtCommit(·, ·)
to �nd inputs δ ′i1 , . . . ,δ

′
im and κ ′i1 , . . . ,κ

′
im used to create the unopened commit-

ments ∆i1 , . . . ,∆im . (The adversary might cheat so that not all ∆is are true com-
mitments.) By Lemma 1, m ≥ 1, and there exists i∗ such that the extracted in-
puts are correct, i.e., δ ′i∗ = δi∗ and κ ′i∗ = κi∗ . The challenger records the tuple
(id,U , (i1,δ

′
i1 ,κ

′
i1), . . . , (im ,δ

′
im ,κ

′
im)) for later use.

We now show how to answer RunTCP queries without needing to decrypt the ci-
phertexts. The TS initially follows the GenShares protocol. At the start of the proto-
col, A sends a token (id, c1, . . . , ck) to the TS (run by the challenger) together with
a (blind) signature on it produced by the TS. Moreover, A provides γ1, . . . ,γk and
ν1, . . . ,νk . The TS then checks that these values are correct. If not, it aborts. So far,
the challenger follows the protocol.

Now, we start to deviate from the protocol. The challenger looks up the correspond-
ing tuple (id,U , (i1,δ ′i1 ,κ

′
i1), . . . , (im ,δ

′
im ,κ

′
im)) from tokens it issued. Let xS be the

encrypted key share for this user. We use the values δ ′i1 , . . . ,δ
′
im and κ ′i1 , . . . ,κ

′
im to

�nd the plaintext of one of ci1 , . . . , cim and then use this to compute the plaintext of
c j .

For i ∈ i1, . . . , im test if:
ci = xS · E+pk (δ

′
i ,κ
′
i)

Let (i∗,δ ′i∗ ,κ
′
i∗) be the tuple that satis�es this equation. By, Lemma 1 we know that

there must exist an index i∗ such that:

ci∗ = xS · E+pk (δi∗ ,κi∗),

∆i∗ = ExtCommit((δi∗ ,κi∗), ξ ∗),

so this procedure does indeed �nd such a tuple (i∗,δ ′i∗ ,κ
′
i∗). The plaintext of ci∗ thus

is xS +δ ′i∗ . If i∗ = j we are done, and x̃S = xS +δi∗ (mod p). Otherwise, the plaintext
of c j is xS + δi∗ + γi∗ and therefore x̃S = xS + δ

′
i∗ + γ

′
i∗ (mod p).

83

Deliverable D4.4 NEXTLEAP Grant No. 688722

Now that the challenger has derived x̃S it continues with the TCP as normal. This
shows how we can answer RunTCP queries without needing to decrypt the cipher-
texts.

Games 0 and 1 cannot be distinguished by the adversary. During
ObtainKeyShareToken queries, the TS extracts the token identi�er id using
rewinding, so this is not detected by the adversary. By Lemma 1 the index i∗ exists
with overwhelming probability, so the responses of the TS are completely identical
for the RunTCP queries made by the adversary.

In Game 2, we do not send xS = E+pk (xU ∗,S) to the adversary when it makes
RegisterUser queries for the challenge user U ∗. Instead, we send xS = E+pk (0). Dur-
ing RunTCP queries, we �rst extract the plaintext of c j as above, and then add xU ∗,S .
The fact that the TS does not need to decrypt c j to answer RunTCP queries together
with Lemma 5 shows that the adversary cannot detect this change.

In Game 3, we again change how we answer RunTCP queries for the challenge user
U ∗. In particular, we will answer this query without using the corresponding key-
share xU ∗,S . Instead, we use the challenge oracle for the TCP security in the query
phase. We proceed as before, to �nd the plaintext δ of c j when running GenShares.
However, now we use the TCP challenge oracle to run the TCP by making a TCP(δ
mod p) query. The Tandem security challenger relays the messages to the adversary
A. After the selection phase, we advance the TCP security challenger to the chal-
lenge phase. Moreover, the challenge user U ∗ cannot obtain new tokens (because
U ∗ is either blocked or rate-limited), and all old tokens have been invalidated, so we
no longer need access to the TCP oracle to answer queries. Finally, in the challenge
phase, we relay the messages to the TCP challenger. Then, if adversary A wins
Game 3, it breaks the TCP security of the underlying TCP. Since we assumed this
cannot happen, the Tandem scheme is secure as well. The only di�erence between
Game 2 and Game 3 is that we use the TCP oracle to run the TCP. However, since
the TCP oracle uses to correct randomized key, this change is indistinguishable to
the adversary.

B.4 Privacy Proof

In our privacy proof, we reduce an attacker against privacy to an attacker on the
underlying blind signature scheme (which we instantiate using the BBS+ credential
scheme). In terms of attribute-based credentials, this game is precisely the issuer-
unlinkability game. This game is the standard blind-signature game [JLO97; SU17].
Game 6. The blind-signature game is between a challenger controlling an honest
user U and an adversary controlling the signer.

Setup At the start of the game,A publishes the public key of the signer and outputs
all other necessary public parameters.

Challenge At some point, the adversary outputs two messages m0 and m1 on
which it wants to be challenged. The challenger picks a bit b ∈R {0, 1} and
proceeds as follows. (1) User U engages with the signer to obtain a signature
on mb . Let σb be the corresponding signature. (2) User U engages with the
signer to obtain a signature onm1−b . Let σ1−b be the corresponding signature.
If either signing protocol fails, set σ0 = σ1 = ⊥. Finally, the challenger sends
(m0,σ0) and (m1,σ1) to the adversary.

Guess Finally, the adversary outputs a guess b ′ of b. The adversary wins if b ′ = b.

84

Deliverable D4.4 NEXTLEAP Grant No. 688722

If no adversary can win this game then the signer can recognize neither the signa-
ture nor the message.

The computationally hiding commitments in the ObtainKeyShareToken protocol
ensure that the TS learns nothing about the unrevealed ciphertexts ci which it then
blindly signs—again without learning anything about the message. So, when the
user runs GenShares and thereby reveals these ciphertexts, they cannot be directly
correlated to a corresponding run of ObtainKeyShareToken. Moreover, the plaintext
corresponding to the ciphertexts ci are fully randomized, so that these too do not
reveal anything about the user with which the TS is currently interacting.

The privacy proof folows a sequence of games. Throughout we use a guess i0, i1
for the challenge tokens. If this guess turns out to be incorrect when the adversary
makes it challenge query, we abort and try again. We �rst use a sequence of games to
show that we can remove identifying information from the ObtainKeyShareToken
protocol.

• Game 0 is the Tandem privacy game, see Game 4 on page 55.

• In Game 1, we extract the TS key-shares x0,S and x1,S for users U0 and U1
from the TS’ proof of knowledge in step I of the RegisterUser protocol, see
Appendix B.2.

• In Game 2, we forge the user’s zero-knowledge proof of correct construction
of C , the commitment to the token identi�er id and the randomized cipher-
texts, at the end of ObtainKeyShareToken protocol.

• In Game 3, we replace the ciphertext id with the encryption of 0. The CPA
security of the encryption scheme ensures that the adversary cannot detect
this change.

• In Game 4, we use the extractability of ExtCommit(·, ·) to forge the user’s cut-
and-choose proof in the ObtainKeyShareToken protocol, and send random
commitments Ci ,∆i for i < D. However, we honestly construct C as per the
protocol.

• In Game 5, for user Ui and the challenge token, we set ci = E+pk (xi,S + δi ,κi)
for i < D, rather than using xS . We commit to ci for i < D as usual. Lemma 4
shows that with high probability we still follow the protocol correctly.

• In Game 6, we omit xi,S altogether in the construction of the unrevealed ci ,
that is, we set:

ci = E+pk (δi ,κi) (12)

for all i < D, and use these values to construct C . When answering RunTCP
queries, user i adds xi,S , which we extract during the RegisterUser protocol,
to its long-term secret-share xU to compensate for this change. The size of
the randomizers δi ensure that the TS cannot detect this change.

We are now in the situation where the tokens held by user 0 and 1 are exchangeable.
We use this to show that no adversary can distinguish situations b = 0 and b = 1.
We use a sequence of games to interpolate between the two situations. We start
from Game 6.

• In Game A, the challenger uses b = 0 but otherwise proceeds as in Game 6.

85

Deliverable D4.4 NEXTLEAP Grant No. 688722

• In Game B, the challenger swaps the signatures of the challenge tokens of
users U0 and U1. By the blind signature game, the adversary cannot detect
this change.

• In Game C, the challenger also swaps the users U0 and U1 in the challenge
phase. As a result, it perfectly simulates b = 1 in Game 6. The privacy prop-
erty of the threshold cryptographic protocol (with colluding respectively hon-
est SP) ensures that the adversary cannot detect this change.

Since these steps are indistinguishable, no adversary can distinguish the situations
b = 0 and b = 1 in Game 6, and by indistinguishability again, neither can any
adversary distinguish these two in the original privacy game.

Proof of Theorem 2. Throughout this proof, we use a guess for the challenge tokens
i0 and i1 of users U0 and U1 respectively. If this guess turns out to be wrong in the
challenge step, we abort and try again.

In Game 1, the challenger extracts x0,S and x1,S for users U0 and U1. In particu-
lar, the challenger runs the knowledge extractor on the proof of knowledge of the
RegisterUser protocol, see Equation 7, for each of the users. Since the extractor uses
rewinding, the adversary does not detect this.

In Game 2, the challenger forges the proof of knowledge of correctness of the com-
mitmentC at the end of the ObtainKeyShareToken protocol for the challenge tokens
i0 and i1 of users U0, U1 respectively. By simulatability of this proof, the adversary
cannot detect this change.

In Game 3, the challenger replaces the encryption of the token identi�er id for the
challenge tokens i0 and i1 with the encryption of the value 0. The proof of knowledge
of correct encryption is already forged in the previous game. A reduction to the CPA
security of the encryption scheme shows that an adversary that can distinguish
Games 2 and 3 can break the CPA security of the encryption scheme.

In Game 4, the challenger extracts the subsetD from the commitment ∆ as soon as
it receives it. For the two challenge tokens, the challenger (acting as the user) now
proceeds as follows. It computes Ci ,∆i for i ∈ D as per the protocol. However,
for i < D it lets the unrevealed commitments Ci and ∆i commit to random values.
The proof of knowledge that C commits to the same values as Ci is already forged
since a previous step. Because the commitment scheme is information theoretically
hiding, the adversary cannot detect this change.

Despite the changes we made, the �nal token that is stored by the user is exactly
the same as in the original ObtainKeyShareToken protocol. In Game 5 we compute
the values ci for user Uj and i < D as ci = E+pk (x j,S + δi ,κi) (recall, we extracted
x j,S in the RegisterUser phase) instead of ci = xS · E+pk (δi ,κi). Lemma 4 shows that
with overwhelming probability D+sk (xS) equals the value x j,S we extracted in the
RegisterUser protocol, so this change does not modify the adversary’s view.

In Game 5, the user Uj computes

ci = E+pk (x j,S + δi ,κi)

In Game 6, we remove the x j,S component from this equation, and instead just com-
pute

ci = E+pk (δi ,κi) (13)

86

Deliverable D4.4 NEXTLEAP Grant No. 688722

for the challenge tokens. To compensate for the fact that x j,S is no longer included,
the users adds x j,S to xU . As a result, the threshold cryptographic protocol still
completes as before.

The size of the domain from which the δis are drawn, ensures that the adversary
cannot detect this change. More formally, the user sends cis, γis, and νis. However,
the last two sets are redundant, they can be computed directly based on the cis. As
a result, we can focus on δi = D+sk (ci). By the size of the domain δis and the size of
x j,S tuples (δ1, . . . ,δk) and (x j,S +δ1, . . . ,x j,S +δk) are statistically indistinguishable.
As a result no adversary can distinguish Games 5 and 6.

We now show that no adversary can win Game 6. We again use a sequence of
games, but now interpolate between Game A, where the challenger uses b = 0 in
Game 6, and Game C, where the challenger uses b = 1 in Game 6. We construct
the intermediate Game B, where userU0 uses the token i1 of userU1 and vice versa.
Since the challenge tokens in Game 6 (and thus in Games A, B, and C) do not depend
on the user, the threshold-cryptographic protocols complete correctly as in Game 6.

We �rst show that Games A and B are indistinguishable. Suppose to the contrary
that A can distinguish Games A and B. We show that we can use A to build an
adversaryB that breaks the blindness property of the signature scheme. In the blind
signature game, B gets oracle access to two users that request a blind signature on
one message each. Adversary B acts as the challenger towardsA in Game 6. At the
start of the game B generates two messages, corresponding to key-share tokens, for
which users U0 and U1 need a blind signature. It creates:

m0 = (id,H (c1), . . . ,H (ck)) (14)
m1 = (id

′,H (c ′1), . . . ,H (c
′
k)), (15)

where the values in the tuples are as in Game 6. Adversary B sends m0,m1 to its
blind signature challenger.

During the ObtainKeyShareToken protocols for the challenge tokens, B simulates
its users as follows. When user U0 is running the blind signature protocol to create
the challenge token τ0, B uses the its challenger of the blind signature game to act as
the user. WhenU1 runs the blind signature protocol to create token τ1, B again uses
its blind signature game challenger. Finally, the blind signature challenger outputs
two signatures σ0 and σ1 on messages m0 and m1 respectively. Adversary B uses
σ0 to construct the key-share token for user U0, and uses σ1 to construct the key-
share token for userU1. If b = 0 in the blind-signature game, Bs challenge user �rst
blindly signed m0, so B perfectly simulates Game A. If b = 1 in the blind-signature
game, thenB perfectly simulates Game B. Hence, any distinguisher between Games
A and B breaks the blindness property of the blind signature scheme.

We now show that if the TCP scheme is private (with a colluding respectively honest
SP), no adversary can distinguish between Games B and C. Suppose to the contrary
that adversary A can distinguish Game B from Game C. We show that we can use
A to build an adversary B that breaks the privacy property of the TCP scheme.
Adversary B simulates users U0 and U1 towards A. The RegisterUser and Obtain-
KeyShareToken protocols do not involve the users’ secrets, so B computes them
directly. We now show how to answer RunTCP queries.

Whenever A makes a RunTCP(Ui , j, inU) query, B makes a RunTCP(i, inU) query
of its challenger. Distinguisher B’s challenger replies with the TS’ key-share x̃S .
Let τ = (σ , ϵ, id, (cl ,κl ,δl)l=1, ...,k) be the jth token of user Ui . Normally, this to-
ken dictates a TS key-share unequal to x̃S , but we can use the random oracle and

87

Deliverable D4.4 NEXTLEAP Grant No. 688722

change the token to ensure that the TS will recover x̃S . To do so, adversary B picks
δ ′1, . . . ,δ

′
k ∈R {0, . . . ,p2`}. Let δ ′m be the largest, then we slightly increase this

value (by at most p) so that δ ′m = x̃S (mod p). (With overwhelming probability this
modi�ed δ ′m is less than 32`δ ; if not, we try again.) Then, we pick κ ′1, . . . ,κ

′
k ∈R R

and set c ′l = E+pk (δ
′
l ;κ
′
l). Adversary B updates the random oracle to ensure that

H (c ′i) = H (ci), i.e., the new pairs have the same hash values as the original pairs.
Next, B uses token τ ′ = (σ , id, (c ′l ,κ

′
i ,δ
′
l)l=1, ...,k) to run GenShares with the TS. The

changes to the random oracle ensure that this token is valid. Moreover, the changes
to the random oracle succeed with high probability since at no point in the games
does the TS learn the inputs to these hash-functions. The TS will derive the correct
secret share x̃S from τ ′. So it runs the correct TCP protocol with the requested user
which is simulated by B’s challenger.

To answerA’s challenge queries, B again uses his challenger and proceeds as above
to answer the queries. Ifb = 0 in the TCP privacy game, thenB’s �rst run of RunTCP
uses user U0’s key, so B simulates Game B. Otherwise, if b = 1, then B simulates
Game C. So, any adversaryA that can distinguish Games B and C breaks the privacy
property of the TCP scheme. This completes the privacy proof.

88

	Introduction
	Anonymity on the network layer
	Security and Privacy in key distribution
	Security and privacy in key use

	LoopTor
	Introduction
	System
	Goals and non-goals
	An overview of LoopTor

	Building LoopTor
	One link to rule them all
	Back to the 90s
	Do clog the queue!
	Implementing LoopTor

	Evaluation
	Preliminary measurements

	Conclusions

	Lightnion
	Introduction
	Background
	System
	Parties and trust assumptions

	Architecture
	Evaluation
	Implementation
	Performance
	Next steps

	Conclusions and future work

	Claimchain
	Introduction
	Problem statement and goals
	ClaimChain design
	Cryptographic preliminaries and notation
	Overview
	Low-level operations
	High-level operations
	Security and privacy properties

	Using ClaimChains to secure in-band key distribution
	Detecting inter-block equivocation

	Evaluating the performance of ClaimChain
	Experimental setup
	ClaimChain operations performance

	Concluding remarks

	Tandem
	Introduction
	Related Work
	Problem Statement
	Tandem Properties and Threat model
	Tandem at a Glance

	Cryptographic preliminaries
	Cryptographic Building Blocks
	Threshold-Cryptographic Protocols

	Tandem
	One-time-use Key-share Tokens
	Alternative constructions

	Security and Privacy of Tandem
	Security of Tandem
	Privacy of Tandem

	Securing protocols with Tandem
	The use-case of ABCs
	Rate-limiting in ABCs

	Performance Evaluation
	Conclusion

	Conclusion
	References
	Claimchain security and privacy
	Unique-resolution key-value Merkle tree
	Algorithms
	Unique resolution

	Security of the ClaimChain data structure
	Privacy
	Non-equivocation

	Tandem security and privacy
	Proofs of Lemmas
	Constructing Correctness Proof of
	Security Proof
	Privacy Proof

