
NEXt generation Techno-social Legal Encryption Access and Privacy nextleap.eu

Grant No. 688722. Project started 2016-01-01. Duration 36 months.

DELIVERABLE D5.4

Privacy-enhanced Analytics for Wisdom of the Crowds
Open Source Module

George Danezis and Marios Isaakidis

University College London

Beneficiaries: UCL (lead), MER,EPFL

Workpackage: Open-Source Code and User Validation

Description: A module producing code for private information retrieval for crowd-sourcing analytics
will be produced.

Version: Draft

Nature: Report (R)

Dissemination level: Public (P)

Pages: 5

Date: 2019-1-22

Project co-funded by the European Commission within the Horizon 2020 Programme.



Deliverable D5.4 NEXTLEAP Grant No. 688722

1 Introduction

This deliverable D5.4 is a companion of D2.4 – that described the theory – and D4.5 – that describes the
evaluation – and summarizes the open-source software developed as part of NEXTLEAP to support our work on
‘Wisdom of the crowds’. The description for D5.4 from the project proposal defines it as: “D 5.4 Privacy-enhanced
Analytics for Wisdom of the Crowds Open Source Module (Editor: UCL) [Due: M36] A module producing code
for private information retrieval for crowd-sourcing analytics will be produced. Since the module will be used
primarily to ask questions of users, a “lean design” round will not be needed proof-proving results.”

Since the nature of this deliverable is to describe open source code, we provide within it a short description
of the open source code developed, the technology and lines of code produces (LOC) and how it contributed
to the project. All our code is open, and has been developed in the open, and can be downloaded or cloned
from github.com. We chose this service to host our project since it is central to the open-source community,
and provides facilities for bug tracking, project planning, as well as advanced revision control and collaboration
work-flows.

As part of this deliverable, and in support of D2.4 and D4.5 we describe three categories of code artefacts, con-
nected with Private Information Retrieval, Consensus and Sybil Defences. Our focus on those technologies was
a direct result of our previous work on NEXTLEAP key distribution, and in particular our work on the ClaimChain
technology and the Autocrypt adoption of parts of it.

In particular it became apparent that clients need some way to request keys from each other, or from services
in a privacy preserving manner – as to not reveal who they might be interested in sending an email to. This
technology is Private Information Retrieval, and we provide a reference implementation of IT-PIR that forms the
basis for our ε-PIR work.

Secondly, many clients may wish to collaborate and constitute a collective view about each others’ keys or the
keys of a larger population of users. Achieving Consensus, particularly when some users may be malicious
is not trial matter in computing. We experimented with implementing the classic state machines for the DLS
and PBFT consensus mechanisms; and then implemented our own proposal for achieving consensus namely
Blockmania.

Finally, in an open system the question of admission control, as well as prevention of abuse by multiple ‘fake’
nodes becomes important. In this context we implemented a prototype of our SybilQuorum mechanism, that
leverages social network ties, to eliminate malicious (Sybil) nodes from a social graph, and strengthen proof-of-
stake Sybil Defence mechanisms.

As part of NEXTLEAP we also contributed to Open Source cryptographic libraries, that we used both for this
deliverable as well as previous work on claimchain. We summarize these contributions, and provide references
to the repositories, at the end of this deliverable.

Some of this implementation work was done in collaboration with, and partially funded by chainspace.io, who
have subsequently been using the Blockmania algorithm.

2 Private Information Retrival

Module qdpir
Repository https://github.com/gdanezis/qdpir
Language Python (with Numpy in C)
Lines of code 108 LOC
Testing 50 LOC testing both correctness and timing.

This modules provides a reference implementation of an IT-PIR scheme, allowing a client to package a request

2



Deliverable D5.4 NEXTLEAP Grant No. 688722

to a database; split the request across multiple databases; the databases processing those requests (without
learning which record was sought; and providing responses that the client combines to recover the record
requested.

Notably the reference code uses the numpy library to process multiple requests in parallel on the server side,
to increase the computational efficiency of the PIR process. We implemented timing tests to ensure that the
majority of the time, from the server side, is indeed spent within those efficient maths libraries rather than
Python code.

This module provided the baseline performance (both timing and network overhead) for our work on more effi-
cient ε-PIR schemes as described in D2.4 and evaluated in D4.5.

3 Blockmania Consensus

Module Blockmania
Repository https://github.com/gdanezis/blockmania
Language Python (with Simpy for simulation, and TIKZ for illustrations)
Lines of code 461 LOC
Testing 300 LOC testing using Simpy, and testing output using TIKZ.

This module implements the Blockmania core consensus algorithm. The blockmania code is split in two parts:
the first allows nodes to exchange a directed acyclic graph of blocks (Block-DAG) containing statement on which
all participants need to agree, and also report seeing previous blocks. The second Blockmania component pro-
cesses this Block-DAG at each node, and emits blocks and statements on which all honest nodes will eventually
agree. The full details of the blockmania algorithm are available within Deliverable D2.4.

Testing asyncronous code, such as the one in this module, under real network conditions is notoriously diffi-
cult. Real networks can exhibit extreme conditions (high asynchrony, out-of-order delivery, etc), however those
conditions cannot be reliably induced or replicated as part of a rigorous testing regime. For this reason, we
implemented within this module a discrete event simulator (using Simpy) for an asynchronous network that is
able to reproduce deterministically such difficult network conditions, to test both the safety and reliability of the
Blockmania code.

We also augmented the debugging output provided by this module with code to automatically produce graphical
representations of the consensus algorithm using the TIKZ Latex packages. Samples of those automatically
generated figures illustrate the Blockmania algorithm in D2.4 as well as the view-change part of the algorithm in
D5.4.

Module pybft
Repository https://github.com/gdanezis/pybft
Language Python (with pytest for testing)
Lines of code 699 LOC for consensus
Testing 565 LOC with pytest.

Module DLSconsensus
Repository https://github.com/gdanezis/DLSconsensus
Language Python (with pytest for testing)
Lines of code 812 LOC for consensus
Testing 486 LOC testing using pytest.

3



Deliverable D5.4 NEXTLEAP Grant No. 688722

One does not simply design a partially-synchronous byzantine consensus algorithm. Lamport received a Turing
award in 2013 for designing consensus algorithms in a crash-fail setting; and Dwork received the Dijkstra Prize in
2007 for her work on byzantine consensus. Consensus algorithms have to be reliable despite arbitrary failures,
any arbitrary delays of messages, asynchronous networks, etc. They are some of the most complex algorithms
known, and also must be implemented extremely efficiently since they mediate key network interactions of nodes.

Before embarking in the design of Blockmania, we implemented two consensus algorithms within the literature
namely PBFT1 (1999) and DLS2 (1988). Both provide consensus given a set of 3f+1 nodes out of which at most
f are corrupt, and in the context of network partial synchrony.

Our experience implementing those algorithms informed our choices when designing Blockmania, and focused
our minds to design our own algorithm foremost with simplicity in mind. The PBFT algorithm state machine alone
spans about 700 LOC and DLS 812 LOCs. Furtermore to ensure they are correct and live we implemented
extensive test suites using pytest. Given the complexity and the number of edge cases, those span 565 LOC for
PBFT and 486 LOC for DLS.

The lessons we learned from implementing those paid off: in comparison Blockmania only spans 461 LOC both
for the state machine and the Block-DAG components; and can be tested using about the same amount of lines
of code. Furthermore the testing of the Block-DAG does not involve complex asynchonous code, since it is
simply and off-line graph processing algorithm — making testing for correctness much easier than in the PBFT
and DLS case.

We have open sourced those modules to provide the community with reference implementations for those classic
algorithms. Those are difficult to fully implement from reading the research papers alone, that only describe in
narrative style the algorithms; providing only high-level details for the happy paths and most importantly fewer
details for the unhappy paths when failures occur. For instance for PBFT we had to reverse engineer the details
of the algorithm from the formal proofs of safety (see MIT report) rather than the description in the original paper.

4 SybilQuorum

Module SybilQuorum
Repository https://github.com/gdanezis/SybilQuorum
Language Python (with nodex for graph processing)
Lines of code 450 LOC
Testing 200 LOC testing.

SybilQuorum strengthens a proof-of-stake system with nodes placing stake on social network connections. The
algorithm analyses this graph of connections, and their value, to detect regions that are poorly connected to
the rest of the network and exclude them as Sybils. The remaining ‘honest’ nodes must then ensure they can
constitute quorums to make common consensus decisions. The full algorithm is described in D2.4

This module implements the SybilQuorum algorithm, that takes a weighted social graph; excludes Sybil nodes;
and then constitutes quorum sets. A node accepts a decision as authoritative if one of its quorum sets agrees
with it (and it itself agrees with it). The module also implements facilities for reading real-world social graphs,
from the Stanford Network Repositories3 and subsampling them to simuate weighted social networks according
to strenth of tie. It also implements facilities for simulating ddifferent types of Sybil attacks on those graphs, and
attacks of different intencity, and to test whether those attacks are successful or not against SybilQuorum.

1See Castro, Miguel, and Barbara Liskov. “Practical Byzantine fault tolerance.” In OSDI, vol. 99, pp. 173-186. 1999. but also
Castro, Miguel, and Barbara Liskov. A Correctness proof for a practical byzantine-fault-tolerant replication algorithm. Technical Memo
MIT-LCS-TM-590, MIT Laboratory for Computer Science, 1999.

2See Dwork, C., Lynch, N., & Stockmeyer, L. (1988). Consensus in the presence of partial synchrony. Journal of the ACM (JACM),
35(2), 288-323.

3Leskovec, Jure, and Andrej Krevl. ”SNAP Datasets:Stanford Large Network Dataset Collection.” (2015).

4



Deliverable D5.4 NEXTLEAP Grant No. 688722

5 Cryptographic Infrastructure

Module Petlib (Patch for OpenSSL 1.1)
Repository https://github.com/gdanezis/petlib/pull/19/files
Language Python & C bindings
Lines of code +1,536 -976
Testing pytest and Travis CI testing.

As part of our continued work on the above projects and also Claimchain the EPFL team has made a significant
contribution to the petlib cryptographic library. They contributed over 1,500 lines of code to modernize the library
to use the latest OpenSSL 1.1.x API, over the older OpenSSL 1.0.x API. This allows the NEXTLEAP code to be
easy to install in modern systems, and also to ensure that security critical updates can be used by petlib as soon
as they become available, and after the end of life of OpenSSL 1.0.x.

5


