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ASK-GraphView : A Large Scale Graph Visualization System
James Abello, Member, IEEE, Frank van Ham, and Neeraj Krishnan 

Abstract—We describe ASK-GraphView, a node-link-based graph visualization system that allows clustering and interactive 
navigation of large graphs, ranging in size up to 16 million edges. The system uses a scalable architecture and a series of 
increasingly sophisticated clustering algorithms to construct a hierarchy on an arbitrary, weighted undirected input graph. By 
lowering the interactivity requirements we can scale to substantially bigger graphs. The user is allowed to navigate this hierarchy 
in a top down manner by interactively expanding individual clusters. ASK-GraphView also provides facilities for filtering and 
coloring, annotation and cluster labeling.  

Index Terms— Information Visualization, Graph Visualization, Graph Clustering.

 

1 INTRODUCTION 
Over the past years two of the authors have spent significant time 
and effort designing, deploying and reviewing visualizations of large 
graphs. Most current systems are focused on nicely visualizing 
relatively small graphs [5,14,24] while most of the recent academic 
techniques in large scale visualization and graph drawing are focused 
on providing static drawings of relatively large graphs. Often these 
techniques are only applicable to graphs with specific structural 
properties. For example,  [19] is only truly effective for very sparse or 
tree-like graphs. Layout techniques such as  [18] offer increased 
scalability but are only really effective on grid-like graphs, such as 
those resulting from finite element methods.  

Some of the interaction techniques and systems that have been 
proposed to navigate graphs (such as [11,12]) use the clustered graph 
navigation paradigm, which allows the user to navigate a potentially 
large graph by iteratively expanding or collapsing aggregate (cluster) 
nodes. However, these proposals assume a hierarchy is given for the 
input graph, which is rarely the case in practice. Their 
implementations are also limited in scale, with samples given for 
graphs of a few hundred nodes.  

Other techniques, such as [2,3] also use the clustered graph 
paradigm. They create a hierarchy by using a fast algorithm and then 
display this hierarchy in an adjacency matrix representation. Because 
these systems construct a single huge hierarchy for a very large 
graph, the clustering algorithm used cannot be too sophisticated and 
often results in suboptimal hierarchies. 

 A second practical problem is that some users find it hard to 
understand the abstract matrix representations  [16] of graphs that are 
used in these systems. We think that if a desktop node-link graph 
visualization is to be successfully applied as a practical tool for 
analysis of large amounts of data it needs to provide at least the 
following functionality: 

1. A scalable architecture that is able to deal with hierarchical 
graphs even if they do not fit the RAM of the desktop 
machine and does not depend on the precise characteristics 
(such as density or link structure) of the graph (Section  4); 

2. The ability to automatically cluster large graphs, even if 
there is no additional hierarchical information available. 
Note that an often overlooked issue is the fan-out and 
depth of the hierarchy, which need to be controlled if one 
wants to navigate a graph interactively (Section  5); 

3. Interactive techniques that allow the user to filter and 
explore this hierarchy without losing context (Section  6). 

We present ASK-GraphView: a system that addresses all of these 
issues and is currently being used for the analysis of graphs with up 
to 200,000 nodes. Among the practical use cases of the system are 
manual inspection and updating of search content, assessment of new 
clustering approaches and infrastructure maintenance. 

2 RELATED WORK 
ASK-GraphView combines two major ideas from existing graph 
visualization systems. For user interaction and navigation it uses a 
node link layout of a clustered graph, which allows users to 
arbitrarily expand and collapse clusters to show the subgraph below. 
This basic idea is described in  [12] and a number of experimental 
implementations based on it have been presented [11,20]. However, 
all of these implementations assume that the actual cluster hierarchy 
is either provided in the data or manually supplied by the user. 
Manually creating a hierarchy for a huge graph with unknown 
structure is difficult and tedious, and automatically creating a 
suitable hierarchy for a very large graph in limited time is by no 
means an easy task either. A second problem with these approaches 
is that users often tend to lose context when navigating clustered 
graphs with deeper hierarchies (in our opinion, more than 4 or 5 
levels deep). 

In terms of architecture ASK-GraphView borrows the concepts of 
memory and disk resident antichains from previous work on large 
graph navigation [1,2,3] and expands on these by incorporating time 
constraints. In previous approaches we used matrix oriented views of 
the antichains, but users often found these views too abstract  [16]. 
Also, these views did not allow inspection of fine graph details and 
their relationships to the rest of the graph. Our system is probably 
closest to Tulip  [7] which also provides automatic rendering and 
clustering. The main difference is that Tulip has been set up as a 
flexible test bed for graph visualizations, allowing (expert) users to 
compose different layouts and clustering approaches. We instead 
aimed for a system that can automatically provide a useful 
visualization of a graph upon loading and is easily accessible to 
domain experts with no visualization experience. Other related 
interaction techniques for large graphs include fisheye views  
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of large clustered networks [15,17]. These create an abstraction of 
the graph based on the positions of one or more foci such that nodes 
nearer to the focus are displayed in greater detail. The major 
practical disadvantage of these types of views is that it is very hard to 
relate two visualizations of the same graph with different foci, even 
when providing visual cues such as animation or coloring. 

3 PRELIMINARY DEFINITIONS 
We consider weighted undirected graphs G = (V, E, w) where V and 
E denote the set of vertices and edges respectively. w is a function 
that assigns to each edge in E a non-negative real weight. |V| and |E| 
denote the cardinalities of V and E. A subgraph of G is said to be 
induced by a subset U of V, if it consists of the nodes in U and those 
edges in E that have both endpoints in U. We denote an induced 
subgraph by G(U).  

A hierarchy tree TG for a graph G is a tree rooted at r whose set 
of leaves is in one to one correspondence with V. That is, leaves(r) = 
V, if we denote the set of descendant leaves of a node u in the tree by 
leaves(u). The set of children of a node u is denoted by children(u). 
Similarly, the unique parent of u is denoted by parent(u). 

A (maximal) antichain A in TG is a (maximal) set of nodes in TG 
such that no two distinct nodes in A are ancestors of one another. An 
antichain A1 is said to be above another antichain A2 if each node in 
A1 is an ancestor (not necessary proper) of a node in A2. 

A maximal antichain A formalizes the notion of abstract views 
[1,3], slices  [2] or abridgements  [12] and it defines a partitioning of 
the nodes of G. On this partitioning we can define a macro edge set 
E’={eab : a  A  b  A : (exy  E: x  leaves(a)  y  leaves(b))} 
with weights w(eab) = w(exy): exy  E: x  leaves(a)  y  leaves(b). 
The weighted graph (A, E’) is a macro view of G. To make the 
defining antichain A explicit we refer to it as an A-view of G (see 
also [1,3]). In other words, the A-view of a graph is a macro graph 
consisting of the nodes in A and the macro edges connecting them. In 
the rest of this paper we assume that the visualization client has 
random access to every macro edge of a view, that is, we have a data 
structure available that stores both a hierarchy TG and the entire 
macro edge set on that hierarchy in RAM. 

4 ARCHITECTURE 
ASK-GraphView is a client server system that builds a data structure 
(i.e. a hierarchy tree) that treats the available screen (S), random 
access memory (R) and disk as three buffers of increasing size and 
with different access characteristics.  Although we have previously 
considered only size constraints [1,2,3], we cannot offer interactive 
navigation if we do not also consider the temporal dimension. That 
is, we have to ensure that we are able to process any data that is 
transferred from disk to RAM (clustering) and from RAM to screen 
(layout) in reasonable time.  

To address the first issue, we construct a stack of progressively 
finer disk resident macro views of our graph, such that the increase 
in number of edges in successive macroviews is limited (see also 
 Fig. 1). We deal with the second issue by customizing a structural 
clustering algorithm such that we can guarantee that the fan out of 
the hierarchy generated by that algorithm is bounded. 

The rest of this section discusses the system’s time/space 
parameterized data structure and the direct relation between macro-
views and antichains in hierarchy trees. In Section  6.2 we present a 
notion of graph context that allows the user to explore the graph 
without exceeding S. 

4.1 Constrained Resources 
In interactive graph navigation our two main bottlenecks are space 
and time. Space refers both to the maximum size of the graph R 
which we can still store in RAM and the maximum size S of the 
graph that we can interactively show on screen (see also [1,2,3]). 
However, if we want to offer interactive navigation of large graphs 
we also need to consider the time dimension. 

 The two main bottlenecks here are the time needed for 
computation of a clustering and the time needed for computation of a 
layout. IL (Interactive Layout) and IH (Interactive Hierarchy) are 
interactivity parameters that encode sizes of (sub)graphs for which a 
drawing and a hierarchical clustering can be computed in desired 
response times tL and tH (in our case a few seconds). We express IL 
in terms of the number of nodes and IH in the number of edges in the 
(sub)graph. Suitable values for IL and IH are obtained 
experimentally and clearly depend on the sophistication of the 
desired layout or hierarchy tree computation and the level of required 
interactivity for both. Given the current state of algorithmic 
knowledge and typical hardware configurations, it is reasonable to 
assume that IL < S  IH < R.  

The parameter IL effectively controls the maximum fan out of 
nodes in the hierarchy we are using to interactively navigate the 
graph. A hierarchy that has a maximum fan out of 10,000 is clearly 
not suitable to use for the interactive navigation of a graph, since it 
would take us too long to compute a satisfactory layout for a 
subgraph this big. Apart from this time constraint, IL is also limited 
by the user’s ability to visually ‘digest’ the new subgraph presented. 
We determined empirically that IL = 64 provides a reasonable trade-
off between scale and readability. 

Similarly, IH represents the maximum amount of edges for which 
we can compute a hierarchy in a few seconds, regardless of the 
density of the graph. Using the procedures described in Section  5, we 
are able to hierarchically cluster around 100,000 edges at an 
interactive rate. Both of these navigation parameters are used to tune 
system performance in order to offer truly interactive graph 
navigation. In the following sections we assume that 2 < IL2 < IH 
and d*IL < S where d is a small non zero integer.  

Trying to navigate dense graphs with node link diagrams is not 
really useful and other representations (such as adjacency matrices) 
might be more suited here. However, theoretically our infrastructure 
is also able to deal with denser graphs by replacing the clustering and 
hierarchy tree computation procedures by a simpler version that 
groups nodes together such that the fan out in the hierarchy tree is at 
most IH. A more efficient alternative on weighted input graphs is 
pruning the graph by weight such that at most |V| |V| edges remain.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. A hierarchy on an arbitrary input graph G = (V, E). ACR 
indicates the part of the graph that is processed in RAM. ACIH 
indicates the part of the hierarchy that is sent to a visualization client 
for further processing and visualization. For each node in ACIH we 
ensure that there are no more than IH edges in the subgraph 
induced by its descendants on ACR below. 

r 
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 IH edges 
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The main idea behind the architecture is that by reusing the 
parameter IH when navigating a macro view of a graph with IH 
edges, we can expand any node in that macroview to a new 
subgraph, again with at most IH edges (Fig. 1). Given that the 
maximum density is |V| |V|, a subgraph of IH edges consists of at 
least IH2/3 nodes. For each of these nodes we can then nest a new 
subgraph of IH2/3 nodes, resulting in a total of IH4/3 nodes below, 
having at most IH2 edges (given density |V| |V|). In practice however 
we cannot possibly create a hierarchy tree for a graph this big 
because our RAM size R can fit only a limited number of edges, so 
usually R < IH2. If we use 32 bytes per edge, a server with 2GB of 
RAM available for edge storage will allow us to store in the order of 
16 million edges. 

This means that undirected graphs with up to 16 million edges are 
navigable with our software infrastructure (depending on available 
RAM) and this in turn offers a solution to the interactive navigation 
of graphs with up to 4,000 vertices with no qualifications. This 
number might seem disappointing since these graphs are not really 
that large. However, the real gains of our approach become 
noticeable by considering graph density, i.e. if |E| < |V| |V|, |V| lies 
between 64,000 and 300,000 vertexes. Similarly, if |E| < |V|log(|V|), 
|V| lies between 300,000 and 16,000,000 vertices.  

To our knowledge these results represent a substantial 
improvement over previous work dealing with the navigation of 
graphs represented by node-link diagrams, without posing 
qualifications on the actual structure of the graph. In summary, the 
lower the density of the input graph the larger graph scalability we 
obtain and improvements in clustering algorithms (i.e. higher IH) 
will automatically make navigation of larger graphs possible subject 
to RAM availability. 

4.2 Data Structure 
The fundamental data structure at the server level is a hierarchy tree 
TG that is parameterized by IH and R. The central idea is to find an 
antichain ACR whose associated ACR-view can be processed on the 
available RAM of size R and an antichain ACIH above ACR that can 
be processed in an interactive fashion. The antichain ACIH is then 
processed on the client side to create a hierarchy. Should the user 
require parts of the hierarchy that are below ACIH, the client sends a 
request to the server for more data which is subsequently processed 
in a similar manner. We assume throughout that IL < S <= IH < R, 
where |V| < R < |V|+|E| (i.e. G is a semi-external graph as in  [2]). 

 
Definition: A good (IH, R)-parameterized hierarchy tree TG for a 
graph G = (V, E) has the following properties: 

1. It has a maximal antichain ACIH above a maximal antichain 
ACR such that the ACIH and ACR-views of G are of sizes 
not more than |IH| and R, respectively. This requirement 
allows us to process the hierarchy in the first place. 

2. Each of the subtrees rooted at nodes in ACIH have at most 
|IH| edges among their descendants in ACR. This ensures 
that the server will return a reasonable amount of edges for 
each data request. 

3. The subgraph induced by leaves(u) of each node u in ACIH 
is connected. This is a minimal requirement to ensure that 
the subgraphs returned by the server reflect some of the 
graph’s structure. Ideally, we would like each node u to 
reflect a dense cluster in the graph. 

4. The depth of TG is log(|E|). 
 

To ensure within-group connectivity and incorporate subgraph 
density and edge weights during the process, we use an ordered 
external memory version of Boruvka’s contraction algorithm  [1] that 
produces a binary hierarchy tree in O(log(|V|/R)) passes over the 
input data. It also produces an antichain on it with no more than the 
desired number of elements R. The obtained R-view then, is a 
memory resident macro view of the original semi-external input 
graph G. Since ACR fits in RAM we can use now an internal memory 

version of the same described algorithm with ACR as input to obtain 
a second antichain ACIH. 

4.3 Reducing the Depth of the Hierarchy 
Running the procedure mentioned above may provide suboptimal 
results because the binary hierarchy might be very unbalanced. As an 
extreme case, consider a binary hierarchy where each node has one 
leaf and one non-leaf (except for the bottommost node). We refer to 
such a (part of a) hierarchy as a comb. Any antichain of size n in a 
comb, will have exactly n-1 leafnodes and one cluster. Clearly this is 
not a balanced abstraction of a graph. To address this problem we 
create a more balanced hierarchy by reducing the depth of the given 
binary hierarchy as much as possible without compromising the 
structural information that is contained in the hierarchy. We do this 
by aggregating a select set of nodes in the binary hierarchy under a 
common parent. 

To guarantee that we can always find an antichain ACIH above 
ACR such that for any node in ACIH the number of edges among their 
descendants on ACR is no more than IH (see requirement 2 in  4.2), 
we have to limit the number of nodes we can aggregate. As an 
example consider a set of 500 nodes in ACR that are aggregated 
under a single parent. Worst case, we might be dealing with a locally 
complete subgraph with 5002 = 25,000 edges, which we cannot 
process due to the limited IH and which we cannot split anymore 
because all nodes are aggregated under a single parent.  

To avoid these problems we define an internal degree parameter 
ID that indicates the maximum allowed fan out in our hierarchy tree. 
From our above discussion it should be clear that ID2  IH. Prime 
candidates for aggregation are the combs we described previously 
and we therefore aggregate all nodes in the comb under the rootnode 
of this comb. If this aggregation step leads to a fan out higher than 
ID, we recursively split this cluster into subclusters of a most ID 
nodes.  Fig. 2 shows a sample of comb reduction using an ID of 4. 
After depth reduction we find a suitable antichain ACIH by 
aggregating upward from our memory resident antichain ACR. The 
resulting ACIH-view is then passed to the visualization client for 
clustering. 

 

 

(a) (b) (c) 

Fig. 2. Compacting binary hierarchies (a) Binary hierarchy with a comb; (b) 
All nodes in the comb were contracted with their rootnode and 
intermediate nodes were deleted; (c) Since this might increase the fan-out 
of the rootnode we recursively bin these nodes under two new nodes. 

 

5 CLUSTERING 
In the previous section we used a specialized hierarchy tree to create 
graph abstractions ACIH and ACR that allow us to break down the 
entire graph into more manageable pieces of size at most IH edges. 
In this section we present a sequence of structural clustering 
operations that we apply to each of these pieces on demand. The 
hierarchy resulting from this clustering is then used to drive the 
visual navigation. 
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5.1 Preprocessing 
From a graph drawing perspective, it does not make much sense to 
employ expensive algorithms such as force directed algorithms to 
compute a layout for tree-like parts of the graph. We use a special 
case of a linear time process known as peeling [3,9,21] to identify 
peripheral tree-like sections and group them together. If the user 
decides to expand such a tree group, we can employ much more 
efficient tree specific algorithms to provide a layout. 

We find subtrees in the graph by iteratively identifying nodes 
with degree one and subsequently decreasing the degree of its 
neighbor by one. We call the set of trees induced by these nodes the 
peripheral forest of the graph. Since the peeling process can be 
implemented in time linear on the number of edges  [9] we can 
identify the peripheral forest of G efficiently. If G is connected and 
not a tree, then each subtree t in the peripheral forest of G is incident 
to a vertex rt in the complement of the peripheral forest. We then 
group together all subtrees in the peripheral forest that are incident to 
rt along with rt itself. Applying peel grouping reduces the amount of 
vertices that need to be analyzed significantly, and is also meaningful 
at a structural level.  

Biconnected components (BCC's) provide another high level 
view of the structure of a graph. A BCC is a connected subgraph that 
cannot be broken into multiple components by removing a single 
node or edge. The BCC’s of a graph form a partition of E and can be 
computed efficiently in O(|V|+|E|)  [23]. Those vertices or edges 
whose removal disconnects the graph are called articulation points 
and bridges respectively. 

A large number of induced subtrees in a graph corresponds to a 
large number of BCC's (more precisely one for each vertex in the 
subtree). However, by first applying tree grouping as outlined above 
and then applying a biconnected component decompostition to the 
resulting graph we obtain a substantially smaller number of BCC’s 
without losing essential biconnectivity information, as was proposed 
in  [4] and independently in  [6]. However, biconnected components 
form a partition on the edge set of the graph, where we need a 
partition of the vertex set. We address this problem in the next 
section. 

5.2 Biconnected component vertex decomposition 
The next step is to obtain a vertex partition from the edge partition 
provided by the biconnectivity decomposition. Simply creating a 
partition based on biconnected decomposition by assigning each 
articulation point to a separate cluster might provide undesirable 
results since this can create a single biconnected component cluster 
consisting of multiple disconnected components. 

The trick is to replace each articulation vertex a that is shared 
among k biconnected components B1, B2,…, Bk by a star centered at 
a new vertex a' with k spokes, where the ith spoke connects a' to a 
new 'cloned' vertex named ai and where the neighborhood of ai is 
a'  {v : v  Bi  (a, v)  E}. We refer to the ai’s as clones of a and 
to a' as the central clone of a (see  Fig. 3). 

Notice that by introducing clones for each articulation point we 
obtain an enlarged graph G’ with more vertices than the original one, 
but with disjoint BCC’s. Deleting the central clones and identifying 
their associated clone vertices gives us back the original graph. The 
biconnected decomposition tree of this enlarged graph contains 
essentially the same biconnected information as the original graph 
with some redundancy added by the incorporation of the clone 
vertices.  

We can then use G’ to represent a clustering of the original graph 
G by the obtained BCC vertex decomposition. We create one cluster 
for each BCC and any cloned articulation points in that BCC and one 
cluster for the central clone of an articulation point. This BCC 
clustered graph then serves as a top level view from which we can 
explore the rest of the graph. However, it might very well be possible 
that the number of nodes in a particular biconnected component B is 
too large for us to layout or comprehend, that is |B| > IL. In that case 
we have to resort to an off-the-shelf algorithm to compute a 
clustering, and we apply it recursively to further break down the 
graph. 

5.3 Recursive Clustering 
To enforce that our hierarchy has a maximal fan out of IL we 
recursively break clusters c for which |children(c)| > IL by applying a 
clustering algorithm of choice (in our case a tuned version of MCL 
 [10]) using the children(c)-view as input. When this clustering 
algorithm returns we have to deal with either one of three cases, 
depending on the clusters C that were returned: 

 IL < |C|< |children(c)|: we reapply the clustering algorithm 
to the C-view of G. 

 1 < |C|  IL: In this case we can directly use the clustering 
returned to us, and create a new node in the hierarchy for 
each cluster. For each new cluster c that was created we 
test again if |children(c)| < IL and reapply recursive 
clustering if necessary.  

 |C| = 1: In this case the clustering algorithm could not split 
the subgraph, most likely because it was too dense and we 
have to resolve to the contraction based hierarchy 
construction procedure outlined in section  4.3 4.2. 

 
The whole clustering pipeline (Peeling – BCC – MCL – contraction) 
outlined above completes in a matter of seconds since we can 
guarantee that the size of the input subgraph will never be more than 
IH. The resulting hierarchy on ACIH is then used to drive the 
visualization. 

6 VISUALIZATION 
Although some of our previous visualizations for large graphs have 
mainly focused on matrix oriented representations, we found that in 
practice these often seemed too abstract and confusing to the novice 
user. Matrices have the disadvantage that two links that share the 
same node need not be close together in the adjacency matrix. This 
makes it particularly hard to identify interesting graph structures, 
such as subtrees or barrel-like structures, from a matrix 
representation.  

In the GraphView system we opted for a node-link visualization 
of a clustered graph, similar to the approach described in  [12]. The 
user is allowed to ‘open up’ clusters of interest, after which the 
system will embed a more detailed version of that cluster in the 
current layout. 

However, simply allowing the user to successively click open 
multiple levels quickly leads to disorientation and context loss. The 
ASK-GraphView system incorporates a number of options to address 
this problem. Firstly, instead of rendering only the subgraph induced 
by the clicked cluster [2,3], we keep the entire contextual view of the 
graph visible at all times. The user is allowed to smoothly zoom in 
and out of context using the scrollwheel. 
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(a) (b) 

Fig. 3. Effect of separating articulation points: (a) input graph with 
4 biconnected components and 2 articulation points; (b) cloned 
version, articulation points are split over their respective BCC's. 
The resulting partitioning is then used as a clustering. 
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Secondly, we provide a traditional textual indented treeview to the 
side of the main window that lists the labels of the nodes in the 
hierarchy. To avoid the user having to scroll through the entire list 
looking for a specific node, we also provide a search box above it. 
The treeview and searchbox are useful if the user is looking for a 
specific item in the data, but doesn’t know where that item is located 
in the hierarchy. 

Thirdly, we provide a sketch of the entire hierarchy at the top of 
the main window in the form of an outlined and fisheyed treeview. 
This representation indicates both the current position of the item the 
user is currently viewing in the hierarchy, as well as single attribute 
information on a cluster. We usually display density but other 
possibilities include the number of times this cluster was browsed or 
the number of nodes in this cluster matching a particular filter. The 
treeview also allows random access to any cluster in the hierarchy 
and the system automatically computes a smooth transition from the 
current cluster to the selected cluster. These three representations are 
linked, meaning that operations such as cluster selection, cluster 
expansion and cluster collapsing can be performed from any of these 
representations and the others will automatically adapt.  

6.1 Interaction 
As mentioned previously, the user navigates the clustered graph by 
iteratively clicking open a cluster C that he or she wants to see in 
more detail. Or, more formally, at any time during navigation the 
system is displaying the graph induced by a display antichain, which 

we call ACS. In this case expanding a cluster C amounts to replacing 
ACS with ACS  children(C) – {C} and collapsing a cluster replaces 
ACS with ACS – children(parent(C))  {parent(C)} (see also  [3]). To 
avoid a large number of new links suddenly popping up in the 
display we animate the expansion by interpolating node positions. 

The coordinates of the subgraph induced by the children of C are 
computed by a force directed layout algorithm. These are then 
linearly transformed to fit within an area that is dependent on 
|leaves(C)|. In our case we used an optimized  [8] force directed 
layout algorithm for its ability to compute a decent layout of any 
subgraph with at most IL vertices in reasonable time regardless of the 
subgraph’s structure. It is however very easy to add more algorithms 
and have the system select the most appropriate one, depending on 
the graph structure. 

To save users from the tedious task of having to successively 
click open a large number of potentially uninteresting subgraphs we 
added the option to expand any cluster for which |leaves(C)| < x to its 
corresponding leaves. The parameter x depends on the desired level 
of interactivity and the speed of the layout algorithms used, and in 
our case is set to 150 nodes. Another option lets the user recursively 
expand subgraphs of a selected node by dragging a slider down to a 
particular level in the graph. Missing coordinates for subgraphs are 
then computed on the fly. Since the number of subgraphs that need to 
be laid out increases exponentially with depth, this feature is only 
really useful if the user wishes to expand ahead a limited number of 
levels in the graph. 

 
Fig. 4. Screenshot of the ASK-Graphview interface showing small graph (489 nodes) representing information items on Netherlands. The 
treelist is visible on the left, the treeview is at the top of the screen. The grey area in the treeview represents the currently selected node. A 
matrix representation of the entire graph is visible in top left. The single cluster labeled ‘Tiny’ represents all smaller connected components. A 
slider near the bottom of the screen allows quick filtering on a user specified attribute, while the slider at the right edge of the screen allows 
quick expansion of individual nodes.  

673



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006 

Another feature is the ability to filter nodes and edges by a 
parameter. If attribute data is specified with the input data we can 
filter nodes and edges by setting upper and lower bounds for that 
attribute either by using a slider directly from the interface or by 
selecting a range in a window showing the distributions of this 
attribute. The system then automatically adjusts all of the displays to 
reflect only the data that falls within this range. Passing all these 
parameters with the input data instead of computing them internally, 
allows us great flexibility in assessing the usefulness of different 
types of computed metrics. 

Because node-link visualizations often suffer from on screen edge 
congestion, we also implemented two solutions to alleviate this 
problem. The first one makes edges which have both nodes off 
screen more transparent. Since both of the end nodes from these 
edges cannot be seen these edges do not add to the display. The other 
option allows the user to elide all edges from view, except for the 
ones adjacent to a user specified set of nodes. Since the node layout 
reflects the clustering of the graph, one can usually deduce the 
approximate structure from the node density alone (see  Fig. 6). 

6.2 Context definition 
Any usable interactive system dealing with a potentially large 
number of items on screen will have to provide a mechanism to 
guarantee interactive performance. Even when using fast hardware 
accelerated graphics cards, applications often become slow and 
unwieldy when animating and/or navigating tens of thousands of 
nodes on screen. Other systems that have been designed for the 
visualization of large graphs and trees [22,25] include cut-off 
mechanisms and intelligent pixel level algorithms to keep rendering 
overhead to acceptable levels. In section   4 we have parameterized 
the number of nodes that can be rendered at an interactive rate as S. 
This means that at any time during navigation our display antichain 
ACS can have at most S nodes. 

If we assume a reasonably balanced hierarchy on a graph of size 
|V| the average depth of the hierarchy is limited to d  log(|V|) and in 
practice we can safely say that d < 20, especially given the fact that 
we are aiming for a maximum fan out of IL.

Define the set context(u) of a node u in the hierarchy recursively 
as children(u)  context(parent(u)) – {u}. Note that context(u) 
defines the minimum maximal antichain that includes the children of 
u. Each time the expansion of a node x should lead to a number of 
on-screen nodes that is bigger than S, we replace S with context(x). 
Since the size of context(x) is at most d * IL and provided S > d * IL 
(see section  4.1) we can never have more than S nodes on screen at 
once. A more intelligent alternative, which also keeps the direct 
neighbours of a cluster visible, amounts to greedily collapsing nodes 
in ACS based on edge weight: Define the union of two antichains A 
and B as the largest subset of A  B which is still an antichain. The 
set neighbours(x) in ACS is defined as {y  ACS : exy  S-view of G}. 

We start out with a set of proposed neighbours P = neighbours(x). 
While the union of context(x) and the contexts of all nodes in P is 
bigger than S we replace the node y in P having minimum w(exy) 
with parent(y) and compute a new context. Termination of this loop 
is guaranteed, since at one point all nodes in the proposed neighbour 
set will be above context(x) and the size of context(x) < S. This 
computation can be performed in RAM in time O(S log(S)). 

6.3 Labeling 
Another important aspect regarding the usability of the visualization 
is its ability to automatically assign labels to higher level clusters. 
Without these labels users are forced to manually inspect the labels 
of the set of leaf nodes of a cluster every single time to get a rough 
idea of the data that is contained in that cluster. A straightforward 
solution could include a weighted tf-idf based algorithm, coupled 
with stemming and a frequency cut-off to avoid misspellings and 
obscure terms. Here, we incorporated a proprietary algorithm that for 
a cluster x automatically extracts the log(|leaves(x)|) most important 
labels from this potentially large keyword set, based on both node 
importance and graph structure. These are then displayed in order of 
computed importance (see  Fig. 4).  

 Note that the general problem of defining a sensible labeling for 
a cluster is not always easy to solve. For the wordnet  [13] graph for 
example, we would like to label a cluster that contains only 
plantnames (see  Fig. 5a) with the label “plants”, but integrating this 
semantic knowledge into a system is an open problem. 

Since displaying a label for every single visible node quickly fills 
the screen with overlapping (and hence unreadable) labels, we also 
implemented a level-of-detail algorithm based on the amount of 
zoom. We recurse through the entire hierarchy tree starting at the 
root and stop the recursion as soon as the screen size of a cluster falls 
below a certain pixel threshold. Since the screen size of a cluster 
depends on the amount of zoom the user has applied this has the 
effect of incrementally showing more labels as the user zooms in. 

7 CONCLUSIONS AND FURTHER WORK 
We described ASK-GraphView, a fully implemented system for 
interactive navigation of large graphs. Its main contribution is an 
extension of previous work on resource parameterization  [3] by also 
including processing time in the model where previously only 
memory and screen space were considered. This allows us to 
visualize external memory graphs with millions of edges at 
interactive rates. Other contributions include a structural clustering 
algorithm that improves on  [4] and  [6] by guaranteeing a bound on 
the number of subclusters and the ability to break dense clusters if 
needed, as well as a notion of navigation context that keeps the 
number of nodes visible on screen below a predetermined constant. 

  
(a) (b) (c) 

Fig. 5. Screen shots from a visualization of the wordnet database  [13] totaling approximately 100K vertices: (a) Dense high-level cluster 
showing plants. Note that the user has not (yet) requested detail level data for these nodes, as there are no subtrees below the grey selected 
node in the treeview at the top; (b) Detailed cluster showing dogs and horses, both are connected through the term racer; (c) closeup of the 
highlighted area in (b) showing only horses. Notice how more labels have become visible. 
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7.1 Scalability 
Using our system we have been able to interactively navigate graphs 
with a few million edges with relative ease. More importantly, we do 
not pose any restrictions on the input graph in terms of structure and 
density. We even managed to get visualizations of a few graphs with 
over 2 billion edges by reusing the architecture. When we hit the 
point where the client ran out of RAM we created a number of 
separate files for deeper subgraphs below, and have the system 
automatically load the subsection the user wished to drill into. In 
terms of scale ASK-GraphView is a substantial improvement over 
existing systems, which either do not scale to this amount or rely on 
special structural properties of the graph in question to do so.  

7.2 Flexibility 
ASK-GraphView was not designed to answer a particular 
visualization question. Although its main current use is the analysis 
of relations between search terms, we have also applied it to internet 
topologies, lexical databases and other types of graphs. Rather than 
being a highly customized application, it serves as a framework 
visualization that can answer multiple types of graph-related 
questions, depending on the attribute parameters that are supplied 
with the nodes. For example, coloring by an attribute ‘density’ might 
be useful if the user is looking for dense subgraphs within the 
structure. Coloring by an attribute ‘number of visits’ might entice 
users to explore areas that are often visited. Although we are 
currently creating a hierarchy based on the density of subgraphs 
below (i.e. the system tries not to break dense clusters), we can easily 
plug in different clustering procedures that allow us to cluster by 
node attributes or any other graph clustering algorithm for that 
matter. The system still performs at interactive levels as long as we 
update our IL and IH parameters appropriately. 

7.3 Usability 
Although we have not evaluated our system formally yet, it has been 
in continuous use by a small number of data analysts over the past 
six months.  During this period interesting requests came up, which 
we hadn’t considered in the initial design and which we think do not 
surface often in graph visualization applications: 

Firstly, the users complained about not being able to annotate 
certain areas of the graph that they found interesting (for example 
because of a dense cluster they found or because there were 
unexpected connections). They would use the system to explore the 
dataset on one day, only to come back the next day to find that they 
could not remember where they had spotted interesting features. In 

response to this we included the possibility of assigning persistent 
markers with custom labels to a node (see  Fig. 6).  

A related request concerned the exploration of a large unknown 
dataset. Users would be able to navigate around just fine, but had no 
idea where they should start to look for interesting features. As a 
result they sometimes stumbled upon something interesting, but 
spent most of their time randomly browsing the data. We decided to 
re-use the marker feature and mark the m most interesting nodes, 
where the amount of interest was based on a pre-computed node 
attribute. Another feature that helped alleviate this problem was the 
ability to type a random keyword into an edit box and have the 
system mark all leaf nodes that had that keyword in their label.  

7.4 Future work 
Future work in the area of large graph navigation should focus on is 
the automatic computation of a meaningful label for a given cluster. 
We have used a keyword based method, but meaningful keywords 
might not always be available. 

 In terms of architecture, we cannot handle large graphs that 
come to us in the form of streams, since the architecture that we 
have presented here requires us to pre-process the entire dataset 
before being able to visualize it. 
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