
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

ASK-GraphView : A Large Scale Graph Visualization System
James Abello, Member, IEEE, Frank van Ham, and Neeraj Krishnan

Abstract—We describe ASK-GraphView, a node-link-based graph visualization system that allows clustering and interactive
navigation of large graphs, ranging in size up to 16 million edges. The system uses a scalable architecture and a series of
increasingly sophisticated clustering algorithms to construct a hierarchy on an arbitrary, weighted undirected input graph. By
lowering the interactivity requirements we can scale to substantially bigger graphs. The user is allowed to navigate this hierarchy
in a top down manner by interactively expanding individual clusters. ASK-GraphView also provides facilities for filtering and
coloring, annotation and cluster labeling.

Index Terms— Information Visualization, Graph Visualization, Graph Clustering.

1 INTRODUCTION
Over the past years two of the authors have spent significant time
and effort designing, deploying and reviewing visualizations of large
graphs. Most current systems are focused on nicely visualizing
relatively small graphs [5,14,24] while most of the recent academic
techniques in large scale visualization and graph drawing are focused
on providing static drawings of relatively large graphs. Often these
techniques are only applicable to graphs with specific structural
properties. For example, [19] is only truly effective for very sparse or
tree-like graphs. Layout techniques such as [18] offer increased
scalability but are only really effective on grid-like graphs, such as
those resulting from finite element methods.

Some of the interaction techniques and systems that have been
proposed to navigate graphs (such as [11,12]) use the clustered graph
navigation paradigm, which allows the user to navigate a potentially
large graph by iteratively expanding or collapsing aggregate (cluster)
nodes. However, these proposals assume a hierarchy is given for the
input graph, which is rarely the case in practice. Their
implementations are also limited in scale, with samples given for
graphs of a few hundred nodes.

Other techniques, such as [2,3] also use the clustered graph
paradigm. They create a hierarchy by using a fast algorithm and then
display this hierarchy in an adjacency matrix representation. Because
these systems construct a single huge hierarchy for a very large
graph, the clustering algorithm used cannot be too sophisticated and
often results in suboptimal hierarchies.

 A second practical problem is that some users find it hard to
understand the abstract matrix representations [16] of graphs that are
used in these systems. We think that if a desktop node-link graph
visualization is to be successfully applied as a practical tool for
analysis of large amounts of data it needs to provide at least the
following functionality:

1. A scalable architecture that is able to deal with hierarchical
graphs even if they do not fit the RAM of the desktop
machine and does not depend on the precise characteristics
(such as density or link structure) of the graph (Section 4);

2. The ability to automatically cluster large graphs, even if
there is no additional hierarchical information available.
Note that an often overlooked issue is the fan-out and
depth of the hierarchy, which need to be controlled if one
wants to navigate a graph interactively (Section 5);

3. Interactive techniques that allow the user to filter and
explore this hierarchy without losing context (Section 6).

We present ASK-GraphView: a system that addresses all of these
issues and is currently being used for the analysis of graphs with up
to 200,000 nodes. Among the practical use cases of the system are
manual inspection and updating of search content, assessment of new
clustering approaches and infrastructure maintenance.

2 RELATED WORK
ASK-GraphView combines two major ideas from existing graph
visualization systems. For user interaction and navigation it uses a
node link layout of a clustered graph, which allows users to
arbitrarily expand and collapse clusters to show the subgraph below.
This basic idea is described in [12] and a number of experimental
implementations based on it have been presented [11,20]. However,
all of these implementations assume that the actual cluster hierarchy
is either provided in the data or manually supplied by the user.
Manually creating a hierarchy for a huge graph with unknown
structure is difficult and tedious, and automatically creating a
suitable hierarchy for a very large graph in limited time is by no
means an easy task either. A second problem with these approaches
is that users often tend to lose context when navigating clustered
graphs with deeper hierarchies (in our opinion, more than 4 or 5
levels deep).

In terms of architecture ASK-GraphView borrows the concepts of
memory and disk resident antichains from previous work on large
graph navigation [1,2,3] and expands on these by incorporating time
constraints. In previous approaches we used matrix oriented views of
the antichains, but users often found these views too abstract [16].
Also, these views did not allow inspection of fine graph details and
their relationships to the rest of the graph. Our system is probably
closest to Tulip [7] which also provides automatic rendering and
clustering. The main difference is that Tulip has been set up as a
flexible test bed for graph visualizations, allowing (expert) users to
compose different layouts and clustering approaches. We instead
aimed for a system that can automatically provide a useful
visualization of a graph upon loading and is easily accessible to
domain experts with no visualization experience. Other related
interaction techniques for large graphs include fisheye views

 James Abello is with Ask.com and DIMACS, Rutgers University, E-Mail:

jabello@ask.com.
 Frank van Ham is currently with IBM, but this work was performed

while consulting for Ask.com in 2005, E-Mail: fvanham@us.ibm.com.
 Neeraj Krishnan is with Ask.com, E-Mail: nkrishnan@ask.com.

Manuscript received 31 March 2006; accepted 1 August 2006; posted
online 6 November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

669

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

of large clustered networks [15,17]. These create an abstraction of
the graph based on the positions of one or more foci such that nodes
nearer to the focus are displayed in greater detail. The major
practical disadvantage of these types of views is that it is very hard to
relate two visualizations of the same graph with different foci, even
when providing visual cues such as animation or coloring.

3 PRELIMINARY DEFINITIONS
We consider weighted undirected graphs G = (V, E, w) where V and
E denote the set of vertices and edges respectively. w is a function
that assigns to each edge in E a non-negative real weight. |V| and |E|
denote the cardinalities of V and E. A subgraph of G is said to be
induced by a subset U of V, if it consists of the nodes in U and those
edges in E that have both endpoints in U. We denote an induced
subgraph by G(U).

A hierarchy tree TG for a graph G is a tree rooted at r whose set
of leaves is in one to one correspondence with V. That is, leaves(r) =
V, if we denote the set of descendant leaves of a node u in the tree by
leaves(u). The set of children of a node u is denoted by children(u).
Similarly, the unique parent of u is denoted by parent(u).

A (maximal) antichain A in TG is a (maximal) set of nodes in TG
such that no two distinct nodes in A are ancestors of one another. An
antichain A1 is said to be above another antichain A2 if each node in
A1 is an ancestor (not necessary proper) of a node in A2.

A maximal antichain A formalizes the notion of abstract views
[1,3], slices [2] or abridgements [12] and it defines a partitioning of
the nodes of G. On this partitioning we can define a macro edge set
E’={eab : a A b A : (exy E: x leaves(a) y leaves(b))}
with weights w(eab) = w(exy): exy E: x leaves(a) y leaves(b).
The weighted graph (A, E’) is a macro view of G. To make the
defining antichain A explicit we refer to it as an A-view of G (see
also [1,3]). In other words, the A-view of a graph is a macro graph
consisting of the nodes in A and the macro edges connecting them. In
the rest of this paper we assume that the visualization client has
random access to every macro edge of a view, that is, we have a data
structure available that stores both a hierarchy TG and the entire
macro edge set on that hierarchy in RAM.

4 ARCHITECTURE
ASK-GraphView is a client server system that builds a data structure
(i.e. a hierarchy tree) that treats the available screen (S), random
access memory (R) and disk as three buffers of increasing size and
with different access characteristics. Although we have previously
considered only size constraints [1,2,3], we cannot offer interactive
navigation if we do not also consider the temporal dimension. That
is, we have to ensure that we are able to process any data that is
transferred from disk to RAM (clustering) and from RAM to screen
(layout) in reasonable time.

To address the first issue, we construct a stack of progressively
finer disk resident macro views of our graph, such that the increase
in number of edges in successive macroviews is limited (see also
 Fig. 1). We deal with the second issue by customizing a structural
clustering algorithm such that we can guarantee that the fan out of
the hierarchy generated by that algorithm is bounded.

The rest of this section discusses the system’s time/space
parameterized data structure and the direct relation between macro-
views and antichains in hierarchy trees. In Section 6.2 we present a
notion of graph context that allows the user to explore the graph
without exceeding S.

4.1 Constrained Resources
In interactive graph navigation our two main bottlenecks are space
and time. Space refers both to the maximum size of the graph R
which we can still store in RAM and the maximum size S of the
graph that we can interactively show on screen (see also [1,2,3]).
However, if we want to offer interactive navigation of large graphs
we also need to consider the time dimension.

 The two main bottlenecks here are the time needed for
computation of a clustering and the time needed for computation of a
layout. IL (Interactive Layout) and IH (Interactive Hierarchy) are
interactivity parameters that encode sizes of (sub)graphs for which a
drawing and a hierarchical clustering can be computed in desired
response times tL and tH (in our case a few seconds). We express IL
in terms of the number of nodes and IH in the number of edges in the
(sub)graph. Suitable values for IL and IH are obtained
experimentally and clearly depend on the sophistication of the
desired layout or hierarchy tree computation and the level of required
interactivity for both. Given the current state of algorithmic
knowledge and typical hardware configurations, it is reasonable to
assume that IL < S IH < R.

The parameter IL effectively controls the maximum fan out of
nodes in the hierarchy we are using to interactively navigate the
graph. A hierarchy that has a maximum fan out of 10,000 is clearly
not suitable to use for the interactive navigation of a graph, since it
would take us too long to compute a satisfactory layout for a
subgraph this big. Apart from this time constraint, IL is also limited
by the user’s ability to visually ‘digest’ the new subgraph presented.
We determined empirically that IL = 64 provides a reasonable trade-
off between scale and readability.

Similarly, IH represents the maximum amount of edges for which
we can compute a hierarchy in a few seconds, regardless of the
density of the graph. Using the procedures described in Section 5, we
are able to hierarchically cluster around 100,000 edges at an
interactive rate. Both of these navigation parameters are used to tune
system performance in order to offer truly interactive graph
navigation. In the following sections we assume that 2 < IL2 < IH
and d*IL < S where d is a small non zero integer.

Trying to navigate dense graphs with node link diagrams is not
really useful and other representations (such as adjacency matrices)
might be more suited here. However, theoretically our infrastructure
is also able to deal with denser graphs by replacing the clustering and
hierarchy tree computation procedures by a simpler version that
groups nodes together such that the fan out in the hierarchy tree is at
most IH. A more efficient alternative on weighted input graphs is
pruning the graph by weight such that at most |V| |V| edges remain.

Fig. 1. A hierarchy on an arbitrary input graph G = (V, E). ACR
indicates the part of the graph that is processed in RAM. ACIH
indicates the part of the hierarchy that is sent to a visualization client
for further processing and visualization. For each node in ACIH we
ensure that there are no more than IH edges in the subgraph
induced by its descendants on ACR below.

r

ACIH

ACR

Leaves(r) = V

 IH edges

670

J. ABELLO ET AL.: ASK-GRAPHVIEW : A LARGE SCALE GRAPH VISUALIZATION SYSTEM

The main idea behind the architecture is that by reusing the
parameter IH when navigating a macro view of a graph with IH
edges, we can expand any node in that macroview to a new
subgraph, again with at most IH edges (Fig. 1). Given that the
maximum density is |V| |V|, a subgraph of IH edges consists of at
least IH2/3 nodes. For each of these nodes we can then nest a new
subgraph of IH2/3 nodes, resulting in a total of IH4/3 nodes below,
having at most IH2 edges (given density |V| |V|). In practice however
we cannot possibly create a hierarchy tree for a graph this big
because our RAM size R can fit only a limited number of edges, so
usually R < IH2. If we use 32 bytes per edge, a server with 2GB of
RAM available for edge storage will allow us to store in the order of
16 million edges.

This means that undirected graphs with up to 16 million edges are
navigable with our software infrastructure (depending on available
RAM) and this in turn offers a solution to the interactive navigation
of graphs with up to 4,000 vertices with no qualifications. This
number might seem disappointing since these graphs are not really
that large. However, the real gains of our approach become
noticeable by considering graph density, i.e. if |E| < |V| |V|, |V| lies
between 64,000 and 300,000 vertexes. Similarly, if |E| < |V|log(|V|),
|V| lies between 300,000 and 16,000,000 vertices.

To our knowledge these results represent a substantial
improvement over previous work dealing with the navigation of
graphs represented by node-link diagrams, without posing
qualifications on the actual structure of the graph. In summary, the
lower the density of the input graph the larger graph scalability we
obtain and improvements in clustering algorithms (i.e. higher IH)
will automatically make navigation of larger graphs possible subject
to RAM availability.

4.2 Data Structure
The fundamental data structure at the server level is a hierarchy tree
TG that is parameterized by IH and R. The central idea is to find an
antichain ACR whose associated ACR-view can be processed on the
available RAM of size R and an antichain ACIH above ACR that can
be processed in an interactive fashion. The antichain ACIH is then
processed on the client side to create a hierarchy. Should the user
require parts of the hierarchy that are below ACIH, the client sends a
request to the server for more data which is subsequently processed
in a similar manner. We assume throughout that IL < S <= IH < R,
where |V| < R < |V|+|E| (i.e. G is a semi-external graph as in [2]).

Definition: A good (IH, R)-parameterized hierarchy tree TG for a
graph G = (V, E) has the following properties:

1. It has a maximal antichain ACIH above a maximal antichain
ACR such that the ACIH and ACR-views of G are of sizes
not more than |IH| and R, respectively. This requirement
allows us to process the hierarchy in the first place.

2. Each of the subtrees rooted at nodes in ACIH have at most
|IH| edges among their descendants in ACR. This ensures
that the server will return a reasonable amount of edges for
each data request.

3. The subgraph induced by leaves(u) of each node u in ACIH
is connected. This is a minimal requirement to ensure that
the subgraphs returned by the server reflect some of the
graph’s structure. Ideally, we would like each node u to
reflect a dense cluster in the graph.

4. The depth of TG is log(|E|).

To ensure within-group connectivity and incorporate subgraph
density and edge weights during the process, we use an ordered
external memory version of Boruvka’s contraction algorithm [1] that
produces a binary hierarchy tree in O(log(|V|/R)) passes over the
input data. It also produces an antichain on it with no more than the
desired number of elements R. The obtained R-view then, is a
memory resident macro view of the original semi-external input
graph G. Since ACR fits in RAM we can use now an internal memory

version of the same described algorithm with ACR as input to obtain
a second antichain ACIH.

4.3 Reducing the Depth of the Hierarchy
Running the procedure mentioned above may provide suboptimal
results because the binary hierarchy might be very unbalanced. As an
extreme case, consider a binary hierarchy where each node has one
leaf and one non-leaf (except for the bottommost node). We refer to
such a (part of a) hierarchy as a comb. Any antichain of size n in a
comb, will have exactly n-1 leafnodes and one cluster. Clearly this is
not a balanced abstraction of a graph. To address this problem we
create a more balanced hierarchy by reducing the depth of the given
binary hierarchy as much as possible without compromising the
structural information that is contained in the hierarchy. We do this
by aggregating a select set of nodes in the binary hierarchy under a
common parent.

To guarantee that we can always find an antichain ACIH above
ACR such that for any node in ACIH the number of edges among their
descendants on ACR is no more than IH (see requirement 2 in 4.2),
we have to limit the number of nodes we can aggregate. As an
example consider a set of 500 nodes in ACR that are aggregated
under a single parent. Worst case, we might be dealing with a locally
complete subgraph with 5002 = 25,000 edges, which we cannot
process due to the limited IH and which we cannot split anymore
because all nodes are aggregated under a single parent.

To avoid these problems we define an internal degree parameter
ID that indicates the maximum allowed fan out in our hierarchy tree.
From our above discussion it should be clear that ID2 IH. Prime
candidates for aggregation are the combs we described previously
and we therefore aggregate all nodes in the comb under the rootnode
of this comb. If this aggregation step leads to a fan out higher than
ID, we recursively split this cluster into subclusters of a most ID
nodes. Fig. 2 shows a sample of comb reduction using an ID of 4.
After depth reduction we find a suitable antichain ACIH by
aggregating upward from our memory resident antichain ACR. The
resulting ACIH-view is then passed to the visualization client for
clustering.

(a) (b) (c)

Fig. 2. Compacting binary hierarchies (a) Binary hierarchy with a comb; (b)
All nodes in the comb were contracted with their rootnode and
intermediate nodes were deleted; (c) Since this might increase the fan-out
of the rootnode we recursively bin these nodes under two new nodes.

5 CLUSTERING
In the previous section we used a specialized hierarchy tree to create
graph abstractions ACIH and ACR that allow us to break down the
entire graph into more manageable pieces of size at most IH edges.
In this section we present a sequence of structural clustering
operations that we apply to each of these pieces on demand. The
hierarchy resulting from this clustering is then used to drive the
visual navigation.

671

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

5.1 Preprocessing
From a graph drawing perspective, it does not make much sense to
employ expensive algorithms such as force directed algorithms to
compute a layout for tree-like parts of the graph. We use a special
case of a linear time process known as peeling [3,9,21] to identify
peripheral tree-like sections and group them together. If the user
decides to expand such a tree group, we can employ much more
efficient tree specific algorithms to provide a layout.

We find subtrees in the graph by iteratively identifying nodes
with degree one and subsequently decreasing the degree of its
neighbor by one. We call the set of trees induced by these nodes the
peripheral forest of the graph. Since the peeling process can be
implemented in time linear on the number of edges [9] we can
identify the peripheral forest of G efficiently. If G is connected and
not a tree, then each subtree t in the peripheral forest of G is incident
to a vertex rt in the complement of the peripheral forest. We then
group together all subtrees in the peripheral forest that are incident to
rt along with rt itself. Applying peel grouping reduces the amount of
vertices that need to be analyzed significantly, and is also meaningful
at a structural level.

Biconnected components (BCC's) provide another high level
view of the structure of a graph. A BCC is a connected subgraph that
cannot be broken into multiple components by removing a single
node or edge. The BCC’s of a graph form a partition of E and can be
computed efficiently in O(|V|+|E|) [23]. Those vertices or edges
whose removal disconnects the graph are called articulation points
and bridges respectively.

A large number of induced subtrees in a graph corresponds to a
large number of BCC's (more precisely one for each vertex in the
subtree). However, by first applying tree grouping as outlined above
and then applying a biconnected component decompostition to the
resulting graph we obtain a substantially smaller number of BCC’s
without losing essential biconnectivity information, as was proposed
in [4] and independently in [6]. However, biconnected components
form a partition on the edge set of the graph, where we need a
partition of the vertex set. We address this problem in the next
section.

5.2 Biconnected component vertex decomposition
The next step is to obtain a vertex partition from the edge partition
provided by the biconnectivity decomposition. Simply creating a
partition based on biconnected decomposition by assigning each
articulation point to a separate cluster might provide undesirable
results since this can create a single biconnected component cluster
consisting of multiple disconnected components.

The trick is to replace each articulation vertex a that is shared
among k biconnected components B1, B2,…, Bk by a star centered at
a new vertex a' with k spokes, where the ith spoke connects a' to a
new 'cloned' vertex named ai and where the neighborhood of ai is
a' {v : v Bi (a, v) E}. We refer to the ai’s as clones of a and
to a' as the central clone of a (see Fig. 3).

Notice that by introducing clones for each articulation point we
obtain an enlarged graph G’ with more vertices than the original one,
but with disjoint BCC’s. Deleting the central clones and identifying
their associated clone vertices gives us back the original graph. The
biconnected decomposition tree of this enlarged graph contains
essentially the same biconnected information as the original graph
with some redundancy added by the incorporation of the clone
vertices.

We can then use G’ to represent a clustering of the original graph
G by the obtained BCC vertex decomposition. We create one cluster
for each BCC and any cloned articulation points in that BCC and one
cluster for the central clone of an articulation point. This BCC
clustered graph then serves as a top level view from which we can
explore the rest of the graph. However, it might very well be possible
that the number of nodes in a particular biconnected component B is
too large for us to layout or comprehend, that is |B| > IL. In that case
we have to resort to an off-the-shelf algorithm to compute a
clustering, and we apply it recursively to further break down the
graph.

5.3 Recursive Clustering
To enforce that our hierarchy has a maximal fan out of IL we
recursively break clusters c for which |children(c)| > IL by applying a
clustering algorithm of choice (in our case a tuned version of MCL
 [10]) using the children(c)-view as input. When this clustering
algorithm returns we have to deal with either one of three cases,
depending on the clusters C that were returned:

 IL < |C|< |children(c)|: we reapply the clustering algorithm
to the C-view of G.

 1 < |C| IL: In this case we can directly use the clustering
returned to us, and create a new node in the hierarchy for
each cluster. For each new cluster c that was created we
test again if |children(c)| < IL and reapply recursive
clustering if necessary.

 |C| = 1: In this case the clustering algorithm could not split
the subgraph, most likely because it was too dense and we
have to resolve to the contraction based hierarchy
construction procedure outlined in section 4.3 4.2.

The whole clustering pipeline (Peeling – BCC – MCL – contraction)
outlined above completes in a matter of seconds since we can
guarantee that the size of the input subgraph will never be more than
IH. The resulting hierarchy on ACIH is then used to drive the
visualization.

6 VISUALIZATION
Although some of our previous visualizations for large graphs have
mainly focused on matrix oriented representations, we found that in
practice these often seemed too abstract and confusing to the novice
user. Matrices have the disadvantage that two links that share the
same node need not be close together in the adjacency matrix. This
makes it particularly hard to identify interesting graph structures,
such as subtrees or barrel-like structures, from a matrix
representation.

In the GraphView system we opted for a node-link visualization
of a clustered graph, similar to the approach described in [12]. The
user is allowed to ‘open up’ clusters of interest, after which the
system will embed a more detailed version of that cluster in the
current layout.

However, simply allowing the user to successively click open
multiple levels quickly leads to disorientation and context loss. The
ASK-GraphView system incorporates a number of options to address
this problem. Firstly, instead of rendering only the subgraph induced
by the clicked cluster [2,3], we keep the entire contextual view of the
graph visible at all times. The user is allowed to smoothly zoom in
and out of context using the scrollwheel.

a

b

B
0

B
2

B
3

B
4

a’

b’

a
1

a
2

b
2

b
4

b
3

(a) (b)

Fig. 3. Effect of separating articulation points: (a) input graph with
4 biconnected components and 2 articulation points; (b) cloned
version, articulation points are split over their respective BCC's.
The resulting partitioning is then used as a clustering.

672

J. ABELLO ET AL.: ASK-GRAPHVIEW : A LARGE SCALE GRAPH VISUALIZATION SYSTEM

Secondly, we provide a traditional textual indented treeview to the
side of the main window that lists the labels of the nodes in the
hierarchy. To avoid the user having to scroll through the entire list
looking for a specific node, we also provide a search box above it.
The treeview and searchbox are useful if the user is looking for a
specific item in the data, but doesn’t know where that item is located
in the hierarchy.

Thirdly, we provide a sketch of the entire hierarchy at the top of
the main window in the form of an outlined and fisheyed treeview.
This representation indicates both the current position of the item the
user is currently viewing in the hierarchy, as well as single attribute
information on a cluster. We usually display density but other
possibilities include the number of times this cluster was browsed or
the number of nodes in this cluster matching a particular filter. The
treeview also allows random access to any cluster in the hierarchy
and the system automatically computes a smooth transition from the
current cluster to the selected cluster. These three representations are
linked, meaning that operations such as cluster selection, cluster
expansion and cluster collapsing can be performed from any of these
representations and the others will automatically adapt.

6.1 Interaction
As mentioned previously, the user navigates the clustered graph by
iteratively clicking open a cluster C that he or she wants to see in
more detail. Or, more formally, at any time during navigation the
system is displaying the graph induced by a display antichain, which

we call ACS. In this case expanding a cluster C amounts to replacing
ACS with ACS children(C) – {C} and collapsing a cluster replaces
ACS with ACS – children(parent(C)) {parent(C)} (see also [3]). To
avoid a large number of new links suddenly popping up in the
display we animate the expansion by interpolating node positions.

The coordinates of the subgraph induced by the children of C are
computed by a force directed layout algorithm. These are then
linearly transformed to fit within an area that is dependent on
|leaves(C)|. In our case we used an optimized [8] force directed
layout algorithm for its ability to compute a decent layout of any
subgraph with at most IL vertices in reasonable time regardless of the
subgraph’s structure. It is however very easy to add more algorithms
and have the system select the most appropriate one, depending on
the graph structure.

To save users from the tedious task of having to successively
click open a large number of potentially uninteresting subgraphs we
added the option to expand any cluster for which |leaves(C)| < x to its
corresponding leaves. The parameter x depends on the desired level
of interactivity and the speed of the layout algorithms used, and in
our case is set to 150 nodes. Another option lets the user recursively
expand subgraphs of a selected node by dragging a slider down to a
particular level in the graph. Missing coordinates for subgraphs are
then computed on the fly. Since the number of subgraphs that need to
be laid out increases exponentially with depth, this feature is only
really useful if the user wishes to expand ahead a limited number of
levels in the graph.

Fig. 4. Screenshot of the ASK-Graphview interface showing small graph (489 nodes) representing information items on Netherlands. The
treelist is visible on the left, the treeview is at the top of the screen. The grey area in the treeview represents the currently selected node. A
matrix representation of the entire graph is visible in top left. The single cluster labeled ‘Tiny’ represents all smaller connected components. A
slider near the bottom of the screen allows quick filtering on a user specified attribute, while the slider at the right edge of the screen allows
quick expansion of individual nodes.

673

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Another feature is the ability to filter nodes and edges by a
parameter. If attribute data is specified with the input data we can
filter nodes and edges by setting upper and lower bounds for that
attribute either by using a slider directly from the interface or by
selecting a range in a window showing the distributions of this
attribute. The system then automatically adjusts all of the displays to
reflect only the data that falls within this range. Passing all these
parameters with the input data instead of computing them internally,
allows us great flexibility in assessing the usefulness of different
types of computed metrics.

Because node-link visualizations often suffer from on screen edge
congestion, we also implemented two solutions to alleviate this
problem. The first one makes edges which have both nodes off
screen more transparent. Since both of the end nodes from these
edges cannot be seen these edges do not add to the display. The other
option allows the user to elide all edges from view, except for the
ones adjacent to a user specified set of nodes. Since the node layout
reflects the clustering of the graph, one can usually deduce the
approximate structure from the node density alone (see Fig. 6).

6.2 Context definition
Any usable interactive system dealing with a potentially large
number of items on screen will have to provide a mechanism to
guarantee interactive performance. Even when using fast hardware
accelerated graphics cards, applications often become slow and
unwieldy when animating and/or navigating tens of thousands of
nodes on screen. Other systems that have been designed for the
visualization of large graphs and trees [22,25] include cut-off
mechanisms and intelligent pixel level algorithms to keep rendering
overhead to acceptable levels. In section 4 we have parameterized
the number of nodes that can be rendered at an interactive rate as S.
This means that at any time during navigation our display antichain
ACS can have at most S nodes.

If we assume a reasonably balanced hierarchy on a graph of size
|V| the average depth of the hierarchy is limited to d log(|V|) and in
practice we can safely say that d < 20, especially given the fact that
we are aiming for a maximum fan out of IL.

Define the set context(u) of a node u in the hierarchy recursively
as children(u) context(parent(u)) – {u}. Note that context(u)
defines the minimum maximal antichain that includes the children of
u. Each time the expansion of a node x should lead to a number of
on-screen nodes that is bigger than S, we replace S with context(x).
Since the size of context(x) is at most d * IL and provided S > d * IL
(see section 4.1) we can never have more than S nodes on screen at
once. A more intelligent alternative, which also keeps the direct
neighbours of a cluster visible, amounts to greedily collapsing nodes
in ACS based on edge weight: Define the union of two antichains A
and B as the largest subset of A B which is still an antichain. The
set neighbours(x) in ACS is defined as {y ACS : exy S-view of G}.

We start out with a set of proposed neighbours P = neighbours(x).
While the union of context(x) and the contexts of all nodes in P is
bigger than S we replace the node y in P having minimum w(exy)
with parent(y) and compute a new context. Termination of this loop
is guaranteed, since at one point all nodes in the proposed neighbour
set will be above context(x) and the size of context(x) < S. This
computation can be performed in RAM in time O(S log(S)).

6.3 Labeling
Another important aspect regarding the usability of the visualization
is its ability to automatically assign labels to higher level clusters.
Without these labels users are forced to manually inspect the labels
of the set of leaf nodes of a cluster every single time to get a rough
idea of the data that is contained in that cluster. A straightforward
solution could include a weighted tf-idf based algorithm, coupled
with stemming and a frequency cut-off to avoid misspellings and
obscure terms. Here, we incorporated a proprietary algorithm that for
a cluster x automatically extracts the log(|leaves(x)|) most important
labels from this potentially large keyword set, based on both node
importance and graph structure. These are then displayed in order of
computed importance (see Fig. 4).

 Note that the general problem of defining a sensible labeling for
a cluster is not always easy to solve. For the wordnet [13] graph for
example, we would like to label a cluster that contains only
plantnames (see Fig. 5a) with the label “plants”, but integrating this
semantic knowledge into a system is an open problem.

Since displaying a label for every single visible node quickly fills
the screen with overlapping (and hence unreadable) labels, we also
implemented a level-of-detail algorithm based on the amount of
zoom. We recurse through the entire hierarchy tree starting at the
root and stop the recursion as soon as the screen size of a cluster falls
below a certain pixel threshold. Since the screen size of a cluster
depends on the amount of zoom the user has applied this has the
effect of incrementally showing more labels as the user zooms in.

7 CONCLUSIONS AND FURTHER WORK
We described ASK-GraphView, a fully implemented system for
interactive navigation of large graphs. Its main contribution is an
extension of previous work on resource parameterization [3] by also
including processing time in the model where previously only
memory and screen space were considered. This allows us to
visualize external memory graphs with millions of edges at
interactive rates. Other contributions include a structural clustering
algorithm that improves on [4] and [6] by guaranteeing a bound on
the number of subclusters and the ability to break dense clusters if
needed, as well as a notion of navigation context that keeps the
number of nodes visible on screen below a predetermined constant.

(a) (b) (c)

Fig. 5. Screen shots from a visualization of the wordnet database [13] totaling approximately 100K vertices: (a) Dense high-level cluster
showing plants. Note that the user has not (yet) requested detail level data for these nodes, as there are no subtrees below the grey selected
node in the treeview at the top; (b) Detailed cluster showing dogs and horses, both are connected through the term racer; (c) closeup of the
highlighted area in (b) showing only horses. Notice how more labels have become visible.

674

J. ABELLO ET AL.: ASK-GRAPHVIEW : A LARGE SCALE GRAPH VISUALIZATION SYSTEM

7.1 Scalability
Using our system we have been able to interactively navigate graphs
with a few million edges with relative ease. More importantly, we do
not pose any restrictions on the input graph in terms of structure and
density. We even managed to get visualizations of a few graphs with
over 2 billion edges by reusing the architecture. When we hit the
point where the client ran out of RAM we created a number of
separate files for deeper subgraphs below, and have the system
automatically load the subsection the user wished to drill into. In
terms of scale ASK-GraphView is a substantial improvement over
existing systems, which either do not scale to this amount or rely on
special structural properties of the graph in question to do so.

7.2 Flexibility
ASK-GraphView was not designed to answer a particular
visualization question. Although its main current use is the analysis
of relations between search terms, we have also applied it to internet
topologies, lexical databases and other types of graphs. Rather than
being a highly customized application, it serves as a framework
visualization that can answer multiple types of graph-related
questions, depending on the attribute parameters that are supplied
with the nodes. For example, coloring by an attribute ‘density’ might
be useful if the user is looking for dense subgraphs within the
structure. Coloring by an attribute ‘number of visits’ might entice
users to explore areas that are often visited. Although we are
currently creating a hierarchy based on the density of subgraphs
below (i.e. the system tries not to break dense clusters), we can easily
plug in different clustering procedures that allow us to cluster by
node attributes or any other graph clustering algorithm for that
matter. The system still performs at interactive levels as long as we
update our IL and IH parameters appropriately.

7.3 Usability
Although we have not evaluated our system formally yet, it has been
in continuous use by a small number of data analysts over the past
six months. During this period interesting requests came up, which
we hadn’t considered in the initial design and which we think do not
surface often in graph visualization applications:

Firstly, the users complained about not being able to annotate
certain areas of the graph that they found interesting (for example
because of a dense cluster they found or because there were
unexpected connections). They would use the system to explore the
dataset on one day, only to come back the next day to find that they
could not remember where they had spotted interesting features. In

response to this we included the possibility of assigning persistent
markers with custom labels to a node (see Fig. 6).

A related request concerned the exploration of a large unknown
dataset. Users would be able to navigate around just fine, but had no
idea where they should start to look for interesting features. As a
result they sometimes stumbled upon something interesting, but
spent most of their time randomly browsing the data. We decided to
re-use the marker feature and mark the m most interesting nodes,
where the amount of interest was based on a pre-computed node
attribute. Another feature that helped alleviate this problem was the
ability to type a random keyword into an edit box and have the
system mark all leaf nodes that had that keyword in their label.

7.4 Future work
Future work in the area of large graph navigation should focus on is
the automatic computation of a meaningful label for a given cluster.
We have used a keyword based method, but meaningful keywords
might not always be available.

 In terms of architecture, we cannot handle large graphs that
come to us in the form of streams, since the architecture that we
have presented here requires us to pre-process the entire dataset
before being able to visualize it.

ACKNOWLEDGEMENTS
The authors wish to thank Apostolos Gerasoulis and Tomasz
Imielinski at Ask.com for their continued support throughout this
project.

REFERENCES
[1] J. Abello, Hierarchical Graph Maps, Computer and Graphics, Vol . 28,

pp. 2004.
[2] J. Abello and J. Korn, Mgv: a System for Visualizing Massive

Multidigraphs, IEEE Transactions on Visualization and Computer
Graphics,vol. 8 (1), pp 21–38, 2002.

[3] J. Abello and F. van Ham, Matrix Zoom: A Visual Interface to Semi-
External Graphs, Proc. IEEE Symp. Information Visualization 2004,
IEEE CS Press, pp 183-190, 2004.

[4] J. Abello and F. van Ham, Interactive Navigation of Power Law Graphs,
DIMACS TR# 2005-43, May 2005.

[5] AiSee Graph Visualization Software; http://www.aisee.com/
[6] D. Archambault, T. Munzner and D. Auber, TopoLayout: Graph Layout

by Topological features, Poster Track of the IEEE Symposium on
Information Visualization (InfoVis'05), pp 3-4, 2005.

[7] D. Auber, Tulip : A Huge Graph Visualisation Framework, Graph
Drawing Software, Mathematics and Visualization, P. Mutzel and M.
Jünger (eds), Springer-Verlag , pp 105-126, 2003.

[8] J. Barnes and P. Hut, A hierarchical O(N log N) force calculation
algorithm. Nature, vol 324(4), pp 44-449, 1986.

[9] V. Batagelj and A. Mrvar, Pajek - Analysis and Visualization of Large
Networks. In M. Jünger, P. Mutzel (Eds.): Graph Drawing Software.
Springer, pp 77-103, 2003.

[10] S. van Dongen, Graph Clustering by Flow Simulation, PhD thesis,
Universiteit Utrecht, 2000.

[11] P. Eades, and Q.W. Feng, Multilevel Visualization of Clustered Graphs,
Proceedings of the 4th Intl. Symp. On Graph Drawing, LCNS 1190,
Springer-Verlag, pp 101-112, 1996.

[12] P. Eades, and M.L. Huang, Navigating Clustered Graphs using Force-
Directed Methods, Journal of Graph Algorithms and Applications, vol.
4 (3), pp 157-181, 2000.

[13] C. Fellbaum (ed), Wordnet: An Electronical Lexical Database, MIT
Press, Cambridge, 1998.

[14] M. Frohlich, and M. Werner, "Demonstration of the interactive Graph
Visualization System daVinci", Proc of the DIMACS Workshop on
Graph Drawing 1994, LCNS 894, Springer Verlag, pp 15-22, 1995.

[15] E. Gansner, Y. Koren and S. North, Topological Fisheye Views for
Visualizing Large Graphs, IEEE Transactions on Visualization and
Computer Graphics, vol. 11 (4), pp 457-468, 2005.

Fig. 6. Low level view of a graph defined on health related terms with
86,000 nodes and 2,000,000 edges. The system has marked the term
tranquilizers. Other clusters found near this cluster are related to
specific drugs and have their labels automatically abstracted for
readability. Edges are hidden.

675

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

[16] M. Ghoniem, J-D. Fekete and P. Castagliola, On the readability of
graphs using node-link and matrix-based representations: a controlled
experiment and statistical analysis, Information Visualization, vol. 2 (4),
pp 114-135, 2005.

[17] F. van Ham and J.J. van Wijk, Interactive Visualization of Small World
Graphs, Proc. IEEE Symp. Information Visualization 2004, IEEE CS
Press, pp 199-206, 2004.

[18] Y. Koren, L. Carmel and D. Harel, Drawing Huge Graphs by Algebraic
Multigrid Optimization, Multiscale Modeling and Simulation, vol 1 (4),
pp 645-673, 2003.

[19] T. Munzner, H3: Laying Out Large Directed Graphs in 3D Hyperbolic
Space, Proc. IEEE Symp. Information Visualization 1997, IEEE CS
Press, pp 2-10, 1997.

[20] D. Schaffer et al., Navigating hierarchically clustered networks through
fisheye and full-zoom methods, ACM Transactions on Computer-
Human Interaction, vol 3(2), pp 162-188, 1996.

[21] S.B. Seidman, Network Structure and Minimum Degree, Social
Networks vol 5 pp 269—287, 1983.

[22] J. Slack, K. Hildebrand and T. Munzner, PRISAD : A Partitioned
Rendering Infrastructure for Scalable Accordion Drawing, Proc. IEEE
Symp. Information Visualization 2005, IEEE CS Press, pp 41-48, 2005.

[23] R.E. Tarjan, Depth first search and linear graph algorithms. SIAM
Journal on Computing, vol 1(2) pp 146-160, 1972.

[24] Tom Saywer Software; http://www/tomsawyer.com
[25] G.J. Wills, Nicheworks – Interactive Visualization of Large Graphs,

Journal of Computational and Graphical Statistics, vol 8(2), pp 190-213,
1999.

676

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

