ARGONTONAUT: An Argumentation Ontology
for Mailing Lists

Colin Fraser, Harry Halpin, Kavita E. Thomas*
colinf@inf.ed.ac.uk hhalpin@ibiblio.org kavita.e.thomas@gmail.com

School of Informatics
University of Edinburgh

Abstract.

1 Introduction

2 Related Work

Argumentation is commonly construed as involving a way of organising state-
ments in a way that allows for a structured justification of a particular position,
where statements are seen as essentially defeasible and perhaps also subjective
in some way. The representation of argument thus tries to expose how these
justifications are linked. Unlike proof arguments, an agent is not commited to
inferring a conclusion from a series of premises. But like proof arguments, one
can see the structure through which a particular conclusion may be obtained.
The modern study of argument was revived by Toulmin (1958) who investigated
what is involved in establishing conclusions in the production of arguments, and
modern argumentation schemes essentially derive from his attempts to represent
this process.

The development of Issue Based Information Systems (IBIS) springs from
work in the field of Computer Supported Collaborative Work (CSCW) by Rittel
and Webber (1973) which identified the issue of “wicked” problems. IBIS is
composed of three distinct entities, Issues, Positions and Arguments consisting
of the relations supports, objects-to, replaces, etc. (Buckingham Shum, 2003). An
issue may be characterised in terms of a position that an agent may take, and an
argument an agent may put forward for taking this position. In this way, issues
may evolve in a manner which exposes their continual reformulation depending
on the context of use.

It is common to look at the process of argumentation as being characterised
by two distinct aspects: having arguments, which is where individuals collabora-
tively try to pursue disagreement and controversy, and making arguments, which
is the process of giving justifications and making inferences from this to come to
some form of action (O’Keefe, 1977; de Moorl and Efimova, 2004). We focus on
the latter of these, and view the process of argumentation as being in some sense

* Authors’ names appear in alphabetical order.



goal directed, where agents are working collaboratively to reach some shared ob-
jective by giving justifications for what it is they assert. Theorists also tend
to distinguish different types of argument dialogues into persuasive dialogues
involving conflicting points of view, negotiation, involving a conflict of interest
and a need for cooperation and deliberation, where there is a need to agree on
a course of action (Walton and Krabbe, 1995). In the domain of W3C mailing
lists, the type of dialogue we encounter predominantly involves deliberation.

On the level of argumentation moves or points, there are a plethora of differ-
ent taxonomies to categorise different domains’ needs. Pragmaticians and cogni-
tive scientists talk about coherence relations, discourse analysts address discourse
relations and those interested in communicative purpose talk about dialogue acts
or speech acts. Seminal work by Mann and Thompson (1988) proposed Rhetor-
ical Structure Theory (RST), a theory of text organisation, in which text spans
(at the clausal level) are identified as being either a nucleus or a satellite, and
relations are posited linking satellites to nuclei according to definitions of the
rhetorical purpose of the text spans. RST posits informational and presenta-
tional rhetorical relations, where the former relate the content of the text spans
themselves, while the latter define relations in terms of the effect the text spans
have on the reader, so for example, concession is presentational while contrast is
informational. DAMSL, a dialogue annotation approach proposed by Allen and
Core (1997), goes on to distinguish dialogue acts on several levels, most notably
distinguishing between forward-looking functions relating the current dialogue
utterance to some future segment, e.g., information-request, and backward look-
ing functions like agreement.

Speech act theory is a form of conversational analysis which has been partic-
ularly influential in CSCW. Winograd and Flores implemented speech act theory
in the Coordinator project (1986) to model email conversations. They propose
a general structure of conversation for action, which models conversations via
finite state machine transitions. The Coordinator project attempted to struc-
ture email by getting users to annotate the illocutionary force (i.e., conventional
interpretation of communicative action; Levinson, 1983) of emails, e.g., reject.
Our approach is quite similar to the Coordinator approach except that instead
of using speech acts, we use a hybrid between the rhetorical and speech act
approaches for argument, and add to that a large amount of domain-specific
categories. In practice, this means that we get at a finer-degree of specificity in
representing what is being communicated. That is, our ontology enables a much
richer set of descriptions which is tailored to a specific domain.

There has been relatively little work on argumentation ontologies for the Se-
mantic Web. The DILIGENT project proposes an argumentation ontology for
the Semantic Web to model engineering design decisions, and they advocate
decentralised and evolving collaborative ontology development. The main con-
cepts in their ontology are issues, ideas and arguments, which are represented as
classes. Ideas refer to how concepts should be formally represented in the ontol-
ogy and relate ontology change operations. Ideas respond to issues, and indicate
how they should actually be implemented in the ontology. Arguments debate



either a particular idea or issue. They exemplify domain experts proposing new
issues to be introduced into the ontology which are then argued over and for-
malised through concrete ideas. While this approach indicates how a distributed
group can achieve concensus in constructing a shared ontology, their ontology
does not extend neatly to modelling argumentation in emails, where we are less
interested in the process by which we arrive at an ontology than in the end result
and how it applies to the data. Given the difference in their goals and ours, it is
perhaps not surprising that their ontology does not fit the email data.

3 ARGONTONAUT RDF and OWL Ontologies

This ontology is designed to capture not just argumentation that occurs in emails
on the mailing list, but also reference to software, documents, meeting tran-
scriptions, etc. The main (top-level) classes including inter-class OWL and RDF
relationships are:

— Message: corresponds to an email and contains sub-classes which pertain
to argumentation features
e Meeting is a sub-class of Message, and corresponds to either an IRC
(Distributed) or FacetoFace meeting of the W3C Working Group (disjoint
sub-classes)
— Topic: a discussion that has not yet been formalized as an issue or even a
raised issue. It’s also a change of direction in the discussion within an issue.
— Issue: addresses topics which have been formalised as issues and decisions
and is distinguished according to the stage of group acceptance which applies
to them: RaisedIssue disjointWith Acceptedlssue disjointWith Declinedls-
sue disjointWith AgreedIssue; AnnouncedDecision disjointWith AgreedDe-
cision disjointWith ProposedDecision disjoint With AnnouncedDecision dis-
joint With ObjectionDecision
— Document: distinguished into W3C documents and other documents, and
also into submission agency (i.e., submitter), requirements, change and pub-
lication features
— Software: Beta or Release disjoint sub-classes
— Group: InterestGroup, WorkingGroup, CoordinationGroup, Votes
— Action: subClassOf RDF Schema class Resource, typically corresponds to
someone committing to perform an action item
— Person: Attendees or Nonattendees at a Meeting, disjoint sub-classes

All of these classes are sub-classes of the RDF Schema Resource class, with
the exception of Group, which is part of the XML Namespace Friend of A Friend
ontology. An important point to be noted is that with the exception of the
Message class, the other classes all introduce procedural information that arises
out of the domain itself. That is, the meat of the argumentation arises via the
Message subclasses.

Messages, i.e., emails, tend to be between 1 and 7 paragraphs long, and av-
erage to between 3 and 4 paragraphs per email. This naturally means that the



author makes several points in the body of one message. This is quite reasonable
given the interaction mechanism of the email, which facilitates making all one’s
points in one message and then posting it, rather than making separate points in
separate emails all successively posted. For us, this means (among other things)
that emails should get annotated with multiple tags, since presumably multiple
points will have been made, resulting in a bundle of argumentation tags describ-
ing what was communicated in the message rather than just one or two tags.
However we do not have the many diverse relations we would otherwise have if
we were annotating points rather than emails, which significantly reduces both
the annotation burden and the bundle size of annotation tags. One benefit of
this is a simpler taxonomy which is more readable, since we expect 2 or 3 tags,
maximum 5 per email, rather than the 10-20 tags we would otherwise expect
if we were annotating on the point level. Given the goal of browsing a mailing
list and interpreting argumentation made in the emails, it makes more sense to
annotate emails rather than points. Implementation-wise, emails have UUIDs
unlike points, which makes referring to them much easier than to points, which
would have to have UUIDs assigned.
The major sub-classes of Message are as follows:

— AgreeMessage: in which the current message agrees with a previous message

— DisagreeMessage: the current message disagrees with a previous email

— NewlInformation: introduces new information, whether document, software,
topic or issue, etc.

— RequestInformation: asks for information

— StatePrinciple: message content which states abstract principles

— UseCase: message which puts forward a use-case

— Ezample: message content which uses exemplification to make a point

refersTo is the main way that messages refer to other resources, whether other
messages, documents, or software, and has domain, range and subPropertyOf
all defined as RDF Schema class Resource. refersTo is defined as transitive in
OWL, embodying a simplifying assumption we made that responses of responses
recursively respond to the opening email in the thread. However, this ignores
the fact that arguments by nature are dynamic, i.e. they evolve, as was argued
above in the context of IBIS. The initial argument stated in the position email
of the thread is rarely the same argument by the time two or three people have
responded to it. People by nature tend to reinterpret and qualify arguments much
like in the popular Chinese Whisper children’s game, in which what is whispered
from one person to the next is never the same thing at the end of the circle as
at the beginning. However our simplifying assumption is not as debilitating as
it seems, since the messages posted to the W3C mailing lists tend to stay very
much on topic, and qualifications rarely diverge from the topic. refersTo would
not be able to be transitive in a discussion list for which the issues themselves
evolve and speakers are more speculative.

AgreeMessage and DisagreeMessage are defined in OWL as disjoint. This
means that they can’t both apply to the same message. However, we know
that it’s certainly reasonable for someone to play both the devil’s advocate and



advocate her own perspective regarding something under discussion in the same
email. Additionally the author could agree with one aspect of the preceding
message while disagreeing with another aspect of the message’s points. While
our OWL ontology represents an idealised (and simplified) version of reality in
which this does not happen, there are no RDF constraints on disjoint classes
annotating the same email.

There are several different ways in which refersTo works which are char-
acterised by its sub-properties. The following message properties are all sub-
properties of refersTo and have domain=Message:

— newPoint: range=NewlInfo
— agree: range=Message; disjoint With disagree
o claboratePoint: range=AgreeMessage; subPropertyOf agree
o supportingEzample: range=Ezample; subPropertyOf agree
— disagree: range=Message
o modifyPoint: range=DisagreeMessage; subPropertyOf disagree
o counterEzample: range=Ezample; subPropertyOf disagree
— providelnfo: domain=Requestinfo (subClassOf Message); range=NewlInfo (subClas-
sOf Message)
proceduralPoint: range=Message

Although the Document class is the biggest one in the ontology, the bulk of
categories it contains mostly have to do with due process in the W3C mailing list
domain. We list below the sub-classes of Document with their OWL relations:

1. W8CDocument
o W3CPreStandardDocument disjoint With W8CNonStandardDocument
* CandidateRecommendation disjoint With ProposedRecommendation
o W3CStandard disjointWith W8CPreStandardDocument
* Recommendation, ApprovedFunding
o W38CNonStandardDocument disjointWith W3CStandard
— 2-5. Draft disjoint With Standard, Normative disjointWith Informative
— 6-7. MemberSubmission disjoint With TeamSubmission
— 8. Note
— 9-11. IntroduceRevisionDocument disjoint With RequestRequirementDocument,
FulfillRequirementDocument disjoint With IntroduceRevisionDocument
— 12-14. RecommendationPublicationDocument disjoint With RescindPublicationDoc-
ument,
ChangePublicationDocument disjoint With RecommendationPublicationDocument
— 15-17. NoTeztChangesDocument disjoint With CorrectionChangesDocument disjoin-
tWith ConformanceCorrectionChangesDocument disjoint With No TextChangesDoc-
ument
— 18. Agenda

Classes 1 through 18 are all sub-classes of the Document class, and reflects the
terminology and process used in the W3C mailing lists. Of these, W3CDocument
is the only class which is not flat, although the other classes are intuitively
grouped in a way which is hard to encode as either RDF or OWL groupings
in the ontology, since classes 2 through 18 are all siblings of W8CDocument.
Classes 2 to 5 inclusive address general document types. Classes 6 and 7 address



who submitted the document, and 8 is a type of document. 9 through 11 have to
do with asking for revisions and requirements to be fulfilled in documents and
complying with those requests. Classes 12 through 14 have to do with whether
the document is ready for publication or not. Classes 15 through 17 have to do
with specific types of changes to a document, and finally class 18 is a type of
document.

The following object properties generally have (unless otherwise stated) do-
main as Message.

— introduce subPropertyOf newPoint; cite subPropertyOf refersTo; both have range=
Document; publicationDraft, range=WorkingDraft, subPropertyOf introduce
— requestComments, requestRevision, range=Resource; introduceRevision,
range=IntroduceRevisionDocument; fulfillRequirement, range=
FulfillRequirementDocument
— lastCall, range=WorkingDraft, subPropertyOf RequestComments; implementa-
tionsCall, range=CandidateRecommendation; reviewCall, range=
ProposedRecommendation
— recommendationPublication, range=RecommendationPublicationDocument, sub-
PropertyOf fulfillRequirement; rescindPublication, range=
RescindPublicationDocument; changePublication, range=
ChangePublicationDocument
e subPropert(ies)Of changePublication: noTextChanges, range=
NoTextChangesDocument; correctionsChanges, range=
CorrectionChangesDocument; conformanceCorrectionsChanges, range=
ConformanceCorrectionChangesDocument
o subPropertyOf changePublication: newFeatures, range=Recommendation
— draftFinding, range=W38CPreStandardDocument; archivalFinding, range=
W8CDocument
— issueRaised, range=RaisedIssue; issueAccepted, range=AcceptedIssue; issueA-
greed, range=AgreedIssue; issueDeclined, range=DeclinedIssue; issueMoved,
issueSubsumed, issueReferred, range=Issue; subPropert(ies)Of refersTo: re-
ferredIssue, range=Issue; toGroup, range=Group
— decisionAnnounced, range=AnnouncedDecision; decisionAgreement, range=
AgreedDecision; decisionProposed, range=ProposedDecision; decisionOb jec-
tion, range=
ObjectionDecision; decisionAccepted, decisionMaintained, range=Issue
— actionAccepted, actionPostponed, actionDropped, actionCompleted,
range=Action; actionAssigned: domain=Person, range=Action
— unanimous, concensus, dissent, domain=Meeting, range=Issue
— scribe, domain=DMeeting, range=Person, InverseFunctionalProperty
— attending, range=Attendees; regrets, range=Nonattendees; both have
domain=DMeeting
— belongGroup, groupMember, domain=Person, range=Group; haveCharter,
domain=Group, range=Document
o subPropert(ies)Of groupMember: invitedExpert, coChair, chair, team-
Contact; domain=Person, range=Group,

We will now turn to some examples to illustrate how the ontology can be put
to use.



3.1 Some Examples

In the text from an email below, the author refers to a document, which is why
the cite property is used. Furthermore the author gives a supporting example,
and hence the resulting property is tagged. Authors tend to make points, and
while there is a strong temptation to label a point with newPoint, we refrain
from doing so in order to reduce the plethora of such tags which would otherwise
be annotated for every major point an author made in the email.

Email 1:

The kernel of the issue is my interpretation of
the definition of namespace as it appears in the
Namespaces recommendation. The definition is that
a namespace is a collection of names *identifiedx*
by a URI.

[So, for example, the namespace ({lang, space},
http://www.w3.org/XML/1998/namespace) is not equal to

({1ang, space, base, id}, http://www.w3.org/XML/1998/namespace)]
supportingExample

[The W3C director directed the W3C to this interpretation in
http://www.w3.0rg/1999/10/nsuri, which states that a recommendation
cannot add more than clarifications and bug fixes without changing
the namespace URI.] cite

An interesting question of whether or not to annotate the first reference to
an existing document could be asked; we argue that cite allows us to indicate the
reference to the document the first time it is mentioned, and then subsequent
references to this document should be annotated as referring to this email’s
action. (Recall that refersTo is transitive.) The namespace document is listed
above as an example and is therefore not annotated.

Email 2:

[Some of you may be aware that an issue with the
xml:id specification began erupting the day
before it became a CR.

The issue has flowered nicely into a more general
discussion of what namespaces mean and what is
the W3C policy regarding their assignment in
recommendation track documents.] referredIssue

[I’ve been asked to provide this information to you,

and as PureEdge AC rep I’d like to please request that

the TAG make a formal statement to all working groups
regarding these issues as soon as possible.] requestComments



This is a reference to an issue that has already been raised; if the issue were
being raised for the first time, RaisedIssue should be used. The last paragraph
above indicates that the author wants the TAG to make a formal statement,
which is best represented by the requestComments tag.

There is an often ambiguous choice one must make between annotating
classes or properties; in several cases, both the appropriate property and class
exist, e.g., issueAgreed and AgreedIssue. However we argue that it makes more
sense to annotate emails with classes unless there are more appropriate prop-
erties available, in which case, authors should annotate the property instead.
While it makes more sense to think of content of an email as belonging to a class
rather than being predicative, annotating predicates makes more sense than a
general (and not so informative) class which happens to be the range of the
property, as would occur if we annotated Issue instead of referredIssue above.

In cases where what is annotated directly relates to some previous email, doc-
ument, etc., the author should annotate what their email relates to, regardless of
whether a class or property has been annotated, so we would have DisagreeMes-
sage(Email 1) or refersTo(Email 1).

Email 3:

[Which would be equivalent to saying that the state of a resource
cannot change without also changing its URI. We know that is false
in the general case,] StatePrinciple

[so I hope you forgive me for rejecting *identified* as having the
meaning you suggest.] DisagreeMessage(Email 1)

The email below responds to Email 1:

Email ja:

[No, it says that groups #*should* use a template in the original
namespace-defining document that specifies either that no updates
will be made or that updates will be made only for clarification
or bug fixes. It does not say whether adding a new name to the
namespace is considered an update, nor whether such an update
shall be considered major or minor.] modifyPoint(Email 1)

Notice that here it would have been correct to annotate this message as Dis-
agreeMessage, but we chose to annotate it as the more specific property (since
there is a 1:n class to property relation, with both disagree and modifyPoint
having DisagreeMessage as their range. Interpreting modifyPoint gives the Dis-
agreeMessage class interpretation for free, since that is its range.

The following text is also from Email 4:

Email 4b:



[In my opinion, you should put aside the process issues and state
clearly what the technical benefits/drawbacks are of allowing a
new name to be added to an existing namespace. Merely claiming
"it is defined that way in Namespaces" doesn’t really argue for
anything more than changing the Namespaces recommendation to
better suit the architecture. What is important to us is to get
the definition right for the future.] modifyPoint(Email 1)

Since Email 4 already has been annotated with ModifyPoint(Email 1), the
author would not need to add multiple annotations for each modification made,
since the granularity of annotation is on the level of the email, and she/he has
already annotated that this email modifies a point in Email 1.

Email 6:

[If you don’t accept that the general ev part of your request is covered
by finding/web arch, then can you elaborate on what is missing?]
RequestInfo

Notice that RequestInfo doesn’t refer directly to anything else, so we omit
linking it to a prior email, document, etc.

4 Evaluation

We evaluate inter-coder agreement via the Kappa statistic (Carletta, 1996) on
an unseen set of five emails from the online corpus. Comparing the results of
two experts in the domain with each other and against two newcomers to the
domain, we get the following results:

Table 1. Evaluation of Inter-coder Agreement

Annotators AEAPGG

Expert-Expert 1 4 1
Expert-Naive 1
Naive-Naive

5 Conclusions and Future Work

In this paper we have presented an argumentation ontology for emails in the
W3C mailing list domain. OQur evaluation shows good agreement between both
experts in the domain and naive users on the categories, which indicates that
the ontology should be simple to use.



As is usually the case, the proof is in the pudding; that is, the real evaluation
results will come from real users using the ontology to annotate their emails.
We hope that in a domain like the W3C mailing lists, in which users are paid
to participate and are committed to achieving the goals of W3C, they will take
the one minute extra to annotate their emails according to our ontology.

The next area for future work is to implement a server-side tool which en-
ables easy annotation of one’s emails to put the ontology presented here into
practice.Further issues to consider include extendability of this ontology to other
domains, even to other mailing list domains. We hope to explore how much this
ontology scales to annotating argumentation in other domains.

References

1. Allen, J., Core, M.: Draft of DAMSL: Dialogue Annotation Mark-up in Several Lay-
ers (1997) http://www.cs.rochester.edu/research/speech /damsl/RevisedManual /

2. Buckingham Shum, S.: The Roots of Computer Supported Argument Visualization
In Visualizing Argumentation: Software Tools for Collaborative and Educational
Sense-Making, P. Kirschner, S. Buckingham Shum and C. Carr (Eds.), Springer-
Verlag, London (2003)

3. Carletta, J.: Assessing Agreement on Classification Tasks: the Kappa Statistic In
Computational Linguistics vol.22(2), (1996)

4. Levinson, S. Pragmatics Cambridge University Press (1983)

5. Mann, W., Thompson, S.: Rhetorical Structure Theory Text, vol.8 (1988)

6. de Moorl, A., Efimova, L.: An Argumentation Analysis of Weblog Conversations
Proceedings of the 9th International Conference on Perspective on Communication
Modelling (2004)

7. O’Keefe, D.: Two Concepts of Argument Journal of the American Forensic Associ-
ation, vol.13 (1977)

8. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An Argumentation Ontology for DIs-
tributed, Loosely-controlled and evolvInG Engineering processes of oNTologies In
Second European Semantic Web Conference (ESWC 2005)

9. Toulmin, S.: The Uses of Argument Cambridge University Press (1958)

10. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning Albany7 NY: SUNY Press (1995)

11. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foun-
dation for Design Pearson Education, NJ (1986)



