Towards Automated Story Analysis Using Participatory Design

Harry Halpin
Institute for Communicating and Collaborative Systems
School of Informatics
University of Edinburgh
2 Buccleuch Place
Edinburgh, UK
H.Halpin@ed.ac.uk

Johanna D. Moore
Human Communications Research Centre
School of Informatics
2 Buccleuch Place
Edinburgh, UK
J.Moore@ed.ac.uk

Judy Robertson
Human Communications Research Centre
School of Informatics
2 Buccleuch Place
Edinburgh, UK
judyr@inf.ed.ac.uk

ABSTRACT

Involving a school teacher in the development of the intelligent writing tutor StoryStation allowed progress to be made on the problem of story classification, an aspect of story understanding. An experienced Scottish school-teacher developed a rating scale and guidelines for StoryStation’s automated plot analysis agent for the story rewriting task. In this task, pupils rewrite a story in their own words, allowing them to devote their full attention to improving their writing technique instead creating a new plot. If the pupil forgets or confuses significant parts of the plot, the software needs to be able to detect this so that it may alert the pupil or their teacher. Teacher participation in the creation of the rating scale guided both the development of the natural language processing tools used to analyze the stories and the scope of the plot analysis agent. A teacher and a story-teller rated the corpus, and this scale was used to successfully train the agent to classify both “good” and “poor” stories. Classification of “excellent” and “fair” stories proved to be very difficult. A number of facets of story understanding are shown to be beyond the range of the automated plot analysis agent and the advantages and disadvantages of automated plot analysis are weighed, including social factors.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
story classification, participatory design, plot analysis, computational linguistics

1. INTRODUCTION

StoryStation[24] is an intelligent tutoring system to aid children in developing their writing abilities. StoryStation was developed using a child-centered design methodology adapted from Druin[7] and Scaife[28]. Research was based on participatory design with teachers and students in Scottish primary schools[25]. In the course of design, animated agents were developed that help the pupil with spelling, diction, and character development. During the initial design of the system, eight students and two teachers were consulted, and further feedback by teachers and students was elicited through the experimental deployment of StoryStation in two Scottish schools as detailed by Robertson[26]. The agents in StoryStation provide access to resources such as a dictionary, a thesaurus, and a tour guide of the system. StoryStation also currently has assessment of spelling, vocabulary and characterization skills. These agents are represented as animal characters that float on the screen of the pupil and offer advice and support, and their icons were created by children themselves. Instead of providing negative criticism, StoryStation praises the pupil for their good work, and provides positively-phrased constructive comments to help the pupils. One agent that was requested by both children and teachers, tentatively called “Pinky the Plot Analyzer,” is currently still in development and we focus upon the development of this agent.

The plot analysis agent is first to be deployed for the story rewriting task, a common writing task in Scottish primary schools. The agent was designed by teachers in the Scottish school system together with researchers from the University of Edinburgh. The plot analysis agent uses techniques from computational linguistics, in particular extraction of events from the story, in order to build a model of how a teacher actually assesses the plot of a story in the story rewriting task. To this end, a corpus was collected of stories rewritten by children, and these stories were rated by raters using a teacher-designed metric. The plot analysis agent, by relying on its ability to learn how humans perform a task, is able to perform reasonably well on a task thought to be classically difficult for artificial intelligence. This agent then can automatically aid students in their recall of the plot, relieving tedium from the teachers. This allows teachers to concentrate their teaching on other aspects of writing rather than correcting mistakes in plot recall and development, and allows students to further hone their individual learning skills.

2. THE STORY REWRITING TASK

In the story rewriting task, children write a story they
have heard before in their own words. The cognitive load of inventing an entirely new plot is taken off the students through the story rewriting task, allowing them to devote their full attention to their writing technique. A student could work on issues such as diction and spelling instead of inventing a new plot structure. Teachers in our study found this a very effective way of getting students in particular to describe a scene or character in depth.

Teachers would like this agent to be able to classify the plot of a rewritten story, and then give advice to the student on whether or not they should continue work on the plot of the story. Ideally, a more fine-grained level of analysis in which the agent reminds the pupil of particular elements of the plot they may have left out (like missing characters and events) would be available. Some pupils become frustrated in the writing process when they forget the plot they are rewriting, often leading to incomplete writing assignments.

An automated plot analysis agent would provide encouragement and advice based on the pupil’s plot, and to do this the agent must be able to analyze the pupil’s plot for missing or confused characters, episodes, and other events. The agent should remind the child if they have forgotten or misconstrued an event, and encourage the child to write more when they are frustrated by recalling specific events for them. Most importantly, the agent should be able to assess the general quality of the plot and so give both the teacher and pupil that assessment. We tackle the problem of general assessment of the plot, and shape our automated plot analysis such that the other needed capabilities of the agent can be fulfilled from the results of the assessment.

A series of three story rewriting tasks were done at classes in Methilhill and Torbain Primary Schools (in Kirkcaldy, Scotland) by Judy Roberston. The children, ages 10-12 and from a broad range of reading levels and socio-economic backgrounds, were told a story, called the exemplar story throughout this paper, by a storyteller. The children were asked to rewrite the story in their own words. A transcript of the story as told by the storyteller was collected, and the rewritten stories were transcribed. The stories were collected into a digital corpus of 103 stories.

For our corpus the story-teller told the students an exemplar story called “Nils’ Adventure,” a story from “The Wonderful Adventures of Nils” by Selma Lagerlof[17]. A transcript of the story as told by the storyteller is available[12]. The story involves a boy called Nils who jumps on the back of a talking stork, which drops him off on a beach where the boy finds an old, green coin. Thinking it useless, Nils throws the coin away. A city appears from the waves, and its residents offer Nils various magical wares for the price of only one coin. Nils runs outside to retrieve the coin, which the agent reminds him of particular elements of the plot they may have left out (like missing characters and events) would be available. Some pupils become frustrated in the writing process when they forget the plot they are rewriting, often leading to incomplete writing assignments. The story involves a boy called Nils who jumps on the back of a talking stork, which drops him off on a beach where the boy finds an old, green coin. Thinking it useless, Nils throws the coin away. A city appears from the waves, and its residents offer Nils various magical wares for the price of only one coin. Nils runs outside to retrieve the coin, which the agent reminds him of particular elements of the plot they may have left out (like missing characters and events) would be available. Some pupils become frustrated in the writing process when they forget the plot they are rewriting, often leading to incomplete writing assignments.

3. STORYSTATION: WORKING WITH STUDENTS

StoryStation follows in tradition of intelligent tutoring systems outlined by Britton[3] that are informed by research on the cognitive psychology of writing. Flower[9] emphasized how writers must manage many differing constraints, and that students often need help on each of the constraints both individually and in tandem. This “constraint” theory also mirrors the concerns and goals of StoryStation as voiced by the teachers. These constraints are visually manifested as animated agents with differing specialties that can be invoked by the pupil on demand. See Figure 1 for a picture of the graphical layout of StoryStation and its agents.

The teachers and students in the design team did a comparison of other tutoring software in the field, and helped choose the number and kinds of features the agents in StoryStation embodied, including automated plot analysis. Note that few other current intelligent tutoring system provides automated plot analysis, although there are systems like the WRITE system by ETS for essays[4]. Students in the design team wanted the responses of the agents to be individually tailored towards their writing levels, so StoryStation keeps a student model of each student, allowing StoryStation to use their current curriculum level and the level which the child is working towards in shaping its agents behavior. If the student has never used StoryStation before, a default model for the student’s current curriculum level is used.

Students who took part in a field study in a state funded primary school felt that the agents helped their writing. Comments included “It made me feel more confident. You know you’re not making mistakes in words.” and “It made me feel happy because it was helping me with my spelling and words I didn’t know.” As detailed by Robertson[26], students felt StoryStation complimented their teacher well, with 57% of students in a sixty student questionnaire responded that “They would be more likely to trust advice from StoryStation than a teacher,” although many students said they would trust a teacher more since “a teacher knows what your writing is meant to be about, but StoryStation doesn’t”[26]. Students liked using StoryStation because “You don’t get embarrassed if you forget. [In class] you have to
go up and ask again. So you keep on asking if you forget and sometimes the teacher shouts at you if get something wrong.” Since the help from the agents in StoryStation is purely optional, one student said that if the StoryStation agents “yelled at him” he could “tell them to shut up.” Many students appreciated the specific nature of the advice, and one student when comparing StoryStation to a teacher said, “The computer can be more specific the teacher just says just go and write more” and “The teacher might help you with vocabulary but she won’t go through every single one [word]”[26]. StoryStation has also been evaluated with 18 teachers who found the system to be very promising, especially its potential to allow the students to develop their writing skills independently[24].

4.1 Computers and Story Understanding

While this previous approach was done manually by cognitive researchers, the first attempt to automate story understanding using computers was the doctoral dissertation of Eugene Charniak, “Towards a Model of Children’s Story Comprehension,” under the supervision of Marvin Minsky[5]. Understanding children’s stories was viewed as a grand challenge in the heyday of artificial intelligence. If a computer could somehow capture the world-knowledge and cultural context needed to understand a story, it would be a significant victory for artificial intelligence. Children’s stories were also focused upon as they were considered to be the simplest of stories for a computer to understand. Children’s stories were viewed in a negative manner: If a computer could not understand “something as simple” as a children’s story, then it could not be intelligent.

The problem of understanding children’s stories was shown to be far more difficult than originally surmised. Stories take place in an immense cultural and “common-sense” context, and a computer knows none of it. Researchers attempted to hand-code this knowledge into frames, which represent cultural and world knowledge as a structure of named variable slots that can be given a set of values to represent a particular story[21]. These variables are often determined by the operation of a logical inference engine. A plot is given by a series of frames, with the content and explanation of a story determined by values given from a computational analysis of the sentences and the operation of an inference engine.

Research is still done on applying AI planning techniques to story understanding[6]. However, these efforts never fully overcame the prime problem of the approach of classical artificial intelligence: the world and cultural knowledge needed to understand a story far outstrips our ability to even consciously iterate through such knowledge, much less formalize it. Sometimes inference is often either transparent (such as “Let’s have an adventure”) or simple (“If you want to fly, get on the back of the flying stork”). The “logic” of some stories is far from “common-sense”. Do we demand a “fantastical-sense” inference engine, and what could that possibly entail? Must we demand not only the ability to predict the commonplace, but the uncommon from artificial intelligence? In “Nils’ Adventure,” should our computer notice if the coin is left out by the pupil, and the city still disappears? A coin that causes a city to disappear will just not exist in common-sense databases of causal relations. Additionally, it would be infeasible to ask a teacher to handcode each student’s story into representation suitable for processing by a frame system. It is the extraction and labeling of events from the writing of the children that is of concern first and foremost, and the logic and planning components follow from whatever can be extracted.

4.2 The Frame Problem

The extraction of events from a story still involves using some formal model of the children’s story that can be implemented on a computer. All formal models are haunted by what is termed the “Frame Problem.” In its original formulation by McCarthy and Hayes[20], it was realized that most models are inherently static as regards time, and that the addition of time to a model can lead to consequences unpredictable by the model itself. More generally, the Frame Problem consists of the modeler not knowing the unintended consequences of leaving something out of their model, so that the model does not do justice to the real world problem.

The Frame Problem can be rephrased as the Quantification Problem: How many and what things do we formalize into the model? It would be impossible for us to formalize
everything. If we develop a model of the plot of both the
exemplar story and the rewritten story as a series of events
and try to compare them event-by-event, our algorithm will
probably fail to match many perfectly good rewritten stories
unless the pupil exactly copies the exemplar story word for
word. The pupil may add in a detail like “When the stork
flew away, Nils left Sweden,” which is true but not explicit
in the original story. The pupil may leave out unimportant
details due to their irrelevance to the flow of the story. In
the introduction of “Nils’ Adventure,” Nils is found riding
goose. Yet Nils riding on goose has little to do with the rest
of the story. The model must clearly be flexible. We could
let human experts formalize and quantify all possible events
they deems relevant for a particular story. This would make
our agent less portable over new stories that a teacher may
want to use, and would involve another layer of expertise
outside the teacher. The alternative is to let the computer
only use whatever events it can find automatically. Both op-
tions clearly are ridden with problems. The human expert
will likely detect most important events given enough time,
and the computer may miss events or fail to recognize events
that help the story make more sense. Yet the computer will
function quickly and without human aid. Our story intro-
duces Nils as a Swedish boy that flies on geese. Much more
could have been said in the introduction to the story that
may help make the events of the story make sense, such as
mentioning Nils’ former cruelty to animals that he is trying
to atone for? Was it even really relevant for the geese to
be there? These are hard judgments for a human to make,
and no obvious algorithms to help computers to make these
decisions seems feasible.

This leads to the most vicious phrasing of the Frame Prob-
lem, which I term the Significance Problem: How can a
model formalize only the important things? The problem is
not how to formalize everything, but how to formalize only
things that make a difference in the operation of our story
rewriting tutor. Standards of significance must be made ex-
licit for a model to use them, yet this is often a subjective
judgment that is open to interpretation. This calls for par-
plicit for a model to use them, yet this is often a subjective
rewriting tutor. Standards of significance must be made ex-

4.3 Teacher-Designed Rating

The Frame Problem is endemic to all formal models and
so can never be completely overcome, yet a participatory
model can ground a formal system effectively in the prac-
tice of informal humans. Traditional artificial intelligence
techniques sometimes fail since they tried to find or invent
an explicit methodology. We have two distinct advantages
which make our project more tractable. First, full story un-
derstanding is not required for automated plot analysis. The
analysis must simply be able to rate each pupil’s rewritten

The rewritten stories were rated for plot by three different
raters. The second author (Rater B), who is also a story-
teller, and a non-expert (Rater C), the first author, rated
all of the stories. The teacher (Rater A) who designed the
metric rated half the stories, as this was all her time allow-
ed. The following scale, as dictated verbatim by teacher, was
given to all raters to use as their guidelines for rating stories:

1. Excellent: An excellent story shows that the child un-
derstands the “point” of the story and should demon-
strate some deep understanding of the plot. The stu-
dent should be able to retrieve all the important links
and, not all the details, but the right details.

2. Good: A good story shows that the student was listen-
ing to the story, and has recall of the main events
and links in the plot. However, the student shows no
deep understanding of the plot, which can often be
detected by the writer leaving out an important link
or emphasizing the wrong details.

3. Fair: A fair story shows that the child is missing more
than one link or chunk of the story, and not only lacks an
understanding of the “point” but also lacks recall of
vital parts of the story. The fair story does not really
flow.

4. Poor: A poor story has definite problems with recall of
events, and is missing substantial amount of the plot.

5. PLOT RATING METRIC

The following scale, as dictated verbatim by teacher, was
given to all raters to use as their guidelines for rating stories:

1. Excellent: An excellent story shows that the child un-
derstands the “point” of the story and should demon-
strate some deep understanding of the plot. The stu-
dent should be able to retrieve all the important links
and, not all the details, but the right details.

2. Good: A good story shows that the student was listen-
ing to the story, and has recall of the main events
and links in the plot. However, the student shows no
deep understanding of the plot, which can often be
detected by the writer leaving out an important link
or emphasizing the wrong details.

3. Fair: A fair story shows that the child is missing more
than one link or chunk of the story, and not only lacks an
understanding of the “point” but also lacks recall of
vital parts of the story. The fair story does not really
flow.

4. Poor: A poor story has definite problems with recall of
events, and is missing substantial amount of the plot.
Table 1: Distribution of Plot Ratings in Corpus

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Number of Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>0.175</td>
<td>18</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>0.320</td>
<td>33</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>0.184</td>
<td>19</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>0.320</td>
<td>33</td>
</tr>
</tbody>
</table>

Characters will be misidentified and events confused. Often the child writes on the wrong subject or starts off reciting only the beginning of the story.

5.1 Validity

Between Rater A and Rater B there was a Cronbach’s α statistic of .884 and a Kendall’s τb statistic of .821. Between Rater B and C there was a Cronbach’s α statistic of .933 and Kendall’s τb statistic of .869. These statistics show our rating scheme to be fairly reliable. Since Rater B rated all the stories and was not involved in the implementation of the plot analysis software, her ratings were used as the gold standard. The distribution of these ratings are shown in Table 1. It was felt that using Rater A, who designed the metric, would be infeasible since she only rated half the stories. She also designed the metric itself, and we were interested in how valid the metric was across independent raters who were given only the explicit text of the metric. Since Rater C implemented the plot analysis algorithm and designed the details of its statistical and linguistic operations, it would have been unfair for his ratings to be used as gold standard to test his algorithms.

It appears that there is not much agreement between Rater A and Rater B, with only 39% (18 of 46) agreement. Upon closer inspection, it is clear that Rater A was just systematically more harsh than Rater B. Stories that Rater B would classify as fair would be classified by Rater A as poor. In fact, almost half (13 of 28) of their disagreements fall into this category. Upon further inspection of the stories that were the sources of disagreement, it seems that Rater A would never give partial credit to an incomplete story and would always mark it as poor, even if it was near completion. Rater B often gave it partial credit, marking incomplete stories as fair. Rater A tended to grade more harshly, often grading a rating scale one less than that of Rater B. However, large digressions between the two were rare, as an excellent story was never identified as a poor story and only twice were stories ranked as good by Rater B marked as poor by Rater A. There were only 3 two-rank differences in total. The rest of the errors were evenly dispersed between disagreements over excellent and good stories (7 disagreements) and good and fair stories (5 disagreements). The final results are easily explainable, if one accepts the explanation that more than four-fifths of their disagreements was just Rater A marking one rank lower than Rater B. When asked about this, Rater A felt that Rater B’s ratings were equally valid, just more lenient than her own.

Rater C and Rater B, who rated all the stories, had a high agreement of 77 percent (79 out of 102). Rater C was consistently marking stories higher than Rater B, with 19 stories marked higher and only 4 lower than Rater B. Rater C tended to be less harsh than Rater B, although he was more in agreement with her than Rater A. The largest difference is that stories rated as fair by Rater B, Rater C would tend to mark as good. He also tended to rank as fair those that Rater B would mark as poor. Only in very rare circumstances (once) did Rater C rate a story fair that Rater B would rate as poor. Again, the raters would usually differ by one ranking, and in one direction. The largest area of disagreement was in between good and fair stories, with 11 disagreements, although disagreements between fair and poor stories came in a close second with 8 disagreements. Fair and excellent stories had only 3 disagreements. Overall, Rater C apparently was often in close agreement with Rater B, just giving more partial credit.

Overall, the rating scheme is far from perfect, but fairly reliable. It is imperfect enough for human raters to have relatively large disagreements on the rating scale, yet good enough that the raters tend to not disagree by more than one ranking.

5.2 Comparison to Psychology

It is interesting to note that very little of the work into understanding children’s narratives has taken any account of the relevant psychological literature. Children’s stories are either viewed as the same as adult stories or as simple adult stories. As emphasized by the teachers, the varied and complex linguistic development a child is expected to go through differentiates their story writing and story understanding ability from that of adults. Since we need to deal with surface text and the characteristics of children’s linguistic development around the age of 10-12 (the age of most users of StoryStation), these differences need to be taken into account. Children develop the ability to use narrative over time. One well-known model of narrative development in psychology is the Applebee model[2]. Although this psychological model exists, we preferred to use participant design to get a valid experienced teacher’s perspective. However, comparing that model to the teacher’s rating scale for consistency would be useful. The typical progression of a child’s plot-writing ability are as follows in Applebee’s developmental model[2, 14]:

1. **Heaps**: A series of unrelated referents and events. This shows the basic structure of stories to be “bare” referents and events, even if they are unconnected. This parallels the Poor category in the teacher-designed metric.

2. **Sequences**: A series of events linked by a single referent, usually with some type of similarity relation between events. This shows the development of a Fair or Poor story into a Good story.

3. **Focused Chains**: The focus now follows the main character. Note that if the events are recalled correctly (as in a Good story), the plot follows the main character.

4. **Narratives**: Expansion of the focus to other elements of the story in an orderly fashion, as well as elaboration on themes. This understanding of the theme is somewhat parallel to teacher’s idea that “understanding the point” is crucial to Excellent stories, although this facet is more emphasized in the teacher’s rating scale.

The typical user of StoryStation should have the capability to fully use narratives. Still, these developmental levels are useful as some students may have a slower development of
narrative use. These levels show that the teacher’s implicit knowledge of stories reflects well the findings of developmental narrative psychology. The collected corpus reflected these levels of development, with stories ranging from unrelated events and characters to an understanding of the causal flow of events and point of a story. It should be noted that the rating metric used by the teacher is preferable to using the developmental model, since the rating metric is designed in the social context of the use of StoryStation and specifically with the story rewriting task in mind. There are differences between the psychological model and the teacher-designed rating metric, with the most obvious one being the focus of the teacher on not just recall and character following but getting the crucial “point” of the story.

6. THE DESIGN OF THE AGENT

Decisions have to be made about what level of analysis our computational model of plot operates on and what kind of analysis the teacher needs. It is possible to analyze the stories on a number of levels. First, the similarities of the word distributions between stories can be compared. A good rewritten story would presumably at least share many of the same words as the original story. However, using this as the only measure of plot quality is problematic. The teacher-designed rating scale places high priority on actually recalling events in the correct order. Our system needs to extract and analyze events from the raw text of the rewritten stories and compare them for temporal order. For example, a story that had all the events described backwards in time (so that the beginning would be at the conclusion) would not be detected a statistical analysis of word frequency in two texts. The use of synonyms would violate word context. It was found perfectly acceptable by the teacher for the main character Nils to be called a “boy,” yet a simple statistical analysis might not realize the two stories. The use of synonyms would violate word context. It was found perfectly acceptable by the teacher for the main character Nils to be called a “boy,” yet a simple statistical analysis might not realize the two words are synonyms in the context of a story. The event extractor must also have enough flexibility to recognize this. Our system should at least attempt to conflate synonyms to get a proper grasp of statistical word similarity. The idea of a “point” is very difficult to formalize, although it may be possible for it to be an emergent factor of event recall and ordering combined with the use of certain key words.

6.1 Events

Instead of describing the different elements of the story (“Introduction,” “The Climax,” and so on) in the tradition of Propp[23], we consider the plot elements to have only two different categories, events and entities, so that they can be automatically extracted from text. The story can then be represented as a simplified event calculus, following closely work by Mueller[22]. Entities are nouns that include animate characters such as “boy” and “geese” and inanimate objects such as “coins” and “cities.” Events are composed of the interactions of entities and are usually verbs. The “boy throwing the coin,” is composed of a “boy” and a “coin” connected by “throwing.” Events are predicates, and entities are arguments to these predicates, with the predicate being named by an verb indicator. For example, “the boy throws the coin” maps to throws(boy,coin). Together with an ordering over time, these can form a non-quantified events calculus such as throws(t=13,boy,coin), where t is an integer variable denoting the order of the event in the child’s story. The verb is the event name with each noun being an entity. A sentence may map onto one, multiple, or no events, such that the sentence “Nils walked down the beach while the stork slept” would map to walk(t=1,Nils,beach), slept(t=1,stork). Two stories are said to match if they are composed of the same ordering of events.

6.2 Extracting and Comparing Events

The event calculus was extracted from raw text of children’s stories by layering natural language processing components using an XML-based pipeline. For this particular XML pipeline we used the LT TTT (Language Technology Text Tokenization Toolkit) and LT XML[11, 29]. A full description of the pipeline and the plot comparison algorithm is beyond the scope of this paper, see [12, 13] for details. The guiding constraints used was that the event extractor had to operate over the often ungrammatical raw text of students and the process had to be fully automatic. First, words were tokenized, sentences separated, words tagged for their part-of-speech, and then a rule-based anaphora resolver was used to resolve pronouns to common or proper nouns. Events were then extracted, using the Cass Chunker to extract tuples of verbs and nouns in sentence chunks[1]. A transcript of the exemplar story as told to the pupil was used to create an event calculus representation for the exemplar story. Each rewritten story was then transformed into an event calculus representation. A plot comparison algorithm steps through the events of the original story and compares each of them to the rewritten story. The events are compared to each other by checking to see if the events are equal first in terms of events and entities, and then in temporal order. If the event name of the events are not equal, WordNet[8] is used to automatically extract a synonym set for the event name being checked, and membership within that set is recorded. This process is then repeated for each entity of event. If the temporal ordering of the two events is different, this is also recorded. This algorithm results in each rewritten story being characterized as a series of events, with each event in the rewritten story being composed of a number of attributes as iterated above. For a formal description of this model, see Halpin et al.[13].

6.3 Statistical Analysis of Rewritten Stories

We used Latent Semantic Analysis[18] (LSA) scores as our metric of word distribution similarity. LSA provides an approximation of “semantic” similarity based on the hypothesis that the semantics of a word can be deduced from its context in an entire document[10]. LSA compares the words of a document to the words of another document, and produces a score ranging between 0 and 1.0 as a similarity score between one story and another story. LSA is an improvement on the simple measure of word co-occurrence in two stories. Since this would penalize synonym usage among other things, in LSA before the comparisons are taken the stories are projected unto a “semantic space” representative of the English language. The space is created by reducing a large corpus of texts to a smaller subspace, so that the subspace has a smaller dimensionality than the original space. The texts used in our experiment are the required reading of 12th-grade students from the USA as collected by TASA[18]. Once both stories are projected to this reduced subspace, a cosine comparison takes place to measure their similarity. In the reduced subspace, similar words such as “coins” and “money” are collapsed into one dimension, and so not peptides.
nalized by the similarity score.

In comparison to the event extraction methods, LSA keeps closer to the actual data in the students text since it is made from the raw text of the stories and the TASA reading level corpus with a dimensionality of 200[18]. There are severe limitations to the use of LSA. First, it does not take word order into account, so the sentence “Nils jumped on a goose” and “The goose jumped on Nils” would have a similarity score of 1.0. As Hickmann suggests, the very flow of narration in children’s discourse in based on interplays between regularities such as grammar and semantic roles[14]. The presence or absence of specific events and temporal order are not captured adequately by using only word frequency distributions over the entire document, regardless of how complex the mathematical processing (such as sub-space reduction in LSA) upon these documents is. Despite these shortcomings, similarity scores from LSA are useful since they provide information about the words used in the text that may be stripped out in event extraction.

6.4 Combining the Methodologies

One principled way to model a teacher’s plot rating ability is to let a machine-learning algorithm learn what features are good predictors of a teacher’s rating. The task is one of story classification. The features used are the results of the plot comparison with the LSA similarity score and the output is one of the ratings from our scale as described earlier. The machine “learns” by inspecting a portion of corpus of rated rewritten stories (the training data), counting the occurrences of each feature to build a statistical model of each rating class. Once each story in the training data has been iterated through in this manner, a statistical model of each rating class is finished. In a simple hypothetical example, the machine-learner could learn that 60% of good stories have LSA score greater than .50 and the presence of the event find(Nils, coin). It could also learn that 70 percent of all poor stories had a LSA score of less than .40 and were missing more than half of the events. When given a new story to rate (the test data), the machine learner inspects its events and LSA similarity score to determine, given its statistical models of each rating class, what is the most probable rating of the story. This type of machine-learner is called the Naive Bayes machine-learner, since it is based on Bayes Theorem and the “naive” Conditional Independence assumption. The mathematical details of the model are available[12], and a full analysis of various other machine-learning techniques in this task is available[13].

7. RESULTS

Using the Naive Bayes machine-learner and ten-fold cross validation, the automated plot analysis agent correctly identified 51.46% of all the stories in the 103 story corpus. Ten-fold cross validation is when 90% of the corpus is used as training data while 10% is used as test data. This division iterates through the whole corpus ten times, so every story is used a test data exactly once.

While at first this score may not seem impressive, in light that for the human raters the agreement ranged between 39-77%, it is a success. In fact, had the automated plot analysis agreed completely with Rater B, the results would most likely have been overlearned instead of an accurate assessment of the objective validity of the rating model due the amount of human disagreement in using the rating scheme.

What was found in observing human teacher’s ratings was that variations in using the rating scheme tended to be systematic, and the same should be expected to hold in with the automated plot analysis. A table of the precision and recall scores is presented in Table 2.

Upon closer inspection, the machine-learner rated the poor stories with a fair degree of accuracy (66.7%) and good stories with a high degree of accuracy (87.9%). However, it experienced a severe amount of difficulty processing both excellent and fair stories, consisting identifying less than 20% of each rating. On a more fine-grained level, the automated plot analysis separated the stories into two large clusters, with 67 stories being identified as good stories (29 correctly) and the poor (24) stories. Only 11 stories were identified (5 correctly) by the analysis as fair and only 1 story was identified (and incorrectly) as excellent. Almost all excellent stories were misidentified (17 out of 18) as good stories, with the last one being misidentified as fair. The fair stories were also mostly identified as good stories, with 13 fair stories misidentified as good stories, and only 1 fair story identified as a poor story. A few good stories were misidentified as either excellent (1), fair (2) or poor (1), but for the most part (87.9%) they were identified correctly. Poor stories were mostly identified correctly (66.7%), although a surprisingly amount (8) were identified as good stories and (3) fair stories.

8. DISCUSSION

The plot analysis agent works, albeit in a limited fashion. Its ability to separate good stories from poor stories is remarkable, and would come in useful to a teacher. While its behavior is too limited to allow it to automatically grade rewritten stories, the real issue is of adapting the ratings given by the automated plot analysis system to the context of StoryStation. Its ability to accurately identify poor stories allows it to identify the pupils that are in need of help. Using the automatically extracted event structure and its knowledge of what events are missing from the rewritten story, the agent could remind the pupil that they may have forgotten a part of the plot or give a pupil who is struggling to write the story suggestions about what part of the plot to focus on next. The agent could suggest to pupils who are having extreme difficulty to ask for help from a teacher. The teacher thought that this ability to find students who are struggling with the plot of the story would the system’s greatest boon to teachers, since often those students who are struggling often are the last to ask for help. The ability to separate good from poor stories relieves much additional tedium from the teacher, since having to manually rate each story is a time-consuming task. Instead of having to wait for a teacher’s comment, the plot analysis agent helps the student to recall the plot more effectively by getting feed-
back instantly and so concentrate on developing other facets of writing.

The behavior of the automated plot analysis system gives important clues about the limits of our current model, and the entire approach of modeling story plots. It is not surprising that poor stories can be classified with relative ease by computers. As noted by the teacher-designed rating scale, poor stories tend to be much shorter than longer stories and have differing word distributions, aspects taken into account by using LSA similarity scores. They are more likely to be missing large chunks of events, a phenomena easily recognized by our automatic event extraction. The main characteristic of good stories is that they possess “recall of the main events and links in the plot.” This would be easily identified by the automatic event extractor. However, the automatic plot analysis agent fails to correctly classify both fair and excellent stories. Part of the reason for the poor performance is that both types of stories were less frequent in our corpus that good and poor stories. Another reason may be that in the rating scheme the teacher identified both excellent and fair as relying on notions of “understanding the point” of the story. The concept of a “point” is obvious to humans such as teachers and to students (once they “get” the point), but difficult if not impossible to formalize in a computational system. The few attempts that have been made by researchers like Wilensky[30] rely upon using AI planning techniques that can not handle the idiosyncratic logic of children’s stories. As regards excellent stories, it is not surprising that the agent should fail, as excellent stories involve not just retrieving “all the details”, but the “right details” as noted by the rating scheme. Our event extractor by nature extracts “all the details,” and apparently its attempts to discover the “right details” fail both due to the small size of the corpus and the inherent difficulty of formalizing the “right details.” Excellent stories often use creative words that are not detectable by LSA similarity scores or the use of WordNet in the algorithm. Fair stories, by virtue of missing events, are easily detected by our agent, but may share many of events as good stories, and thus confound the system. The idea of “flow” and “point” are difficult, if not impossible, to formalize. Overall, our system succeeds and finding and extracting events and classifying stories based on those events, but can not tell if a student got “the point” of the story.

9. CONCLUSION AND FUTURE WORK

As Charniak discovered, appearances can be deceiving: children’s stories are not easy for a computer to understand[5]. First, children’s stories are complex. Children are not simplified versions of adults, children are living human beings that are dynamically developing, and their stories embody complexity as much as any other natural phenomena. Their pronoun usage may be simpler, but their syntax tends to have an ungrammatical but enduring complexity all of its own that foils traditional parsers. There is still much work to be done, but the plot analysis agent in StoryStation is considered by the teachers we have consulted to be a social good and can serve as a useful demonstration of artificial intelligence and natural language processing to the “real world” teaching domain. By not dealing with strictly in hand-built frame representations and by modeling a human teacher, our system is able to both bypass to an extent the Frame Problem and its attendant knowledge engineering bottleneck at the cost of having a more limited functionality. Although we have only tested our system on one story, we have no reason to believe our agent is not domain independent if another training corpus is made from a different story. The story classification problem may be solvable, yet the story understanding problem is at least a magnitude more difficult.

One should not forget there are social aspects to allowing a computer to rate stories. Do we really want our children to be graded by machines that may not recognize important factors in plot such as creativity? Given the current ratio of teachers to students, it makes sense that a teacher would like some automation to alert them to students that are having serious problems with their writing, so that the teacher can concentrate on the struggling student. It also allows the teacher to focus their attention on the human element of writing, emphasizing creativity and quality writing technique. Although machines may never be able to grade stories with the same care as humans, one can imagine interactions between children and machines that allow both to grow and reach new heights of complexity and skill in development. In this spirit, it is of utmost importance to remember that StoryStation and the plot analysis agent presented here is not intended to grade stories, but allow the students access to an agent that can produce constructive feedback on the stories to the pupil on demand. With our plot analysis system, an animated agent may remind a child of a forgotten point or alert the teacher to help a particular student. Since the plot analysis is fully automatic given a training corpus, the system requires just that a teacher rate a small corpus of each story before being able to use the agent for a story indefinitely in class. Since the agent extracts events instead of relying on human handcoding, it allows a measure of domain independence over stories. Our system is also fast enough to produce real time plot rating at the bequest of the pupil. Due to the statistical nature of our system, new stories (either automatically rated within a reasonable measure of correctness or human rated) can be used to improve the system. Thus, the child’s writing will in turn influence the behavior of the agent, allowing the agent to learn how human writing works better. However, before such work takes place, the main future work of this project is a longitudinal evaluation of the educational effectiveness of StoryStation in the field. The software has been installed in a primary and a secondary school where it will be used by classes of 10-11 year old and 12-13 year old pupils as part of their classroom writing instruction over the course of two school terms. Qualitative interview data is being collected in order to characterize the pupils’ and teachers’ experiences with the software in terms of motivation and their perception of the effect it has on learning. Quantitative analysis of log file data and pre-test and post-test writing samples will also be carried out.

The search for a perfect model of human stories on computers may be difficult if not impossible by its very nature, the study of the interaction and mutual development of humans and computers will lead to more insightful research in artificial intelligence and participatory design. The ability to narrate events, to tell stories, is fundamental to human intelligence. While our plot analysis system here is far from perfect, its use of automated analysis through computational linguistics and the focus on teacher participation allowed us to make progress on a difficult task. While our design is
simple compared to many story understanding systems, we hope this type of design will serve as a framework for future work and that story classification is a useful stepping-stone to story understanding. Researchers have barely scratched the surface the depths of human story understanding, yet a practical and participant-centered approach to this problem can lead to socially useful applications like StoryStation.

10. ACKNOWLEDGMENTS
Special thanks to Senga Munro for her assistance in designing the plot rating scheme, rating the stories, and for her advice. Also this project would not have been possible without all the teachers and students who have been involved in the development of the StoryStation project.

11. REFERENCES