Using Distributed NLP to Bootstrap Semantic Representations from Web Resources

Núria Bertomeu Harry Halpin Yi Zhang

Motivation

- Large domain ontologies are being created in the Web.
- Bootstraping the content of Web text and binding it to existing ontologies allows for complex inference tasks on Web content.
- Previous approaches to this task only have used shallow methods such as NER (Popov, 2003) and n-gram tagging (Guha, 2003)
- Is it possible to weigh the logical results using probabilities of extraction from documents?

OWL and Description Logics (DL)

- The OWL (Web Ontology Language) is designed as common syntax and semantics for ontology classification of Web pages and their content.
- SHOIN(D) DL is the formal foundation of OWL DL.
- OWL uses URIs to disambiguate and store ontologies.
- OWL uses an open world assumption.

Description Logics (DL)

- DL supports inference patterns such as classification and satisfiability checks.
- Decidability of inference procedures.
- Basic syntax:
 - atomic concepts (unary predicates),
 - atomic roles (binary predicates),
 - individuals (constants).
- Small set of constructors for building complex concepts and roles: union, full existential quantification, number restrictions, negation.

Description Logic vs. First Order Logic

- DL is a subset of First Order Logic (FOL).
- FOL is more suitable for the representation of NL statements.
- However, inference procedures with FOL tend to be undecidable.
- Correspondences between DL and FOL:
 - atomic concepts → unary predicates;
 - atomic roles → binary predicates;
 - intersection → conjunction;
 - union → disjunction;
 - negation → negation;

Semantic Representations

- MRS a framework for flat semantic representation that allows for underspecification.
 - predicate calculus with generalized quantifiers;
 - an MRS structure is a tuple <GT, LT, R, C>, where GT is the global top handle; LT, the local top; R, elementary predicates and their arguments, and C, constraints on handles.
 - rMRSs (Copestake et al., 2003) obtained from the HoG (Callemeier et al., 2003).

Semantic Representations

- DRS semantic representations within the framework of DRT.
 - a notational variant of standard predicate logic.
 - a DRS is a pair <U, C>, where U, the universe is a set of variables, and C, a set of conditions. Simple Conditions are predicates applied to variables. Complex conditions are recursive and include quantifiers, negation, and conditionals.
 - DRSs (Kamp, 1980) obtained from a CCG Parser (Bos et al., 2004).

Representing Natural Language in DL

- Predicates:
 - each predicate belongs to a class and instantiates an individual of that class.
 - basic relations: AGENT, THEME, PATIENT, RECIPIENT, MODIFEE.
 - Domain: event individual;
 - Range: individual;

Algorithm (RMRS -> DL)

- General Algorithm
 - Given RMRS <T,L,R,G,C>
 - For each ep in L
 - h:pred(a) => a:pred
 - map(h) := a
 - For each rarg in R
 - role(h, c) => (map(h), c):role
 - $role(h, v) \Rightarrow (map(h), v):role$
 - For each variable equality u=v constraint in C
 - Merge the individuals created for u and v to a single individual
- Language Specific Tuning (English)
 - Don't create individual or class for general predications like message rel
 - Ignore all the generalized quantifiers (See future work)
 - For preposition, create individual of class Event
 - For pronoun, create individual of class Thing
 - For named_rel, crate individual of Named_Thing

Algorithm (DRS -> DL)

Given a DRS

- Flattening the DRS to a list of unary or binary predicates.
- For each unary predicate:
 - pred(v) => v:pred
- For each binary predicate:
 - role(u, v) => (u, v):role
- For each equality condition u=v:
 - merge the two individuals created for u and v to a single individual
- Implies condition X->Y and disjunction X V Y are difficult, but can be interpreted as union and inheritance relationships. Unclear if this preserves anything resembling semantics.

Flow Chart

Example

Pat argues with Tim.

Finished Work

- Automatically collected and semantically annotated 100 web-pages from an "Eiffel" Google search.
- Manually classified for ontology disambiguation experiments.
- Processed real scuba diving accident reports from a Web database with an ontology and inference test suite from IBM.
- DRS WS: http://axon.inf.ed.ac.uk/ws/sem2owldrs
- CCG2SEM works on real web text!
- HoG (MRS) processes text, but has more technical problems. No web service, considering it.
- Probabilities stored as a RDF tag per "word" with corpus frequency

Future research

- Disambiguation experiments with Eiffel corpus.
- What exactly do probabilistic weights "mean" once the concepts have been extracted?
- Better handling of quantification and plurals.
- Need a large scale SemWeb gold standard corpus which has an ontology and inference test suite that stretches to the level of natural language semantics.
- Need a set of tasks (like Q&A) on this corpus.
- Evaluation against n-gram and NER
- Standard transformations from NL DL to more standard OWL triples.
- Formalize concepts of "minimizing power lost" in logic.