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Abstract

Representationalism, the original driving theory behind arti-
ficial intelligence and cognitive science, has fallen upon hard
times. Representationalism identifies cognitive processes
with the manipulation of explicit symbolic structures accord-
ing to well-defined rules. Rocha and Hordijk put forward
three requirements for something to qualify as a represen-
tation: dynamically incoherent memory, construction code,
and self-organization; they also forsake the traditional idea of
representation as a “standing-in” relationship between a rep-
resentation and its content. While we note that Rocha and
Hordijk’s three requirements are an improvement over the
definition of representation as a style of explanation, we argue
that this “standing-in” relationship is the defining character-
istic of representations. We define representations as physi-
cally implemented structures that can create local effects that
are effective by virtue of their correspondence with non-local
parts of the world, and argue that this definition, while being
perfectly natural, does present a difficult, although not insur-
mountable, challenge for artificial life.

Introduction
Representationalism, the idea that cognition involves the
manipulation of symbolic structures, originally was at the
heart of artificial intelligence and cognitive science. At
first it was taken to be a revolutionary force capable of ex-
plaining previously inexplicable phenomena. Yet its propo-
nents could not explain much of physical behavior by virtue
of representations alone, and artificial life and other dis-
ciplines that did not rely on explicit representations have
now risen to the forefront. Despite the success of anti-
representationalism, there has been recent broad recognition
that some problems are “representation hungry,” and that an
adequate theory of representations is needed (Clark, 1997).
Several researchers in artificial life have suggested that work
in cellular automata (CAs) can either evolve representations
as explanations (Mitchell, 1998) or provide a simulation
of the evolution of physically implemented representations
(Rocha and Hordijk, 2005). We argue representations are
not just explanations, but physically realized symbol sys-
tems, and that current efforts in artificial life ignore a crucial
component of representations, a correspondence condition

with a non-local process. Many researchers in artificial life
are aware of these complexities and may even be aiming at a
“lower” level of representation or radical re-interpretation of
representation. If so, there is still much work to go if cogni-
tive science is to believe the story that artificial life is capable
of evolving genuine representations and the very concept of
representation needs theoretical clarification first.

Hard Problems

Representations are tricky for a number of reasons, and
we will follow the lead of Chalmers (Chalmers, 1995) by
classifying representation as either a “hard” and “easy”
problem (Chalmers, 1995). Aneasy problemis one “that
seem directly susceptible to the standard methods of cog-
nitive science,” while ahard problem is one that “is in-
tractable, and for which no good explanation can be given”
(Chalmers, 1995). The problems with representations are
manifold: How can representations be accessed and main-
tained? Where are they located? What kinds of representa-
tions exist and why are they useful? These are all difficult
in their own right, but are fundamentally dependent on the
larger question: What is a representation? In other words,
what are the identifyingrequirements of the representational
that allow us to separate all those parts of the world that are
representations from those the rest? If some criteria can not
be found, either everything is a representation or representa-
tions do not exist.

Haugeland states that representation can be defined by
their “standing-in relationship” (Haugeland, 1991). A repre-
sentation “stands-in” for something, so that when that thing
is not present it may “be represented; that is, something else
can stand in for them, with the power to guide behavior in
their stead. That which stands in for something else in this
way is arepresentation; that which it stands in for is itscon-
tent; and its standing in for that content isrepresentingit.”
(Haugeland, 1991). This “standing-in” relationship is called
interpretation in logic. This relationship is also known as
thesubstitutivityproperty andmeaningin philosophy of lan-
guage. It is this relationship that makes the problemhard.
In physics, as commonly conceived, for one thing toaffect



another thing (change the “physical configuration” of), both
things must be physically concrete and in direct contact with
each other. So properties that are effective are alsolocal,
such that there is “no action at a distance” (Smith, 1995). If
cognitive science wishes to be at least coherent with physics,
and if physics allows cause and effect only to be local, then
the “standing-in” relationship is physicallyspooky, since it
by definition does work by virtue of standing in for some-
thing that is not local. Note that we are not requiring context-
free representations, or some sort of representational system
that is independent of content, but aiming for a weaker and
more acceptable notion of representation that does not posit
such strong requirements. However, without any require-
ments the concept of representation would be vacuous.

Unnatural Representations
Representations have been a bugbear of naturalizing the
mind (Dretske, 1995). While much of contemporary philos-
ophy of the mind is concerned with the other bugbear of con-
sciousness, there are still depths to be plumbed to understand
the fundamental notion of representation. The relationship
between a representation and its content has been called
reference, and reference seems to violate physics. Alonzo
Church is attributed as saying that “reference outstrips the
speed of light” (Smith, 1995). If I am thinking about the
Eiffel Tower, my thought refers to an actual Eiffel Tower in
Paris instantly, without any direct physical connection be-
tween myself and the Eiffel Tower at the time of thinking. I
can imagine the Eiffel Tower even I am not in Paris looking
at it, and even if I have never been to Paris but only seen
pictures of the Eiffel Tower. It is this access to the content
of the representation that is spooky, since the content is re-
moved from the representation of the content in both time
and space. Indeed, for this to work the representation itself,
but not necessarily its content, must be physical and local.
Therein lies the core of implementing representations in ar-
tificial systems.

My referential access to the content of a representation
does work, which makes it even more spooky. While in
Scotland, I can think of the Notre Dame and remember that
the Notre Dame is in Paris. If I desire to go, I can use my
knowledge of the Eiffel Tower to book a ticket to Paris, a
very physical and effective action, when my plane lands in
Paris. Now, one could hypothesize that my representation of
the Notre Dame is physically epiphenomenal. This hypoth-
esis seems improbable at best, as the correlations between
my representations “line up” with my behavior, and these
correlations can be externalized and so observed. The main
problem is that while representations seem almost necessary
to explain human language (Chomsky, 1980), and also cer-
tainly needed in any theory of the mind, their relationship
with their content is non-effective at the time they are do-
ing work, and so one suspects, this relationship is possibly
non-physical. This would prevent the mind from being nat-

uralized with the physical (Dretske, 1995).
To further elucidate our terminology by an appeal to

physics, there are generally two kinds of separate events in a
relativistically invariant theory (a theory that obeys the rules
of special relativity, in that the theory looks the same for any
constant velocity observer). There are those that are sepa-
rated by space, which we call “non-local,” and those that are
separated by time, which when causally connected we call
“local” and “effective.” The word “spooky” is used to de-
scribe the fact that at their given moment of use, a represen-
tation and its content are space-like separated, and until an
explanation capable of implementation is given to show how
a representation and its content are actually local, or merely
time-like separated, then the relationship of reference will
remain physically spooky.

Problems that do not fit within an explanatory framework
but that de facto either exist or seem to exist are consid-
ered “hard” problems. These problems can be banished by
two routes: either an expansion, refactoring, or revolution of
the explanatory framework such that a solution for the ”hard
problem” is forthcoming, or proof that the problem does not
exist. In the case of representations, neither type of solu-
tion has been forthcoming. However, two routes have been
tried by researchers in artificial life. The first is to explain
representations as modes of explanations (Mitchell, 1998),
while the second is define representations in terms of physi-
cal properties and show how these physical properties could
naturally evolve (Rocha and Hordijk, 2005). While the two
routes may be compatible, they are not necessarily coupled
and so can be dealt with separately.

Representations as Explanations
Philosophical disputes are often disguised as methodologi-
cal clashes, and one case in point is the contrast in cognitive
science between computer simulations rich with explicit rep-
resentation (“computation”) and the use of differential equa-
tions without any obvious explicit representations (“dynam-
ics,” or more broadly construed,anti-representationalism).
Increasingly, more researchers argue that we need both
methodologies (Mitchell, 1998). I am inclined to believe
this is true, but it dodges the simple question: Do represen-
tations even exist?

Representationalist cognitive scientists like Bechtel make
a crucial point that representations can be thought of as ex-
planations (Bechtel, 1998). Avoiding the spookiness of rep-
resentations, Bechtel focuses on what a representational ac-
count must entail. He believes that while dynamic accounts
tend to be “covering-law” accounts (mathematical equations
that predict quantitative data), representational accounts are
“mechanistic accounts” that have employ two qualitative
heuristics: decomposition and localization. “Decomposi-
tion is the assumption that the overall activity results from
the execution of component tasks” while “localization is the
assumption that there are components in the system that per-



form these tasks” (Bechtel, 1998). Now there are two dis-
tinct things going by the term “representation.” The first is a
physical representation, which is a physically implemented
system capable of the “standing-in” relationship that isat
least partially internal to the observed system. The second
is a representation as explanation, in which the decompo-
sition and localization is observed in the system by the ob-
server, and to explain thisthe observer uses their own repre-
sentations, which areexternal to the observed system. It is
often assumed that these are the same thing.

To assume so would make the classic mistake of project-
ing one’s own internal representations unto the subject mat-
ter being studied and then assuming those internal represen-
tations to be true, a classic mistake in cognitive science as
noted by Maturana and Varela (Maturana and Varela, 1973).
Let us assume there is a neural network under investigation
that has been trained, unknown to our observer, to perfectly
model whether or not it has been exposed to the presence
of a duck via a video camera hooked up to the neural net-
work. To even a clever cognitive scientist, if he is unaware of
how the duck has been coded in the input and how this duck
affects output, inspection of the neural network weights in
search of an explanation is non-trivial at best, futile at worst.
Our scientist will likely sensibly pursue a dynamic systems
description of the network. Is this explanation incorrect?
The answer would seem to be no. I would further argue that
since the internal states of the network preserve whether or
not a duck has been seen and can serve as a “stand-in” for
the presence of a duck, the neural network physically has
a representation of the duck, independent of the observer’s
explanation. Likewise, one can explain the rhythmic tap-
ping of fingers as afor loop over the symbolsfingerUpand
fingerDown, but that explanation does not make rhythmic
finger tapping representational. In contrast to explanations,
we definerepresentationsas physically implemented struc-
tures that can create local effects that are effective by virtue
of their correspondence with non-local parts of the world

The Problem with Particles
It has been shown by a number of researchers in artificial in-
telligence that it is possible to evolve cellular automata that
are also decomposable into macro-level structures called
“particles” with localizable behavior (Crutchfield and Han-
son, 1993). It has been claimed that these particles are
amendable to a representationalist explanation since each
particle has its own higher-order behavior (Mitchell, 1998).
This “proves” representations can be evolved by artificial
life, and so acomputational dynamicscan bridge the repre-
sentationalist versus anti-representationalist debate. We ar-
gue that particles show that representations can be great ex-
planations of evolved higher-order structure, but that parti-
cles are not physical representations. Particles are just emer-
gent structures.

Particles show at least localization (the global behavior

of the CAs is localized to particles), so they can be sensibly
explained in representational terms (Bechtel, 1998). Yet par-
ticles in of themselves do not represent anything. Particles
are just “localized boundaries” between “simple to describe”
domains (Mitchell, 1998). The content of a particle is not
non-local, since the particle is said to represent the boundary
between one group of CAs and another, and this boundary is
precisely where the particle is to be found. The particle is a
description of the boundary, not a physical representation of
it, since the particleis the boundary. The particle do not have
a non-local“stand-in” relationship with the boundary. Par-
ticles are going in the right direction of representation since
they do have structure, but are not quite there, since at least
for some period of time their content needs to be non-local
for them to qualify as representations.

Physical Symbol Systems
Do physical representations exist? The answer, as given by
Newell and Simon in their Physical Symbol System Hypoth-
esis, is a resounding “yes.” A symbol is defined by its ref-
erential operation, which they calldesignation“though we
might have used any of several other terms, e.g., reference”
(Newell, 1980). They then define designation as when:

“An entity X designates an entityY relative to a processP,
if, whenP takesX as input, its behavior depends onY. There
are two keys to this definition: First, the concept is grounded
in the behavior of a process. Thus, the implications of des-
ignation will depend on the nature of this process. Second,
there is action at a distance . . . This is the symbolic aspect,
that havingX (the symbol) is tantamount to havingY (the
thing designated) for the purposes of processP” (Newell,
1980)

The “action at a distance” spookiness remains, as does the
important “standing-in” relationship of having content that
affects the behavior of the system. They then prove such
systems exist by noting that such systems are “realizable in
our physical universe” since classic digital computers exist.
In an example, a symbolic system consists of “amemory, a
set ofoperators, acontrol, aninput and anoutput” (Newell,
1980).

We do not need explanations of how computers use repre-
sentations because we humans designed them to deal with
representations, and we program them in terms of repre-
sentations. Computers are clearly effective, since they land
airplanes, fire missiles, monitor heart-rates, help us calcu-
late taxes, and so on: Their behavior can have very real re-
sults. However, Newell goes further to state that “humans
are physical systems” and that “a biological based architec-
ture could have evolved” to be a physical symbol system
(Newell, 1980).

Representational Failure
The development of representations was brought to the fore-
front in Chomsky’s victory over behaviorism, where he



hypothesized only something like “rules” and “representa-
tions” could account for language where behaviorism failed
(Chomsky, 1980). Chomsky delimited the study of linguistic
syntax from the conceptual system that lurked in the back-
ground. Work by Newell and Simon on matching human
protocols to computer output attempted to directly study the
conceptual system (Newell and Simon, 1976). In philos-
ophy, “the language of thought” or “mentalese” was given
as the rules and representations of the conceptual system
(Fodor, 1975). Yet ambitious knowledge representation lan-
guages like KRL, which combined explicit behavioral pro-
cedures attached to representations, ultimately failed (Bo-
brow and Winograd, 1977). There was widespread dis-
agreement on what the components of the typical knowl-
edge representation language actually mean (Woods, 1975).
The knowledge representation languages also failed todo
anythinglike inference successfully with the knowledge in
tractable amounts of time. Lastly, there was the question of
whether there was any empirical evidence that could deter-
mine the content of a representation given by the knowledge
representation system. While it appeared that KRL could
represent many things to a human observer, it was unclear
if the matter of representation was anything more than opin-
ion.

Yet if one removed the representational “labels” from
the structure of the KRL semantic network, one was left
with something resembling non-symbolic processing, giv-
ing rise to neural networks (Rumelhart and J.McClelland,
1986). This “connectionist” framework proved to success-
ful in simulating many cognitive and motor functions, while
knowledge representation languages focused on inference
and divorced from cognitivism (Levensque and Brachman,
1987). Without representationalism, artificial intelligence
fractured.

Now the anti-representationalist trend seems to not be
making progress against “representation-hungry” problems
in planning and language (Clark, 1997). Representations are
now found to be much more domain-specific than previously
thought, curiously reminiscent of the “micro-worlds” of AI
(Winograd, 1972) and are argued to provide a crucial evolu-
tionary advantage, since it allows creatures to simulate po-
tentially dangerous situations (Grush, 2003). If representa-
tions are important again, how did we humans evolve such
structures from the physical world?

Evolving Representations
In one ambitious work, Rocha and Hordijk attempt to show
how artificial life can support both dynamic processes and
representations byevolving representationsfrom cellular au-
tomata (Rocha and Hordijk, 2005). They begin by observ-
ing a problem we calldynamical determinism: ”The attrac-
tor landscape of a given dynamical system, while providing
several possible outcomes for the system’s dynamics, does
not truly yield alternatives until there is control of the initial

conditions” (Rocha and Hordijk, 2005). They go on to state
that this dynamic determinism can only be can be overcome
through the use ofmemoryto store and retrieve those initial
conditions. This memory must bedynamically incoherent,
which means it is not changed by dynamic process it initi-
ates and so must be built on aninert physical structure.

The words “inert” and “incoherent” are misleading to tra-
ditional representationalists, as Rocha and Hordijk would
note. First, memory is onlyrelatively inertin lieu of a partic-
ular representation that creates one particular dynamic pro-
cess. Since the representation sets the initial conditions, it
causes the action, and so can be thought of as providing the
“coherence” for the dynamic processes whose conditions it
sets. This is similar to KRL’s representations being attached
to processes (Bobrow and Winograd, 1977). As the results
of one dynamic process can set the initial conditions of an-
other ad infinitum, the “inert” structure canchangedue to
the results of process it began. Also, the maintenance of
the dynamically incoherent memoryrequires considerable
work, as exemplified in how voltages must be carefully regu-
lated and maintained to maintain computer memory. In other
words, the memory should bedigital to “make sense as a
practical means to cope with the vagaries and vicissitudes,
the noise and drift, of earthy existence” (Haugeland, 1981).

In characterizing a representation, Rocha and Hordijk de-
velop the three following requirements (Rocha and Hordijk,
2005):

1. Dynamically incoherent memory: Material representa-
tions demand inert physical structures which can effec-
tively be seen as dynamically incoherent regarding the
overall machinery in which they are utilized as represen-
tations. The role of these physical structures is not defined
by their dynamic characteristics but rather by their infor-
mational value.

2. Construction Code. There needs to exist machinery to
construct arrangements of building blocks (which subse-
quently self-organize to produce some dynamic behavior)
from the representations of Requirement 1 - an arbitrary
construction code.

3. Self-organization and selection. The encoded building
blocks, after construction via the code of Requirement 2,
self-organize at different levels.

Although it could be claimed that this is mixing phe-
nomenological levels, there is an underlying analogy to Tur-
ing machines. The construction code seems to be the equiv-
alent of the Turing machines ability to produce behavior
from the output of a symbol. The dynamically incoherent
memory qualifies as the tape of the Turing machine, and the
self-organization and selection provide whatever behavior
the symbol it outputs entails. What is left out is the abil-
ity of the representation to be input into the system, thein-



put codethat serves as theconstruction code for representa-
tions as opposed to dynamic behavior. This would be equiv-
alent to a Turing machine reading an input symbol from the
tape. While an output procedure without an input procedure
is odd, it seems that it is assumed that evolution will provide
the input. Given that DNA seems to be the type of represen-
tation that has elicited the most interest from artificial life,
given its roots in theoretical biology, this should not be sur-
prising. For with DNA there is not a distinct input process
besides evolution.

Rocha and Hordijk surprisingly reject Haugeland’s cen-
tral tenet of representation: the “standing-in” relationship:
“Semantics is about construction of dynamics and behavior.
This construction is not about correspondence between in-
ternal and external elements, but about a material process
of controlling the behavior of embodied agents in an envi-
ronment” (Rocha and Hordijk, 2005). This reflects certain
strands of neo-Fregean philosophy of language that seek to
define content in terms of agency and rational explanation of
behavior. By this clever move that disposes of the “standing-
in” relationship, the physical spookiness of representations
is banished, since the content of the representation is the be-
havior the representation engenders. The behavior only has
to be effective, but it does not have to be effective by virtue
of a correspondence with some non-local part of the world.

This seriously weakens the case for these to be represen-
tations, since the only requirement for a representation is
that it cause behavior and can be stored in a memory not
effected by the behavior itself. So in their view representa-
tion may have no content, so that a representation may be
“meaningless to the overall system that uses them” (Rocha
and Hordijk, 2005). The concept of representations without
content seems to sap representations of their intuitive appeal
and rational power in explaining behavior.

Something seems wrong with rejecting the “standing-in”
relationship. First, let us use a classic example of represen-
tation: You are out in town and thinking of your cat. You re-
member that your cat is hungry so you buy her a tin of food.
The cat you invoke from memory while shopping is a rep-
resentation that is classically consideredimplemented on
neurons. However, you do not think of “neurons” or “noth-
ing” while shopping for your cat; you think of “your cat”
and neurons are firing. Although this is an appeal to intro-
spection, there is something deeper going on here. There
is an effective relationship between some configuration of
some neurons in memory thatconstructsa “mentalese cat”
and yourbehavior of buying the cat food. This all works
because your “mentalese cat”representsyour cat at home
so your behaviorcorrespondsto your cat.

One could set a re-occurring alarm on your computer that
causes a noise reminding you to feed your cat. A represen-
tation of the cat inside the computer causes the noise to be
emitted. This representation isimplemented in the electri-
cal charges in the memory of the computer. When invoked,

memory canconstruct a “computerese cat.” This represen-
tation in turn causes abehavior, the noise. This behavior is
hopefully effective in virtue of the “computerese cat” having
acorrespondencewith the hunger of a very real cat.

Abstracting from our examples, there is arepresenta-
tional cycle. Symbols that are physically implemented in
memoryconstruct a dynamic process that causesbehav-
ior . This behavior is effective in virtue ofcorrespondingto
some non-local part of the world.

Rocha and Hordijk base their theory of material repre-
sentation on DNA, so the representational cycle above may
not hold. DNA causes the theconstruction of protein se-
quences, that then cause thebehavior of the phenotype in
combination with environmental factors. Does the DNA
representthe protein? Does the proteinrepresentthe behav-
ior? Where’s the content? It is simply unclear. The relation-
ship almost seems too close to be non-local, as every step
is effective, and nowhere is a correspondence to be found.
While DNA, or “genic” representations, may be some sort
of representations, they are far removed from the clear cases
of representation used by Newell and others that serve as the
assumption of so much work in cognitive science.

Their experiments with cellular automata are exciting yet
inconclusive as regards representations. There are some cel-
lular automata, given an initial configuration and update
rules, thatconstruct particles and these particlesbehave
like certain logical rules. Can an abstract logical rule be-
come local, then disengage, and become non-local? The
matter is confusing and depends on one’s belief in Platon-
ism. It seems like while logical rules may the right sort of
thing to prove evolution of non-trivialcomputation, they are
the wrong sort of thing to prove evolution ofrepresentation.
Rocha and Hordijk notes when observing the inability of the
cellular automata to create dynamically incoherent memory,
“our stumbling block was in obtaining the necessary sep-
aration between representations and content” (Rocha and
Hordijk, 2005). So perhaps the “standing-in” relationship
was too hastily rejected?

The Correspondence Condition
To resolve this problem we propose a new requirement to be
added to those given earlier, which we call thecorrespon-
dence condition. While this is in no way a new require-
ment, it is a rephrasing of the “standing-in” relationship in
terms that are more compatible to artificial life. This condi-
tion has been stated earlier as having effective behavior due
to some correspondence with a non-local part of the world.
To rephrase it in terms of artificial life, thecorrespondence
condition is the dynamic behavior caused by operation of
the construction code that corresponds to a non-local pro-
cess.

By non-local we assert that the dynamic behavior caused
by the representation in memory must be dynamically inco-
herent in terms of the current state of the non-local dynamic



process. In other words, when I imagine my cat getting run
over by a car, my actual cat does not get run over by a car.

Second, bycorrespondencewe mean the dynamic be-
havior caused by the construction code should have some
covariance with the state of the non-local dynamic process,
likely the state of the non-local dynamic process at the time
of its storageinto memory. I may be wrong or right about
my cat being hungry, but I get the food for the cat because
of my actual cat, not because of any other reason.

Finally, it must avoidrepresentational leakage, in which
everything can potentially be considered representational.
There must be a separate input code that inputs, via some
set of possibly evolved relevance criteria, those things to be
stored in memory.

The Representational Cycle
At this stage representationalism is still a “hard” problem
because the correspondence is physically non-local. How-
ever, I believe that the process can be naturalized, since the
process is only non-local at the time of the deployment of
the construction code. If the process is viewed from a larger
time scale, everything can be explained in terms of local
cause and effect. Thisrepresentational cycleis in a large
part a rephrasing of Brian Smith’s concept of registration
(Smith, 1995).

1. Presentation: ProcessA is in effective local contact with
processB.

2. Input : The processA possesses dynamically incoherent
memoryMa. An input procedure ofA putsMa in corre-
spondence with processB. This is entirely non-spooky
sinceA andB are in effective local contact.

3. Separation: ProcessesB andA change in such a way that
the processes are non-local.

4. Output : Due to some local effect in processA, it acti-
vates a construction code that usesMa to initiate the local
dynamic behavior.

Does the representational cycle presented here pose a
“hard” problem or an easy problem for artificial life? Does
it allow any more progress on the evolution of representa-
tions that, unlike those genic representations based on DNA,
are recognized across disciplinary boundaries as representa-
tional? While it could be argued that introducing the corre-
spondence condition a priori defeats the purpose of Rocha
and Hordijk to evolve exactly such as requirement, this
would be insincere since unless the requirements of an simu-
lation are known, then it is unclear how to judge its success.
Also, the correspondence condition was explicitly jettisoned
by Rocha and Hordijk from their experiment. Furthermore,
evidence from their experiment and our arguments show a

radical re-interpretation of representations without the cor-
respondence condition to be unfaithful to the understand-
ing of representations used in much of cognitive science. If
Rocha and Hordijk are satisfied with evolving mere DNA-
like representations, then these genic representations should
be acknowledged as far removed from the symbolic systems
of Newell. Lastly, if the representational cycle or something
like it is already well-known, then it is time for artificial life
to tackle the challenge of evolving it.

There is nothing physically spooky in the representational
cycle, once the cycle is viewed in the proper time-frame, so
it does not challenge the philosophical framework of natural-
izing the mind under physics. It merely shows how the refer-
ence relationship between a representation and its content is
time-like separated, and so not a case of action at a distance
between space-like separated objects. This cycle may chal-
lenge the methodological frameworks employed by artificial
life. Like Rocha and Hordijk, the cycle explicitly rejects
the fact that all processes aredynamicall the time. These
processes are both dynamic and stable to a mixed extent -
in other words, more likeobjects(Smith, 1995). The pro-
posal is far from perfect, for the notions of “effective physi-
cal contact” and “locality” need to be explicated further and
simulated.

This cycle requires the evolution not just of memory and
a construction code, but of “non-locality” and an input code.
Given a limited amount of memory, only a finite amount
of information can be represented, so the input mechanism
must rely on some notion ofrelevancethat also must be
evolved. At the current time cellular automata may be too
simple of a model to suffice. After all, the creation of dy-
namically incoherent memory is difficult by itself (Rocha
and Hordijk, 2005). Furthermore, the construction code and
input code correspond to the input and output of a Turing
machine upon a tape. The existence of input and output
procedures wereassumedby Turing when he defined Tur-
ing machines. Turing himself never successfully evolved
these procedures from simpler components. No one ever
said evolving representations was going to be easy.
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