
Automatic Evaluation and Composition of NLP Pipelines with Web Services

Harry Halpin∗

∗Institute for Communicating and Collaborative Systems
University of Edinburgh & 2 Buccleuch Place EH8 9LW Edinburgh, UK

H.Halpin@ed.ac.uk

Abstract
We describe the innovative use of describing an existing natural language “pipeline” using the Semantic Web, and focus on how the
performance and results of the components may be described. Earlier work has shown how NLP Web Services can be automatically
composed via Semantic Web Service composition, and once the results of NLP components can be stored directly, they can also be used
to direct the composition, leading to advances in the sharing and evaluation of NLP resources.

1. Introduction
Taking advantage of the convergence of Web and natural
language technologies, it is now possible to automatically
distribute and evaluate multi-component natural language
applications using a framework based on Web Services
and the Semantic Web. This approach addresses a num-
ber of issues with the distribution of natural language pro-
cessing applications and the difficulty of evaluating them,
even when well-known evaluation metrics and corpora ex-
ist (Leidner, 2003). Bundling natural language processing
components as Web Services allows them to be accessible
in multiple locations (Grover et al., 2004). Also, an extensi-
ble framework based on using Semantic Web ontologies to
describe the components makes the automated composition
of natural language applications possible (Klein and Potter,
2004). One area that has not yet been explored in the use
of Semantic Web technologies for recording the automatic
evaluation of NLP components, and a global overview and
a brief proposal is presented here.
Our driving example is that of an existing pipeline of natu-
ral language components used to analyze students plots in
the story re-writing task (Halpin et al., 2004). This pipeline
has been shown successfully in the past to analyze and help
students writing, but due to the lack of access to powerful
enough computers at schools in rural Scotland, only access
to the program via the Web is currently feasible. This appli-
cation is primarily a multi-component pipeline that uses au-
tomatically extracted predicate-argument structures to eval-
uate the text. Note there are a wide variety of machine-
learners, chunkers, and taggers that can be used in this ap-
plication, and all of these and their interactions effect our
final results. Also, like in many applications, these com-
ponents fulfill functional roles that can be fulfilled by any
number of components, and everything else being equal,
the selection criteria for each component is usually its per-
formance on various corpora of interest. However, the
performance of each component also depends on the per-
formance of the components preceding it in the pipeline.
Therefore, final evaluation needs to take into account not
only the final results of the last component, but the results
of preceding components in the application.

2. Using the Semantic Web
We present a framework that enables NLP components as
Web Services, and use the Semantic Web to describe cor-

pora, results and experiments. The central point of Web
Services is that each program can be given a URI (Uniform
Resource Identifier). This URI allows access to the pro-
gram from over the Web using SOAP or REST architecture
(Narayanan and McIlrath, 2002). In comparison, if Web
Services gives URIs to programs such as taggers, then the
Semantic Web gives URIs to machine-readable data, such
as corpora. The Semantic Web also allows one to construct
statements about these URIs, where each atom in the state-
ment is also given a URI. One can then describe NLP exper-
iments by “linking” together corpora, applications, and ex-
perimental results via the Semantic Web. When the URI for
the vocabulary is resolved, it can provide a human-readable
definition of the vocabulary. Unlike standards that are es-
sentially “closed” to revision and that may not be capable
of expressing the particularities of a given experiment, the
Semantic Web is easily extensible in a decentralized man-
ner: to create a new RDF vocabulary one just mints a new
URI and hopefully documents it.
Semantic Web “links” can be given as RDF statements (Re-
source Description Framework), the foundational Seman-
tic Web standard (Klyne and Carroll, 2004). RDF state-
ments follow the “triple” format and are composed in this
manner using N3 syntax:1 ns:subject ns:predicate

ns:object. The ns signals a namespace, such that the lo-
cal name resolves to the URI given by the namespace by
the concatenation of the local name to the namespace. The
Semantic Web and Web Services share the same scope: the
space of URIs. Also note that a period ends a RDF state-
ment, and a semicolon signals that the subject of a predicate
is to repeated in the next statement.
Semantic Web vocabularies have an important strength
and limitation: everything must be described as a triple.
For example, the namespace semStories may denote the
“Semantic Stories” corpus of children’s stories collected
in Scotland. A collection of components that have been
enabled as Semantic Web Services are given using the
shallowSem name, emphasizing the facts that these
components have been used to extract “shallow semantics”
from text. Therefore, a basic experiment that runs a single
NLP component on a single corpus could be construed in
triples as C1 A1 R1 where C1 is the URI of the corpus, A1

1For a complete description of N3 syntax see
http://www.w3.org/2000/10/swap/Primer.html



is the URI of the NLP application, and R1 is the URI of
the results. This could be exemplified as:

semStories:corpus

shallowSem:components/maxentTagger

semStories:exps/1.

If the experiment is needs to be repeated using a different
tagger such as the CandC tagger (Clark and Curran, 2004),
then the experiment can be phrased as C1 A2 R2, which
can be exemplified by:

semStory:corpus

shallowSem:components/candcTagger

semStories:exps/2.

If one wishes to state more about an experiment, such
as explaining what component tokenized the corpus, one
could create an additional statement:

semStories:corpus

wsNLP:component

shallowSem:components/lxtransduce/token2XML.

If the statements were merged it would be unclear if
token2XML belonged to experiment one (exps/2),
experiment two (exps/2), or both.
This problem is the result of a lack of provenance informa-
tion. We would like to to group RDF statements (graphs) by
experiment. We could use RDF reification, but that would
make it nearly impossible to do reasoning, since the use of
reification is analogous to jumping to higher-order logic.
Reification also is not implemented in current reasoners.
A more straightforward approach is to use the widely
implemented named graph approach, in which a “triple” is
given some context by adding an additional URI (the name)
to the entire graph (Carroll et al., 2005). Each experiment
could be used as the name URI of a named graph, therefore
avoiding the “semantic muddle” of the earlier example.
So our example could be disambiguated to state the we
only know that the token2XML program was used in the
second experiment simply by using semStories:exps/2

as the name and qualifying our statement as a named graph.

semStories:exps/2 {

semStories:corpus

wsNLP:component

shallowSem:components/lxtransduce/token2XML.

}

To discover more information about the experiment
one could then retrieve more RDF statements about the
experiment (such as the date the experiment took place, the
experimenter, and so on) by accessing the URI. We can still
sensibly merge URIs in the named graph with statements
outside the named graph.

3. The Case for Web Services in NLP
Many natural language applications are composed of a
number of differing components, ranging from those in-

volved in text-processing such as tokenizers, chunkers,
and part-of-speech taggers to those involved with machine-
learning. These components are often assembled using the
“pipeline” model, in which the output of one component is
the input of another, often with the use of “shims” to con-
vert from one format to another when moving the data be-
tween components. In general these applications are “brit-
tle” as regards their implementation since it usually requires
considerable effort to make the components work on differ-
ent platforms, as often the source code and even documen-
tation for the components is unavailable (Leidner, 2003).
This is problematic for NLP. Unlike other sciences, NLP
experiments usually cannot be replicated if the software and
corpora are not available. The experimental design given
in many papers cannot tell researchers exactly what com-
ponents or parameters are responsible for the performance
gains due to space constraints. Lastly, the level of domain
independence of a particular NLP application can not be
evaluated if the application can not be tested on a wide
range of different corpora. These factors lead to a situation
where research can consist of training and testing machine-
learning techniques, dependent on a number of components
whose performance is not assessed, over some corpus that
is not widely available, with results that can not be repro-
duced or tested for domain independence. More could be
done to allow researchers in NLP to use each others appli-
cations, share corpora, and share results.

The problem of distribution and access of NLP components
can be solved by Web Services, since it would allow any
user to use a SOAP client (or just http, in the case of a
REST Web Service) to invoke the component by its URI
(Grover et al., 2004). This offers the user more freedom
than being constrained by one locally installed framework.
The owner of the Web Service keeps the installation of the
NLP component on their local Web Service-enabled server.
Although free access to the source code is desirable, this
aspect of Web Services can resolve issues of copyright by
allowing the researcher not to release the source code and
still let the research community access the NLP component
in question. Since the vast majority of components cannot
be assumed Web Service-enabled or even use XML in their
input and output, there is considerable effort involved in
packaging components as Web Services.

Unlike many other frameworks, a Web Services and Se-
mantic Web-based framework provides not only a way of
describing NLP applications and experiments, but a method
of accessing these applications and running these experi-
ments. To repeat, if a URI denotes a NLP Web Service, one
can invoke the service to actually do the processing. If a
URI denotes a corpus or experimental results, we can ei-
ther directly provide the results or corpus from the URI, or
in the case of corpus or results with a restricted licenses,
provide a redirect to a web page with the conditions of the
license. Since the vast majority of components cannot be
assumed to be Web Service-enabled or even to use XML in
their input and output, there is considerable cost involved
in packaging components as Web Services. Web Services
that are described using the Semantic Web are Semantic
Web Services, and there is much work on using the Seman-
tic Web to automatically compose Semantic Web Services



(Narayanan and McIlrath, 2002).
In order for the tools to interoperate together and have their
input and output validated, particular NLP Web Services
also must operate in a common XML Schema. While a
number of standards exists to provide global standards for
various linguistic tasks, we find it more likely that compo-
nents will each have their own component-specific schemas
(Ide and Romary, 2004). If the component schemas are
modularized, XML Schema inclusion can be used to con-
struct federated NLP application-specific schemas from the
schemas of their respective NLP components. In the case
that the schemas overlap or conflict, XSL transformations
between output formats and schemas can be provided.

4. Automatic Pipeline Composition
There is rarely only one component in an NLP applica-
tion. When more than one component is needed and the
steps need to be arranged in a simple linear pipeline (or
“workflow”) of Web Services and if the services (NLP
components) needed can be described using the Semantic
Web, the pipeline can be composed and executed automat-
ically via a Semantic Web Service composition language
such as OWL-S (Klein and Potter, 2004). Although it re-
quires considerable effort to describe Web Service NLP ap-
plications using OWL-S (or an alternative methodology),
once this work has been done once, it would enable oth-
ers to use these components in their own experiments with
ease. Since the description can be at a level of abstrac-
tion above a particular instance of an application, Seman-
tic Web Service composition would allow someone to run
applications based on their abstract specification, such as
“Coreference Resolution” as opposed to a concrete instanti-
ation of a coreference resolver such as CogNIAC (Baldwin,
1997). This would allow a reasoner to compose an appli-
cation based on an abstract specification using backward
chaining reasoning using a database of components.
To extend our first example, the pipeline may be composed
of many different processes operating over a corpus. Us-
ing Semantic Web Service composition, if we desire to cre-
ate predicate-argument structures based on verbs and nouns
from chunks, we can use backward-chaining and reason
that first the corpus must be tokenized, then tagged, then
chunked. If each of these have been described as a Se-
mantic Web Service, then we can invoke them in order
to “compose” our NLP application. Following this exam-
ple, we modify and extend the ontology given by Klein
and Potter to keep track of “shims,” schemas, and other
useful information in Figure 1 (Klein and Potter, 2004).
We describe the RDF in N3 again for readability and skip
namespace definitions assuming a default namespace of
wsNLP. Note the wsNLP RDF vocabulary is interoperable
with Dublin Core, and many components are sub-classes of
Dublin Core, such as wsNLP:InputFormat being a sub-
class of dc:format.

5. Describing Corpora using the Semantic
Web

We can describe corpora using the Semantic Web to track
the transformations of corpora and what components were
responsible for each transformation. We can also build off

shallowSem:components/SCOLtuples
dc:title "SCOL Tuples";
:location shallowSem:components/SCOLtuples;
:inputType types/chunkedDocument;
:inputFormat "text/xml";
:inputSchema shallowSem:schemas/chunkSchema/chunkSchema.xsd;
:componentType shallowSem:NLPropositionExtractor;
:outputFormat "rdf/xml";
:outputSchema shallowSem:schemas/rdfProp/rdfProp.rdfs;
:outputType types/Proposition;
dc:creator "Steve Abney";
dc:description abney:scol1k.tgz;
:implementationLocation abney:index.html;
:implementation/sourceLanguage "C";
:implementation/location Abney:scol1k.tgz;
:webServiceLocation shallowSem:components/tuples;
:XMLSchema shallowSem:components/tuples/schema;
:inputShim shallowSem:components/SCOLtupes/XMLShimInput;
:outputShim shallowSem:components/SCOLtupes/XMLShimOutput.
shallowSem:components/SCOLtupes/XMLShimInput

:inputType :types/chunkedDocument;
:inputFormat "text/xml";
:inputSchema shallowSem:schemas/chunkSchema/chunkSchema.xsd;
:location shallowSem:components/tuples/shim/inputXML;
:outputType :types/chunkedDocument;
:outputFormat "text";
:outputSchema shallowSem:extSchema/breakdelimited.

shallowSem:components/SCOLtupes/XMLShimOutput
:inputType :types/chunkedDocument;
:inputFormat "text";
:inputSchema shallowSem:textSchema/breaktabdelimited;
:location shallowSem:components/tuples/shim/outputXML;
:outputType :types/chunkedDocument;
:outputFormat "rdf/xml";
:outputSchema shallowSem:schemas/SCOLtuples/scolchunk.rdfs.

Figure 1: NLP Component Example

semStories:corpus
:version 1.1;
:corpusLocation semStories:corpus;
:dateCreated 2002.06.11T1:37:07;
:documentation semStories:index.html;
:documentGenre :corpus/types/childrenStories;
:processStep semStories:corpus#1;
:processStep semStories:corpus#2;
:processStep semStories:corpus#3;
:processStep semStories:corpus#4.
semStories:corpus#1

:dateCreated 2003.07.13T4:12:55;
:documentFormat "text";
:corpusLocation semStories:corpus/text.

semStories:corpus#2
:dateProcessed 2005.09.22T15:39:22;
:component shallowSem:components/lxtransduce/token2XML;
:componentType :types/components/Tokenizer;
:corpusLocation semStories:corpus/tokenized.

semStories:corpus#3
:dateProcessed 2005.09.22T18:40:30;
:component shallowSem:components/candcTagger;
:componentType :types/components/POStagged;
:corpusLocation semStories:corpus/tagged.

semStories:corpus#4
:dateProcessed 2005.09.22T18:42:09;
:component shallowSem:components/glenCova;
:componentType :types/components/PronounResolver.

Figure 2: NLP Corpus Example

of RDF vocabularies such as an Dublin Core and possible
mappings of the IMDI standard to RDF.2 When processing
a corpus, if a copy of the corpus or the stand-off annotation
already exists in a state needed by the pipeline, instead of
re-processing the corpus, one can just use the corpus in the
processed state in a pipeline. This prevents corpus process-
ing and component deployment from being done unneces-
sarily.
We can also reason about what types of processing needs to
be done to a corpus in order for it to be used in a pipeline.
For example, we may want to tag a particular corpus, but
we can not tag a corpus unless it has been tokenized, and so
if the corpus does not exist in a tokenized state a tokenizing
component can be deployed before the tagger, even if this
step has been not made explicit by the invoker. The adding
of part-of-speech tags and chunks to our corpus to prepare
it for predicate-argument extraction is described in Figure
2.

2See http://www.mpi.nl/imdi for information.



semStories:exps/3
dc:title "Plot Rating Classification Experiment";
:dateRanBegin 2005.09.23T03:01:21;
:dateRanEnd 2005.09.23T04:25:55;
:experimenter "Harry Halpin";
:experimenterContact "H.Halpin@ed.ac.uk";
:experimentType :experiments/classification;
:corpus semStories:corpus;
:application semStories:application/pipeline;
:results semStories:results#3.
semStories:results

:correctClassified 55.625;
:incorrectClassified 44.375.

semStories:exps/3 {
semStories:application/pipeline

:processStep semStories:corpus#1;
:processStep semStories:corpus#2;
:processStep semStories:corpus#3;
:processStep semStories:corpus#4;
:processStep semStories:corpus#5;
:processStep semStories:corpus#6;
:processStep semStories:corpus#7;
:processStep semStories:corpus#8.

semStories:corpus#1
:corpusLocation semStories:corpus/text.

semStories:corpus#2
:component shallowSem:components/lxtransduce/token2XML;
:corpusLocation semStories:corpus/tokenized.

semStories:corpus#3
:component shallowSem:components/candcTagger;
:parameter shallowSem:components/candcTagger/model/MUC;
:corpusLocation semStories:corpus/tagged.

semStories:corpus#4
:component shallowSem:components/glenCova.

semStories:corpus#5
:component shallowSem:components/SCOLchunk.

semStories:corpus#6
:component shallowSem:components/SCOLtuples;
:corpusLocation semStories:corpus/tuples.

semStories:corpus#7
:component shallowSem:components/EventComparison.

semStories:corpus#8
:component shallowSem:components/weka/NaiveBayes;
:parameter shallowSem:components/weka/NaiveBayes/useKernel;
:results semStories:results#3.

}

Figure 3: NLP Results Example

6. Evaluation-Guided Composition

NLP applications are often difficult to fairly evaluate since
the unavailability of applications make it hard to repeat the
experiment using different corpora and parameters (Leid-
ner, 2003). Due to space constraints, usually only the best
results are presented. It would be useful to be able to save
all results in order to prevent unnecessary duplications of
experiments. Most importantly, since the results of a NLP
application are dependent on particular components and pa-
rameters, it is usually through hill-climbing these parame-
ters are optimized, and even then due to the problem of
local minima or maxima it is difficult to determine what
the actual optimal results are. Therefore, to explore the full
space of NLP pipelines and parameters, the results of the
NLP experiment themselves should be described using Se-
mantic Web technologies. We present RDF for describing
the results of NLP applications with an example shown in
Figure 3.
This information can then be used to optimize the compo-
sition of NLP web-based applications by considering the
composition to be goal-directed by using forward chain-
ing reasoning with Semantic Web Services. In our exam-
ple, we could aim to minimize the number of instances
incorrectly classified, as given by the object of the pred-
icate incorrectClassified in the story classification
pipeline. In this manner the search-space of possible com-
ponents can be automatically searched by giving the evalu-
ation metric to be minimized (or maximized) as the goal of
the composition. As more and more components, parame-
ters, and corpora in various states of processing are added,
the space over which the reasoning must work grows, but
so does the likelihood of gaining optimal results.

7. Acknowledgements
Many of these ideas have been worked on in conjunction
with Ewan Klein and Henry S. Thompson, often using as
a test-bed of components the components of the LT-XML
and LX tools developed by Claire Grover and Richard To-
bin. The story re-writing experiment was developed with
Johanna Moore (Halpin et al., 2004).

8. References
Breck Baldwin. 1997. CogNIAC : A High Precision Pro-

noun Resolution Engine.
Jeremy Carroll, Christian Bizer, Pat Hayes, and Patrick

Stickler. 2005. Named graphs. Journal of Web Seman-
tics, 3(4).

Stephen Clark and James Curran. 2004. Parsing the WSJ
using CCG and log-linear models. In Proceedings of the
42nd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2004). Barcelona, Spain.

Claire Grover, Harry Halpin, Ewan Klein, Jochen Leidner,
Sebastian Riedel, Sally Scrutchin, and Richard Tobin.
2004. A framework for text mining service. In Proceed-
ings of the Third UK e-Science Programme All Hands
Meeting. Nottingham, UK.

Harry Halpin, Johanna Moore, and Judy Robertson. 2004.
Automatic analysis of plot for story rewriting. In Pro-
ceedings of Empirical Methods in Natural Language
Processing. Barcelona, Spain.

Nancy Ide and Laurent Romary. 2004. International stan-
dard for a linguistic annotation framework. Journal of
Natural Language Engineering, 10:211–225.

Ewan Klein and Stephen Potter. 2004. An ontology for nlp
services. In Proceedings of LREC Workshop on a Reg-
istry of Linguistic Data Categories within an Integrated
Language Resource Repository Area.

Graham Klyne and Jeremy Carroll. 2004. Resource De-
scription Framework (RDF): Concepts and Abstract Syn-
tax, W3C Recomendation. http://www.w3.org/TR/rdf-
concepts/.

Jochen Leidner. 2003. Current issues in software engi-
neering for natural language processing. In Proceedings
of HLT-NAACL Workshopon Software Engineering and
Architecture of Language Technology Systems. Alberta,
Canada.

Srini Narayanan and Sheila McIlrath. 2002. Simulation,
verification and automated composition of web services.
In Proceedings of the World Wide Web Conference, Hon-
olulu, USA.


