
The Ties that Bind

XML, the Semantic Web, and Web Services

Harry Halpin

School of Informatics
Institution for Communicating and Collaborative Systems

University of Edinburgh
2 Buccleuch Place, EH8 9LW UK

h.halpin@ed.ac.uk

Abstract. The future success of service-oriented computing relies on a
number of crucial connections being made between three distinct Web
development initiatives: XML, the Semantic Web, and Web Services.
However, it is unclear how they relate to each other. A model that views
XML as a serialisation format for data, with a combination of XML
Schema and the Semantic Web for typing, and Web Services as functions,
provides a coherent vision for the future of the Web. If co-ordinated, these
three ties allow the Web to transform from a universal information space
to a universal computation space.

1 Introduction: Three Magic Pieces

Service-oriented computing is in need of clarification on how XML, XML
Schemas, the Semantic Web, and Web Services fit together. At first
glance, these developments, while often relying on each other, do not
currently present a unified vision of how the Web should develop. The
Web was primarily the result of a unified vision: a universal informa-
tion space[1]. Yet these new initiatives seem to be competitors: XML vs.
RDF for the transfer of data and Web Services vs. the Semantic Web
for sharing data. However, these initiatives are upon closer inspection
complementary and together they provide the three magic pieces that
can make service-oriented computing possible.

2 XML as Serialisation Syntax

In the words of Don Box, “XML has replaced Java, Design Patterns, and
Object Technology as the industry’s solution to world hunger,” yet Chris
Maden took the stance that “XML is like violence. If it doesn’t solve your
problem, you’re not using enough of it.” There is confusion as regards to
what XML actually is and what it does. In essence, XML is a mixture of
ordered constraints and unordered constraints, allowing structured data
to be mixed with unstructured data and nested to an arbitrarily depth[2].
It is a syntax for a model, semi-structured data, noted by the database



community before the XML syntax was developed[3]. Since such tree-
structures can be used as a data format for almost anything, XML can be
considered “the ASCII of the 21st century”[4]. XML is just a serialisation
format for storing and reading arbitrarily complex semi-structured data.
Since it allows custom domain-specific vocabularies to be made, it makes
sense to use XML as an exchange and integration language for services,
moving from application-specific syntax to a self-describing syntax more
appropriate for exchange.

3 The Intentional Equivalence Problem

Just because data shares a common syntax does not mean merging it
will be trivial: data integration is the hard problem of the Web. To
show that two pieces of data are equivalent, you have to have a common
semantics for them, and XML only provides a syntax. As argued for by
B.C. Smith, we will distinguish between informal world semantics and
formal process semantics[5]. World semantics rely on the philosophically
mysterious phenomena of reference: given a piece of data, what is it
about? For example, a XML document about my Amazon.com purchase
may contain my name and maybe even address. One would assume it
is about myself, not the string “Harry Halpin.” However, if I move to
a new address, or if someone has the same name as me, merging data
while preserving the world semantics becomes difficult. Finding out if
two pieces of data are about or refer to the same thing is a task that
computers are notoriously incapable of doing automatically.

For example, imagine if we got an order in XML to our database from
a “Robert Smith” living at “8 Oak Avenue,” and in our database of past
customers we have a “Robert Smith” living at “123 Maple Street” and
an Alice Smith living at “8 Oak Avenue.” Should we assume both Robert
Smiths are the same person? While there is scant evidence for this in the
database, in the world outside the database he recently married Alice
Smith and they both moved to 8 Oak Avenue. Only Robert Smith has
not ordered from our store since he moved, while Alice has. However,
for us to identify these two orders as originated from the same person,
we need a complex chain of inference that is currently not possible using
only XML.

In contrast to world semantics, process semantics maps data to a precise
mathematical model, as done in operational semantics and denotational
semantics. XML has an abstract data model: the XML Infoset[6]. The
Infoset is not about syntactic open and closed brackets, but it is about
the abstract data model they define, which could just as easily be imple-
mented on top of a binary format. The Infoset defines characteristics of
XML such as elements, attributes, namespaces, and normalised values.
The Infoset maps to the operational semantics as given by the XQuery
Data Model[7]. When using XML, we are really transforming and ex-
changing XML Infosets.



4 Schemas for Syntax-Driven Typing

The XML Infoset does not provide any mechanism for typing, the most
common of needs for data transfer in service-oriented computing. An en-
tire XML Infoset, a simple component such as an element or attribute,
and a complex component built from simple components can all have
a type. All of these levels are dealt with by W3C XML Schema, with
the “Part 1: Structures” dealing with a way to describe whole or com-
plex parts of Infosets[8], and “Part 2: Data Types” dealing with the
types of element and attribute values[9]. “Part 1: Structures” defines
constraints on the syntactic structure of an XML document, and so can
type a whole XML Infoset. “Part 2: Datatypes” defines the set of lexi-
cal representations of attribute and element content that are valid for a
given type. These bindings are both extensible and based on regular ex-
pression types such as sequence, choice, repetition, and option. Elegant
alternative well-understood formal models have been proposed for regu-
lar expression typing over XML such as XDuce[10]. A schema-validated
XML document results in the Post-Schema Validation Infoset, which
is at its essence a typed Infoset[11]. Unlike many tree grammar-based
schemas, XML Schema provides deterministic data typing using a finite-
state automaton[12]. In combination with a static type inference system
such as the one used in XQuery, schemas can provide a full type system
for XML.

5 The Semantic Web as Ontological Types

There is a crucial limitation purely schema-based typing: it only currently
provides types such as “strings” and “integers,” but it does not operate
on the level of knowledge, providing types such as “Robert Smith”, “ad-
dress”, and “city.” The former is an encoding, such that “Robert Smith”
is a string and “52” is an integer. However, in terms of knowledge Robert
Smith is also, across all his appearances in various Infosets, a “person”
who has a “name” known as “Robert Smith” and an “age” of “52.”
While XML Schema provides the syntactic typing (since it transforms
the syntax of XML to a typed Infoset and deals with syntactic con-
straints), only with considerable human interpretation does it provide
the second ontological typing. This typing is “ontological” since it is
about what is out there in the world beyond the particular Infoset that
contains the data, and models that world using logic. XML Schema pro-
vides no model-theoretic and machine-readable semantics for ontological
statements. Luckily, providing a machine-readable “web of meaning” is
precisely the mission of the Semantic Web[13].

If service-oriented computing is going to be used to merge data, we need
to reach the level of “world semantics.” This requires a much more rich
notion of typing: one that can provide rich representations of human
knowledge and bind that knowledge to machine-readable data. OWL
(Web Ontology Language) provides such a knowledge representation lan-
guage which can have as its “process semantics” a description logic that



is both decidable and tractable[14]. In terms of “world semantics,” OWL
ontologies used as knowledge representations can be considered as a sec-
ond kind of typing: ontological typing (or “Semantic Web” typing to be
more precise). Yet OWL ontologies are unlike traditional types since de-
scription logics are based on the open-world assumption. This is crucial,
as all the types of data cannot be known in advance in a loosely-coupled
service-oriented framework. In fact, one purpose of service-oriented com-
puting could be to accumulate knowledge through inspecting the on-
tological types. Although traditionally in typing one defines both the
necessary and sufficient conditions for a type, with ontological typing
one can have necessary but not sufficient conditions for some data being
a certain type, i.e. partial knowledge of the type. This can in turn be
used by a reasoner with rules to merge heterogeneous data types, and
these tools can also help provide humans with the necessary informa-
tion to determine if the two data are actually about the same thing.
XML Schema can use schema annotations to easily bind the data in a
Post-Schema Validation Infoset directly to OWL[15]. Instead of having
to write OWL in XML and convert documents between OWL and XML,
one can simply semantically model the data in OWL, bind the OWL in
the XML Schema, and read and write XML.

6 Web Services as Functions

While the Semantic Web is a specification language, people ultimately
want to do things with data, and so need Web-accessible programs. Web
Services began as a what was basically a cheap hack to get data across
firewalls. Yet the truth is more subtle. Web Services, are in essence func-
tions on the Web. As we can use XML Schema and the Semantic Web to
provide typing information, Web Services are typed functions. Currently,
service-oriented computing tasks are often composed using workflows.
It is a well-known problem that workflows do not support constructs
like iteration. One needs a full-scale and service-oriented functional pro-
gramming language. Currently, functional programming languages such
as Haskell have been used successfully to compose complex Web Ser-
vices[16], and functional languages that have native support for XML
like Scala are also providing Web Service support[17]. If such a language
could be combined with the types provided by OWL, then one could
imagine Web-scale type-inference being used to compose complex ser-
vices in a natural and intuitive manner while building knowledge-bases
that in turn could trigger further service invocation.

While XML gives us regular expression types for service-oriented com-
puting. There is another tradition in type theory where functions them-
selves can be regarded as types: higher order functions, as in ML or
Haskell. Higher order functions and algebraic types would allow for a
type to be a tuple, a sum, a function, and so on. This has even been im-
plemented using a type theory with native XML support by CDuce[18].
Expanding our definition of type beyond regular types would allow for
polymorphism and flexible record types, letting Web Services be passed
to Web Services as parameters of functions.



To complete our example, we can resolve the issue of intentional equiva-
lence if we assume the relevant data we need is accessible on the Web. We
receive the order through a Web Service, and parse it with a schema to
receive an typed Post-Schema Validation Infoset augmented with Seman-
tic Web typing. Our system adds an instance of the class “Person” named
“Robert Smith” to the knowledge-base. A “Person” can have an “Ad-
dress,” and also have a “married” relationship with another “Person.” In
attempting to merge this “Person” to our existing database, we notice
that his current “Address” is the same as the ”Address” for a previous
customer, “Alice Smith.” We also note they live at the same “Address,”
and so we want to know if they are “married.” Since the married relation-
ship is unknown, a rule is triggered that launches another Web Service
that returns whether or not a “marriage” relationship holds, by checking
various marriage registries automatically. Indeed, Robert and Alice are
married. However, there is also another “Robert Smith” in the database
with a different address. The dates of the two orders are compared, and
the first order took place considerably earlier than the most recent one.
A rule holds that a customer may have only one current “Address,” so
when the order is made an enquiry is given to the user asking them if
they have previously ordered from the store from the suspected previous
address. When the user answers yes, this information is in turn fed back
into the knowledge base for future reference. With this more complete
picture of Robert Smith, whatever Web Services we can provide him are
more likely to be to his liking, and perhaps we can use our knowledge to
remind him not to forget his marriage anniversary next year.

7 The Future

Two tasks remain to be done: merging XML Schema data types with Se-
mantic Web ontologies in order to build open-world types for XML, and
also to build a coherent ontologically-aware framework for higher-order
typing for Web Services. The simplest way to do the first task is to let
both syntactic typing and ontological typing remain independent. The
Infoset is typed twice, once using XML Schema and then using the Se-
mantic Web. Second, in the context of Web Services in particular, XML
Schema and the Post-Schema Validation Infoset needs to be augmented
to allow it to recursively contain possibly unknown types, higher-order
Web Services, and other algebraic type features. It should also be easy to
extract ontologies from the Infoset. Then a functional programming lan-
guage capable of static type inference, both using the Semantic Web and
XML Schema, would make the creation of service-oriented computing
elegant, safer, and more powerful. With XML for serialisation of data,
schemas and ontologies for typing, and Web Services as functions, the
ties that bind the standards for service-oriented computing together are
clear. In fact, these three aspects: data, types, and functions are the cru-
cial components of any computational system. With the advent of XML
as a universal syntax, with XML Schemas and the Semantic Web pro-
viding universal types, and Web Services providing universal functions,



the Web transforms from a universal information space to a universal
computation space.

References

1. Berners-Lee, T.: Weaving the Web. Texere Publishing, London
(2000)

2. Bray, T., Paoli, J., Sperberg-McQueen, C.: Extensible
Markup Language (XML) 1.0 (Third Editition) (2004)
http://www.w3.org/TR/REC-xml/.

3. Buneman, P.: Semistructured data. In: Proceedings of the six-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of Database Systems. (1997)

4. Thompson, H.S.: Putting XML to Work (2001)
5. Smith, B.C.: The Correspondence Continuum. Technical Report

SciDAC-SPA-TN-2003-0, Center for the Study of Language and In-
formation (1987)

6. Cowan, J., Tobin, R.: XML Information Set (Second Edition) (2004)
http://www.w3.org/TR/xml-infoset.

7. Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K.,
Rys, M., Simeon, J., Wadler, P.: XQuery 1.0 and XPath 2.0 formal
semantics (2004) http://www.w3.org/TR/xquery-semantics/.

8. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.:
XML Schema Part 1: Structures Second Edition (2004)
http://www.w3.org/TR/xmlschema-1/.

9. Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes Second
Edition (2004) http://www.w3.org/TR/xmlschema-2/.

10. Hosoya, H., Pierce, B.C.: XDuce: A typed XML processing language.
ACM Transactions on Internet Technology 3 (2003)

11. Simeon, J., Wadler, P.: The Essence of XML. In: Proceedngs of
Symposium on Principles of Programming Languages. (2003)

12. Thompson, H.S., Tobin, R.: Using finite state automata to imple-
ment W3C XML Schema content model validation and restriction
checking. In: Proceedings of the XML Europe 2003. (2003)

13. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scien-
tific American (2001)

14. Patel-Schneider, P., Hayes, P., Horrocks, I., van Harmelen, F.: OWL
Web Ontology Language Abstract Syntax and Semantics (2004)
http://www.w3.org/TR/2004/REC-owl-semantics-20040210.

15. Krupnikov, A., Thompson, H.S.: Data Binding using W3C XML
Schema Annotations. In: Proceedings of the XML Conference.
(2003)

16. Ludascher, B., Altinas, I.: On providing declarative design and
programming constructs for scientific workflows based on process
networks. Technical Report SciDAC-SPA-TN-2003-0, Unviersitate
Mannheim (2003)

17. Odersky, M.: An overview of the scala programming language. Tech-
nical Report IC/2004/64, EPFL Lausanne, Switzerland (2004)

18. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric
general-purpose language. In: Proceedings of the ACM International
Conference on Functional Programming. (2003)


