The Complex Dynamics of Collaborative Tagging

Harry Halpin Valentin Robu Hana Shepherd
University of Edinburgh Dutch Center for Mathematics Princeton University
2 Buccleuch Place and Computer Science Wallace Hall
Edinburgh, Scotland Kruislaan 413 Princeton, NJ USA
H.Halpin@ed.ac.uk Amsterdam, Netherlands — hshepher@princeton.edu
robu@cwi.nl
ABSTRACT rization divides the world of experience into groups or gatees

whose members share some perceptible similarity withirvangi
context. That this context may vary and with it the compositbf
the category is the very basis for both the flexibility and poever
of cognitive categorization” while “classification invas the or-

collaborative tagging systems including whether cohecatitgo- derly and systematic assignment of each entity to one arydoo

rization schemes can emerge from unsupervised taggingerg.us class within a system of mutually exclusive and non-ovegiag

: ; : lasses; it mandates consistent application of theseipl@sovithin
This paper uses data from tagged sites on the social bookmark ¢ > ) o .
ing site del.icio.us to examine the dynamics of collabeeatag- the framework of a prescribed ordering of reality’[10]. Gaug

ging systems. In particular, we examine whether the distioh of systems allow much greater malleability and adaptabifitpriga-

the frequency of use of tags for “popular” sites with a longtbiy nizing inform_ation than do formal classification systemsog®-
(many tags and many users) can be described by a power law disnents of tagglng systems argue tha_t "groups of users do wettha
tribution, often characteristic of what are considered plem sys- agreeona hlerarcr|1y oftags orget‘alled t?‘x?”?m{ they (Eﬂ’ﬂ':; |
tems. We produce a generative model of collaborative taggin agree, in a general Sense, on the ‘meaning’ of a ag_enougb
order to understand the basic dynamics behind taggingydirg similar material Wlth t_erms for there to be cooperation anarsd
how a power law distribution of tags could arise. We empiljca val_u_e.”[12]. Tagglng_ls_able retrieve _the data and Sh."’“‘?.me
examine the tagging history of sites in order to determing tiis efﬁuently than cIaSS|f_y|ng: “Fr(_ee_ typing loose assodas is just
distribution arises over time and patterns prior to a stdisgibu- alot easier than making a d‘?C'S'O’? about_the degree_ of maolnh t
tion. Lastly, by focusing on the high-frequency tags of a sihere pre-defined category (especially hlerarch!cal on_es). likés 90%
the distribution of tags is a stabilized power law, we show ltag of the value of a proper taxonomy but 10 times S|mp_le_r. [‘.1]'
co-occurrence networks for a sample domain of tags can k& use However, a number of problems stem from organizing informa-

; : ; ; - tion through tagging systems including ambiguity in the mieg
I th f particular t th |sthgm to ; . .
analyze e meaning of particuiar tags given their re of tags and the use of synonyms which creates informatianal r

The debate within the Web community over the optimal means
by which to organize information often pits formalized déisa-
tions against distributed collaborative tagging systemsumber
of questions remain unanswered, however, regarding theenaf

other tags. dundancy. The central concern with using collaborativeyitag
to organize metadata is whether or not the system becomees rel
1. INTRODUCTION tively “stable” with time and use. By “stable,” we mean toiicate
. . that users have developed some consensus about which &tgs be

1.1 Folksonomies and Ontologies describe a site and those tags are used most often. The robst pr

The issue of how metadata for web resources should be gen-lematic claim for tagging systems would be that becausesumer
erated with the greatest efficiency and efficacy continudseta not under a centralized controlling vocabulary, no cohiecatego-
central concern as the amount of information on the Web grédws  rization schemean emerge at alfrom collaborative tagging. In
small but increasingly influential set of web applicatioing]uding this case, tagging systems would be inherently unstablerenthne
the social bookmarking site del.ici.ous, Flickr, Furl, BojCon- tags used and their frequency of use would be in a constdetcita
notea, Technorati, and Amazon allow users to “tag” objedte w  flux, especially those systems with an open-ended numbesref n
keywords to facilitate retrieval both for the user and fdvestusers. expert users like the social bookmarking site del.icioltsvould

Their categories are based on the set of tags that are uskdraxe be difficult to identify or utilize any collective knowledgeoduced
terize some resource, and these categories are commoetyec:f by users with respect to a site.

to as “folksonomies.” This approach to organizing onlin®ima- Given the debate over the utility of collaborative tagginyg-s
tion is usually contrasted with formal ontologies that anpésed tems compared to other methods of organizing informattag,jimn-
by experts, not by users [17]. creasingly important to understand whether a coherentaaidlly
There are both benefits and drawbacks to the tagging approach navigable way of organizing metadata can emerge from bligtvie
Tagging is considered a categorization process, in cdrtraspre- tagging systems. This paper will empirically examine a iziugs-
optimized classification process as exemplified by expedted pect of this question: whether tag distributions stabitizer time,
Semantic Web ontologies. Jacob defines the distinctiondstw  and if so, what type of distribution emerges. Because eagfota
categorization and classification in the following way: t€go- a given resource is repeated a number of times by differersus
Copyright is held by the International World Wide Web Coefeze Com- for 'any g'V?n tagged resqurce, there is a'dIStI’IbUtIOT‘I of m@d
mittee (IW3C2). Distribution of these papers is limited tassroom use, ~ their associated frequencies. The collection of all tags their
and personal use by others. frequencies ordered by rank frequency for a given resowrtleel
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tag distribution of that resource. and properties, in order to make inferences about the existef

There is hope among the proponents of collaborative tagyisg some sort of meaning structure in the distribution, we neeght
tems that a stable distribution might arise from these systéNote derstand the information inherent in the distribution af¢aThis
that bystable we do not mean that users stop tagging the resource, inherent structure can be traced to what we callittiermational
but instead that the tagging eventually settles to a grotagsf that value of a tag. By “informational value” we mean the informa-
describe the resource well and where new users mostly reexfo  tion conveyed by the natural language term used in the tapand
already present tags in the same frequency as in the stabfdoi this makes the tag useful for retrieval of and distinctiotwszn
ution. There is reason to believe a stable distribution kEharise. resources or not. Since the “meaning” of tags is elusive,veae
Online tagging systems have a variety of features that des afs- to model their informational value is to look at their co-ooence
sociated with complex systems such as a large number of,@sers with other tags, and to try to answer questions about howethes
lack of central coordination, and non-linear dynamics, #reke co-occurrence models reflect the informational value ofipalar
sort of systems are known to produce a type over time a distrib  tags: Does the structure of tag networks based on co-ocmare
tion known as a “power law.” One important feature of powevda make intuitive sense, doing justice to the common-senseside
produced by complex systems is that they can often be “Soedg- have about the relationships between the concepts undemyer
such that regardless of how larger the system grows, theestfap  Can tagging provide users with any new insight into the rmegani
the distribution remains the same, and thus “stable.” Rebees of resources just by analyzing the structure of networksdam
have observed, some casually, some more rigorously, thatith co-occurrence? Shen and Wu analyze the structure of a taggin
tribution of tags applied to particular URLs in tagging €yas fol- work for del.icio.us data as we do in Section 6, althoughkeniin
lows a power law distribution where there are a relativelyabm  our examples their graph is unweighted [16] and does nottefe
number of tags that are used with great frequency and a gueat n  information in the tag distribution. They examine the degoés-
ber of tags that are used infrequently [12]. We are concewitd tribution (the distribution of the number of other nodestreaode
a thorough demonstration, explanation, and empiricalyaigbf is connected to) and the clustering coefficient (based otia ot
this phenomenon. the total number of edges in a subgraph to the number of adlipos
ble edges) of this network and find that the network is indesedle
free,” and so has the features Watts and Strogatz found tacties-
ize small world networks: small average path length andively
high clustering coefficient [19]. A large amount of work exphg
the structural properties of nature language networks fimdgdar
results [6].

In Section 3 we formalize a generative model for tagging @eor
to suggest how the patterns observed in tagging distribsitisight
emerge. In Section 4 we empirically examine whether tagdiag
tributions develop into stable power law distributions an8ection
5 we empirically analyze the trajectory of tagging disttibos be-
fore they have stabilized. Establishing the convergendestabil-
ity of these distributions is essential to understandingtér co-
herent categorization schemes might emerge from disétbtag-
ging systems. Finally, we use the importance of the infoionat
value of tags to demonstrate how the most frequent tags imarmo
law distribution can be used in inter-tag correlation gsafghchart
their relation to one another in Section 4. It is conjectutet this
method might be useful in extracting a classification schéone
tology) from a categorization scheme (folksonomy).

1.2 The Dynamics and Structure of Tagging

What are the underlying dynamics of a collaborative taggysy
tem that could cause a tag distribution to reach some poistasf
bility? Work by Golder and Huberman using del.ici.ous daaa h
noted a number of patterns in tagging dynamics. The majofity
sites reach their peak popularity, the highest frequenaggding
in a given time period, within 10 days of being saved on del.is
(67% in the data set of Golder and Huberman) though some sites
are “rediscovered” by users (about 17% in their data segjgest-
ing stability in most sites but some degree of “burstinessthie
dynamics that could lead to a cyclical relationship to stigtghar-
acteristic of chaotic systems [9]. Importantly, Golder ahaber-
man find that the proportion of frequencies of tags within\aegi
site stabilize over time; they find it occurs usually aftesward be-
ing bookmarked 100 times [9]. However, they do not measura wh
type of distribution arises from a stabilized tagging pss;aor do
they present a method for determining stability.

Golder and Huberman cite two important features of suctabell
orative tagging systems that might give rise to this typeaibisity:
imitation of others and shared knowledge [9]. One of the ifigec
features of del.icio.us is the inclusion of “most commorstdgr a
given site when a user saves that site, facilitating the tideedags
others have used with the greatest frequency. They explatrthe
stability of common tags, which are displayed for users wihey
save a site, is based on a shared background and set of agswmpt
among users. Given that the stability of tag frequenciesymme
ably relies on both the interaction between users (imitatend
the shared cultural knowledge of users, the stability arttepes

2. THETRIPARTITE STRUCTURE OF TAG-
GING

To begin, we need a conceptual model to describe generic col-
laborative tagging systems which is capable of being fozadl
so that we can both make predictions about collaborativgitag
systems based on empirical data and based on generativecteat
of the model. A well-accepted tripartite model has alreadgrb
theorized [11, 13], although we hope to clarify it below:

of tag frequency distributions might lend insight into thegcke to
which there is consensus within a community about how toazhar
terize some site or into whether there are different grodpsers
with different sets of assumptions and who are tagging theesa
site. Or, as Golder and Huberman suggest, changes in thtgtab
of such patterns might suggest that groups of users are tinigra
away from a particular consensus on how to characterize asd
its content or negotiating the changing meaning of that 3ibethe

There are three main entities that compose any taggingmsyste
e The users of the system (people who actually do the tagging)
e The tags themselves
e The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces oonsisti

extent this consensus is stable, it is ripe for developnreotd clas-
sification system and perhaps even formalization into aology.
Assuming a stabilized distribution arises with a well-kmosthape

of sets of vertices, which are linked together by edges (ggel.
The first space, theser space, consists of the set of all users of the
tagging system, where each vertex is a user. The second ispace



thetag space, the set of all tags, where a tag corresponds to aterm 3. A GENERATIVE MODEL

(*music”) or neologism (“toread”) in natural language. Ttherd Our model needs to combine the three-level model of tagging
space is theesource space, the set of all resources, where each presented above with the manner in which feedback cyclesnand
resource is normally denoted by a unique Ul tagging instance  formational value give rise to a stable distribution of tager time.

can be seen as the two edges that links together a user to adag a The notion of a feedback cycle is encapsulated in the sindale i
then that tag to a given website or resource. Note that angggi that a tag that has already been used is likely to be repedtes.

instance can associate a date with its tuple of a user, 3 taga behavior is a clear example prfeferential attachment, known pop-
resource. ularly as a “rich get richer” model. To model this phenomena,
. need to have a baseline probabili(a), or the probability of a
,’/ N user committing a “tagging action.” This is the probabilibat for

K R1 every time step, a “tag” is added to a resource. There are very few

! \ empirical studies that estimate this parameter curreattidition-

! ! R2 \ ally, since users often tag more than once, thefe(is) that deter-
' . \ mines the numbem( of tags a user is likely to add at once based
' : Rj E on the distribution of the number of tags a given user empioys
! ! . ! a single tagging action. As reported by other studies, thislyer
' T/ e varies between two and ten [9], although we will held= 1 in
\ \ 7 « Rk order to simplify our exposition. Once a tagging actiét(¢)) has
\\ / been done, a preferential attachment model can be forrddtiye
N L use of a simple “shuffling theory” model [8]. This model hottat
RESOURCES an “old tag” is reinforced with constant probabiliy(o), so a “new
USERS TAGS (WEBSITES) tag” is added with probability — P(o). If the old tag is added, it

is added with a probability<)s, where R(z) is the number of

times that particular previous taghas been chosen in the past and
>~ R(4) is the sum of all previous tags. This leads to tags that have
been heavily reinforced in the past being further reinfdricethe
future.
We illustrate this with a simple example, as given by Figure 2
From the above model and Fig.1, we observe that tags provide whereP(tag) is P(0) and assuming for simplificatioR(a) = 1.
the link between the users of the system and the resourcemer ¢ Also, we will have a user only add one new tag per time step. At

Figure 1: Tripartite graph structure of a tagging system. An
edge linking a user, a tag and a resource (website) represent
one tagging instance

cepts they search for. time step 1 in our example, the user has no choice but to add a
This analysis reveals a number of dimensions of taggingatteat new tag, “piano” to the page. At the next stage, the user does

often under-emphasized. In particular, tagging is otenethodol- not reinforce a new tag but chooses a new tag, “music”, and so

ogy for information retrievalmuch like traditional search engines, ~ P(piano) = 3 and P(music) = 1. Att = 3, the user re-

but with a number of key differences. To simplify drastigalith inforces a previous “piano” tag and $&(piano) increases tQ:);,

a traditional search engine a user enters a number of taghend  \hile P(music) decreases td. Att = 4, a new tag is chosen
an automatic algorithm labels the resources with some meafu (“digital”), and so P(piano) goes up whileP(music) decreases
relevancy to the tagpre-discovery displaying relevant resources  to 1 and P(digital) is 1. Taken to its conclusion, this process
to the user. In Contl’ast, with collaborative tagg|ng a usslsfia produces a “power law” distribution.

resource, then adds one or more tags to the resource manvitily
a system storing the resource and the tagst-discovery When
faced with a case of retrieval, an automatic algorithm dogs n

i . tag=piano tag=music tag=piano tag=digital
have to assign tags to the resource automatically, but deowfo
the tags used by the user. The difference between this adid tra P(piano) P(piano) P‘,”if/”z")
tional searching algorithms is two-fold: collaborativggang relies P(piano) =12 =23 P(’music)
on human knowledge, as opposed to an algorithm, to direotly ¢ P : - _n
nect terms to documents before a search begins, and so alies =10 P(t ag) P(music) P(music) p—
the collective intelligence of its human userspte-filter the search - 12 > =13 NS
results for relevancy. When a search is complete and a @sour
of interest is found, collaborative tagging often requitesuser to 1-P(tag)
in turn “tag” the resource in order to store the result in hidher
personal collection. This cause$egdback cycleThese character-
istics motivate many systems like del.icio.us and it is vkelbwn

that fee_dbgck_cycles are one ingre_dient of co_mple_x s_ystgiv_iag t=1 t=2 =3 t=4
further indication that a power law in the tagging distribatmight

emerge. Before going further we need to formalize thesetgtiae ) ) )
observations about collaborative tagging. Figure 2: An example of how shuffling leads to preferential at
tachment

A “Universal Resource Identifier” such as
http://www.example.conthat can return a web-page when ac- ; : .
cessed. Notice that some tagging based systems such as Spurl Prefer(_ennal attachment modglg do not_ explain why a paaticu
(http://mww.spurl.nétstore the entire document, not the URI, but NeW tag is added to a resource; in practice, tags are not aded
most systems such as del.icio.us store only the URI. Regesdl  random because their informational value is taken into aatd=or
our resource space is whatever is being tagged. example, the oldest tags for a resource are not always thigpops



ular tags. A new tag may be added that uncovers an infornstion
dimension not captured by older tags, and if this new dinmnsi
proves both relevant and useful then other users will retefohe
tag that represents the dimension, perhaps at the expeiataeof
tags with less relevant informational dimensions. In tlase; the
new relevant tag would experience a burst of reinforcement;
haps surmounting the frequency with which older tags weesl us
and eventually stabilizing towards the top of the tag disifion for
aresource. The entire tagging process might be considarézka
ploration” versus “exploitation” process where the exptan of
possibly relevant dimensions of a resource is balancedthlex-
ploitation of previously tagged dimensions of a resourcestabi-
lized distribution theoretically represents a state whieesoptimal
number of dimensions has been tagged.

While it is impossible for a generic model to assign a pribe t
exact informational value of a resource, itis possible feast par-
tially model the informational value of a specific tag. A hyipeti-
cal tag applied to every relevant resource would, if usedseach
by a user to discover resources, retrieve every documeiig{ima
atag such as “website,” but used once by at least one useeon ev
resource). This type of tag has an informational vall)eof O, and
we assume that the informational value of a tag that retsiexe
resources is also 0. Another tag that hypothetically selealy the
resource needed, would have an informational valy@{ 1. This
does not occur so precisely in practice, as users presumalniy
the optimal tag to return some cognitively appropridter{umber
of resources, such as the number of resources that fit on ribersc
or that allow users to effectively browse an area, and thig vaay
per user. However, for the purposes of our model we will agsum
thatk = 1 when quantifying informational value to simplify our
exposition. Notice also that a user may use multiple tagslaesk
tag combinations may have different informational values tire
not additive. In our work with del.icio.us, we can empirigadsti-
mate the informational value of a tag by retrieving the numife
web-pages a del.icio.us search with a tag (or combinatidags)
returns and converting it into a probability, as done in Beach.

In order to explain tight binding between information retal

RS . . N V4
v us 1 -

CSm=

USERS TAGS RESOURCES

Figure 3: Tripartite tagging system graph used for search. he
dotted edges represent options, while the dark edges represt
a particular user engaging in a search for the shaded resouec

forced or added as a linear interpolation of preferenti@ciiment
and informational value, with being used to weigh the factors:

R(z)
P = AxP(I 1-N)*Pa)*xPlo)*Pl=——~=) (1

(@) = AxP(I(z))+ (L= A)* P(a) * P(o) (ZR(Z.)) @

This formalizes a process that would give rise to a power law
via preferential attachment, but one where the informatienlue
of a tag additionally figures into the dynamics of the taggiligt
tribution. This model as it stands is heavily parameterizetere
the values of the parameters no doubt vary from one taggisg sy
tem to another. However, to see if this model holds up to retd d
first we need to determine whether a power law actually afises
empirical data.

4. DETECTING POWER LAWS IN TAGS

According to our model, there should be a connection between

and value, we show an abstract example in Figure 3. In this ex- {he stability of the distribution of tags and the generalshaf the

ample the act of “tagging” by a usetf) can be considered the
assignment of a tag() to a given resourcer(). Thus, a given
search can be considered a transversal ftgnvia a number of

distribution. If our qualitative intuition about taggingstems as
complex systems and our model are correct, this distribugimuld
follow a “power law.” Our complete data set includes 750 &djg

tags to a number of resources. The user wishes to minimize thegjtes from del.ici.ous, 500 of which were tagged over 40@timnd

number of tags needed to retrieve the relevant resourcashigh
unknown to both the system and the user. Following Zipf’'sdam
“Principle of Least Effort,” users presumably minimize thenber
of tags used. [20]. In our example the usemwishes to use a group
of tags to discover a relevant resource, which an oracle cvialil
us isr2. While tagt; andts retrieve exactly one resourdét; )
andI(ts) = 1, these tags do not identify. I(t3) = 0, since it re-
trieves all resources in the data-set. WHi{é,) andi(t4) > I(t3),
the combination of both tags retrieve exactly the resousda our
example sd (ts,t2) = 1 > I(¢2) andI(t3). Notice that informa-
tional value is not additive, sincE(t1,ts) = 0 while bothI(¢1)
andI(ts) = 1.

If the user is satisfied with the search results and wisheddo a
a retrieved resource to their personal collection, theynaihforce
one of the existing tags of the resource by repeating oneegfiti-
existing tags, and they might also add a new tag. If the useotis
satisfied with the search results, they will likely add a ney to
a retrieved resource. This tag may allow them to use feweritag
future searches to retrieve the same resource. Thus, ifnearly
combine our two models of informational value and preféaént
attachment, we can generate the probability of autdoging rein-

taken from the “popular” section of del.icio.us and 250 ofiebh
were randomly selected from the “recent” section of del.ics.
Both sections are prominently displayed on the del.icisites though
“recent” sites are those tagged within the short time peinate-
diately prior to viewing by the user and “popular” sites anede
which are heavily tagged in general.

4.1 Power Law Distributions: Definition

A power law is a relationship between two scalar quantities
andy of the form:

@)

Wherea andc are constants characterizing the given power law.
Without loss of generality, Eq. 2 can also be written as:

y=cx”

(©)

When written in this form, a fundamental property of powsvda
becomes apparent— when plotted in log-log space, powerdesvs
straight lines. Therefore, the most simple (and widely yseethod
to check whether a distribution follows a power law and deduc
its parameters is to apply a logarithmic transformatiord tren

logy = alogx + log ¢



perform linear regression in the resulting log-log spacesceR
literature on the subject (Newman '05 [14]) suggests, handhal
this may introduce a bias in the value of the exponent, antie
reliable alternative proposes the following formula toedtetinec:

" -1
a=1+nx* Zln i :| (4)
=1

Tmin

wherez;, 1 = 1..n are the measured values ofand z,,;. cor-
responds to the lowest value for which the power law beha
holds. This formula was also used in this work (the intewt
reader can consult the full derivation of the above formalgL4]).

In our tagging domain, the intuitive explanation of the abdpa-
rameters is as follows: represents the number of times the n
common tag for that website is used, whilegives the power la\
decay parameter for the frequency of tags at subsequeniopss
Thus, the number of times the tag in positipns used (forp=1
to 25) should be approximated by a function of the form (wl
—a > 0):

Frequency(p =1)
pfa

©®)

Frequency(p) =

4.2 Empirical Results for Power Law Regres-
sion for Popular Sites

For this analysis, we used a subset of 500 “Popular” sitas fro
del.icio.us that were tagged at least 2000 times. For eadh we
site, we considered the 25 most often used tags. Fig. 4 shmvs t

observed data when plotted in the log-log scale. After tigelbgy
transformation, we fit a linear regression to the resultiaiggoints
of each site individually. We computed the aggregate digtion
for all sites by summing the frequency of tags that appeaaah
position across the sites and fitted a regression line toate @he
results are presented in Fig. 5. In all cases, logarithm s Rava:s
used in the log-log transformaticn

To summarize our results, we found that the data points ci
fitted with a linear regression line, with some error. Witle -
gregate function, the parameter for the slop of the poweruaing
the above equation (see Equation 4), had the value: —1.278.
For the individual sites (not shown graphically, for theesakclar-
ity of the picture), the slopes were in a similar range, i.&hwan
averagen = —1.22, with standard deviatios£0.03. Thus, it ap-
pears that the power law decay (i.e. slope) is relativelysisbent.
both in the cumulative case and across individual sitesiitinely,
this indicates a fundamental effect of the way tags areiliged in
individual websites independent of the context and contétie
specific website.

There is a caveat, however. We observed that tags in pas
seven to ten have a considerably sharper drop in frequeray
the general trend line would predict. This means that, famex
ple, if we do a piece-wise regression for the tags in the feges
positions and the tags in the last fifteen positions we woeldiy
both cases, linear functions, though with slightly differelopes.
Furthermore, as Fig. 4 shows, this effect largely holds foroat
all sites in the data set considered, so it is not attribet&hoise
alone, but a consistent effect of the way tagging is perfainve
do not have yet a satisfactory explanation for this effectnay
have a cognitive explanation, i.e. it may be based on the ruwib

2Note that the base of the logarithm does not actually appetaei
power law equation (c.f. Eq. 2), but because we use empaiwal
thus possibly noisy data, this choice might introduce srinrthe

fitting of the regression phase. However, we did not find iicgnit

differences from changing the base of the logarithra ¢o 10.

Individual tag distributions for 500 popular sites (log—log scale)
14 T T T T T T T T T

= P
o N
L L
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Number of times the tag is used (Iog2 scale)

0 0.5 1 15 2 25 3 3.5 4 4.5 5
Relative position of a tag (Iog2 scale)

Figure 4: Frequency of tag usage, based on relative position
The dataset consists of 500 heavily tagged sites where foroba
the 25 most frequently used tags were considered. The plotes
double logarithmic (log-log) scale: the horizontal scaleiges the
logarithm base 2 of the relative position (where the most use
tag is in position 1, the second most used tag is in position 2
and so on), while the vertical scale gives the logarithm of th
frequency of use

Cumulative tag distribution and interpolated power law (log-log scale)
21 T T T T T T T T T

Number of times the tag is used (Iog2 scale)

14 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Relative position of a tag (Iog2 scale)

Figure 5: Cumulative number of tag usage frequency, based
on their relative position. The plot is on a log-log scale: te
horizontal axis shows the logarithm of the relative positia,
while the vertical axis shows the logarithm of the cumulatie
frequency of tags in that relative position. The best fit linar
regression (using the least-squares method) is also shown.

tags the average user employs per website, or it may be &acarti
of the user interface specific to del.icio.us, i.e. userssgaee for
a particular number of tags or receive a particular numbesugf
gestions for tags to use. This observation does not affedbasic
result that tag distributions follow power laws.



4.3 Regression Results for Less Popular Sites

The analysis presented in the above section refers to leavil
tagged sites (tagged more than 2000 times) and considefbthe
most used tags for each site. In order to further illustrati \zer-
ify our results, we considered an additional sample of St sie-
lected randomly from the “recent” section of del.icio.usl @fotted
their distribution on a log-log scale. This set of sites atemless
heavily tagged: the mean number of users of this “randortritigion
is 286.1 with a standard deviation of 18.2, as opposed tothe p
viously studied “popular” distribution that has a mean o72@®
users and a standard deviation of 92.9 users.

Results are shown in Fig. 6. Our analysis shows that for the

less-heavily tagged individual sites, the slopes différecth each
other to a much greater extent than with the heavily taggea, da
with an averager = —3.9 and standard deviatioti4.63. Clearly,
the power law effect is much less pronounced for the lessilyea
tagged sites as opposed to the heavily tagged sites, asatidast
deviation reveals a much poorer fit of the regression linbeéddg-
log plotted data. For sites in the “Popular” category, the.f
the power law decay slope with respect to the average slapdyis
0.03, while for the set of less heavily tagged ones the S.B.63.
In fact, for random sites with relatively few instances ajgang,
the results reveal little other than noise. However, eveisdme of
these less popular sites, a power law is beginning to emtroegh
it is not yet fully established.

Individual tag distributions for 500 less popular sites (log—log scale)

14

[y
N
T
L

Number of times the tag is used (Iog2 scale)

N
SRRARNARRY

AN VAR ANV NV
ARRERARRRR

Relative position of a tag (Iog2 scale)

Figure 6: Frequency of tag usage based on relative positiof
a dataset consisting of 500 less-heavily tagged sites (witte 25
most frequently used tags considered for each).

5. THEDYNAMICS OF TAG DISTRIBUTIONS

In Sect. 4, we have shown that tag distributions converge to
power law distributions. Again, because power laws areedtag,
the emergence of this type of distribution suggests the genee
of a stable distribution. In this section, we study anottsreat of
the problem, namely how the shape of these distributiomagan
time from the tagging action of the individual users. In pice;
this involves measuring the distance between the distoibsitof
tags of a given site at different time points (in our caseheane
point roughly corresponds to a calendar month, which isudised
below). We take a novel approach to this problem by employing

a method inspired by information theory, namely the Kullbac
Leibler divergence [7].

5.1 Kullback-Leibler Divergence: Definition

In probability and information theory, the Kullback-Legbldi-
vergence (also known “relative entropy” or “informatioweligence”)
represents a natural distance measure between two pritypdrsi
tributions P and @ (in our case,P and(@ are two vectors, repre-
senting discrete probability distributions). FormallyetKullback-
Leibler divergence betweef and@ is defined as:

P(x)
Q)

The Kullback-Leibler distance is a non-negative, convexcfu
tion, i.e.
Dkr(P,Q) > 0,VP,Q (note thatDx 1. (P, Q) = 0iff. Pand Q
coincide). Also, unlike other distance measures it is notregtric,
i.e. ingeneraDk (P, Q) # Dkr(Q, P).

5.2 Application to Tag Dynamics

There are two complementary ways to detect whether or not a
distribution has converged to a steady state using the &chtb
Leibler divergence, which is also known as relative entropy

Dir(P||Q) =) P(x)log(5=) 6)

e The first is to take the relative entropy between every two
consecutive points in time of the distribution, where each
point in time represents some change in the distributioraifg
in our data, tag distributions are the rank-ordered tagtfeacies
for the top 25 highest-ranked unique tags for any one web-
site. Each point of time was a given month where the tag
distribution had changed; months where there was no tag-
ging change were not counted as time points. Using this
methodology, a tag distribution that was “stable” wouldwho
the relative entropy converging to and remaining at zero ove
time.

The second method involves taking the relative entropy of
the tag distribution for each time step with respect to the fi-
nal tag distribution for that site (where “final” indicatdset
distribution at the time the measurement was taken, the last
observation in the data). This method is most useful for heav
ily tagged sites, for which (as shown in Sect 4) the final dis-
tribution has already converged to a power law.

The two methods are complementary because the first method-

ology would converge to zero if the two consecutive disttiitns
are the same, and so could detect when distributions coedéfg
even temporarily. One could imagine a cyclical pattern absiza-
tion and destabilization being detected using this firshoet The
second method assumes that the final time point is the stable d
tribution so detects convergence only towards the finatidigion.
If both of these methods produce relative entropies thatcagh
zero, then we can be certain the distributions have conderger
time to a single distribution, which is the distribution &etfinal
time point. Since we have already shown that final distringi
converge to power laws, what is actually studied is the dyosuof
the convergence to the power law.

5.3 Empirical Results for Tag Dynamics

The analysis of the dynamics of tagging is considerably more
involved than the analysis of the final tag distributions.c&ese
the length of the histories varies widely, there is no megifoin
way to compute a cumulative measure across all sites as in Sec



4, so our analysis has to consider each resource individudil
Fig. 7 (A and B), we plot the results for the convergence of the
500 "popular” sites, selected as to simultaneously sassferal
requirements. First, their final distribution must havevasged

to a power law. Second, their complete tagging history maseh
been available from the first tagging instances and thistyishust
have had a substantial length. In the data set considered, 3
time points are available for some sites (which roughlyesponds

to 3 years of data, since one time point represents one month)

KL distance between distributions at consecutive time points
0.8 T T T T T T T

Kullback-Leibler (KL) divergence

25 30 35 40

Time points

Figure 7: Relative Entropy (i.e. KL divergence) between
frequency distributions at consecutive time-steps

tag

KL distance w.r.t. the final distribution
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Kullback-Leibler (KL) divergence
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Figure 8: Relative Entropy (KL divergence) of tag frequency
distribution at each time step, with respect to the final distib-
ution

There is a clear effect which can be observed from the dyreamic
of the above distributions. (Note that in Figs. 7 and 8, thst fivo
time points were omitted because their distribution inedifew

tags and were thus very highly random.) At the beginning ef th
process when the distributions contain only a few tags etien
high degree of randomness, indicated by early data pointsv-H
ever, in all cases this converges relatively quickly to a/\anall
value, and then (in the final ten steps) to a Kullback-Leilolisr
tance which is so low that is graphically indistinguishé&ibten zero
(with a few outliers). If the Kullback-Leibler divergencetiveen
two consecutive time points (in Fig. 7) or between each stefilze
final one (Fig. 8) becomes zero (or close to zero), it indEstat
the shape of the distribution has stopped changing. Thistr&sg-
gests that the power law may form relatively early on in trecpss
for most sites and persist with remarkable consistencyutitrout.
Even if the number of tags added by the users increases miahy fo
afterwards, the new tags reinforce the already-formed pdave
Interestingly, there is a substantial amount of variatiothe initial
values of the Kullback-Leibler distance prior to the cogesrce.
Future work might explore the factors underlying this vawiaand
whether it is a function of the content of the sites or of theme
anism behind the tagging of the site. Additionally, conegrce to
zero occurs at approximately the same time period (oftehimvi
few months) for these sites.

6. CONSTRUCTING INTER-TAG CORRE-
LATION GRAPHS

In addition to the role of processes of social influence betwe
users, the informational value of tags is a central aspeatrge
ing the evolution of tag distributions. We examine one ofriiest
simple information structures that can be derived througjlal-
orative tagging: inter-tag correlation graphs. First, igedss the
methodology used for getting such graphs. Next we illustoatr
approach through an example, with tags from a limited dontfgiin
nally, we discuss the importance of tag-tag graphs and hewy th
could be used to shed light on the underlying dynamics ofdbe t
ging process.

6.1 Methodology

The act of tagging resources by different users inducebedag
level, a simple distance measure between any pair of tagsurin
case, define the distance between two tBg9; through a cosine
distance measure:

N(T3, 1))
N(T;) = N(Tj)

Where we denote by (73), respectivelyN (73;), the number of
times each of the tags was used individually to tag all paayss py
N(T;,Ty) the number of times two tags are used to tag the same
page (summed up over all pages). The distance measureeaptur
degree of co-occurrence (which we interpret as a similaniyric)
between the concepts represented by the two tags. The aiistan
measure can play a big role in actual structure retrievedvead
note that there are more sophisticated distance measuessed
both in item-item collaborative filtering (see [15]), anarn text
mining literature. For this paper, cosine distance seememuotk
well enough.

Next, from these similarities we can construct a tag-tagesor
lation graph or network, where the nodes represent the kexys-t
selves (weighed by their absolute frequencies), while thyes are
weighed with the cosine distance measure. We build a vizasali
tion of this this weighed tag-tag correlation, by using ariisg-
embedder” type of algorithm - in our case we preferred thd-wel
known Kawada-Kawai algorithm [1]. An analysis of the strued
properties of such tag graphs may provide important insigtto

Dist(T;, Ty) = @



how people tag and how semantic structure emerges in distdb
folksonomies (we return to this issue in Section 6.3, whezalis-
cuss the relation between this approach and the structereed
in the literature on language evolution).

While it would be difficult if not impossible for independerd-
searchers to collect enough data to construct and analgzntire
space of tags used in del.icio.us, we did collect enoughtdaieo-
vide an illustration of the approach for a restricted subzdim.

6.2 Constructing tag-tag correlation networks

In order to exemplify our approach, we collected the data and
constructed visualizations for a restricted class of 15 tad re-
lated to the tag “complexity.” Our goal, in this example, was
examine which sciences does the user community of deliio.
see as most related to “complexity” science (a problem whih
traditionally elicited some discussioh).The visualizations were
made on Pajek [1]. The purpose of the visualization was tdystu
whether the proposed method retrieves connection between-a
tral tag “complexity” and related disciplines. We consit&two
cases:

e Only the dependencies between the tag “complexity” and all
other tags in the subset are taken into account when building
the graph (Fig. 9).

e 30 other edges (i.e. 45 edges in total for 15 tags) are con-
sidered (Fig. 10). These taken as the ones with the high-
est expected correlations, though in future work we’ll con-
sider more sophisticated methods for determining the ffut-o
based on examining the deviation from the mean.

In both figures, the size of the nodes is proportional to the ab
solute frequencies of each tag, while the distances arghhpu
speaking, inversely related to the distance measure (@eet by
the “spring-embedder” algorithnf). We tested two energy mea-
sures for the “springs” attached to the edges in the visatidia:
Kamada-Kawai and Fruchterman-Reingold [1]. For lack ofcspa
only the visualization returned by Kamada-Kawai is presdihiere,
since we feel it is more faithful to the proportions presenttie
data.

The results from the visualization algorithm do match weliav
one would intuitively expect to see in this domain. Some sate
much larger than others, which, again shows the taggersmief
use to general, heavily used tags (e.g. the tag “art” was BSed
times more than “chaos”). Tags such as “chaos”, “alife”,dlev
tion” or “networks” which correspond to topics generallyeseas
close to complexity science (some of them were actuallyldeeel
in the context of complex systems), come close to it. At theot
end, the tag art is a large, distant node from complexity.s Thi
not so much due to the absence of sites discussing the mathema
ics/complexity aspects in art. In fact, there are quite adéauch
sites - but they represent only a small proportion of thel witas
tagged with “art,” leading to a large distance measure. dlage,
however, some problems in the structure retrieved: the e¢agl”
ogy” would be expected to appear much closer to “compléxity,
since much research on complexity in biological systemsftvas
cused on applications in ecology.

3The choice of terms considered in the subset is loosely baised
the topics covered at the 2006 summer course on complexity of
fered by the Santa Fe Institute.

“For two of the tags, namely “algorithms” and “networks,” lbot
absolute frequencies and co-dependencies were summedhever
singular form tag, i.e. “network” and the plural “networksince
both forms occur with relatively high frequency.

Collaborative tagging does not always results in sheer shao
While formal ontologies are of utmost use in highly struetido-
mains such as biology, in general domains like “web pagek” co
laborative tagging is usually seen as the better route. Wt i an
open-ended domain like “web pages,” our data seems to steye th
is some consensus about how to categorize the data. These tag
correlation graphs could provide knowledge engineersangd in
how people naturally categorize data, although any knoydesh-
gineer should check for stabilization of a power-law usiogtech-
niques. One suspects even that some of these tag correfation
works could, with the help of a careful engineer, serve abéise of
a taxonomy using a Semantic Web languages such as RDF Schema
[3]. A fully automatic process for deducing any type of tazory
based only on tag co-occurence is unlikely to work, sincerttis
no one-to-one correspondence between concepts and keyword
is not always possible for the users to express a complexepbnc
with a single keyword and thus they may use more than one tag
to express the concept association that the item brings them”

[13].

6.3 Tag Graphs and Human Language Net-
works

In the previous section, we have shown that tag networks ean b
easily constructed and visualized and that they could puosedul
in simple information retrieval. However, exploring theoperties
of these tag graphs (e.g. node centrality, degree disimiintand so
on) - and their evolution - can provide us with much deepéghts
into how folksonomies develop from the aggregate behavior-o
dividual users. They could additionally provide insightoirhow
more complex semantic structures evolve.

A starting point in our further modeling is the work that seek
to explain the emergence of structure and syntax in human lan
guage. In recent high-profile work, Ferrer i Cancho and St [
5] study the evolution of several human languages, by coctitig
their graphical protostructure. They do this by taking éacpr-
puses of (natural language) texts and constructing irdeelation
graphs between all pairs of words in the language, basedeon th
distance they appear from each other in these texts.

Next, they analyze the resulting graphical structure faheaf
the considered languages. Following the seminal work df Ztigy
show that the retrieved networks, far from having the stmgpre-
dicted by random graph theory for such large networks [2}eha
in fact a “small world” structure&. Furthermore, this protostructure
is remarkably similar across different languages.

Graphs which exhibit a small world network effect have the di
tribution of the mean degree of the edges follow Zipf's fagole et
al.[18] argue that, far from being a mere coincidence, thesi es-
sential underlying property of human languages, and funtbee,
syntax and structure in human languages emerges “for freef f
these simpler structures. In [6], they simulate a versiodipf’s
classic generative model of human language: speakersr pgoefe
use ambiguous, general words which have minimum entropy (an
minimize their effort for choosing the word), while heargrefer
words with high entropy, and thus high informational value.

Comparing this setting with the considered tripartite mazfe
tagging systems (presented above and in Fig. 1), we obseme s
important similarities to models of language evolution. eTie-
sources (websites) could correspond to the objects in gievald

A small-world graph is a graph in which any two nodes are con-
nected by a path of small maximum length - usually 2-4.

5The degree of a vertex is the number of edges connected to that
vertex. The distribution of the degrees across all vertésemn
important property of a graph



Figure 9:

Ecology

Fajek

Visualization of a tag correlation network, constdering only the correlations corresponding to one central wde “complexity”

Figure 10: Visualization of a tag correlation network, consdering all relevant correlations

- that need to be described by the language, the users togh&-sp
ers of the language, and the tags to the tokens of the landuage
the words). Tags also likely have a Zipf’s law distributidhnode
degrees, and while the massive data harvesting neededvidisiso
is difficult, our provisional results do point in this dirém. In such

a case, generative models proposed by Sole et al. [6] islusefu
explain the online behavior of taggers with respect to tierma-
tional value of tags. Thus, folksonomy structure could dlsseen
as emerging at the intersection between the efforts of taggko
try to minimize their effort, and thus prefer to choose mamemon
tags with less informational value and retrievers (i.e. ditees”)

who need to use this tags to find as precise as possible resourc
and so use tags with the highest informational value. In @m-g
erative model shown in Section 3, the results of this “leéffstre
principle” would be the parametex.

7. CONCLUSION AND FUTURE WORK

This work has explored a number of issues highly relevant to
the question of whether a coherent way of organizing megackat
emerge from distributive tagging systems. We began byrongi
a principled generative model of tagging. Our model is based
Mika’s formalization of tagging, but additionally incorgaies the



informational value of tags which we believe allows for a mor
complete account of tagging [13]. Our model formalizes many

systems, the World Wide Web.

of the common-sense observations made by people who are info 3§~ ACKNOWLEDGEMENTS

mally studying folksonomies.

Using a larger set of empirical data than previous studies ha
used, we have shown that tagging distributions tend to lstabi
into power law distributions. This is important in that aldeadis-
tribution is an essential aspect of what might be user causen
around the categorization of information driven by tagdiedpav-
iors. Furthermore, as shown by our empirical study of the tag
ging history of these items, this behavior depends on thebeum
of users and to some extent on the temporal duration of thggrtgg
process. Therefore, given sufficient active users, ovee tinsta-
ble distribution with a limited number of stable tags and acmu
larger “long-tail” of more idiosyncratic tags develops. éOmight
consider this stabilized distribution to be an emergeregatiza-
tion scheme. This stable categorization scheme is deschbe
scale-free power law, such that in the future, unless a ngwvith
a high informational value is discovered, further taggirity @nly
reinforce the pre-existing categorization scheme givethieylim-
ited number of stable tags. One might claim that the users hav
collectively discovered a collective categorization snke The op-
timality of such a scheme merits further attention.

Using an example domain, we explored one of the most empir-

ically challenging aspects of the generative model: therink-

tional value of a tag as a function of how many pages the tag can [7]

retrieve when searched. We examined how this information ca
be used with multiple tags to visualize correlation grajptas tend
insight into the categorization process and into existirtgitions
about how concepts are related.

It seems quite plausible that folksonomies and ontologits;h
are merely new incarnations of the age-old distinction leetwcat-
egorization and classification respectively, are not nhenamies,
but fundamentally compatible, as tagging-based categfiwiz in
our data exhibit emergent consensus. By focusing on thexhigs
are most common in the tagging distribution, one should e ab
to understand the essence of the collective categorizatbeme.
One could then safely ignore the “long-tail” of idiosyndcaand
low frequency tags that are used by users to tweak their own re
sults for personal benefit, or alternatively, treat the fjdail” as an
object of examination for other reasons. As shown by ouralisu
ization graphs, insightful categorization and classifaczaschemes
can be gained by focusing on the high frequency “short heasl” (
opposed to the “long tail”) of a stabilized power law tag disi-
tion.

Using the methodology outlined above, in particular theripo-
lation of power laws and measures of relative entropy, agyitey
application should be able to detect whether and at whatt @oin
tagged resource has stabilized to a power law. Using theoEcit-
Leibler divergence, interested parties can test their istgiloutions
for stabilization. This is of practical importance since ttesults
of data mining or knowledge engineering from stabilized désy
tributions will be more mature and less likely to change wiitie,
and therefore take advantage properties of the power latni-dis
bution. Future work will elaborate on the results presettere
regarding categorization schemes based on tag co-occeresmd
informational value and will examine whether these reshtkl
among many different tagging applications. Lastly, thessuits
suggest that treating collaborative tagging systems aplesrsys-
tems yield important insights into the dynamics and proessd
these systems. Insights gained by taking collaborativginggsys-
tems seriously as an empirical object of study could resuihi
sight into the complexity of the one of the world’s most coexpl

This work was performed during the authors’ visit at the Sant
Fe Institute, Santa Fe, NM, USA. The authors wish to thanks th

SFI for its support in the initial stages of this research.
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