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ABSTRACT
The debate within the Web community over the optimal means
by which to organize information often pits formalized classifica-
tions against distributed collaborative tagging systems.A number
of questions remain unanswered, however, regarding the nature of
collaborative tagging systems including whether coherentcatego-
rization schemes can emerge from unsupervised tagging by users.
This paper uses data from tagged sites on the social bookmark-
ing site del.icio.us to examine the dynamics of collaborative tag-
ging systems. In particular, we examine whether the distribution of
the frequency of use of tags for “popular” sites with a long history
(many tags and many users) can be described by a power law dis-
tribution, often characteristic of what are considered complex sys-
tems. We produce a generative model of collaborative tagging in
order to understand the basic dynamics behind tagging, including
how a power law distribution of tags could arise. We empirically
examine the tagging history of sites in order to determine how this
distribution arises over time and patterns prior to a stabledistribu-
tion. Lastly, by focusing on the high-frequency tags of a site where
the distribution of tags is a stabilized power law, we show how tag
co-occurrence networks for a sample domain of tags can be used
analyze the meaning of particular tags given their relationship to
other tags.

1. INTRODUCTION

1.1 Folksonomies and Ontologies
The issue of how metadata for web resources should be gen-

erated with the greatest efficiency and efficacy continues tobe a
central concern as the amount of information on the Web grows. A
small but increasingly influential set of web applications,including
the social bookmarking site del.ici.ous, Flickr, Furl, Rojo, Con-
notea, Technorati, and Amazon allow users to “tag” objects with
keywords to facilitate retrieval both for the user and for other users.
Their categories are based on the set of tags that are used to charac-
terize some resource, and these categories are commonly referred
to as “folksonomies.” This approach to organizing online informa-
tion is usually contrasted with formal ontologies that are imposed
by experts, not by users [17].

There are both benefits and drawbacks to the tagging approach.
Tagging is considered a categorization process, in contrast to a pre-
optimized classification process as exemplified by expert-created
Semantic Web ontologies. Jacob defines the distinction between
categorization and classification in the following way: “Catego-
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rization divides the world of experience into groups or categories
whose members share some perceptible similarity within a given
context. That this context may vary and with it the composition of
the category is the very basis for both the flexibility and thepower
of cognitive categorization” while “classification involves the or-
derly and systematic assignment of each entity to one and only one
class within a system of mutually exclusive and non-overlapping
classes; it mandates consistent application of these principles within
the framework of a prescribed ordering of reality”[10]. Tagging
systems allow much greater malleability and adaptability in orga-
nizing information than do formal classification systems. Propo-
nents of tagging systems argue that “groups of users do not have to
agree on a hierarchy of tags or detailed taxonomy, they only need to
agree, in a general sense, on the ‘meaning’ of a tag enough to label
similar material with terms for there to be cooperation and shared
value.”[12]. Tagging is able retrieve the data and share data more
efficiently than classifying: “Free typing loose associations is just
a lot easier than making a decision about the degree of match to a
pre-defined category (especially hierarchical ones). It’slike 90%
of the value of a proper taxonomy but 10 times simpler.” [4].

However, a number of problems stem from organizing informa-
tion through tagging systems including ambiguity in the meaning
of tags and the use of synonyms which creates informational re-
dundancy. The central concern with using collaborative tagging
to organize metadata is whether or not the system becomes rela-
tively “stable” with time and use. By “stable,” we mean to indicate
that users have developed some consensus about which tags best
describe a site and those tags are used most often. The most prob-
lematic claim for tagging systems would be that because users are
not under a centralized controlling vocabulary, no coherent catego-
rization schemecan emerge at allfrom collaborative tagging. In
this case, tagging systems would be inherently unstable, where the
tags used and their frequency of use would be in a constant state of
flux, especially those systems with an open-ended number of non-
expert users like the social bookmarking site del.icio.us.It would
be difficult to identify or utilize any collective knowledgeproduced
by users with respect to a site.

Given the debate over the utility of collaborative tagging sys-
tems compared to other methods of organizing information, it is in-
creasingly important to understand whether a coherent and socially
navigable way of organizing metadata can emerge from distributive
tagging systems. This paper will empirically examine a crucial as-
pect of this question: whether tag distributions stabilizeover time,
and if so, what type of distribution emerges. Because each tag for
a given resource is repeated a number of times by different users,
for any given tagged resource, there is a distribution of tags and
their associated frequencies. The collection of all tags and their
frequencies ordered by rank frequency for a given resource is the



tag distribution of that resource.
There is hope among the proponents of collaborative taggingsys-

tems that a stable distribution might arise from these systems. Note
that bystable we do not mean that users stop tagging the resource,
but instead that the tagging eventually settles to a group oftags that
describe the resource well and where new users mostly reinforce
already present tags in the same frequency as in the stable distrib-
ution. There is reason to believe a stable distribution should arise.
Online tagging systems have a variety of features that are often as-
sociated with complex systems such as a large number of users, a
lack of central coordination, and non-linear dynamics, andthese
sort of systems are known to produce a type over time a distribu-
tion known as a “power law.” One important feature of power laws
produced by complex systems is that they can often be “scale-free,”
such that regardless of how larger the system grows, the shape of
the distribution remains the same, and thus “stable.” Researchers
have observed, some casually, some more rigorously, that the dis-
tribution of tags applied to particular URLs in tagging systems fol-
lows a power law distribution where there are a relatively small
number of tags that are used with great frequency and a great num-
ber of tags that are used infrequently [12]. We are concernedwith
a thorough demonstration, explanation, and empirical analysis of
this phenomenon.

1.2 The Dynamics and Structure of Tagging
What are the underlying dynamics of a collaborative taggingsys-

tem that could cause a tag distribution to reach some point ofsta-
bility? Work by Golder and Huberman using del.ici.ous data has
noted a number of patterns in tagging dynamics. The majorityof
sites reach their peak popularity, the highest frequency oftagging
in a given time period, within 10 days of being saved on del.icio.us
(67% in the data set of Golder and Huberman) though some sites
are “rediscovered” by users (about 17% in their data set), suggest-
ing stability in most sites but some degree of “burstiness” in the
dynamics that could lead to a cyclical relationship to stability char-
acteristic of chaotic systems [9]. Importantly, Golder andHuber-
man find that the proportion of frequencies of tags within a given
site stabilize over time; they find it occurs usually after around be-
ing bookmarked 100 times [9]. However, they do not measure what
type of distribution arises from a stabilized tagging process, nor do
they present a method for determining stability.

Golder and Huberman cite two important features of such collab-
orative tagging systems that might give rise to this type of stability:
imitation of others and shared knowledge [9]. One of the specific
features of del.icio.us is the inclusion of “most common tags” for a
given site when a user saves that site, facilitating the use of the tags
others have used with the greatest frequency. They explain that the
stability of common tags, which are displayed for users whenthey
save a site, is based on a shared background and set of assumptions
among users. Given that the stability of tag frequencies presum-
ably relies on both the interaction between users (imitation) and
the shared cultural knowledge of users, the stability and patterns
of tag frequency distributions might lend insight into the degree to
which there is consensus within a community about how to charac-
terize some site or into whether there are different groups of users
with different sets of assumptions and who are tagging the same
site. Or, as Golder and Huberman suggest, changes in the stability
of such patterns might suggest that groups of users are migrating
away from a particular consensus on how to characterize a site and
its content or negotiating the changing meaning of that site. To the
extent this consensus is stable, it is ripe for development into a clas-
sification system and perhaps even formalization into an ontology.

Assuming a stabilized distribution arises with a well-known shape

and properties, in order to make inferences about the existence of
some sort of meaning structure in the distribution, we need to un-
derstand the information inherent in the distribution of tags. This
inherent structure can be traced to what we call theinformational
value of a tag. By “informational value” we mean the informa-
tion conveyed by the natural language term used in the tag andhow
this makes the tag useful for retrieval of and distinction between
resources or not. Since the “meaning” of tags is elusive, oneway
to model their informational value is to look at their co-occurrence
with other tags, and to try to answer questions about how these
co-occurrence models reflect the informational value of particular
tags: Does the structure of tag networks based on co-occurrence
make intuitive sense, doing justice to the common-sense ideas we
have about the relationships between the concepts under scrutiny?
Can tagging provide users with any new insight into the meaning
of resources just by analyzing the structure of networks based on
co-occurrence? Shen and Wu analyze the structure of a tagging net-
work for del.icio.us data as we do in Section 6, although unlike in
our examples their graph is unweighted [16] and does not reflect the
information in the tag distribution. They examine the degree dis-
tribution (the distribution of the number of other nodes each node
is connected to) and the clustering coefficient (based on a ratio of
the total number of edges in a subgraph to the number of all possi-
ble edges) of this network and find that the network is indeed “scale
free,” and so has the features Watts and Strogatz found to character-
ize small world networks: small average path length and relatively
high clustering coefficient [19]. A large amount of work exploring
the structural properties of nature language networks findssimilar
results [6].

In Section 3 we formalize a generative model for tagging in order
to suggest how the patterns observed in tagging distributions might
emerge. In Section 4 we empirically examine whether taggingdis-
tributions develop into stable power law distributions andin Section
5 we empirically analyze the trajectory of tagging distributions be-
fore they have stabilized. Establishing the convergence and stabil-
ity of these distributions is essential to understanding whether co-
herent categorization schemes might emerge from distributed tag-
ging systems. Finally, we use the importance of the informational
value of tags to demonstrate how the most frequent tags in a power
law distribution can be used in inter-tag correlation graphs to chart
their relation to one another in Section 4. It is conjecturedthat this
method might be useful in extracting a classification scheme(on-
tology) from a categorization scheme (folksonomy).

2. THE TRIPARTITE STRUCTURE OF TAG-
GING

To begin, we need a conceptual model to describe generic col-
laborative tagging systems which is capable of being formalized
so that we can both make predictions about collaborative tagging
systems based on empirical data and based on generative features
of the model. A well-accepted tripartite model has already been
theorized [11, 13], although we hope to clarify it below:

There are three main entities that compose any tagging system:

• The users of the system (people who actually do the tagging)

• The tags themselves

• The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces consisting
of sets of vertices, which are linked together by edges (see Fig. 1).
The first space, theuser space, consists of the set of all users of the
tagging system, where each vertex is a user. The second spaceis



the tag space, the set of all tags, where a tag corresponds to a term
(“music”) or neologism (“toread”) in natural language. Thethird
space is theresource space, the set of all resources, where each
resource is normally denoted by a unique URI.1 A tagging instance
can be seen as the two edges that links together a user to a tag and
then that tag to a given website or resource. Note that a tagging
instance can associate a date with its tuple of a user, a tag(s), and a
resource.

Figure 1: Tripartite graph structure of a tagging system. An
edge linking a user, a tag and a resource (website) represents
one tagging instance

From the above model and Fig.1, we observe that tags provide
the link between the users of the system and the resources or con-
cepts they search for.

This analysis reveals a number of dimensions of tagging thatare
often under-emphasized. In particular, tagging is oftena methodol-
ogy for information retrieval, much like traditional search engines,
but with a number of key differences. To simplify drastically, with
a traditional search engine a user enters a number of tags andthen
an automatic algorithm labels the resources with some measure of
relevancy to the tagspre-discovery, displaying relevant resources
to the user. In contrast, with collaborative tagging a user finds a
resource, then adds one or more tags to the resource manually, with
a system storing the resource and the tagspost-discovery. When
faced with a case of retrieval, an automatic algorithm does not
have to assign tags to the resource automatically, but can follow
the tags used by the user. The difference between this and tradi-
tional searching algorithms is two-fold: collaborative tagging relies
on human knowledge, as opposed to an algorithm, to directly con-
nect terms to documents before a search begins, and so relieson
the collective intelligence of its human users topre-filter the search
results for relevancy. When a search is complete and a resource
of interest is found, collaborative tagging often requiresthe user to
in turn “tag” the resource in order to store the result in his or her
personal collection. This causes afeedback cycle. These character-
istics motivate many systems like del.icio.us and it is well-known
that feedback cycles are one ingredient of complex systems,giving
further indication that a power law in the tagging distribution might
emerge. Before going further we need to formalize these qualitative
observations about collaborative tagging.

1A “Universal Resource Identifier” such as
http://www.example.comthat can return a web-page when ac-
cessed. Notice that some tagging based systems such as Spurl
(http://www.spurl.net) store the entire document, not the URI, but
most systems such as del.icio.us store only the URI. Regardless,
our resource space is whatever is being tagged.

3. A GENERATIVE MODEL
Our model needs to combine the three-level model of tagging

presented above with the manner in which feedback cycles andin-
formational value give rise to a stable distribution of tagsover time.
The notion of a feedback cycle is encapsulated in the simple idea
that a tag that has already been used is likely to be repeated.This
behavior is a clear example ofpreferential attachment, known pop-
ularly as a “rich get richer” model. To model this phenomena,we
need to have a baseline probabilityP (a), or the probability of a
user committing a “tagging action.” This is the probabilitythat for
every time stept, a “tag” is added to a resource. There are very few
empirical studies that estimate this parameter currently.Addition-
ally, since users often tag more than once, there isP (n) that deter-
mines the number (n) of tags a user is likely to add at once based
on the distribution of the number of tags a given user employsin
a single tagging action. As reported by other studies, this number
varies between two and ten [9], although we will holdn = 1 in
order to simplify our exposition. Once a tagging action (P (a)) has
been done, a preferential attachment model can be formalized by
use of a simple “shuffling theory” model [8]. This model holdsthat
an “old tag” is reinforced with constant probabilityP (o), so a “new
tag” is added with probability1 − P (o). If the old tag is added, it
is added with a probabilityR(x)�

R(i)
, whereR(x) is the number of

times that particular previous tagx has been chosen in the past and�
R(i) is the sum of all previous tags. This leads to tags that have

been heavily reinforced in the past being further reinforced in the
future.

We illustrate this with a simple example, as given by Figure 2,
whereP (tag) is P (o) and assuming for simplificationP (a) = 1.
Also, we will have a user only add one new tag per time step. At
time step 1 in our example, the user has no choice but to add a
new tag, “piano” to the page. At the next stage, the user does
not reinforce a new tag but chooses a new tag, “music”, and so
P (piano) = 1

2
and P (music) = 1

2
. At t = 3, the user re-

inforces a previous “piano” tag and soP (piano) increases to2
3
,

while P (music) decreases to1
3
. At t = 4, a new tag is chosen

(“digital”), and soP (piano) goes up whileP (music) decreases
to 1

4
and P (digital) is 1

4
. Taken to its conclusion, this process

produces a “power law” distribution.

1-P(tag)

P(piano)
=1.0

P(tag)

P(piano)
= 1/2

P(music)
= 1/2 

P(piano)
= 2/3 

tag=piano

t=1

tag=music tag=piano tag=digital

P(music)
= 1/3 

P(music)
= 1/4 

P(piano)
= 1/2

P(digital)
= 1/4 

t=2 t=3 t=4

Figure 2: An example of how shuffling leads to preferential at-
tachment

Preferential attachment models do not explain why a particular
new tag is added to a resource; in practice, tags are not addedat
random because their informational value is taken into account. For
example, the oldest tags for a resource are not always the most pop-



ular tags. A new tag may be added that uncovers an informational
dimension not captured by older tags, and if this new dimension
proves both relevant and useful then other users will reinforce the
tag that represents the dimension, perhaps at the expense ofolder
tags with less relevant informational dimensions. In this case, the
new relevant tag would experience a burst of reinforcement,per-
haps surmounting the frequency with which older tags were used
and eventually stabilizing towards the top of the tag distribution for
a resource. The entire tagging process might be considered an “ex-
ploration” versus “exploitation” process where the exploration of
possibly relevant dimensions of a resource is balanced withthe ex-
ploitation of previously tagged dimensions of a resource. Astabi-
lized distribution theoretically represents a state wherethe optimal
number of dimensions has been tagged.

While it is impossible for a generic model to assign a priori the
exact informational value of a resource, it is possible to atleast par-
tially model the informational value of a specific tag. A hypotheti-
cal tag applied to every relevant resource would, if used in asearch
by a user to discover resources, retrieve every document (imagine
a tag such as “website,” but used once by at least one user on every
resource). This type of tag has an informational value (I) of 0, and
we assume that the informational value of a tag that retrieves no
resources is also 0. Another tag that hypothetically selects only the
resource needed, would have an informational value (I) of 1. This
does not occur so precisely in practice, as users presumablywant
the optimal tag to return some cognitively appropriate (k) number
of resources, such as the number of resources that fit on the screen
or that allow users to effectively browse an area, and this may vary
per user. However, for the purposes of our model we will assume
that k = 1 when quantifying informational value to simplify our
exposition. Notice also that a user may use multiple tags andthese
tag combinations may have different informational values that are
not additive. In our work with del.icio.us, we can empirically esti-
mate the informational value of a tag by retrieving the number of
web-pages a del.icio.us search with a tag (or combination oftags)
returns and converting it into a probability, as done in Section 6.

In order to explain tight binding between information retrieval
and value, we show an abstract example in Figure 3. In this ex-
ample the act of “tagging” by a user (ux) can be considered the
assignment of a tag (ty) to a given resource (rz). Thus, a given
search can be considered a transversal fromux via a number of
tags to a number of resources. The user wishes to minimize the
number of tags needed to retrieve the relevant resources, which is
unknown to both the system and the user. Following Zipf’s famous
“Principle of Least Effort,” users presumably minimize thenumber
of tags used. [20]. In our example the useru2 wishes to use a group
of tags to discover a relevant resource, which an oracle would tell
us isr2. While tagt1 and t5 retrieve exactly one resourceI(t1)
andI(t5) = 1, these tags do not identifyr2. I(t3) = 0, since it re-
trieves all resources in the data-set. WhileI(t2) andI(t4) > I(t3),
the combination of both tags retrieve exactly the resourcer2 in our
example soI(t3, t2) = 1 > I(t2) andI(t3). Notice that informa-
tional value is not additive, sinceI(t1, t5) = 0 while bothI(t1)
andI(t5) = 1.

If the user is satisfied with the search results and wishes to add
a retrieved resource to their personal collection, they will reinforce
one of the existing tags of the resource by repeating one of the pre-
existing tags, and they might also add a new tag. If the user isnot
satisfied with the search results, they will likely add a new tag to
a retrieved resource. This tag may allow them to use fewer tags in
future searches to retrieve the same resource. Thus, if we linearly
combine our two models of informational value and preferential
attachment, we can generate the probability of a tagx being rein-

u2

u1

u3

u4

u5

u6

t1

t2

t3

t4

t5

r1

r2

r3

r4

USERS TAGS RESOURCES

Figure 3: Tripartite tagging system graph used for search. The
dotted edges represent options, while the dark edges represent
a particular user engaging in a search for the shaded resource

forced or added as a linear interpolation of preferential attachment
and informational value, withλ being used to weigh the factors:

P (x) = λ ∗P (I(x))+ (1−λ) ∗P (a) ∗P (o) ∗P (
R(x)
�

R(i)
) (1)

This formalizes a process that would give rise to a power law
via preferential attachment, but one where the informational value
of a tag additionally figures into the dynamics of the taggingdis-
tribution. This model as it stands is heavily parameterized, where
the values of the parameters no doubt vary from one tagging sys-
tem to another. However, to see if this model holds up to real data
first we need to determine whether a power law actually arisesfrom
empirical data.

4. DETECTING POWER LAWS IN TAGS
According to our model, there should be a connection between

the stability of the distribution of tags and the general shape of the
distribution. If our qualitative intuition about tagging systems as
complex systems and our model are correct, this distribution should
follow a “power law.” Our complete data set includes 750 tagged
sites from del.ici.ous, 500 of which were tagged over 400 times and
taken from the “popular” section of del.icio.us and 250 of which
were randomly selected from the “recent” section of del.icio.us.
Both sections are prominently displayed on the del.icio.ussite, though
“recent” sites are those tagged within the short time periodimme-
diately prior to viewing by the user and “popular” sites are those
which are heavily tagged in general.

4.1 Power Law Distributions: Definition
A power law is a relationship between two scalar quantitiesx

andy of the form:

y = cx
α (2)

Whereα andc are constants characterizing the given power law.
Without loss of generality, Eq. 2 can also be written as:

log y = α log x + log c (3)

When written in this form, a fundamental property of power laws
becomes apparent– when plotted in log-log space, power lawsare
straight lines. Therefore, the most simple (and widely used) method
to check whether a distribution follows a power law and deduce
its parameters is to apply a logarithmic transformation, and then



perform linear regression in the resulting log-log space. Recent
literature on the subject (Newman ’05 [14]) suggests, however, that
this may introduce a bias in the value of the exponent, and as the
reliable alternative proposes the following formula to determineα:

α = 1 + n ∗

�
n�

i=1

ln
xi

xmin �−1

(4)

wherexi, i = 1..n are the measured values ofx andxmin cor-
responds to the lowest value for which the power law behaviour
holds. This formula was also used in this work (the interested
reader can consult the full derivation of the above formula in [14]).

In our tagging domain, the intuitive explanation of the above pa-
rameters is as follows:c represents the number of times the most
common tag for that website is used, whileα gives the power law
decay parameter for the frequency of tags at subsequent positions.
Thus, the number of times the tag in positionp is used (forp=1
to 25) should be approximated by a function of the form (where
−α > 0):

Frequency(p) =
Frequency(p = 1)

p−α
(5)

4.2 Empirical Results for Power Law Regres-
sion for Popular Sites

For this analysis, we used a subset of 500 “Popular” sites from
del.icio.us that were tagged at least 2000 times. For each web-
site, we considered the 25 most often used tags. Fig. 4 shows the
observed data when plotted in the log-log scale. After the log-log
transformation, we fit a linear regression to the resulting data points
of each site individually. We computed the aggregate distribution
for all sites by summing the frequency of tags that appear in each
position across the sites and fitted a regression line to the data. The
results are presented in Fig. 5. In all cases, logarithm of base 2 was
used in the log-log transformation2.

To summarize our results, we found that the data points can be
fitted with a linear regression line, with some error. With the ag-
gregate function, the parameter for the slop of the power law, using
the above equation (see Equation 4), had the value:α = −1.278.
For the individual sites (not shown graphically, for the sake of clar-
ity of the picture), the slopes were in a similar range, i.e. with an
averageα = −1.22, with standard deviation±0.03. Thus, it ap-
pears that the power law decay (i.e. slope) is relatively consistent,
both in the cumulative case and across individual sites. Intuitively,
this indicates a fundamental effect of the way tags are distributed in
individual websites independent of the context and contentof the
specific website.

There is a caveat, however. We observed that tags in positions
seven to ten have a considerably sharper drop in frequency than
the general trend line would predict. This means that, for exam-
ple, if we do a piece-wise regression for the tags in the first seven
positions and the tags in the last fifteen positions we would get in
both cases, linear functions, though with slightly different slopes.
Furthermore, as Fig. 4 shows, this effect largely holds for almost
all sites in the data set considered, so it is not attributable to noise
alone, but a consistent effect of the way tagging is performed. We
do not have yet a satisfactory explanation for this effect; it may
have a cognitive explanation, i.e. it may be based on the number of

2Note that the base of the logarithm does not actually appear in the
power law equation (c.f. Eq. 2), but because we use empiricaland
thus possibly noisy data, this choice might introduce errors in the
fitting of the regression phase. However, we did not find significant
differences from changing the base of the logarithm toe or 10.
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Figure 4: Frequency of tag usage, based on relative position.
The dataset consists of 500 heavily tagged sites where for each,
the 25 most frequently used tags were considered. The plot uses
double logarithmic (log-log) scale: the horizontal scale gives the
logarithm base 2 of the relative position (where the most used
tag is in position 1, the second most used tag is in position 2
and so on), while the vertical scale gives the logarithm of the
frequency of use
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Figure 5: Cumulative number of tag usage frequency, based
on their relative position. The plot is on a log-log scale: the
horizontal axis shows the logarithm of the relative position,
while the vertical axis shows the logarithm of the cumulative
frequency of tags in that relative position. The best fit linear
regression (using the least-squares method) is also shown.

tags the average user employs per website, or it may be an artifact
of the user interface specific to del.icio.us, i.e. users seespace for
a particular number of tags or receive a particular number ofsug-
gestions for tags to use. This observation does not affect our basic
result that tag distributions follow power laws.



4.3 Regression Results for Less Popular Sites
The analysis presented in the above section refers to heavily

tagged sites (tagged more than 2000 times) and considers the25
most used tags for each site. In order to further illustrate and ver-
ify our results, we considered an additional sample of 500 sites se-
lected randomly from the “recent” section of del.icio.us and plotted
their distribution on a log-log scale. This set of sites are much less
heavily tagged: the mean number of users of this “random”distribution
is 286.1 with a standard deviation of 18.2, as opposed to the pre-
viously studied “popular” distribution that has a mean of 2074.8
users and a standard deviation of 92.9 users.

Results are shown in Fig. 6. Our analysis shows that for the
less-heavily tagged individual sites, the slopes differedfrom each
other to a much greater extent than with the heavily tagged data,
with an averageα = −3.9 and standard deviation±4.63. Clearly,
the power law effect is much less pronounced for the less-heavily
tagged sites as opposed to the heavily tagged sites, as the standard
deviation reveals a much poorer fit of the regression line to the log-
log plotted data. For sites in the “Popular” category, the S.D. of
the power law decay slope with respect to the average slope isonly
0.03, while for the set of less heavily tagged ones the S.D. is4.63.
In fact, for random sites with relatively few instances of tagging,
the results reveal little other than noise. However, even for some of
these less popular sites, a power law is beginning to emerge,though
it is not yet fully established.
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Figure 6: Frequency of tag usage based on relative position for
a dataset consisting of 500 less-heavily tagged sites (withthe 25
most frequently used tags considered for each).

5. THE DYNAMICS OF TAG DISTRIBUTIONS
In Sect. 4, we have shown that tag distributions converge to

power law distributions. Again, because power laws are scale free,
the emergence of this type of distribution suggests the emergence
of a stable distribution. In this section, we study another aspect of
the problem, namely how the shape of these distributions forms in
time from the tagging action of the individual users. In practice,
this involves measuring the distance between the distributions of
tags of a given site at different time points (in our case, each time
point roughly corresponds to a calendar month, which is discussed
below). We take a novel approach to this problem by employing

a method inspired by information theory, namely the Kullback-
Leibler divergence [7].

5.1 Kullback-Leibler Divergence: Definition
In probability and information theory, the Kullback-Leibler di-

vergence (also known “relative entropy” or “information divergence”)
represents a natural distance measure between two probability dis-
tributionsP andQ (in our case,P andQ are two vectors, repre-
senting discrete probability distributions). Formally, the Kullback-
Leibler divergence betweenP andQ is defined as:

DKL(P ||Q) =
�

x

P (x)log(
P (x)

Q(x)
) (6)

The Kullback-Leibler distance is a non-negative, convex func-
tion, i.e.
DKL(P, Q) ≥ 0, ∀P, Q (note thatDKL(P, Q) = 0 iff. P and Q
coincide). Also, unlike other distance measures it is not symmetric,
i.e. in generalDKL(P, Q) 6= DKL(Q, P ).

5.2 Application to Tag Dynamics
There are two complementary ways to detect whether or not a

distribution has converged to a steady state using the Kullback-
Leibler divergence, which is also known as relative entropy:

• The first is to take the relative entropy between every two
consecutive points in time of the distribution, where each
point in time represents some change in the distribution. Again,
in our data, tag distributions are the rank-ordered tag-frequencies
for the top 25 highest-ranked unique tags for any one web-
site. Each point of time was a given month where the tag
distribution had changed; months where there was no tag-
ging change were not counted as time points. Using this
methodology, a tag distribution that was “stable” would show
the relative entropy converging to and remaining at zero over
time.

• The second method involves taking the relative entropy of
the tag distribution for each time step with respect to the fi-
nal tag distribution for that site (where “final” indicates the
distribution at the time the measurement was taken, the last
observation in the data). This method is most useful for heav-
ily tagged sites, for which (as shown in Sect 4) the final dis-
tribution has already converged to a power law.

The two methods are complementary because the first method-
ology would converge to zero if the two consecutive distributions
are the same, and so could detect when distributions converged if
even temporarily. One could imagine a cyclical pattern of stabiliza-
tion and destabilization being detected using this first method. The
second method assumes that the final time point is the stable dis-
tribution so detects convergence only towards the final distribution.
If both of these methods produce relative entropies that approach
zero, then we can be certain the distributions have converged over
time to a single distribution, which is the distribution at the final
time point. Since we have already shown that final distributions
converge to power laws, what is actually studied is the dynamics of
the convergence to the power law.

5.3 Empirical Results for Tag Dynamics
The analysis of the dynamics of tagging is considerably more

involved than the analysis of the final tag distributions. Because
the length of the histories varies widely, there is no meaningful
way to compute a cumulative measure across all sites as in Sect



4, so our analysis has to consider each resource individually. In
Fig. 7 (A and B), we plot the results for the convergence of the
500 ”popular” sites, selected as to simultaneously satisfyseveral
requirements. First, their final distribution must have converged
to a power law. Second, their complete tagging history must have
been available from the first tagging instances and this history must
have had a substantial length. In the data set considered, upto 35
time points are available for some sites (which roughly corresponds
to 3 years of data, since one time point represents one month).
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Figure 7: Relative Entropy (i.e. KL divergence) between tag
frequency distributions at consecutive time-steps
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Figure 8: Relative Entropy (KL divergence) of tag frequency
distribution at each time step, with respect to the final distrib-
ution

There is a clear effect which can be observed from the dynamics
of the above distributions. (Note that in Figs. 7 and 8, the first two
time points were omitted because their distribution involved few

tags and were thus very highly random.) At the beginning of the
process when the distributions contain only a few tags, there is a
high degree of randomness, indicated by early data points. How-
ever, in all cases this converges relatively quickly to a very small
value, and then (in the final ten steps) to a Kullback-Leiblerdis-
tance which is so low that is graphically indistinguishablefrom zero
(with a few outliers). If the Kullback-Leibler divergence between
two consecutive time points (in Fig. 7) or between each step and the
final one (Fig. 8) becomes zero (or close to zero), it indicates that
the shape of the distribution has stopped changing. This result sug-
gests that the power law may form relatively early on in the process
for most sites and persist with remarkable consistency throughout.
Even if the number of tags added by the users increases many fold
afterwards, the new tags reinforce the already-formed power law.
Interestingly, there is a substantial amount of variation in the initial
values of the Kullback-Leibler distance prior to the convergence.
Future work might explore the factors underlying this variation and
whether it is a function of the content of the sites or of the mech-
anism behind the tagging of the site. Additionally, convergence to
zero occurs at approximately the same time period (often within a
few months) for these sites.

6. CONSTRUCTING INTER-TAG CORRE-
LATION GRAPHS

In addition to the role of processes of social influence between
users, the informational value of tags is a central aspect govern-
ing the evolution of tag distributions. We examine one of themost
simple information structures that can be derived through collab-
orative tagging: inter-tag correlation graphs. First, we discuss the
methodology used for getting such graphs. Next we illustrate our
approach through an example, with tags from a limited domain. Fi-
nally, we discuss the importance of tag-tag graphs and how they
could be used to shed light on the underlying dynamics of the tag-
ging process.

6.1 Methodology
The act of tagging resources by different users induces, at the tag

level, a simple distance measure between any pair of tags. Inour
case, define the distance between two tagsTi, Tj through a cosine
distance measure:

Dist(Ti, Tj) =
N(Ti, Tj)�

N(Ti) ∗ N(Tj)
(7)

Where we denote byN(Ti), respectivelyN(Tj), the number of
times each of the tags was used individually to tag all pages,and by
N(Ti, Tj) the number of times two tags are used to tag the same
page (summed up over all pages). The distance measure captures a
degree of co-occurrence (which we interpret as a similaritymetric)
between the concepts represented by the two tags. The distance
measure can play a big role in actual structure retrieved andwe
note that there are more sophisticated distance measures proposed
both in item-item collaborative filtering (see [15]), and from text
mining literature. For this paper, cosine distance seemed to work
well enough.

Next, from these similarities we can construct a tag-tag corre-
lation graph or network, where the nodes represent the tags them-
selves (weighed by their absolute frequencies), while the edges are
weighed with the cosine distance measure. We build a visualiza-
tion of this this weighed tag-tag correlation, by using a “spring-
embedder” type of algorithm - in our case we preferred the well-
known Kawada-Kawai algorithm [1]. An analysis of the structural
properties of such tag graphs may provide important insights into



how people tag and how semantic structure emerges in distributed
folksonomies (we return to this issue in Section 6.3, where we dis-
cuss the relation between this approach and the structures derived
in the literature on language evolution).

While it would be difficult if not impossible for independentre-
searchers to collect enough data to construct and analyze the entire
space of tags used in del.icio.us, we did collect enough datato pro-
vide an illustration of the approach for a restricted sub-domain.

6.2 Constructing tag-tag correlation networks
In order to exemplify our approach, we collected the data and

constructed visualizations for a restricted class of 15 tags, all re-
lated to the tag “complexity.” Our goal, in this example, wasto
examine which sciences does the user community of del.icio.us
see as most related to “complexity” science (a problem whichhas
traditionally elicited some discussion).3 The visualizations were
made on Pajek [1]. The purpose of the visualization was to study
whether the proposed method retrieves connection between acen-
tral tag “complexity” and related disciplines. We considered two
cases:

• Only the dependencies between the tag “complexity” and all
other tags in the subset are taken into account when building
the graph (Fig. 9).

• 30 other edges (i.e. 45 edges in total for 15 tags) are con-
sidered (Fig. 10). These taken as the ones with the high-
est expected correlations, though in future work we’ll con-
sider more sophisticated methods for determining the cut-off,
based on examining the deviation from the mean.

In both figures, the size of the nodes is proportional to the ab-
solute frequencies of each tag, while the distances are, roughly
speaking, inversely related to the distance measure (as returned by
the “spring-embedder” algorithm).4 We tested two energy mea-
sures for the “springs” attached to the edges in the visualization:
Kamada-Kawai and Fruchterman-Reingold [1]. For lack of space,
only the visualization returned by Kamada-Kawai is presented here,
since we feel it is more faithful to the proportions present in the
data.

The results from the visualization algorithm do match well what
one would intuitively expect to see in this domain. Some nodes are
much larger than others, which, again shows the taggers prefer to
use to general, heavily used tags (e.g. the tag “art” was used25
times more than “chaos”). Tags such as “chaos”, “alife”, “evolu-
tion” or “networks” which correspond to topics generally seen as
close to complexity science (some of them were actually developed
in the context of complex systems), come close to it. At the other
end, the tag art is a large, distant node from complexity. This is
not so much due to the absence of sites discussing the mathemat-
ics/complexity aspects in art. In fact, there are quite a fewof such
sites - but they represent only a small proportion of the total sites
tagged with “art,” leading to a large distance measure. There are,
however, some problems in the structure retrieved: the tag “ecol-
ogy” would be expected to appear much closer to “complexity,”
since much research on complexity in biological systems hasfo-
cused on applications in ecology.

3The choice of terms considered in the subset is loosely basedon
the topics covered at the 2006 summer course on complexity of-
fered by the Santa Fe Institute.
4For two of the tags, namely “algorithms” and “networks,” both
absolute frequencies and co-dependencies were summed overthe
singular form tag, i.e. “network” and the plural “networks,” since
both forms occur with relatively high frequency.

Collaborative tagging does not always results in sheer chaos.
While formal ontologies are of utmost use in highly structured do-
mains such as biology, in general domains like “web pages” col-
laborative tagging is usually seen as the better route. Yet even in an
open-ended domain like “web pages,” our data seems to show there
is some consensus about how to categorize the data. These tag-
correlation graphs could provide knowledge engineers guidance in
how people naturally categorize data, although any knowledge en-
gineer should check for stabilization of a power-law using our tech-
niques. One suspects even that some of these tag correlationnet-
works could, with the help of a careful engineer, serve as thebase of
a taxonomy using a Semantic Web languages such as RDF Schema
[3]. A fully automatic process for deducing any type of taxonomy
based only on tag co-occurence is unlikely to work, since “there is
no one-to-one correspondence between concepts and keywords. It
is not always possible for the users to express a complex concept
with a single keyword and thus they may use more than one tag
to express the concept association that the item brings up inthem”
[13].

6.3 Tag Graphs and Human Language Net-
works

In the previous section, we have shown that tag networks can be
easily constructed and visualized and that they could proveuseful
in simple information retrieval. However, exploring the properties
of these tag graphs (e.g. node centrality, degree distribution, and so
on) - and their evolution - can provide us with much deeper insights
into how folksonomies develop from the aggregate behavior of in-
dividual users. They could additionally provide insight into how
more complex semantic structures evolve.

A starting point in our further modeling is the work that seeks
to explain the emergence of structure and syntax in human lan-
guage. In recent high-profile work, Ferrer i Cancho and Sole [18,
5] study the evolution of several human languages, by constructing
their graphical protostructure. They do this by taking large cor-
puses of (natural language) texts and constructing inter-correlation
graphs between all pairs of words in the language, based on the
distance they appear from each other in these texts.

Next, they analyze the resulting graphical structure for each of
the considered languages. Following the seminal work of Zipf, they
show that the retrieved networks, far from having the structure pre-
dicted by random graph theory for such large networks [2], have,
in fact a “small world” structure.5 Furthermore, this protostructure
is remarkably similar across different languages.

Graphs which exhibit a small world network effect have the dis-
tribution of the mean degree of the edges follow Zipf’s law.6 Sole et
al.[18] argue that, far from being a mere coincidence, this is an es-
sential underlying property of human languages, and furthermore,
syntax and structure in human languages emerges “for free” from
these simpler structures. In [6], they simulate a version ofZipf’s
classic generative model of human language: speakers prefer to
use ambiguous, general words which have minimum entropy (and
minimize their effort for choosing the word), while hearersprefer
words with high entropy, and thus high informational value.

Comparing this setting with the considered tripartite model of
tagging systems (presented above and in Fig. 1), we observe some
important similarities to models of language evolution. The re-
sources (websites) could correspond to the objects in the real world

5A small-world graph is a graph in which any two nodes are con-
nected by a path of small maximum length - usually 2-4.
6The degree of a vertex is the number of edges connected to that
vertex. The distribution of the degrees across all vertexesis an
important property of a graph
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Figure 10: Visualization of a tag correlation network, considering all relevant correlations

- that need to be described by the language, the users to the speak-
ers of the language, and the tags to the tokens of the language(i.e.
the words). Tags also likely have a Zipf’s law distribution of node
degrees, and while the massive data harvesting needed to show this
is difficult, our provisional results do point in this direction. In such
a case, generative models proposed by Sole et al. [6] is useful to
explain the online behavior of taggers with respect to the informa-
tional value of tags. Thus, folksonomy structure could alsobe seen
as emerging at the intersection between the efforts of taggers who
try to minimize their effort, and thus prefer to choose more common
tags with less informational value and retrievers (i.e. “hearers”)

who need to use this tags to find as precise as possible resources
and so use tags with the highest informational value. In our gen-
erative model shown in Section 3, the results of this “least effort
principle” would be the parameterλ.

7. CONCLUSION AND FUTURE WORK
This work has explored a number of issues highly relevant to

the question of whether a coherent way of organizing metadata can
emerge from distributive tagging systems. We began by outlining
a principled generative model of tagging. Our model is basedon
Mika’s formalization of tagging, but additionally incorporates the



informational value of tags which we believe allows for a more
complete account of tagging [13]. Our model formalizes many
of the common-sense observations made by people who are infor-
mally studying folksonomies.

Using a larger set of empirical data than previous studies have
used, we have shown that tagging distributions tend to stabilize
into power law distributions. This is important in that a stable dis-
tribution is an essential aspect of what might be user consensus
around the categorization of information driven by taggingbehav-
iors. Furthermore, as shown by our empirical study of the tag-
ging history of these items, this behavior depends on the number
of users and to some extent on the temporal duration of the tagging
process. Therefore, given sufficient active users, over time a sta-
ble distribution with a limited number of stable tags and a much
larger “long-tail” of more idiosyncratic tags develops. One might
consider this stabilized distribution to be an emergent categoriza-
tion scheme. This stable categorization scheme is described by a
scale-free power law, such that in the future, unless a new tag with
a high informational value is discovered, further tagging will only
reinforce the pre-existing categorization scheme given bythe lim-
ited number of stable tags. One might claim that the users have
collectively discovered a collective categorization scheme. The op-
timality of such a scheme merits further attention.

Using an example domain, we explored one of the most empir-
ically challenging aspects of the generative model: the informa-
tional value of a tag as a function of how many pages the tag can
retrieve when searched. We examined how this information can
be used with multiple tags to visualize correlation graphs that lend
insight into the categorization process and into existing intuitions
about how concepts are related.

It seems quite plausible that folksonomies and ontologies,which
are merely new incarnations of the age-old distinction between cat-
egorization and classification respectively, are not mortal enemies,
but fundamentally compatible, as tagging-based categorization in
our data exhibit emergent consensus. By focusing on the tagswhich
are most common in the tagging distribution, one should be able
to understand the essence of the collective categorizationscheme.
One could then safely ignore the “long-tail” of idiosyncratic and
low frequency tags that are used by users to tweak their own re-
sults for personal benefit, or alternatively, treat the “long-tail” as an
object of examination for other reasons. As shown by our visual-
ization graphs, insightful categorization and classification schemes
can be gained by focusing on the high frequency “short head” (as
opposed to the “long tail”) of a stabilized power law tag distribu-
tion.

Using the methodology outlined above, in particular the interpo-
lation of power laws and measures of relative entropy, any tagging
application should be able to detect whether and at what point a
tagged resource has stabilized to a power law. Using the Kullback-
Leibler divergence, interested parties can test their tag distributions
for stabilization. This is of practical importance since the results
of data mining or knowledge engineering from stabilized tagdis-
tributions will be more mature and less likely to change withtime,
and therefore take advantage properties of the power law distri-
bution. Future work will elaborate on the results presentedhere
regarding categorization schemes based on tag co-occurrence and
informational value and will examine whether these resultshold
among many different tagging applications. Lastly, these results
suggest that treating collaborative tagging systems as complex sys-
tems yield important insights into the dynamics and processes of
these systems. Insights gained by taking collaborative tagging sys-
tems seriously as an empirical object of study could result in in-
sight into the complexity of the one of the world’s most complex

systems, the World Wide Web.
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