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Abstract

This thesis builds a foundation for the philosophy of the Wiglexamining the crucial
guestion: What does a Uniform Resource ldentifier (URI) nf?e2nes it have a sense,
and can it refer to things? A philosophical and historicaladuction to the Web ex-
plains the primary purpose of the Web as a universal infaonapace for naming and
accessing information via URIs. A terminology, based otinlt$sions in philosophy, is
employed to define precisely what is meant by informationmglege, representation,
and reference. These terms are then employed to create @afioamal ontology and
principles of Web architecture. From this perspective 3amantic Web is then viewed
as the application of the principles of Web architecturenowdedge representation.
However, the classical philosophical problems of senseraefedlence that have been
the source of debate within the philosophy of language meflinree main positions are
inspected: the logicist position, as exemplified by the dpseist theory of reference
and the first-generation Semantic Web, the direct referpasiion, as exemplified by
Putnam and Kripke’s causal theory of reference and the siegeneration Linked Data
initiative, and a Wittgensteinian position that views trentntic Web as yet another
public language. After identifying the public languageifios as the most promising,
a solution of using people’s everyday use of search engiseslavance feedback is
proposed as a Wittgensteinian way to determine sense of. URis solution is then
evaluated on a sample of the Semantic Web discovered by ing gseries from a
hypertext search engine query log. The results are evalaaie the technique of us-
ing relevance feedback from hypertext Web searches tordeterrelevant Semantic
Web URIs in response to user queries is shown to considenalpiove baseline per-
formance. Future work for the Web that follows from our argunhand experiments
is detailed, and outlines of a future philosophy of the Wedb ¢aut.
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Chapter 1
Introduction

To imagine a language means to imagine a form of litedwig Wittgenstein (1953)

The World Wide Web is without a doubt one of the most significamputational
phenomena to date. Yet there are some questions that camamisivered without a
theoreticalunderstanding of the Web. Although the Web is impressive psetical
success story, there has been little in the way of developitigeoretical framework
to understand what — if anything — is different about the Wielnfthe standpoint of
long-standing questions of sense and reference in philgsoVhile this situation
may have been tolerable so far, serving as no real barridngdurther growth of
the Web, with the development of the Semantic Web, a nextrgéoe of the Web
“in which information is given well-defined meaning, bet@rabling computers and
people to work in cooperation,” these philosophical questicome to the forefront,
and only a practical solution to them can help the Semantic M/peat the success of
the hypertext Web (Berners-Lee et al., 2001).

1.1 Motivation

There is little doubt that the Semantic Web faces gloomygeots. On first inspection,
the Semantic Web appears to be a close cousin to anothdeattall project, known
politely as ‘classical artificial intelligence’ (also knovas ‘Good-Old Fashioned Al’),
an ambitious project whose progress has been relativetyagjland whose assump-
tions have been found to be cognitively questionable (Cla®997). The initial bet of
the Semantic Web was that somehow Ykebpart of the Semantic Web would some-
how overcome whatever problems the Semantic Web inheribea ¢lassical artificial

1



2 Chapter 1. Introduction

intelligence, in particular, its reliance on logic and irfiece as the basis of meaning
(Halpin, 2004). However, progress on the Semantic Web sastaden relatively slow
over the last decade. Both new techniques and large amotidesta have not yet
caused the Semantic Web to repeat the phenomenal succassdwyiiertext Web.

In order to even understand the astounding ascent of the \Welawe to under-
stand what fundamental component serves as its foundadrle we will go into
this question in much greater detail in Chapter 4, tentptme propose that the Web
consists of a space of names callédiform Resource IdentifiergURIS), a unique
identifier whose syntax is given in Berners-Lee et al. (20&miliar examples of
URIs include URIs for accessing web-pages, suchtag: / / ww. exanpl e. or g, al-
though even something as simple as a telephone number cavemeagURI such as
tel:+1-816-555-1212. It is precisely the use of URIs as their fundamental element
that makes both the hypertext and Semantic Web part of the Web

The first problem that is self-evident to anyone who actualigmpts to deploy any
‘real world’ data on the Semantic Web is that there is litigdgince on how to identify
data using URIs, as well as what information to allow accesBdm these URIs.
For a long time, this question was unanswered, and receasyhly been cryptically
answered (Sauermann and Cygniak, 2008). The second sgdfiré\problem that is
unavoidable to anyone using the Semantic Web for data iatiegris that different
people create different URIs for the same thing. Recensgtaf principles known as
‘Linked Data’ have given some guidance, but only on a supelfievel (Bizer et al.,
2007).

The essential bet of the Semantic Web is that decentraligedts will come to
an agreement on using tsameURI to name a thing, including things that aren’t ac-
cessible on the Web, like people, places, and abstract ptsicget there is virtually
no ability to even find URIs for things on the Semantic Web. r€ntly, each applica-
tion creates its own new URI for a thing, repeating the I@ralbf classical artificial
intelligence. Furthermore, it appears that most thingseeihave no URIs or far too
many.

1.2 Hypothesis

The scientific hypothesis of this thesis must be stated inaaftld fashion, first to
state the problem and then to propose a solution. The proisléme simple question:
What is the meaning of a URI? In order to analyze this problem further, we will
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propose thathe Semantic Web is a kind of language that can be defined by its
conformance to the principles of Web architecture, but nonéheless determining
the meaning of a URI decomposes into a theory of sense and redace, so the
Semantic Web inherits the classical problems regarding sese and reference from
the philosophy of natural language Our proposed solution is then thetheory of
sense and reference suitable to encourage identifier re-uga on the Web can be
implemented by employing relevance feedback from search gme results.

In order to orient the reader to the Web, we give a brief intiatichn to its history
and significance in Chapter 2. We then introduce the philosapterminology that
serves as the foundation the thesis in Chapter 3. Finallyiseethis terminology to
give an exegesis of Web architecture in Chapter 4. In Ch&ptee propose that the
Semantic Web, at least as embodied by the Resource Desorfitamework (RDF),
is a kind of URI-based knowledge representation languagddta integration based
on the principles of Web architecture.

We address current theories of sense and reference in Claapted propose a
neo-Wittgensteinian theory of sense and meaning for theiWelhapter 8. There are
three distinct positions to this question on the Semantib,Wach corresponding to a
distinct philosophical theory of reference. The first resgmis thdogicist position
which states thahe referent(s) of a URI is determined by whatever modedtify the
formal semantics of the Semantic Wetayes, 2004). This answer is identified with
both the formal semantics of the Semantic Web itself and riiittonal Russellian
theory of names and its descriptivist descendants (Ry4€€b). While this answer
may be sufficient for automated inference engines, this anginsufficient for hu-
mans, as it often crucially under-determines what kind ofgh the URI refers to. As
the prevailing position in early Semantic Web researcls plosition has borne little
fruit. Another response is thairect reference positiorior the Web, which states that
the meaning of a URI is whatever was intended by the owrnes answer is identified
with the intuitive understanding of many of the original Werghitects like Berners-
Lee and a special case of Putnam’s ‘natural kind’ theory oAmireg. This position
is also nearly identical to Kripke’'s famous response to Bllisthe causal theory of
reference (Kripke, 1972; Puthnam, 1975).

In Chapter 7, we describe a search engine query log from aringprtext search
engine (MicrosoftLive.con), and how we derive query terms for people, places, and
abstract concepts from this query log and then use thoseit@&emantic Web URISs.
From this query-driven analysis of the deployed Semantib,\We empirically demon-
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strate that following the principles of Web architecturel @mdorsing the direct refer-
ence position does not lead to URI re-usage, but that instemd are still likely to be
multiple URIs for the same thing and that it is not easy forsise retrieve these URIs
in response to a query given as keywords to a search engingnaifg turn to the third
position, thepublic language positionwhich states that sindbe Semantic Web is a
form of languageand asa language exists as a mechanism for co-ordination among
multiple agents, then the meaning of a URI is the use of thelyRl community of
agents As vague as this position seems at first glance, we arguanhiysis of sense
and reference is the best fit to how natural language workkit@upersedes and even
subsumes the two other positions. While there are ‘semitbtéories of reference,
we will not inspect these in this thesis, although we beliad these theories can be
incorporated into a public language position. As this tgedrmeaning works for nat-
ural language, it follows that it is a good bet for the Senw@Wieb, for the Semantic
Web is just a form of language, albeit an unusual one.

The public language position implies a public mechanisn léta agents in turn
create, find, and re-use URIs. While it may be intuitivelyreot to endorse a neo-
Wittgensteinian theory of meaning for the Semantic Wels tides little for the Se-
mantic Web if a practical implementation can not be demaitestt. As Wittgenstein
would say, one must remember that every “language game” €awvith a “form of
life” (1953). Without a doubt, one activity that seems to bevalent among users of
the Web is searching for web-pages using natural languagyg tgrms via a search en-
gine (Halpin and Thompson, 2005). Therefore, the obvioligisen to the problem of
finding out what a URI means is to take advantage of curremtseangines. Chapter
8 details on a high-level of abstraction a design for an imgletation of determin-
ing URI meaning based on relevance feedback from users @fdeelybased hypertext
search engines. This puts the the Semantic Web in a “virtoyels” with the behavior
of users on the hypertext Web (Baeza-Yates, 2008). Our imgaiéation is then tested
with real data and real users in Chapter 9, and we show howesults improve var-
ious baseline systems for the information retrieval of SeimaVeb URIs. Finally in
Chapter 10 we summarize the work so far and discuss the ady@mand limitations
of our particular proposed solution. We also present planguture work as well as
further philosophical questions that arise from the thesis

Each of these chapters builds upon each other to make this twaplete as a
whole. Readers interested in particular subjects may wigbdus their attention on
particular components, although they are warned that gasesd findings developed
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in earlier chapters are referred to in later chapters. Asé#tere of the projectis in an
interdisciplinary and emergent area, there is no singuldramprehensive literature
review in a separate chapter, but instead the literatureviewed and mentioned as
necessary throughout the thesis.

1.3 Scope

This thesis is explicitly limited in scope, concentratingyoon the terminology neces-
sary to phrase a single, if broad, question: “How can we deter the meaning of a
URI on the Semantic Web?” Although the thesis is interdigtgy, as it involves el-
ements as diverse as the philosophy of language and maelaimeng, these elements
are only harnessed insofar as they are necessary to phnasentral hypothesis and
present a possible solution.

Due to this constraint, this thesis is not an attempt to agvel philosophy of
computation (Smith, 2002a), or a philosophy of informat{ftoridi, 2004), or even
a comprehensive “philosophy of the Web” (Halpin, 2008b).e3d are much larger
projects outside the scope of a single thesis, and even ke simttividual. However, in
combination with the fully-formed work in the philosophy wiind and language, we
hope that at least this thesis provides a starting pointhoré work in these areas. So
we use notions from philosophy selectively, and then defieetérms in lieu of our
goal of articulating the principles of Web architecture dhd Semantic Web, rather
than attempting to articulate or define the terms of a sydiemphilosophy of the Web.
Many of the philosophical terms in this thesis could be esgdomuch further, but
are necessarily not explored, as to constrain the thesisgasonable size. Unlike a
philosophical thesis, counter-arguments and argumeatgearerally not given for ter-
minological definitions, but instead references are gieaghe key works that explicate
these notions further.

This thesis does not inspect every single possible answibetquestion oiWhat
is the meaning of a UR|%ut only three distinct positions. An inspection of every
possible theory of meaning and reference is beyond the suiofe thesis, as is an
inspection of the tremendous secondary literature thatbesied over the years for
even those limited viewpoints that we do inspect in Chaptand Chapter 8. Instead,
we will focus only on theories of meaning and reference tlaatehbeen brought up
explicitly in the various arguments over this question ia Yheb by the primary archi-
tects of the Web and the Semantic Web. Our proposed solwigis on a theory of
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meaning based on Wittgensteinian, one that is one of the im@ashously dense and
infuriatingly obscure treatments of sense and reference.

Finally, while the experimental component has done its teebe realistic, it is in
no way complete. Pains have been taken to ensure that theragpg unlike much
work in the Semantic Web, at least uses real data, feedbaok ffeal users, and is
properly evaluated over a wide range of algorithms and patars. Yet a real imple-
mentation of our proposed solution would require full-scahplementation and co-
operation of both a major hypertext search engine and a Senvdeb search engine.
Obviously, this is beyond the means of a thesis, as is anydfational or even ground-
breaking work in information retrieval. Instead, we showhnformation retrieval can
be applied to the Semantic Web to help solve one of its mdtulif problems. While
various parts of the experiment could no doubt be optiminetisgaled up still further,
for a proof-of-concept solution to a very difficult problethjs experiment should be
sufficient.

1.4 Notational Conventions

In order to aid the reader, the thesis employs a number ofian# conventions. In
particular, we only use “double” quotes to quote a particalathor or other work.
When a new word is introduced and deployed in an unusual maartee clarified
later, we use ‘single’ quotes. The use of ‘single’ quotedss ased when a word is
supposed to be understood as the wagud word, a mention of the word, rather than
a use of the word. When a term is defined, the word is first |abetengbold and
italic fonts, and either immediately followed or preceded by thiénd®n given in
italics. Mathematical or formal terms ar&licized, as is the use atmphasisn any
sentence. Finally, the names of books and other large waeksften italicized. In
general, technical terms like HTTP are often abbreviatethbyr capitalized initials.
One of the largest problems of this whole area historicaly lbeen a rather ad-hoc use
of terms, and we hope this fairly rigorous notational cotianhelps separate the use,
mention, definition, and direct quotations of words.

1.5 Summary

Despite its ambitious title, this thesis isr@destattempt to both articulate and apply
the principles of Web architecture in order to answer a goesit the heart of the
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Semantic Web:What does a URI mean®Ve provide a solution by analyzing the
primary positions in philosophy of language and Web archite, and by constructing
a proof-of-concept solution. We do not claim to provide a ptete or unique solution,

but do argue our solution is better than other competingtijposi and solutions, in

particular in lieu of our implementation. We do not claim @vk solved any of these
problems regarding meaning and reference for languageniergk especially natural

language, and are fully confident that philosophers willtoare arguing over these
issues for at least the next century. We do present a preobadept solution for these
problems of meaning and reference in the special and lighitasse of the Semantic
Web.






Chapter 2
The Significance of the Web

If we could rid ourselves of all pride, if to determine our sj@s we kept strictly to what
historic and prehistoric periods show us to be the consthatacteristic of man and of
intelligence, we should not say Homo Sapiens but Homo Fabshort, intelligence,

considered in what seems to be its original feature, is tloailfg of manufacturing

artificial objects, especially tools for making tooldenri Bergson (1911)

The subject matter of this thesis is the nature of sense dednee on the World
Wide Web, and this chapter provides the necessary backginformation to motivate
the thesis and to make the central hypothesis of the thegipranensible. In this
thesis, we consider the World Wide Web (from hereon refetoeahly as ‘the Web’)
as a first-class subject matter for study. The first chapteedento the origins of the
Web so that the question of meaning and reference on the Webecanderstood in
its proper context.

Why the Web? Why not look at more interesting problems in gexibike ar-
tificial intelligence? In hisOne Hundred Billion Lines of C+;-computer scientist-
turned-philosopher Brian Cantwell Smith notes that the ef®df computing used in
debates over reference and representation tend to frardelbiage as if it were between
“classical” logic-based symbolic reasoners and some “eotionist” and “embodied”
alternative ranging from neural networks to epigeneticotms (1997). Smith then
goes on to aptly state that the kinds of computational systdiscussed in artificial
intelligence and philosophy tend to ignore the vast majaritexisting systems, for “it
is impossible to make an exact estimate, but there are pisobaimething on the order
of 10, or one hundred billion lines of C++ in the world. And we darely started.
In sum: symbolic Al systems constitute approximately 0.04R4vritten software”

9
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(1997). The same small fraction likely holds true of “nonrdyolic Al” computational
systems such as robots, artificial life, and connectioresivarks. While numbers by
themselves hold little intellectual weight, one could afgargue that the vast majority
of computational systems may have no impact on our undefisiguof representation
and intelligence. In this thesis we argue otherwise. Theswidss of computational
systems present a “middle distance” where questions ofaede, representation, and
intelligence come to the forefront and may even be moredbdetthan in the case for
humans (Smith, 1995). One of the the most significant mentbetate of this wider
class of computational systems is the World Wide Web, diesdrby Tim Berners-Lee,
the person widely acclaimed to be the ‘inventor’ of the Webauniversal informa-
tion space”(1992).

Michael Wheeler, a philosopher who is well-known for his thEggerian defense
of embodiment, surmises that “the power of the Web as a tdogiwal innovation
is now beyond doubt” but “what is less well appreciated isghtential power of the
Web to have a conceptual impact on cognitive science” anklisthtesis may provide a
new “fourth way” in addition to the “three kinds of cognitigeience or artificial intel-
ligence: classical, connectionist, and (something likepedied-embedded” (2008).
While countless papers have been produced on the techspatt of the Web, very
little has been done explicitly on the Wejlna\Web as a subject matter. This does not
mean there has not been interest, although the interesbhaesio particular more from
the side of those working on developing the Web rather thasglalready entrenched
in philosophy, linguistics, and artificial intelligencen particular, the workshop series
on Identity, Reference, and the Wkas provoked many articles on these topics from
prominent Web architects, although not from philosophersse (Halpin et al., 2006;
Bouquet et al., 2007b, 2008). In this spirit, what we will enke in this thesis as a
whole is to apply many well-known philosophical theorieg@ference and represen-
tation to the phenomenon of the Web.

In order to establish the relative autonomy of the Web as gestimatter, we
recount its origins and so its relationship to other prgebbth intellectual such as
Engelbart's Human Augmentation Project, as well as morelguechnical projects
such as the Internet (1962). It may seem odd to begin outhbk&d, which involves
very specific questions about meaning and reference on the Wi a thorough his-
tory of the Web. To understand these questions we must fivet &a understanding
of the boundaries of the Web and the normative documentsitfate the Web. The
Web is a fuzzy and ill-defined subject matter whose precismaries and even def-
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inition are unclear. Unlike some subject matters like clstrpi the subject matter of
the Web is not necessarily very stable, for the Web is not aufabkind,” as it is a
technical artifact. So we will take the advice of the philplser of technology Gilbert
Simondon, “Instead of starting from the individuality otkechnical object, or even
from its specificity, which is very unstable, try to define thess of its genesis in the
framework of this individuality or specificity, it is bettéo invert the problem: It is
from the criterion of the genesis that we can define the iddiity and the specificity
of the technical object: the technical object is not thishattthing, giverhic et nunc
but that which is generated” (1958). In other words, we must frace the creation
of the Web before attempting to define it, imposing on the Wabtredric Jameson
calls “the one absolute and we may even say transhistonngadiative, that is: Always
historicize!” (1981). We build on the work of this chapter@hapter 4 to delineate the
precise principles of the Web.

2.1 The Origins of the Web

What is the Web, and what is its significance? At first, it appéabe a relative upstart
upon the historical scene, with little connection to anytjtbefore it, an ahistorical and
unprincipled ‘hack’ that came unto the world unforeseen aitd dubious academic
credentials. The purpose of this section is to dispel thifimy

The intellectual trajectory of the Web is a fascinating, dstly unknown, history.
Although it is well-known that the Web bears some strikingnitarity to Vannevar
Bush’s ‘Memex’ idea from 1945 (Bush, 1945), the Web is itseslfially thought more
of as a technological innovation rather than an intelldbtuech subject matter such as
artificial intelligence or cognitive science. However, iveb’s heritage is just as rich
as artificial intelligence and cognitive science, and camdimed back to the same roots,
namely the ‘Man-Machine Symbiosis’ project of Licklidet9@0). The ‘Man-Machine
Symbiosis’ project gave birth to two streams of researcle fiilst strand is that of ar-
tificial intelligence done in the spirit of McCarthy, Minskgnd others involved in the
original Dartmouth proposal (McCarthy et al., 1955). Hoeg\there exists another
lesser-known strand of research, the work on *human augatient exemplified by
the work of Engelbart that eventually gave us both the mondefze Internet (1962).
Human augmentation, instead of hoping to replicate humseiligence as artificial
intelligence did, only thought to enhance it. The Web itseH descendant of Engel-
bart’s vision, and this historical trajectory leading framcklider to the creation of the
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Web, is detailed in the following sections.

2.2 The Man-Machine Symbiosis Project

The first precursor to the Web was glimpsed, although nevptemented, by Van-
nevar Bush. For Bush, the primary barrier to increased prodty was the lack of
an ability to easily recall and create records, and Bush sami¢rofiche the basic ele-
ment needed to create what he termed the “Memex,” a systdiethany information
be stored, recalled, and annotated through a series ofciasise trails” (1945). The
Memex would lead to “wholly new forms of encyclopedias witmash of associative
trails,” a feature that became the inspiration for “linKing hypertext (Bush, 1945).
However, Bush could not implement his vision on the analagareputers of his day.
The Web had to wait for the invention of digital computers aetivorks, both of
which bear some debt to the work of J.C.R. Licklider, a dilcipf Norbert Wiener
(Licklider, 1960). Wiener thought of feedback as an ovdrang principle of organi-
zation in any science, and one that was equally universahgrhomans and machines
(1948). Licklider expanded this notion of feedback loopstaision of low-latency
feedback between humans and digital computers. The iateeproject of ‘Man-
Machine Symbiosis’ is distinct and prior from cognitive exete and artificial intel-
ligence, both of which hypothesize that the human mind candmstrued as either
computational itself or even implemented on a computeikllder held that while the
human mind itself might not be computational (although Liadr cleverly remained
agnostic on that particular gambit), the human mind was defijncomplementetyy
computers. As Licklider himself put it, “The fig tree is poliited only by the insect
Blastophaga grossorun. The larva of the insect lives in ttaeyoof the fig tree, and
there it gets its food. The tree and the insect are thus hyeiatdrdependent: the tree
cannot reproduce without the insect; the insect cannot ghowut the tree; together,
they constitute not only a viable but a productive and thgvyartnership. This coop-
erative ‘living together in intimate association, or evéose union, of two dissimilar
organisms’ is called symbiosis. The hope is that, in not temyryears, human brains
and computing machines will be coupled together very tiglathd that the resulting
partnership will think as no human brain has ever thought@ondess data in a way
not approached by the information-handling machines wevkioalay” (1960). The
goal of ‘Man-Machine Symbiosis’ is then the enabling ofalie coupling between the
humans and their ‘external’ information as given in digitamputers. To obtain this
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coupling, the barriers of time and space needed to be oversonthat the symbiosis
could operate as a single process.

The ‘Man-Machine Symbiosis’ project was not merely an pojpehical project,
but an engineering project. In order to provide the fundiegded to assemble what
Licklider termed his “galactic network” of researchers noplement the first step of
the project, Licklider became the institutional architettthe Information Process-
ing Techniques Office at the Advanced Research Projectsdyg@RPA) (Waldrop,
2001). Licklider first tackled the barrier of time. Early cpaters had large time lags
in between the input of a program to a computer on a mediumasiplinch-cards and
the reception of the program’s output. This lag could theo\®rcome via the use of
time-sharing, taking advantage of the fact that the compdéspite its centralized sin-
gle processor, could run multiple programs in a non-lineahion. Instead of idling
while waiting for the next program or human interaction, ioments nearly imper-
ceptible to the human eye, a computer would share its timengmaultiple humans
(McCarthy, 1992).

Douglas Engelbart had independently generated a propmsafiHuman Augmen-
tation Framework’ that shared the same goal as the ‘Man-MacBymbiosis’ project
of Licklider, although it differed by placing the human aetbenter, focusing on the
ability of the machine to extend to the human user, while lisk imagined a more
egalitarian partnership between humans and digital coenp1962). This focus on
human factors led Engelbart to the realization that the g@rynneason for the high la-
tency between the human and the machine was the interfabe diuiman user to the
machine itself, as a keyboard was at best a limited chann&r Axtensive testing
of what devices enabled the lowest latency between humahmanhines, Engelbart
invented the mouse and other, less successful interfakeghe one-handed ‘chord’
keyboard (Waldrop, 2001). By employing these interfacks,temporal latency be-
tween humans and computers was decreased even further.

2.3 The Internet

The second barrier to be overcome was space, so that any temghwould be ac-
cessible regardless of its physical location. The Intefoatne out of our frustration
that there were only a limited number of large, powerful aeskb computers in the
country, and that many research investigators who showld hacess to them were
geographically separated from them” (Leiner et al., 20Q@8)klider’s lieutenant Bob



14 Chapter 2. The Significance of the Web

Taylor and his successor Larry Roberts contracted out Batanek, and Newman
(BBN) to create the Interface Message Processor, the haedveseded to connect the
various time-sharing computers of Licklider’s “galactietwork” that evolved into the
ARPANet (Waldrop, 2001). While BBN provided the hardwarettte ARPANet, the
software was left undetermined, so an informal group of ga#el students constituted
the Internet Engineering Task Force (IETF) to create sofwarun the Internet (Wal-
drop, 2001).

The IETF has historically been the main body that createptbtocols that run
the Internet. It still maintains the informal nature of ituhdation, with no formal
structure such as a board of directors, although it is offjc@erseen by the Internet
Society. The IETF informally credits as their main organggprinciple the credo “We
reject kings, presidents, and voting. We believe in rougiseasus and running code”
(Hafner and Lyons, 1996). Decisions do not have to be ratifiedonsensus or even
majority voting, but require only a rough measure of agragroe an idea. The most
important product of these list-serv discussions and mgstare IETF RFCs (Request
for Comments) which differ in their degree of reliabilitypm the unstable ‘Experi-
mental’ to the most stable ‘Standards Track.” The RFCs défiteznet standards such
as URIsand HTTP (Berners-Lee et al., 1996, 2005). RFCsewiloi strictly academic
publications, have de factonormative force on the Internet and therefore on the Web,
and so they will be referenced considerably throughoutthasis.

Before the Internet, networks were assumed to be static lmsed systems, so
one either communicated with a network or not. Howeveryeaetwork researchers
determined that there could be “open architecture netwgrkivhere a meta-level “in-
ternetworking architecture” would allow diverse netwottixonnect to each other, so
that “they required that one be used as a component of the, oditieer than acting as
a peer of the other in offering end-to-end service” (Leineale 2003). In the IETF,
Robert Kahn and Vint Cerf devised a protocol that took intocamt, among others,
four key factors, as cited below (Leiner et al., 2003):

1. Each distinct network would have to stand on its own andnbermal changes
could be required to any such network to connect it to thehete

2. Communications would be on a best effort basis. If a padkbt't make it to
the final destination, it would shortly be retransmittechirthe source.

3. Black boxes would be used to connect the networks; theséater be called
gateways and routers. There would be no information retidiryethe gateways
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about the individual flows of packets passing through thdrmareby keeping
them simple and avoiding complicated adaptation and regdvem various
failure modes.

4. There would be no global control at the operations level.

In this protocol, data is subdivided into ‘packets’ that alldreated independently
by the network. Data is first divided into relatively equalesi packets by TCP (Trans-
mission Control Protocol), which then sends the packets thes network using IP
(Internet Protocol). Together, these two protocols formirgle protocol, TCP/IP
(Cerf and Kahn, 1974). Each computer is named by an Interngtlér, a four byte
destination address such as 152.2.210.122, and IP roweysktem through various
black-boxes, like gateways and routers, that do not try ¢construct the original data
from the packet. At the recipient’s end, TCP collects th@ming packets and then
reconstructs the data.

The Internet connects computers over space, and so prowidgshysical layer
over which the “universal information space” of the Web iplemented. However, it
was a number of decades before the latency of space and tocambdow enough for
the Web to become not only universalizing in theory, but arsalizing in practice. An
historical example of attempting a Web-like system befbeelatency was acceptable
would be the NLS (oNLine System) of Engelbart (1962). The NS literally built
as the second node of the Internet, the Network Informatient€?, the ancestor of
the domain name system. The NLS allowed any text to be higaity organized in
a series of outlines with summaries, giving the user freettbomove through various
levels of information and link information together. The shannovative feature of
the NLS was a journal for users to publish information in arfjduanal for others to
comment upon, a precursor of blogs and wikis (Waldrop, 2001)

However, Engelbart’s vision could not be realized on thevstomputers of his
day. Although time-sharing computers reduced temporahtat on single machines,
too many users sharing a single machine made the latencgeptably high, espe-
cially when using an application like NLS. Furthermore, el for reducing latency
made the NLS far too difficult to use, as it depended on obsoomemands that were
far too complex for the average user to master within a retderamount of time (Bar-
dini, 2000). It was only after the failure of the NLS that resshers at Xerox PARC
developed the personal computer, which by providing eaeh tineir own computer
reduced the temporal latency to an acceptable amount (d¢gl@001). When these
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computers were connected with the Internet and given easigé interfaces as devel-
oped at Xerox PARC, both temporal and spatial latencies wer@e low enough for

ordinary users to access the Internet. This convergenaebhoblogies, the personal
computer and the Internet, is what allowed the Web to be impteed successfully
and enabled its wildfire growth, while previous attempt® IKLS were doomed to

failure as they were conceived before the technologicahstfucture to support them
had matured.

2.4 The Modern World Wide Web

Perhaps due to its own anarchic nature, the IETF had prodacedltitude of in-
compatible protocols such as FTP (File Transfer Protoaat) @opher (Postel and
Reynolds, 1985; Anklesaria et al., 1993). While protocasld each communicate
with other computers over the Internet, there was no uravéosmat to identify infor-
mation regardless of protocol. One IETF participant, Timrges-Lee, had the concept
of a “universal information space” which he dubbed the “Woide Web” (1992).
His original proposal to his employer CERN brings his beiretniversality to the
forefront, “We should work towards a universal linked infation system, in which
generality and portability are more important than fancgpipics and complex extra
facilities” (Berners-Lee, 1989). The practical reasonBerners-Lee’s proposal was
to connect the tremendous amounts of data generated byctysit CERN together.
Later as he developed his ideas, Berners-Lee came intd doatact with Engelbart,
who encouraged him to continue with the idea of the Web desp#t academic work
being rejected at conferences like ACM Hypertext 1$91.

In the IETF, Berners-Lee, Fielding, Connolly, Masinterdarthers spear-headed
the development of URIs (Universal Resource Identifier3)yH (HyperText Markup
Language) and HTTP (HyperText Transfer Protocol). By beiblg to reference any-
thing with equal ease due to URIs, a web of information woaldfbased on “the few
basic, common rules of ‘protocol’ that would allow one cortgruto talk to another,
in such a way that when all computers everywhere did it, ttetesy would thrive,
not break down” (Berners-Lee, 2000). The Web girdual space for naming infor-
mationbuilt on top of the physical infrastructure of the Interneatt could move bits
around, and the Web was built through specifications thaldcoe implemented by
anyone, “What was often difficult for people to understandwlthe design was that

1personal communication with Berners-Lee.
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there was nothing else beyond URIs, HTTP, and HTML. There nzasentral com-
puter ‘controlling’ the Web, no single network on which tegwotocols worked, not
even an organization anywhere that ‘ran’ the Web. The Webneta physical ‘thing’

that existed in a certain ‘place.’ It was a ‘space’ in whicformation could exist”

(Berners-Lee, 2000).

The very idea of ainiversalinformation space seemed at least ambitious, if not
de factoimpossible, to many. The IETF rejected Berners-Lee’s ithed any identi-
fication scheme could be universal. In order to get the inrgaof the Web off the
ground, Berners-Lee surrendered to the IETF and changeakiie of his universal
naming system fronniversal Resource ldentifie(6JRIs) to Uniform Resource Lo-
cators(URLS) (Berners-Lee, 2000). The Web begin growing at a iodis rate once
the employer of Berners-Lee, CERN, released any intelidgiwperty rights they had
to the Web. The growth of the Web increased even more draafigtafter Mosaic,
the first graphical browser, was released. However, browsedors started adding
supposed ‘new features’ that soon led to a ‘lock-in’ wheneate sites could only be
viewed by one particular corporate browser. These ‘browses’ began to fracture
the rapidly growing Web into incompatible information spagcthus nearly defeating
the proposed universality of the Web (Berners-Lee, 2000).

Berners-Lee in particular realized it was in the long-tenteiest of the Web to
have a new form of standards body that would preserve itseusality by allowing
corporations and others to have a more structured contribthian possible with the
IETF. With the informal position of merit Berners-Lee hadthe supposed inventor
of the Web (although he freely admits that the invention & ¥Neb was a collec-
tive endeavor), he and others constituted the World Wide @®ebsortium (W3C);
a non-profit dedicated to “leading the Web to its full potahby developing proto-
cols and guidelines that ensure long-term growth for the \{@dcobs, 1999). In the
W3C, membership was open to any organization, commerciabo+profit organiza-
tion. Unlike the IETF, W3C membership came at a considenaitg@mbership fee. The
W3C is organized as a strict representative democracy, egith member organiza-
tion sending one member to the Advisory Committee of the Wethpugh decisions
technically are always made by the Director, Berners-Leeshif. By opening up
a “vendor neutral” space, companies who previously wer@sted primarily in ad-
vancing the technology for their own benefit could be brouglthe table. The primary
product of the World Wide Web Consortium is a W3C Recommeandat standard
for the Web that is explicitly voted on and endorsed by the Wi3&nbership. W3C



18 Chapter 2. The Significance of the Web

Recommendations are thought to similar to IETF RFCs, wittmradive force due to
the degree of formal verification given via voting by the W3@mbership. A number
of W3C Recommendations have become very well known teclgnedpranging from
the vendor-neutral versions of HTML (Raggett et al., 1998)ich stopped the fracture
of the universal information space at the hands of the browses, to XML, which
has become a prominent transfer syntax for almost any tygataf(Bray et al., 1998).
This thesis will cite W3C Recommendations when appropregehese are one of the
main normative documents that define the Web. With IETF RE@sse normative
standards collectively define the foundations of the Wels Ity agreement on these
standards that the Web functions as a whole. However, ttghrand-ready process of
the IETF and even W3C has led to a terminological confusian tfust be sorted in
order to inspect the problem of how URIs can identify thingtsale the Web itself.



Chapter 3
Philosophical Prolegomenon

Philosophy, more rigorously understood, is the disciptime consists of creating con-
cepts.Gilles Deleuze and Felix Guattari(1991)

A major focus of this thesis is to use terminology from philpky of computation,
language, and the mind to produce a small set of fairly wefingd terms that we
can use to express the question: What does a URI refer toPwaitds, we use these
terms to determine what the boundaries of the Web are in €h4pnd to clarify the
Semantic Web in Chapter 5.

For the sake of brevity we will not in this chapter exploretia nuances and conse-
guences arising from our admittedly broad-sweeping tevtogy. This is unfortunate,
as there is just not enough space to address, much less dellugessible counter-
arguments. In this manner, this chapter will be decidedly-pbilosophical, although
we will attempt to mitigate this problem by at least proviglneferences to well-known
philosophers from whom we have adopted our terminologypalgh often we will use
their terms in a slightly-modified form so that the termirgyfanay fit the problem at
hand. The theoretical framework and terminological daéing given in this chapter
provide the foundation for the entire thesis, coming to adheaour proposed solu-
tion to the issues of reference and representation on theu8em\eb in Chapter 8.
While this chapter may not appear directly relevant to thd\Wee philosophical ter-
minology established here will be used to discipline thedwihd unruly terminology
of Web architecture in the next chapter. Again, we claimheithat our historical
and philosophical foundations of Web architecture are detapgand systematic, but
just systematic and complete enough to pose and solve oothssis, without either
the question or our solution using vacuous terminology. e@tise, the result will

19
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be terminological confusion, causing any reader to falb iatconceptual swamp of
undefined and fuzzy terms like ‘meaning’, ‘reference’, arepftesentation.” We first
explore the notion of ‘information’ at the heart of Bernéme’s definition of the Web
as a ‘universal information space’ and then rebuild a notibidigitality’ and finally
‘representation’ on top of our notion of information, sirtbe Web is composed of not
just any representations, but digital representations.

3.1 Preliminaries

On the surface aterm like ‘representation’ seems to be whahEantwell Smith calls
“physically spooky,” since a representation can refer toeathing with which it is not
in physical contact (Smith, 1995). This spookiness is a egusnce of a violation of
common-sensphysics, since representations appear to have a non-physiation-
ship with things that are far away in time and space. Thidimglahip of ‘aboutness’
or intentionalityis often called ‘reference.” While it would be premature &dide ‘ref-
erence, a few examples will illustrate its usage: somearethink about the Eiffel
Tower in Paris without being in Paris, or even having evef@etin France; a human
can imagine what the Eiffel Tower would look like if it wereipted blue, and one
can even think of a situation where the Eiffel Tower wasnltezhthe Eiffel Tower.
Furthermore, a human can dream about the Eiffel Tower, makarato visit it, and
so on, all while being distant from the Eiffel Tower. Refereralso works temporally
as well as distally, for one can talk about someone who is ngdo living such as
Gustave Eiffel. Despite appearances, reference is hohepgmenal, for reference
has real effects on the behavior of agents. Specifically,cameremember what one
had for dinner yesterday, and this may impact on what onesfantdinner today, and
one can book a plane ticket to visit the Eiffel Tower after mgla plan to visit it.

Can we get to the heart of this mystery at the heart of reptaBen and other in-
tentional terminology? The trick would be to define what ely our common-sense
notion of reference is, and to do this requires some terragioal ground work while
avoiding delving into amateur quantum physics. The terfoigyphere is supposed to
reconstruct rather carefully some common-sense demansaithn an uncontroversial
yet broad manner so that these terms can deal with a suitetdyl lvange of phenom-
ena, including the Web. To pin the supposed ‘spookinessference down, we will
introduce a few terms. Ahing is a general-purpose term used to deretents, ob-
jects, and proto-objects in a “patch of metaphysical fluxiiere a thing can be defined
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by having some regularity in time and space that can disistgit from other possible
things(Smith, 1995). Aregularity is a lack of difference in time and space at a given
level of abstractionWe shall often use the terprocessnterchangeably with things to
evoke the dynamic and temporally unstable character ofiagthWe will also some-
times use the termystemwhen we are emphasizing the fahat one thing can also
be, on a different level of abstraction, given as multiplegls. This can be considered
a mere change of focus, for the term ‘thing’ emphasizes teeyelay, solid, and static
nature of the “metaphysical flux,” while the term ‘processfars more to its dynamic
aspect (Smith, 1995All things and processeswe theworld. There are generally two
kinds of separation possible in processes in a relatialyienvariant theory, a phys-
ical theory that obeys the rules of special relativity sa tha theory looks the same
for any constant velocity observer, as processes may beasegan time or space.
Things that are separated by time and spacedistal while those things that are not
separated by time and space gmoximal. As synonyms for distal and proximal, we
will use non-local andlocal, or justdisconnectedandconnected Although this may
seem to be an excess of adjectives to describe a simpledafistinthis aforementioned
distinction will underpin our notions of representatiordaeference. In figures, local
relationships will be marked with a dotted line, while digand so possibly referen-
tial) relationships are marked with the uniform bold line.

While a discussion about counterfactuals and causatioar isdyond our scope,
we will rely on the common-sense intuition thibne thing is connected with another
thing and a change in the former thing is followed by a changée latter thing
that former process may hacausedthe change in the latter process. In other words,
the first thing iseffective andthe other things that may be effected by a particular
thing are within itseffective reach Anything that appears to violate these common-
sense intuitions about physics and causai®sapooky while anything that does not
is non-spooky A property of the distal is that it is beyond effective reaak Smith
puts it, “distance is where no action is at” (1995). For exkana tourist hitting their
toe on the Eiffel Tower has no immediate effect on someonalintitirgh. With these
preliminary terms in hand, we return to the topic of the Web.

3.2 Information, Encoding, and Content

The Web has been defined as a “universal information spacédmgers-Lee, and
we will take this definition seriously and attempt to unratein the hope that it will
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provide clues on how we can define both ‘representation’ asférence’ in a man-
ner that can do justice to the Web (1992). The strategy to q@amed is to inspect
Berners-Lee’s evocative notion of the Web as a universahmétion space in order to
provide a less complex notion of information that can ses/ha foundation for build-
ing the more complex notion of representation. The first ioes$o be answered then
is the perennial question: What is information? Althougho&aenot comprehensively
answer this question in full, we can sketch some cruciairdigons.

In order to make progress on defining the Web, we will have torneulate the
notion of information, taking inspiration from Shannon@emunication theory while
allowing the central concept of information to be groundethie wider philosophy of
language. To rephrasmformation is whatever regularities held in common between
two things asourceand areceiver(Shannon and Weaver, 1963). To have something
in common means to share the same regularities, e.g. pafciéfse and space that
cannot be distinguished at a given level of abstractions @kefinition correlates with
information being the inverse of the amount of ‘noise’ ordamness in a system, and
the amount of information being equivalent to a reductionngertainty. This preser-
vation or failure to preserve information can be thoughtsttee sending of message
between the source and the receiver over a chaielether or not the information
is preserved over time or space is due to the properties ofyaipal substraté&known
as thechannel Themessageealizes on some level of abstraction the information
so we will often call some particular message with some @aler information an
‘information-bearing message.” Already, informationeals itself to be not just a sin-
gular thing, but something that exists at multiple levetspérticular, we are interested
in two more distinctions in information: that between ahstion and realization, and
that between content and encoding.

The first distinction is between the information itself oreadl of abstraction, and
the particular realization of information. Informationdfen thought of as an abstrac-
tion, and this is true insofar as the same information carebkzed by many possible
messages. In order to cope with this, a distinction shoulch&ee between the infor-
mation on a level of abstraction from any of the concreteizatbns themselves that
embody the information at a given juncture in space-timeud® an example, Daniel
in Paris (the source) is trying to send a message to Amy (tbeiver), a secretary
in Boston, that one of her fellow workers, Ralph, has won @ tithe Eiffel Tower.
Daniel can send this message in a variety of realizationmsaig-a letter in the post,
or even via a friend who happens to be passing through Bostaninformation itself
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is just the precise physical regularity at a level of abstoac and these regularities
can be embodied by many different possible messages, aé thessages are not ar-
bitrary, but must have a certain ability to preserve the lagy — so in the case of
Daniel, it's unlikely he could convey his message from Pari8oston using smoke
signals. It would simply not reach the receiver in any recogiole form. So, devel

of abstractionis certain physical differences and regularities that can beagnized
by an agent and so may have a causal effect on the agenexample, given a hand-
written letter in English, one can focus on the low-level bs@action, such as the
details of the various pen-strokes and the texture of thempayp progressively higher
levels of abstraction, such as recognizing letters in ahadpt, words, or sentences,
or even some larger units of discourse that express the tihdRglph won a ticket to
Paris.” To say that some thing realizes the information isanfrse aealizationof the
information, which is @he physical thing that realizes the regularities of theomnfia-
tion due to its local characteristi¢cgust like a particular information-bearing message
but more broadly construed. The concrete voltages down treeraalize an e-mail
message, as does a physical book realize some sentenceglishEnt is common
practice to elide various levels of abstraction and jugtaalout information, but often
it is useful to pull apart the abstract pattern of regulaesitirom those physical things
in the world that realize them. Since the term ‘informati@used indiscriminately
to refer to information on a level of abstraction and theirsdion of some abstract
information, we will use the ternmformation realizatioror justrealizationwhen dis-
cussing a particular realization of information and usetére abstract information
on the rare occasion when we wish to emphasiftamation on a level of abstraction
regardless of its particular realizatiorWhen the term ‘information’ by itself is used,
we are referring to both abstract information and any of@gipular realizations.

The second distinction is not as obvious as the distincteiween abstract infor-
mation and its realization: the distinction between thetenhand encoding of infor-
mation. Shannon’s theory deals with finding the optimal einog and size of channel
so that the message can be guaranteed to get from the senlderéceiver (Shannon
and Weaver, 1963). Yet, how can an encoding be distinguified the content of
information itself? Goodman defines what we would call anoeimy as a series of
marks, where anark is a physical characteristicanging from marks on paper one
can use to discern alphabetic characters to ranges of edit@y can be thought of as
bits (1968). To be reliable in conveying information, an@siag should be physically
“differentiable” and thus maintain what Goodman calls ‘iadwter indifference” so that
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(at least within some context) each character (charattgran not be mistaken for
another character. So, ancodingis a set of precise regularities that can be realized
by the messageEncodings are usually given these regularities in virtleeing in a
language, which is explicated in Section 3.3.

Is our distinction of ‘encoding’ re-stating the differenbetween abstract infor-
mation and realization? It is not. Although it would seent tinformation becomes
somehow concrete within a particular region of space-tinmemwit is encoded, on
closer inspection, an encoding can still exist on a levellsftraction without being
concretely realized in space-time. The term ‘Eiffel Toweatries information in an
encoding, but it is realized when some speaker uses it intaaladgterance. The text
of Moby Dickcan be thought of as abstract information, a story about sewttale.
The text ofMoby Dick in Englishs an encoding of the abstract informationdbby
Dick, with precise regularities given by thvery lettersof the language. The content
of the novelMoby Dickcould be encoded in a different language, like French, aad th
precise regularities that convey teameinformation at a level of abstraction could be
given by differentphysical characteristics and sifferent encodingsin the case of
French versus English, different words and other lingaistiances would exist, but
the information would — at a level of abstraction, since olgly there are nuances
possible in French that do not exist in English, and vicearerbe the same. So even
the text ofMoby Dickin a particular encoding like English exists at a level oftedas
tion, as it could be realized in multiple things in spacestjras a copy in English of
Moby Dickcould be realized by two different physical books, one innbdrgh and
the other in Jakarta. In fact, these realizations could laésquite different, such as a
realization of Moby Dick in English as a web-page going dotawire as a particular
set of voltages at a given time, and as a particular book oreengis bookshelf.

There is more to information than encoding. Shannon’s théoes not explain the
notion of information fully, since giving someone the numbeébits that a message
contains does not tell the receivehat information is encoded. Shannon explicitly
states that “the fundamental problem of communicationas ¢ reproducing at one

1There certainly vast metaphysical difficulties that we aneppsefully ignoring in our distinction
between realization and abstract information. Namely,atggalizations themselvesist on a level of
abstraction? To some extent this can be thought of as tragasticular copy oMoby Dickon my shelf
today the same realization tomorrow? These metaphysicalnyums can have their Gordian knots
cut in a straightforward manner: A realization is composedeally-connected causal regularities, and
how this realization is thought of as varying over spaceetimirrelevant for the time being, as long as
the realization from one moment to another, or from one pontif space to another, is connected to its
former self.



3.2. Information, Encoding, and Content 25

point either exactly or approximately a message selectad@her point. Frequently
the messages have meaning; that is they refer to or are at@dedccording to some
system with certain physical or conceptual entities. Tiseseantic aspects of commu-
nication are irrelevant to the engineering problem” (1963g is correct, at least for
his particular engineering problem. However, Shannorésaishe term ‘information’
is for our purposes the same as the ‘encoding’ of informatiabha more fully-fledged
notion of information is needed. Many intuitions about tle¢ion of information have
to deal with not only how the information is encoded or how necade it, but what
a particular message is about, t@ntentof an information-bearing message. ‘Con-
tent’ is a term we adopt from Israel and Perry, as opposecetoiibre confusing term
‘semantic information” as employed by Floridi and Dretskadel and Perry, 1990;
Dretske, 1981; Floridi, 2004).

While the notion of an information’s content is hard to pinag it is easy to
illustrate. Just determining that a single employee outgiitevon the lottery requires
at least a three bit encoding and does not tell Amy which eyg@on particular won
the lottery. Only a particular three bits will tell Amy preely who won the lottery.
Shannon’s theory only measures how many bits are needelll Aartg precisely who
won. After all, the false message that another office-matel®avon a trip to Paris is
also three bits. Yet content is not independent of the emgpdor content is conveyed
by virtue of a particular encoding and a particular encodingoses constraints on
what content can be sent (Shannon and Weaver, 1963). Leaigim® that Daniel is
using a code of bits specially designed for this problenmeathan natural language, to
tell Amy who won the free plane ticket to Paris. The conterthefencodin@01 could
be Ralph while the content of the encodidiif) could be Sandro. If there are only two
possible bits of information and all eight employees neeslumque encoding, Daniel
cannot send a message specifying which friend got the tnigedihere aren’t enough
options in the encodings to go round. An encoding of at Idastet bits is needed to
give each employee a unique encoding01fhas the content that ‘either Sandro or
Ralph won the ticket’ the message has not been successhudigferred if the purpose
of the message is to tell Amypreciselywhich employee won the ticket.

One of the first attempts to formulate a theory of informagiocontent was due
to Carnap and Bar-Hillel (1952). Their theory attempted iwdba theory of con-
tent closely to first-order predicate logic, and so whilartltheory lies explicitly and
wholly within semantics” they explicitly do not address étinformation which the
sender intended to convey by transmitting a certain messaiggbout the information
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a receiver obtained with a certain message,” since theg\ssli these notions could
eventually be derived from their formal apparatus (Carmapiar-Hillel, 1952). Their
overly restrictive notion of the content of information agliic did not gain widespread
traction, and neither did other attempts to develop alteraaheories of information
such as that of Donald McKay (1955). In contrast, Dretske®antic theory of in-
formationdefines the notion of content to be compatible with Shanniafitcgmation
theory, and his notions have gained some traction withimpthi@sophical community
(Dretske, 1981). To Dretske, the content of a message arahtbent of information
as studied by Shannon are different, for “saying ‘There ia@aig my backyard’ does
not have more content than the utterance ‘There is a dog inaniyard’ since the
former is, statistically, less probable” (1981). Accoglito Shannon, there is more
information in the former case precisely because it is liggtyl than the latter and so
would require more bits to encode (Dretske, 1981). So whilermation that is less
frequent may require a larger number of bits in an encodhgggontent of information
should be viewed as separable if compatible with Shannofésmation theory, since
otherwise one is led to the “absurd view that among compeaiasdkers of language,
gibberish has more meaning than semantic discourse be¢#isrich less frequent”
(Dretske, 1981). Shannon and Dretkse are talking aboundisbut intertwined, no-
tions that should be separated, namely the distinctiondetvencoding and content.

Is there a way to precisely define the content of a message®kerdefines the
content of information as “a signakarries the information thatis F when the condi-
tional probability ofs's beingF, givenr (andKk) is 1 (but, giverk alone, less than 1k
is the knowledge of the receiver” (1981). To simplify, t@ntentof any information-
bearing messagewghatever is held in common between the source and the reesive
a result of the conveyance of a particular messagile this is similar to our defini-
tion of information itself, it is different. Information cameasure the total in common
between a source and receiggmpliciter. For example, two distal humans can share
guite a lotin common, and so share information, despitem&aang conveyed a mes-
sage between each other. The content is whatever is shacethimon as a result of
a particular message, such as the conveyance of sentence ‘Ralph woreattdke
Eiffel Tower.” The content of a message is called the “fabigDretske, F). This con-
tent is conveyed from the source uccessfully to the receiver)(when the content
can be used by the receiver with certairatgd that before the receipt of the message
the receiver was not certain of that particular content. i€lazan only successfully
convey the content that ‘Ralph won a trip to Paris’ if befoeeaiving the message
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Amy does not know that Ralph won the trip to Paris and afteeik@tg the message
Amy does know that fact. To communicate content succegstutith the source and
receiver have to be using the same encoding scheme (bitésiEragc.) and the source
has to encode the content relative to what the receiverdirieaows or capacities the
receiver possesses. Thus, if Amy does not know who is spetfiehe term “Ralph”
given by the encoding scheme, but only knows him as ‘the guly thie black beard,
Daniel needs to explain in his message the additional fattttie ‘fellow with the
black beard at your office is Ralph.” However, we should imtet the term ‘certainty’
more loosely than Dretske would. Dretkse himself notes itifarmation “does not
mean that a signal must tell us everything about a sourcdl tastsomething,” it just
has to tell enough so that the receiver is now certain ab@utdntent within the do-
main (1981). Millikan rightfully notes that Dretske stat@s definition too strongly,
for this probability of 1 is just an approximation of a stétially “good bet” indexed to
some domain where the information was learned to be recedr{f2004). For exam-
ple, lightening carries the content that “a thunderstornemrby” in rainy climes but in
an arid prairie lightning can convey a dust-storm. Howewen the reverse is true, as
the same content is carried by messages in different engedike the message from
Daniel to Amy being encoded in either English or French.

In our example, the message that ‘Ralph won a plane ticketaode’ can be en-
coded in two different languages and still have the saméi@akhip to contentThe
relationship of an encoding to its contaataninterpretation The interpretation ‘fills’
in the necessary background left out of the encoding, andsriegpencoding to some
content. In our previous example using binary digits as aoeimg scheme, a mapping
could be made between the encoddfg to the content of Ralph while the encoding
010 could be mapped to the content of Sandro. An interpretagguires arinter-
preteror an agent that is capable of carrying out an interpretatioonfr a particular
encoding and a particular contenfThe word ‘interpretation’ is probably one of the
most embattled words, and an in-depth study of its usagextaregls the scope of this
thesis. Somewhat unusually, our usage of the term ‘inteapo®’ is as a relationship
between an interpreter and some encoding, not a first-ondey itself. This is done
on purpose, in order to emphasize the fact that sonepreting agenis needed to
actually make the interpretation from some encoding toemntWhen the word ‘in-
terpretation’ is used as a noun, we mean the content giverplaytigular relationship
between an agent and an encoding. Usual definitions of firdéation’ tend to con-
flate these issues. In formal semantics, the word ‘inteaticet’ often can be used
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either in the sense of “an interpretation structure, whgch ipossible world’ consid-
ered as something independent of any particular vocabulang so any agent) or “an
interpretation mapping from a vocabulary into the strugtur as shorthand for both
(Hayes, 2004). The difference in use of the term seems soatedivided by fields.
For example, computational linguists often use “interg@iien” to mean what Hayes
called the “interpretation structure.” In contrast, we tise term ‘interpretation’ to
mean what Hayes called the “interpretation mapping,” esgrthe word ‘content’ for
the “interpretation structure” or structures selected pguicular agent in relationship
to some encoding. Also, this quick aside into matters ofpretation does not explic-
itly take on a formal definition of interpretation as done indawl theory, although our
general definition has been designed to be compatible wittelrtbeoretic and other
formal approaches to interpretation.

To uphold our requirement for physical non-spookinessraepfor an interpreta-
tion to take place, the interpreter and some realizatiomefencoding must be con-
nected in some way, such as a human looking at bytes or a negettinessing various
voltages. In this manner, the examples of interpretatieralmost always from partic-
ular information realizations in some particular encodingome particular content.
However, the relationship of interpretation is not boundé tparticular realization of
any information, but also functions at a level of abstracts well, since obviously
many particular realizations of the same abstract infolonatan have the same inter-
pretation. Imagine that Amy is bilingual, and speaks bo#nEh and English, so if
Daniel had two messages, one in English and another in Frerplaining that Ralph
has a plane ticket, both messages would have the same ettdrpn to the same con-
tent. So, while information has to be realized concretelprider to be interpreted
in a given message by an agent, as many messages can haveémtsapretation
across many agents, the interpretation is thought to bedagtwhe encoding and the
content, even when the encoding is at a level of abstractsm).the single sentence
‘Ralph won a plane ticket to Paris’ may have a single inteégiien across many dif-
ferent utterances. However, if the agent and their backgtooformation changes,
the interpretation may change, as obviously if the e-maitfiDaniel was intercepted
and read by some secret agent not at Ralph’s office, obvitlhusisecret agent may not
know who Ralph is while Amy will.

The content of a particular message depends very much omtioeliag scheme
used by the interpreter. For example, one can interpretrthedingll as either the
number eleven in the decimal encoding scheme, or the nurhbee in the binary
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encoding scheme. Unlike many others, including Dretskeskadl make no claims
about the nature of information, interpretation, and truttparticular if what appears
to be ‘false’ information is really misinformation or pseasthformation. By remaining
studiously neutral on this long-standing debate, our dedimof information is suitably
vague enough so that even encodings that are interpretegl falbe’ still count as
information. For example, if Daniel was sending the messaglemy that Ralph had
a free plane ticket to Paris as some sort of jest or lie, Amyictatill decode and
interpret the message, and by filling in normal backgroursidimaptions (as Dretske
put it, the “channel assumptions”) she might assume thanéesage was true (1981).
Amy would still have an interpretation of the content of thessage, it would just be
different from Daniel’s interpretation. In other wordsfarmation may always have an
encoding and content and nothing forces some informatalizegion to be interpreted
to the same content by all interpreters.

Interestingly enough, this opens the door to the posgihfita sender sending an
encoding to a receiver that lacks the necessary capacitgdod# it. The encoding
would not then have an interpretation to content. This wieldhe standard definition
of data which isinformation without an interpretatian Our definition works well
with other ‘textbook’ definitions of data and informatiornych as that of Davis and
Olson, which states that “information is data that has beengssed into a form that
is meaningful to the recipient” (1985). This does not meaxt the encoding does not
possibly have an interpretation, but at that given momerdrinot be interpreted. One
example would be if the message from Daniel that Ralph had terplane ticket
had been delivered via e-mail in French. While Amy could hagen aware of some
very limited aspects of the e-mail (such as the time sent hadénder), she would
lack the necessary knowledge of French to decode the méssag¢ent and so to
have an interpretation of the message. In this manner, thailefrom Daniel, while
having a definite interpretation for French speakers, wtad#t an interpretation for
Amy. To Amy, the message would just be data. Of course, Amydclmarn French
and eventually read the message, or send it to a machingeti@m program, or ask a
French speaker to translate the message for her, and soesaritually transform the
encoding from data to information. One can also imagine itivgrconstraints leading
to a lack of an interpretation. For example, the volume oadgthered by modern
telescopes is absolutely enormous, so large that muchiesiak uninterpreted reams
of data rather than information for scientists, as it is b®la single human to interpret
this data, and even groups of humans trying to interpretat distributed manner are
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still struggling to catch up with the volume of data produbgdhe telescopes.

These terms are all illustrated in Figure 3.1. A source (Aimypending a receiver
(Daniel) a message. The information-bearing messageesaome particular encod-
ing such as a few sentences in English and a picture of thel Edfver, and the content
of the message can be interpreted to be about the actudl Hffer.
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Figure 3.1: Information, Encoding, Content

Information, which appeared so simple, is now revealed ta brilti-faceted phe-
nomenon. To summarize, information is what is held or cowddhbld in common
between a sender and a receiver. Information is always titafgat a level of ab-
straction, and so abstract information can be realizedretely by some realization,
like a particular message. Information, on both the levelldtract information and a
particular realization, has two sides: encoding and cdnifidre encoding is the precise
regularities that can convey the information in a partical@ssage, while the content
is what is in common between the receiver and the sender aslaoéthe conveyance
of a particular message. The thought ‘Ralph won a planettiok@aris’ is the content,
given an encoding in English by Daniel, and realized as saitsesbnt over the wire
to Amy. These notions of encoding and content are not stregparable, which is
why they together compose the notion of information. An upddamous maxim of
Hegel could be applied to the new-fangled concept of infeiona There is no en-
coding without content, and no content without encodingb@9 In a similar vein,
while we canimaginethere being information without any realizations, we okiypw
information through its concrete realizations.
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3.3 Meaning and Purpose

The notion of interpretation implies the transfer of an aficg and an act of the in-
terpreter that relates that encoding to content, nothingem@hen Daniel sends Amy
the e-mail to tell her Ralph had a plane ticket to Paris, Antgrpreted the message by
filling in various background information, and so determgthat Ralph at her office
has a plane ticket to Paris. Amy has successfully intergriste message. The effect
upon an agent of an interpretation of some encoding is diffiowisualize, and one
attempt that resonates is the notiorastertoric contengiven by Dummett(1973). Ig-
noring his larger project, we can simply say one way to tedhfagent has interpreted
an encoding to some content is that the agent would ‘assewrtous questions about
this content. So, if Daniel asked Amy if she got the messagetaRalph, minimally
she should assert that she did, and if she does not, thenpsesha did not get the
message.

Yet, if Amy merely sat at her desk, content in her knowledge: did not tell Ralph,
thensomethingvould have gone awry from Daniel’s standpoint. Obviougig, point
of sending a message is for the information to have some kafisat on the agent,
which would be manifested in the behavior of the agent. Thissal effect of informa-
tion on agentsoften demonstrated by behavior, is timeaning of the informatior?
So, the meaning of the message for Amy that ‘Ralph won theegiaket’ is precisely
the behavior exhibited by Amy, such as her getting up frondesk and telling Ralph
verbally that he has a plane ticket to Paris. The meaningfofrimation is quite man-
ifold, as it may cause the behavior of multiple agents in varatcallednformational
links by Gareth Evans (1982). For example, when Ralph hears from enwon a
plane ticket, he may go to book a hotel and tell his wife; thest®ons are Ralph’s
behavioral manifestations, the meaning of the messagedtphRthat is caused by
Amy conveying the message. Since the message from Amy thRedized the same
abstract information that the message from Daniel to Amyized, the behavior of
both Amy and Ralph is created by the same abstract informageen if there were
different distinct messages (an e-mail from Daniel, anrattee from Amy) conveying
this information. The meaning of a piece of information, e@esingle message, may
and usually does spread beyond a single agent receivingle shessage. So, one can

2This does not necessarily mean that the receiver has chamgethe observable manner, instead,
the effect of the message on the receiver may cause the eeteistay the same. This would be exem-
plified when measuring the degradation of information onrd+thive, where the amount of information
preserved from the selfsame hard-drive at one moment intbraeother is considered the message.
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legitimately use the term ‘meaning’ both in the context ofiregke realization or the
more abstract information that can be realized by multip&izations.

However, what if Amy doesn’t achppropriatelywhen receiving the message?
What if upon receiving the message, she simply deletes igplitposeof information
is the intended meaning of informatiooften given by the intended behavior of the re-
ceiver intended by the sender of a message. The sender oegsage, Daniel, wants
Ralph to receive it — that is the purpose of his original elt@iAmy. Information
often has a ‘purpose’ that is beyond its particular contéot.example, Daniel could
be trying to reward Ralph for his astounding performanceasndb, and believes that a
vacation to Paris may ensure his future good behavior at wRakph may not be able
to deduce any of this from the content of the message he exceithere are numer-
ous reasons for the purpose also being at odds with the ngeahihe message; the
information may not have the same meaning for the senderda®e for the receiver,
and so the sender may be sending a message that causes rutdingvior for the
receiver that the sender did not predict. A single sentelkeeRolice!” might always
have the same interpretation to content (i.e. to a nearhiggrohn) but it would be
radically different in both meaning and purpose if it was tergd by a thief who had
just managed to pick-pocket a tourist than if the exact saxpeession was used by
the tourist who had just been pick-pocketed. This shows h@ammg is essentially
related to the wider context of the utterance, as explorethinral language by the
theory of ‘speech acts’ of Austin and Searle (Searle, 198®thermore, the meaning
of a message may include the attempt by the receiver to cseate future behavior
in the sender. Alsowhen an agent is trying to determine some information in orde
to direct its meaningful behavipthe agent can be said to haveiaformation need
Everything from a frog wandering around looking for fliestig @énvironment to a stu-
dent asking a teacher a question or an agent typing in seamtis into a Web search
engine count as information needs.

A purpose is inherentlpormative i.e. that informatiorshould but does not nec-
essarily have to, fulfill its purpose to produce a particuhganing. This normativity
could be grounded out in a number of different ways, but oengrent story is that
all normativity must ultimately be grounded out in evolutjso fulfilling Dennett’s
condition that “all normativity does ride on Darwin’s cdails” (Smith, 2002b). This
is an important aspect, because it tells a story about pamiaaformation even when
the sender is not another human agent, but the environm&rgat For example, the
message given by a frog’s retina that a large dark spot i9ogenaay cause the mean-
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ingful behavior of tongue-flicking, since the tongue-fliegiaccomplishes the purpose
of the frog feeding itself. In this way, Millikan grounds moativity out in terms on
whether or not some information fulfills a “proper functiof984). While the notion
of a proper function is too large a subject to analyze thontubere, Millikan sum-
marizes her more extended presentation into the evolugidremguage, Thought, and
Other Biological Categorie§1984) by saying “ A thing’s proper functions are effects
which, in the past, have accounted for selection of its ancgg$or reproduction, or
accounted for selection of things from which it has been edpor for selection of
ancestors of the mechanisms” (Millikan, 2000). So, for egemthe function of the
eye to blink was selected because it protected the eyes faom &nd so increased the
survival of eye-blinking species. She later extends thifsxden to deal not just with
natural selection of genes, but mimetic selection, wheitation counts as a form of
reproduction, and in this way accounts for the extensionyeftdinking as a signal
of recognition to the complex use of language (Millikan, 2D0Also, many things
spread, especially by imitation, regardless of any propection. As Millikan notices,
“Many conventions seem to have no functions. They seem tifgratte only because
people are creatures of habit, or unthinking conformistiezause they venerate tra-
dition, and so forth” (Millikan, 2000). From this we can gedefinition ofconvention
such as choosing to drive on the right side of the road as egbtusthe left, as the
use of a thing based purely on previous histamthout regard to imitation or natural
selection. While a proper function is a natural purpose,yraohnological artifacts
have an ‘unnatural’ purpose, particularly those designemdme laboratory or by some
enthusiasts and not yet released ‘into the wild’ to sufferttiavails of selection either
by nature or the market. This is the purpose for which anaatifias been designed,
which it may or may not succeed. In many cases, it is hard to deéect the purpose
of some particular information, and the connection to eloiuwill be vague at best.
In most of the examples we are dealing with, our notion of easés straightforward;
the message to Amy that Ralph won the plane ticket is suadatsfmy receives the
content of the message, and this can be detected by Amy agipropriately, such as
when she tells Ralph that he has a plane ticket to Paris. Wtithe ability to accurately
receive and transmit messages, one would assume that tiespeuld be less likely
to survive, and technology such as sending e-mails is ssftdessofar as it provides
a benefit to its users over, say, carrier pigeons. As Andyk@ats, it “by seeing tools
as entities with their own selective histories” we can ustierd what Terrence Deacon
calls the “flurry of adaption...going on outside the brai@lqrk, 2002; Deacon, 1997).
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Despite Dretske’s use of terms like “certainty” and “knodde,” we can use our
story about information in ways that apply to technologytsas computers whose
epistemic properties are even more uncertain than thosearmahs. The successful
conveyance of a message requires that its regularity iepred over some channel so
that the message is capable of evoking the correct and pftposeaningful behavior
from agents. What Dretske calls “knowledge” are the regfidaralready present in
the system that may contribute to the information being essftilly conveyed between
agents. So one could easily replace the natural languageagegabout a free trip to
Paris between two humans to be a message to book an aerdpkatdédr Ralph from
one dumb server to another over the Internet. For this to beessful, the servers must
share the same encoding schemes so that the content of tckagaesn be decoded.
These computers may not interpret the content of the engarfithe message in the
same manner that a human does — since the computers obviusigt know that
Ralph is, say, human — but they interpret the message ndesthend the sign of
this interpretation is that the message has some meanipigfsical effect upon the
machine, causing it to send other messages to other mac¢hates/entually results in
a plane ticket being printed for Ralph. However, the evokelavior is not arbitrary,
just as an interpretation is not arbitrary. If the planeeiaiven by Daniel sends Ralph
to Berlin, something has gone amiss in the computer’s int¢agion of the booking,
and its meaningful behavior is no longer in line with the mep of the message.

3.4 Language and Models

The encodings and content of information do not in generalem self-contained
bundles, with each encoding being interpreted to somesiaeding propositional con-
tent. Instead, encodings and content come in entire ir@rig informational systems.
One feature of these systems is that encodings are layes&tk iof each other and
content is also layered upon other content. The perfect pbeawould be an English
sentence in an e-mail message, where a series of bits arécusedode the letters of
the alphabet, and the alphabet is then used to encode wakésvite, the content of a
sentence may depend on the content of the words in the sentéfien this happens,
one is no longer dealing with a simple message, but some fétanguage. Alan-
guagecan be defined as system in which information is related to other informatio
systematicallyln a language, this is a relationship between how the engaafisome
information can change the interpretation of other enagslilfMessages always have
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encodings, and usually these encodings are part of langudgebe more brief, in-
formation isencoded ilanguages. The relationships between encodings and ¢onten
are usually taken to be based on some form of (not neces$amihalizable or even
understood) rules. If one is referring @acsystem in which the encoding of information
is related to other encodings systematicatlyen one is talking about thsyntaxof a
language. If one is referring @ system in which the content of information is related
to other content systematicallthen one is referring to threemanticof the language.
Particular encodings and content theme accepted byhe syntax and semantics of a
language respectively.

Also, we do not restrict our use of the word ‘language’ to @ity linguistic
forms, but use the term ‘language’ for anything where thera systematic relation-
ship between syntax and (even an informal) semantics. Ocle isuestigation into
non-linguistic languages is Nelson Goodmadrasiguages of Arf1968). Although our
examples so far have been in natural language, our defifitanguage is purpose-
fully neutral regarding languages for humans (or even pbssanguages for other
animals) and ‘formal’ languages for machines such as prograg languages for
computers. There areonic languagedased on imagesndnatural languageshased
on human linguistic expressioras well asormal languageswith an explicitly defined
syntax and possibly model-theoretic semanfcsl so the purpose of these formal lan-
guages can be interpretation by computers. Many computguéges not considered
to be programming languages are languages insofar as theysbane normative or
even informal interpretation, such as HTML. Furthermornege do some bias against
computer languages actually being first-class languagesetimes the ternfiormat
is a synonym for computer-based language, often one thabtalirectly execute as
a program. Lastly, just as encodings and content may be afebdad each other to
form a language, languages themselves may be embeddechiotb&ec to form new
languagesA language embedded as a subset of another langisagdialector vo-
cabulary of the language. Many machine languages like XML have as fehary
purpose the expression of other dialects (Bray et al., 1998)

A particular message in a language anexpressiorof the language. The lower-
level of a language can lierms regularities in marksthat may or may not have their
own interpretation, such as the words or alphal#aty combination of terms that is
valid according to the language’s syntexasentencen the language, anany com-
bination of terms that has an interpretation to content adowgy to the language’s
semanticgs a statementin the language. In this way, marks form the syntax of a



36 Chapter 3. Philosophical Prolegomenon

language. The relationship between semantics and syntakecatraightforward or
only vaguely known, depending on the language in questiaor. ekample, formal
languages almost always have an explicitly humanly-defayedax and even model-
theoretic semantics, while the semantics of English seegstape easy definition,
although its syntax is reasonably well-understood. Onecpie used in the study of
languages, attributed to Frege, is the principleahpositionality wherethe content
of a sentence is related systematically to terms in whichébmposedindeed, while
the debate is still out if human languages are truly commosit (Dowty, 2007), pro-
gramming languages almost always are compositional. Theenbof the sentence
such as ‘Ralph has a plane ticket to Paris so he should go @inh@t!’ can then be
composed from the more elementary content of the sub-stéattsisuch as ‘Ralph has
a plane ticket’ which in turn can have its content impactedMoyds such as ‘Paris’
and ‘ticket.” The argument about whether sentences, worddauses are the minimal
building block of content (and as such can be assigned d ‘traiue’) is beyond our
scope. Do note one result of the distinction between engaoalil content is that sen-
tences that are accepted by the syntax (encoding) of a lgagsach as Chomsky’s
famous “Colourless green ideas sleep furiously” may havelmaous interpretation
(to content) outside of the pragmatics of Chomsky’s paldicexposition (1957). The
reverse is also true. Statements that may not be gramniatcaitect can in the right
context possess content, like most natural language ntesan speech.

An act of interpretation is usually thought of as a mappiogfisome sentencesin a
language to the content of some state-of-affairs in a wdithils world is often thought
to be the everyday world of concrete trees, houses, anddapds that humans in-
habit. We will not engage in any metaphysical speculationegards the nature of
the world besides our previous minimal definitions of phgBycconnected or discon-
nected things and processes, so allowing for others to eéhatexistence of possible
worlds or the metaphysical status of the past and futureaiiégss, informally an in-
terpretation can be considered to be a mapping from serg¢éntiee physical world it-
self, a mapping rather appropriately labeled ‘God Forthogfr(Halpin, 2004). How-
ever, often we do not have access to the world itself and ihdear if a simplistic
definition such as “the truth of a sentence consists in iteegent with (or corre-
spondence to) reality” makes any sense, for “all these ftatimns can lead to various
misunderstandings, for none of them is sufficiently preeise clear” (Tarski, 1944).
In an attempt to define a formal notion of truth, Tarksi defitiegl interpretation of a
language, which he terms the “object” language, in terms'nfeta-language” (1944).
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If both the language and the meta-language are suitablyalared, the interpretation
of the language can then be expressed in terms of a satisfaztia mathematical
model, wheresatisfactioncan be defined an interpretation to a mathematical model
that defines whether or not every sentence in the languagéeanterpreted to con-
tent which in the tradition of Frege is usually thought of as att¥ value. The model
‘stands-in’ for the vague and fuzzy world or some portiorr¢ioé. While Tarksi orig-
inally applied this only to suitably formal languages, atheuch as Montague have
tried to apply this approach, with varying degrees of sue@sl failure, to natural
language. Amodel-theoretic semanticis a semantics wheran interpretation of a
language’s sentences is to a mathematical modlele modelis a mathematical rep-
resentation of the world or the language itselhe relationship is summarized below
in Figure 3.2, where the relationship between the model la@dvbrld is thought to be
distal (such that the modetpresentshe world). This is not always the case, as when
the model can be thought of as ranging over the world itself.

The adequacy of models is usually judged by whether or nagt finléll the pur-
poses to which the language is designed, or whether or niotltbleavior adequately
serves as a model of some portion of the world. Given a mduaretic semantics,
an interpretation can be given as “a minimal formal desinipbf those aspects of
a world which is just sufficient to establish the truth or figiof any expression” in
the language (Hayes, 2004). While again the history andtdebaer these terms is
outside the scope of this thesis, in general the originabnpais pioneered by Carnap
(1947), is that a certaikind of thing may only be describgahd so given amtension,
while thethings that satisfy this descriptiq@vhich may be more than one thing) are
extensions Sentences am@nsistenif they can be satisfieéhconsistentf otherwise.
Lastly, note that aentailmentis where an interpretation of one sentence to some con-
tent always satisfies the interpretation of another serdgdncsome content.e. the
first statement entails the second. In contrasipérenceis asyntactic relationship
where one sentence can be used to construct another sememn@nguage In detail,
as shown in Figure 3.2, the syntactic inference mechanismstone produce more
valid inferences, and because these inferences ‘line ughi @ntailments, they also
may accurately describe the world outside the formal systdeally, this model also
‘lines-up’ with the world, so the inferences give one morerect statements about
the world. Models can be formally captured using varioushmiatatical techniques,
of which we have primarily described what is known as demmtal semantics, but
axiomatic and operational semantics are equally powegimhélisms. Inference can
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Figure 3.2: Models, Entailment, and Inference

usually be accomplished by some local inference procetikesa computer program.
The inference procedure of a languagsasindif every inferred sentence can be satis-
fied(i.e. the inference mechanism preserves ‘truth’), anddbrapletaf every satisfied
sentence can be shown to be entafliegl all ‘true’ statements can be proven). This is
necessarily a quick overview of the large field of formal setits, and these issues are
discussed more in depth in Chapter 6. This is illustratediguie 3.2 as the parallel
between the causal relationships of the syntactic serdeara their interpretations to
a model thasemanticallyrefers to the world.

3.5 Digitality, Concepts, and Entities

One of the defining characteristics of information on the Wigethat this information
is digital, bits and bytes being shipped around by variowgqmols. Yet there is no
clear notion of what ‘being’ digital consists of, and a warginotion of digitality is
necessary to understand what can and can not be shippedia®bytes on the Web.
Much like the Web itself, we can know something digital whemspot it, and we can
build digital devices, but developing an encompassingomatif digitality is a difficult
task, one that we only characterize briefly here.

One philosophical essay that comes surprisingly closefinidg a notion of digi-
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tality is Nelson Goodman’sanguages of ArtGiven some physically distinguishable
marks, which could compose an encoding, Goodman (1968)adkfivarks asfinitely
differentiable’ when it is possible to determine for any given mark whethsridenti-

cal to another mark or marksThis can be considered equivalent to how in categorical
perception, despite variation in handwriting, a persorc@ees hand-written letters as
being from a finite alphabet. Sequivalence classes of marks can be thought of as an
application of the philosophical notion of typeshis seems close to ‘digital,” so that
given a number of types of content in a language, a systengiigbif any mark of the
encoding can be interpreted to one and only one type of cbnteerefore, in between
any two types of content or encoding there can not be an iefmimber of other types.
Digital systems are the opposite of Bateson’s famous diefimdf information: Being
digital is simply having a difference that does not makeedéhce (Bateson, 2001).
This is not to say there are characteristics of a mark whichadoeflect its assignment

in a type, and these are precisely the characteristics verehost in digital systems.
So in an analogue system, every difference in some mark neakifference, since
between any two types there is another type that subsumeigjaeucharacteristic of
the token. In this manner, the prototypical digital systsrthe discrete distribution of
integers, while the continuous numbers are the analoguersyzar excellence, since
between any real number there is another real number.

Lewis took aim at Goodman'’s interpretation of digitalitytearms of determinism
by arguing that digitality was actually a way to represerggioly continuous systems
using the combinatorics of discrete digital states (19Ta)ake a less literal example,
discrete mathematics can represent continuous subjetémnafThis insight caused
Haugeland to point out that digital systems are always abistmns built on top of ana-
log systems (1981). The reason we build these abstracgdrecause digital systems
allow perfect reliability, so that once a system is in a @igiype (also called a ‘digital
state’), it does not change unless it is explicitly made tange, allowing both flaw-
less copying and perfect reliability. Haugeland reveagsghrpose of digitality to be
“a mundane engineering notion, root and branch. It only maense as a practical
means to cope with the vagarities and vicissitudes, theeramsl drift, of earthy exis-
tence” (Haugeland, 1981). Yet Haugeland does not tell ud diggtality actually is,
although he tells us what it does, and so it is unclear whyagedystems like com-
puters have been wildly successful due to their digitalyyitethe success of analogue
computers was not so widespread), while others like ‘intpgesonality ratings’ have
not been as successful. Without a coherent definition otality, it is impossible to
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even in principle answer questions like whether or not dliit is purely subjective
(Mueller, 2007).

In contrast, it seems sensible to state that certain pHysioaesses have the po-
tential to be digital objectively. Different interpretecan interpret the same physical
encoding as ‘digital’ in different ways. The marks ‘11’ caa interpreted as eleven in
decimal and three in binary notation. So there are multigsione can state a sys-
tem is digital since digitality is a convergence between lastract mode of interpre-
tation and an objective system that physically implemertsraespondence between
the possible states of the system and discrete types ofrtantihe interpretation. An
interpretation igliscrete interpretatiorwhen it isa relationship from an encoding to
content where the encoding is finitely differentiable anel tiype of the encoding de-
termines the contentin order to distinguish these types in the encoding, thaustm
be some physical regularity in the information realizatibat serves as boundary
Due to this, digitality then allows some finitely differegitle encoding to map via an
interpretation to content. When reading letters in a boak,cancentrate on the let-
ters, not any minor variations in the quality of the printinthese analogue details are
left out of our discrete interpretation of the marks thatresent letters to the letters
themselves. Reading is a convergence between an encodingptinbe discretely in-
terpreted to the alphabet (and onwards and upwards to wiothisyed by language in
general), and arealization in a particular book that capsti@nd maintain the encod-
ing. If we attempt to use an analogue substrate as a realzatiich as writing letters
in water, and this physical substrate does not have the ppipesical characteristics
then digitality seems to elude us. Any informatiordigital whenthe boundaries in
a particular encoding capable of a discrete interpretatican converge with a regu-
larity in a physical realization This would include sentences in a language that can
be realized by sound-waves or the text in an e-mail messagedh be re-encoded as
bits, and then this encoding realized by a series of voltageall these cases, the rel-
evant discrete boundaries can be captured by a realizaftmparticular realization
of digital informationis given by adigital system Since the encoding of the informa-
tion can be captured perfectly by a realization, they candpéured by many possible
realizations, and thus can be copied safely and effectiyety as an e-mail message
can be sent many times or a digital image reproduced coshles

To implement a digital system, there must be a small charatetlile information
realization can be considered to be in a state that is nobp#hre discrete types given
by the encoding. The regularities that compose the physmahdary allows within a
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margin of error a boundary decision to be made in the disanétepretation of the en-
coding. So, an information realization is capable of upmgdligitality if that buffer
created by the margin of error has an infinitesimal chanceagasen time of being
in a state that is not part of the encoding’s discrete staie ekample, the hands on a
clock can be on the precise boundary between the markingseocidck, just not for
very long. In a digital system, on a given level of abstractibhe margin of error does
not propagate upwards to higher levels of abstraction thz@rene on the lower level
of abstraction. This first level of abstraction is ‘first-ertidigital, and other latter lev-
els can be ‘higher-order’ digital. First-order digital syts1s are created from analogue
physics, as we have outlined earlier, and of course highiaraligital systems can
be built on top of lower-order digital systems. Although imligcrete interpretation,
the encoding must be finitely differentiable, the contenséerpreted by an agent —
does not have to be capable of being divided into a finite numwibdiscrete types. For
example, the encoding) could map to the content ‘Any human except Ralph or San-
dro.” Or, in order to capture apparently analogue musicestan a digital format, one
should sample the wavelength twice as often as the higlezgidéncy of the waveform,
and this leads the human to have an analogue experiencemisie when the music
is interpreted by their stereo. So, higher-order analogheabuilt on top of lower-
order digital systems. Furthermore, digital realizationteract with and are based on
analogue systems. Digital information, no matter how mayeits of encoding are
built into each other, are realized in very concrete ancefloee analogue realizations.
So we will make one metaphysical claim in the spirit of Briaan@vell Smith, by
pre-supposing an analog world, not a fundamentally digiaild like that proposed
by Fredkin (Smith, 1995; Fredkin, 2003). Some realizatiohsformation are better
than others. Since we can create physical systems througjhesming, we can cre-
ate physical substrata that have low probabilities of bemgtates that do not map
to digital at a given level of abstraction. As put by Turin@he digital computers ...
may be classified amongst the ‘discrete state machinesg thiee the machines which
move by sudden jumps or clicks from one quite definite statntither. These states
are sufficiently different for the possibility of confusitretween them to be ignored.
Strictly speaking there are no such machines. Everythiallyrenoves continuously”
(Turing, 1950).

There are many things that are not digital. Some philosapliier Brian Cantwell
Smith hold this “slop” or “fuzziness” of regularities to befandamental property of
many things in the world, like abstract concepts and rathgsigal people and places
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(1995). Theanalogueis the rather large and heterogeneous savefything that is
not digital. This would include people, such as Ralph himself, who carepeesented
but not realized as a message, as well as places, like Mowerefly whose precise
boundaries are rather indeterminate. Indeed, things tedtiadamentallyanalogue
we will call entities wherethe regularities of the thing can only be realized by the
thing itself, not in another realizationThis is not to say that the content of entities
is itself analogue, so that Ralph can not be distinguishenh fanother person like
Sandro, or a place like France cannot be distinguished frataiB. All we mean is
that the regularities that define people and places are nayimlifferentiable and so
cannot be realized in a single digital message. Ralph andr8ame deeply analogue
physical bodies of skin and hair who can be represented,diuealized, by a single
digital representation, while places like the Eiffel Toveee literally physical areas of
space upon the earth that can likewise be represented, trgalized by some digital
substratum. Even when analogue entities may be diffetdetias we can differentiate
Ralph from Sandro and France from Britain, these analogtigdesncan themselves
not be realized digitally and copied. Whole places and peophnot just be copied
and shipped in a message in bits over a wire! In order to djstgh this use of the term
‘entity’ from the use of the term ‘entity’ in HTTP, we will ussomewhat facetiously
the adjective ‘physical’ to describe these kinds of ertditie

Another thing that has difficulty being realized by a singlessage areoncepts
where thethe regularities of the thing only exist at a level of abstrac that can-
not be encoded by a single realizatiodnlike analogue entities, one does not have a
definitive local physical thing one can bump up against anghpbecause a concept
only exists on a level of abstraction that seems physicalyized by many disparate
things, and may not be completely realized by any of them.ddtite rubric of con-
cept comes many things, including imaginary things likecams and the concept of
a ‘horse.” There simply are no unicorns to bump against, ahievall horses may
to some extent realize the concept of a horse, the concephofs2 is not given by
any single horse, but instead a way an agent has of recogréame thing is actually
a realization of a ‘horse.” Furthermore, there are absitantepts that are to some
extent imagined to be infinite, such as concepts like thegersethat are generated by
some combinatorial rules. Obviously, no bounded and cdedeegion of space-time
can realize the concept, so concepts are different fronognalentities. It is debatable
whether concepts are at some level of abstraction ‘realfytal or analogue. Concepts
may be differentiable, a unicorn can be distinguished frdrorae, or even finitely dif-
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ferentiable, since an integer like seven can be distinguiffom any other integer. Yet
while particular messages can represent concepts, jusinas mathematical expres-
sions can represent the concept of the integers or a pict@eiicorn can represent
the concept of a unicorn, one would not say that a singlezat@in can adequately
capture all the regularities inherent in a concept. So, ggsbne cannot just ship a
physical person as a message, one cannot completely encmteept and then re-
alize it as a single message. Realizations always fall sifazbncepts. In order to
emphasize that these concepts are a broader class tharearsalgation or a single
physical entity, we shall sometimes use the adjective fabstin front of the term
‘concept’ in order to be clear.

To return to the Web, the success of the Web lies in no smalbpahe vast prolif-
eration of digital computers that allow users to createaestand retrieve information,
and use the Web as a naming space to share this informatibrothiérs. While, ac-
cording to Hayles, “the world as we sense it on the human sslasically analogue,”
the Web is yet another development in a long-line of biolabmodifications and tech-
nological prostheses to impose digitalization on an anaogorld (2005). The vast
proliferation of digital technologies is possible becatisere are physical substrata,
some more so than others, which support the realization gifadlinformation and
give us the advantages that Haugeland rightfully pointastite purpose of the digi-
tal: flawless copying and perfect reliability in a flawed amgperfect world (1981).

3.6 Representations

By claiming to be a “universal space of information,” the Welasserting itself to be
a space where any encoding can be transferred about annt{Bézners-Lee et al.,
1992). However, there are some distinct differences betvkésds of content, for
some content can be distal and other content can be localmiesaage between two
computers, if the content is a set of commands to ‘displagdl®ytes on the screen’
then the client can translate these bytes to the screertlgivathout any worry about
what those bytes represent to a human user. However, thentaitthe message may
involve some distal components, such as the string ‘Ralph avticket to the Eiffel
Tower in Paris,” which refers to many things outside of thenpater. Differences
between receivers allow the self-same content of a mesedggetioth distal and local,
depending on the interpreting agent. The message to ‘¢iimse bytes on the screen’
could cause a rendering of a depiction of the Eiffel Towerdaisplayed on the screen,
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so the self-same message causes not only a computer toydsgptee bytes but also
causes a human agent to receive information about what tte¢ Eower in Paris looks
like.

Any encoding of information that has distal content in some eesfs called a
representation regardless of the particular language the informatiomisoded in.
Representations are then a subset of information, andiirthercharacteristics out-
lined of all information, such as having one or more poss#nleodings, one or more
realizations, and often a purpose and the ability to evokamngful behavior from
agents. To have some relationship to a thing that one is wiwmted from is to be
aboutsomething else. Generallyye relationship of a thing to another thing to which
one is immediately causally disconnectsa relationship ofeferenceto areferent
or referents the distal thing or things referred to by a representatidihe thing which
refers to the referent(s) we call the ‘representation,’ taiee this to be equivalent
to being asymbol To refer to something is tdenotesomething, so the content of
a representation is idenotation In the tradition of Bretano, the reference relation is
consideredntentionaldue to its apparent physical spookiness. It appears theogrie
great looming contradiction: If the content is whatevera&din common between the
source and the receiver as a result of the conveyance ofiayparimessage, then how
can the source and receiver share some information theysoenmected from?

We will have to make a somewhat convoluted trek to resohgegghradox. The very
idea of representation is usually left under-defined asantihg-in” intuition, that a
representation is a representation by virtue of “standirider its referent (Haugeland,
1991). The classic definition of a symbol from the PhysicahBgl Systems Hypoth-
esis is the genesis of this intuition regarding represemtst “An entity X designates
an entityY relative to a procesB, if, whenP takesX as input, its behavior depends on
Y” (Newell, 1980).

There are two subtleties to Newell’s definition. Firstlye thotion of a representa-
tion is grounded in the behavior of an agent. So, what priscesrints as a represen-
tation is never context-free, but dependent upon the agenpleting some purpose
with the representation. Secondly, the representaioilatests referent, and so the
representation must be local to an agent while the referagthea non-local: “This is
the symbolic aspect, that haviig(the symbol) is tantamount to having(the thing
designated) for the purposes of procEs¢Newell, 1980). We will callX a represen-
tation,Y thereferentof the representation, a procé3ghe representation-usiragent
This definition does not seem to help us in our goal of avoiglihgsical spookiness,
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since it pre-supposes a strangely Cartesian dichotomydeetihe referent and its rep-
resentation. To the extent that this distinction is held iarprthen it is physically
spooky, as it seems to require the referent and represamtatisomehow magically
line up in order for the representation to serve as a subsstibn its missing referent.

The only way to escape this trap is to give a non-spooky thebinpw representa-
tions arise from referents. Brian Cantwell Smith tacklas tiallenge by developing
a theory of representations that explains how they arispaeatly (1995). Imagine
Ralph finally gets to Paris and is trying to get to the Eiffelven. In the distance,
Ralph sees the Eiffel Tower. At that very moment, Ralph aedgiffel Tower are both
physically connected via light-rays. At the moment of tiagk connected as they are
by light, Ralph, its light cone, and the Eiffel Tower are ateys, not distinct individ-
uals. An alien visitor might even think they were a singleiidlal, a ‘Ralph-Eiffel
Tower’ system. While walking towards the Eiffel Tower, whitre Eiffel Tower dis-
appears from view (such as from being too close to it and Igathe view blocked
by other buildings), Ralph keeps staring into the horizoouged not on the point the
Eiffel Tower was at before it went out of view, but the pointeva he thinks the Eiffel
Tower would be, given his own walking towards it. Only whemtpaf the physical
world, Ralph and the Eiffel Tower, are physically separatad the agent then use a
representation, such as the case of Ralph using an inteneatal image’ of the Eiffel
Tower to direct his walking towards it, even though he carseatit. The agent is dis-
tinguished from the referent of its representation by @rtd not only disconnection
but by the agent’s attempt to track the referent, “a longaglise coupling against all the
laws of physics” (Smith, 1995). The local physical processsed to track the object
by the subject are the representation.

This notion of representation is independent of the repitasien being either inter-
nal or external to the particular agent, regardless of hoewdwiines these boundarfes.
Imagine that Ralph had been to the Eiffel Tower once before célld have marked
its location on a piece of paper by scribbling a small map.nTliee marking on the
map could help guide him back as the Eiffel Tower disappeeahsnol other buildings
in the distance. This characteristic of the definition ofresgntation being capable
of including ‘external’ representations is especially orant for any definition of a
representation to be suitable for the Web, since the Webngosed of information
that is considered to be external to its human users.

3The defining of “external” and “internal” boundaries is aity non-trivial, as shown in Halpin
(2008a).
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However fuzzy the details of Smith’s story about repredeoria may be, what is
clear is that instead of positing a connection between agef@nd a representation a
priori, they are introduced as products of a temporal pracésis process is at least
theoretically non-spooky since the entire process is dapaftbeing grounded out in
physics without any spooky action at a distance. To be gredmdit in physics, all
changes must be given in terms of connection in space angdinreother words, via
effective reach. Representations are “a way of exploitiegl freedom or slop in order
to establish coordination with what is beyond effectiveckégSmith, 1995). In order
to clarify Smith’s story and improve the definition of the Blgal Symbol Systems
Hypothesis, we consider Smith’s theory of the “origin of@dig” to be aeferential
chain with distinct stages (Halpin, 2006):

Presentation ProcessSis connected with proces3.

e Input: The processSis connected wittR. Some local connection @& putsR
in some causal relationship with procé&3sThis is entirely non-spooky since
andO are both connected witR. R eventually becomes the representation.

e Separation Processe® and S change in such a way that the processes are
disconnected.

e Output: Due to some local change in proc&s$ uses its connection witR to
initiate local meaningful behavior that is in part causedRfy

In the ‘input’ stage, theeferentis the cause of some characteristic(s) of the in-
formation. The relationship akferenceis the relationship between the encoding of
the information (the representation) and the referent. rEfetionship of interpreta-
tion becomes one of reference when the distal aspects ofotttertt are crucial for
the meaningful behavior of the agent, as given by the ‘ouiage. So we have con-
structed an ability to talk about representations and eefeg while not presupposing
that behavior depends on internal representations or ¢patsentations exist a priori
at all. Representations are only needed when the relevatiigent behavior requires
some sort of distal co-ordination with a disconnected thing

As a representation is just a particular kind of encodinghédrimation, the inter-
pretation of a representation results in content that iedéent on a distal referent
via the referential chain. In this manner, the act of refeeecan then be defined as

4In terms of Newell’s earlier definition, 0 ¥ while Sis P andRis Y.
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Figure 3.3: The Referential Chain

the interpretation of a representation. This would makermiion of representation
susceptible to being labeledcarrespondence theory of tru{®mith, 1987), where a
representation refers by some sort of structural corresdgaee to some referent. How-
ever, our notion of representation is much weaker, requioimly a causation between
the referent and the representation — and not just any ceslaiibnship, but one that
is meaningful for the interpreting agent — as opposed to stghéer notion of cor-
respondence such as some structural ‘isomorphism’ betagepresentation and its
“target,” the term used by Cummins to describe what we halleccthe “referent” of a
representation (1996). So an interpretation or an act efeete should therefore not
be viewed as mapping to referents, but a mapping to somerdomtere that content
leads to meaningful behavior precisely because of someerdfal chain. This leads
to the notion of a Fregean ‘objective’ sense, which we turshortly in Section 3.7.
To give an example, a picture of the Eiffel Tower has an inmtgiion to some content
that, while locally embodied as something like a mental ienafthe Eiffel Tower, is
effective due to its historical connection to the distal anthal Eiffel Tower itself.

Up until now, it has been implicitly assumed that the reférisnrsome physical
entity that is non-local to the representation, but the may€ntity was still existent,
such as the Eiffel Tower. However, remember that the desmitf non-local includes
anythingthe representation is disconnected from, and so includgsiqai entities that
may exist in the past or the future. The existence of a reptasen does not imply
the existence of the referent or the direct acquaintanceeofdferent by the agent us-
ing a representation. A representation only implies thatesaspect of the content is
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non-local. However, this seems to contradict our ‘inpudiget in the representational
cycle, which implies that part of our definition of represaian is historical: for every
re-presentation there must be a presentation, an encourntethgithing presented. By
these conditions, the famous example of Putnam’s examga aht tracing a picture
of Winston Churchill by sheer accident in the sand would moint as a representation
(1975). If Ralph didn’'t know where the Eiffel Tower was, bavigated the streets of
Paris and found the Eiffel Tower by reference to a tracing Khadinsky painting in
his notebook, then Ralph would not then be engaged in angseptation-dependent
meaningful behavior, since the Kandinsky painting lacksittitial presentation with
the Eiffel Tower. The presentation does not have to be donghdsubject that en-
countered the thing directly. However, the definition of presentation does not mean
that thesameagent using the representation had to be the agent with ifpealrpre-
sentation. A representation that is created by one ageheipitesence of a referent
can be used by another agent as a ‘stand-in’ for that refdréie second agent shares
the same interpretation from encoding to distal content.if&tead of relying on his
own vision, Ralph buys a map and so relies on the ‘secondrorglgresentation of
the map-maker, who has some historical connection to soenebn actually traveled
the streets of Paris and figured out where the Eiffel Tower. wasthis regard, our
definition of representation is very much historical, and driginal presentation of
the referent can be far back in time, even evolutionary tasegiven by accounts like
those of Millikan (1984). One can obviously refer to Gust&viéel even though he is
long dead and buried, and so no longer exists.

Also, the referent of a representation may lm®aceptlike the concept of a horse,
unicorns and other imaginary things, referents to futuagestsuch as ‘see you next
year,” and descriptive phrases whose suppesedtreferent is unknown, such as ‘the
longest hair on your head on your next birthday. While a#db types of concepts
are quite diverse, they are united by the fact that they dammoompletely realized by
local information, as they depend on partial aspects of antaglocal information, the
future, or things that do not exist. Concepts that are cootd by definition, including
imaginary referents, also have a type of ‘presence, it & jhat the ‘presentation’
of the referent is created via the initial description of teerent. Just because a
referent is a concept — as opposed to a physical entity — duesean the content of
the representation cannot have an meaningful effect omtieepreter. For example,
exchanging representations of ‘ghosts’ - even if they doguite identify a coherent
class of referents - can govern the behavior of ghost-hsintedeed, it is the power
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and flexibility of representations of these sorts that pteviumans the capability to
escape the causal prison of their local environment, to @ehimagine the future.
Our use of representation and reference is very broad, sthth@henomenon of
representation can be thought of as nearly everywhere. @asage in the example,
the denoting phrase that ‘Ralph has won a ticket to Parisludes acts of reference
to Ralph, Paris, the past, and implications for Ralph’s feitactivity. Indeed, with
our definition of reference, it appears that almost all lisa sentences other than
those describing the immediate local environment involv@e representational as-
pect. Indeed, representations exist at multiple levelsstraction and composition.
For example, the ‘text of Moby Dick’ in English locally caes the information about
the ‘story about a white whale’ on one level of abstractionwidver, the story itself is
mired in representation, involving distal referents suskvhales, harpoons, and 19th-
century New England. In this case, it is useful to separaten fthe broader class of
representations those things whose primary purpose iptesent distal content from
those things that only have some representational corfenexample, an encyclope-
dia article about the Eiffel Tower or a picture of the Eiffe\Wer by itself have as their
primary purpose the representation of the Eiffel Tower, @sogsed to a map of Paris
or a movie like the ‘Lavender Hill Mob’ that simply featureset Eiffel Tower as part
of a more general or different purpose. In the cases whes¢heiprimary purpose of
something to be a representatiome will call that representation@escriptionif it is
in a natural or formal language omd&pictionif it is in an iconic language.

3.7 Sense and Reference

The tradition most of these definitions have come from has bae strictly in line with
the philosophy of cognitive science and the mind, as exdiaglby Brian Cantwell
Smith and Dretske, who tends to spend much energy discudsingature of terms
like ‘information’ and ‘representation.” However, there an important connection
that seems to have been missed by Dretske and others, thectiombetween infor-
mation, sense, and reference. This is likely because Friegeeh was quite cryptic
with regards to any definition of ‘sense.” Therefore, we hagechoice but to return
to Frege’s original controversial theory of sense and ezfee as given irsinn und
BedeutundFrege, 18925.

5The ambiguous translation of this work from original Gernteas been a source of great philo-
sophical confusion. While the word ‘Sinn’ has almost alwagen translated into ‘sense,” the word
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The key idea lies in Frege’s contention that the meaning ptam in a language
is determined by what Frege calls the “sense” of the sensaiheg use the term, rather
than any direct reference of the term (1892). For Frege,dfezents of a term should
be assigned to truth-values, but two statements may sharsatine truth-value but
have different senses. According to Frege, two sentenadd b the same only if
they shared the same sense. Take for example the two semtéthesperus is the
Evening Star” and “Phosphorus is the Morning Star.” (Frd@9_2). Since the ancient
Greeks did not know that ‘The Morning Star is the same as tleniag Star, they did
not know that the names ‘Hesperus’ and ‘Phosphorus’ shasdme referent when
they baptized the same star, the planet Venus, with twordiftenames (Frege, 1892).
Therefore, Frege says that these two sentences have tliséinses’ even if they share
the same referent, so sense is not just a function to reterergge pointed out that, far
from being meaningless, statements of identity that woalthere tautologies from the
point of view of a theory of reference are actually meanihgfane realizes different
terms can have distinct senses. One can understand a staiéde@eéThe Morning
Star is the Evening Star’ without knowing that both refer enus. In fact, one may
only know that the ‘Morning Star’ refers to Venus. By leamithe ‘Morning Star’
and the ‘Evening Star’ are not distinct senses but a singlseseone is doing actual
meaningful cognitive worky putting these two senses together. While the idea of a
notion of ‘sense’ seems intuitive from the example, it is éarsly hard to define, even
informally. Frege defines ‘sense’ in terms of the mysterimasie of presentatigrfior
“to think of then being connected with a sign (name, comlbamadf words, letters),
besides that to which the sign refers, which may be calleddafexence of the sign,
also what | should like to call the sense of the sign, whetembode of presentation is
contained” (1892). This rather cryptic statement has aaosdtiple decades of debate
by philosophers of language like Russell and Kripke who ladtempted to banish the
notion of sense and simply build a theory of meaning from tecept of reference.
These attempts are detailed in Chapter 6.

Regardless of what precisely ‘sense’ is, Frege believettiiganotion of sense is
what allows an agent to understand sentences that may netaheeferent, for “the
words ‘the celestial body most distant from Earth’ has a egbst it is very doubtful

‘Bedeutung’ has been translated igiither‘reference’ or ‘meaning,’ depending on the translator. Whi
‘Bedeutung’ is most usually translated into the fuzzy Esiglivord ‘meaning’ by most German speakers,
the useto which Frege puts it is much more in line with how the wordérence’ is used in philoso-
phy. So in the tradition of Michael Dummett, we will trangdrege’s ‘Bedeutung” into ‘reference’
(Dummett, 1973).
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there is also a thing they refer to...in grasping a sensecertainly is not assured of
referring to anything” (Frege, 1892). So it is the conceptarise that should be given
a priority over reference. This is not to deny the role of refiee whatsoever, since
“to say that reference is not an ingredient in meaning is aaddny that reference
is a consequence of meaning..it is only to say that undeistgrwhich speaker of
a language has a word in that language...can never consistynie his associating
a certain thing with it as its referent; there must be soméqaar meansby which
this association is effected, the knowledge of which couts his grasp of its sense”
(Dummett, 1973).

Sense is in no way an ‘encoded’ referent, since the refesatisial from the sense
usually. Instead, the sense of a sentence would naturatyde agent to correctly
guess the referents of the sentence. Yet how could this leetdef? Again, sense
is also not merely some encoded meaning, nor is senseystiicthe head’ with no
effect on meaningful behavior. As put by Wittgenstein, “WHehink in language,
there aren’t ‘meanings’ going through my mind in additiortlie verbal expressions:
the language is itself the vehicle of thought” (1953). Saaske bedrock upon which
meaning is constructed, and must be encoded in a languagfct|naccording to
Frege, sense can only be determined from a sentence in aalgegand the sense of
a sentence almost always requires an understanding ofltlee sgntences in a given
discourse. Without determining from a number of possibtesee a sentenceayhave,
which sense the sentendeeshave, one cannot meaningfully act. However, the sense
used by the agent may be incorrect according to the creatbeafentence’s purpose,
but that does not prevent the agent from acting.

So, how can sense be determined, or at least detected? Af@nestanything
counts as meaningful behavior. While sense determinasiendifficult and context-
ridden question that seems to require some full or at least€cular’ language un-
derstanding, the best account of sense detection so faves @y the earlier notion
of assertoric content of Dummett, which is simply that anrag@an be thought of as
interpreting to a sense if they can answer a number of ‘yéginary questions about
the sense in a way that makes ‘sense’ to other agents spehkifepmguage (Dummett,
1973). There is a tantalizing connection of Dummett’s dssercontent as answers to
binary questions to the information-theoretic reductibmicertainty through binary
choices (bits), as the content of information cannot bevadrivithout enough bits in
the encoding. Overall, Dummett's notion of sense as grodimdactual language use
naturally leads to another question: Is sense objective?
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The reason the notion of sense was thought of as so objebtebgamany philoso-
phers like Russell and Kripke was that it was viewed as a f@jvadividual notion,
much like the Lockean notion of adea Frege himself clearly rejects this, strictly
separating the notion of a sense from an individual subjecdtiea of a referent. Far
from subjective, Frege believed that sense was inherebjlctive “the reference of
a proper name is the object itself which we designate by usjrige idea which we
have in that case is wholly subjective, in between lies tmsasewhich is indeed no
longer subjective like the idea, but is yet not the objedlitq1892). A sense is ob-
jective insofar as it is a shared part of an inherently pulbliguage, since a sense is
the “common property of many people, and so is not a part of denod the individual
mind. For one can hardly deny that mankind has a common stdat®oghts which
is transmitted from one generation to another” (1892). Wilile exact nature of a
sense is still unclear, its main characteristic is that austh be whatever isbjectively
sharedbetween agents as regards their use of terms in a languagerécisely this
notion that sense is ‘objective’ that allows us to connectveark in the philosophy of
information and representation to the philosophy of laggua

This is namely because the Fregean notion of sengergical with our recon-
structed notion of informationalontent These terms should be viewed as identical.
The content of information is precisely what is shared betwiae source and the re-
ceiver as a result of the conveyance of a particular mes&geefinition, this holding
of content in common which is the result of the transmissicananformation-bearing
messagenustby definition involve at leastwo things: a source and a receiver. Fur-
thermore, if the source and receiver are considered to beahwagents capable of
speaking natural language, then by the act of sharing sesgewhich are just encod-
ings shared over written letters or acoustic waves in neamguage, the two speakers
of language are sharing the content of those sentences Si@content is possessed
by two people, and is by definition of information teamecontent, insofar asub-
jectiveis defined to be that which is only possessed by a single agertlgectiveis
defined to be that which is possessed by more than one agiatugh not necessarily
all agents), thewontent is objective

Most of the productive concepts reconstructed earlier thap straightforwardly
to terms in philosophy of language. Sentences and termsahatua language have
both a syntactic encoding and a semantic content or sersecdn multiply real-
ized over differing mediums. A sentence is a fully-fledgefdimation-carrying mes-
sage, that can have multiple realizations in the form okdéht utterances at different
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points in space and time. The Gricean notion of a speakeestions then maps to
our purposes, and his more fully-fledged notion of lingaistieaning maps closely
to our notion of meaning. The problem of word senses is nowaled to be much

larger than previously supposed, as it now stretches atoca$ sorts of non-natural

languages. Everything from messages in computer protdtaisal languages) to

paintings (iconic languages) are now just encodings ofimédion, and these too have
senses and possible sense ambiguities.

Representations are not just then ‘in the head’ but alsoceptds sentences in
the form ofnames In particular, a name in natural language is no more thanesom
encoding that has as its interpretation the sense of a deggient. The class giroper
names long a source of interest, is just a representation in ahtanguage whose
referent is an entity, such that the name ‘Ralph’ refers ¢éoptrson Ralph, while the
larger class of names such as ‘towers’ or ‘integers’ carr tefgroups of entities and
concepts. There may be some objection to the idea that amaerein a sentence is a
full-blooded representation. However, unlike some treodf representation such as
those put forward by Cummins, we do not require that thereobges‘isomorphism”
or other structured relationship between the represemntatid the referent (1996). We
only require the much less-demanding causal relationskitpseme impact upon the
sense (content) and thus the meaningful behavior of thetag#hile it is obvious
there is nothing inherent in the term ‘Eiffel Tower’ that tisathe letters or phonemes
in the name to correspond in any significant structural wai tine Eiffel Tower itself,
as long as the sense of the name is dependetitara being a refererthat the name
‘stands-in’ for, so a name like the ‘Eiffel Tower’ is still @presentation of the Eiffel
Tower itself.

3.8 Conclusion

In conclusion, we concur with Dummett that any account of mrag will have in

essence three layers, where the outer layer has prioritytbeanner layers (1993).
First, the “core” would be the “theory of reference” whileutsounding the theory of
reference will be a shell, forming the theory of sense” s¢ tthee theory of reference
and the theory of sense form together one part of the theorgezining: the other,
supplementary, part is the theory of force”, or as we woultdifpa theory of purpose
(Dummett, 1993). So nothing in the philosophical accoumtspnted so far is new,
although the manner of reconstruction and recombinatiopn lmanew. We have built
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from a fairly simple account of connection and disconnecfiom Brian Cantwell
Smith, moving to the account of information encoding andtennhfrom Dretske, to
then a notion of purpose and meaning derived from Millikand then finally returning
to an account of digitality from Haugeland and an accounttdrence and represen-
tation from Brian Cantwell Smith again. Then, at the lastgilae juncture, we show
that Frege’s account of sense can be seen as the same as @umtamfccontent for
information in general given in Section 3.2.

The convergence of informational content with linguisease is liberating for the
philosophy of language, because while previously, isstissmse and reference seem
to have primarily been bound to natural languages, the mbweeatifying content
with sense and sentences with encodings then opens a whwlenterprise: the im-
pact of sense and reference on non-natural languages tioyterthe study of formal
languages created by digital technology. Our interest i ifthow these issues of
meaning, sense, and reference can be analyzed in contéxtheitVorld Wide Web.
Surprisingly, classical problems of sense and referenearerge with a vengeance on
the Web. However, first we must define the foundational teotomy of the Web itself.



Chapter 4
The Principles of Web Architecture

You have abandoned the old domain, the old concepts. Herargan a new domain,
for which new concepts will give you the knowledge. The dighd real change in
locus and problematic has occurred, and that a new advensubeginning, the ad-
venture of science in developmelnbuis Althusser (1963)

While the significance and history of the Web have been empthithe task remains
to show that the Web is a well-defined system with a unique @oation of properties.
In Chapter 5 we will demonstrate how these principles camuin be applied to the
Semantic Web.

Can the various technologies that go under the rubric of tbdd\Wide Web be
found to have common principles and terminology? This qaestould at first seem
to be shallow, for one could say that any technology thatseudeed by its creators, or
even the public at large, can be considered trivially ‘p&the Web." To further com-
plicate the matter, the terms like the ‘Web’ and the ‘Inté¢raee taken to be synonyms
in common parlance, and so are often deployed as synonyrassihigle broad stroke,
we can distinguish the Web and the Internet. The Internetyip@of packet-switching
network as defined by its use of the TCP/IP protocol. The mepd the Internet is
to get data from one computer to another. In contrast, the i/ebspace of names
for information defined by its usage of URIs. So, the purpdsine Web is the use
of URIs for accessing and referring to information. The Wel the Internet are then
strictly separable, for the Web, as a space of URIs, coulcehkzed on top of other
types of networks that move bits around, much as the samgal/imiachine can be
realized on top of differing physical computers. For exampine could imagine the
Web being built on top of a network built on principles ditet from TCP/IP, such as

55
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OSl, an early competitor to the TCP/IP stack of networkingt@ecols (Zimmerman,
1980). Likewise, before the Web, there were a number ofréiffeprotocols with their
own naming schemes built upon the Internet like Gopher (8sddia et al., 1993).

Is it not presumptuous of us to even hope that such an unripgrhenon such
as the Web even has guiding principles? Again we must appéhétfact that unlike
natural language or chemistry, the Web is like other engetkartifacts, created by
particular individuals with a purpose, and designed with gurpose in mind. Unlike
the case of the proper function of natural language, whetwalaselection itself will
forever remain silent to our questions, the principal desig of the Web are still alive
to be questioned in person, and their design rationale idlgveritten down on various
notes, often scribbled on some of the earliest web-pagdwediMeb itself. It is gener-
ally thought of that the core of the Web consists of the folfgystandards, given in
their earliest incarnation: HTTP (Berners-Lee et al., DJ9B®RI (Berners-Lee, 1994a),
and HTML (Berners-Lee and Connolly, 1993). So the basioquais and data formats
that proved to be successful were the creation of a fairlylsmaanber of people, such
as Tim Berners-Lee, Roy Fielding, and Dan Connolly.

The primary source for our terminology and principles of Vibhitecture is a
document entitled’he Architecture of the World Wide WeBNVWW), a W3C Recom-
mendation edited by lan Jacobs and Norm Walsh to “descriprbperties we desire
of the Web and the design choices that have been made to achew” (Jacobs and
Walsh, 2004). The AWWW is an attempt to systematize the thopkhat went into
the design of the Web by some of its primary architects, anduab is both close
to our project and an inspiration. In particular, this doemtis an exegesis of Tim
Berners-Lee’s notes on “Design Issues: Architectural aritbpophical points® and
Roy Fielding’s dissertatioArchitectural Styles and the Design of Network-based Soft-
ware ArchitecturegFielding, 2000). The rationale for the creation of such ewshoent
of principles of the Web developed organically over the texise of the W3C, as new
proposed technologies were sometimes considered to ker @fiormally compliant
or non-compliant with Web architecture. When the propose@fitsome technology
were told that their particular technology was not compliaith Web architecture,
they would often demand that somewhere there be a descriptithis elusive Web
architecture. The W3C in response set up the Technical tactiire Group (TAG) to
“document and build consensus” upon “the underlying pples that should be ad-

1There exist a collection of wunordered personal notes alaila at:
htt p: // www. w3. or g/ Desi gnl ssues/ , which we also refer directly to in the course of this chapter
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hered to by all Web components, whether developed insidatside W3C,” as stated
in its charte? The TAG also maintains a numbered list of problems (althotingh
numbers are in no way sequential) that attempts to resauessin Web architecture
by consensus, with the results released as notes called W&Jindings, which are
also referred to in this discussion. The TAG’s only Recomdagion at the time of
writing is the aforementionedrchitecture of the Web: Volumellit it is reasonable to
assume that more volumes Afchitecture of the Welmay be produced after enough
findings have been accumulated. The W3C TAG’s AWWW is a bleihdoonmon-
sense and sometimes surprising conclusions about Weliearithie that attempts to
unify diverse web technologies with a finite set of core degignciples, constraints,
and good practices (Jacobs and Walsh, 2004). However, tfméntdogy in AWWW
is often thought to be too informal and ungrounded to use bgymand we attempt
to remedy this in the next few chapters by fusing the ternagglof Web architecture
with our philosophical terminology developed in Chapter 3.

4.1 The Terminology of the Web

To begin our reconstruction of Web architecture, the firsit ia the definition of terms,
as otherwise the technical terminology of the Web can leas tmuch misunderstand-
ing as understanding. To cite an extreme example, peopléngdinom communities
like the artificial intelligence community use terms likepresentation’ in a way that is
different from those involved in Web architecture. We begith the terms commonly
associated with a typical exemplary Web interaction. Fagemt to learn about thie-
sourceknown as the Eiffel Tower in Paris, a person can accessptesentatiorusing
its Uniform Resource Identifier (URRNtt p: // www. tour-eiffel . fr/ and retrieve a
webpage in the HTMllanguageusing the HTTRorotocol

4.1.1 Protocols

A protocolis a convention for transmitting information between two orenagents

an equally broad definition that encompasses everythimy éfmmputer protocols like
TCP/IP to conventions in natural language like those engaag diplomacy. A pro-
tocol often specifies more than just the particular encadug also may attempt to

2Quoted from their charter, available on the Web'att p: / / www. w3. or g/ 2001/ 07/ 19-t ag (last
accessed April 20th, 2007).
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specify the interpretation of this encoding and the medunidgehavior that the sense
of the information should engender in an agentpayloadis the information trans-
mitted by a protocol Galloway notes that protocols are “the principle of orgatibn
native to computers in distributed networks” and that agrea® on protocols are nec-
essary for any sort of network to succeed in the acts of conation (2004). The
paradigmatic case of a protocol is TCP/IP, where the paylatmitted is just bits
in the body of the message, with the header being used by TERstare the lossless
delivery of the bytes. TCP/IP transmits strictly an encgdif data as bits and does
not force any particular interpretation on the bits; thelpagt could be a picture of the
Eiffel Tower, web-pages about the Eiffel Tower, or just megtess random bits. All
TCP/IP does is move some particular bits from one individwshputer to another,
and any language that is built on top of the bit-level is fliirioutside the bounds of
TCP/IP. Since these bits are usually communication withesporpose, the payload
of the protocol is almost always an encoding to some senseeayal beyond that of
the raw bits themselves.

The Web is based ondient-server architecturemeaning thaprotocols take the
form of a request for information and a response with infatiora Theclient is de-
fined asthe agent that is requesting informatiand theserveris defined ashe agent
that is responding to the requesh a protocol, arendpointis any process that either
requests or responds to a protocahd so includes both client and servers. The client
is often called aiser-agentsince it is the user of the Web. A user-agent may be any-
thing from a web-browser to some sort of automated reasamge that is working
on behalf of another agent, often the specifically human J$er main protocol in this
exposition will be theHyperText Transfer Protoco(HTTP), as most recently defined
by IETF RFC 2616 (Fielding et al., 1999). HTTP is a protocagmrally intended for
the transfer of hypertext documents, although its now utogs nature often lets it be
used for the transfer of almost any encoding over the Well) asdts use to transfer
XML-based SOAP (originally th&imple Object Access Protogohessages in Web
Services (Box et al., 2000). HTTP consists of sendimyedhod a request for a cer-
tain type of response from a user-agent to the senvetuding information that may
change the state of the server. These methods have a lisadersthatspecify some
information that may be used by the server to determine thgomse Therequestis
the method used by the agent and the headers, along with & liteenand an optional
message body

The methods in HTTP are HEAD, GET, POST, PUT, DELETE, TRACE-O
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GET /index. htm HITP/ 1.0
User-Agent: Mzilla/5.0
Accept: */*

Host: www. exanpl e. org
Connection: Keep-Alive

Figure 4.1: An HTTP Request from a client

TIONS, and CONNECT. We will only be concerned with the mosigfrently used
HTTP method, GET. GET is informally considered ‘commitmé&ee, which means
that the method has no side effects for either the user-agahe server, besides the
receiving of the response (Berners-Lee et al., 1996). SohiB&hod should not be
used to change the state of a user-agent, such as chargiegserior buying a plane
ticket to Paris. To change the state of the information orstrger or the user-agent,
either PUT (for uploading data directly to the server) or F(far transferring data
to the server that will require additional processing, sagkwvhen one fills in a HTML
form) should be used. A sample requeshtop: /// ww. exanpl e. or g from a Web
browser user-agent is given in Figure 4.1.

The first part of an HTTP response from the server then casistn HTTPstatus
codewhich isone of a finite number of codes which gives the user-agenniafiion
about the server’'s HTTP response itsdlhe two most known status codes are HTTP
200, which means that the request was successful, or 40dhwigans the user-agent
asked for data that was not found on the server. The first didgite status code indi-
cates what general class of response it is. For exampleythlkundred level response
codes mean in general a successful request, although 206G matial success. The
four hundred level response codes indicate that the usstagked for a request that
the server could not fulfill, while the one hundred level i®ormational, three hun-
dred level is redirectional, and five hundred level meangesesrror. After the status
codes there is aHTTP entity which is “the information transferred as the payload of
a request or responsé€Fielding et al., 1999). This technical use of the word igyit
should be distinguished from our earlier use of the termtyrib describe a thing like
the Eiffel Tower that can only be realized by itself, not starred as abstract informa-
tion in another realization. In order to do so, we will takeecto preface the protocol
name ‘HTTP’ before any ‘HTTP entity,” while the term ‘entitlyy itself refers to the
more philosophical notion of an entity. An HTTP entity catsiof “entity-header
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HTTP/ 1.1 200 K

Date: \WWed, 16 Apr 2008 14:12:09 GVI

Server: Apache/ 2.2.4 (Fedora)
Accept - Ranges: bytes

Connection: close

Content - Type: text/htm; charset=I SO 8859-1
Cont ent - Language: fr

Figure 4.2: An HTTP Response from a server

fields and... an entity-body” (Fielding et al., 1999) A TP responseconsists othe
combination of the status code and the HTTP entiityese responses from the server
can include an additional header, which specifies the datéaahmodified date as well
as optional information that can determine if the desirguli@gentation is in the cache
and the content-type of the representation. A sample HT$porese to the previous
example request, excluding the HTTP entity-body, is giveRigure 4.2.

Inthe HTTP response, an HTTP entity body is returned. Theding of the HTTP
entity body is given by the HTTP entity header fields that #pets Cont ent -t ype
andCont ent - | anguage. These are both considered different languages, as a single
webpage can be composed in multiple languages, such asctheeteg given in En-
glish with various formatting given in HTML. Every HTTP etytibody should have its
particular encoding specified by tBent ent - t ype. The formal languages that can be
explicitly given in a response or request in HTar calleccontent typesin the exam-
ple response, based on the header that the content typetisht m a user-agent can
interpret (‘display as a web-page’) the encoding of the HERRty body as HTML.
Since the same encoding can theoretically represent mé#eyetit languages besides
HTML, a user-agent can only know definitely how to process asage through the
content type. If no content type is provided, the agent cagsguhe content type
through various heuristics including looking at the bytesmselves, a process infor-
mally calledsniffing A user-agent can specify what media types they (can) preder
that a web-server that can only present JPEG images carfysffesiby also asking
for the content typénage/ j peg in the request.

Content-types in HTTP were later generalized as ‘Internetlisl Types’ so they
could be applied with any Internet protocol, not just HTTRI &IME (Multimedia
Internet Message Extensigrem e-mail protocol) (Postel, 1994). iAedia typecon-
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sists ofa two-part scheme that separates the type and a subtype ofcimg with

a slash indicating the distinction, astiaxt / ht nl . Internet media types are centrally
registered with IANA atht t p: // www. i ana. or g/ assi gnment s/ medi a-t ypes/, al-
though certain ‘experimental’ media types (those begignith x-") can be created
in a decentralized manner (Postel, 1994). A central rggigtmedia types guarantees
the interoperability of the Web, although increasingly meedia-types are dependent
on extensions to specific applications (plug-ins) in oraerun. Support for every-
thing from new markup languages to programming languagels as Javascript can
be declared via support of its media type.

To move from concrete bits to abstract definitions, a prdtoaa be defined and
implemented in many different types of way. In the early ARIA, the first wide-area
network and foundation of the Internet, the protocol wasdhaired’ in the hardware
of the Interface Message Processor (IMP), a separate neatiached to computers in
order to interface them with ARPANet (Hafner and Lyons, 199 more and more
networks multiplied, these heterogeneous networks begany ulifferent protocols.
While the invention of TCP/IP let these heterogeneous né&ts\wommunicate, TCP/IP
does not interpret messages beyond bits. Further protboiti®n top of TCP/IP, such
as FTP (File Transfer Protocol) for the retrieval of files gfb and Reynolds, 1985),
Gopher for the retrieval of documents (Anklesaria et al93)9and SMTP (Simple
Mail Transfer Protocol) for the transfer of mail (Postel829. Since one computer
might hold many different kinds of information, IP addresgeere not enough as they
only identified where a particular device was on the netwofkus each protocol
created its own naming scheme to allow it to refer to and act@sgs on a more
fine-grained level than IP addresses. Furthermore, eadiesétprotocols was often
associated (via registration with a governing body like B§Nhe Internet Assigned
Numbers Authoritywith particular ports, such that port 25 was used by SMTPpanmt!
70 by Gopher. With this explosion of protocols and namingesaés, each Internet
application was its own ‘walled garden.” Names created gusirparticular protocol
were incapable of being used outside the original protoaotil the advent of the
naming scheme of the Web (Berners-Lee, 2000).

4.1.2 Uniform Resource ldentifiers

The World Wide Web is defined by the AWWW as “an informationpan which
the items of interest, referred to as resources, are idenhtify global identifiers called
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Uniform Resource Identifiers (URI)” (Jacobs and Walsh, 2004is naming scheme,
not any particular language like HTML, is the primary idéyitig characteristic of
the Web. URIs arose from a need to organize the “many pratcmadl systems for
document search and retrieval” that were in use on the leteespecially considering
that “many more protocols or refinements of existing prot®ewe to be expected in
a field whose expansion is explosive” (Berners-Lee, 199Bakpite the “plethora of
protocols and data formats,” if any system was “to achiegbagllsearch and readership
of documents across differing computing platforms,” gagsvthat can “allow global
access” should “remain possible” (Berners-Lee, 1994ak dlhvious answer was to
consider all data on the Internet to be a single space of naitieglobal scope.

URIs accomplish their universality over protocols by mayall the information
used by the protocol within the name itseffhe information needed to identify any
protocol-specific information is all specified in the nanseit. the name of the pro-
tocol, the port used by the protocol, any queries the praétisceesponding to, and
the hierarchical structure used by the protocol. The Wehas first and foremost a
naming initiative “to encode the names and addresses oftsigpa the Internet” rather
than anything to do with hypertext (Berners-Lee, 1994a)e btion of a URI can
be viewed as a ‘meta-name,” a name which takes the existwtggwl-specific Inter-
net addresses and wraps thamnthe name itselfa process analogous to reflection in
programming languages (Smith, 1984). Instead of limitisglf to only existing pro-
tocols, the URI scheme also abstracts away from any paati@dt of protocols, so
that even protocols in the future or non-Internet protoaals be given a URI; “the
Web is considered to include objects accessed using andaiiennumber of proto-
cols, existing, invented for the Web itself, or to be invehtethe future” (Berners-Lee,
1994a).

One could question why one would want to name informatiosidetthe context
of a particular protocol. The benefit is that the use of URIktes different types of
resource identifiers to be used in the same context, even thieemechanisms used
to access those resources may differ” (Berners-Lee etGl5)2 This is an advantage
precisely because it “allows the identifiers to be reusedanyifferent contexts, thus
permitting new applications or protocols to leverage agxisting, large, and widely
used set of resource identifiers” (Berners-Lee et al., 2008is ability to access with
a single naming convention the immense amount of data omtire énternet gives an
application such as the ubiquitous Web browser a vast adgardver an application
that can only consume application-specific information.
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Although the full syntax in Backus-Naur form is given in IERFC 3986 (Berners-
Lee et al., 2005), a URI can be given as the regular expresBlon [ schenme ":"]
[ hierarchical conponent]* [ "?" query |? [ "#" fragnment]?. A scheme
is a name of the protocol or other naming convention used torbdwg URI. The
scheme of a URI does not determine the protocol that a ussttdgs to employ to
use the URI. For example, a HTTP request may be usédjon / ww. exanpl e. or g.
The scheme of a URI merely indicates a preferred protocoli$ar with the URI. A
hierarchical components the left to right dominant component of the URI that syntac-
tically identifies the resourcéJRIs are federated, insofar as each scheme identifies the
syntax of its hierarchical component. For example, with RTilie hierarchical com-
ponent is given by aut hority] [//] [":" port]? ["/" path conponent]*.
Theauthority is a name that is usually a domain name, naming authority, onve i
address, and so is often the name of the serdewever, in URI schemes likeel for
telephone numbers, there is no notion of an authority in themme. The hierarchical
component contains special reserved characters that &&Tf characters such as
the backslash for locations as in a file system. &osolute URIs there must be a
single scheme and the scheme and the hierarchical componesttogether identify a
resourcesuch astt p: // www. exanpl e. com 80/ monument / Ei f f el Tower in HTTP,
which identifies the resource accessible from port 80 of tileaity ww. exanpl e. com
with the path componentronunent/ Ei f f el Tower . The port authority is usually left
out, and assumed to be 80 by HTTP-enabled clients. Intaghggnough there are also
relative URIsin some schemes like HTTP, where the path component itsibisgh
to identify a resource within certain contexike that of a web-page. This is because
the scheme and authority itself may have substituted sopwadgharacters that serve
as indexical expressions, such as ‘.’ for the current locaiti the path component and
‘.. as the previous level in the path component. Sa,Ei f f el Tower is a perfectly
acceptable relative URI. Relative URIs have a straightéwdaranslation into absolute

URIs, and itis trivial to compare absolute URIs for equalBgrners-Lee et al., 2005).

The ‘hash’ ¢) and ‘question mark’y) are special characters at the end of URI. The
guestion mark denotes ‘query string.” The ‘query stringpwak for the parametrization
ofthe HTTP request, typically in the cases where the HTTPa®ese is created dynam-
ically in response to specifics in the HTTP request. The ‘haaHitionally declares
afragment identifier, whichidentifies fragments of a hypertext documient accord-
ing to the TAG, it can also identify a “secondary resourcejich is defined as “some
portion or subset of the primary resource, some view on sgptations of the pri-
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mary resource, or some other resource defined or describdohbyg representations”
where the “primary resource” is the resource identified l®yWRl without reference
to either a hash or question mark (Jacobs and Walsh, 2004) fraigment identifier
(specified by a ‘hash’ followed by some string of charactexys}ripped off for the re-
guest to the server, and handled on the client side. Oftefnadgment identifier causes
the local client to go to a particular part of the accessed Pi€tity. If there was a
web-page about Gustave Eiffel, its introductory paragmamiid be identified with the
URI htt p: // ww. exanpl e. com Ei f f el Tower #i ntro. Figure 4.3 examines a sam-
ple URI,http: // ww. exanpl e. org/ Ei f f el Tower #i ntro:

scheme hierarchical component

T inmexampeagEfeoneréinio

authority fragment identifier

Figure 4.3: An example URI, with components labeled.

The first feature of URIs, the most noticeable in comparisoiPt addresses, is
that they can be human-readable, although they do not hdwe tAs an idiom goes,
URIs can be ‘written on the side of a bus.” URIs can then haviat@npretation due to
their use of terms from natural language, suchuwag whi t ehouse. gov referring to
the White House or the entire executive branch of the UnitateS government. Yet it
is considered by the W3C TAG to be ill-advised for any agerddgpend on whatever
information they can glean from the natural language tersesiun URI itself, since
to a machine the natural language terms used by the URI hairgerpretation. For
an agent, all URIs are opaque, with each URI being just agstrincharacters that
can be used to either refer to or access information, andrgacycally it can only be
checked for equality with other URIs and nothing more. Thisaptured well by the
good practice oURI opacity, which states that “agents making use of URIs should not
attempt to infer properties of the referenced resourcedglds and Walsh, 2004). To
rephrase, we could state trmURI should never itself have an interpretation, only the
information referred to or accessed by that URI should havenderpretation. This
point becomes crucial in trying to determine ‘what a URI itiiggs’ as inspected in
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detail in Chapter 6.

Second, a URI has an owner. Toeneris the agent that is accountable for orig-
inally determining what the URI identifie§Jsually for URIs schemes such as HTTP,
where the hierarchical component begins with an authahty,owner of the URI is
simply whoever controls that authority. In HTTP, since URén delegate their rela-
tive components to other users, the owner can also be coedittee agent that has the
ability to create and alter the information accessible ftomURI, not just the owner
of the authority. Each scheme should in theory specify whatawship of a URI means
in context of the particular scheme.

4.1.3 Resources and Web Representations

While we have explained what a UBbesin terms of the Internet, we have yet to de-
fine what a URIs. To inspect the acronym itself, a Uniform Resource Idemt{fitR1)

is an identifier for a ‘resource.” Yet this does not solve aryrinological woes, for the
term ‘resource’ is undefined in the earliest specificatiarifmiversal Resource Iden-
tifiers” (Berners-Lee, 1994a). Berners-Lee has remarkatidhe of the best things
about resources is that for so long he never had to define tBemérs-Lee, 2000).
Eventually Berners-Lee attempted to define a resource ashiag that has an iden-
tity” (Berners-Lee et al., 1998). Other specifications warghtly more detailed, with
Roy Fielding, one of the editors of HTTP, defining (appanremtithout the notice of
Berners-Lee) a resource as “a network data object or sér{feelding et al., 1999).
However, at some later point Berners-Lee decided to gemertiis notion, and in
some of his later works on defining this slippery notion ostrarce,’ Berners-Lee was
careful not to define a resource only as information that tessible via the Web,
since not only may resources be “electronic documents” anddes” but also “not all
resources are network retrievable; e.g., human beinggocations, and bound books
in a library” (Berners-Lee et al., 1998). Also, resourcesidbhave to be singular but
can be a “collection of other resources” (Berners-Lee ¢1808).

Resources are not only a concrete realization or sets offp@sesalizations at a
given temporal juncture, but are a looser category thatides things that change over
time, as “resources are further carefully defined to be méiron that may change over
time, such as a service for today’s weather report for Losetesj(Berners-Lee et al.,
1998). Obviously, a web-page with ‘today’s weather repsjoing to change over
time, so what is it that unites the notion of a resource ovee® One early IETF RFC
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for URIs, RFC 2396, defines this tentatively as a ‘conceptuabping’ (presumably
located in the head of an individual creating the represiems for the resource) such
that “the resource is the conceptual mapping to an entitgbofentities, not neces-
sarily the entity which corresponds to that mapping at anjiqdar instance in time.
Thus, a resource can remain constant even when its contéetentities to which it
currently corresponds — changes over time, provided tleattimceptual mapping is
not changed in the process” (Berners-Lee et al., 1998). dlnsously begs an im-
portant question: If resources are identified as conceptaglpings in the head of an
individual(s), then how does an agent know, given a URI, vhatresource is? Is it
our conceptual mapping, or the conceptual mapping of theegvam some consensus
conceptual mapping? This question and further questiotdenitity come to center
stage in Chapter 6. The latest version of the URI specifinaligletes the confusing
jargon of “conceptual mappings” and instead re-iteratas tHRIs can also be things
above and beyond concrete individuals, for “abstract cptscean be resources, such
as the operators and operands of a mathematical equatierni€B-Lee et al., 2005).
After providing a few telling examples of precisely how withe notion of a resource
is, the URI specification finally ties the notion of resouraectly to the act of identi-
fication given by a URI, for “this specification does not lirthie scope of what might
be a resource; rather, the term ‘resource’ is used in a gesenae for whatever might
be identified by a URI” (Berners-Lee et al., 2005). Althouglstdefinition seems at
best tautological, the intent should be cleare&ourceis any thing capable of having
a senseor in other words, an ‘identity’ in a language. Since a seéas®t bound to
particular encoding, in practice within certain protoctiiat allow access to informa-
tion, a resource is typically not a particular encoding of a senseabsense that can be
given by many encoding3o rephrase in terms of senslee URI identifies a sense on
a level of abstraction, not the encoding of the sense or aiqdar realization of the
sense So, a URI identifies the ‘sense’ of the Eiffel Tower, everhié tveb-accessible
realization of it in the form of a web-page was accessiblenftbat URI.

However, while this is best practice on the Web, there isingtto forbid someone
from identifying a particular encoding of information wiils own URI and resource.
For example, one could also have a distinct URI for a webphgatahe Eiffel Tower
in English, or a webpage about the Eiffel Tower in English iiNH_. In other words,

a resource can identify anything at a level of abstractiod, the same thing, such as
a web-page, can be givenultiple URIs each corresponding todifferent level of ab-
straction Furthermore, due to the decentralized nature of URIsnafiferent agents
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createmultiple URIs for the same sensehich are then called in Web architecture
co-referential URIs

We illustrate these distinctions in a typical HTTP interawtin Figure 4.4, where
an agent via a web browser wants to access some informataurt die Eiffel Tower
via its URI. While on a level of abstraction a protocol alloassiser-agent to identify
some resource, what the user-agent usually accesses tebnésesome realization
of that resource in a particular encoding, such as a webpag ML or a picture
in the JPEG language (Pennebaker and Mitchell, 1992). Iregample, the URI is
resolved using the domain name system to an IP address ofceeterserver, which
then transmits to the user-agent some concrete bits thaedlae resource, i.e. that
can be interpreted to the sense identified by the URI. In tkésngle, most of the
interactions are local, since the webpageodeshe sense of the resource. This HTTP
entity can then be interpreted by a browser as a renderinfp@dreen of Ralph’s
browser. Note this is a simplified example, as some statussclike 307 may cause
a redirection to yet another URI and so another server, armhguossibly multiple
times, until an HTTP entity may finally be retrieved.

/

[ User Agent |

HTTP Reguest
HTTP GET
http:/ /www.example.org /Eiffel Tower/ image

HTTP Response

200 OK
it is location of
) T Web Server
realizes |~ 0 .
<Iaci width=
,, httye: /o example org 'Eiffel Tower fimage
Web Representation
An SVE Image
il
I
s -\
Resource

Image of the Eiffel Tower

Figure 4.4: A user agent accessing a resource

One of the most confusing issues of the Web is that a URI doeseatessarily
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retrieve a single HTTP entity, but can retrieve multiple HPT@ntities. This leads to a
surprising and little-known aspect of Web architecturevin@s content negotiation.
Content Negotiatioris a mechanism defined in a protocol that makes it possible to re-
spond to a request with different Web representations o$déimee resource depending
on the preference of the user-agefithis is because information may have multiple
encodings in different languages that all encode the samsesand thus the same
resource should have a singular URI. A representation onAtble is then just “an
entity that is subject to content negotiation” (Fieldingaét 1999). Historically, the
term ‘representation’ on the Web was originally defined inNHTas “the encoding
of information for interchange” (Berners-Lee and Connall993). A later definition
given by the W3C did not mention content negotiation explicdefining a represen-
tation on the Web as just “data that encodes information atesource state” (Jacobs
and Walsh, 2004). To descend further into a conceptual swampresentation” is
one of the most confusing terms in Web architecture, as time tepresentation’ is
used differently across philosophy. In order to distinguise technical use of the
term ‘representation’ within Web architecture from thelpsophical use of the term
“representation,” we shall use the term ‘Web represemntatadistinguish it from the
ordinary use of the term ‘representation’ as given earhe$ection 3.6. AVeb rep-
resentationis the encoding of the sense given by a resource given in respgons
request which must then include any headers that specify an ing&apon, such as
character encoding and media type. So a Web representatiobe considered to
havetwo distinct components, and the headers such as the mediahgplets us in-
terpret the encoding, and the payload itself, which is theodimg of the state of the
resource at a given point in time. Notice that Web represients, being digital infor-
mation, can be perfectly realized by messages, and theagah of a particular Web
representation is the concrete bits sent across the ‘wir@'given point in space and
time. Also,web-pagesreWeb representations given in HTMLastly, note that while
HTTP entities can be a request (such as using HTTP PUT) apdmss from a server,
Web representations can only be given as a response to stdigaddTTP GET.

Our typical Web transaction, as given earlier in Figure dafy become more com-
plex due to this possible separation between sense andiegaodthe Web. Different
kinds of Web representations can be specified by user-agernigeferred or accept-
able, based on the preferences of its users or its capasbjldis has been explained
in Section 4.1.1. The owner of a web-site about the Eiffel @odecides to host a
resource for images of the Eiffel Tower. The owner createfR& for this resource,
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http://ww. ei ffeltower.exanple.org/imge. Since a single URI is used, the
sense (the depiction) that is encoded in either SVG or JPHEGisame, namely that
of an image of the Eiffel Tower, that is, there are two didtieccodings of the im-
age of the Eiffel Tower available on a server in two differaanic languages, one
in a vector graphic language known as SVG and one in a bitnragukege known as
JPEG (Ferraiolo, 2002; Pennebaker and Mitchell, 1992). s@tencodings are ren-
dered identically on the screen for the user. If a web-browsty accepted JPEG
images and not SVG images, the browser could request a JPEEnkyng a request
for Accept: imagel/|jpeg in the headers. Ideally, the server would then return the
JPEG-encoded image with the HTTP entity heaCtert ent - Type: i nage/ j peg.
Had the browser wished to accept the SVG picture as well uldcbave putAccept :

i mage/ j peg, imge/ svg+xnl and received the SVG version. In Figure 4.5, the
user agent specifies its preferred media typenage/ j peg. So, both the SVG and
JPEG images are Web representations of the same resouroeaga of the Eiffel
Tower, since both the SVG and JPEG information realize theesaontent, albeit us-
ing different languages for encoding. Since a single resigidentified by the same
URI htt p: // www. exanpl e. or g/ Ei f f el Tower /i nage, different user-agents can get
a Web representation of the resource in a language they tanpiiet, even if they
cannot all interpret the same language.

In Web architecture, content negotiation can also be deplamyver not only dif-
fering formal languages, but differing natural languagesthe same content can be
encoded in different natural languages such as French agliskn An agent could
request the description about the Eiffel Tower from its URd @et the preferred me-
dia type to Accept - Language: fr’ so that they receive a French version of the
webpage as opposed to an English version. Or they could setgreferred lan-
guage as English but by usingccept - Language: en.” The preferences specified
in the headers are not mandatory for the server to followstreger may only have
a French version of the resource available, and so send #m ad-rench version of
the description, encoded in HTML or some other formal lamgyaegardless of their
preference. This extension of content negotiation to dpereer different natural lan-
guages can be considered controversial. Different nalamgluages may not be able
to encode the same content. Is it really true that two diffef@nguages can, even on
a high level of abstraction, encode the same information8ome cases, this seems
reasonable. Yet it is well-known there are some words in ¢hehat are difficult if
not impossible to translate into English, such as ‘frilensat. Indeed, saying that
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HTTP Request
HTTP GET
http:/ fwww example.org/Eiffel Tower /image

HTTP RESpOI'ISE Accept: image /jpeg

200 0K
Comtent-Tyvpe: image/jpeg

encodes, i= location of

1211010161 httge/ Swwwexample org ‘Eittel Tower fimage

Web Representation
An JPEG Image
= is location of
il
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Information Resource
Image of the Eiffel Tower </ svg>

Web Representation
An SVG Image

encodes

Figure 4.5: A user agent accessing a resource using content negotiation

one natural language encodes the same content as anotheal tatguage is akin
to hubris in the general case. If this is the case, then it ifeply reasonable to
establish different resources and so URIs for the Frencheauggish language encod-
ings of the resource, such astp://ww. ei ffel tower. exanpl e.org/francais
andhttp://ww. ei ffeltower.exanpl e.org/english. In fact, if one believes the
same image cannot be truly expressed by both SVG and JPEG ifoagats, one
could give them distinct URIs as well. Regardless, what Fegu5 shows is that the
Web representations are distinct from the resource, ewtbe Web representations are
bound together by realizing the same information given bgssmurce, since access-
ing a resource via a single URI can retutifferentWeb representations depending on
content negotiation.

The only architectural constraint that connects Web regmtadgions to resources
is that they are retrieved by the same URI. So one could ineagimesource with
a URI callednt t p: / / www. exanpl e. or g/ Moon, that upon accessing using English as
the preferred language would provide a web-page with agatithe moon, and upon
accessing with something other than English as the preféargguage would provide a
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picture of blue cheese. While this seems odd, this situaidefinitely possible. What
binds Web representations to a resource? Is a reseattgjust a random bag of Web
representations? Remember that the answer is that the \pedseatations should
have the samsenseaegardless of their particular encoding if it is accessilen the
same URI. This notion depends on our notion of informati@oaltent (sense) as given
in Section 3.2, which we define by an appeal to Dretske’s sémidneory of informa-
tion (Dretske, 1981). To recall, Dretske’s definition of sartic information, “a signal
r carries the information thatis F when the conditional probability fs beingF,
givenr (andk) is 1 (but, giverk alone, less than 1k is the knowledge of the receiver”
(1981). We can then consider the signab be a Web representation, wistbeing a
resource and the receiver being the user-agent. Howesgézaith of some fadt about
the resource, we want an interpretation of the Web reprasentby different user-
agents to be to the same sense. Of course, one cannot cbetioldrpretations of yet
unknown agents, so all sorts of absurdities are possiblesiory. As the interpretation
of the same encoding can differ among agents, there is aljldgsihat the owner
of the URIhtt p: // www. exanpl e. or g/ Moon really thinks that for French speakers a
picture of blue cheese has the same sense as a picture of thefbtdEnglish speak-
ers, even if users of the resource disagree. However, ildhb@remembered that the
Web is a space of communication, and that for communicatdretsuccessful over
the Web using URIs, it is in the interest of the owner of theouese to deploy Web
representations that they believe the users will share thtgirpretation. So content
negotiation between a picture of blue cheese and a pictuteeahoon for a resource
that depicts the Moon is, under normal circumstances, the &geivalent of insanity
at worse or bad manners at best. From a purely normative vienvim terms of rele-
vant IETF and W3C standards, it is left to the owner to deteemwhether or not two
Web representations are equivalent and so can be hosteglagsitent negotiation at
the same URI.

The key to content negotiation is that the owner of a URI néweaws what the
capabilities of the user-agent are, what natural and fotamguages are supported by
it. This is analogous to what Dretske calls the “knowledgeX of the receiver (1981).
The responsibility of the owner of a URI should be, in ordeshare their resource by
as many user-agents as possible, to provide as many Welseapxdons in a variety
of formats as they believe are reasonably necessary. Sowther of the URI for a
website about the Eiffel Tower may wish to have a number of Végbesentations in
a wide variety of languages and formats. By failing to prevadWeb representation
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in Spanish, they prevent speakers of only Spanish from acwetheir resource. Since
the owner of a URI cannot reasonably be expected to predictaipabilities of all
possible user-agents, the owner of the URI should try thest bb communicate their
interpretation within their finite means.

The reason URIs identify resources, and not individual Véglesentations, is that
Web representations are too ephemeral to want to identidf themselves, being by
definition the response of a server tpaticular response and request for information.
While one could imagine wanting to access a particular Wpkesentation, in reality
what is usually wanted by the user-agent is the sense of soeiree, which may be
present in a wide variety of languages. What is importaiiasthe content (sense) gets
transferred and interpreted by the user agent, not theithdiV bytes of a particular
encoding in a particular language at a particular time.

With this insight in hand, some clarification on the relasibip between represen-
tations, resources, and URIs should be given. First, a UBdigentify only a single
resource, as otherwise multiple resources would have heteame URI and an iden-
tical set of Web representations with the same sense, arftes@sources would be
indistinguishable. The opposite of thisvden the same resource has multiple URIs
which is calledURI collision, andURIs that identify the same resouraee considered
co-referential URIs(Jacobs and Walsh, 2004). However, a single URI may not be
identified only with its currently accessible Web repreaéohs, since those represen-
tations may change in the future as the resource changesoAre for the weather in
Paris will have to change in order to remain accurate. Likewiwo sets of otherwise
identical Web representations may be for different resesirdhese Web representa-
tions may be identical at one point in time but diverge in theife. A resource for
pictures of the tallest monument in Paris would (at the tirheviating) be encoded
by the same Web representations as a picture of the EiffeeiTowt if an even larger
monument was built in Paris, then the Web representatiarteédwo resources would
diverge.

4.2 The Principles of Web Architecture

In light of having both the philosophical terminology define Chapter 3 and the ter-
minology of the Web defined Section 4.1, it is now possiblehtovs how the various
Web terms are related to each other in a more systematic vimgelrelationships are
phrased as five finite principles that serve as the normatineiples of Web architec-
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ture: The Principles of Universality, Linking, Self-Degatron, the Open World, and

Least Power. In practice many applications violate theseiples, and by virtue of

their use of URIs and the HTTP protocol, many of these aptatina would be in some

sense ‘on the Web. However, these principles are normaisafar as they define what
could be considered as compliance with Web architecturd saran application that
embodies them is compliant with Web architecture.

4.2.1 Principle of Universality

ThePrinciple of Universalitystates thaany resource can be identified by a URhe
notion of both a resource and a URI were from their onset usalén ambition, as
Berners-Lee said, “a common feature of almost all the datdeatsoof past and pro-
posed systems is something which can be mapped onto a caricelpject’ and some
kind of name, address, or identifier for that object. One temefore define a set of
name spaces in which these objects can be said to exist. én mrabstract the idea
of a generic object, the web needs the concepts of the uah&sof objects, and of
the universal set of names or addresses of objects” (1994&) more informal notes
of Berners-Lee are even more startling in their claims favensality, stating that the
first ‘axiom’ of Web architecture is “Universality” where $tduniversal’ | mean that
the Web is declared to be able to contain in principle everpbinformation acces-
sible by networks” (1996c¢). Although it appears the germhef idea of universality
was clearly present in the earliest IETF Internet Drafts'tbriversal Resource lden-
tifiers’ in IETF 1630 (Berners-Lee, 1994a), in works like HFTETF RFC 1945 with
co-authors like Fielding, Berners-Lee constrained hifsebnly talk about digital
‘network data objects’ that are accessible over the Intgff#96). However, in later
IETF RFCs like RFC 2396, the principle quickly ran amok, asl&JRere allowed
to refer to “human beings, corporations, and bound booksliorary” (Berners-Lee
et al., 1998).

There seems to be a certain way that web-pages are ‘on the iWabivay that
human beings, corporations, unicorns, and the Eiffel Tawemot. Accessing a web-
page in a browser means to receive some bits, while one caasdy imagine what
accessing the Eiffel Tower itself or the concept of a unidara browser even means.
This property of being ‘on the Web’ is a common-sense disitndhat separates things
like a web-page about the Eiffel Tower from things like théf&iTower itself. The
core of the problem is that the use of term ‘identify’ in UR$saverloaded with two
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distinctions. This distinction is a matter of between the 0§ URIs toaccessand
reference between using the URI to access local and refer to the didthé early
notes of Berners-Lee address this distinction betweersa@@l reference, phrasing it
as a distinction between locations and names. As Bernexsiages, “conventionally,
a ‘name’ has tended to mean a logical way of referring to aeabp some abstract
name space, while the term ‘address’ has been used for simig&thich specifies the
physical location” (1991). So,lacationis a term that can be used to access the thing
while anameis a term that can be used to refer to a thingnlike access, reference is
the use of an identifier for a thirtg which one is immediately causally disconnected
Accessds the use of an identifier to create immediately a causal commeto the thing
identified(Hayes and Halpin, 2008). The difference between the us®&&ldo access

a hypertext web-page or other sort of information-baseolne® and the use of a URI
to refer to some non-Web accessible entity or concept endieing quite important,
as this ability to representationally use URIs as ‘stamd$or referents forms the basis
of the distinction between the hypertext Web and the Semavib.

As noticed in Chapter 3, names can serve as identifiers ftal disngs. However,
Berners-Lee immediately puts forward the hypothesis thih“wide-area distributed
systems, this distinction blurs” so that “things which asffitook like physical ad-
dresses...cease to give the actual location of the objectheAsame time, a logical
name...must contain some information which allows the nseneer to know where to
start looking” (1991). He posits a third neutral term, “iti&ar” that was “generally
referred to a name which was guaranteed to be unique but thiedslignificance as
regards the logical name or physical address” (Berners-18@1). In other words,
anidentifier is aterm that can be used to either access or refer, or both acaeds
refer to, a thing The problem at hand for Berners-Lee was how to provide a rfame
his distributed hypertext system that could get “over thabpm of documents being
physically moved” (1991). Using simple IP addresses or ahgse that was tied to a
single server would be a mistake, as the resource that watifidd on the Web should
be able to move from server to server without having to chaaeatifier.

For at least the first generation of the Web, the way to oveectims problem was
to provide a translation mechanism for the Web that couldideoa methodology for
transforming “unique identifiers into addresses” (Berdezs, 1991). Mechanisms for
translating unique identifiers into addresses alreadytexisl the form of the domain
name system that was instituted by the IETF in the early déykeoexpansion of
ARPANet (Mockapetris, 1983). Before the advent of the dormeme system, the
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ARPANet contained one large mapping of identifiers to IP adsles that was accessed
through the Network Information Center, created and maiethby Engelbart (Hafner
and Lyons, 1996). However, this centralized table of idemtio-address mappings be-
came too unwieldy for a single machine as ARPANet grew, sccartealized version
was conceived based @omain nameswhere each domain nameasspecification
for a tree structured name space, where each component olotin@in name (part of
the name separated by a period) could direct the user-ageatrmore specific ‘do-
main name server’ until the translation from an identifierthke name to IP address
was complete.

Many participants in the IETF felt like the blurring of thisstinction that Berners-
Lee made was incorrect, so URIs were bifurcated into twardisspecificationsUni-
form Resource Location$URLS) area scheme for locations that allowed user-agents
via an Internet protocol to access a realization of inforroat(Berners-Lee et al.,
1994). In contrastJniform Resource NamefURNS) area scheme whose names that
could refer to things outside of the causal reach of the me¢(Sollins and Masinter,
1994). Analogue things like concepts and entities natyitadd to be given URNS,
and digital information that can be transmitted over therdmét, like web-pages, were
given URLSs. Interestingly enough, URNs couwmtly as a haming scheme, as opposed
to a protocol like HTTP, because they cannot access anymafbon. While one could
imagine a particular Web-accessible realization, like &ywage, disappearing from
the Web, it was felt that identifiers for things that were notessible over the Web
should “be globally unique forever, and may well be used aference to a resource
well beyond the lifetime of the resource it identifies or ofyaraming authority in-
volved in the assignment of its name” (Mealling and DaniéB9). Precisely because
of their lack of ability to access information, URNs neveirgal much traction, while
URLSs to access web-pages became the norm. Building on teeredition about the
“blurring of identifiers,” the notion of URIs implodes thestinction between identi-
fiers used only for access (URLs) and the identifiers usedeference (URNS).

A Uniform Resource Identifieris a unique identifier that may be used to either or
both refer to or access a resouraghose syntax is given in the latest URI IETF RFC,
currently (Berners-Lee et al., 2005). URIs subsume both §J&id URNSs, as shown
in Figure 4.6. Berners-Lee and others were only able to puslstandard through the
IETF process years after the take-off of the Web. Indeedly panposals for universal
names, ranging from attempts to find the ‘true’ names of thimgvarious mystical
traditions to Engelbart’'s ‘Every Object Addressable’ pipie (1990), all missed the
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crucial advantage of the Web: Classically names in natarajuage are usually used
for reference, yet on the Web names are can also used to ané@ssation. In a
decentralized environment this is crucial for discoveting sense of a URI, as illus-
trated by the notions of ‘linking’ and ‘self-descriptionéthiled next in Section 4.2.2
and Section 4.2.3.

The fact that URIs can be used as names to access as opposastre&fgr to in-
formation isnot a direct contrast between the use of names in natural laegaag
the use of URIs on the Web. Trivially, names in natural lamguean access things as
well, such as when one is knocking on a door and says “Ralpheapen the door!”
or when one picks a friend out of a large crowd by simply yelltheir name. Fur-
thermore, these examples of natural language use of nanaesédss holds in an even
more interesting fashion for information that can be realiby the message itself. One
example of this would be the sentence “In ‘Moby Dick,” one tfesimmortal opening
line ‘Call me Ishmael’...” where it is clear that the name ‘MaDick’ refers to some of
the text which is directly uttered in the same sentence. &difference between URIs
being used for access as opposed to names being used inl heatgueage for refer-
ence is not an absolute distinction, but simply two difféfends of functions that both
kinds of names, both URIs on the Web and names in natural éyggiwcan perform.
The matter is more one of emphasis; names in natural landuagea tendency to be
used often for reference in speech, as the amount of thiagsith distal that an agent
may wish to talk about far outweighs the amount of things girthmmediate vicinity
they could also discuss. Likewise, in common parlance, WRIthe Web are almost
synonymous for their ability to access web-pages. Many lgeopuld even not even
consider the fact that a URI can be used to refer to some thibg tmportant, as cru-
cial as this usage is for the Semantic Web. Thus, names ofaxhgamn usually be used
for both access and reference, but URIs are often mostlyfesedcess while natural
language names are more often used for reference. So one wicdks the Semantic
Web has to play is to convey to agents that URIs should be usedference as well,
in other words, to treat URIs more like natural language reame

4.2.2 Principle of Linking

The Principle of Linking states thaany resource can be linked to another resource
identified by a URINo resource is an island, and the relationships betweenress
are captured by the linking, transforming lone resourcesaiWeb. Alink isa connec-
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Figure 4.6: A Venn Diagram describing the relationships between URIs, URNs, and
URLs

tion between resource¥ heresource that the link is directed fromcalled itsstarting
resourcewhile theresource a link is directed ts theending resourc§DeRose et al.,
2001).

What are links for? Just as URIs links may be used for eitheessor reference,
or even both. In particular, in HTML the purpose of links is fccess to additional
hypertext documents, and so they are sometimes calledrinyk®’ This access is
often calledfollowing the link, a traversal from one Web representation to anpther
that results in access to Web representations of the endgayrce. A unidirectional
link that allows access of one resource from another is tedgninant kind of link in
hypertext. Furthermore, access by linking is transitioe jffa user-agent can access a
Web representation of the ending resource from the standsmurce, then it can access
any links present in the Web representation, and therelgsace Web representation
of an ending resource. It is precisely this ability to tréimely access documents by
following links that led the original Web to be a seamless \Wetypertext. While links
can start in Web representations, the main motivation forguslRIs as the ending
resource of a link as opposed to a specific Web representatipreventoroken
links, where a user-agent follows a link to a resource that is ngdothere, due to
the Web representation itself changing. As put by the W3C T/R&source state may
evolve over time. Requiring a URI owner to publish a new URldach change in
resource state would lead to a significant number of brokiemeeces. For robustness,
Web architecture promotes independence between an igerdifd the state of the
identified resource” (Jacobs and Walsh, 2004).

However, one of the distinguishing features of the Web i links may be bro-
ken by having access to a Web representation disappearodiimply the lack of



78 Chapter 4. The Principles of Web Architecture

hosting a Web representation, loss of ownership of the domame, or some other
reason. These reasons are given in HTTP status codes, stighiamoust04 Not
Found that signals that while there is communication with a sertrex server does
not host the resource. Further kinds of broken links areiplessuch as801 Mved
Per manent | y or a five hundred level server error, or an inability to evenret with
the server leading to a time-out error. This ability of lirtksbe ‘broken’ contrasts to
previous hypertext systems. Links were not invented by tled Vidut by the hyper-
text research community. Constructs similar to links weargheined in the earliest of
pre-Web systems, such as Engelbaotd_ine SysteniNLS) (1962), and were given
as part of the early hypertext work by Theodor Nelson (196%)e plethora of pre-
Web hypertext systems were systematized into the Dexter®sfe Model (Halasz
and Schwartz, 1994). According to the Dexter Reference Madke Web would not
even qualify as hypertext, but as “proto-hypertext,” sitioe Web did not fulfill the
criteria of “consistency,” which requires “in creating aki we must ensure that all of
its component specifiers resolve to existing componentalgséz and Schwartz, 1994).
To ensure a link must resolve and therefore not be brokesmntleichanism requires a
centralized link index that could maintain the state of easource and not allow links
to be created to non-existent or non-accessible resoukdasy early competitors to
the Web like HyperG had a centralized link index (Andrewslgtl®95). As an inter-
esting historical aside, it appears that the violation o grinciple of maintaining a
centralized link index was the main reason why the World Wi was rejected from
its first academic conference, ACM Hypertext 1991, althoaggelbart did encourage
Berners-Lee and Connolly to pursue the Web furth@vhile a centralized link index
would have the benefit of not allowing a link to be broken, theklof a centralized
link index removes a bottleneck to growth by allowing the evaof resources to link
to other resources without updating any index besides tiairWeb representations.
This was doubtless important in enabling the explosive ¢ linking. The lack
of any centralized link index, and index of Web represeates] is also precisely what
search engines like Google create post-hoc through spgien order to have an index
of links and web-pages that enable their keyword search agd mnking algorithms.
As put by Dan Connolly in response to Engelbart, “the desigihe® Web trades link
consistency guarantees for global scalability” (2002), I8oken links andti04 Not
Found status codes are purposefeitures not defects, of the Web.

3Personal communication with Tim Berners-Lee.
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4.2.3 Principle of Self-Description

One of the goals of the Web is for resources to be ‘self-desayj currently defined as
“individual documents become self-describing, in the sehat only widely available
information is necessary for understanding them” (Meratels 2006). While it is un-
clear what “widely-available” means, one notion of “widelyailable” is that in order
for some sort of new information to have an interpretatitsiniterpretation must build
on top of various implicit and ‘common-sense’ informatitvat the interpreting agent
already possesses (Mendelsohn, 2006). The idea that ‘corsertse’ information is
crucial to intelligence and sharing information has longrbield central by artificial
intelligence (McCarthy, 1959). The question that confsadht Web is similar in many
regards, but with a change of focus due to the open endedenatttine Web: Given a
URI, how can an agent discover the interpretation of the URIany cases, the an-
swer may be similar to how humans learn foreign languageshioh case the URI’s
interpretation can be given by its implicit context. Howewdue to the fact that the
agents are often machines lacking the ability to rely on stjglated common-sense
interpretative capacities, often the additional inforimatneeded to interpret a URI
needs to be made explicit. Of course, at some point even fechima agents there
must be a base-line of capacity that allows #ueneinformation on the Web to be
interpreted, but the question is how such interpretivetsslican be boot-strapped in
the face of new and possibly unknown URIs and Web represens&t

The Principle of Self Descriptionstates thaif an interpretation of a URI is not
possible with the implicit capabilities of the agent, infation that can aid an agent
in discovering an interpretation of the URI should be acdd#ssrom the Web represen-
tation accessible from the URNote that the interpretation of a URI can be grounded
in the interpretations of Web representations accesgibie the URI, or the use of the
URI in other media. How many and what sort of links are neagdseadequately de-
scribe a resource? A resource is successfully describedirftarpretation of a sense
is possible. Any representation can have links to otheruress which in turn can
determine valid interpretations for the original resourdéis process of following
whatever data is linked in order to determine the interpicaiaof a URI is informally
called ‘following your nose’ in Web architecture.

The Follow-Your-Nose algorithmstates that if a user-agent encounters a repre-
sentation in a language that the user-agent cannot intethbesuser-agent should, in
order:
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1. Dispose of Fragment Identifiers:As mandated by the URI specification (Berners-

Lee et al., 2005), user-agents can dispose of the fragmentifiér in order to
retrieve whatever Web representations are available fleracine (the URI
without fragment identifier). For example, in HTML the fragnt identifier of
the URI is stripped off when retrieving the webpage, and thiean the browser
retrieves a Web representation, the fragment identifierbsansed to locate a
particular place within the Web representation.

. Inspect the Media Type: The media type of a Web representation provides

a normative declaration of how to interpret a Web represiemta Since the
number of IETF media-types is finite and controlled by the FEa user-agent
should be able to interpret these media types.

. Follow any Namespace DeclarationsMany Web representations use a generic

format like XML to in turn specify a customized dialect. Ingltase, a language
or dialect is itself given a URI, called mamespace URla URI that identifies
that particular dialect A namespace URI then in turn allows access maanes-
pace documenta Web representation that provides more information aboet t
dialect In a Web representation using this dialecthamespace declaration
thenspecifies the namespace URI this case, the user-agent may follow these
namespace declarations in order to get the extra informatgeded to inter-
pret the Web representation. As a single Web representaiaynbe encoded in
multiple languages, it may have multiple namespace URISs.

. Follow any links: The user-agent can follow any links. There are some links

in particular languages that may be preferred, such as thegnesource of a
| i nk header in HTML or in RDF Schema links suchrdss:isDefinedBYinks,
or links like OWL by theowl:imports(See Chapter 5 for the definition of RDF
and OWL). If links are typed in some fashion, each languagg dedine or
recommend links that have the normative status, and norentitiks should be
preferred. However, for many kinds of links, their normatstatus is unclear, so
the user-agent may have to follow any sort of link as a lagirtes

Using this algorithm, the user-agent can begin searchingdime information that

allows it to interpret the Web representation. It can follidwe first three guidelines

4The finite list is available ahttp://www.iana.org/assignments/media-typesid a mapping from

media types to URIs has been proposehitd://www.w3.0rg/2001/tag/2002/01-uriMediaType-9
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and then follow the fourth, applying the above guidelinesirsively. Eventually, this
recursive search should bottom out either in a program fl@avs an interpretation
of the Web representation, such as new inferences prodyctxt imetadata gathered
by the follow-your-nose algorithm or the natural bottommg point of specifications
given by the IETF in plain, human-readable text. This finak farings up the point
that the information that gets one an interpretation is rmessarily a program, but
could be a human-readable specification that requires amtmnaake the mapping
from the names to the intended sense.

4.2.4 The Open World Principle

The Open World Principlestates thathe number of resources on the Web can always
increase There can always be new acts of identification, carving audva resource
from the world and identifying it with a URI. At any given momg a new webpage
may appear on the Web, and it may or may not be linked to. Thasdsnsequence
of the relatively decentralized creation of URIs for resms given by the Principle of
Universality and the decentralized creation of links byRmimciple of Linking. With-
out any centralized link index, there is no central repogitdf the state of thentire
Web. While approximations of the state of the entire Web asated by indexing and
caching web-pages by search engines like Google, due topka @orld Principle,
none of these alternatives will necessarily ever be gueeaiio be complete. Imagine
a web-spider updating a search engine index. At any givenengm new URI could
be added to the Web that the web-spider may not have crawlagyreviously crawled
Web representation may change. So to assume that any mmllectresources of the
Web can be a complete picture of the whole Web is at best imgude

The ramifications of the Open World Principle are surprisiagd most clear in
terms of judging whether a statement is true or false. Thgenaussions transform the
Open World Principle into its logical counterpart, tBpen World Assumptiojwhich
logically states thastatements that cannot be proven to be true cannot be asstomed
be false Intuitively, this means that the world cannot be bound. Idn\Web, the Open
World Principle holds that since the Web can always be madeiawith any given set
of statements that allows an inference, a new statemenaréléo that inference may
be found. So any agent’s knowledge of the Web is always partincomplete, and
thus the Open World Assumption is a safe bet for agents on #te e Open World
Principle is one of the most influential yet challenging piotes of the Web, the one
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that arguably separates the Web from traditional researeaiftificial intelligence and
databases in practice. In these fields, systems tend to hel@pposite of the Open
World Assumption, the Closed World Assumption. T@esed World Assumption
states that logicallgtatements that cannot be proven to be true can be assumed to b
false Intuitively, this means that somehow the world can be bedndThe Closed
World Assumption has been formalized on a number of diffececasions, with the
first formalization being due to Reiter (1978)egation as failurés an implementation

of the Closed World assumption in both logic programming dathbases, where fail-
ure for the program to prove a statement is true implies tastent is false (Clark,
1978).

4.2.5 Principle of Least Power

The Principle of Least Powestates that &Veb representation given by a resource
should be described in the least powerful but adequate lagguThis principle is
also normative, for if there are multiple possible Web repreations for a resource,
the owner should chose the Web representation that is givélmei ‘least powerful’
language. The Principle of Least Power seems odd, but itivated by Berners-Lee’s
observation that “we have to appreciate the reasons fomgclot the most powerful
solution but the least powerful language” (1996¢). Theaaador this principle are
rather subtle. The receiver of the information accessHamfa URI has to be able to
decode the language that the information is encoded in seet®dver can determine
the sense of the encoding. Furthermore, an agent may beablecode multiple
languages, but the owner of the URI does not know what larggiag agent wanting
to access their URI may possess. Also, the same agent majette atierpret multiple
languages that can express the same sense. The questigs faerag any agent trying
to communicate is: what language to use? In closed and tieattaystems, this is
ordinarily not a problem, since each agent can be guaratdeesk the same language.
In an open system like the Web, where one may wish to commignéceesource to an
unknown number of agents, each of which may have differerguage capabilities,
the question of which language to deploy becomes nearlynmsuntable. Obviously,
if an agent is trying to encode some sense, then it shouldmaily choose a language
which is capable of conveying that sense. Yet the same samsée conveyed by
different languages, as languages in effect encode systesenses.

The Principle of Least-Power is a common-sense enginesalugion to this prob-
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lem of language choice. The solution is simply to build firsoamon core language
that fulfills the minimal requirements to communicate whatesense one wishes to
communicate, and then extend this core language. Using Has8/an example, one
builds first a common core of useful features such as thetyahdlihave text be bold
and have images inserted in general areas of the text, anc#hthe technology ma-
tures, to slowly add features such as the precise positiarfilmages and the ability
to specify font size. The Principle of Least Power allowsraightforward story about
compatibility to be built to honor the maxim that an agentidtdbe strict when send-
ing and tolerant when receiving,” since it makes the desf@aw version an exercise
in strictly extending the previous version of the langua@arpenter, 1996). A gap-
ing hole in the middle of the Principle of Least Power is nosistent definition of
the concept of ‘power, and the W3C TAG seems to conflate povittrthe Chomsky
Hierarchy. At this stage, the problem of defining ‘power’rfally must be left as an
open research question.

4.3 Conclusions

The Web, while to a large extent being an undisciplined anarlpalefined space,
does contain a set of defining terms and principles. Whilgipusly these terms and
principles have been scattered throughout various infomotes, IETF RFCs, and
W3C Recommendations, in this chapter we have systematizttdtbe terminology

and the principles in a way that reveals how they internallifdoof each other. In

general, when we are referring to thgpertext Webwe are referringo the use of

URIs and links to access hypertext web-pages using HYd@Rhere is more to the Web
than hypertext. The next question is how can these prirgipéeapplied to domains
outside the hypertext Web, and this will be the topic of Chapt as we apply these
principles to the notion of a knowledge representation Uagg for the Web, a vast
project tantalizing called the ‘Semantic Web.’






Chapter 5

The Semantic Web

All the important revolutions that leap into view must bega@ed in the spirit of the
era by a secret revolution that is not visible to everyone atill less observable by
contemporaries, and that is as difficult to express in woslg & to understandG.W.

F. Hegel(1959)

The Web is a universal information space, but so far it has lmee composed
entirely of hypertext documents. As said by Berners-LeehatWorld Wide Web
conference in 1994, “to a computer, then, the web is a flaingororld devoid of
meaning...this is a pity, as in fact documents on the webritesceal objects and
imaginary concepts, and give particular relationshipsvben them” (1994b). The
heart of this particular insight is the realization thatsitthe content — the sense — of
the information, not its encoding in hypertext, that is afittal importance to the Web.
The purpose of the architecture of the Web is to connectimédion of any kind in a
decentralized manner, and this architecture can be appéigoind the hypertext of its
initial incarnation.

The next step in Berners-Lee’s programme to expand the Wgdnldehypertext
is called theSemantic Web The most cited definition of the Semantic Web is given
by Berners-Lee et al. aghfe Semantic Web is not a separate Web but an extension of
the current one, in which information is given well-defineglaming, better enabling
computers and people to work in cooperati¢2001). How can information be added
to the Web without encoding it in hypertext? The answer isrid & language capable
of representing the information about “real objects andgimary concepts.” This
requires &nowledge representation languaga language whose primary purpose is
the representation of non-digital content in a digital fahtanguage

85
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As the previous exposition of Web architecture explainedetail, resources on
the Web are given by a URI that identifies the same sense on¢headfoss different
encodings. What drives the Semantic Web is the realizaliahédt least some of the
information on the Web is primarily representational, ii@formation about distal
content. Then instead of the hypertext language, which islgneoncerned with the
presentation and linking of natural language for humares\teb needs a knowledge
representation language which describes the represesfezémts as fully as possible
without regard to presentation for humans. The mixture ofteot and encoding for
presentation forces web-spiders to ‘scrape’ valuablescamtut of hypertext. In theory,
encoding information directly in a knowledge represeptatanguage gives a spider
more reliable and direct access to the information. As Bsrhee puts it, “most
information on the Web is designed for human consumptiod exen if it was derived
from a database with well defined meanings (in at least somesj€or its columns,
that the structure of the data is not evident to a robot bnogvsihe Web” (1998b).
This has led him to consider the Semantic Web as a Web “foressprg information
in a machine processable form” and so making the Web “maalmaerstandable”
(Berners-Lee, 1998b). This leads to the contrast betweeS¢mantic Web as a ‘Web
of data’ as opposed to the hypertext ‘Web of documents.” WlaGdards such as XML
were originally created, albeit rarely used, preciselytiden to separate content and
presentation (Connolly, 1998).

Furthermore, the purpose of the Semantic Web is to expansctiyge of the Web
itself. Most of the world’s digital information is not nagly stored in hypertext. In-
stead, itis stored in databases and other non-hypertextokrts and spreadsheets. As
more and more of this information is being slowly but surelgrating to the Web via
scripts that automatically and dynamically convert datenfrdatabases into HTML,
the advocates of the Semantic Web imagine that by having anmanknowledge rep-
resentation language across the entire Web, all informadtiat is not currently on
the Web can become part of the Web. This makes the Semantimdfedb different
and parallel Web to the hypertext Web, but an extension ottireent Web, where
hypertext serves as just one possible language.

5.1 A Brief History of Knowledge Representation

The creation of the Semantic Web then depends on the cre#taknowledge repre-
sentation language for the Web, and so the Semantic Wehtsbeth the successes
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and failures of previous efforts to create knowledge regregtion languages in arti-
ficial intelligence. The earliest work in digital knowledgepresentations was spear-
headed by John McCarthy’s attempts to formalize elementsiofan knowledge in
first-order predicate logic, where the primary vehicle aélligence was to be consid-
ered some form of inference (1959). These efforts reactedapex in Hayes'dlaive
Physics Manifestowhich called for parts of human understanding to be forpeal
as first-order logic. Although actual physics was best ustded using mathematical
techniques such as differential equations, Hayes comttilhat most of the human
knowledge of physics, such as “water must be in a contairret ft to spill” could
be conceptualized better in first-order logic (1979). Hatsk formalization as a
grand long-term challenge for the entire Al community toquér, as he said that “we
are never going to get an adequate formalization of commogsesby making short
forays into small areas, no matter how many of them we mak&a7gL While many
researchers took up the grand challenge of Hayes in varioosiths, soon a large
number of insidious problems were encountered, primarnitgims of the expressivity
of first-order logic and its undecidability of inference. particular, first-order logic
formalizations were viewed as not expressive enough, haiadple to cope with tem-
poral reasoning as shown by the Frame Problem, and so ha@xbdyeled with fluents
and other techniques (McCarthy and Hayes, 1969). Sincedakeaog artificial intelli-
gence was to create an autonomous human-level intelligancgher central concern
was that predicate calculus did not match very well with hawnhns actually rea-
soned. For example, humans often use default reasoningvaaimlis amendments
must be made for predicate calculus to support this (Mc@adf80). Further ef-
forts were made to improve first-order logic with temporasening to overcome the
Frame Problem, as well as the use of fuzzy and probabilisgjic to overcome issues
brought up by default reasoning and the uncertain naturermesknowledge (Koller
and Pfeffer, 1998).

Under increasing criticism from its own former champiork®IMcDermott, first-
order predicate calculus was increasingly abandoned Isgtinadhe field of knowledge
representation (1987). McDermott pointed out that formag knowledge in logic re-
quires that all knowledge be formalized as a set of axiomsthatl“it must be the
case that a significant portion of the inferences we warg.daductions, or it will
simply be irrelevant how many theorems follow deductivetyni a given axiom set”
(1987). McDermott found that in practice neither can all Wlexige be formalized
and that even given some fragment of formalized knowledge,inferences drawn
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are usually trivial or irrelevant (1987). The debate foclse whether or not there
was a more appropriate manner for Al to model human intelbgebesides first-order
logic. Some researchers championgor@ceduralview of intelligence that regarded
the representation as itself irrelevant if the program dsulccessfully solve some task
given some input and output. This contrasted heavily withexattempts to formalize
human knowledge that it was called ttieclarative versus procedurdebate. Proce-
dural semanticist Terry Winograd stated that “the openation symbol structures in
a procedural semantics need not correspond to valid logiterlences about the enti-
ties they represent” since “the symbol manipulation preesshemselves are primary,
and the rules of logic and mathematics are seen as an almstrirom a limited set of
them” (1976). While the procedural view of semantics firdivdeed impressive results
through programs like SHRDLU (Winograd, 1972), since thlerantics’ were ad-hoc
and task-dependent, so they could not be used outside titedidomain in which they
were created. Furthermore, there became a series of indebs¢es on whether these
programs often purported to do what they wanted even witteir lomain, as Dreyfus
argued that it was ridiculous that just because a programafkase dUNDERSTAND that

it did actually in any way actuallynderstand1979). Interestingly enough, the debate
between declarative and procedural semantics is, undeigthteformal conditions, a
red herring since the Curry-Howard Isomorphism statesglvain the right program-
ming language, there is a tight coupling between logicabfgr@nd programs so that
the simplification of proofs can be equivalent to steps of potation (Wadler, 2003).

Within Al, research began into other forms of declarativewledge representa-
tion languages besides first-order logic that were suppodaelin greater concordance
with human intelligence and that could serve as more staltistsates for procedural
knowledge-based systems. Most prominent among thesaatiters wereseman-
tic networks “a graphic notation for representing knowledge in pateshintercon-
nected nodes and arcs” (1987). Semantic networks are as cldssical logic, dating
back to Porphyry’s explanation of Aristotelian categori@swa, 1987). The term
‘semantic network’ was coined by Richard Richens to desaibommon knowledge-
representation system for machine-translation systethe &ambridge Language Re-
search Unit (1956). While the work at the Cambridge LangReggearch Unit moved
more towards different knowledge representation langsi&geepresent the underly-
ing structure of thesauri, such as Masterman’s semanticdatand fans (1961), the
simplistic ‘node-arc-node’ structure of semantic netvexskon found favor elsewhere.
Soon semantic networks were being used to represent ewgftom human mem-
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ory to first-order logic itself (Quillian, 1968; Sowa, 1976%emantic networks also
continued to be used as an intermediate knowledge repatganior natural language
systems by systems like Shapiro’s ‘Semantic Network PsingsSystem,’ as the node
and arc formulation computationally could be detected m \hrious dependencies
given by words (1979). The approach of semantic networksgiesn some credibil-
ity by the fact that often when attempting to make diagram&mwdéwledge, humans
often start by drawing circles connected by lines, with eemimponent labeled with
some human-readable description. A semantic network abbetarchitect of the Eif-
fel Tower was Gustave Eiffel’ is given in Figure 5.1. Notetthaefers declaratively to
things in the world, but uses ‘natural-language-like’ laben its nodes and edges.

hasArchitect /_\
TheEiffel Tower ¥ @

R refers

refers

Y
Y (L

O -

| ij1: >/ \
is architect of A _J
1 Y relationship i i
L. Gustave Eiffel Himse!
VAS I =N

The Eiffel Tower |tself

Figure 5.1: An example semantic network

When researchers attempted to communicate or combinekiheivledge repre-
sentation schemes, no-one really knew what the naturalgedescriptiomeant
except the author, even when semantic networks were usefbasa language. The
link in semantic networks was interpreted in at least thrigierént ways (Woods,
1975) and no widespread agreement existed on the most commantof link, the
| S- Alink, which could represent both subclassing, instamtrgtclose similarity, and
more. This led to an assault on semantic networks by chammmbfirst-order logic
like Hayes, who believed that by providing a formal semanti@at defined ‘meaning’,
first-order logic at least allowed knowledge representetim be transportable across
domains, and that many alternative knowledge representatiould be re-expressed
in first order-logic (Hayes, 1977). In response, the field mdwledge representation
bifurcated into separate disciplines. Many of the formeropions of logic currently
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do not believe that human intelligence can be construedgsdbinference, but re-
searchers still actively pursue the field as first order lagiof crucial importance
to many systems such as mathematical theorem-proving asdtill used in many
less ambitious knowledge-reasoning systems such as IS@nGaorhogic (Delugach,
2007).

The classical artificial intelligence programme, while tecéon finding a formal
language capable of expressing human knowledge, had @rbesproblem of in-
ference. This problem came to attention abruptly when KRie &elf-titted Knowl-
edge Representation Language), one of the most flexible lkdge representation
languages pioneered by Winograd, was found to have inbigctaference even on
simple problems of cryptarithmetic, because of its repreg®nal richness (Bobrow
and Winograd, 1977). Furthermore, while highly optimized inference mechanisms
existed for first-order logic, even first-order predicatgitowas known to be unde-
cidable. These disadvantages of alternative represenghtiormats and first-order
logic led many researchers, particularly those interesteah alternative “slot and
value” knowledge representation languaky@gown asframesto begin researching the
decidability of their inference mechanisms (Minsky, 197Bhis research into frames
then evolved into research atescription logics where the trade-offs between the
tractability and expressivity were carefully studied (eesque and Brachman, 1987).
The goal of the field was to produce a logic with decidablerigriee while maintain-
ing maximum expressivity, as exemplified by languages like®NE (Brachman and
Schmolze, 1985). Although the first description-logic syst KL-ONE, was proven
to have undecidable inference for even subsumption, |lasgarch produced a vast
proliferation of description logics with carefully categmed decidability and features
(Schmidt-Schauss, 1989).

Ultimately, the project of artificial intelligence to desig single knowledge repre-
sentation system suitable for creating human-level igetice has not yet succeeded
and progress seems glacial at best. With no unifying framlevibe field of artificial
intelligence itself fragmented into many different diveiommunities, each with its
own family of languages and techniques. Researchers intwatédanguage embraced
statistical techniques and went back to practical langpageesssing tasks, while logi-
cians have produced an astounding variety of different kedge representation lan-
guages, and cognitive scientists moved their interestarswdynamical systems and
specialized biologically-inspired simulations. The |dradd-out seemed to be the Cyc

Ipersonal communication with Henry S. Thompson.
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project, which continued to pursue the task of formalizihgcammon-sense’ knowl-
edge in a single knowledge representation language (L&880). In one critique
of Cyc, Smith instead asked what lessons knowledge repedsEnlanguages could
learn from hypertext, “Forget intelligence completelypther words; take the project
as one of constructing the world’s largest hypertext systgith Cyc functioning as
a radically improved (and active) counterpart for the Dewegimal system. Such a
system might facilitate what numerous projects are stingdb implement: reliable,
content-based searching and indexing schemes for masgivat databases” (1991).
Cantwell Smith’s statement that strangely prefigures nbt search engines, but the
revitalization of knowledge representation languagestdilee Semantic Web (1991).

5.2 The Resource Description Framework (RDF)

What makes knowledge representation language on thediffelrentfrom classical
knowledge representation? Berners-Lee’s early thougistgliven in the first World
Wide Web Conference in Geneva in 1994, were that “adding sgosato the Web
involves two things: allowing documents which have infotimain machine-readable
forms, and allowing links to be created with relationshifues” (Berners-Lee, 1994b).
Having information in “machine-readable forms” requirden@wledge representation
language that has some sort of relatively content-newrdbg for encoding content
(Berners-Lee, 1994b). The parallel to knowledge repregiemnt in artificial intelli-
gence is striking, as it also sought to find one universal eimcp albeit encoding
human-intelligence. The second point, of “allowing lirtkagans that the basic model
of the Semantic Web will be a reflection of the Web itself: tle@ntic Web is con-
stituted by connecting resources by links (Berners-Le®4b® The Semantic Web
is then easily construed as a descendant of semantic netrork classical artifi-
cial intelligence, where nodes are resources and arcsnk® lUnder the aegis of the
W3C, the first knowledge representation language for theeBémWeb, théresource
Description Framework(RDF) was made a W3C Recommendation, and it is clearly
influenced by work in Al on semantic networks. This should eams no surprise, for
RDF was heavily inspired by the work of Ramanathan V. GuhaherMeta-Content
Framework (MCF) (Guha, 1996). Before working on MCF, Guha whaief lieutenant
of the aforementioned Cyc project, the last-ditch Manmmaptiaject of classical artifi-
cial intelligence (R.V.Guha and D.Lenat, 1993). Anothepartant influence on RDF
besides semantic networks was the influence of semantidaespn information ex-
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traction systems. As opposed to the ‘node-arc-node’ fohmse templates normally
had a ‘subject-verb-object’ form. Much of this influencerfrinformation extraction
and computational linguistics in the design of RDF came ffim Bray, who was
hired by Netscape to transform Guha’s MCF system into RDFmEdy, Bray was the
manager of the project of digitizing the New Oxford Englisictiidnary and then later
of the Open Text search engine, one of the Web’s first seargimes In fact, one
of Guha’s first uses of RDF was as a light-weight knowledgeasgntation system
of subject-verb-object form for his ground-breaking ‘Senia Search’ information
extraction system (2003). There are nonetheless some fesedices between seman-
tic networks (and similar ‘subject-verb-object’ tempkafeom information extraction)
and RDF, as RDF was built in accordance with the Principléa/elb Architecture as
given in Chapter 4, as detailed in the next subsections.

5.2.1 RDF and the Principle of Universality

Semantic networks fell out of favor because of their use obigoous natural lan-
guage terms to identify their nodes and arcs, which becameldgm when semantic
networks were transported between domains and differems ua problem that would
be fatal in the decentralized and multi-lingual environtrafrthe Web (Woods, 1975).
According to the Principle of Universality, since a resaioan beanything then a
component of the knowledge representation language sbewtdnsidered a resource,
and thus can be given a URI. Instead of labeling the arcs addswith natural lan-
guage terms, in RDF all the arcs and nodes can be labeled With. LAlthough few
applications had ever taken advantage of the fact before Rid-to the Principle of
Universality, URIs could be minted for things like the Elffeower quaEiffel-Tower,
an absolute necessity for knowledge representation. $iveceense of statements in
knowledge representation is usually about content in thedwautside the Web, this
means that the Semantic Web crucially depends on the ratiaege fact that URIs
can refer to things outside the Web.

This does not restrict the knowledge-representation lagguo merely refer to
things that we would normally consider outside of the Web¢sinormal web-pages
use URIs as well, and so the Semantic Web can easily be usedetoto normal
web-pages. This has some advantages, as it allows RDF toeoetasnodel the
relationships between web-accessible resources, andmxeatistal and proximal of
relationships. This sort of “meta-data” is exemplified b tielationship between a
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web-page and its human author, which in RDF would both betéeitny URIs. Lastly,
this ability to describe everything with URIs leads to somesual features, for RDF
can then model its own language constructs using URIs, arke istatements about
its own core language constructs. However, just as all compis of RDF may be
considered resources, just as all resources may not hawve BIRtomponents of RDF
may not have URIs. For example,string of text or a number may be a component
of RDF, and these are calldiderals by RDF. In RDFspecified anonymous resources
can not be given a URBNd these are calldalank nodes Yet it would be premature
to declare that the deployment of URIs in RDF signal a majgrouement over the
natural language labels, for URIs can be just as ambiguonatasal language labels.
A further analysis of the scope of this problem is in Chapter 6

5.2.2 RDF and the Principle of Linking

The second step in Berners-Lee’s vision for the Semantic, Watlowing links to be
created with relationship values,” follows straightfordig from the application of
the Principle of Universality to knowledge representati8ince RDF is composed of
resources, and any resource may link to another resoue athy term in RDF may
be linked to another term. This linking forms the heart of RB§ it allows disparate
URIs to be linked together in order for statements in RDF tortagle. The precise
form of a statement in RDF istaiple, which consists of two resources connected by
a link, as shown in Figure 5.2. This use of RDF shows off theilfiéty of using
URIs and links for reference instead of access. Lastly, tsis of URIs and links
outsideWeb representations like those of hypertext web-pages stmnflexibility of
the linking paradigm, as RDF is an example of the use of the ale ‘linkbase’ that
was developed in the hypertext community, in particulamhi& Microcosm hypertext
system (Fountain et al., 1990).

Any Web representation that contaias its information some form of Semantic
Web languagesuch as RDF is called &emantic Web documentThere are several
options for encoding Semantic Web documents. The W3C stdizeéa an encoding
of RDF is in a verbose XML format called ‘RDF/XML’" and a simplencoding called
Turtle for triples. (Beckett and Berners-Lee, 2008). In Turtleriple is three space-
delimited terms (the subject, predicate, and object) emdedperiod. Using names-
paces, withht t p: / / www. exanpl e. or g/ being abbreviated a&x, one abbreviates the
example in Figure 5.2 tex: Ei f f el Tower ex: hasArchitect ex: Gustave_Eiffel.
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Comparing the example given in Figure 5.2 to Figure 5.1,athky noticeable differ-
ence between RDF and a classical semantic network is thef udRIs.
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Figure 5.2: An example RDF statement

There are some restrictions to linking on the Semantic Web.opposed to the
vast numbers and kinds of links possible in XLink, linking the Semantic Web is
directed, like hyperlinks (DeRose et al., 200I)he starting resource in the triplis
called thesubject while the link itselfis called thepredicate andthe ending resource
in the tripleis theobject The predicate is usually a role as opposed to an arc role.
The major restriction on the Semantic Web is that the subpest be a URI or a blank
node, and the predicate must also be a URI. The object, orthiee lsand, is given the
most flexibility, as it may either be a URI, a blank node, ortarlil. This predicate-
argument structure is a well-known and familiar structuoa logic, linguistics, and
cognitive science. Triples resemble the binary predidatpsopositional logic needed
to express facts, relationships, and the properties oViithgials. Furthermore, triples
seem similar to simple natural language sentences, wherguthject and objects are
nouns and the predicate is a verb.

From the perspective of the traditional Web, the main featdiRDF is that links in
RDF themselves have a required role URI. It is through tHestteat URIs are given to
relationships outside the Web in RDF. For example, theicglahip of ‘is architect of’
between Gustave Eiffel and the Eiffel Tower could be foraedi as a link (as shown
in Figure 5.2), as could the relationship between Tim Besthexe and the creation
of his web-page. Since the relationships are abstracte td&is then refer to these
relationships, the URIs are primarily referential and may lead to access unlike
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Figure 5.3: Merging RDF triples

links in traditional hypertext systems. A set of RDF triplseessentially a linkbase,
such as those pioneered in earlier hypertext systems likedglbsm (Fountain et al.,
1990). Similarly, a triple by itself can only state a simp#sartion, but webs of links
may be made between triples to explain. A set of triples thatesresources is called a
graph, as illustrated in Figure 5.3 by two triples having the samigect, namely that
‘The Eiffel Tower in Paris has an architect called Gustavé&eEi

With the ability to make separate statements using URIanthie purpose of RDF
is revealed to benformation integration Due to their reliance on URIs, RDF graphs
cangraph merge whentwo formerly separate graphs combine with each other when
they use any of the same URIBhe central purpose of URIs is to allow independent
agents to make statements about the same referent. Withrm@otanguage of URIS,
agents can merge information about the referents of the WRislecentralized man-
ner.

5.2.3 RDF and the Principle of Self-Description

Once the Principle of Universality and the Principle of Limiare obeyed, the Princi-
ple of Self-Description naturally follows, and RDF is no eption. Self-description is
a crucial advantage of RDF in decentralized environmeirtsesin agent by following
links can discover the context of a triple needed for itsrimtetation. As witnessed by
the Brachman and Smith survey of knowledge representaygiri®s, a bugbear of se-
mantic networks was their inability to be transferred alegsof the closed domain and
centralized research group that designed them (BrachnaBmith, 1980). The cru-
cial context for usage of a particular semantic network wasys lost in transfer, so
that what precisely “IS-A” means could vary immensely betweontexts, such as the
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difference between a sub-class relationship or individdexhtity (Brachman, 1983).

By providing self-description, RDF triples can be trangpdifrom one context to an-
other, at least in an ideal world where normal conditionsihslich as when the URIs
in the triple can be used to access a web-page describingntsrt, and correct media
types are used. Furthermore, as RDF is imagined to be useldasscameta-language
for other dialects, these dialects can also have their da&@mterpretation discovered
by the follow-your-nose algorithm.

The hypertext Web, when every resource is linked togethreriges a seamless
space of linked documents. For example, the W3C tries tooglepd own internal
infrastructure in a manner compatible with the principlés\@b architecture. Its e-
mail lists are archived to the Web, and each e-malil is giverRé o an agent may
follow links seamlessly from one e-mail message to anotiad, by following links
can launch applications to send e-mail, discovers moretahewgroup, and in new e-
mails reference previous topics. Likewise, an initiatiedled ‘Linked Data’ attempts
to deploy massive public data-sets as RDF, and its main temetfollow the Princi-
ple of Self Description (Bizer et al., 2008). The hope is ittt Semantic Web can
be thought of as a seamless web of linked data, so that an egemliscover the in-
terpretation of Semantic Web data by just following linkshege links will then go
to more data which may host formal definitions or informalunak language descrip-
tions and multimedia depictions. For example, if one findsSR&¥F triple such as
ex: Eiffel Tower ex:hasArchitect ex: CGustave Eiffel and discover more infor-
mation about the Eiffel Tower, like a picture of it or the fabiat construction was
finished in 1889 by accessing t p: / / www. exanpl e. org/ Ei f f el Tower. Still, the
devil is in the details, especially when trying to decideakahow to connect a URI
for the Eiffel Tower itself and another URI for some digitaformation about it given
in RDF and HTML, as explored in Chapter 6.

Since RDF is supposed to be an all-purpose knowledge repegsa system for
the Web, RDF statements themselves can also be describegl RBIF. RDF itself
has a namespace documenhtatp: / / ww. wW3. or g/ 1999/ 02/ 22- r df - synt ax- ns#,
which provides a description of RDF in RDF itself. In othernd®, RDF can be meta-
modeled using RDF itself, in a similar manner to the use oéc#ithn in knowledge
representation and programming languages (Smith, 1984 )example, the notion of
a RDF predicate ibt t p: / / www. W3. or g/ 1999/ 02/ 22- r df - synt ax- ns#pr edi cat e,
and is defined as “the predicate of the subject RDF stateimm&he same holds for
almost all RDF constructs, and a conformant RDF processordesive from any
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RDF triple a set of axiomatic triples that define RDF itselfcls asr df : predi cat e
rdf:type rdf: Property (all RDF predicates are of the type property). For any
RDF statement likeex: Ei ff el Tower ex: hasArchitect ex: Gustave Eiffel, an
RDF-aware agent can then infer tleat hasArchitect rdf:type rdf: predicate,
which states in RDF that an architect relationship is a pagdiin a RDF triple. How-
ever, usually RDF is not hosted according to the Principl8eaif-Description. Use of
the media typeppl i cation/ rdf +xm is not consistent usually, and the namespaces
URI of specifications like the RDF Syntax namespace ofteawaInothing more than
access to some RDF triples, which is useless to a machinpahtaof understand-
ing RDF in the first place, instead of accessing a documentfctiratains some use-
ful human-readable information, such aRasource Directory Description Language
(RDDL) namespace document (Borden and Bray, 2002). A vesidRDDL in RDF
exists with an associated automated transfammakes it even easier for Semantic Web
agents to follow namespace documents to associated resqivelsh and Thompson,
2007).

5.2.4 RDF and the Open World Principle

The Principle of the Open World is the fundamental princgfienference on the Se-
mantic Web. A relatively simple language for declaring sldsses and sub-properties,
RDF Schema, abbreviated as RDF(S), was from the beginnirgopéhe vision of
the Semantic Web and developed simultaneously with RDFd&tgtrmining how to
specify exactly what other triples may be inferred from aegiRDF triple is a non-
trivial design problem, since it required adding an infe@mechanism to a semantic
network, which historically in Al featured little or no infence. Those that do not
remember the history of artificial intelligence are bounddpeat it, and the process of
specifying inference in RDF led to an almost complete repéé#te ‘procedural ver-
sus declarative’ semantics debate. An early W3C Recomntiendar RDF defined
its inference procedure by natural language and exampbessila and Swick, 1999).
Yet differing interpretations of this early RDF W3C Recommuation led to decidedly
different inference results, and so incompatible RDF pgsoes. This being unaccept-
able for a Web standards organization, the original RDF W&Cdrmendation was
deprecated, and rewritten. The original defender of foreeahantics in artificial in-
telligence, Pat Hayes, oversaw the creation of a declaidtvmal semantics for RDF

2Also called aGleaning Resource Descriptions from Dialects of Langugd@RDDL) transform
(Connolly, 2007).
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and RDF(S) in order to give them a principled inference meigm (Hayes, 2004).

The Open World principle was considered to be a consequdrtbe tack of cen-
tralized knowledge implied by the decentralized creatibuBIs and links as given
by the Principles of Universality and Linking. The paralielthe removal of central-
ized link indexes is that on the Semantic Web, “we remove trdralized concepts
of absolute truth, total knowledge, and total provabiligd see what we can do with
limited knowledge” (1998c). Hayes argued, in a similar fastas he had argued in the
original ‘procedural versus declarative’ semantics delbafl, that the Semantic Web
should just use standard first-order predicate logic. YeleiBerners-Lee accepted the
need for a logic-based semantics, he argued against Hay#dsef@rinciple of Open
World and monotonicity, and the formal semantics of RDF wesighed to obey the
Open World Assumption (Hayes, 2002). The reason for maiimgithe Open World
Assumption was that adding triples in a graph merge shouwldrmaange the meaning
of a graph so one could never retract information by simpljiragl more triples, and
so possibly invalidate previously-made conclusions. Tinggotonicity is considered
key, since otherwise every time a RDF triple was merged igg@aph the interpretation
of the graph could change and so the entire graph might hale te-interpreted, a
potentially computationally expensive operation. By Ingva design that allows only
monotonic reasoning, RDF allows interpretations to be ghdrnincrementally in or-
der to scale well in the potentially unbounded partial infation of the Web. Hayes
himself eventually came to agree with Berners-Lee on theesigsoting that reasoning
on the Semantic Web “needs to always take place in a potgnbipén-ended situa-
tion: there is always the possibility that new informatiorght arise from some other
source, so one is never justified in assuming that one hadHallfacts about some
topic” (2002).

RDF Schema is on the surface a very simple modeling and imferéanguage
(Brickley and Guha, 2004). Due to the Open World assumptimtike schemas in
relational databases or XML Schemas, RDF Schemas are rearjptéve, but merely
descriptive, and so an agent cannot validate RDF triplesamyeither consistent or
inconsistent with an RDF Schema (Thompson et al., 2004).y Thanot make the
information given by a triple itself change, but only enritie description of an ex-
isting triple. RDF Schema adds two main features to RDFt,HRBF(S) provides a
notion of a class, or a set of resources. Then RDF(S) allowsesource to be given
membership in classes and declare sub-classes (or subkats)ass that inherit all
the triples created to describe the class. Second, RDE&pHbws properties to have
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sub-properties and for properties to have types for donsdsranges, such that in a
triple the subject is the domain and the object is the rangebperty. Imagine that
the propertyex: hasAr chi t ect has the rangex: Per son and domairex: Bui | di ng.
Note that RDF Schemas are not automatically applied toesiplen if they are men-
tioned in a triple, such that for a statement lése Ei f f el _Tower ex: hasArchitect
ex: Gustave_Ei f f el , the fact that the domain @ix: hasAr chi t ect is buildings and
the range is people is not known unless the RDF Schema is atit@ity imported and
so merged with the triple itself. If the RDF Schema has begyoimed (either explic-
itly via ow : i npor t s or the follow-your-nose algorithm), an RDF(S)-aware adkat
has retrieved the RDF Schema can deduce from the tripleethd@ust ave_Ei f f el
rdf: type ex: Person, namely that Gustave Eiffel is indeed a person. This sort of
simple reasoning is again encoded as a set of axiomatiegrgoid rules for inference
and semantic conditions for applying these axioms to inferentriples. See the RDF
Formal Semantics for full details (Hayes, 2004). From hereut, the acronym ‘RDF’
refers to both RDF and RDF(S), whose formal semantics arengivgether (Hayes,
2004).

In practice, the Principle of the Open World has surprisieguits. One of the
ramifications in RDF is that there is no proper notion of falset only the notion
that something is either inferred or not, and if it is not méel, it may simply be
undefined. Although it seems straightforward, in practhie teads to surprising re-
sults. Take the following example: ‘Gustave is the fatheNafentine, which in
RDF isex: Gustave ex:fatherOf ex:ValentineEiffel. Is George also the fa-
ther of Valentine, i.e.ex: George ex:fatherOf ex:Val entine? Operating under
the closed world assumption, the answer would be ‘no.’ Yetapng under the Open
World Principle, that statement would be possible, for ¢hierno restriction that the
there someone can only have a single father, and in RDF(8)gtuch a restriction
is impossible. This restriction is possible in Wb Ontology Languagéabbreviated
OWL, in an obscure reference to A.A. Milne), an open-worlteasion of RDF that al-
lows restrictions, such as cardinality, to be placed onipetes. However, even if one
set the cardinality of thex: f at her O predicate to one (so that one could have at most
one father), the results will be surprising: the reasondromnclude thaex: Geor ge
andex: Gust ave refer to the same individual. In contrast to the expectecbieln of
many other inference engines, including people, there igmgue Name Assump-
tion, the assumption that each unique name refers to a uniqueithdil due to the
Open World Principle. The Unique Name Assumption, whileyweseful for counting,
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makes an implicit assumption about each name referring fpare individual, and

if an individual cannot be found that satisfies the name thahindividual must not

exist. This further reinforces the tendency of URIs on then&etic Web, despite their
global scope, to be ambiguous, a point we shall return to egp@ir 6.

5.2.5 RDF and the Principle of Least Power

Insofar as it is applied to the Semantic Web, the Principleezfst Power is strangely
counter-intuitive: traditionally knowledge represerdatlanguages were always striv-
ing for greater power, yet the Semantic Web begins with RDd&nguage purposefully
designed to be the least powerful language. The true beedbé#imantic Web is then
on triples as the most basic language upon which other laygguean be based. The
challenge for the Principle of Least Power is how to buildrén of the Semantic Web
by expanding on the language of triples.

Inspired by the Principle of Least Power, he envisaged thelh éanguage would
extend and build upon lower-level languages. On top of R¥fnBrs-Lee envisaged
a whole stack of more expressive languages being congatruéiéhough the vagari-
ties of the standardization process have caused variongeblan the ‘Semantic Web
stack’ and numerous conflicting versions exist, the origamal most popular version
of the Semantic Web stack is given in Figure 5.4 (Gerber ¢2@08). The W3C has
commenced standardization efforts in a number of thess aaed research in almost
all levels of the stack has begun. The majority of the reselas focused on extending
the Semantic Web with ‘ontologies’ based on descriptioicltige OWL. As should be
suspected given their heritage in artificial intelligenoest of the work in description
logic applied to OWL has focused on determining the mostesgive possible lan-
guage that preserves decidable inference. OWL itself woetbwith the Open World
Principle, since it only makes an inference by adding if@rstatements and classifi-
cations, and so remains monotonic. While almost any passiiple is acceptable in
RDF, OWL allows users to design ontologies that can even addtmints, such as
cardinality and data-typing, that can make some RDF tripplesnsistent with a given
OWL ontology. Another part of the Semantic Web, originalhfareseen, is the query
language SPARQL, a query language for RDF similar to the [aoplatabase query
language SQL (Prud’hommeaux and Seaborne, 2008). Currenht i& focused on
Rule Interchange Format (RIF), a rule-language similarrtddg for both serializing
normal rules and operating over RDF data (Boley and Kifed@00ther higher-levels
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Figure 5.4: The Semantic Web stack

on the Semantic Web stack such as ‘Logic’ remain mysterioesoicative.

5.3 Information and Non-Information Resources

One question is whether or not there should be some way fagiissh between URIs
used to access web-pages and Semantic Web data, and URsusaaes for things
like physical entities and abstract concepts that are nothe Web.” This latter class

of URIs, URIs that are used as names for entities and abstract cogcap called
Semantic Web URIsShould a URI be able to both name a non-Web accessible thing
in addition to accessing a representation of the thing? Eha difficult question,

as it seems the class of web-pages and physical people sh@didjoint (Connolly,
2006). The W3C TAG took on this question, calling it thtgoRange-14ssue, which
was phrased as the question: “What is the range of the HT Téfedence function?”
(Connolly, 2006).

The TAG defined a class of resources on the Web calledfarmation resource
which is a resource “whose essential characteristics catobeeyed in a message”
(Jacobs and Walsh, 2004). In particular, this means thatfarmation resourceis a
resource that can be realized as an information-bearingsage Note that it is not
necessarily restricted tosangleencoding, but possibly can be realized as multiple en-
codings, just like some fact can be realized by both natarajuage text in HTML and
RDF. Aresource is defined by its sense (content), not thedimgof its Web represen-
tations. So information resources would naturally inclued-pages and so resources
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on the hypertext Web, as well as most digital things. Howetimre arehings that
cannot be realized digitally by a messadpit only described or depicted by digital
information. These things amon-information resources Their only realization is
themselves. Many analogue things therefore are non-irgbomresources. It appears
that this distinction between information resources ana-indormation resources is
trying to get at the heart of the distinction between a resobeing a web-pagebout
the Eiffel Tower and a resourder the Eiffel Tower itself. A web-page is an informa-
tion resource, but the Eiffel Tower itself is a non-inforimatresource, as is the text of
Moby Dickor the concept of red.

The distinction is more subtle than it first appears. The tmess not whether
somethings accessible on the Web, but whethecdn beaccessible on the Web by
beingin theorytransmitted as an encoding, and therefore as a Web repatisentor
example, imagine a possible world where the Eiffel Towersdoat have a web-page.
In this world, it would seem counter-intuitive to claim tithe web-page of the Eiffel
Tower is then not an information resource just because ip&ag not tcexistat this
moment. This is not as implausible as it sounds, for imagiriea Eiffel Tower’s
web server went down, so thattt p: // ww. tour-eiffel.fr returned a404 status
code. A more intuitive case is that of the textMbby Dick Is the text ofMoby Dick
an information resource? If the complete text of Moby Dick'tion the Web, one
day it might be. However, a particular collector’s editidrivboby Dickcould not be an
information resource, since the part of that resource tee’text, but the physical book
itself. Yet do people have to have remarkably scholasticudisions about whether or
not something iessentiallyinformation before creating a Semantic Web URI?

Our previous terminology as defined in Chapter 3 comes toetbeue. Both a web-
page about the Eiffel Tower and the textdbby Dickare, on some level of abstraction,
carrying information about some sense in some encodingif 8ay information re-
source is any resource which can have its sense realized ab agfdfesentation, then
information resourcemsustbe on some level of abstraction digital so that they can be
encoded as Web representations. Then both the telvtodly Dickand a web-page
about the Eiffel Tower are information resources, evenafthre not currently Web-
accessible. Digital information can be transmitted viatdiggncodings, and scanin
theory be on the Web by being realized as Web representatues if the resource
does not allow access to Web representations at a given tiastly, a particular edi-
tion of Moby Dick, or Moby Dick in French, or even some RDF teip aboutMoby
Dick, are all information resources, with various encoding<ieel at certain levels
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of abstraction.

It appears that the best story we have to tell about the raihersy term ‘non-
information resource’ is that a non-information resourca thing that imnalogueand
So resists direct digital encoding, but can only be indiyeetcoded via representa-
tions of the thing in a suitable language. This would thereast be the rather odd
combination of physical entities and abstract conceptsh8d&iffel Tower itself, Tim
Berners-Lee himself, the integers, and a particular bo@kgaten point in space-time
(i.e. on a patrticular shelf!) are all non-information resms.

Should there be a class to which a web-page about the EiffeéTbelongs but
the text of some as-of-yet unwritten novel does not? In othends, it seems that
the class of information resources is too large, and we neéedrafor things that are
actually accessible over the Web at a given time. We callkimd of thing aWeb
resource an information resource that has accessible Web repretientathat realize
its information. A Web resource can then be thought of as a mapping from time of
request to a series of Web representation responses, Wedrddrmation realized by
those Web representatioase the Web resource. This definition is close in spirit to the
original pre-Semantic Web thinking behind resources inHE®30, as well as in IETF
RFC 2616 where a ‘resource’ is defined as “a network data bbjeservice ” and
coherent with Engelbart’s original use of the term ‘reseu(Engelbart and Ruilifson,
1999; Fielding et al., 1999). Aemantic Web resourds a resource that allows access
to Semantic Web documents

The distinction between information resources and noarmétion resources has
real effects. When the average hacker on the streets waatkdtsome information
to the Semantic Web, the first task is to mint a new URI for tls®uece at hand, and
the second task is to make some of this information aboutabeurce available as a
Web representation. However, should a Web representati@cdessible from a URI
for a non-information resource? If not, should Web represgt@ns be accessed from
such a non-information resource? This might confuse theim@mmation resource
itself with a Web resource that merely represents that resouvet how else would
fulfilling the Principle of Self-Description for non-infaration resources be possible?
To refuse to allow access to any Web representations woulke it Semantic Web
completely separate from the Principles of Web Architestur

Non-information resources neessociated descriptionsnformation resources
that have as their primary purpose the representation, hawvencomplete, of some
non-information resourceln other words, associated descriptions are classicahexa
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ples of metadata. According to the TAG, since the assocedription is a separate
thing from the non-information resource it represents,nbe-information should be
given a separate URI. This would fulfill the common-sensaiiregnent that the URI
for a thing itself on the Semantic Web shoulddeparatefrom the URI for some in-
formation about the thing. The TAG officially resolvéitpRange-14y saying that
disambiguation between these two types of resource shauttbbe through tha03
See O her HTTP header. The TAG’s official resolution to th&pRange-14ssue is
given below:

e If an HTTP resource responds to a GET request with a two hdrdvel HTTP
response, then the resource identified by that URI is annmdtion resource;

e If an HTTP resource responds to a GET request wi8a (See O her) re-
sponse, then the resource identified by that URI could beesgurce;

e Ifan HTTP resource responds to a GET request with a four ledhiével HTTP
(error) response, then the nature of the resource is unknown

To give an example, let's say an agent is trying to access aaf@nVeb URI
that names a non-information resource, the Eiffel Toweslfitas illustrated in Fig-
ure 5.5. Upon attempting to access that resource with a HTEP @quest using its
Semantic Web URI, since the Eiffel Tower itself is not an mfiation resource, no
Web representations are directly available. The Semargic MRI used to refer to the
Eiffel Tower itself, htt p: // wwv. exanpl e. or g/ Ei f f el Tower, could be any kind of
resource, and so could be a non-information resource. ddstbe agent gets 33
See Ot her that in turn redirects them to an associated descriptiarhibsts Web rep-
resentations about the Eiffel Tower, such as the informatsource for the homepage
of the Eiffel Tower. In turn, using content negotiation, ageat could ask for either
thetext/htm orapplication/rdf+xm media type and therefore get redirected to
either a URI for hypertext web-page or a Semantic Web doctioeggending on what
kind of associated description is needed. When this URtmstthe 200 status code in
response to an HTTP GET request, the agent can infer thabthepeage is actually an
information resource. Thi303 redirection then allows the non-information resource
given by a Semantic Web URI for the Eiffel Tower itself to cdsnpith the Principle
of Self-Description.

An alternative to the obtusd®3 redirection is thénash conventiorwhere one uses
the fragment identifier of a URI to get redirection for freéohe wanted a Semantic
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Figure 5.5: The 303 redirection for URIs

Web URI that referred to a non-information resource likeHEiféel Tower itself with-
out the hassle of a 303 redirection, one would histep: / / www. t our-ei ffel . fr/#
to refer to the Eiffel Tower itself. Since browsers, follogithe follow-your-nose algo-
rithm, either dispose of it or treat the fragment identifiersafragment of a document
or some other Web representation, if an agent tries to ase@$sI TP GET a Seman-
tic Web URI that uses the hash convention, the server wiligtotrn 8404 Not Found
status code, but instead resolve to the URI before the hasp; / / www. t our - ei ff el ,
which can then be treated as an associated descriptionislwdy, Semantic Web in-
ference engines can keep the Semantic Web URI that refehe tBitfel Tower itself
and an associated description about the Eiffel Tower sepasataking advantage of
some predefined behavior in web browsers.

While at first these distinctions between non-informatiesaurces and informa-
tion resources seems ludicrously fine-grained, clarifyivem and pronouncing an of-
ficial W3C policy on them had an immense impact on the Sema&#io, since once
there were definite guidelines on how to publish informatenthe Semantic Web,
users could start creating Semantic Web URIs and connettterg to relevant docu-
mentation resources. The TAG’s decision on redirectioniwade part of a tutorial for
publishing Semantic Web information calletbw to Publish Linked Data on the Web
(Bizer et al., 2007).
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5.4 The Semantic Web: Good Old Fashioned Al Re-

dux?

To many, it has seemed that the Semantic Web was nothing mdosd coming of
classical artificial intelligence. As put by Yorick WilksSome have taken the initial
presentation of the Semantic Web by Berners-Lee, Hendtktassila to be a restate-
ment of the Good Old Fashioned Al agenda in new and fashien&blld Wide Web
terms” (2008a). So why would the Semantic Web succeed whassical knowledge
representations failed? The first reason would be a difterémthe underlying intel-
lectual project. A second reason would be a difference inrtelogy.

The difference of the project is one both of scope and goat. S&mantic Web is,
at first glance at least, a more modest project than artificialligence. To review the
claims of artificial intelligence in order to clarify theielation to the Semantic Web,
we are best served by remembering the goal of Al as statedhyyMaCarthy at the
1956 Dartmouth Conference, “The study is to proceed on tkés lwd the conjecture
that every aspect of learning or any other feature of irgefice can in principle be
so precisely described that a machine can be made to simtil@iécCarthy et al.,
1955). However, ‘intelligence’ itself is not even vaguelgfided. The proposal put
forward by McCarthy gave a central role to “common-sense thait “a program has
common sense if it automatically deduces for itself a s@ffitivide class of immediate
consequences of anything it is told and what it already kii¢9859).

The Semantic Web does not seek to create a theory of intetiegand encode all
common-sense knowledge in some universal representhiohame. The Seman-
tic Web instead leaves “aside the artificial intelligenceljpem of training machines
to behave like people” but instead tries to develop a reptaten language that can
complemenhuman intelligence, for “the Web was designed as an infaonatpace,
with the goal that it should be useful not only for human-hareammunication, but
also that machines would be able to participate and helpfn@s-Lee, 1998c). Many
of the most difficult problems of artificial intelligence, k&8d out by McCarthy and
Minsky, arise because they are interested in a theory ofliggace in general, be it
human or machine, and so have to explain difficult problemgireg from natural lan-
guage understanding to vision (McCarthy et al., 1955). Bexitee is explicit that the
project of encoding intelligence in general is not part & groblem, as the Seman-
tic Web “does not imply some magical artificial intelligenetich allows machines
to comprehend human mumblings. It only indicates a mackiability to solve a
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well-defined problem by performing well-defined operationsexisting well-defined
data” (Berners-Lee, 1998c). The goal of the Semantic Webtismprovide a theory
of intelligence, but instead to enable new — if still untheed — forms of collective
intelligence. As phrased by Licklider, this would be a “ntaachine symbiosis,” in
which in “the anticipated symbiotic partnership, men wét she goals, formulate the
hypotheses, determine the criteria, and perform the etiahsa Computing machines
will do the routinizable work that must be done to preparewvag for insights and
decisions” (1960). So a theory of collective intelligencaynstill rely on a theory of
general intelligence as promised by artificial intelligenout the Semantic Web itself
will not provide such a theory.

While the goals of the Semantic Web are different, it dodkestiploy the same
fundamental technology as classical artificial intelligenknowledge representation
languages. As put by Berners-Lee, “The Semantic Web is wekawi get if we per-
form the same globalization process to knowledge reprasentthat the Web initially
did to hypertext” (Berners-Lee, 1998c). Yet there is a goashbout whether or not
knowledge representatidgtself might be the problem, not just scale. As put by Karen
Sparck Jones, one of the founders of information retriétia¢re are serious problems
about the core [Semantic Web] idea of combining substafdrreal description with
world-wide reach, i.e. having your cake and eating it, e¥dmei cake is only envisaged
as more like a modest sponge cake than the rich fruit cakeAthabuld like to have”
(2004). According to Sparck Jones, the problem may lie @hiart of the Semantic
Web in its very use oknowledge representation languaiggelf. So far we have shown
that the properties of at least RDF as a knowledge repragamianguage puts the
emphasis on ‘Web’ as opposed to ‘Semantic’ in the Semantig, A&it has a number
of properties — a graph structure, the ability to make untaimsed statements, and the
like — that have their basis in the tradition of the Web, rathan knowledge represen-
tation in Al. As the Web has proved to be extraordinarily ®sstul, the hope of the
Semantic Web is that any knowledge representation langwageh is based on the
same principles as the Web may fare better than its ancestarsficial intelligence.
However, these changes in the formalism of RDF due to theeinfla of the Web are
all relatively minor, and while counter-intuitive to traidinal knowledge representa-
tion, these changes to the formalism based on the prinayf/ééeb architecture have
yet to be vindicated as the Semantic Web has not yet reaclisspriead use.

Overlooked by Sparck Jones in her critique of the Semanéb,\Whe only substan-
tive difference between traditional knowledge repred@maand the Semantic Web is
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the central role of URIs. Just as the later principles of Wethigecture build upon
the Principle of Universality, so the Semantic Web buildst@m of the use of URIs
as well. The true bet of the Semantic Welnst a bet on the return of knowledge
representation languages, but a bet on the universalityRd$ Lhamely that agents in a
decentralized and global manner can use URIs to share ngeavem about non-Web
accessible things using URIs. As this use of URIs as the ledsinent of meaning is
central to the Semantic Web, and as it is a genuinelytechnical claim, it is precisely
in the understanding of the status of meaning and refereidRIs that any newheo-
retical claim must be made. Furthermore, it is precisely within #edm of URIs that
anytechnicalclaim to advance must be made.



Chapter 6

The Identity Crisis

Meaning is what essence becomes when it is divorced fronbfbetmf reference and
wedded to the wordV.V.O. Quine (1951).

6.1 What Do URIs Refer to?

For multiple agents to exchange knowledge representadiotise Semantic Web, they
must share the meaning of a URI. How can agents determineandidt refers to? The
guestion lies at the heart of Web architecture itself, algioit only becomes noticeable
on the Semantic Web. On the hypertext Web URIs trivially tdfgnhe hypertext web-
pages that those URI allow access to, although content ia¢igot does complicate
even that simple story. While on the hypertext Web this qaestould be ignored
as an obscure edge-case, for the Semantic Web this questetvsolutely central,
since the information identified by Semantic Web URIs shdaddshared universally
in a decentralized manner. In a nutshell, the problem isthRis identify not only
hypertext documents and other digital information, buti@gae things that have no
causal connection to the Web. How can a Semantic Web URI &kEtfiel Tower be
used to refer to the Eiffel Tower in Paris itself? Should thiéeETower itself have a
URI? If so, should that URI allow access to any Web represiemis? This cluster of
guestions has been dubbed tdentity Crisisof the Semantic Web.

As regards any theory of meaning for URIs, in the realm of @ffiéveb standards,
the jury is still out. In the specification of RDF, Hayes ndtieat “exactly what is con-
sidered to be the ‘meaning’ of an assertion in RDF or RDF(Spime broad sense may
depend on many factors, including social conventions, centain natural language”

109
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so unfortunately “much of this meaning will be inaccessiiolenachine processing”
such that a “a full analysis of meaning” is “a large reseaaghd’ (Hayes, 2004). As
the entire Semantic Web is built on top of the notion of URIsihg some sort of
sharable ‘meaning’ or ‘referent, there is no choice butrigage questions of meaning
and reference. However, upon pursuing this question, orgisingly finds there is
no clear answer, but instead a conceptual quagmire dondibgtewvo positions.

The first position, thalirect reference positionis that the meaning of a URI is
whatever was intended by the owndihe owner of the URI should be able to unam-
biguously declare and communicate the meaning of any URIuding a Semantic
Web URI. In this position, the referent is generally consideto be some individual
unambiguousinglething, like the Eiffel Tower otheconcept of unicorns. This view-
pointis the one generally held by many Web architects, likmBrs-Lee, who imagine
it holds not just for the Semantic Web, but the entire Web.

The second position, tHegicist position is that for the Semantic Web, the meaning
of a URI is given by whatever things satisfy the model(s)gbsethe formal seman-
tics of the Semantic Weldherents of this position hold that the referent of a URI is
ambiguous, as many different things can satisfy whatevetains given by the inter-
pretation of some sets of sentences using the URI. Therefarerminor variations on
this theme, with some people believing a URI has no meaniitgeif, but only in the
context of its use in other triples, while others hold tha¢ should be able to access
logical descriptions from the URI itself. This position isrgerally held by logicians,
who claim that the Semantic Web is entirely distinct from lilypertext Web.

These two antagonistic positions were subterranean inghelabment of the Se-
mantic Web, until a critical point was reached in an argunbetiveen Pat Hayes, the
Al researcher primarily responsible for the formal semzmtif the Semantic Web, and
Berners-Lee. This argument was provoked by an issue caéledial Meaning and
RDF’ and was brought about by the following draft statementhie RDF Concepts
and Abstract Syntax Recommendatitthe meaning of an RDF document includes
the social meaning, the formal meaning, and the social mgaofithe formal entail-
ments” so that “when an RDF graph is asserted in the Web, iigher is saying
something about their view of the world” and “such an assarsihould be understood
to carry the same social import and responsibilities as s@rtisn in any other format”
(2004). During the period of comments for the RDF WorkingfxaBijan Parsia com-
mented that the above-mentioned sentences do not “realifg@mnything and thus
can be ignored” or are “dangerously underthought and updeifsed” and so should
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be removed (Parsia, 2003). While at first these sentenceg #immeaning of RDF
seemed to be rather harmless and in concordance with corsers®, the repercus-
sions on the actual implementation of the Semantic Web apisingly large, since
“an RDF graph may contain ‘defining information’ that is opado logical reasoners.
This information may be used by human interpreters of RD&rm#&tion, or program-
mers writing software to perform specialized forms of deaturcin the Semantic Web”
(Klyne and Carroll, 2004). In other words, a special typaoh-logicalreasoning can
therefore be used by the Semantic Web.

An example of this extra-logical reasoning engendered byaht that URIs iden-
tify ‘one thing’ is as follows. Assume that a human agent loastl a URI for the Eiffel
Tower from DBpedia, and so by accessing the URI a Semanticayyebt can discover
a number of facts about the Eiffel Tower, such that it is inidand that its architect
is Gustave Eiffel, and these statements are accessed as Rmgfaph (Auer et al.,
2007). However, a human can have considerable backgroundlédge about the
Eiffel Tower, such as a vague belief that at some point in iimaas the tallest build-
ing in the world. This information is confirmed by the humareagemploying the
follow-your-nose algorithm, where by following the sultje¢ any triple, the human
would be redirected to the hypertext Wikipedia article glibe Eiffel Tower, where
the agent discovers via a human-readable descriptionttbdtitfel Tower was in fact
the tallest building until 1930, when it was superseded igliteby New York City’s
Chrysler building. This information isot explicitly in the RDF graphs provided. It is
difficult to even phrase this sort of temporal informatiorRBF. Furthermore, the hu-
man agent discovers another URI for the Eiffel Tower, a RDiSie@ of Wordnet in the
file synset - Ei ffel _Tower-noun- 1. rdf (van Assem et al., 2006). When the human
agent accesses this URI, there is little information in ti@ERyraph except that this
URI is used for a noun. However, the human-readgbless property explains that
the referent of this URI is ‘a wrought iron tower 300 metreghhihat was constructed
in Paris in 1889; for many years it was the tallest man-madetre.” Therefore, the
human agent believes that there is indeed a singular etligdcthe ‘Eiffel Tower’ in
Paris, and that this entity was in fact at some point thedabeilding in the world,
and so the two URIs are equivalent in some sense, althougbRledo not formally
match. What the ‘Social Meaning’ clause was trying to statdat the human should
be able tanon-logicallyinfer that both URIs refer to the Eiffel Tower in Paris, andyh
use this information to merge the RDF graphs, resulting ithg@s some improved
inferences in the future.
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This use-case was put forward primarily by Berners-Lee taadv3C RDF Work-
ing Group decided that deciding on the relationship betwé&ensocial and formal
meaning of RDF was beyond the scope of the RDF Working Growetide, so the
RDF Working Group appealed to the W3C TAG for a decision. AsGTRember
Connolly noticed, they “didn’t see a way to specify how thieriss for RDF without
specifying how it works for the rest of the Web at the same'ti{Berners-Lee, 2003b).
In particular, Berners-Lee then put forward his own viewppdhat “a single meaning
is given to each URI,” which is summarized by the slogan thafa “identifies one
thing.” (2003c).

In response, Hayes said that “it is simply untenable to cléiat all names iden-
tify one thing” (2003a). Furthermore, he goes on to statettiia is one of the basic
results of the knowledge representation community and @tkury linguistic seman-
tics, and so that the W3C cannot by fiat render the judgmentthiRI identifies one
thing. Berners-Lee rejects Hayes'’s claim that the Semakiglo must somehow build
upon the results of logic and natural language, insteadnahgj that “this system is
different from natural language: we designed it such thah&#RI identifies one and
only one concrete thing in the real world or one and only onbally shared concept”
(2003a). In exasperation, Hayes retorted that “I'm notsgyhat the ‘unique identi-
fication’ condition is an unattainable ideal: I'm sayingtitaloesn’'t make sense, that
itisn’t true, and that it could not possibly be true. I'm sayithat it iscrazy (2003b).
While Hayes did not explain his own position fully, as he wae ¢ditor of the formal
semantics of RDF and had the support of other logicians ilRIDE Working Group,
the issue deadlocked and the RDF Working Group was unabtete ¢to a consensus.
In order to move RDF from a Working Draft to a Recommendatitwe, W3C RDF
Working Group removed all references to social meaning filoeerRDF documents.

One should be worried when two prominent researchers suBemers-Lee and
Hayes have such a titanic disagreement, where no sort oénsns agreement seems
forthcoming. Yet who is right? Berners-Lee’s viewpoint seseintuitive and easy to
understand, and some people would say that it qualifies amoorsense. However,
the argument would seem to have been won by Hayes, as maniepeopld also
agree that his defense of ambiguity in names is also comraonses and Hayes also
has the backing of his knowledge of the formal semanticsgi€ldstill, there is reason
to pause to consider the possibility that Berners-Lee isectr First, while Berners-
Lee’s notion of unambiguous names may seem counter to mamy @afituitions about
the common-sense knowledge that many names are indeed wjueoub, Berners-Lee
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can claim that his viewpoint also is shared with philosophard logicians such as
Kripke, as explored in Section 6.3. Furthermore, while Hayey appear to have a
common-sense understanding of ambiguity, as exploreddtiid®es.2, Hayes actually
is arguing for the much more radical claim that in the casdef3emantic Web only
inference as defined by a formal logic can restrict integirehs, and hence ambigu-
ity. In this vein, it should should be remembered that as fapractical results are
concerned, the project of logic-based modeling of comnmenss knowledge in clas-
sical artificial intelligence earlier inaugurated by Haygsommonly viewed to be a
failure by current researchers in Al and cognitive scieMzbéeler, 2005). In contrast,
despite the eerily similar argument that Berners-Lee hdld aiiginal hypertext aca-
demic researchers about broken links and with the IETF atheuimpossibility of a
single naming scheme for the entire Internet, the Web isowitla doubt an unparal-
leled success. While in general the intuitions of Bernezs-Inay seem to be wrong
according to academia, history has proven him right in trst. peherefore, one should
take his pronouncements seriously.

The Identity Crisis is not just a conflict between merely twifeding individual
opinions, but a conflict between two entire disciplines: iascent discipline of ‘Web
Science’ as given by the principles of Web architecture, thiadl of knowledge rep-
resentation in Al and logic (Berners-Lee et al., 2006b).nBes-Lee’s background is
in the Internet standardization bodies like the IETF, and frimarily his intuitions
behind Web architecture as given in Chapter 5. As discuss€thapter 2, Hayes is a
formidable character in the field of artificial intelligens@nce it was his background
in logic that jump-started the field of knowledge represgoma If two entire fields,
who have joined common-cause in the Semantic Web, are at tiastrouble at the
level oftheoryis afoot.

Troubles at levels of theory invariably cause trouble ircpca. So this disagree-
ment would not be nearly as worrisome were not the Semantizitdelf not in such
a state of perpetual disrepair, making it practically utblsaln a manner disturbingly
similar to classical artificial intelligence, the Semanfieb is always thought of as
soon-to-be arriving, the ‘next’ big thing, but its actuakssare few and far between.
The reason given by Semantic Web advocates is that the Senveel is suffering
from simple engineering problems, such as a lack of some tevdard, some easily-
accessible list of vocabularies, or a dearth of Semantic-gvetbled programs. The
fact that the Semantic Web has not yet experienced the digzyiowth of the original
hypertext Web, even after an even longer period of gestagioimts to the fact that
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something is fundamentally awry. The root of the problenmhis dependence of the
Semantic Web on using URIs as names for referents.

Far from being a mandarin metaphysical pursuit, this prob&ethe very first prac-
tical issue one encounters as soon as one wants to actualtheisSemantic Web. If
an agent receives a graph in RDF, then the agent should béoadd¢ermine an inter-
pretation of these triples. The inference procedure its@ly help this problem, but it
may instead make it worse, simply producing more unintégbte RDF statements.
The agent could employ the follow-your-nose algorithm,\wehat information, if any,
should be accessible at these Semantic Web-enabled URIgudér wants to add
some information to the Semantic Web, how many URIs showdyg theate? One for
the representation, and another for the referent the repr&tson isabouf? In other
words, one for the associated description and another artadaon-information re-
source the associated description is about? Should the 9&nior the Eiffel Tower
itself be the one that is used to access a web-page aboutfteieTaiver?

What is then necessary to explain these vast differencassond a basic issue
would be a more complete explanation of the differing backgd assumptions be-
tween Berner-Lee’s direct reference position and Hayesgjgist position. URIs on
the Semantic Web can be thought of as analogous to natugaldgenamesas names
in natural language can be used to refer as well. Therefdrat meeds to be done is
to distinguish within analytic philosophy the various thies on naming and reference
in general, and then see how these various theories either do not apply to the
Semantic Web. What is remarkable is that the position of Hattee logicist posi-
tion, corresponds to a well-known theory of meaning andregfee, the ‘descriptivist
theory of reference’ attributed to early Wittgenstein, ii2gr, Russell, and turned into
its pure logicist form by Tarski (Luntley, 1999). Howevedrjs common currency in
philosophical circles that the descriptivist theory ofereince was overthrown by the
‘causal theory of reference’ championed by Kripke and edéehby Putnam (Luntley,
1999). It is precisely this causal theory of reference thexnBrs-Lee justifies in his
direct reference position. Thus, the curious coincidestleat both opposing positions
on the Semantic Web correspondeiguallyopposing positions in philosophy. Under-
standing these positions belongs primarily to the domaphdbsophy, even if Hayes
and especially Berners-Lee do not articulate their passtioith the relevant academic
citations. In this manner, the precise domain of philosdplaythe Identity Crisis falls
under is the philosophy of language. The purpose of the festichapter is then
the full explication of these two theories of reference inlggophy of language, and
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then to inspect their practical success (or lack thereoffpéncontext of the Semantic
Web, while at the end offering a critique of both, paving thegor a third theory of
meaning.

6.2 The Logicist Position and the Descriptivist Theory

of Reference

The origin of the logicist position is the descriptivist timg of reference. In thele-
scriptivist theory of referencgthe referent of a name is given by whatever satisfies the
descriptions associated with the nantsually, the descriptions are thought to be log-
ical, so a name is actually a disguised logical descriptidre referent of the name is
then equivalent to the set of possible things, given nogaila mathematical model,
such that all statements containing the name are satisfied.

6.2.1 Logical Atomism

The roots of the descriptivist theory of reference lay wiie tonfluence of philoso-
phers who are known degical atomistsa term coined by Bertrand Russell, and in-
fluential to later epistemological projects like tlogical positivismof Rudolf Carnap.
Although eventually abandoned by Bertrand Russell, |dgit@amism is a vast school
of thought that has proven tremendously influential, evensrcurrent discredited
state, for our purposes we will only concern ourselves wiik particular doctrine:
The problem of how natural language terms relate to the &giescriptions, and log-
ical descriptions to the world. Bertrand Russell beginsitivestigation of the con-
nection between logic and language is his landmark invastigOn Denotingwith a
deceptively simple question: “is the King of France bald29@5). To what referent
does the description “the King of France” refer to? (Rus4€l05) Since in Russell’'s
time there was no King of France, it could not refer to anygHike what Carnap later
called “elementary sense data” (Carnap, 1928). In thisrcedrussell makes a crucial
distinction. According to Russell, elementary sensoryegigmces are known through
acquaintancein which we have some sort of direct ‘presentation of’ thagh(1905).
Yet knowledge of a thing can be basedd®scription which are those “things we only
reach by means of denoting phrases” (Russell, 1905). Rirdiglved that “all think-
ing has to start from acquaintance, but it succeeds in thg&iboutmany things with
which we have no acquaintance” via the use of descriptioBFL9Russell was most
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interested in whether those things with which we have daequaintance can be con-
sidered true or false, or whether a more mysterious thirégoay such as ‘nonsense’
is needed. Russell opts to reject creating imaginary bet ‘things’ as well as any
third category, but instead holds that statements suchhasKing of France is bald”
are false, since “it is false that there is an entity whichawthe King of France and is
bald” (Russell, 1905). This solution then raises the alagwossibility that “the King
of France is not bald” may also come out false, which wouldrseeviolate the Law
of the Excluded Middle. So, Russell counters this move brothicing the fact that
“the King of France is bald” is actually a complex logicaltstaent involving scope
and quantification, namelfax.F (x) A G(x)) A (Vy.F (y) — x =), whereF is “being
the King of France” ands is “being bald” (Russell, 1905). According to the analysis,
‘The King of France’ is merely alisguisedcomplex logical statement. Furthermore,
this treatment can be extended to proper names such as ‘8er\V#aott, who can
be identified with ‘the author of Waverly, so that insteadb&fing a tautology, even
a proper name of a person, even if known through acquaint@sert of short-hand
for a large cluster of logical statements. So to use our pusvexample, the ‘Eiffel
Tower’ can be thought of as a short-hand for not only thatr&lexists an entity known
as the Eiffel Tower’ but also the logical statement was ‘tfegementioned entity had
Gustave Eiffel as its architect.” If someone did not knowt ttiee aforementioned en-
tity was also the tallest building in the world up until 193@ne could then make a
statement such as ‘The Eiffel Tower is identical to the &luiilding in the world up
until 1930’ without merely stating a tautology, and such aesnent would add true
and consistent knowledge to a hearer who was not aware ofatesrsent.

While the first proponent of logical atomism was Bertrand $@lisone of its most
systematic presentations is in his student Ludwig Witttgns early philosophical
work the Tractatus Logico-Philosophicudn it, Wittgenstein strongly argues for his
own version oflogical atomismthatlogic is the true language of the world; “logic is
not a body of doctrine, but a mirror image of the world” forétfacts in logical space”
are the world (1921). So logical statements are “laid agagwedity like a measure”
(1921). This is possible because the world is metaphygicgterminate at its base,
being composed of “simple” and “unalterable” objects thraake up the substance of
the world” so that “the configuration of objects producesestaf affairs” where “the
totality of existing states of affairs is the world” (Wittgstein, 1921). In other words,
there is no — as Brian Cantwell Smith would put it — “flex” ordpl’ in this picture,
no underlying “metaphysical flux” that somehow resists lgdsing constrained into
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these fully determinate “objects” (1995). Although theuratof the world consists of
true logical facts, humans, since they “picture facts” to thelwess can nonetheless
makefalselogical statements, since these pictures merely “moddityeéWwittgen-
stein, 1921). Contrary to his own logical atomist mentor$lis Wittgenstein thought
that the primary job of the logician is then to state truedaahd “what we cannot speak
about” in the form of true logical statements “we must pass av silence,” a phrase
he believed was consistently misinterpreted by even hishezaBertrand Russell and
later philosophers like Carnap (Wittgenstein, 1921). Nbg& unlike the more mature
standpoint of Hayes, the logical atomism of Wittgenstelove¢d logical statements
to directly refer to single things in the world, Wittgenst@nd other logical atomists
reifiedthe logical modeto be the worlditself.

This position was further developed by Rudolf Carnap. Adogg to Carnap, in
his The Logical Structure of the Worldll statements (at least, “scientific” statements
with “cognitive content” about the world) can then be redlite logical statements,
where the content of this logical language is given by sgnsaperiences (1928).
These “elementary experiences” cannot be directly desdyias they are irreducible,
but only described by a network of logical predicates thaattthese experiences as
logical constants (Carnap, 1928). While Carnap’s ultingal was to render any
scientific hypothesis either verifiable by sense experieno®t; their general position
was since natural language is part of the world, the straatdifanguage too must
be logical, and range over these elementary sense expesiehcthis regard, names
are given to their referents by concordance with a logicalcstire ranging over these
elementary sensory experiences. Carnap’s project wasasimispirit to Chomsky’s
syntactic theory of language, but focused on semanticerdttan syntax: Carnap
hoped to develop a semantic and logical definition of meatirag would validate
only sentences with ‘meaning.

As sensible as logical atomism appeared, there are difésul building any the-
ory of reference on, as Quine put it, such a “slender basi€l@sentary sense data
and logic (1951). The crux of the problem for any descrigtitheory of names is
that names for any “kind of abstract entities like propettidasses, relations, num-
bers, propositions” could not have an interpretation to@mtent using such a simple
sensory epistemology (Carnap, 1950). Carn&p‘gpiricism, Semantics, and Ontology
made an argument for basing such entities purely on linguistm itself. Carnap
believed that, despite the difficulty of determining theenpretation of names for ab-
stract entities, “such a language does not imply embraciRa@nic ontology but is



118 Chapter 6. The Identity Crisis

perfectly compatible with empiricism” (1950). His positizvas that while “if someone
wishes to speak in his language about a new kind of entityakedintroduce a system
of new ways of speaking, subject to new rules,” which Carrad|s ¢the “construction
of a linguistic framework for the new entities in questiorsfom within a linguistic
framework, Carnap believed to commit to any statement aheutexistence or reality
of the total system of the new entities” was to make a “psestdtement without cog-
nitive content” (1950). Although this particular positioh Carnap’s was devastated
by Quine’s argument against analyticity Tine Two Dogmas of EmpiricisnCarnap
made an important advance in the idea of a name of even atiirags being defined
by linguistic descriptions, the problems brought up by @uiorced later logicians to
abandon the notion of the logic ranging over “elementargsafata’ (Quine, 1951).

6.2.2 Tarski's Formal Semantics

Tarski abandoned the quaint epistemology of Russell andapaand defined reference
purely in terms of logic in hisThe Concept of Truth in Formal Languag€Rarski,
1935). Reference was just defined as a consequence of theotrlytin terms of
satisfaction of a formal language (1935). To set up his eixipos Tarksi defines two
languages, the first being the syntadatigject language Land the second being the
meta-language M The meta-languagshould bemore expressiv@n the sense given
in Section 5.2.5) such that it can describe every sententieeinobject language, and
furthermore, that it contain axioms that allow the truth véey sentence in the object
language to be defined. In his first move, Tarski defitmesformal conception of
truth as ‘Convention T, namely that for a given sentersaa L, there is a statement
p in M that is a theorem defining the truth gfthat is, the truth of is determined
via a translation ok into M (Tarski, 1935). Tarski then later shows that truth can be
formally defined as $ is true if and only ifp” (Tarski, 1944). For example, if the
object language is exemplified by a sentence uttered by speaker of English and
the meta-language was an English description of the redtiwdhe Eiffel Tower is in
Paris’ is true if and only if the Eiffel Tower is in Paris. Thergence ‘The Eiffel Tower
is in Paris’ must be satisfied by the Eiffel Towactually beingin Paris. While this
would at first seem circular, its non-circularity is bettees through when the object
language is not English, but another language such as Gerimahis case, “Der
Eiffelturm ist in Paris’ is true if and only if the Eiffel Towds in Paris.” However,
Tarksi was not interested in informal languages such asi&éndiut in determining the
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meaning of a new formal language via translations to matktieadlanodels or other
formal languages with well-known models. If one was defirarfgrmal semantics for
some fragment of a knowledge representation language iK€ R statement such as
http://ww. eiffeltower.exanple.org ex:location dbpedia: Paris is true if
and only ifJab.R(a, b) whereR, a, andb are given in first-order predicate logic.

This straightforward approach to formal semantics runs andlifficulty, as shown
in the above example; if one is defining a formal Tarski-ss@mantics for a language,
what should one do when one encounters complex statemealsas ‘the Eiffel Tower
is in Paris and had as an architect Gustave Eiffel.” The ansa the heart of Tarksi's
project, namely that the second component of Tarski’'s fbsamantics is to use the
principle of compositionality so that any complex sentecee have its truth conditions
derived from the truth conditions of its constituents. Talis, the meta-language has
to have finitely many axioms, and each of the truth-definirmptems produced by the
meta-language have to be generated from the axioms (Tae34). So, the aforemen-
tioned complex sentence is true if and onlygdb.R(a,b) A Q(a,c), whereQ can be
thearchitect of relationshipc can be Gustave Eiffel aralthe Eiffel Tower. Tarksi's
theory as explained so far only deals with ‘closed’ sentsyice. sentences containing
no variables or quantification. The third, and final comparenTarski’'s formal se-
mantics is to use the notion of satisfaction gikensiorto define truth (Tarski, 1935).
For a sentence such as ‘all monuments have a location, we@aslate the sentence
toVa,l.monumenta) — hasLocatiolta, |) which is true if and only if there is an exten-
sionx from the world that satisfies the logical statements madetabdn particular,
Tarksi has as his preferred extensions infinite ordered patrere the ordered set could
be anything (Tarski, 1935). For formal languages, as enpthin Section 3.3, a model-
theoretic semantics with a model composed by set theory taagard. For example,
the ordered pairs in some model @if felTowerParis) would satisfy our exam-
ple statement, as woul@cottMonumenEdinburgh but not(Paris, Eif felTower).
However, there is no reason why these models could not be FBaticoming,” things
in the the real world itself, albeit given in set-theoretcrs that would violate the
“metaphysical flux” of the world (Smith, 1995). Hencefortle will assume all exten-
sions used by Tarski-style semantics are models. To surmen@arksi’s remarkably
successful programme, model-theoretic semantics carupeoa theory of truth that
defines the semantics of a sentence in terms of the use ofsatian of the sentence
into some formal language with a finite number of axioms, thsimg composition-
ality to define the truth of complex sentences in terms ofdasntences, and finally
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determining the truth of those basic sentences in terms at #ings in a model sat-
isfy the extensions of the basic sentences as given by tbenaxiThis work marks the
high-point of the logicist programme, as all questions oameg are reduced to ques-
tions about giving the interpretation of a sentence in tesfresformal notion of truth,
and this notion of truth is not restricted by the logical aist'a quaint epistemology
of elementary sense data, but instead can range over anplpedssmal language and
any possible worlds.

6.2.3 In Defense of Ambiguity

The descriptivist theory of reference, taken to its conolusresults in the logicist po-
sition on the Semantic Web. While this work in the descriptitheory of reference
seems distant from the Identity Crisis of the Web, it is int feentral to the position
of Hayes and the Semantic Web as a whole. This is primarilalee Hayes’s back-
ground was in the logicist tradition, with his particularesfalty being the creation
of Tarski-style semantics for knowledge representatioglages. What Hayes calls
the “basic results in 20th century linguistic semanticgittBerners-Lee’s dictum that
“URIs identify one thing” violates is the interpretation ORIs in a Tarski-style for-
mal semantics (Hayes, 2003a). For the logicist positiansémanticsn the Semantic
Web derive from the Tarski-style formal semantics Hayesitex@ for the Semantic
Web (2004).

Before delving into the RDF Formal Semantics, it should baced that these
semantics are done by extension, including not only subgead objects but properties,
which is unusual in light of standard formal semantics gilsgrHayes for first-order
logic in KIF (2001). The reason for this is the Principle ohking, in particular, the
unusual features of RDF that “a property may be applied tdfit@and that classes
“may contain themselves” (Hayes, 2004). This is done byrdisishing the clasgua
class and propertguaproperty in RDF from whatever their extensions are, so while
a class and property in RDF may or may not be satisfied by sondelnoo world, the
extension of the class or property are not considered to theeveameadentity as the
property or class.

A simple example should suffice. What is the formal semauwofies: Ei f f el Tower
ex:architect ex: CGustave_Eiffel ? To simplify slightly, Hayes defines the formal
semantics of set theory, where there is a set of resourcesdhgose the model of
the language, a set of properties, and a set of URIs that ¢antceresources. The
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interpretation of any RDF statement is then given as an sidaal mapping from the
set of properties to the powerset of resources, to the seaiod pf resources. So,
given a set-theoretic model consisting of elements (giverntdlics) Gustave Eiffel
andthe Eiffel Towerandbeing the architect ofthenex: Ei f f el Tower = the Eiffel
Tower, ex: Cust ave_Ei ffel = Gustave Eiffeandex: ar chi t ect = being the archi-
tect of so that the entire triple maps to a set of pagss:Ei f f el Tower ex: architect
ex: Gustave Eiffel = (..., (the Eiffel Tower, Gustave Eiffel), ...JSomeone using
common-sense human intuitions will likely believe thastimterpretation maps to our
common-sense contenteX: Ei f f el Tower ex:architect ex: GQustave_ Eiffel Tower,
and using the axiomatic triples defined in the RDF formal s&iog, a few new triples
can be inferred, such @g: architect rdf:type rdf:Property.

However, the inherent pluralism of the Tarski approach talet® also means
that another equally valid interpretation would be the iseei.e. the mapping of
ex: Ei ffel Tower to Gustave Eiffendex: Gust ave_Ei ffel to the Eiffel Tower In
other wordsgx: ar chi t ect |= being the architect gfso that the entire triple maps to
a set of pairex: Ei ff el Tower ex:architect ex: Gustave Eiffel = ..., (Gustave
Eiffel, Eiffel Tower), ...) Due to the unconstrained nature of RIBF; ar chi t ect has
no ‘natural’ relationship to anything in particular, bututd easily be assigned either
the Eiffel Toweror Gustave Eiffejust as easily abeing the architect of

Furthermore, the model could just as easily be given by doimgts abstract as
the integersl and 2, and an equally valid mapping would be fex: Ei f f el Tower
= 1 andex: Gustave Eiffel | 2, so thatex: architect = being the architect
of, so that the entire triple maps to a set of paixsEi f f el Tower ex:architect
ex: Qustave Eiffel = (..., (1,2), ...) Indeed, the extreme pluralism of a Tarski-style
semantics shows that, at least if all one has is a single lgule statement, that triple
can be satisfied by any model. This is no mere oddity of foravagliages, this would
also hold for any lone sentence in a language like Englishch sis “Gustave Eiffel
is the architect of the Eiffel Tower” — as long as one substtito a Tarski-style se-
mantics for natural language, such as Montague semantiostégue, 1970). As the
number of triples increased, the amount of possible thihgs $atisfy the model is
thought to decrease, but in such a loose language as RDFasted by the Principle
of Linking, Hayes notes that it is “usually impossible toes®nough in any language
to completely constrain the interpretations to a singlesjids world, so there is no
such thing as ‘the’ unique interpretation” (2004). This atg#ivist theory of refer-
ence, where descriptions are logical statements in RDR,strated in Figure 6.1.
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Figure 6.1: The descriptivist theory of reference for URIs

Despite appearances to the contrary, Hayes is not defeadigvpoint arguing
for any common-sense understanding of ambiguity, suchwasawrds like ‘bank’ in
a natural language like English can have many possible sehs#eed, what Hayes is
arguing is the ambiguity built into formal model-theoret@mantics. This kind of am-
biguity is not his discovery, but a well-known issue in fofreamantics dating back to
the original Scott-Strachey formal semantics (Scott anaicgey, 1971). One question
might be whether or not these two traditions — the ambiguityatural language and
the ambiguity of formal model-theoretic interpretationsan be brought together. The
essayin Defense of Ambiguitiouches primarily upon ambiguity in model-theoretic
interpretations, although examples are deployed fromrabkanguage, in laying out
a vigorous case against Berners-Lee’s position that a “W#Rbtes one thing” (Hayes
and Halpin, 2008). What is at stake is the Principle of Ursaéty, namely that any-
thing can be identified by a URI. Hayes puts forward the thibsisthe word ‘identify’
is simply incoherent, as it has two distinct readings, asoerg earlier in Section 4.2.1,
that ofaccessaandreference

While Hayes makes no claim that access to some Web repréesestaia HTTP
is not possible, he claims that such access to Web repréisaistes orthogonal to the
guestion of what a URI could refer to, since “the architeetfrthe Web determines ac-
cess, but has no direct influence on reference” (Hayes argr@008). Furthermore,
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and this statement shows where Hayes'’s logicist underisigiod ambiguity radically
parts path with natural language understandings of antlyigHiayes claims that ref-
erence to resources is completglgependendf whatever Web representations can be
accessed, even if those contain logical expressions. Hawievnatural language, one
is not completely unconstrained in one’s use of referengepbe is instead bound to
the ambiguity given in the shared conventions of the languagpoint we will return

to when trying to explicitly bring these viewpoints togetire Section 8.1.3.

Hayes makes it explicit that he subscribes to the logicah&bepistemology of
Russell, as he says that “reference can either be estatbhbstather description or os-
tention” with ostention being defined as the use of Russetl@monstrative (like ‘that’
or ‘this’) identifying a particular “patch of sense dataava statement such as ‘that is
the Eiffel Tower, just as Russell used the notion of acqtaaine (2006). Since most
of the things referred to by names are not accessible, referean only be determined
by description, and these descriptions are inherently guthis (Hayes and Halpin,
2008).

The argument over the ambiguity of description is exemliffrenot only in logical
descriptions, but natural language descriptions. If ageers trying to identify the
Eiffel Tower to a friend, then the person may attempt to comicate their thought
about the Eiffel Tower by uttering a description such as ftlt@ument in Paris.” Yet
even the friend may think they are talking about the Arc demiphe without further
information. If the person tries to give further descripgpsuch as “the steel tower,”
then the hearer might think of the Eiffel Tower, but therermmeyuarantees. The hearer
may also think of the steel dome of Galeries Lafayette. Ef/émei person said, “the
structure made by Gustave Eiffel,” the hearer may think esaér-known structure like
La Ruche. One can imagine that with enough descriptionssopeould uniquely pick
out the referent for the hearer. Even with an infinite amodimtescriptions this may
be impossible, since it involves the large presumption ti@thearer shares our same
metaphysical or perceptual ontology of things in the worldhe hearer may simply
have no conception that the Eiffel Tower even exists, and ap lbe unable to grasp
the referent — reduce the set of possible referents to a erigong — regardless of the
number of descriptions given.

Even what appears to be a stable reference by descriptiobecaasily disrupted
by new information. Hayes illustrates this by referring téaenous example about
whether “a fitted carpet was ‘in’ an office or ‘part of’ the o#ficn which “two com-
petent, intelligent adult native speakers of English easbayered, to their mutual
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amazement, that the other would believe what they thougktamobviously false
claim” but that “over an hour of discussion it gradually eget, by a process of in-
duction from many examples, that they understood the mganfitoffice’ differently”
(Hayes and Halpin, 2008). For one person ‘office’ referrettaaghly, an inhabitable
place” while for the other it referred to “something like dwme of space defined by
the architectural walls” (Hayes and Halpin, 2008). These psople had shared the
same office for years, and only upon the appearance of a ¢cérpeemed that they
had different mental meanings for ‘office’ and more gengradir ‘room.” Neither are
wrong per se, it’s just that different concepts of ‘office’neédeing deployed, concepts
whose differences were so subtle that only in rare or ‘edgs&avere their very real
differences revealed.

On the Semantic Web, the negative effects of adding newnmdtion also hold.
Often simple formal ontologies are more stable, as “if ak @vants to say about per-
sons is that they have mailboxes and friends, then one can‘person’ as a simple
category” (Hayes and Halpin, 2008). Even when a stabletsstuaf mutual reference
has been reached in some simple formal ontology, it can bet lgysthe addition of
new ontological distinctions, as can be made by so-callggpéun ontologies” such as
DOLCE (Gangemi et al., 2002). For example, DOLCE claims thatidentity of a
person continues over time, while other upper-level omgfiei® do not (Gangemi et al.,
2002). Does the Semantic Web distinguish “Tim Berners-beecontinuant from Tim
Berners-Lee the four dimensional history?” (Hayes and Hap008). For purposes
of inference, such a minor distinction can really matter.ore is not careful with
one’s upper-level ontology, one can produce “immediatéckigontradictions, such
as inferring that Berners-Lee is both 52 years old and 7 y@df{Hayes and Halpin,
2008).

The situation with descriptions in real life, with the pdskiy of multiple underly-
ing ontologies and differing interpretations, is thoughtHayes and others to be mod-
eled on the radical model-theoretic pluralism of Tarsklestormal semantics, i.e. for
any language “sufficient to express arithmetic” to have ndiffgrent ‘non-standard’
models (2008). As our example showed, RDF in general saylsariferentially that
many different models can satisfy almost any given RDF staté. Therefore, Hayes
considers it essential to ditch the vague word ‘identify’'used in URIs, and distin-
guish between the ability of URIs to access and refer. Whitess is constrained by
Web architecture, according to Hayes, reference is almgluhconstrained except by
formal semantics, and so “the relationship between acaebssederence is essentially
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arbitrary” (Hayes and Halpin, 2008). From this philosojthjmosition, the Identity Cri-
sis dissolves into a pseudo-problem, for the same URI cageth@dccess a web-page
and refer to a person unproblematically, as they no longes taobey the dictum to
identify one thing. Hayes compares this situation to thatvarloading using a single
name to refer to multiple referents, and instead of beingablpm, “it is a way of
using names efficiently” and not a problem for communicatem “natural language
is rife with lexical ambiguity which does not hinder normahemunication,” as these
ambiguities can almost always be resolved by sufficienteodr{008). Overall, the
argument of Hayes against Berners-Lee in the Identity €isdine position of keeping
the formal semantics of reference separate from the Webvaa by the Principles of
Web architecture.

6.2.4 Logicism Unbound on the Semantic Web

While the logicist position may seem relatively sensibles togicist position would
also hold that the Semantic Web is more or less unremarkaioleg “the Semantic
Web languages would operate exactly unchanged if the foastin them were not
URIs at all, and if the Web did not exist” (Hayes, 2006). Irsthmanner, we should be
worried, for then the Semantic Web would be no different fiitie traditional project
of knowledge representation in classical artificial ingghce. Indeed, thiérst gener-
ation of the Semantic Web was built upon this logicist vision, wattiocus on infer-
ence, exemplified by the creation of inference programs aststof academic papers
detailing how description logics could efficiently implemiéOpen World reasoning
(Haarslev and Mueller, 2003; Tsarkov and Horrocks, 2003yeGthe emphasis on
inference, not surprisingly almost all work in producindgommation for the Seman-
tic Web became focused on the creation of formal ontologied, while some of the
simple ones such as FOAF (Friend-Of-A-Friend) survivedstad these ontologies
languish unused (Brickley and Miller, 2000). This compldigregard for the Princi-
ples of Web architecture make sense from the logicist petisqge as the referential
mechanism of RDF and other Semantic Web languages shoudddfisolutely no re-
lationship with the accessibility of Web representatioighile this first generation
of the Semantic Web was an academic success story, the Seméfit nonetheless
did not have the tremendous growth of the original hypeiéab. Indeed, its success
seems to be confined primarily to becoming a de-facto stdrettaong the knowledge
representation community in Al, rather than the more usiakevision of Berners-Lee.
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There was never a consensus on the first generation Semagttiabdut how log-
ical descriptions determine, even ambiguously, the rafsref a URI. One implicit
viewpoint dominant on the first-generation Semantic Weblacalist reading of the
scope of URIs; the a URI refers to whatever could satisfy tloelehof just the cur-
rent RDF graph given by some Web representation. Yet thisemaldifficult, if not
impossible, for the Semantic Web to be used for its primamppse of data integra-
tion. One proposal on this point was to assume the localting of any Semantic
Web statement unless other URIs were explicitly importesdowl : i nport s state-
ments (Parsia and Patel-Schneider, 2006). However, thisdwout the responsibility
for data integration on the server-side hosting of Web grations, not data integra-
tion ‘on-the-fly’ by a user-agent. The second option, leéist reading, is that a URI
refers to whatever can satisfy the model giverelogrygraph that uses the URI on the
Semantic Web. Yet this option makes little sense, for asrgiethe Principle of the
Open World, it is impossible to gather all uses of a URI in Seticd\eb statements
spread throughout the entire Web.

One possibility in combining the Principles of Web architee with a logicist
theory of reference would be to have a URI refer to whateveesfged all logical de-
scriptions which are accessible from the URI itself, a viempchampioned by David
Booth under the titldJRI Declarations(2008). This particular possibility of using
URIs as names would be an almost perfect analogy to Rusdelisition of names
as a cluster of logical descriptions (Russell, 1905). URtIB&tions have a num-
ber of advantages over both the localist and holist logigatlings of URIs. First,
URI Declarations allow the URI to access “a set of core aggextthat are intended
to characterize the resource” that can then be determingtidopwner of the URI
(Booth, 2008). This means that when an agent encountersveopséy unseen URI
in a Semantic Web statement and the interpretation of thersent itself is not sat-
isfactory, the agent can use the Principle of Self-Dedompto discover some core
assertions. However, the creation of other statementg tisist URI is not banned, for
“different URI users will necessarily wish to make” posgitinutually incompatible”
and so “different sets of assertions involving the URI” (Bad2008). According to
Booth, these “mandatory core assertions permit the mearfiagJRI to be anchored,
to prevent it from drifting, and this in turn increases theelihood that independent
assertions made using the URI can be successfully joind&gR

While this standpoint makes sense, it is also very limitiogggents and may not
encourage re-use, since “if you do not want to accept the assertions specified by
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the URI Declaration, then you should not use that URI to ma&eements about its
denoted resource” (2008). If one doesn’t agree with thepnétation of the core as-
sertions in the URI Declaration, then one should mint a new. URurn, this violates
the strict separation of reference and access that Haysdgutard as central to the
formal semantics of RDF, even though the URI Declaratidhretkintains a belief in
the primacy of logic (Hayes, 2006). Furthermore, it is uackhere the follow-your-
nose algorithm should stop in its quest for accessing lbgizdements. Should an
agent follow a HTTR.i nk header, or théi nk elements in HTML? Should the agent
follow HTTP redirect headers, and if so, which ones? Thesstipns are unanswered
by the follow-your-nose algorithm. While Rees has devetbapenore formally speci-
fied algorithm called th& RI Documentation Protocpthere is no W3C standardized
follow-your-nose algorithm for logical descriptions aseded with a URI, and many
other possibilities, such &oncise Bounded Descriptio(RRees, 2008; Stickler, 2005).
For at least these reasons, URI Declarations have not réadgldespread usage.

The inability of a purely descriptivist theory of referertoereach standardization,
or even ad-hoc conventional usage, has led the initial gesteration Semantic Web
applications to fail. Most of these first generation OWL orRB) ontologies, such
as DOLCE, did not in any way re-use URIs and did not let any Vglvesentations
be dereferencable from the original URIs (Gangemi et al220 OWL ontologies
were stored as one large inaccessible file, difficult to inoggearch engines and vir-
tually impossible to find by anyone except the creator of tkee flrhis lack of URI
re-usage and the inability to communicate about the refer@Semantic URIs have
led to the actual possible referents of many Semantic Wels Wikbe so drastically
underdetermined as to make the URI itself unusable. Stsgtéaking, it was impos-
sible to determine a reference except via the relativelykvwei@rence mechanisms of
OWL and RDF, which usually did not infer much of interest asdicted by McDer-
mott earlier in 1987. In an attempt to ameliorate the sitmthatural language strings
were added to describe Semantic Web URIs using properkiesdi s: | abel , but it
was left unknown how this information affected the formahsatics. Since an agent
could never be clear about the referential status of a Seerafeb URI, rather than
trust already-existing Semantic Web URIs, everyone siropdyated new URIS rather
than re-using them. This dire situation has led the firstegation of the Semantic Web
to be more like scattered semantic islands rather than ntestlinked semantic con-
tinents, a ghostly web of logical reference separate froenhiypertext Web. Yet the
failure of this first-generation of the Semantic Web showt lve surprising, for it is
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not a test of the Semantic Web hypothesis as a knowledgesesgegion language built
according to the principles of Web architecture. The fiestgration of the Semantic
Web has almostothingto do with the Principles of Web architecture besides theOpe
World Principle, and so is only a decentralized version aiedge representation as
used in classical artificial intelligence with a single lodiased monotonic semantic
network language. As such, the failure of the first genenatibthe Semantic Web

is the failure of a decentralized version of the logic-basédlefended by Hayes’s

In Defense of Logicather than the Semantic Web per se, and this failure shauld b
depressingly familiar (1977).

6.3 The Direct Reference Position and the Causal The-

ory of Reference

The alternative slogan of Berners-Lee, that “URIs identifie thing,” may not be com-
pletely untenable after all (2003c). It appears to even hétive, for when one says
‘I went to visit the Eiffel Tower,” one believes one is talkirabout a veryparticu-
lar thing in thereal world called the ‘Eiffel Tower, not a cluster of descripti® or
model of the world. The direct theory of reference of Berregs has a parallel in
philosophy, namely Saul Kripke’s ‘causal theory of refer@hthe classic devastating
argument against the descriptivist theory of referencd, ssmthe logicist position of
Hayes (Kripke, 1972). In contrast to the descriptivist tiyeaf reference, where the
content of any name is determined by ambiguous interpogtafilogical descriptions,
in the causal theory of referencany name refers via some causal chain directly to a
referent(Kripke, 1972).

6.3.1 Kripke’s Causal Theory of Proper Names

The causal theory of reference was meant to be an attack ateswziptivist theory
of reference attributed to Russell, and its effect in plufgsy has been to discredit
any neo-Russellian descriptivist theory of reference {layn 1999). Surprisingly, the
causal theory of reference also has its origin in logic,esikdpke as a modal logician
felt a theory of reference was needed that could make logteééments about things
in different logically possible worlds (Kripke, 1972). Hewer, while Kripke did not
directly confront the related position of Tarski, his arggmhdoes nonetheless attempt
to undermine the ambiguity inherent in Tarski’'s model-tie¢ic semantics, although
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a Tarski-style semantics can merely ‘flatten’ models of fadssvords into a singular
model (Luntley, 1999). Still, as a response in philosophinguage, it is accepted as
a classical refutation of the descriptivist theory of refeze.

In Kripke's Naming and Necessitgn agent fixes a name to a referent by a process
calledbaptism in which the referent, known through direct acquaintasaessociated
with a name via some local and causally effective action leyatent (1972). After-
wards, a historical and causal chain between a current fisee oame and past users
allows the referent of a name to be transmitted unambigydhsbugh time, even in
other possible worldsFor example, a certain historical personage was givendheen
‘Gustave Eiffel’ via a rather literal baptism, and the narGeaistave Eiffel’ would still
refer to that baptized person, even if he had not been thé@ectbf the Eiffel Tower,
and so failed to satisfy that definite description. Lateg,¢ausal chain of people talk-
ing about ‘Gustave Eiffel’ would identify that very persayen after Gustave Eiffel
was dead and gone. In this regard, a name functions much likprasentation as
given by our representation cycle in Section 3.6, where soaptismal ‘input stage’
between a name and a thing is necessary to assign the naroydivethe referent.
Descriptions aren’t entirely out of the picture on Kripkascount; they are necessary
for disambiguation when the context of use allows more tham iaterpretation of a
name, and they figure in the process by which things actuaiytleeir names, if the
thing cannot be directly identified. However, this use ofadiggions is a mere af-
terthought with no causal bearing on determining the reteséthe name itself, for as
Kripke puts it, “let us suppose that we do fix the reference éume by a description.
Even if we do so, we do not then make the name synonymous véttebcription, but
instead we use the name rigidly to refer to the object so nameh in talking about
counterfactual situations where the thing named would abs$fy the description in
question” (1972). So what is crucial is not satisfying angation, but the act of
baptism and the causal transmission of the name.

6.3.2 Putnam’s Theory of Natural Kinds

Kripke’s examples of the causal theory of reference useggronames, such as ‘Ci-
cero’ or ‘Aristotle, and he did not extend his analysis te tthole of language in a
principled manner. However, Hilary Putnam, in Aiee Meaning of ‘Meaninggx-

tends Kripke’s analysis to all sorts of names outside tiaaltl proper names, and in
particular Putnam uses for his examples the names of ndtmdd (1975). Putnam
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was motivated by an attempt to defeat what he believes isatbe flistinction between
intension and extension. The set of logical descriptionsclwPutnam identifies with
a “psychological state,” that something must satisfy toikerga name is thmtension
while those things in a given interpretation that actuadliisfy these descriptions, is
the extension(1975). Putnam notices that while a single extension cae hawtiple
intensions it satisfies, such as the Eiffel Tower both beingParis” and “a monument,”
a single intension is supposed to have the same extensiogiveminterpretation. If
two people are looking for a “monument in Paris,” the Eiffelier should satisfy them
both, even though the Eiffel Tower can also have many othssipte descriptions.

Putnam’s analysis can be summarized as follows: Imaginethieae is a world
“very much like Earth” called ‘Twin Earth.” On Twin Earth “ehliquid called ‘water’
is notH»0 but a different liquid” whose chemical formula is abbregthasXY Z and
that thisXY Zis “indistinguishable from water at normal temperatures pressures”,
since it “tastes like water and quenches thirst like wat@xitham, 1975). A person
from Earth wouldincorrectly identify XY Z for their normal referent of water, as it
would satisfy all their descriptions. In this regard, thi®ws that meanings “ain’t in
the head” but are in fact determined, not by individual laanggiuse or descriptions, but
by some indexical relationship to “stuff that is like wateoand here” normally. That
“stuff” shouldget its name and meaning froexperts since “probably every adult
speaker even knows the necessary and sufficient conditiatefvisH-0,” but only a
few adult speakers could distinguish water from liquidsahrsuperficially resembled
water...in case of doubt, other speakers would rely on ttigment of these ‘expert’
speakers” who would ideally textY Z and determine that it was indeed, not water
(Putnam, 1975). Indeed, less outlandish examples, sucheadifference between
“beech trees” and “elm trees” are trotted out by Putnam tavsihat a large amount
of our names for things, perhaps even extending beyondaldtunds, are actually
determined by expert knowledge (1975). In this way, Krigkgaptism can extend to
almost all languages, and scientists can be consideredi@kpat of naming authority
capable of baptizing all sorts of things with a greater ariththan everyone else. As
even Putnam explicitly acknowledges “Kripke’s doctrinatthatural-kind words are
rigid designators and our doctrine that they are indexicakbat two ways of making
the same point” (1975).
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6.3.3 Direct Reference on the Web

This expert-ruled causal theory of reference is naturddigecto the direct reference po-
sition of Berners-Lee, whose background is in expert-ectdatabases. He naturally
assumes the causal theory of reference is uncontrovefsiah database schemas,
what a termrefers tois a matter best left to the expert designer of the databage. S
Kripke and Putnam’s account of unambiguous names can thérahgposed to the
Web with a few minor variations in order to obey Berner-Le&sazy” dictum that
“URIs identify one thing” regardless of interpretation oree accessible Web rep-
resentations (2003c). While it may be a surprise to find Berhee to be a closet
Kripkean, Berners-Lee says as much, “that the Web is notlaédrbiter of meaning,
because URI ownership is primary, and the look-up systemToffMis...secondary”
(Berners-Lee, 2003c). There is also an element of Gricedrdirect theory of refer-
ence, for thantendedinterpretation and perhaps even purpose of the owner iste o
that really matters to Berners-Lee, not any publicly adbéssparticular Web repre-
sentation (1957). However, ultimately Berners-Lee hasrfare in common with the
causal theory of reference, since although the URI ownat&ntion determines the
referent, after the minting of the new URI for the resourbe,ihtended interpretation
is somehow never supposed to vary (Berners-Lee, 1998a).

To apply the causal theory of reference as to URIs, baptigivéen by the registra-
tion of the domain name, which gives a legally binding owea tJRI. The referent of
a URI is established by fiat by the owner, and then optionallylee communicated to
others in a causal chain in the form of publishing Web repried®ns accessible from
the URI or by creating Semantic Web statements about the Tid.causal theory of
reference for URIs is illustrated in Figure 6.2.

In this manner, the owner of the URI can thereby determinedfezent of the URI
and communicate it to others, but ultimately the act of lsmptnd so the determination
of the referent are in the hands of the owner of the URI, thieefessed ‘expert’ in
the new vocabulary term introduced to the Semantic Web byRis and the owner has
no real responsibility to host any Web representationseatfRl. Since the owner can
causally establish a name for a non-Web accessible thirgimaly minting a new URI
without hostingany representation, under the causal theory of reference timeusec
Web can be treated as having a giant translation manual mgpgRIs directly to
referents, where the URIs refer directly to objects in thelevoutside of the Web.
In this manual, one could look up the URttp://www.example.org/Gustawsffel and
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hetp:/ fwww example.org /Eiffel Tower

am

baptized
by

as

A Resource
The Eiffel Tower Itself

Figure 6.2: The causal theory of reference for URIs

get back Gustave Eiffel himself. From the direct referenasitmn, if an agent got a
URI like ht t p: / / www. exanpl e. or g/ Gust ave Ei f f el and one wanted to know what
the URI referred to, one could use a service suchtas s to look up the owner of
the URI, and then call them over the telephone to ask them wieatURI referred
to if there was any doubt in the matter. Since obviously suétislcannot access
things outside the Web, what kinds of Web representatidremy, could this giant
Semantic Web dictionary return? If it returns no Web repné&stéon, how can a user-
agent distinguish a URI for a referent outside the Web froat tf a URI for some
Web-accessible resource? This question is partially aresivgy303 redirection, but
it is far from satisfactory, as it only allows one to recognizhen a URImaynot refer
to an information resource, a very weak promise indeed.

6.3.4 Linked Data: The Second-Generation Semantic Web

While some recognized that the purely logicist first-generaSemantic Web of on-
tologies is a failure, lately the Semantic Web seems to bdagakf under a new name,
‘Linked Data’ (Bizer et al., 2007).Linked Datais anapplication of the principles
of Web architecture to the Semantic Wethue to its logicist heritage in classical Al,
the first-generation Semantic Web neglected to host addeddkeb representations or
even use HTTP URIs, as URIs were just regarded as a weird soéanoe, with ref-
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erence and meaning being taken care of by the Tarski-stytealosemantics of the
Semantic Web. In contrast, Linked Data recommends that HTRE should be used
for everything, and that for any non-information resourgs is likely to have to mint
not two, butthreeURIs, “an identifier for the resource” as well as two asseclate-
scriptions that can be accessed by content negotiationfirEhassociated description
should be a human-readable HTML-based associated desuoripthe second associ-
ated description should allow access to RDF (Bizer et aD720Furthermore, Linked
Data encourages the Principles of Linking by encouragiteylinking between data-
sets. Following the Principle of Self-Description, Link&ata vocabularies are to
allow the retrieval of associated descriptions in both RD& HTML via 303 redirec-
tion for non-information resources. Vocabularies usediikéd Data are encouraged
to have accessible namespace documents that describentaat®8eWeb terms used in
the vocabulary. Lastly, in the spirit of the Principle of Bpen World and Least Power,
the use of simple Semantic Web languages like RDF and RDF¢)recouraged over
more complex languages like OWL.

A few large data-sets, such as a transformation of WikipedRDF calledDBpe-
dia, as well as geographical data@eonamesnd biomedical knowledge to RDF in
the Bio2RDF project were released as Linked Data (Bizer et al., 2008)s Timked
Data initiative is thesecond generationf the Semantic Web. Unlike thigst gener-
ation approach, it also implemented a Kripkean distinction betweon-information
resources and mere representations of these non-infem&sources. The distinc-
tion is Kripkean insofar as the difference between a noarmftion resource and its
associated description (or any other resource) is assunrsel determined absolutely
by the owner of the URI. In marked contrast to its predecesisersecond-generation
Semantic Web ignored almost all inference, and focused odyming as much Se-
mantic Web information as possible, even if the publishad #aas inconsistent. The
growth of Linked Data has so far been astounding, as it grem & few million to over
a 100 million reusable RDF documents, containing possiblipbs of triples (Oren
et al., 2008).

While the Linked Data initiative created URIs for many thénguch as those things
referred to by Wikipedia URIs, it has not created URIsdweerything such as the local
pub and the proper names of people not famous enough to be kipediia. For
any real-world Semantic Web application, it is preciselysth types of URIs that are
necessary for data integration over something as simpleSesvantic Web-enabled
review aggregation site like Revyu (Heath and Motta, 200Were are these URIs to
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come from, especially if the relevant things or owners aifdisiaren’t going to mint the
URI themselves? However, if every single application @s#hese not-so-well-known
URIs themselves, then each application will create its oistirett URIS, so that these
URIs cannot be used for a graph merger or any other sort ofnire#on integration.
The Linked Data method has so far been to ignore these issltlesugh in practice
the massive export of Wikipedia into DBPedia, a Linked Daxtabled version of the
structured data in Wikipedia, seems to have led the way iingmmany useful URIs
(Auer et al., 2007).

Besides the Linked Data initiative, another outcome of thgpkean analysis of
creating URIs for non-information resources is the OKKAMject, which declares
as its motto the famous principle of Occam’s Razor, namghrasing the famous
maxim to “entity identifiers should not be multiplied beyametessity” (Bouquet et al.,
2007a). The goal of this ambitious project is to provide HTURIs for every conceiv-
able ‘entity,” where an entity is taken to be some concrétmg’ such as “electronic
documents to bound books, from people to cars, from confeeto unicorns” as
opposed to a more ‘abstract concept’ such as “predicatiesiores, assertions” (Bou-
quet et al., 2007a). Roughly speaking, the distinction iswedent to the distinction
in description logics between ‘entities’ as individualsaimABoxand ‘concepts’ in a
TBoxwhich assertions can use, so that an OWL reasoner can userthal fontology
(or terminology) of theTBoxto classify and make assertions about the entities (Hor-
rocks, 1998). Following Hayes’s insight that high-levekalngical distinctions are
morelikely to produce ambiguity, OKKAM puts forward the thesat “while any at-
tempt at ‘forcing’ the use of the same URIs for ‘logical resms’ [abstract concepts]
is likely to fail (as every application context has its owrcpkarities, and people tend
to have different views even about the same domain), the saeenot hold for enti-
ties” (Bouquet et al., 2007a). Everyone is likely to disagabout the concept of justice
or even personhood but OKKAM supposes there is unlikely tdibagreement about
physical entities like Gustave Eiffel or the Eiffel Towerowever, in a decidedly Krip-
kean move, instead of building a huge database that contgiiesll descriptions of the
entities, OKKAM merely will construct an enormous and oprded list of Semantic
Web URIs to serve as names for referents. OKKAM can be thoofgdd the reverse of
URI declarations, the only documentation resources to taelad to these OKKAM
Semantic Web URIs will be non-logical: collections of pies, text from other web-
pages which mentions the same referent, and the like. OKK#dves “untyped data
for the reason that typing an entity’s attributes would regjus to classify the entity”
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because any logical description could lead to disagreearghthus harm re-use of the
URIs (Bouguet et al., 2007a). OKKAM so hopes to concretedyjize the dream of the
Semantic Web as a giant manual that can translate URIs femfiommation resources
to referents, but without logical descriptions at all.

6.4 Conclusion

The direct reference position attempts to philosophicpltify a ‘common-sense’
notion of reference without sense, and thus it is unsurpggithat an autodidact like
Berners-Lee has his intuitions about reference fall in it Kripke and Putnam,
even if he is not personally familiar with their work. The loigt position hopes to
replace sense with the semantic value of being either trdelse, as Frege himself
did for mathematical statements. So, while the descrgitamd the causal theories of
reference may appear to be contradictory, in reality botih@$e theories of reference
attempt to exterminate a rich notion of ‘sense’ from a theargneaning. In this way,
the logicist and direct reference position, although thayraach getting rid of sense
in different manners, on an abstract level are guilty of gies maneuver.

Itis precisely the Fregean distinction between ‘sense*@idrence’ that provoked
both Russell and Kripke’s intellectual projects to build emtire theory of meaning
on top of only reference, since the notion of ‘sense’ was ghowf by both Rus-
sell and Kripke as vague and unnecessary. Therefore, tlyeway forward seems
to be to move from the primacy of reference over sense to timagy of a more
all-encompassing notion of sense over reference. As dedasigr, URIs identify re-
sources, which are objective senses. Therefore URIs dosttty refer to anything,
they only refer through mediation of a sense. A theory of nreathat takes into ac-
count the objective notion of sense needs to be rehabditaiehint of the path to be
taken ahead is given currently, but in Chapter 8 we presefutllithis third position
based on Wittgenstein’s understanding of sense and referdrhis follows naturally
from our division of content and encoding, as well as the tifieation of informa-
tional content with a Fregean sense. As Dummett put it, “Esethesis that sense is
objective is thus implicitly an anticipation of Wittgenstis doctrine that meaning is
use” (1993).

However, before moving to a third position on sense and eefs, we need to de-
termine whether or not the direct reference position aneékzation in Linked Data is
actually empirically triumphant or not? While it may seends® to the large amount
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of data being released as Linked Data, already there ar¢epnstarising. On the level
of theory, Berners-Lee’s Kripkean vision of the Semantid\ile a giant database that
maps from URIs to referents is immediately beset by Quiresdus thesis on the
indeterminacy of translatio(iL960). The application of the argument of radical trans-
lation and interpretation is not explored in detail in thedis, the interested reader can
consult Hayes and Halpin (2008). However, before critiggzihe direct reference posi-
tion purely on theoretical grounds, an empirical examoratf the second-generation
Semantic Web and Linked Data, needs to be undertaken. Repemple on Liked
Data do indeed have each URI refer to a unique thing, andhkgtreally are re-using
URIs. Unlike the earlier logicist Semantic Web, this posgibcannot be dismissed
but needs to be investigated empirically, as the Linked D\h actually exists in the
wild. This empirical work is done in the next chapter, Chagte



Chapter 7

An Empirical Analysis of the Semantic
Web

The Database of Intentions is simply this: the aggregatalte®f every search ever
entered, every result list ever tendered, and every patrtals a resultJohn Batelle
(2003)

Are there too many URIs for the same thing on the Semantic Web@o most
things not have a URI on the Semantic Web? Only a large-seaipling and statisti-
cal analysis of the Semantic Web can answer this questiomnfssided benefit, such
a statistical analysis can prove or disprove some widelg assumptions, such as de-
termining if there is an endemic over-use of constructsdide saneAs, which states
that two URIs ‘identify the same thing, and whether the W3&GTs recommendation
of 303 redirection is being followed. Furthermore, such an analgan quantify the
contrast between the direct reference position and theikigiosition on the Semantic
Web. This can be partially measured by inspecting the depéoy (or lack thereof) of
constructs in RDF(S) and OWL needed for inference. Only aitlempirical analysis
of the Semantic Web in hand can we determine the succesduwefaf Berner-Lee’s
direct reference position that a URI should identify ‘onmgy

Our methodology is to analyze an hypertext Web search queryd discover a
number of non-information resources tlaatualusers are attempting to find informa-
tion about. In particular, we will use a sample of Microsefttive.comquery log to
sample the second-generation Semantic Web, the LinkedWelba Furthermore, our
methodology of using a query log leads us to pose and answeayuéstion: Is there
anything ordinary users are actually interested in on thmeg®ic Web?

137
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7.1 Previous Work

For the first-generation of the Semantic Web, there was vitlgy dlata-driven analysis
of the ontologies, primarily because so few were actuallgxistence. Even in the
domains where Semantic Web ontologies existed, due to afafcilowing the prin-
ciples of Web architecture, these ontologies could notyeasi discovered. With the
advent of Semantic Web search engines such as Swoogle, ancaifrgmalysis of the
actual deployment of the Semantic Web became possible @ialy, 2004).

The first large-scale analysis of the Semantic Web was da@nanvinspection of the
index of Swoogle by Ding and Finin (2006). In 2006, Ding andiffirst estimated the
size of the Semantic Web to be 4.91 million Semantic Web deruswia searching
Google for the media typappl i cati on/ rdf +xm (2006). As this might not include
data that is hosted using the wrong media type, using Googiectude all FOAF
files served as HTML and RSS 1.0 files, Ding and Finin estim#tedsize of the
Semantic Web would optimistically be increased by two maglas. By inspecting
the index of Swoogle, consisting of 3.7 million URIs with Indllion Semantic Web
documents, they determined that by far the most popular Sgen@d/eb vocabulary
was FOAF (Ding and Finin, 2006). Of the remaining top ten sesiof Semantic Web
information, the rest consisted of Dublin Core, Proof Markianguage, and RSS 1.0
documents. Both the number of domains hosting Semantic Webndents and the
number of distinct URIs in triples were found to exhibit avger-law’ distribution by
visual inspection (Ding and Finin, 2006). As regards the benof sites hosting RDF
files, the ‘top’ of the distribution was found to vew. | i vej our nal . com followed
by other social networking sites releasing FOAF files. Thesmpmpular Semantic
Web term was thedf : t ype property, followed by FOAF, and then RSS 1.0 (Ding and
Finin, 2006).

Although the study of Ding and Finin was of great importansetavas the first
empirical study of the Semantic Web, their work has a numbd&nutations (2006).
Its primary limitation was it was unknown if any of the SemaM/eb documents con-
tained information that anyone would want to actually re-ustuitively, most of the
data on this first-generation Semantic Web was likely to Hamofed value. For exam-
ple, the vast majority of data on the Semantic Web in 2006 \wasexd by Livejournal
exporting every user’s profile as FOAF — usually without teerns knowledge — with-
out linking to other Semantic Web URIs, serving with the eoctrMIME type, and
deploying303 re-direction. The second main source of data in Ding anchEisitudy,
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RSS 1.0, is also of limited value. RSS, originally an XML-bdgprotocol generally
used for newsfeeds, was given a RDF-compatible syntaxticgeRSS 1.0 (Beged-
Dov et al., 2001). First, its use has been surpassed by th&bBénbased Atom and
the continued use of XML-based RSS feeds. Second, the veficapon of RDF in
RSS 1.0 is questionable, as the data is primarily informagioout site updates, and
so RSS 1.0 data is rarely merged, re-used, or even linked @on@nner that takes
advantage of RDF. Due to the idiosyncratic nature of the satgces of the first gen-
eration Semantic Web, it is not surprising that the majasftyhe data contained little
information that couldatisfy the information neeaf the average user of the Web.

The principles of Web architecture were finally applied te Semantic Web in the
form of the Linked Data initiative (Bizer et al., 2007). Torsmarize, the Linked Data
initiative required that RDF data actually be accessildenfia Semantic Web URI in
response to HTTP GET. Furthermore, URIs for non-infornratesources like entities
and concepts were required to B redirection and employ content-negotiation to
make both human and machine-readable versions of the iaf@maccessible. Other
Linked Data good practices are the re-use of URIs, or at thastise obwl : saneAs
to identify when two URIs identify the ‘same’ thing, and theearlinking of diverse
data-sets. Due to the Linked Data initiative, the size of3amantic Web has recently
increased in size by several magnitudes due to the conmeosia large number of
high-quality databases into RDF (Bizer and Seaborne, 2@ge the study by Ding
and Finin missed the rise of Linked Data, the time is ripe forerempirical studies of
the Semantic Web. It is unclear how the dynamics of the Sem#feb are changing.
While the number of URIs indexed by Linked Data search ergjiike Sindice shows
that the general trend of the number of URIs on the Semantic Waually follows
a ‘power-law, the correct mathematical analysis has nenb@one to show this to
be the case (Oren et al., 2008). The only large-scale studyn&ed Data Web at
this time has been by Hausenblas et al., and it estimatedzéetthe Linked Data
Web at approximately 2 billion triples (2008). The focus bt study was only on
interlinking between data-sets, and it estimated thaetivere approximately 3 million
interlinks between the various data-sets. The most poputatinking property by far
wasdbpedi a: hasPhot oCol | ect i on, with approximately 2 million occurrences, most
likely due to the term being used by a Linked Data exportenagdhe popular photo-
hosting service Flickr (Auer et al., 2007). In summary, thekied Data phenomenon
is huge, much larger than the first-generation Semantic \Afed,its properties have
not been fully studied. In particular, there has been httbek on determining how the
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issues of the reference of URIs play out in the wild given liyked Data.

7.2 Sampling the Semantic Web via Query Logs

The main problem facing any empirical analysis of the SermaMeb is one osam-
pling. As almost any database can easily be exported to RDF, anylsaithe Se-
mantic Web can be biased by the automated release of largéjnifately useless,
data-sets. This was demonstrated in an exemplary fashiohebselease of RSS 1.0
data. RDF vocabulary terms that have little content, suatsasi t em quickly bias
the statistical analysis. With the advent of Linked Datés bfas to some extent already
happened with large numbers of databases being releaséukasl Data ranging from
the BBC’s John Peel recordings to the MusicBrainz audio Clizction (Hausenblas
et al., 2008). How much of the Linked Data Web is aimed for gainese? Obviously,
components like DBpedia, the export of Wikipedia to Linkeat® could be very use-
ful (Auer et al., 2007). The vast majority of data releasdd the Semantic Web is of
appeal only to a niche audience, such as the great appea2iRBiF to health care and
life-sciences. Just as RSS 1.0 and the Livejournal expdfO#F biased sampling of
the first-generation Semantic Web, the release of a largesdibata sets such as the
Bio2RDF, containing approximately 65 million triples armirsvaling the size of DB-
pedia, can bias any sampling of the second-generation Senvdab (Belleau et al.,
2008; Auer et al., 2007). For example, if one just countedniim@ber of URIs used
on the Semantic Web, one would quickly find tivab2r df : xPr ot ei nLi nks would
prove to be, in sheer number, a very popular term despiteldésive lack of use out-
side the biomedical community. Itis a small step then to imagsemantic spamming’
that releases large amounts of bogus URIs into the Semamtiic Wurthermore, due
to the Open World Principle, it is impossible to determinevhnany actual separate
providers of Semantic Web data there are, so a priori chgosged samples or to
‘weight’ any sample is difficult to do in a principled mannemlike the original Web,
which grew at least in an organic fashion for its first few ywedne second-generation
Semantic Web progresses in very noticeable ‘fits and stasttarge data-sets are re-
leased, so each data-set can vastly alter any empiricaysagalThe question is not
how to avoid bias in sampling, btd choose the kind of bias one wanige are aiming
for a bias towards the ordinary user of the Web.

What information is available on the Semantic Web that adiusers are actually
interested in, and how do we sample this data? The obviowdidate for exploring
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this would be to look at a major search engine query log, asésga sample of the
interests of many users in aggregate. Since Semantic Wethssagines are currently
used mostly by Semantic Web developers and not by ordinansuthe query log of
a popular hypertext search engine should be sampled asexpfma more specialized
search engine. Furthermore, the query log should be frormargkpurpose search
engine, not one that puts some constraints on the searclasisgarching only within
bibliographies, as that would prematurely restrict thedkiof queries. The entire
bet of the Semantic Web is that it will contain informatioratimany ordinary users
will want to re-use and merge via Semantic-Web enabled egjdins, and that this
information will primarily be about non-information reswes such as entities like
people and places and abstract concepts. Thus, the ideplisgrof the Semantic
Web would be to extract query terms referring to physicatiestand abstract concepts
from a hypertext search engine query log, and then by virtaeSemantic Web search
engine we can determine precisely how much information #raghtic Web contains
on these subjects.

7.2.1 The Live.com Query Log

There has been much work on query log analysis in order todesthow to best satisfy
the information needs of users on the Web. Since most seamaly tpgs of any size
belong to search engine companies, it is often difficult &gearchers outside those
companies to analyze these query logs, and therefore neesrah in search query
logs deal with small or special-purpose query logs, sucha$\eb track in the TREC
competition (Hawking et al., 2000). A few employees of lasgarch corporations have
released detailed studies of their search engine query logmrticular Silverstein et
al.’s analysis of a billion queries in the Altavista querglis considered to be a large
‘gold-standard’ study of query logs (Silverstein et al.92R

In order to extract concepts and entities, we analyze theydog of approxi-
mately 15 million distinct queries from Microsoft Live Sehr and all references to
the ‘query log’ are to this Microsoft query log, as provideg Microsoft due to a
2007 ‘Beyond Search’ award. This query log contains 14283 queries. Of these
queries, 7,095,302 (48%) were unique. Corrected for dagateon, 4,465,912 (30%)
were unique. Of all queries, only 228,593 (2%) queries usedesform of advanced
keywords, while 709,102 (5%) used boolean operators an¢gB@862%) used quo-
tation, leading to a total of 1,204,003 (17%) queries usomge advanced techniques
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provided by the search engine. The average number of tennugipey was 1.76. Note
that these extremely brief queries are normal for hypefttéeth search engines, with
an average query length of 2.35 being reported by Silversgteal. for the Altavista

guery log (Silverstein et al., 1999).

7.2.2 Kinds of Queries

Search engine query studies show generally three distindslof user querying be-
havior: navigationalqueriestransactionaljueries, anthformationalqueries (Broder,
2002). Fornavigational queries,the query serves as an abbreviated URIch as
when the queryzogl e is used to accesst t p: // ww. googl e. com For transac-
tional queriesthe query is an attempt to perform a certain transactisach as the
purchase of a plane tickdiformational queriesexpress the information need of the
user for some unknown informatiofihe query analysis of Broder estimated that in-
formational queries account for 48% of all queries, whigamtactional queries account
for 30% and navigational for 20%, with 2% unclassified (20G&)wever, studies have
shown only a 70-80% confidence in categorizing queries €raasal., 2008). Also,
informational queries mayotbe the mostimportant kinds of queries on the Web, since
the top ten queries of thave.comquery log areall navigational queries, as shown in
Table 7.1. These distinctions between types of queriesgperitant since only a sub-
set of all queriesnformationalqueries, will deal with information that could be found
on the Semantic Web. In order for there to be a fair analysih®fSemantic Web,
transactional and navigational queries should be remdvedssible from the query
log.

In an attempt to remove at least a subset of the navigatiarieg, any query
containing a top-level domain (also known as ‘TLD,’ such esn) was removed from
the query log. While this would have removgdogl e. comit fails to remove just
googl e, so this was augmented by removing the non-TLD form of thé&tifpwebsites
as provided by Alexa.Combined, this removed 953,720 (6%) queries from the query
log.

The top ten queries of tHave.comquery log, with navigational and transactional
gueries manually removed, are given in Table 7.2. When a#oigal queries are
removed, a second trend is that popular queries on the Wetearaly dependent on
time. Obviously, these queries are mostly related to emal-known people and

1A service that ranks popular websites, availabletap: / / wwv. al exa. con .
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154398| google
132652| yahoo
85664 | myspace
72992 | ebay

37675 | mapquest
27353 | my space
23452 | aol

20703 | american idol
20313 | yahoo mail
16060 | map quest

Table 7.1: Top 10 queries in query log

11383| weather
7311 | david blaine

5279 | games

5085 | nascar

4815 | lyrics

4814 | videotaped killing
4418 | maps

4039 | kelly blue book
2950 | dracula castle
2939 | ohio bear attack

Table 7.2: Top 10 queries filtered for entities and concepts
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events in the news at the time of the query log collection. h&t time of query log
collection, David Blaine attempted to break various waedderds on live television,
and there was a high-profile video-taped killing in Kansasm®8 of the queries are
genuinely general purpose queries, such as ‘people’ andsly Due to the fact that
the top queries tend to be navigational quesad that the most popular queries are
driven by current events, a sampling regime that is not didewards the usually
transient popularity of a query is necessary.

It should be clear that queries for information about ezdgiaind concepts (i.e. non-
information resources) will be a sub-category of the mudtewclass of informational
queries. For example, an informational query might be fer ‘theather report for
Paris,” perhaps phrased as the quesgt her Pari s, while the types of queries for
physical entities like the Eiffel Tower could be the preciden was the Eiffel
Tower built? or the foreshortenefli ffel Tower. While the distinction between
informational queries for an information resource as opgds informational queries
about a non-information resource is fuzzy, this is due toude of varying levels of
abstraction that can be used in terms of interpreting thermm&tion need expressed
by the query. This problem is made especially difficult gitea small number of
words used in Web search queries. Due to this problem, itldHmeiexpected that
any sampling of the query log should be overly vigilant in #teempted deletion of
transactional and navigational queries, while at the sameltberal in the acceptance
of possible informational queries, not trying to distingfua query for a weather report
from a query about the weather itself.

7.2.3 Extracting Queries for Entities and Concepts

Automatically classifying informational queries is diffit. Rule-based approaches
that claim to work over entire query logs like those of Jareteal. are dubious at best,
since they work by applying very loose specifications suchgasry length greater
than 2” and “any query using natural language terms” (200&)re promising work
has applied both supervised and unsupervised machinaflgao discover informa-
tional queries, but only achieved an accuracy of 50% whemeed by human judges
(Baeza-Yates et al., 2006). A number of machine-learniggréhms could be em-
ployed to learn named entities, but the sparse amount afiistig context in query
logs makes identifying a named entity difficult in an unswsd manner, and there
is virtually no labeled data for supervised learning (Whaieet al., 2008). Even most
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rule-based approaches for named entity recognition redyilyeupon capitalization
and punctuation, such as ‘I.B.M.” and ‘Gustave Eiffel, tig@s that are lacking from
qguery logs (Mikheev et al., 1998).

We call queries that are automatically identified to be about phgisentities in
the query logentity queries For the discovery of entity queries, people and places
are obvious places to begin. An updated version of the sy#tainwas the highest
performer at MUC-7 (Mikheev et al., 1998), a straightfordvgyazetteer-based and
rule-based named entity recognizer, was employed to desdbne names of people
and places. The gazetteer for names was based on a list omaaietained by the
Social Security Administration and the gazetteer for plaames was based on the
gazetteer provided by the Alexandria Digital Library Prtje Although it could be
possible to separate out people and places, this was not &g both of these are
types of entities. Second, the names of many locations si¢raais’ can also be used
as a name, such as the proper name ‘Paris Hilton.” This gemdtased approach was
chosen to provide high precision, even at the cost of a diaatigtreduced recall. This
is an acceptable trade-off as we are attempting only to sathplnumber of queries
that would be likely to have URIs on the Semantic Web. A higlaliy sample of the
guery log is more important than a large one for this purp@fea random sample of
100 entity queries, a judge considered 94% to be correctggoaized as entities such
as people or places.

From the unique queries in the query log, totaling 4,465,§aé@ries, a total of
509,659 queries (11%) were identified as either people @eplay the named-entity
recognizer. The top 16ntity queriesare given in Table 7.3. Some transactional and
navigational queries, despite their relatively lower freqcy overall in the query log,
are highly clustered towards the top of the entity queryritlistion. These navigational
gueries such ashase andof fi ce max have clearly snuck into the top ten due to their
use of common names in their website names. Furthermorenaeruof queries for
brands that use names, like ‘harley davidson’ or ‘nick’ arespnt. Still, a number of
legitimate real proper names for entities, such as ‘jesslea’ and ‘marcus vick’ were
discovered.

A method for discovering abstract concepts in the query somore challenging.
These queries are calledncept queriesqueries that are automatically identified to
be about abstract concepts in a query Idgrevious attempts at discovering abstract
concepts have employed machine-learning over truly masgiery logs and document
collections from Google (Pasca, 2007). Since this masameunt of data was not
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7311| david blaine
4039 | kelly blue book
3053 | chase

2997 | jessica alba
2100/ nick

1415/ office max
1280 | michael hayden
1139 | harley davidson
1098 | marcus vick
1092 | keith urban

Table 7.3: Top 10 entity queries in query log

available, we employed WordNet instead. WordNet consisapproximately 207,000
words with unique synsets. Our algorithm for discoveringtedct concepts in query
logs using WordNet was straightforward: we only chose @seof length one where
the query had a hyponym and hypernym, due to the difficulty ofdMet dealing with
some multi-word queries. This assured that the query was étaiss that was suitably
abstract (having a hyponym) but not so abstract as to beallytmeaningless (had a
hypernym). This resulted in a more restricted 16,698 cangeeries (.004% of total
gueries in the query log). The top 10 concept queries arengivdable 7.4. Again,
a number of clearly transactional queries have managedddHemselves among the
concept queries, such akase anddrudge, as well as a number of queries where
the sense of a word has been taken over by a proper name, ssighias andai m
Again, this is due to the preponderance of navigational satowards the top of the
query distribution. Of a random sample of 100 concept gseagudge considered
98% to be classified correctly as concepts. The top ten conogepies are presented
in Table 7.4. While some of the queries could be consideretestat navigational
(such as those for maps and dictionaries), they could albbsidered informational
gueries about some abstract concept.

7.2.4 Power-Law Detection

when rank-ordered, the frequency of queries follows whah®wvn as a ‘power-law’
distribution, with a relatively small number of very poputperies and a long-tail of



7.2. Sampling the Semantic Web via Query Logs 147

11383| weather
10321| dictionary
3675 | people
3217 | music
2192 | autism
1468 | map

1198 | travel
1191 | pregnancy
1104 | news
1052 | charter

Table 7.4: Top 10 concept queries in query log

gueries only occurring once or twice, where most of the maghendistribution is
in the long tail and the ‘top’ of the distribution exponetiifadecreases. Since this
distribution is common on the Web, we will define it precisel power-lawis a
relationship between two scalar quantitiesndy of the form:

y=cX+b (7.1)

wherea andc are constants characterizing the given power-law, laibging some
constant or variable dependentxthat becomes constant asymptotically. Typically it
is applied to rank-ordered frequency diagrams, where grgpigncy of some measure-
ment is given on the vertical axis while the rank order of theasurements in terms
of their frequency is given on the horizontal axis. Tihexponent is the scaling expo-
nent that determines the slope of the top of the distribwgimhprovides the remarkable
property of scale-invariance, such that if a true poweria@bserved, as more samples
are added to the distribution, thkeremains constant, i.e. the distribution is ‘scale-free’
(Watts and Strogatz, 1998). It is crucial to note that a pelaerdistribution violates
the assumptions of the normal Gaussian distribution, sh@hroutine statistics such
as averages and standard deviations can beisunalyare misleading. In fact, one of
the most positive signs of a non-normal distribution likeoavpr-law distribution is a
very large standard deviation.

One of the most common power law distributions is known ag'@ipaw, which
was originally observed in word frequency estimates. ZipEw states that given a fi-
nite sample of a natural language of adequate size, thednegof a word is inversely
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proportional to the word’s rank in a ranked frequency dusttion (Zipf, 1949). In
other words, the most frequent word ‘the’ will have twice asny occurrences as the
next most frequent word, ‘of.” This sort of distribution segto be apparent in many
evolved systems (Cancho and Sole, 2003), from the link streof the hypertext Web
(Barabasi et al., 2000) to financial systems (May et al., 2008such a distribution
evident from Linked Data? One important question is how tectepower-law distri-
butions in actual data. Equation 7.1 can also be written as:

logy = alogx+logc (7.2)

When written in this form, a fundamental property of powaré becomes appar-
ent: when plotted in log-log space, power-laws are ‘strilghes. Thus, the most
widely used method to check whether a distribution followsowver-law is to apply a
logarithmic transformation, and then perform linear regren, estimating the slope of
the function in logarithmic space to log as done by Ding and Finin (2006). However,
standard least-square regression has been shown to pyduematic bias, in particu-
lar due to fluctuations of the long tail (Clauset et al., 2000)determine a power-law
accurately requires minimizing the bias in the value of tba&liag exponent and the
beginning of the long tail via maximum likelihood estimatioSee Newman (2005)
and Clauset et al. (2007) for the technical details.

Determining whether a particular distribution is a ‘goodftit a power-law is dif-
ficult, as most ‘goodness-of-fit’ tests employ normal Gaarssissumptions violated by
potential power-law distributions. Luckily, the non-paretric Kolmogorov-Smirnov
test can be employed for any distribution and so is ideal feasaring ‘goodness-of-
fit' of a given finite distribution to a power-law function. W the details are given
at length in Clauset et al. (2007), intuitively the KolmogaiSmirnov test can be
thought of as follows: Given a reference distributiBnsuch as an ideal power-law
distribution generating function, and a sample distrimu® of size n suspected of
being a power-law, where one is testing the hypothesis@hiat not drawn fromP,
then the Kolmogorov-Smirnov test compares the cumulatieguency of bothP and
Q to discover the greatest discrepancy (Ihstatistic) between the two distributions.
This D-statistic is then tested against the critical valug@-aitatistic ain, which varies
per function. The Kolmogorov-Smirnov test is valid even fpomer-law distributions
sinceQ’s cumulative density function is asymptotically normatlistributed and this
can be compared to the cumulative density functioR.of

For a power-law distribution generating function, we cahayeritical p-value by
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generating artificial data using the scaling exporeeanhd lower-bound equal to those
found in the supposed fitted power-law distribution. A povesy is fit to this artificial
data, and then the Kolmogorov-Smirnov test is then donedoh elistribution that was
artificially generated comparing it to itavnfitted power-law. Thep-value is then just
the fraction of the amount of times tiestatistic is larger for the artificially-generated
distribution than theéD-statistic of the empirically-found distribution. Theoe¢, the
larger the p-value, the more likely a genuine power-law has been foutigaempirical
data. According to Clauset, “once we have calculatedmualue, we need to make
a decision about whether it mmall enough to rule outhe power-law hypothesis”
(emphasis added) (Clauset et al., 2007). The power-lawthggts is simply that the
distribution was generated by a power-law generating fanciThe null hypothesis is
that by chance a function would generate the power-lawiligton observed in the
empirical data.

The null hypothesis is rejected if ti@statistic ismorethan the criticalp-value for
n, p being the probability that the distribution was drawn frommoaver-law generating
function given the estimated parameters. In order to deterhmow well the power-law
method fits, whenever a power-law is reported,Bhstatistic is also reported, and we
will determine whether or not the fit was significant accogdia the liberalp > .1.

The query frequencies for entity and concept queries argeplon logarithmic
space in Figure 7.1. Both entity and concept queries appdae tinear in log-space,
and so can be considered candidates for power-laws. Usegntthod described
above, thex of the queries for entities was calculated to be 2.31, witlg lail behav-
ior starting around a frequency of 17 and a Kolmogorov-SoviD-statistic of .0241
(p > .1), indicating a significant good fit. Treeof the queries for concept queries was
calculated to be 2.12, with long tail behavior starting awda frequency of 36 with a
Kolmogorov-SmirnovD-statistic of .01701p > .1), also indicating a significant good
fit for the power law. Given their two remarkably similastatistics and high goodness
of fit, one can safely conclude that these query logs do inftdexv power-law dis-
tributions. This indicates our sample of entities and cptsare representative of the
larger query log, which is well-known to follow power-lawstiibutions (Baeza-Yates
and Ribeiro-Neto, 1999).
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Figure 7.1: The rank-ordered frequency distribution of extracted entity and concept queries,

with the entity queries given by green and the concept queries by blue.

7.2.5 Querying the Semantic Web

Both the concept queries and the entity queries are usedety tjue Semantic Web.
Since our goal was to discover how much of interest for onginesers was present
on the Semantic Web, one problem with using the entire quegyas that it would
contain a vast amount of unique queries that would be unlitebe repeated. So,
we excluded a portion of the long tail from the study by remgvall queries of less
than frequency 10. The parameter 10 was chosen as it was thkeenuhat could
reduce both entity and concept queries to the same magnitDde to the power-
law behavior of both entity and concept queries, this trtinoaconsists of ‘removing’
a large amount of the long tail, while maintaining the entiop’ of the power-law
distribution, as well as some significant component of timgltail. This procedure is
justified insofar as the ‘long-tail’ likely consists of ques that are never or very rarely
repeated, while the remaining queries represents quéaeate likely to be repeated.
This pruning of low-frequency queries from our sampling sitikely exclude many
‘difficult’ or ‘specialist’ queries, but we are aiming for gties that are general-purpose
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and popular. We call thespieries with more than 10 URIs returned from the Semantic
Webthe crawled queriego distinguish them from the greater query log. Likewise,

crawled entity queriesare entity queries with more than 10 URIs returned from the

Semantic Weland similarly forcrawled concept queries

This truncation reduced the amount of queries significafrtyyn 587,283 to 7,848
gueries, removing 99% of the queries. It reduced the numbentity queries from
570,585 to 5,308 (a 91% reduction) and the amount of conasgtiep from 16,698
to 2,540 (an 85% reduction). This gap in the result of prurofighe ‘long tail’ is
interesting, as it shows that while there is a lower amountasfcept queries than
entity queries overall, concept queries are repeated bygmituae or so more often
than entity queries. The only caveat is that our identiftcatof concept queries via
WordNet is likely more stringent than our identification ofti¢gy queries, and thus
leads to fewer concept queries overall. Furthermore, teeraajority of entity queries,
as opposed to concept queries, appear to be queries thatlpmade once or a very
few times. This would make a certain amount of sense, as magyas for people and
places arenot for famous people and places, but for infrequently-memibpeople
and places, such asyne way, san mateo andsara nmatthews. Some concepts
were as diverse gmst r opod andaccol ade. Still, the crawled queries are still biased
significantly in favour of entity queries, with 68% being intueries and only 32%
being concept queries.

The FALCON-S Object Semantic Web search engine (Cheng ,e2@08) was
used to query the Semantic Web for selected entity and concepies between Au-
gust 3rd and 4th 2008. The results of running the crawledigsi@gainst a Semantic
Web search engine were surprisingly fruitful, althoughyirag immensely. For entity
gueries, there was an average of 1,339 URIs (S.D. 8,000netper query. On the
other hand, for concept queries, there were an average 2026&IRIs (S.D. 14,1580)
returned per query, with no queries returning zero docusmésitven the high standard
deviation of these results, it is likely that there is eitlepower-law in the result-
ing Semantic Web URIs for the queries, or some other non-abdistribution. As
shown in Figure 7.2, when plotted in logarithmic space, l@thty queries and con-
cept queries show a distribution that is heavily skewed td#/a very large number
of high-frequency results, with a steep drop-off to almasizresults instead of the
characteristic long tail of a power law. Far from having nformation that might be
relevant to ordinary user queries, the Semantic Web seagihes returned either too
many URIs possibly relevant to the query or none at all.
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Frequency of Semantic Web URIs returned
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Frequency-ordered Returned Semantic Web URIs

Figure 7.2: The rank-ordered frequency distribution of the number of URIs returned from entity

and concept queries, with the entity queries given by green and the concept queries by blue.

Another question is whether or not there is any correlatietwben the amount
of URIs returned from the Semantic Web and the frequency efjiery. As shown
by Figure 7.3, there iso correlation between the amount of URIs returned from the
Semantic Web and the popularity of the query. For entity igsethe Spearman’s rank
correlation statistic was an insignificant .00p7X .05), while for concept queries, the
correlation was still insignificant at .012p ¢ .05). Just because a query is popular or
unpopular does not mean the Semantic Web will be more orilesdly to satisfy the
information need of the query. This makes sense, as the \astity of queries are
heavily dependent on current events and fashion, and thar@envwWeb is not updated
often enough to deal with this kind of information, so theram inevitable temporal lag
between the time information appears in the world outsiégeSamantic Web and its
digitization on the Semantic Web. Yet as shown by Figureth amount opossibly
useful information for the vast majority of queries is ssillrprisingly large, although
how many of the returned Semantic Web URIs are actually asleto human users is
not yet known.
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Figure 7.3: The rank-ordered popularity of entity and concept queries is on the X-axis, with the
y axis displaying the number of Semantic Web URIs returned, with the entity queries given by

green and the concept queries by blue.

7.3 Empirical Analysis of the Semantic Web

A number of statistics associated with the results of ruprgach query against the
Semantic Web are analyzed. First, we investigate stegiabout these Semantic Web
URIs and their resources themselves, such as their assb@tditus codes and me-
dia types. In particular, we focus on the relative promireat303 redirection and
the hash convention. Then we statistically inspect the W#Rtsally conveyed by the
Semantic Web documents accessible from these URIs.

Surprisingly, there is a deluge of possible Semantic WebsU&l1any given query.
Due to the high number of results for each query, we resttiote analysis téhe top 10
Semantic Web URI results for each quasygiven by FALCON-S’s Page-ranking based
algorithm and distinguish this subset from all the URIs me¢al by the Semantic Web,
by calling this subset therawled URIs Concept URIsare crawled URIs from the
crawled concept querieshile entity URIsarecrawled URIs from the crawled entity
gueries Although crawled URIs are a small subset of the total URIseeed, given
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that user behavior in general inspects the first ten URIsmetlby this search (Granka
et al., 2004), it makes more sense to sample these ten URtgipey than to sample
every URI retrieved. The crawled URIs totaled 70,128 URmnposed of 25,400
(36%) concept URIs and 44,728 (63.78%) entity URIs. ThesdsWirre crawled
using HTTP GET with a preference for application-typeppl i cati on+r df / xm in
order to prefer RDF files served by content negotiation, and3@3 redirection was
followed.

Of all crawled queries, a total of 6,673 (85%) had at leastrhvied URIs. All
concept queries had at least 10 crawled URIs and only 4,13Beoéntity queries
(12%) did not have 10 URIs. Inspecting just the set of quahes did not have 10
crawled URIs, the average number of URIs when 10 URIs wereretatned was
2.89 (S.D. 2.88). So, the trend observed earlier was repp@atdis smaller data-set,
namely that while most of the time too many URIs are retriefrech the Semantic
Web, sometimes there ane URIs retrieved from the Semantic Web for certain entity
gueries. Looking at the data more closely, 357 (30%) of tlasvigd queries with
less than 10 results returnex URIs, while 138 (12%) returned a single URI and
113 returned two URIs (10%). These queries with zero reseksn to be mainly for
not well-known places such gdaya |inda (a hotel in Majorica), fairly unknown
people such awi | | i am ravi es, misspellings, or popular truncations of names for
people such ast even col bert bush. This observation helps to explain the sudden
drop in Semantic Web URIs returned for queries in Figure Ttiere was little overlap
between the the crawled URIs retrieved by different quenéth an overlap in entity
gueries of 546 URIs (1%) and an overlap in concept querie98L URIs (4%). In
other words, the various queries weren't just retrievirgggame small group of URIs
over and over again.

7.3.1 URI-based Statistics

In this section, we inspect the various kinds of statistiescan detect on the ‘macro-
level’ of the crawled URIs without actually accessing anyn@atic Web documents
from the URIs. For all crawled URIs, Web representationsenfeund to be served
with 12 different media types. In the event of any forward{sgch as use of the
303 or hash convention), the media-type of the retrieved file rggorted. The vast
majority of Web representations retrieved from crawled £)f@I3%) used the correct
media-type &ppl i cati on/ rdf +xm ), although the amount of URIs returned with the
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56,893| 93.31%| application/rdf+xml
2,410 | 3.44% | text/plain

1,246 | 2.04% | text/html

167 27% | imageljpeg

147 .24% | application/xml

54 .09% | text/xml
31 .05% | image/png
14 .02% | image/svg+xml

.00% | image/qgif
2 .00% | application/rdf-xml

Table 7.5: Top 10 media types

t ext/pl ai nis large, followed byt ext/ ht M andappl i cati on/ xm . This is likely a
side effect of being unable to access or being unable toidedire default media-types
given by the Web server.

The HTTP status returned by attempting to access the vad@avgled URIs is
given in Table 7.6. In particular, the most revealing statis that the majority of
the Semantic Web sampled by the crawled URIs is served us&g08 convention,
not the hash convention. In fact, a total of 51,762 (73%) afimed URIs use the
303 convention, while only 1,662 (2%) of the crawled URIs tisehash convention.
Of these URIs returning the hash convention, manual ingpeshowed many to be
FOAF files. This shows the vast majority of the second-gdimeré&semantic Web is
following the 303 convention and so obeying the W3C and the guide to publishing
Linked Data (Bizer et al., 2007). Thus, Berners-Lee’s vig®to some extent coming
true: The second generation of the Semantic Web is takinguodf is at least implicitly
endorsing Berners-Lee’s direct reference position. Metdtatistic as regards usage of
the 303 convention is misleading in the broad sense, as most of tHes &R from a
single source, DBpedia, as shown later in Table 7.7.

The majority of URIs, 51,873 (74%), served a Web represemtaia 303 redirec-
tion, and so returned th&)0 status code when the Web representation was accessed
after the redirection200 status codes witho®03 redirection still form a substantial
fraction of Semantic Web URIs. There are several reasortbifgrall hash convention
URIs would by default still technically commit a redirectlie served by a00 status
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51,873| 73.97%| 303
6,061 | 8.65% | 200
4,517 | 6.44% | 404
4,257 | 6.07% | 500
3,147 | 4.49% | 300
246 0.35% | 406
20 0.03% | 403
0.00% | 302
3 0.00% | 502

Table 7.6: Top 10 HTTP status codes for crawled URIs

code. However, this is only a minority (27%) of those URIsureing a200 status
code. The rest are likely caused by people serving RDF thatoddnave the access
to the Web server configuration needed to serve RDF usingOheedirection, while
many others may have started serving RDF before the TAGidecigas made or are
not aware of the TAG decision. For example, some earlier RD&bled repositories
like W3C WordNet did redirection bg00 redirection. A small percentage may be
ordinary web-pages, perhaps containing some meta-dataabted by GRDDL, that
just happened to be indexed by the Semantic Web search €@yinaolly, 2007). Fur-
thermore, of these crawled URIs, 9,156 (13%) URIs had no Wpbesentation that
was accessible via HTTP, shown by the use &faor a5xx-level status code.

The top 10 hosts of Semantic Web data in the crawled URIs aendiy Table
7.7. DBpedia, the export of Wikipedia to RDF, dominates #wmutts with 83% of all
URIs coming from either Wikipedia or DBpedia (Auer et al.0Z). The W3C itself is
the third largest exporter of RDF with a share of 5%. Upone&lasspection, most of
the URIs crawled from the W3C derive from the W3C-hosted eixpbthe linguistic
database Wordnet. The domain of the Frei Universitat Béudis a significant 2% of all
RDF data, which is due primarily to its Flickr photo exportR®F. An RDF-version
of Cyc and the biomedical data hosting site Bio2RDF also kosdll but significant
amounts of Semantic Web data (Lenat, 1990; Belleau et d&8)20r'he Russian-blog
hosting site.i vei nt er net . r u carries on the tradition of FOAF exporting of Livejour-
nal. Truesense is another export of WordNet to RDF, althowailas frequently used
as W3C Wordnet. Towards the end of the distribution thereaRDF version of Uni-



7.3. Empirical Analysis of the Semantic Web 157

veristat Trier’'s widely used DBLP academic citation daisd andnt owor | d. org, a
RDF-enabled wiki for the Semantic Web research communitik®l et al., 2006).

entity URIs
concept URIs 1
Total Semantic Web URIs| |

Number of URIs
crawled

|

10 5 L L L L R | " L L . L L
10 10 10 10
URI frequency-ordered domain names

Figure 7.4: The rank-ordered distribution of the domain names hosting Semantic Web data

from the crawled URIs ordered by number of URIs hosted.

The average number of URIs hosted by any domain name was (§48816,060),
with the average number of entity URIs hosted by any domaingo&,236 (S.D.
15,458) and the average number of concept URIs hosted byangid being 1,0327
URIs (S.D. 6,650). The very high standard deviations arallysa sign of power-law
distribution, as shown in Figure 7.4. Attempting to fit a powaav distribution, thex
of the rank-ordered domain list frequency distribution 831 with long tail behavior
starting around 175 and a Kolmogorov-Smirrianstatistic of .1414 9 < .1), indicat-
ing insignificant fit for the power-law distribution. In otheords, while a few sources
like DBpedia dominate the crawled URIs, with a rapidly dasiag number of smaller
sites such as Cyc and the W3C, the long-tail of individual &)Rbsting their FOAF
files on their personal websites are still rather insignificammpared to the ‘top’ major
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54,698| 78.00%| dbpedia.org
3,584 | 5.11% | wikipedia.org
3,448 | 4.92% | w3.org

1,704 | 2.43% | fuberlin.de

811 1.16% | cyc.com

701 1.00% | bio2rdf.org
599 0.85% | liveinternet.ru
417 0.59% | truesense.net
322 0.46% | dblp.unitrier.de|
314 0.47% | ontoworld.org

Table 7.7: Top 10 domain names for URIs for crawled URIs

sites hosting Semantic Web data. This is likely becauseitiieeld Data is being artifi-
cially generated in large ‘chunks’ by projects like W3C Woetland DBpedia, and so
do not organically form the power-law distribution chagatdtic of naturally-evolving
complex systems.

There is some interesting variation in domain names betwaerying for entities
and concepts. While DBpedia dominates both entities andeqirJRIs, both Word-
Net and Cyc show themselves to be useful for retrieving mttion about concepts.
This is not surprising, as one of the primary claims of prigeike Cyc and WordNet
are to encode abstract ‘common-sense’ knowledge and l&xiowledge respectively,
and this would naturally fall more under the domain of alzdtcancepts than physical
entities.

The top ten domains of crawled URIs for entity queries aremgivm Table 7.8 and
are noticeably different from the top crawled URIs for captagueries, which are given
in Table 7.9. This data-set is even more overwhelmingly aateid by DBpedia, and
to a lesser extent, ordinary Wikipedia URIs that were cravdee to their interlinking
with DBpedia. Furthermore, the rest of the domain distidouis more or less the
same, although towards the end there is another DBLP bilalplgc database and
openl i nksw. com the site of a commercial Semantic Web and database comphaay.
semi-automatically constructed TAP database of nametiemntihe oldest large-scale
RDF source of data, also appears towards the end (Guha 20638).

More noticeable by its absence than presence is the absEiderdNet and Cyc
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18,831| 74.14%| dbpedia.org
3,031 | 11.93%| w3.org

709 2.79% | cyc.com

555 2.19% | bio2rdf.org
243 0.96% | fuberlin.de
169 0.67% | ontoworld.org
222 0.87% | wikipedia.org
132 0.52% | liveinternet.ru
103 0.41% | semanticweb.org

Table 7.8: Top crawled concept URIs

in the list of top sources for entity URIs. Previously in wak lexical resources like
WordNet and even machine-readable dictionaries like th@@xEnglish Dictionary,
there has been much focus on the level of terms in the langargi®n the level of
nouns for abstract concepts, and related adjectives, varasadverbs. Many fre-
guently used words, especially those that are of intereitdse searching the Web,
may not be found so easily among terms in lexical resourkesMordNet, since these
centrally-curated dictionaries do not include many poppkople and places in cur-
rent events and fashion, such as particular musicians #ptie the passing fancy
of the moment or particular hotels in popular tourist desions. Yet collectively-
edited databases like Wikipedia do contain such triviabimfation on current events
and fashion, and it is precisely this information that cosggomuch of the information
need of Web searches and likely even larger discourse etitselVVeb.

7.3.2 Triple-based Statistics

In this section, we move our analysis down from the level ofi$J the level of the
triples accessible from the URIs. Since a number of crawl&isUvere inaccessi-
ble (returning some HTTP error code when accessed), thigeelthe total number
of accessible crawled URI® 60,972, a reduction of (13%) from the crawled URIs.
The accessible crawled URIs contained 24,074 accessdMean concept URIs (95%
of all crawled concept URIs) and 36,898 accessible crammeityeUJRIs (82% of all
crawled entity URIs). Thus, the accessible crawled URIsnta@ied a bias towards
entity URIs (61% of all accessible crawled URIs) compareddiacept URIs (39% of
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35,867| 80.19%| dbpedia.org
3,362 | 7.52% | wikipedia.org
1,461 | 3.26% | fuberlin.de

467 1.04% | www.liveinternet.ru
417 0.93 % | www.w3.0rg

261 0.58 % | dblp.unitrier.de
171 0.38% | openlinksw.com
145 0.32% | ontoworld.org

139 0.31% | dblp.I3s.de

127 0.28% | tap.stanford.edu

Table 7.9: Top crawled entity URIs

all accessible crawled URIs). Each of the crawled accessiBlIs was accessed, and
this resulted in a total of 59,228 Web representations witly 48 URIs not allowing
access to a Semantic Web document. These non-Semantic \&emelots were usu-
ally ordinary web-pages from which RDF triples could be agted via GRDDL or
RDFa (Connolly, 2007; Adida et al., 2008). These crawled &g Web Documents
we will call thecrawled Semantic Web documentmnd the total sum of triples in these
documents are called tloeawled triples

There were a total of 411,574 RDF triples in the crawled é&splwith 242,829
(59%)) triples for concepts and 168,745 (41%) triples fortgiRIs. Concepts seem
to require more triples to describe than entities. Theresveetotal of 814,222 URIs
in the triples. The internal structure of these triples iswfprising interest. Of these
triples, there were a total of 1,051 blank nodes, a measBpo.@ball triples in the
corpus, of which 772 (73%) were subjects and only 279 (27%pvire the object
position. This means that the use of blank nodes, whose pealig@as syntactic place-
holders in URIs for objects like lists and in representimgry arguments in RDF, is
almost non-existent in our sample. Of the non-blank nogéetsi the composition was
split between URI nodes (66%) and a surprisingly large miyof RDF literals nodes
(34%). These literals contain some form of information ther ‘unstructured’ natural
language or some form of structured information in a forraabluage, such as integer
values.

Of the literals, a total of 403,119 were RDF string literaliile only 2% were of
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403,119| 97.95%| RDF plain literal

3,103 | 0.75% | http://lwww.w3.0rg/2001/XMLSchema#integer
2,789 | 0.68% | http://www.w3.0rg/2001/XMLSchema##string
1,185 | 0.29% | http://www.w3.0rg/2001/XMLSchema#double
522 0.13% | http://lwww.w3.0rg/2001/XMLSchema#date
248 0.06% | http://lwww.w3.0rg/2001/XMLSchema#float
136 0.03% | http://lwww.w3.0rg/2001/XMLSchema#gYear

65 0.02% | http://lwww.w3.0rg/2001/XMLSchema#gYearMonth
59 0.01% | http://dbpedia.org/units/Rank

46 0.01% | http://dbpedia.org/units/Dollar

14 0.00% | http://www.w3.0rg/2001/XMLSchema#int

9 0.00% | http://dbpedia.org/units/Percent

Table 7.10: Common data types in crawled triples

some other data type, with the top 10 frequent data-typengivTable 7.10. The most
frequent data-types are from XML Schema (Biron and Malhd@@®4), while others
are customized for DBpedia. It appears that the vast mgjofiRDF in the Semantic
Web of interest to average users are simple URI-based gripith rich information
in natural language. This also goes against the intuitioBeshers-Lee that the vast
majority of Semantic Web data that is of interest to ordinasgrs would be the highly
structured data of exported databases (1998c) and agaekigicist programme for
complex ontologies that enable rich inference. Insteadgtwhof interest on the Se-
mantic Web is stored mainly in natural language, with RDFiaglanly a minimal
structure to essentially fragments of natural languageiléNhcould be argued that
this particular finding is merely an artifact of DBpedia,hiosild be acknowledged that
DBpediais most of Linked Data, at least in our query-based sample. Weatrstudy-
ing the Semantic Web as some of its designers wbkicto have it, but as iactually
exists, and part of its existence is that DBpedia forms a loggral cluster that for
ordinary users is the most interesting and useful part okédnData. However, it is
very possible that this is also an artifact of the indexing=&L. CON-S, which also
concentrates on DBpedia.

One interesting question is the predominance of the vakimas of Semantic Web
knowledge representation terms on the Semantic Web, simeevbuld show what
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kinds of inference could actually be deployed on the Serodneb. First, of the total
1,093,212 URIs in triples harvested from the crawled adbkes§IRIs, only 243,776
(22%) were from one of the primary W3C Semantic Web knowledgeesentation
languages, either RDF, RDF(S), or OWL. Of these, the RDF aleay itself was
the most popular, with 109,300 URIs (45%), followed fairlpsely by the RDF(S)
vocabulary with 100,340 URIs (41%), and OWL being dwarfedRF and RDF(S)
with only 34,136 URIs (14%). This does not mean that OWL isl@vant to the other
corpus, as ontologies constructed with OWL could be deplagenodel the concepts
and entities employed in ‘instance’ data. Yet while OWL hasrban academic success
story, as regards practical deployment, RDF terms and REdSed inference seems
to be the foundation of the Semantic Web in practice.

What precise URI-based terms are used in these knowledgeserygation lan-
guages? The top constructs in either RDF, RDF(S), or OWLawlad triples are given
in Table 7.11. To summarize, RDF(S) class and sub-classmagagis very popular,
with this construction consisting of nearly half (48%) ofttkviedge representation use
of the Semantic Web. The second most popular use of knowleggesentation (22%)
is for natural language annotation, describing a particB&mantic Web resource us-
ing natural language and connecting this natural languageribtion to the URI via
the use of df s: comment orrdfs: | abel . There are surprisingly few (4%) actual on-
tologies in the crawled Semantic Web resources. Furtherpmon-traditional features
of RDF(S), such as the use odif s: property, frequently occur. Even reification of
RDF triples, officially discouraged by the Semantic Web camity, accounts for only
95 triples, and there is also fairly heavy use of discourdje# constructs to represent
different kinds of lists, such agif : Al t (349 occurrences) andif : Bag (344 occur-
rences). Lastly, while many Semantic Web researchersnaligihoped that the use
of inverse functional properties would allow the merger efrtantic Web data, there
were zero explicitly declared usagesoof : i nver seFuncti onal Property. Overall,
the usage of OWL, RDF(S), and RDF terms in the corpus alsovi@lito some degree
a power-law like distribution, where equal to 1.5, with long tail behaviour starting
around 90, although the Kolmogorov-Smirrosstatistic of .1911f < .1) reveals this
to be insignificant. This is because while a few terms vagilpithate, the vast majority
of other terms araot used at all This has repercussions for both Semantic Web imple-
menters and vocabulary specification within the W3C, sirfméausly some level of
concentration of effort upon the most frequently-deploigrdths would be reasonable.

One of the most popular OWL constructs is indeed the contsial®w : sameAs
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term, which is used to declare some sort of global equivaldreween two URIs.
While a tiny portion (.47%) of overall Semantic Web languggyen usage, itis far from
insignificant, with 1,157 occurrences. The usewf: sameAs in the wild is rather dif-
ferent from the role it plays in popular debate than one wsujgbose. Logicians hold
thatow : saneAs is only for what is properly considered individuals in deston
logic, so that classes and properties should use the mdreted and semantically
correctow : equi val ent Cl ass andow : equi val ent Property. Yet this best prac-
tice in logic hasn't reached the Linked Data communitypwais: equi val ent C ass
has only 2 occurrences and there are norawbf equi val ent Property. Instead, the
Linked Data movement usesl : saneAs to simply “state that another data source also
provides information about a specific non-information tese,” so leadingw : saneAs
to tend to mean ‘more-or-less the same thing as’ (Bizer €2@07). This practice leads
to the fear that the use of\l : saneAs would propagate too far, such that many URIs
for perhaps differing referents would be declared ideh{i@asberg, 2006).

Both critiques ofowl : saneAs appear to be wrong. Given the amount of Semantic
Web URIs returned by the queries, while there is considerabe ofow : saneAs,
it appears that the manual discovery and publication ofederential URIs using
ow : saneAs falls far behind the actual growth of the Semantic Web. Onddceven
say thatow : sameAs is not being used enough. The real problem is not that distinc
things are being given the same URI, but theerse namely that it appears endemic
that the same thing has multiple URIs. Berners-Lee’s hyggithappears to be wrong:
A single thing is likely to be identified by more than a singl®IUbn the Semantic
Web.

The top 10 Semantic Web vocabularies used in the crawldégrimcluding those
terms outside of the W3C-approved Semantic Web knowledqgesentation languages,
are shown in Table 7.12. The results should not be surprigingarticular the vast
dominance of DBpedia. Perhaps surprising is the high frequef Cyc terms, as
well as terms from SKOS, the Simple Knowledge Organizatigst&n of the W3C,
whose primary source of deployment is the W3C'’s export of dMa&t to RDF (Miles
and Bechhofer, 2008). FOAF is also significant, althoughrneatrly as dominant as
was found earlier by Ding and Finin (2006). Also popular isG@ (Yet Another
Global Ontology), a merger of WordNet and Wikipedia catgdoerarchies employed
by DBpedia (Suchanek et al., 2007).

There are significant differences in the vocabulary levélvben entities and con-
cepts. DBpedia URIs occur more often in entity triples thancept triples: 267,323
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73,451| 30.31%| rdfs:Class

47,044 19.30%| rdfs:comment
44,113 18.10%| rdfs:subClassOf
8,630 | 3.54% | owl:Ontology
7,256 | 2.97% | rdfs:label

6,618 | 2.14% | rdf:Subject

5,107 | 2.09% | owl:ObjectProperty
3,642 | 1.49% | rdfs:subPropertyOf
1,157 | 0.47% | owl:sameAs

535 0.29% | rdfs:range

Table 7.11: RDF and OWL constructs in crawled triples

URIs for entities compared to 66,325 URIs for concepts. &lage also far more FOAF
URIs in entity triples, ranging from 2,531 FOAF triples agpoped to 732 for concept
triples. In contrast, there are 1,105 WordNet URIs in coht@ples compared to 731
URIs in entity triples. In general, it seems that the patfermvocabularies found in
URIs holds for vocabularies on the triple-level, and thatagpts have a slightly more
diverse range of sources than entities.

What URIs are the most popular in the triples themselves? ratyais of the top
ten most frequent URIs ianyposition in Semantic Web triples is given in Table 7.13,
and the results are of interest. The first triple is the ubayusr df : t ype term that sep-
arates predicates, subjects, and objects. Further tfigesCyc, RDF(S), and OWL
are also very popular. Yet one very popular URI resource tigadly just a Seman-
tic Web version of a Wikipedia redirectiodbpedi a: r edi r ect . Since most of these
URIs are obviously being hosted B93 redirection, this shows that one crucial error
in exporting a database into RDF is the lack of URI re-usageabse these types of
large-scale exports simply mint new URIs for everythinghe tlatabase. For exam-
ple, it would be far better to have a single URI for these Weki@a redirections with a
single303 redirection rather than numerous redirections done usspgaialized DB-
pedia vocabulary term inside a Semantic Web document. Maqisingly, bizarre
hubs of entities emerge, mainly large lists of entities witmmon names indexed by
Wikipedia, such as a list of Harvard graduates and peoplehakie Dallas, Texas as a
hometown. The emergence of these URIs as highly frequenipopalarity list is the
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366,849| 33.55%| DBpedia URIs
109,300| 9.99% | RDF URIs
100,340| 9.17% | RDF(S) URIs
94,520 | 8.65% | Cyc URIs
34,136 | 3.12% | OWL URIs
6,563 | 0.60% | SKOS URIs
4,728 | 0.43% | dblp.I13s.de
3,263 | 0.29% | FOAF URIS
2,170 | 0.20% | YAGO URIs
1,836 | 0.16% | WordNet URI

Table 7.12: Top vocabulary URIs in crawled triples

Semantic Web equivalent, albeit non-malicious, of a linkfan hypertext search en-
gines. Since many people with common names are in these dntsnthey are heav-
ily linked to, so the employment of algorithms like PageRanmkr the Semantic Web
cannot discriminate these lists of links from the more infation-rich Semantic Web
documents (Brin and Page, 1998). While the top of the digtiob of URIs in triples
is a strange mixture of the reassuring and odd, the distoibatf URIs in Linked Data
follows a power-law distribution, as observed visually bie@et al. (2008) and shown
again in Figure 7.5. Using the maximum likelihood methodauhted by Clauset et
al., for the first time the actual parameters of this powerdan be given: the of the
power law is 2.00, with long-tail behavior commencing ardanfrequency of 32, and
a Kolomogorov-SmirnoD-statistic of .0157 9 > .1), demonstrating an exceptionally
good fit (Clauset et al., 2007).

7.4 Conclusion

The empirical analysis of the Semantic Web presented instiigy is by no means
complete, for it is only a moderately small sample, although an important one
as this sample is driven by Web search queries by actual.u3érs results of this
empirical analysis show a transformation from the firstegation logicist Semantic
Web to the second-generation Web of Linked Data. The Sem@f@b as it existed in
the first-generation was a motley collection of RDF triplesavily dominated by a few
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Figure 7.5: The rank-ordered frequency distribution of all distinct URIs in crawled Semantic

Web triples.

exports of social networking data into FOAF and a long-thdamplex academically-
produced ontologies. Linked Data - at least the sectiontbfit is of interest to users
guerying the Web for information - is dominated heavily by @#8lia and consists
primarily of collections of triples that provide a minimdtwscture to natural language
(Ding and Finin, 2006). While the logicist Semantic Web candeknowledged as a
failure as regards practical deployment, the second-génarWeb of Linked Data,
heavily inspired by the Principles of Web architecture, ta&en off. We have shown
that for a wide-range of queries by ordinary users, relewdatmation may very well
be on the Semantic Web. Furthermore, the success of thed.iDl&a Web points to
what appears to be a practical victory for Berners-Lee'sdlireference position, as
almost all of the Linked Data Web consists of exports of dasals and almost all of it
employs the803 redirection convention.

One could argue that these results are more characteristEL@CON-S and DB-
pedia than the second-generation ‘Linked Data’ Semantic &gea whole. However,
we would respond that it is natural in decentralized infarorasystems for power law
distributions, where one source of data massively outvgsaghers in weight to evolve,
and the ‘giant component’ of Linked Data is DBpedia (Barakasl., 2000). In fact,
if such a ‘giant component’ and long tail were not observedpuld be cause for sus-
picion. Furthermore, the resulibouldbe checked against other Semantic Web search
engines besides FALCON-S, and future work with differenh@stic Web search en-
gines will be done for future work.
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108,909| 13.37%| http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
62,469 | 7.67% | http://www.cyc.com/2004/06/04/cyc#guid

47,021 | 5.77% | http://www.w3.0rg/2000/01/rdf-schema#comment

44,113 | 5.42% | http://www.w3.0rg/2000/01/rdf-schema#subClassOf
26,789 | 3.29% | http://lwww.w3.0rg/2002/07/owl#Class

14,615 | 1.79% | http://dbpedia.org/property/wikiPageUsesTemplate
11,402 | 1.40% | http://www.cyc.com/2004/06/04/cyc#EnglishWord

9,492 | 1.17% | http://dbpedia.org/resource/List_Harvard University_people
8,149 | 1.17% | http://dbpedia.org/property/redirect

7,918 | 1.00% | http://dbpedia.org/resource/Dallas%2€xas

Table 7.13: Top 10 URIs in crawled triples

On the level of triples, there are some surprising conchssiorl' he triples on the
Semantic Web contain a vast range of data, and the exact &ndRIs used in the
triples are somewhat unpredictable. However, the kindsoochbularies actually de-
ployed are almost entirely from a few large vocabulariegshsas DBpedia, DBLP,
WordNet, YAGO, and FOAF. This again points to a victory of Bers-Lee’s idea that
a few large vocabularies with well-defined terms could daterthe Semantic Web
(Berners-Lee and Kagal, 2004). In a further defeat for tlggcist position, the kinds
of triples that structured this data do not contain many O®fins optimized for infer-
ence, but consist almost entirely of relatively straightfard RDF(S) expressions for
sub-class relationships and for annotations in naturgudage. Overall, the Seman-
tic Web is primarily being used to provide structured relaships between fragments
of natural language, andot for inference. Given the lack of use of inference and
the widespread use of ti83 conventi on, the vision of Berners-Lee and the di-
rect reference position is the victor in practice over th@iealogicist Semantic Web
championed by Hayes.

All is possibly not well with Berners-Lee’s vision of a SentianiVeb where ref-
erence is established by fiat. The entire purpose of the SemamBb is supposedly
decentralized data integration via the re-use of publiotifiers. While the number of
RDF properties, or kinds of links, are dominated by a fewdargcabularies, as regards
re-using URIs to identify things in the world, Linked Dataymeot be faring well. The
most noticeable result of this keyword-driven analysish&f Eemantic Web is that a
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truly huge list of URIs have been returned for each keywortfirat glance, this has
far more in common with the hypertext Web than the Semantils,\&% normal hyper-
text search engines usually respond with a long list of URI®sponse to a hypertext
search. However, it should be remembered that there is #atudifference between
the work done in this chapter and hypertext Web search: teatere searching for
Semantic Web URIs for concepts and entities, not just relewab-pages. In the ideal
Semantic Search scenario, for every reasonable unamtsguary for an entity or
concept, the single ‘best’ URI for that entity or concept Vebbe returned. So does
this mean that necessarily there are many URIs for a sinfgeerg being returned?
Indeed, at this point, we cannot determine that too many U&ls single concept
or entity exist on the Semantic Web from the experiment tegyiven here without
further analysis. A number of alternative hypotheses assipte. As these URIs were
returned by common information retrieval techniques, viegy possible that every Se-
mantic Web document that mentioned the term is returnedtl@edvould naturally
overgenerate URIs, even if like a golden needle in a haystarkewheren the list
of returned URIs was the one and only one Semantic Web URhicbncept or en-
tity. Second, it could very well be that query itself is amlmgs, and thus naturally
there would be more than one URI for an entity or concept nettiras the query term
would retrieve at least one URI for every sense. It could dvenhat each URI de-
notes a slightly different sense of the term of query termthsd none of these URIs
can be thought of as the ‘best’ Semantic Web URI for that cphoeentity. With so
many possible hypotheses, at this moment we cannot judgtheher not Berners-
Lee’s direct reference position to use only one URI for a ephor entity is being
followed. What is needed is for humans to inspect at leasbaetiof these queries to
see if any of the returned URIs genuinely do refer to the samtigyeor concept, as is
done in Chapter 9. Yet, first we need to determine how to retheeambiguity of the
gueries themselves, so we can be sure that the returned tRisruinely about what
referents the agent was trying to express with the keywolrder to capture the
phenomenon of reference in relationship to natural languag more sophisticated
manner than done in Chapter 6, we outline both a new positi@ease and reference,
and a practical system for capturing the sense of keywontises in Chapter 8.



Chapter 8

A Solution to the Identity Crisis: From

Wittgenstein to Search Engines

The solution to any problem in Al may be found in the writinfg/dtgenstein, though
the details of implementations are rather sketéhil. Duck-Lewis (Hirst, 2000), as
guoted in Wilks (2008a).

It appears we are at an impasse at the Identity Crisis. Biogh, the positions champi-
oned by Berners-Lee and Hayes seem to ground out in someytiveere meaning is
determined by reference. While the failure of the first-gatien Semantic Web shows
that reference via logical descriptions is not enough, tlesvth of the Linked Data
project shows that the application of the principles of Wedh#ecture to knowledge
representation works. This in turn seems to have implicidlijdated Berners-Lee’s
direct reference position. Yet that is far from true; whaapgparent from our analysis
of Linked Data in Chapter 7 is primarily that the Identity §isi persists in a new form
on the Linked Data Web; there appear totbe manyURIs for some things, while
no URIs for other things. Having someone declare a URI to redenehow directly
to some referent byiat does not work in a decentralized system like the Web. As
differing users export differing representations to theb\Wea decentralized manner,
new URIs are always minted, leading each Linked Data soorbe fairly closed, and
so running the risk of fracturing the Semantic Web into ismddsemantic’ islands in-
stead of becoming a unified ‘semantic continent.” The @itioissing element of the
Semantic Web is some mechanism that allows users to comegeragnt on URIs and
then share and re-use them, a problem ignored both by thadbgnd direct reference
positions. In this chapter, we outline a third position, plublic language position

169
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Rather surprisingly, the way forward is to be found in a faténof Kripke’s in
Naming and Necessityvhere Kripke says that “a name refers to an object if there
exists a chain of communication, stretching back to baptesneach stage of which
there was a successful intention to preserve referenc&2(19vet Kripke stipulates
an unreasonable condition. It is almost impossible to dater with certainty if ref-
erence has been preserved in of and itself due to the inmebigaity in natural lan-
guage. More importantly, Kripke admits even tteusaltheory of reference is not a
purelycausal story, at least in the way the term ‘causal’ has begmedkin Chapter 3,
where causal is exemplified as a purely physical story degrgrah local connections,
such as when a ball on a billiard table hits another ball eaugseshe latter ball to
move. Kripke admits there must be a chaincommunicationand this communica-
tion must exist in the form of information encoded itaaguage which for distal and
SO representational content, this language must be phiateuns of descriptions and
depictions. The language responsible for naming convestibat Kripke hints at is
not a private language, or a logical language, bsb@allanguage capable of having
causal effects upon the world and its users, and so being¢tbg” as was required
of the concept of sense by Frege (1892). So, in our pursuitledery of reference and
meaning for the Semantic Web, we are drawn into the waitingsasf Wittgenstein.

8.1 Wittgenstein and the Public Language Position

It is precisely thesocial notion of language that has been strangely missing from the
debates on reference and meaning on the Semantic Web so ffi@r.ofQhe hidden
presumptions of the logicist position, as promoted fromn@arto Hayes, is the tra-
dition that language can bepivate phenomenon, that it can be possessed and used
by asingleidealized agent to accurately describe and refer to thedwivittgenstein,
whoseTractatuswas the original inspiration for this position, returnedrédute this
point in hisPhilosophical Investigation€l953). In this later work, Wittgenstein gives

a forceful argument against private language and logicishgse defenders he be-
lieved had misinterpreted his outlook in tlieactatus This ‘late’ Wittgenstein opens

up the way for a new conception of language based optibdic use of languagé.To
briefly outline Wittgenstein’s argumentsithilosophical Investigationis an impossi-

ble task, due to both the density of his thought, his briefoastic style, and the vast

1This adjective ‘late’ is used to distinguish his philosoghym his earlier work on th@ractatus
although the rupture between these two periods may be esa@tgdey his interpreters.
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range of topics he covers. To complicate matters, the ‘lAliggenstein has produced
a massive secondary literature, which due to space comstiae will ignore, focusing
only via direct quotation from Wittgenstein himself on a fagpects of his work with
consequences for computational implementations on theaSgmNeb.

The purpose of this section is to clarify a few key concept\ittgenstein, in
particular, his analysis of ‘the form of life’ and ‘languagames,’ the dictum ‘meaning-
is-use’ and the status of reference in a Wittgensteiniaorthef language. From this
exposition we will attempt to determine what a Wittgenssainmesponse to the Identity
Crisis would be, a position we call thmublic language positionFrom this position
we will determine the design requirements for a practicgdlementation for helping
to solve the Identity Crisis.

8.1.1 Language Games and Data Integration

When Wittgenstein was arguing with Piero Sraffa that eveng in the world must be
expressible by the grammar of logic, Sraffa made a flickingisffingers underneath
his chin, asking Wittgenstein, “what was the grammar of2hd@Monk, 1991). Real-
izing that no logical grammar did justice to Sraffa’s acttigenstein abandoned his
view of language as logic and rephrased it in terms of a “lagggame” (1953). The
term ‘language-game’ is “meant to bring into prominenceféoe that the speaking of
language is part of an activity, or of a form of life” (Wittgetein, 1953). So, languages
are composed aictions in the worldEarlier in Chapter 3 we defined the ‘meaning’ of
a term to be the concrete activity of the agent that encosiatenses the term, and so
encompasses communicative actions like Sraffa’s flickinthe fingers as meaning-
ful. Wittgenstein also points out that all the terms in a laage derive their meaning
from this interwoven web of action and words, so that the wa@impose a language
in virtue of their relationships to other words and actidos,‘these phenomena have
no one thing in common which makes us use the same word forit that they are
related to one another in many different ways. And it is beeaaf this relationship,
or these relationships, that we call them all ‘languag€’1953). However, there is no
onemonolithic language, but a variety of different languagengs that represent the
multiplicity of uses in which language can be applied; “tbhadtions of words” are as
diverse as the purposes of “tools in a tool-box” as “therecatmtless different kinds
of use of what we call ‘'symbols’, ‘words’, ‘sentences” (Mgenstein, 1953). The
purpose of a particular language-game is not the transonisgisubjective and inner
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intentions from one agent to another in some sort Griceamerabut the creation of
co-ordinated action driven by a purpose (Grice, 1957).

Wittgenstein says “to invent a language could mean to inganhstrument for a
particular purpose” (Wittgenstein, 1953). The purposeswvalved natural languages
are incredibly varied, but new formal languages are inwe&fdea purpose, at least as
we defined the term in Chapter 3. What is the purpose of the S@n&eb? Why
would anyone participate in this particular language gaatker than the language
game of the hypertext Web, or some other language game #ig§eOn this point,
the Semantic Web is positively schizophrenic, vacillatietyeen dirst-generatiorvi-
sion of classical artificial intelligence replete with irdace-driven agents, asdcond-
generatiorvision of opening databases according to the Principleseadf ®Wchitecture
for applications that cannot yet be imagined. Obviouskstpurposes have only been
successful at attracting artificial intelligence researstand true believers in Berners-
Lee to the fold of the Semantic Web.

What the Semantic Web needs is a convincing purpose thaattrdict large num-
bers of users: “the Semantic Web is a solution in need of al@nob(Halpin and
Thompson, 2006). The best way to understand the purposeaofjadge, including a
formal language, is not to inspect what the language spatditsaysit does, but to
observe what iaictuallydoes in operation. In this, the only benefit of RDF over tradi-
tional semantic networks is the use of URIs, which allowediihg graphs that share
the same RDF to automatically merge. So regardless of whatdaponents say, the
purpose of the Semantic Webdata integration However, as there is almost no re-use
of URIs on the Semantic Web, as a language-game for datgraitien the Semantic
Web also seems to be a failure. The first-generation of theaSeor\Web ignored the
re-usage of URIs due to its logicist position that held URIs¢ merely an odd sort of
symbol, no better or worse than any other. The second-gioed the Semantic Web
tends to mint new URIs for everything in order to preserveuhigue and particular
meaningful use of a term in each database. What is lackimg the Semantic Web is
obvious:agents should be able to easily discover and re-use URIfogs outside
the Web like concepts and entities

8.1.2 Against Private Language

Wittgenstein attacks the very idea opavate language, a language that is somehow
only understood by a single person and hence untransldtabteer languages, where
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“the individual words of this language are to refer to what ocaly be known to the
person speaking; to his immediate private sensations. &emnperson cannot under-
stand the language” (1953). His primary example is the uselahguage to describe
sensations of pain. Wittgenstein argues that such a laegsapsurd, as there would
be no “right” way to use the private word for the sensatiom, feghatever is going to
seem right to me is right” (Wittgenstein, 1953). In his sestéamous attack on private
language, Wittgenstein phrases an attack on private cddeshavior in the infamous
example of rule-following in a game like chess, stating tHHtis not possible that
there should have been only one occasion on which only orsopabeyed a rule”
(Wittgenstein, 1953). There can be no norms for behaviat,thaerefore no meaning,
in a private language game. This follows from the insight th@ms ultimately in-
volve others where the norm is repeated in different circumstances agdiates the
collective behavior of multiple agents.

On the Semantic Web, the logicist and direct reference ipasiboth conceive
language as a private language. The causal theory of refedrKripke, Puthnam,and
Berners-Lee believes that a name is established by fiat bgdividual or some ap-
proved authority, such as science or the domain name nggasitl so is dependent on
some notion of what the individual or science wants a namesaly’ mean. In con-
trast, the descriptivist theory of reference of Hayes, RBllisand Tarski holds that the
referent is established by the use of logical descriptiegamless of what any indi-
vidual ‘means’ by the term. However, the descriptivist tlyeaf referencealsoignores
any public or social aspect of the descriptions: the desorip can be created by an
individual without regard to any social convention and tagsfaction of the descrip-
tive terms is given by either objective features of the worldatisfaction of the model.
Furthermore, both the causal and descriptivist theoryfefeace crucially depend on
some notion of ‘sense-data’ that can be assigned a namer éyha description or
direct acquaintance.

Strangely enough, there is a deep affinity between both therigéivist and causal
theories of reference, for a Kripkean baptism is just sonrmecfacausalrelationship
between sense data and a name, exemplified by the act of stagmgme of that is the
Eiffel Tower.” This account of baptism f@ecisely the same &ussell’'s account of the
use of names via direct acquaintance with ‘sense-datahgavslightly more modern
update with Hayes'’s account of ostention for naming on the&dic Web (Hayes
and Halpin, 2008). Furthermore, there is in no differencestablishing a name via
baptism-acquaintance than there is establishing a nanfeehyse of descriptive terms.
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A Russellian descriptivist would simply have some ‘senatdthat they could label
with ‘thatis an iron tower’ and then generalize to other sétsense data’ to which one
can apply the terms ‘iron’ and ‘tower’ via more complex laglistatements involving
towers and their descriptions. Likewise, the idea of diestfuaintance with sense data
equally underpins both Putnam and Berners-Lee. Both ttiakreference should be
determined by some “guardians of meaning,” for instead sf jabeling a patch of
sense-data with the term ‘iron tower, the scientists wdalsk| the sense-data with the
use of a name like ‘iron tower’ only after it successfully ped some authoritative test,
such as a test for the chemical composition of iron (Wilkg,3)9

Using the famous example of the ‘duck-rabbit’, Wittgenstendermines the very
idea of establishing a referent via direct acquaintancebapdism (1953). After all,
if one can not determine that a simple sketch is of a ‘duck’ &ahbit, then how
cananyoneobjectively and without ambiguity attach a name to somedakhe in-
determinacy of the infamous ‘duck-rabbit’ shows that astea some cases there is
no determinate nature of our phenomenological ‘sense-ddéaing disposed of the
notion of ostention somehow providing direct access toeelasa, baptism of even
indeterminate sense-data — by either Kripkean baptism es&lian descriptions — is
attacked next. Wittgenstein holds that any act of baptismdapable of assigning a
name if the act is done by a private individual, “naming appea agueerconnection
of a world with an object — and you really get such a queer camme of a word when
a philosopher tries to bring out the relations between namietfaing by staring at an
object in front of him and repeating a name or even the woid ‘thnumerable times”
(Wittgenstein, 1953). Only in the very rarefied form of lifiedwn as academic philos-
ophy does this happen eventheory This is because “naming is so far not a move in
the language-game any more than putting a piece in its plagebmard is a move in
chess. We may sayiothinghas so far been done, when a thing has been named. It
has not evergot a name except in the language game. This is what Frege meant to
when he said that a word has meaning only as part of a sent@nigjenstein, 1953).
Indeed, naming as a purely private convention serves nooparplt is only as part
of a wider language-game that anything can have a name inrsh@ltice. Even what
appears to be the most private of sensory experiences islbtahmined and expressed
by a public language.
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8.1.3 The Public Language Position

In order to escape the philosophical quagmire of privatguage, Wittgenstein points
out, “Do not ask yourself ‘how does it work with me?’ — ask ‘Wi | know about
someone else?’ (1953). A languagepisblic and inexorablysocial involving more
than one agent. Aommunitycan be defined sparsely agyroup of agents that use
the same languagéNote that languages are not monoliths, as an agent may use ma
languages, and may only share certain intersections of sarwvarious languages with
other agents. As a public language-game is used by more thiagla agent involved,

it is proper to say that aommunity uses a languagather than an individual agent.
So a third position, in contrast to both the logicist and direference positions, can
now be staked. Thpublic language positiorstates that sinche Semantic Web is a
form of languagehen asa language exists as a mechanism for co-ordination among
multiple agents, then the meaning of a URI is the use of thelyRl community of
agents

To contrast this position with the direct reference positilhe meaning of a URI
is not determined by whatever referent is assigned to itdgwiner, unless the owner
and other agents actually can come to an agreement on itdmgedrhe public lan-
guage position does not give the owner of a URI any partiquiaiiege, except for the
obvious asymmetric technical privilege of having the &piio influence the use of the
URI through hosting an accessible Web representation eithg to another URI.

Unlike the causal theory of reference and the descriptihisbry of reference,
Wittgenstein does not equate the meaning of a sentence tnith’“ or the satisfac-
tion of a model as somethingutsidethe language-game. Wittgenstein retorts that
only “in our language” can “we apply the calculus of truth’98B). From Frege to
Tarski, the logicist camp’s reduction of meaning to trutmditions only makes sense
in terms oftheir particular language-game of logic, which while useful ie tealm
of mathematics, fails when the wider social aspects of nmgaodme into play. The
model(s) that satisfy the descriptions are only intergdtisofar as the inferences they
allow to play meaningful roles within a wider language-gartrethe case where the
inferences and the use of the URI are at odds, an agent ugngRhcan jusignore
the inferences in determining the meaning of the URI.

Ambiguity is built into a Wittgensteinian public languagesition, and the kind
of ambiguity that Wittgenstein is concerned with is not tbgitist kind of ambiguity
resulting from entailments failing to constrain interteins. Earlier in Section 6.2,
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Hayes defended the notion that names were fundamentalligaous. While this is
common-sense, he put forward the thesis that referencel cmilbe determined at
all by external factors, but is instead determined purelyth®y individual using the
name, who can assign to it any interpretation they wish. &his some extent sim-
ilar to Kripke and Berners-Lee’s assignment of a refereatbaptism as explored in
Section 6.3, and as such is also a private language argurentnlike their direct
reference position, Hayes holds that the reference givemimterpretation happens
to be incommunicable unambiguously via description, asrétwill always be some
slack, some possible doubt about what exactly is beingrezféo” (Hayes and Halpin,
2008). Again, the ambiguity in the logicist position is mweider than Wittgensteinian
ambiguity. For Wittgenstein, ambiguity is naturally caasted by the conventions of
the language game and the form of life, which are restriatetliin by the external
world. While the Wittgensteinian public language positiwsauld note that there is
always some ambiguity in language, worrying about this guby misses the point,
as the point of a language game is not to pin down names toergfeexactly, but
instead to share enough of a convention to accomplish sasketasolve some prob-
lem. Ambiguity is usually solved by the embodied or implic@ntext given in the
language-game — it is not without reason that Wittgenstemirts thePhilosophical
Investigationscontrasting the Augustinian approach of assigning thedbusl to ob-
jects with the language game of builders moving slabs or anckind. For the builders,
their task at hand determines their meaning of the word. Téarme ambiguity may
be necessary for successful communication. The role ofiggisnis and inference is
not in determining referents, but only when the various &gjgna language-game are
not clear about the role of a name in a language game, so thaXfaanation may
indeed rest on another one that has been given, but none dnofiemother — unless
werequire it to prevent a misunderstanding” (WittgensteB53). In this manner, in-
ference and entailments that restrict interpretationsiedsnded by Hayes, are only a
primitive logical analogue to the real-world context thathbconstrains ambiguity in a
language game while usually never dispelling it. While sanfierential mechanisms
can be useful when errors are made in a language game, inagj@rference can not
express the constraints and even the world given by the xtoaleuse of name in a
language game.

From the perspective of the public language position, wheevaURI comes into
play on the Semantic Web, the agents do not have to specifyetbeents of the URI
to use it meaningfully. This justifies the earlier obsematof Hayes that attempts to
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over-specify reference can in fact lead to disagreemenydsiand Halpin, 2008). If
the referent of a name has to be specified for the name to be itsedy has to be
specified to the minimal conditions necessary to co-ordiaations between agents.
Contra Berners-Lee’s direct reference position, only iryvare language games does
the referent of some representation have to be specified‘imambiguous’ manner.

How does the public language position actually play out @Sbmantic Web? To
apply Wittgenstein to the Semantic Web, the first obseraatidhen that the Semantic
Webis a newlanguage-game. There is no reason why language-games itigeli
steinian sense have to be restricted to natural languagedjitgenstein himself notes
that “new types of language, new language-games, as we nyag@ae into exis-
tence, and others become obsolete and get forgotten” (1998) struggle over the
Identity Crisis within the Semantic Web is precisely theigtgle over the conventions
of reference needed for a new language. Remember that wedeéned earlier in
Chapter 3 the term ‘language’ and ‘sense’ taneeitralbetween formal languages for
computers and natural languages. Formal languages arerisgakenly assumed to
be meaningless due to their not taking into account the et@eactivity that occurs as
a result of their use but instead to be pure “syntax churn{itgirnad, 1990). Given
that agents can be computers as much as humans, with theinaws for behavior
— such as protocols — there seems to be no reason why comput@smbinations
of computers and humans, cannot create and use new langaagss. After all, the
moving around of voltage-driven bits by a computer is justeas and meaningful as a
human moving their body around and uttering sounds. It istheg what is meaning-
ful for a computer may be meaningless to a human observdl! ith the Semantic
Web, we are hoping to create a language to mediate dataatitegbetween various
human-created sources of data, and so one criterion of thau8& Web is that it
shouldbothbe meaningful for computers and humans.

Are URIs somehow different from names in natural language@ answer to this
goes back to the notion of the Semantic Web being a game wissveames can be
created primarily fomachinegather than humans to use. While Wittgenstein him-
self does not give an adequate treatment of the creatiorvofarguage-games, other
philosophers like Searle have pursued this line of inqulvylike names in natural
language based on what Anscombe termed “brute facts,” ssictiems’, ‘forests’,
and ‘leaves, Searle points out that some names existdue to social conventions
(Anscombe, 1958; Searle, 1995). The existence of a namech\#garle classifies as
one kind of “institutional fact” — only exists in the contextsome social phenomenon,
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just as the name ‘money’ and its concrete referents onlyt exighe context of com-
mercial exchange (1995). Both the name and the actual us@wéyrare not based
on any regularities of the physical things, but instead ddpma a collective agreement
that bestows a certain function upon the use of the name aotiased activities of
the language-game. There is no reason certain sound-waess bits of paper are
associated with the linguistic term ‘money’. Also, namegatitutional facts can refer
to classes or kinds of things: There is nothing in tealizationof money, such as a
piece of thin paper, that would necessitate it being an@ppse-mechanism to indi-
cate value; it is precisely this fluidity of encodings thabais money to have manifold
realizations from encodings in stock-market databasesats of gold. This agreed
upon purpose of a new name and its referent in a languagetbeemme and referent
its status functior{Searle, 1995). In order to convey the status function,eferent of
the name can be given some additional physical mark(sgdaalitatus indicatothat
demarcates the special role the realization is playing imestanguage-game, such as
a seal and writing which were attached to money. Once somencmity has accepted
that particular status function, then the status functiopacts on the activity of that
community, but “the object is no different...that functisnmanifested only in actual
transactions; hence our interest is not in the object buhénpgrocesses and events
where the functions are manifested” (Searle, 1995). Theemgent on status functions
does not have to beonscious We simply use money to exchange commodities and
expect other agents to value the nature of our agreemengrantbt even overtly con-
scious of the agreement; the language-game is simply ateggiven However, a
nameonly has this status function because agents collectively digatéhe name does
at some point, and convey the usage of this name in a langyege-to others. If peo-
ple refused to believe that there was a class of instituti@acés called money, money
itself would return to being worthless paper overnight. @ature of language-games
is brought into the clear by institutional facts: most ihgional facts only exist due
to the existence of other institutional facts and assogiatgivities. For example, the
collective agreement that is money comes along with mangsdetd obligations, such
as the agreement that the money can be exchanged for goawgorton to its value,
and it also comes with a cluster of other names, such as ‘bamdk interest’ that it
cannot exist without. The same even goes for proper namésasube ‘Eiffel Tower,
which exists in a cluster with Paris, France and GustaveEiff

The parallel of URIs with names in natural language for tostonal facts should
be straightforward. The Semantic Web needs URIs to be aat@gtnames for things,
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in particular entities and concepts that cannot be reabsesbme encodings transfer-
able over the Web. In order for URIs to be used as names foe tkiesl of things,
URIs need at first to be explicitly and collectively agreedmifpy a community, and
then as more and more applications use these URIs, this os&ijels as names will
unconsciously actuallgecomenames for things. The status function of these URIs is
their use as identifiers for data merger in RDF triples, aedsttimewhat unsatisfactory
status indicator that separates URIs for things not on thie Wdéen other URIs is their
use of the303 or hash convention. The URI by itself is not special, for tongone
outside the language-game of the Semantic Web, the URI &Eitfiel Tower itself
would just access another web-page about the Eiffel Toweth& sheeassumption
of the use of URIs as some sort of universal naming convergidoomed to failure,
as there is no reason a URI, which is just a particular charatting in of and itself, is
a better name than any other string of characters, like &ig@ibject Identifiers (DOIS)
or just names in natural language (Kahn and Wilensky, 200B6¢. main reason URIs
work for names for certain types of information like hypeattereb-pages is that they
allow accesdo these web-pages. Of course, this advantage can be |bstaggrds to
using URIs as names for things like entities and concepthesprinciples of provid-
ing some accessible Web representation should be follodeyg.naming convention
cannot be taken for granted, but must be established bycgxmliimplicit agreement
in order to boot-strap its use in the wid.

8.1.4 The Representational Nexus

How can new language-games, like the Semantic Web'’s larggame of URIs, be
created? Searle and Wittgenstein offer us no answer. Whmsée purpose of the
Semantic Web, it is important that these URIs be used retiatln yet Wittgenstein

appears to completely dismiss notions of reference bynstdhat “the meaning of
a word is its use in the language” (Wittgenstein, 1953). Bywhng the problem

of reference out of the window, Wittgenstein is actually ood company, with Quine
having argued for the “inscrutability of reference” and @Gisky, who despite his heavy

2A parallel may be made to Kripke’s examples of the causalrthebreference; one reason that
Kripke's argument for unambiguous naming has been so ssittesas because Kripke employed
widely accepted famous names such as “Cicero” in his exangilece Kripke rightfully assumed most
of his readers were already in the naming-using communitiyaifparticular name (1972). For names of
not well-known people like ‘Kavita Thomas, the ‘famous nalmonvention of Kripke's examples does
not hold. Furthermore, for people there is a clear and legelgss of baptism. This is not obviously the
case for URIs likent t p: / / www. exanpl e. or g/ Ei f f el Tower.
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leanings towards a stance close to Carnap in logic in hisasyiottheory, has claimed
that the existence of reference in semantics is questierf@blomsky, 2000).

Reference has not been banished from the conceptual |gpedgade so easily, but
can still be saved even in a neo-Wittgensteinian publicuagg position. Having the
reference somehow be attached to a name via a causal chdso isd enough, as
that supposed ‘causal’ chain has nothing to do with the nmegli and co-ordinated
behavior of agents. However, we can return tordferential chainas given in Sec-
tion 3.6 to construct a theory of reference compatible witWittgensteinian notion
of meaning. The referential chain maintains some surfaodasity with the causal
theory of reference, for the stagemesentations similar to Kripke’sbaptism(1972).
The main difference is that in the referential chain the staigputputcorresponds to
local behavior that is in part caused by the representasiod the representatios a
representation precisely because of the fact that the 'admttaviordepend®n some
aspect of the representation that was caused by its indralection to a referent. So,
reference no longer is some ephemeral epiphenomenon thaldshe disposed of,
but something that incarnates itself in the meaningful bigmaof an agent. This is
precisely where the referential chain inspired by Briant@afi Smith and the causal
theory of reference of Kripke radically diverge. In contrasripke wants the act of
reference to somehow hold in all possible worlds, regasddéshe meaningful behav-
ior of agents employing the name (Kripke, 1972). Thus, iniaterpretation, while
all sorts of names in a language can have no referent but hegase, at leastome
of those things that have a sense can have a referent. Ithgsimanner that we can
establish the priority of meaning and sense over refereatsimultaneously maintain
the existence of reference. Both sense and reference mustdegstood to operate
simultaneously

If we are to take this reading of the concept of referenceossly, then there are
serious repercussions for the Semantic Web. In partidutiethrones the notion of any
formal knowledge representation language like RDF or OWhdpsomehow superior
to natural language. A representation in a formal languageld be put on the same
footing as natural language, or even below. If any infororativhose distal referent
has an effect on the meaningful behavior of an agent is totcasimepresentational,
then the space of representations on the Web explodes inoseazecompass much of
the hypertext Web. If the Semantic Web is fundamentally abatending the Web to
those things outside the Web, then we have to acknowledgenbst of the current
hypertext Web is already representationdVe callthe multitude of representations
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that share a referenthe representational nexuof the referent, a potentially large
collection of representations in a variety of formal, natuand even iconic languages
that all share the same referent. For example, if one usesehsengine to look for the
‘Eiffel Tower,’ one gets a large number of web-pages thatasome extent athbout
the Eiffel Tower by virtue of having some meaningful relasdip with it, ranging from
pictures of the Eiffel Tower, maps to the Eiffel Tower, ane&e\possibly even videos
of the Eiffel Tower. These would all count as representatiofthe Eiffel Tower, and
so would be part of the representational nexus of the Eiffeldr.

Since sense walks hand-in-hand with our notion of referetiea it can also be
said that multiple representations on the Web, both in hggeand on the Semantic
Web, can share the same sense. It is precisely this poinvehao laboriously argued
in Chapter 3, where we gave an account of the constructiomaijust notion of sense
on top of information given in multiple and possibly non4mai language encodings.
The sprawling representational nexus of a referent, in whalmost anything literally
counts as a representational by virtue of its causal andridat relationship with at
least some referent or another, can then be subdivided afadtted into senses.
Senses are where referents affect behavior of the agertts lariguage-game. Unlike
the definitions of senses as glosses in dictionaries, thesges on the Web exist as
information in a vast array of different encodings. In partar, thesamesense can
be shared between a representation of the Eiffel Tower inrradbknowledge rep-
resentation language like RDF and in a hypertext web-pageishabout the Eiffel
Tower in natural language. The classic problems of worgseisambiguation return
as problems of URI-sense disambiguation, where the proisiéoridentify aclusterof
representations in various encodings that all embody thne s@nse. We can imagine
this problem being especially difficult, for as argued int&et3.2, the same sense can
be interpreted from many different encodings, ranging froattimedia encodings like
video to formal languages.

How can we detect the sense of a URI on the Semantic Web, efipatimany
agents ar@ot using URIs as names with definite senses? In this regard goopeical
observation of the behavior of Semantic Web enabled-agkrgs not help, as these
kind of agents are still academic curiosities and do not ceawwse the Semantic Web
in any real sense now. Also, while the Semantic Web may uses @dRInames for
things not accessible to the Web, a URI that did not allow s€de any representa-
tions would be an empty move in a private language-game. uibglanguage game,
a URI should access descriptions or depictions of what @rsefo in order for other
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agents to determineow such a URI can meaningful govern their behavior. The crit-
ical role of associated descriptions gives us the crucis of how to build the new
language-game of the Semantic Web: any new language-gasteoboot-strapped
from already-existing language-gameand the primary language-game on the Web
is natural language text Since both associated descriptions in some Semantic Web
language like RDF and hypertext web-pages can all sharathe sense, the question
then becomes one of combining natural language text withrimétion on the Seman-
tic Web. Many efforts in automated ontology creation likesh of Brewster et al. are
already moving in this direction (2007). However, our qigsts different: given the
tremendous number of Semantic Web URIs found in Chapterw dam we associate
already existingSemantic Web URIs with natural language text? Once a Semanti
Web URI has been attached to some sense by having it parasitatoral language
(and possibly multimedia and the other forms of informatjdhen agents can detect
the sense of a URI even in a decentralized environment lg&\tab.

The most revolutionary concept of Wittgenstein is thiem of life, and everything
else in his philosophy flows from this. The key to understagdhe form-of-life is
that the meaning of a word i®ot just in other words, but in the entire activity of the
agents that share the language that uses the word. If thenBeriéeb is to succeed,
it must take into account not only natural language, but &a activity of users on
the Web, in order to base a new ‘language-game’ upon this tdrhfie. Currently,
the primary approach is to build Semantic Web ontologiesatlifrom the text in web-
pages in natural language (Brewster et al., 2007). We shuatide that there is a
particular use of natural language on the Web that is hegemonic: thelsegrfor
information by using brief natural language keywords. Whidis is far from the only
use of the Web, it is by far the most dominant, as shown by uargiudies of user
behavior on the Web (Battelle, 2005). This constant and abaessive use of Web
search engineis the de-facto cybernetic form of life on the Web. So, any apieto
‘boot-strap’ a new language-game for the Semantic Web ailkhto take into account
that the use of natural language keyword-based Web sedtatdamentator the Web,
a point routinely ignored by both the direct reference amltigicist positions. The
foundation to boot-strap the use of URIs as names for thinghe Semantic Web is
on top of hypertext search engine queries and the resuljipgrtext web pages.
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8.2 Solving the Identity Crisis Through Web Search

At this turning point we descend from an argumenthiaoryto the level ofpractice

a move from the philosophy of engineering to philosophicajieeering. By almost
any possible metric that takes into account real users oW\thle, the Semantic Web
seems to be afailure, as virtually no Semantic Web apptinathave been released that
have had an impact outside the academic research commttatyever, we should
remind ourselves that the failure of the first generation @& Web so far has merely
been the failure of the logicist position of Hayes and otleemial ontologists, not an
underlying failure of the concept of the Semantic Web itselfich is just the extension
of URIs to be used as names for things not accessible on the W&ebur empirical
analysis of the Semantic Web in Chapter 7 showed, the dieéetance position also
seems headed to trouble, as it appears that many thingsavél imultiple URIs, with
each new data-set creating its own URI.

If “to understand a language is to be the master of a techyiigigeemust make at
least a tentative sketch and implementation that demadastheow the Semantic Web
can be a language in the manner proposed by the public laaguasition (Wittgen-
stein, 1953). The requirement is straightforwatde system should allow URIs for
non-Web accessible things to be easily found with their ingashared as broadly as
possible In our exposition of Wittgenstein, we have determined fdesiderata for
applying the public language position to creating a system:

e Agents should be able to easily discover and re-use SemakrtdJRIS.

e Agents should not have to change their behavior in orderliaeithese Seman-
tic Web URIs.

e The selection of appropriate Semantic Web URI should take agcount the
entire representational nexus of the non-informationuess

e Agents should come to some sort of collective agreementtatloat URIs for
non-information resources refer to.

Our proposed system is to puhgpertext search system into a feedback-loop with
Semantic Web URIF he system fulfills the four desiderata. First, it wouldallusers
to easily discover Semantic Web URIs by typing in simple reltlanguage query
terms. Both the direct reference and logicist position puivard versions of what a
URI means as some sort of private language position whiclefhitpdetermine what
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a Semantic Web URI means without mentioning the informatieads of agents. In-
stead, we shall seek to incorporate the contextualizedrrdbon needs of agents into
the meaning of a Semantic Web URI by matching queries forméion to informa-
tion in the form of associated descriptions accessible gra&tic Web URIs. Thus, if
the user wants to discover information about the Eiffel Tipweavould suffice to type
ineiffel tower as the query terms to discover a Semantic Web URI for thelEiffe
Tower and associated information. Such a system would natdaeallel and separate
search engine for the Semantic Web, but can be built on toproéiot hypertext search
engines that operate in conjunction with an index of Semaftb URIs and associ-
ated descriptions. Again, if an agent is looking for infotioa on the Eiffel Tower, the
agent would go to an existing hypertext search engine and..@ar system would let
the users do that, but then simultaneously run their queaynagthe Semantic Web,
in order to discover if there are any URIs with associatedrimfation on the Semantic
Web about the information need expressed by their query. hag/is by Chapter 7,
for many queries about non-information resources such #gesrand concepts, there
is a high likelihood that there is information on the Semamieb relevant to such
information needs. Thus, this system satisfies the first titeria.

Also as demonstrated by Chapter 7, there is possddymuchrelevant informa-
tion in the Semantic Web that could satisfy these queries$.exen possibly multiple
Semantic Web URIs for a given entity or concept. A large pathe problem may be
that the query itself drastically under-determines thesserf the information need. For
example, a query fagi f f el may equally be for the Eiffel Tower or Gustave Eiffel. It
would be unlikely that a normal user would be able to sortujfomasses of RDF data,
which to most human agents is indecipherable, even with ithefaspecial-purpose
Semantic Web browsers like the Tabulator (Berners-Lee.g2@06a). Fulfilling our
third requirement, instead of forcing a human agent to cadingir form-of-life and to
somehow adapt to using RDF natively, our system takes aagartf what every user
of hypertext web search engines already does: the selentichprowsing of the web-
pages returned by the hypertext search engine. If a usesebame of the hypertext
URIs correctly, this can bienplicit approval that the web-page represents the intended
referent of the search terms. Furthermore, these web-@aggsart of the same rep-
resentational nexus as the Semantic Web URI and so shaengs.sOur system can
then use these as inputs to an algorithm that compares thiestesl web-pages to the
returned associated descriptions from the Semantic Wels, Ul that the retrieved
Semantic Web URIs can then be ranked in order, with the Seodr@b URIs and
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the associated description that most closely matches kbeted web-pages becoming
the top returned URIs. This method is knownrakevance feedback information
retrieval (Rocchio, 1971). So, if a user of our system clicka a web-page about the
Eiffel Tower in Paris, the Semantic Web URI whose associdestription that most
closely matched that result — the Semantic Web URI about ife Eower in Paris as
opposed to a Semantic Web URI that denotes Gustave EiffelHdvabsobe returned.
The system can then take into account the entire vast rejegEmal nexus retrieved
by the hypertext search engine as well as the various assdciascriptions of Seman-
tic Web URIs in order to determine the appropriate Semangb WRI for a given set
of query terms.

If a human-readable associated description is presentaahie usable form to the
human agent, the agent can quickly determine if the Sem#felt URI is relevant or
not. This relevance feedback from the Semantic Web URI cam e fed back into the
hypertext search engine, completing a cycle of feedbackné® and more users use
the system, the amount of selected web-pages will increaskthis information can
then be used to choose a URI that has an associated destthmiocarries as much
of this information as possible. As multiple users use tldebased system, each
of them can be considered to have ‘voted’ on a particular &m#/eb URI via their
selection of hypertext web-pages, and the Semantic Web URtsare collectively
chosen rise to the top. So our system takes advantage of direayr ‘wisdom-of-
crowds’ of human agents searching the Web in order to realtbctive agreement
about what the Semantic Web URIs refer to and what they meathiis extension of
our system that fulfills the fourth requirement of the puldicguage position.

8.3 Justification of System

In a broad stroke, we have reduced the Identity Crisis to bddmentally an informa-
tion retrieval problem. We will call this thBemantic Searclparadigm:the attempt to
retrieve Semantic Web URIs and possibly associated déiseriin response to query
words, in order to refer to our particular information rettal problem. To phrase this
paradigm formally, given a quer®, we wish to maximize the likelihood of relevant
Semantic Web URIS) being retrieved from the Semantic Web. To do this, we will
use the URI's associated descriptionsPorfor the particular use-case of the Seman-
tic Web, it would be best to have a single ‘best’ URleturned in response to a query
Q. However, given the large number of URIs that could be retdrim response to a
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guery as observed in Chapter 7, it seems that it is bettersionaes that more than a
single URI will be retrieved. Due to the foundatiori&obability Ranking Principle
the order in which to rank the documents is by their estimpteflability of relevance
with respect to the query. As stated by van Rijsbergen, “iéfanence retrieval sys-
tem’s response to each request is a ranking of the docunretits collection in order
of decreasing probability of relevance to the user who sttechthe request, where the
probabilities are estimated as accurately as possibleehahis of whatever data has
been made available to the system for this purpose, thelokeanking will be the best
that is obtainable on the basis of that data” (van Rijsberfy@n9). Given the scenario
where the system in penalized if it returns a non-relevantideent, then the Probabil-
ity Ranking is optimal, since it minimizes expected lossisTas been formally proven
(Ripley, 1996), although the proof requires that the prdtgds for every document
D and queryQ as well as relevance values are known. Since the ProbaR#itking
Principle is optimal, it should return the most optimal URbr the queryQ in the first
position of the ranking. In this way, the ad-hoc informatietrieval paradigm used by
Web search engines solves the Semantic Search problem ioigfitine ‘best’ URI for

a given query in the information retrieval paradigm withaaly major changes to the
general paradigm.

However, one large problem with information retrieval gyss lies in the query it-
self. As observed in our query log in Chapter 7, the averageydength is barely two
words. This is a result of Belkin's Anomalous State of Knasdge (ASK) hypothesis,
namely that “an information need arises from a recognizexireaty in the user’s state
of knowledge...and, in general, the user is unable to specécisely what is needed
to resolve that anomaly” (1982). Since the agent does nowkrecisely what infor-
mation they lack, they have trouble phrasing accurate keysvim natural language
to describe the information. This problem is amelioratecheahat in the Semantic
Search paradigm, as the user is generally aware of the hktngaage name of what
entity or concept for which they are seeking a URI. Howevweznen Semantic Search,
the ASK hypothesis still holds, as often the natural languzame of the entity or con-
cept is ambiguous by itself. Furthermore, if our system iagiss its criteria for the
‘best’ URI the associated description with the most reléeawl complete information,
then the retrieved Semantic Web URIs, even if they all redahe same thing as the
guery, can still have substantial differences in terms efgfoodness-of-fit’ to a query
due to differences in associated descriptions.

In order to deal with these problems, we will empleyevance feedbackheuse
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of explicit relevance judgments from users of a query in ordexpand the queryBy
‘expand the query,’ we mean that the usually rather shomyge@xpanded into a much
larger query by adding words from the known relevant documenhe hypothesis of
relevance feedback, as pioneered by Rocchio in the SMARievat system, is that
the relevant documents will disambiguate and in genera gibetter description of
the information need of the query than the query itself (397his has been shown
in general to improve retrieval performance significaritlgth in early studies and in
later work (Lavrenko et al., 2002).

Our novel solution to the Semantic Search problem is to upeitgxt web-pages
that share the same sense of the query as the URIs. Theseetahehetrieved by
running the query against a normal hypertext Web search engine. Anotheriguest
is how to get the associated descripti@mswvhich can then be built on top of current
indexes oiSemantic Searcbngines like FALCON-S built on top of the Semantic Web
(Cheng et al., 2008).

Indeed, one problem that is beyond the scope of this thesigigeneral infor-
mation retrieval problem of building either a better seagalgine for either RDF or
hypertext. Instead, our system is built on top of currentdnigxt and Semantic Web
search engines. The insight of our system is that searcihenfprboththe Semantic
Web and the hypertext Web, can be put in what Baeza-Yates &dilirtuous cycle”
(2008). While Baeza-Yates wishes to use the Semantic Webdier do “effectively
make [hypertext Web] search easier,” our system doesetrerse We use hypertext
search in order to make using the Semantic Web easier. Otansyshows how the
problem of finding URIs for non-information resources carbb#t on top of existing
search infrastructure witho modification to the often delicately parametrized basic
hypertext and Semantic Web search engines.

8.3.1 Information Retrieval Components

In this section we will establish our vocabulary in termsrdbrmation retrieval, used

in this chapter and in Chapter 9. We will use this terminoltmggive an algorithmic de-
scription of our system, and then a detailed descriptiotsafperational steps. We can
consider a hypertext search engihgpertextSearcto be a function from a querQ to

a set of web-pages, HypertextSearal@) = Z, where the relevant web-pagésc Z.

In parallel, we can consider a Semantic Web search ei@gneSearcto be a function
from model of the quer® to URIsU, that due to the transitivity of access, can be sub-
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stituted by their associated descriptidhso SemSeardl®) = D. Note that we us®
both to mean ‘associated descriptions’ in our sysémithe more general concept of
retrieved documents in information retrieval, which for gystem are the same. Thus,
our system can then be considered a re-ranking ‘feedbaskesybased on query ex-
pansion which starting witkeedbackQ), transforms intdHypertextSeardQ) = Z
andSemSeardl®@)) = U and use selected relevant documéts expand the querg
and re-rankD, and since each associated descripbphas an associated UR)|, this
leads toFeedbackQ) =U.

8.3.1.1 Models

In order to explain our system, a description of the genafarmation retrieval prob-
lem is necessary, along with the vector-space model of Balitin t f.id f term weight-
ing as a guiding example. Given a set of documents (such asiatsd descriptions
or web-pageslp, we can consider all these documents in some native enctaling
transformed to models, often callegd. The modeD; of each document in the index
of the search engine is tid@cument modeSoD; is then just the transformation of the
raw terms in each document into ardimensional term list, where eaatis some pa-
rameter, which is at most the number of unique terms in thiesecallectionC. The set
of terms in the entire collection is called thecabulary V. Usuallymis parametrized
to be some smaller amount, such as the top 30 most frequerg tereach document.
Thus,w € V represents a single term, such as ‘tower.” These are rdfesraswords
since documents are assumed to be in natural languageygltiior our systemv is
also automatically extracted from RDF triples. A certainoammt of prepossessing can
be done on words in the form of stemming or morphologicalsislto reduce terms
to a common base term, so that ‘tower’ and ‘towers’ or ‘goiagd ‘go’ map to the
same term. If a term in the vocabulamye< V is not present in the documeDt then

it will either have a value of zero or some ‘weighted’ valustifioothing is employed.
We will examine different possible values ofin constructing document models for
our system.

8.3.1.2 Weighting

The key question in information retrieval is how to ‘weigttie valueDy, as to fulfill
the Probability Ranking Principle. The simplest optiondsuse the term frequency
(tf), whereDy = n(w,D), wheren(w,D) is the number of occurrences of in D
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(Salton et al., 1975). However, this technique also peréopoorly in practice, as
it does not take into account how frequent a term is over atudwentsD. Sotf
can be ‘inverted’ in order to determine how rare a term is @aledocumentsil f)
(Jones, 1972). For example in English, the term ‘the’ wowdeha high frequency in
a given documenrd but would also have a high frequency in all indexed documBnts
while the term ‘Eiffel’ would have a high term-frequency iorse relevant documents
R C D, but a low frequency overall iD, leading one to suspect that document&in
might be relevant. Mathematically, given a wavdn a document, with the frequency
normalized over the sizm of the document, the term frequency for word (t f;) is
%. The inverse term frequency takes into accalihlocuments
O where the termw; occurs once, so thadl f; = Iog% and thereford f.id fj =
tfi-id fi. The weighting scheme used bf.id f is only one option of many possible

given byt f; =

weighting schemes, and we will focus more on the highly patamed and effective
BM25 when evaluating our system (Robertson et al., 1994)owadth other forms of
weighting such as language modeling will be explored (PanteCroft, 1998).

8.3.1.3 Smoothing

The opposite problem of weighting the occurrence of worda mocument is also
pernicious to information-systems, namely the problensmbothingwords in the
document and query models (Zhai and Lafferty, 2001). liviely, if a word w is
missing inD, thenw = 0. However, in many calculations that require some form of
multiplication or division, the presence of a zero in a weigdn factor out otherwise
relevant weights from other terms in the vocabulary, or leadrrors. The solution
of smoothing is just to add a small non-zero faddo eachw = 0, therefore having
w = €. There are a wide variety of possible smoothing techniquewing from the
simple setting of to a constant, to having it be chosen at random from somecpkati
distribution like the Dirichlet distribution. This smoatig function we will consider
part of our transformation of the query or document into a ehodnd we will use
the smoothing function most appropriate to each weightaigemse of our system, as
usually the appropriate smoothing function is dependerthenveighting function.

8.3.1.4 Comparing Documents to Queries

Having a set of weighted and smoothed document mddelses not in of itself pro-
duce a ranking, since the ranking is always in relationshigueryQ. However, since
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our document models are term vectors where each term isvirand, and each termg
inthe queryQis alsog €V, the query itself can be transformed tquery model g. As
most queries are only a few words, many systems produce aparge term represen-
tation, which then have to be weighted and smoothed. Sontpiigstic information
retrieval models such as ‘relevance models’ automati@dpand the quer®. Since
all the models inhabit the same spatethey can be directly compared to each other
using aranking function so that for evenD € C, ComparisofiQ,D) = yp, whereQ
andD are transformed into query modeils andup respectively, whileyp is therele-
vance scoref D for queryQ, which is generally smaller the clodermatches’Q. The
descending order bysatisfies Robertson’s Probability Ranking Principle (1)9@nd
we will not investigate alternate methods of presenting#seilts, such as clustering-
based methods. Various weightings in different framewdidge their own preferred
methods of comparison. For example, vector-space modeidomaompared via co-
sine distance, while cross-entropy is more appropriatedanparing the distributions
resulting from probabilistic weighting schemes.

8.3.1.5 Relevance Feedback

One immediate problem in almost any comparison of the quageahand the doc-
ument models is the sparseness of the query model. Thereaarg different tech-
niques for incorporating relevance feedback, each basekeodiffering methods for
transforming the relevant documengs given by “selecting’ §elecj relevantZ from
web-page¥V) into relevant document modefsand then combining or creating a new
guery model from this information. For example, for vector space modedswell-
known Rocchio algorithm attempts to re-calculate the quargel vector to match the
centroid of the document (1971) to relevance models thabraatically’ expand the
guery model into a distribution (Lavrenko and Croft, 200Thus, for the relevance
feedback functiorQ, = RelevancéR) that produces a new expanded quégygiven

a set of relevant document mod&swe will use the precise relevance function most
appropriate for the weighting function.

8.3.2 Detailed Description of System

Using the terminology given above, we can unpack the entgtem into the following
algorithm given by Figure 8.1. Details of every step are giwethe next section, and
illustrated in Figure 8.2 (placed at end of chapter).
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Algorithm 8.3.1: FEEDBACK(Q)

U «— SemSeardQ)

D «— accesfU)

Z — HypertextSeardQ)
R« Selec{z)

Q2 — Relevanc&,R)
foreachD; € D

{VD «— CompargQ, D)
PresentD)

Figure 8.1: Feedback-Driven Semantic Search

To go through the diagram one step at a time, in Step 1 themmys&esents the agent
with a text box where the agent can enter a qu&yy (n Step 2, the agent formulates
the query in terms of natural language keywords, and thu éeelbackQlgorithm
begins. In Step 3, a number of URIs are returned by autonligticaning the quenyQ
against a Semantic Web Search engine that does not inctepoeertext-based rele-
vance, such that a number of URIs are returigéd<SemSeardl®Q)). In Step 4, the
system accesses each URIe U and gets a collection of associated descriptidns
RDF. Each of these associated descriptidns indexed by its URU;. For Step 5, the
exact same querg is sent to a hypertext Web Search engiHg fertextSeardQ)),
which then returns a series of URIs, which are accessed &r todetrieve hypertext
web-pages4). Since we are not interested in the URIs of the hypertext-pages,
they are not maintained past Step 6. In Step 6, each of thié we=tarpages (or snippets
thereof) is displayed to the agent, and the agent examirgesl{gking on or ‘choosing’

a hypertext web-page) some subset of web-p&ye<, and this subset is given to be
the relevant web-pageR~ Selec{Z). Optionally, if the query has been repeated in the
past, the query may be expanded using the previously disetdvelevant web-pages
and relevant associated descriptions in RDF from previsage sessions. Some tech-
niques in information retrieval like relevance modelingguld automatically expand
the query at this stage, regarding it as merely a sample friargar language model.
In Step 7, every relevant web-page is transformed into ameot model. In order to
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do this, the web-page is first normalized to Unicode and theppgd of all HTML.
Note that a variant of this algorithieould use features of HTML, such as whether or
not text is in the title, and factor this in the document magdghg inference networks
(Baeza-Yates and Ribeiro-Neto, 1999). Then, the docummaai¢ngoes organization
and stemming to normalize a set of terms from the vocabul@nce a set of terms
in the vocabulary have been established, terms with nomcints are also weighted
via some weighting function, and terms with a zero-coungaren a smoothing func-
tion. Relevance feedback takes place in Step 8, where theugarlevant document
models are factored into the query model. This can take ptaeenumber of ways,
such as forming a single document relevance mdedK considering each of the rele-
vant document models separately. Regardless, the quexgaséed into a less sparse
queryQ via the use of relevance feedback, leadin@to= Relevanc, R).

First, eachD; € D is transformed into a ‘pseudo-document, a reduction of RDF
into a ‘bag-of-words.” This is done because associatedrigti®ns are composed of
RDF triples. Therefore, a number of questions arise abouttbareate some sort of
representation that can be compared to the expanded quesl.n@bviously, the only
challenge is how to deal with URIs. Instead of discardingrttoe keeping them (which
would be equivalent, since they would not be foun&/iand thus excluded from any
D), URIs must be treated as separate words in natural langtittgey are to be part
of a document model. As a cursory glance at some URIs revibase is important
information in them, due to the propensity of humans to userablanguage terms in
their Semantic Web URI, called the ‘Fido-FIDO'’ fallacy inifgsophy (Ryle, 1949).
For example, the URhtt p: // ww. exanpl e. or g/ Archi tect O generally denotes
an “architect” relationship, such that the trige: Ei f f el Tower ex: hasArchit ect
ex: Gustave_Ei ffel could be reduced automatically to the pseudo-natural lageu
terms ‘Eiffel Tower has architect of Gustave Eiffel.” Thikosvs URIs to be part o¥/
and so compared Q. The heuristics we employ in Step 11 to reduce URIs to natural
language terms are straightforward:

e Reduce to last rightmost hierarchical component.

e If URI contains a fragment identifier (#), consider all ctaeas right of the
fragment the last rightmost hierarchical component.

e Remove non-rightmost hierarchical component.

e Tokenize on space, capitalization, and underscore.
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So, the URIht t p: / / www. exanpl e. or g/ hasAr chi t ect would be reduced to two
tokens, ‘has’ and ‘architect, whilet t p: / / www. exanpl e. or g/ Gust ave Ei f f el will
be reduced to ‘Gustave’ and ‘Eiffel’ respectively. Then Step 12, each associated
description is given its ranking scoyg via a ranking functionyp < Comparé€Q,, D)
that compares the expanded query to the document. In Stepek® ranked URIs are
then arranged in descending order by their ranking scorethidtpoint, the system
looks up the topmodD in its index to discoveD; and therefordJ;, or the URI that
allowed access to the associated descriffion the first place. Note that the index of
URIs and associated descriptions keeps track of which Uldasl to get the associated
description, so that even if the same encoding of an assdoikscription is given by
multiple URIs, the associated descriptibncan be tracked down to the URJ that
originally had a causal role to play in the production of icdment model. At this
point, the URI and its associated description is presepiaskibly in a variety of ways
including the direct display of meta-data on the searchlrésu or use of the RDF
triples in an application. Optionally the system may in Stdpdetermine if an agent
examined (or some other program used) the associated plestriand add these to a
cache of relevant URIs. Also optionally in Step 15 the reteve/pertext web-pages in
the form of the relevant document models and even relevana8ec Web URIs and
their associated descriptions can be cached. Finally,ep $6 the agent may enter
another query.

8.3.3 Other Methods

Our system has a number of advantages over other systems|yniurihat it does
not require the end user to use a specialized language foowdisng URIs or nav-
igating Semantic Web data, but instead lets them use a ndmbisearch interface
with queries in natural language. Furthermore, the disgodiion and discovery of
relevant URIs then happens as a side-effect of their norralaévior of examining
web-pages. Lastly, this method helps users discover URIseanse them, rather than
create new ones for each query. The advantages of our sysigmifference with
other approaches are given in this section.

8.3.3.1 URI Co-reference Resolution with RKBExplorer

Another attempt to automate the discovery of co-refereade icreate a&onsistent
Reference Servidbat automatically finds both explicitly declared equivedes with
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ow : saneAs and inverse functional properties and then calculates thasure (Jaffri
et al., 2008). As implemented RKBEXxplorer.comthe system stores the result of its
closure calculations in its own RDF/XML file using a spedati Semantic Web co-
reference vocabulary. They recommend that each Linked §&atece maintains their
own co-reference server, and have demonstrated theimsystebibliographic data
and WordNet (Glaser et al., 2008). While they claim thatkenlDKKAM, a Consis-
tent Reference Service does not simply create ‘new’ URIgHmgs, in reality these
co-reference bundles are given their own URI and their oveo@ated descriptions,
which in turn are indexed by Semantic Web Search enginesSiikeice, so inevitably
leading to an explosion of new URIs (Glaser et al., 2008). hW"RKBEXxplorer.com
each Semantic Web URI now is being ‘shadowed’ by a URI for agference bundle!
Also, the Consistent Reference Services only deal witreerence at the level of for-
mally declared logical co-reference in OWL, and it neglegbts very source that lets
human agents detect co-reference: the associated destsipthe primary advantage
of our proposed system over Consistent Reference Senrgiteatiour system does not
create new URIs, but merely brings the likely correct Semaneb URI to a user’s
attention, by taking relevance feedback and associatenligisns into account.

8.3.3.2 Semantic Search

There are many commercial companies Ilakia.comand Powerset.cormow of-
fering what they call ‘Semantic Search, although the exdedfinition of ‘Semantic
Search’ seems to vary, with the common denominator beinggbef some knowledge
representation to augment information retrieval, suchhasuse of natural language
processing to discover implicit knowledge representatiomplicit in queries or doc-
uments. Another approach, more related to ours, is to tryptmect already-existing
and explicit knowledge representations. For examplegtkeswledge representations
could be given by explicit mark-up inside hypertext or bycoigering complementary
knowledge representations to queries. In this vein, theedbsystem to ours in spirit
in the Microsearchsystem (Mika, 2008). This system has been re-deployed comme
cially by Yahoo! asSearch Monkeyand takes a similar approach to ours. Microsearch
also retrieves hypertext web-pages based on query termdigppldys meta-data in a
human-usable fashion on the result list, also using Sinilgy(h et al., 2007). Mi-
crosearch is similar to our system insofar as it associgtesrtext web-pages with Se-
mantic Web information. However, there are two main prattiifferences between
our system and Microsearch. Microsearch does not attengeteymine authoritative
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URIs and associated descriptions based on query terms,nbuegrtracts Semantic
Web informationalready present on the page the form of either associated RDFa
or a conversion of microformats to RDF in a manner similar ROB®L (Adida et al.,
2008; Suda, 2006; Connolly, 2007). The Semantic Web inféonas displayed di-
rectly parallel to each individual web-page. Thereforecidsearch is still basing its
information retrieval on the level of web-page, as opposedttempting to discover
the best Semantic Web URI and associated description ddiathe intended referent
of the query. Due to this shortcoming,dhly extracts Semantic Web information it-
self, and does not run the query in parallel on the Linked D¥¢d. So, Microsearch
does not attempt to find the best Semantic Web URI that mathkeestended referent
of the query, and thus does not help resolve the ldentityiCoig encouraging URI
re-usage.

Worse still, Microsearch extractdl structured data from the web-page, without
any regard for the similarity of the query terms. This SentaWieb information (in
particular, information related to time and people) is agagted and displayed in a
‘box’ near the search results. While this approach seem®t& for relatively simple
gueries about people who only have only a small amount of 8ga¥/eb information
about them on the Web, for queries like ‘The Eiffel Tower’ tamich is brought up,
and information about events at the Eiffel Tower and movlesThe Plot to Blow Up
the Eiffel Tower’ are mixed, leading to a bewildering aggkmattion of structured data
displayed to the user. Lastly, no relevance feedback isitake account to refine this
Semantic Web data. Instead of pursuing a synchronousaesdtip with the Semantic
Web, the Yahoo! research team behind Microsearch has nowadrtbeir focus to the
more difficult problem of large-scale Semantic Web inforimraextraction from text,
with all the problems that entails, including excessive diRlation (Baeza-Yates et al.,
2008).

8.3.3.3 Ontology Creation from Text

Our system iiot attempting to do information extraction over the Web repnés-
tions in order to present the users just the relevant welegpagextracted ‘answers,
as is traditional in information extraction frameworks anestion-answering systems
(Etzioni et al., 2004; Kwok et al., 2001). Unlike questiomsaering systems, we are
not attempting to answer a query fgpecificinformation, but only to find URIs with
appropriate associated descriptions for non-informatesources, rather than return
specific ‘answers’ encoded in natural language. Furthezmee are not employing
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any techniques to transform natural language text diréattyontologies for later use,
such as the formal-concept analysis method put forward hyia@io et al. or the dy-
namic iterative method using knowledge extraction pastgmnt forward by Brewster
et al. (2007; 2005). This problem of learning ontologiesyistbelf very difficult and
outside the scope of this thesis. These text-to-ontologhauslogies seek to ground
RDF triples in individual natural language sentences oagés, which could be con-
sidered amicroscopicapproach to associating text with RDF, usually witgwRDF
triples generated directly from that text. Instead, we ansping amacroscopiap-
proach that groundaready-existindRDF triples in associated descriptions with entire
collections of web-pages. The information in these alreexigting associated de-
scriptions may overlap with the text in the web-page, andrarakhypothesis of our
system is that this will indeed be the case, but we do not attéorelease this infor-
mation in somantermediateform onto the Semantic Web directly. The approach to
generating Semantic Web ontologies directly from text wesessitated by the first-
generation Semantic Web’s lack of usable data. The secendrgtion Web of Linked
Data has the problem is the reverse: There is too much Samakth information
for a given query! However, it is likely there are many querer non-information
resources for which no relevant Semantic Web URI existsjmatius particular realm
ontology construction from text will be vital. This partiem problem of discovering
gueries that have no relevant URIs and then creating new ISRIsyond the scope of
this thesis, but is potentially exciting future work.

8.3.3.4 Ontology Alignment

One opposing methodology for the URI re-use problem is saon@ fof ontology
alignment In Semantic Web ontology alignment, the various terms io ow more
different languages are ‘matched’ together with other tethat have the same con-
tent, for example, matching ‘Eiffel Tower’ to ‘“Tour Eiffél.There is a long history
of ontology alignment or ‘mapping’ research in knowledgeresentation, and the ad-
vent of the Semantic Web has led to a revival of these teclesi(feauzenat and Shvaiko,
2007). Ontology alignment employs a number of distinct Istigs, ranging from the
syntactic manipulation of the knowledge representatioglage to methods based on
detecting high-level formal semantic similarities (Buretyal., 2006; Shvaiko and Eu-
zenat, 2005). The advantage of ontology alignment is thatipiposedly allows the
users of the program to maintain their “semantic autonomy,as to maintain their
own irreducibly unique perspective on the world while stithpping their terms to the
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terms of other agents (Zurawski et al., 2008). As attraclivat appears, ontology
alignment has proven itself not to work in practice. Whilegamtain selected ontolo-
gies, a particular method may claim to get high recall andipien, so far whenever an
ontology alignment system is ported to a new domain the naefhits to produce an
acceptable level of performance (at best approximately &%l and 60% precision)
and having unacceptable runtimes, ranging from a few mintaténours (Caracciolo
et al., 2008). This has led the general practice within thre&8gic WWeb community to
rely on manually created ontology alignments. Some of thag mo doubt be due to
irreconcilable social distinctions between certain c@igesuch as whether ‘marriage’
has a constraint of one man and one woman (Ginsberg, 2006yimdeall ontologies
that mention a term in order to produce an ‘ideal’ associdestription would easily
lead to ontologies with an excess of spurious and incomgigteormation.

More importantly, ontology alignment may be criticized as@gy the wrong tech-
nique for the Semantic Web, trying to solve a problem thatld/atherwise not exist
if the correct technical infrastructure were created andsldeuld be easily found in
the first place. From a philosophical perspective, most efdhtologies created on
the Semantic Web are created by lone individuals and oftérrerased by anyone
else, so mapping between them is the equivalent of mappimgebe private language
games instead of creating a new public language game. The paint of the Seman-
tic Web is to create URIs for common concepts and physicdiestand only if the
URIs are re-used can graph merger take place. Until vernntlycevith the advent of
Semantic Web search engines for ontologies like Swoogleas impossible to even
find already-created ontologies, thus leading users witbther recourse than to cre-
ate their own ontologies. One would suspect that once uses én ability to find
URIs, they would not have mint new URIs, but instead re-usésURuch as names
are re-used in natural language and code re-used in opecesamjects. So our sys-
tem attempts to solve the very problem that creates the meeshfology alignment on
the Semantic Web in the first place.

8.3.3.5 Sense Disambiguation

As would naturally follow from the public language positjddRI disambiguation is
an analogue with word-sense disambiguation, where insiEadsociating a number
of sentences with a distinct sense, we are associating aenohbypertext web-pages
with a distinct URI. Furthermore, multiple co-referent&mantic Web URIs can be
considered a class of URIs that share the same sense. Itlesauhow well humans
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can actually label senses, although performance of wandesdisambiguation sys-
tems seems to be reasonable (Kilgarriff, 1993). Despitsetluifficulties, algorithms
that make the assumptions that collocated words can dis@imbetween senses and
that a single discourse uses a single sense have been abledtac® very accurate
results (Yarowsky, 1995). Furthermore, automated worgssealisambiguation tech-
niques have been shown to work over a substantial numbemsgsegathered from
different sources and a large number of texts (StevensorWitks, 1999). Even
so, there are a few practical issues with the notion of weirtse. Unlike part-of-
speech tagging, there is no clearly delimited set of wortsss, although in practice
both finitely-bounded machine-readable dictionaries aadunlly-created lexical re-
sources like WordNet tend to be used (Miller, 1995). Howeueran open-ended
domain like text on the Web, the number of senses becomesmuesn noticeably
open-ended, such that word-sense disambiguation becaffi@slidyet again (Steven-
son and Wilks, 1999). Worse, even natural language is aaaitinevolving, with new
senses being introduced, old senses disappearing fronandesenses drifting over
time. This is especially noticeable in the world of Web gesras explored in Chapter
7, as these are driven by fashion and current events.

We take inspiration from the successful statistical workwend-sense disambigua-
tion by transforming ‘one sense per discourse’ into ‘onessguer query.” Our algo-
rithm addsadditional context by associating hypertext web-pages ielware gener-
ally more rich in information than Semantic Web documentsith WRIs, and then
assumes the user, since they are searching for informatioat & particular sense,
will automatically click on web-pages that give a singlesefiyarowsky, 1995). Our
algorithm then can be said to determine sense ordtdoeimenievel as opposed to
word-level. A critic could respond that if the query terms wereb&mous, the am-
biguity would be passed on to the search results, which wthdd be a mixture of
web-pages about different referents. If the user meanti@-khown sense of a query
term, perhaps all the high-ranked search results would tefnother more prominent
sense. These criticisms would be true if we did not rely onuber-behavior of ac-
cessing URIs to determine a subset of web-pages in the sesmalts that are actually
about what the user considers to be the same referent. Byaiyaexamining the
web-pages, the user sorts this out, so for our purposesarele feedback serves as
the primary source of URI disambiguation.
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8.4 Conclusion

It could be considered ironic that in our system logical kiexlge representations are
explicitly transformed into a ‘bag of natural language wsjrid order to allow agents
to actually discover and use these knowledge represensatibhe feature of some
theories of meaning is that some entity like the dog Fido vegsasented by some
symbol calledFl DO (Ryle, 1949). This was considered by Ryle to be a defect, laad t
very label ‘Fido-FIDO’ was invented as a derogatory term lyyeRo insult theories
of meaning such as Carnafeaning and Necessityrat made such a move (Ryle,
1949).

While Ryle was right to point out the ridiculous nature of thielo-FIDO’ principle
in theories of meaning, the ‘Fido-FIDO’ principédsodescribes perfectly the common
practice of using natural language terms in knowledge sgmtation systems (Wilks,
2008a). This principle returns to the Semantic Web as aakradvantage for our sys-
tem! While the ‘Fido-FIDO’ pattern of URIs breaks the priple of URI Opacity?
it crucially allows knowledge representation languagelsdgut on the same footing
as both user queries and web-pages. Once this move of tramsépknowledge rep-
resentation to natural language form is accepted, thenigidyhoptimized methods
of information retrieval can be applied to the Identity @isin particular, this move
allows the crucial notion of relevance, reformulated fog emantic Web in terms
of being anaccuraterepresentation of the intended referent of a query, to béeapp
to the Semantic Web. Then we can take advantage of the vassespational nexus
of the hypertext Web to ‘boot-strap’ through ordinary usehévior a philosophically
well-founded notion of URI meaning on the Semantic Web, angdrsvide a practical
application of the Wittgensteinian public language positi

From a purely pragmatic standpoint, given the historicgbwheck of classical
artificial intelligence, it may make more sense for the SetimaiVeb to harness its
fortune to the phenomenal success of information retri@taker than knowledge rep-
resentation. Yet one could argue that our system'’s rathbless taking advantage of
the ‘Fido-FIDO’ phenomenon on the Semantic Web is purelyréifaat of our algo-
rithm, and that the connection from Wittgenstein to Web ceangines is far from
philosophically well-grounded. On the contrary, the diicie of information retrieval
is directly descended from Wittgenstein himself via the under-apptediphilosopher

SPerhaps it is better termed the ‘Fidot p: / / ww. exanpl e. or g/ FI DO theory of meaning on the
Semantic Web.
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and linguist Margaret Masterman. One of the six studentsitijdhstein’s course that
becameThe Blue Bookshe was exposed directly by Wittgenstein to the conceptual
apparatus of th&hilosophical InvestigationéSowa, 2006). Twenty years later, she
founded the Cambridge Language Research Unit. Overalltévfaan was convinced
that a scientific theory of computational language basedem aeo-Wittgensteinian
‘semantics’ could be created, and that this theory coulddmeputational and created
from empirical data (Sowa, 2006). As seen by the virtual4aker of artificial intel-
ligence and natural language processing by statisticdioast it is clear that Master-
man and Karen Sparck Jones’s often implicit neo-Wittgaingin approach was ahead
of their time. Information retrieval, and its data-drivestatistical methodologyare
neo-Wittgensteinian philosophy of language given contparal flesh.

The history of how Wittgenstein, via Masterman, influenagdimation retrieval
and thus search engines is a fascinating trajectory. Wistigén's infamous dictum that
“meaning is use” seems often itself meaningless upon fiestag; how can “meaning
is use” possibly be operationalized into a methodology tioatid form the basis for
a science of language (Wittgenstein, 1953)? The answeniswd in studying the
structure of language empirically, which can be done coatmrially by the statistical
analysis of actual samples of human language. In other wédsbuilding of “lan-
guage processing programs which had a sound philosophasiéd”(Wilks, 2005a).
To Masterman, key to this entire effort was the primacy of aetics over syntax, and
“the use of a thesaurus as the main vehicle of operationdké \2005a). As opposed
to the use of logic by Carnap (and later Chomsky) in desagitanguage, Masterman
hoped to use lattices and ‘fans’ to provide a mathematiecaidation for the structure
of thesauri, a non-logical mathematical theory of langualjer interest in this led
to the revision of her colleague Richens’s semantic netwoakhine-translation in-
terlingua into a more empirically justified group of operded semantic primitives —
although this would be an externalized language like angrotiot a mere reflection of
an internal mental language resembling Fodor’s ‘Langudgdéought’ (1975) — that
could arise organically and be detected from language us&q\2005a). This list
of semantic primitives and attendant emphasis on the usenodustics in parsing (as
opposed to the purely syntactic approach of Chomsky) weseuged by Masterman
in machine translation (Masterman, 1961), and then infleémavily any systems in
natural language processing, such as the work of Wilks iolvesy ambiguities using
preference semantics and the work of Schank using condefgpandency graphs to
discover identical sentences regardless of their syotémtm (Schank, 1972; Wilks,
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1975). Another student of Braithwaite and Masterman, Yowdlks put forward the
most explicit linking of Wittgenstein’s ‘meaning is use’ $tatistical studies of natural
language by noting that for the first time the sheer size ofdrutaxt on the Web may
allow us to quantify the meaning of words as use using sidisiechniques such as
skip-grams (2008b).

However, our work does not rely only on statistics basedheoivords to quantify
the “meaning is use”, but on information retrieval techmgiuin particular, relevance
feedback. The foundations for information retrieval that build upon were also in-
fluenced by Wittgenstein via another student of Mastermahhem husband Richard
Braithwaithe, Karen Sparck Jones (Wilks, 2007). Spamhked laid the foundations
of information retrieval, and even hinted at relevance lie@#f, in her dissertation
Synonymy and Semantic Classificat{dones, 1964). Sparck Jones stated that her
dissertation proposed “a characterisation of, and a basddriving, semantic primi-
tives, i.e. the general concepts under which natural laggwaords and messages are
categorized.” (1964). She did this by applying the stat#tiTheory of Clumps’ of
Roger Needham — a theory that was itself one of the first taedel what Wittgenstein
called “family resemblances” — to words themselves, legdiar to posit that words
could be defined in terms of statistical clumps of other wpedgVittgensteinian in-
sight that contrasts with Needham’s more Kripkean attempirectly connect words
to things (Needham, 1962). Also, the first traces of relegdredback can be found
in her thesis, for as noted by Wilks, “these techniques pnesthat terms which co-
occur in documents with query terms are semantically refiguery term uses. They
rely on the implicit existence of an empirically derivedsharus, or clump dictionary”
(Wilks, 2007). Applying her work over larger and larger smes of data, she later be-
gan to abandon using even the open-ended semantic prismdfMdasterman. In her
later critique of artificial intelligence, she cited thateoaf the key insights of infor-
mation retrieval is that programs should take “words as gtapd” and not as mere
adjuncts to some logical knowledge representation sysi®&®9). In contrast, Wilks
points out that statistical techniques from machine-le@rhave had considerable in-
fluence on artificial intelligence, although not via infortioa retrieval, but instead via
a general breakdown of disciplinary boundaries in artificiéelligence and the in-
fluence of statistics from machine-translation (2005b)lirie with the general move
towards semantic search we put forward, Wilks maintainsligfat-weight knowledge
representations are becoming increasing crucial to kray@eepresentation.

It should not be viewed with irony but with a sense of thingsaag full circle,
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that the methods of information retrieval could be considerrucial to the success of
the Semantic Web, and even vice versa. Earlier in Sectignwie4ave an overview
of Sparck Jones’s critique of both the logicist positiortleé Semantic Web — which
she termed the ‘high-end’ Semantic Web — and Berners-Leesstdeference posi-
tion of the Semantic Web, which Sparck Jones terms the ‘lmiddd’ version. She
ends up indicating a ‘low-end’ version that deals with veengral ‘tags’ may work,
and while the Semantic Web has not experienced exponentiatly, tagging has suc-
ceeded (Halpin et al., 2007). However, our work connectsesbimg resembling the
‘low-end’ with a rehabilitated version of the Semantic Wab,our experiment shows
that simple queries and statistical information retri@aal be connected to more struc-
tured knowledge, and in fact is vital for finding and discangrthe quality of such
knowledge representations. Indeed, it is clear Sparckslsttrue target is not the Se-
mantic Web as a system of URIs as common names but what slily nigbognized
as a logicist approach to reviving classical knowledgees@ntation. In this, she is
clearly right, for our system takes advantage of the fadt tiere isnot “something
better than natural language as a general means of exgeasith hence accessing,
information,” which is tacitly acknowledged by the preseiwé natural language terms
in URIs (2004). In fact, our system attempts to vindicate @Wéttgensteinian public
language position primarily by showing that natural largpigueries work well for
describing and finding Semantic Web URIs, and that even tbevkedge representa-
tions of the Semantic Web ground out in meaningful naturadjleage words that they
share with other representations of the same referentsedWei, like web-pages.

The revival of knowledge representation due to the Semaveie initiative is more
of a historical accident than the consequence of any plamhasut the refugees from
the failed knowledge representation projects of classiddicial intelligence would be
desperate enough to join in Berners-Lee’s efforts to crimt&emantic Web? Indeed,
there is no objection to the general notion of discoveringnessort of open-ended
common lexicon of semantic primitives for natural languagenotion initiated com-
putationally by Masterman (Wilks, 2007). One could simpdy shat the Semantic
Web is the naming of these semantic primitives by URIs ratien abbreviated natu-
ral language names, with all the advantages the princigl¥geb architecture bring.
Lastly, RDF triples could then be considered the minimaictire one could attach to
these semantic primitives (Masterman, 1961). There isimgih this URI-based ver-
sion of the Semantic Web that ties it to any commitment to glsiontology or even
single knowledge representation language. The bet of u$Rlg as a universal nam-
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ing scheme for things can just as easily be tied to statlstieshods from information
retrieval as it can to logic-based knowledge represemtsatislowever, as Sparck Jones
would remind us, we should proceed next to a test of the systereal users and real
data.
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Figure 8.2: Diagram of Feedback-Driven Semantic Search System



Chapter 9
Evaluation

You philosophers ask questions without answers, questiab$ave to remain unan-
swered to deserve being called philosophical. Accordingoi, answered questions
are only technical matters. That’s what they were to begihwiean Lyotard (1988)

9.1 Experiment

The primary goal of the experiment is to collect what are kn@srelevance judg-
mentsof both Semantic Web documents and hypertext web-pages$ abounformation
resources such as concepts and entities, and to deterntesé relevance judgments
can improve the ranking of the results from search enginesatipg over both hyper-
text and Semantic Web information. The criteria for sucigsisat a query in natural
language terms to a Semantic Web search engine should teeusingle best URI for
the intended referent of the query. In order to determinauif\Wittgenstein-inspired
methodology works in practice, an experiment with real hasizbjects operating over
real queries is needed. A random selection of the entireyeggren Semantic Web
corpus, as described in Chapter 7, is run against both thertext and Semantic Web,
and human judges rank both the Semantic Web and hypertextsrdsr relevance.
These relevance rankings are then applied to re-rank thitsdsom the Semantic
Web and hypertext search engines.

9.1.1 Corpus

For our experimental query corpus, 100 entity queries arfidcbdicept queries were
randomly selected from the crawled URIs from the originajpecs for a total experi-
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ashville north carolina
harry potter

orlando florida

ellis college
university of phoenix
keith urban

carolina

el salvador

© 00 N OO O A W N P

san antonio

[ERN
o

earl may

Table 9.1: 10 Selected Entity Queries

mental query corpus of 200 queries. Constraints were planedtawled URIs, such
that at least 10 Semantic Web documents were crawled for @aety, leading to a
total of 1,000 Semantic Web documents about entities arf@D1S@mantic Web doc-
uments about concepts, for a total of 2,000 experimental Mfptesentations. Then,
the same experimental query corpus was used to crawl thetbyp@/eb, resulting in
a total of 1,000 web-pages about entities and 1,000 webspalgeut concepts. The
web-pages were retrieved using Yahoo! Search, a commigrdighloyed hypertext
Web search systemWhile the exact algorithm Yahoo! uses is unknown, it is ljkel
related to PageRank, the original algorithm of their contpeGoogle, although it is
likely both companies have many modifications to the basgeRank algorithm (Brin
and Page, 1998). A random selection of ten queries from thity @orpus is given
in Table 9.1 and another random selection of ten queries fh@rconcept corpus is
given in Table 9.2. As one can tell, the queries about estéied concepts are spread
across quite diverse domains, ranging from entities oweations (El Salvador) and
people (both fictional such as Harry Potter and non-fictisnah as Earl May) and for
concepts over a whole range of abstraction, from sociologye.

9.1.2 Defining Relevancy

Since the Web representations were retrieved from seagines) it is entirely pos-
sible that the search engine returned irrelevant searcittsed his is for a number of

1Available atht t p: / / waw. yahoo. com
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131 | sociology
133 clutch
134 | telephoneg
135 ale

136 | pillar
137 | sequoia
138 | aster
139 | bedroom
140 | tent

141 | cinch

Table 9.2: 10 Selected Concept Queries

reasons, primarily including queries in the natural larggpudnat use ambiguous terms
and the ability of ‘link farms’ (web-pages consisting of ngalinks) to manipulate
PageRank or other link-based weighing schemes for seagiheesn For each Web
representation, the human judge had to decide whether dhe®eb representation
wasrelevantto the query, where relevance was defiasdvhether or not a Web rep-
resentation is about the same thing as the query, which catetermined if accurate
information about the thing is expressed by the Web reptatien. By fulfilling these
requirements, a particular Web representation can be gasatisfy’ the information
need of a particular user.

Our definition of relevance is considerably stronger thastnaore informal no-
tions of relevance used in the information retrieval litara (Mizarro, 1997). How-
ever, these definitions of relevance are considerably menengl-purpose than our
notion of relevance because this broader notion of relevaas to deal with not only
informational queries, but navigational and transactieneeries. Furthermore, our
notion of relevance is grounded in the idea of the Web reptatiens actually being
representationshat refer to some sort of entity or concept in the world, andisare
the same sense as the referent. Therefore, our definitioel@fance encompasses
only a subset of all possible informational queries, inipatar, those queries where
the information is representational. In this manner, wesater the query terms to be
descriptions of some referent, where more information exded by a user about the
referent.

A number of types of Web representations that would ordindre considered
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relevant are therefore excluded. In particular, there issdriction that the relevant
information must be present in the Web representatiorf.it3dlis excludes possibly
relevant information that is accessible via outbound ljek®n a single link. All man-
ner of Web representations that are collections of linkseautuded from relevancy,
including both ‘link farms’ purposely designed to be highdyked by page-rank based
search engines (Brin and Page, 1998), as well as legitinmaetaries of high-quality
links to relevant information. These are excluded pregibelcause the information,
even if it is only a link transversal away, is still not dirlgcpresent in the retrieved
Web representation. By this same principle, Web repreentathat merely redirect
to another resource via some method besides the standhHiiZzEP 303 method are
excluded, since a redirection can be considered a kind kf lifhey would be con-
sidered relevant only if additional information was inahadn the Web representation
besides the redirection itself.

Query terms are astoundingly brief, usually only one or tvards, and are so li-
able to be highly ambiguous, a problem that is unresolvabilegustatistical natural
language processing methods due to there being no conteRefquery terms besides
the query itself. Due to this long-standing problem, thess long been an interest
in combining some form of knowledge representation to disgomate the queries,
and recently attempts have been made to use Semantic Wetréseat background
knowledge (Castells et al., 2007). However, results ofrdlsiguating queries via se-
mantics show that even with some formalized background ledge, given the vast
number of queries possible, it is non-trivial to attach ubagjuous semantics to queries
reliably, and always more and more queries and relevantrdents fall into some
‘miscellaneous’ category (Lavrenko, 2008).

All hope is not lost. Wittgenstein’s emphasis on the forriHaf should remind
us that it is not only the linguistic form, but the extra-lingtic activity, that gives
meaning to a language. In the case of search terms, the aityltign often be resolved
by attention to what Web representations have been exarbynadtual users. In our
experiment, a query is considered not only natural-languagns, but also the Web
representation clicked on by the user is considered paneoditiery. Since the queries
in the evaluation have been selected from an actual querfydogMicrosoftLive.com
we used a query log to select sample hypertext Web repremersghat an actual user
judged as relevant to the query. If the human judge is in dofibite intended sense
of search terms in the query, then the human judge can usessiogiated rendered
Web representation to determine the intended informatesdrof the query. If the
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associated result is itself confusing, the human judgetassume the most common
use of the word in English. If the term is still confusing, tih@man judge could leave
a comment.

The question of what actually defines ‘accurate informat®rexing, but can be
defined in a satisfactory manner without resorting to anyeapio a heavy-weight log-
ical notion of truth. In a Wittgensteinian manner, the notaf accurate information
can be grounded out in the notion of sense, where sense isdéfjrthe use of a term
in alanguage. If a Web representation shares the same setieeiatended referent of
the query, then it contains accurate informaéibautthat referent. However, ascertain-
ing sense is notoriously difficult to do automatically by mime for natural language.
However, being proficient at natural language, humans cmrdane the sense of even
limited information. If a Web representation does not conéough information in it
for the human judge to interpret whether or not it shares #imeessense as the query,
then the Web representation is not relevant. Thereforeyméb representations that
merely mention the query terms, but do not provide any infdrom about the referent
of the query terms, can be viewed as irrelevant. Given a gigeriEiffel Tower,” a
result entitled ‘Monuments in Paris’ would likely be relewaf there was information
about the Eiffel Tower in the page, but a result entitled “Restaurant in the Eiffel
Tower’ containing only the address and menus of the restawauld not be relevant.

Following tradition in information retrieval, the humardges are forced to make
binary judges of relevance, so each result must be eithevaet or irrelevant to the
guery. Human judges are usually inaccurate when forced tee rfiaely-graded rele-
vance judgments, so users prefer binary relevance judgniéantes, 1993). Generally,
binary relevance judgments have been shown to be staligtstable over time, even
if relevance judgments can differ in minor regards both itwleen judges and in the
same judge over time (Baeza-Yates and Ribeiro-Neto, 199@e human judge faces
any difficulty or has any doubts about their relevance judgraeeomment box is given
for them to express this difficulty.

9.1.3 Making Relevance Judgments

For each of the 200 experimental queries, 10 hypertext vegiep and 10 Semantic
Web documents need to be judged for relevance, leading ttabhdb4,000 human
judgments for relevance in total for our entire experimehhe human judges each
judged 25 queries presented in a randomized order, and wene g total of 3 hours
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to test the entire sample for relevancy. No researchers paateof the rating. The
judges were each presented first with ten hypertext webspage then with ten Se-
mantic Web documents. So for each query, the judge detesmatevance for 20 Web
representations, leading to a total of 20 judgments peryquarjudge. Each Web rep-
resentation therefore judged by three judges, with a téa0gudges used in the entire
experiment. So over a single session, the judges gave juttgrnoe20 distinct results.
The judges were given instructions in line with the defimitiaf relevancy given in
Section 9.1.2.

In order to aid the judges, a Web-based interface was créafgésent the queries
and results to the judges. Although an interface that ptedetine queries and the
search interface in a manner similar to search engines vesdect, human judges
preferred an interface that presented them the judgmenitseme-at-a-time, forcing
them to view a rendering of the web-page associated with 8&dforiginally offered
by the search engine. For each hypertext web-page, the agbwas rendered using
the Firefox Web Browser and PageSaver Pro 2.0. For each Sieriideb document,
the result was rendered (i.e. the triples, any associaxedhtthe subject, and any asso-
ciated depictions) by using the open-source Disco HyparBabwser with FirefoX
In both cases, the resulting rendering of the Web representaas saved at 469631
pixel resolution. The reason that the web-page was rendesteiad of a link given
directly to the URI is because of the unstable state of the, \&ghecially the hypertext
Web. Even caching the HTML would have risked losing much efdhaphic element
of the hypertext Web. By creating ‘snapshot’ renderingshgadge at any given time
was guaranteed to be given the same experience in the exgmeramd to be presented
with the web-page in its intended visual form. However, ode-®ffect of this is that
web-pages that heavily depended on non-standardizeddiedgies or plug-ins would
not render and were thus presented as blank screen shogsuseh

The judges were each given time to read the instructionsvas @arlier and were
then allowed a test-run on three queries, and these quedss ni@moved from the
results. During this training phase, a tutor was allowedxplan why each page
was either relevant or irrelevant. Since breaks were alliofeethe judges during the
judging session, the judges created a login, and were allaaéog-out and re-start
the experiment at the beginning of the sub-task they wer&hme.user-interface broke
the evaluation into two steps:

2The Disco Hyperdata Browser, a browser that renders Secdfeth data to HTML, is available at
http://wwd. wi wi ss. fu-berlin.de/bizer/ng4j/discol.
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e Judging relevant results from a hypertext Web seaife judge was given the
query terms created by an actual human user and an exampipagehthat a
user selected, whose full snapshot could be viewed by olickin it. A full
rendering of the retrieved web-page was presented to threnieits title and
summary (as produced by Yahoo! Search) easily viewed byutigg as in
Figure 9.1. The judge clicked on the check-box if the reswswonsidered
relevant. Otherwise, the web-page was by default recordemtrelevant. The
web-page results were presented to the judge one at a timéptes for each
query.

¢ Judging relevant results from a Semantic Web seakdbxt, the judge assessed
all the Semantic Web results for relevancy. The judge wasrgiuery terms
and data from the Semantic Web. A title was displayed byewetrg any literal
values fronr df s: | abel properties and a summary by retrieving any literal val-
ues fromr df s: comment values. Using the same interface as in the judgment of
hypertext results, as shown in Figure 9.2, the judge hadteréne whether or
not the Semantic Web results were relevant.

Search query 1: soc iology Lod OUL and resume Iarer

Example of Relevant Result

& Log i | ereate sccount
e | [aosten e pags | | hiviary

URI: http://en wikipedia. orgiwiki/Sociclogy

Sociology

N From Wikipedia. the free encyclopedia Title: Sociology - Wikipedia
1
WIKIPEDIA This article or section has multiple Summary: Fncyclopedia article on the arigin, study and research
e s iy, Plse g epImigove the methods, subfields, and important figures of sociology.
navigation article or discuss these issues onthe
talk page
= lfs tona arabile may notha Tick this box if the result is o
appropnats For Wikipedia, Tgged sinca relevant
"’\.-__/; Dictober 2008

« It may need copy editing for

Comments

S
G| search

interaction

Tagged snce Oetoher 2008:

« About Wikipedia

Figure 9.1: The interface used to judge web-page results for relevancy.

After the ratings were completed, Fliesg'statistic was taken in-order to test the
reliability of inter-judge agreement over the relevanaykiag (Fleiss, 1971). Simple
percentage agreement is not sufficient, as it does not tax@atount the likelihood
of purely coincidental agreement by the judges: Two judgeslevnaturally have an
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Search q ue ry: SOocCIo IOgy Lod out and resume later
- . URL: http://dbpedia org/resource/Timeline_of sociology
About: Timeline of sociology f" Gl
An Entity In Data Space:dbpedia.crg Title: Timeline of sociclogy
This is & timeline of sociology, See the anicle histary of socislagy far & description ef the Summary: This is a timeline of sociclogy. See the article history
development of the subjact. and the article soriology for a general description of the of Sociology for a description of the development of the subject,

subject. F i R :
i and the article sociology for a general description of the subject,
Property Value
pabstract = This 15 a timeine of sociology. See the articls histery of sociology for 2 : .
description of the developrment of the subjact, and the article sociclogy T“‘:k this box if the result is r

1 relevant

phasPhoteCollectio Comments

ridfu-garnmant

tha subject

nt les liens utiles pour une chronalogie de la

& -dire des principaux &vénerments se rapportant 9 la
wol vers les pages détaillées par annge. (i)

Next

skos subject

loal page

Browse using: Qpenkink Data Explorer | Zitgist Data Vigwer | Markles | DISCO | Tebulater
Raw Data in: (43 | BDEXML  About

Figure 9.2: The interface used to judge Semantic Web results for relevancy

expected agreement of 50%. While the most common statiséid in assessing inter-
judge reliability that corrects for chance agreement is€b«k statistic, Cohen's
statistic only applies to either two judges per sample omalsijudge making two
judgments of a single sample (Carletta, 1996). Howeveryetated Fleiss’k both
corrects for chance agreement and can be used for more tbamdges (Fleiss, 1971).
Fleiss’sk, from here on referred to only & which givenO as the observed inter-rater
agreement anH as the expected chance agreement between raters, is gizguation
9.1.

~ O-E
- 1-E
The null hypothesis is that the judges cannot distinguivaat from irrelevant re-

K (9.1)

sults, and so are judging results randomly. Overall, fohlvetevance judgments over
Semantic Web results and web-page results,0.5724 (p < .05,95% Confidence in-
terval [0.5678 0.5771), indicating the rejection of the null hypothesis and matier
agreement. For web-page results omly= 0.5216 (p < .05, 95% Confidence inter-
val [.51500.5287), also indicating the rejection of the null hypothesis anoblerate
agreement. Lastly, for only Semantic Web resudts; 0.5925 (p < .05, 95% Confi-
dence interval0.5859 0.5991)), further indicating the null hypothesis is to be rejected
and moderate agreement. So, in all cases there is ‘modagrement, which is suf-
ficient given the general difficulty of producing perfectgfiable relevancy judgments.
Interestingly enough, the difference inbetween the web-page results and Semantic
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Web results show that the judges were actuglilghtly more reliable in their relevancy
judgments of information from the Semantic Web rather thenhypertext Web. This
is likely due to the more widely varying nature of the hypettesults as compared to
the more consistent informational nature of Semantic Weblte

Were judges more reliable with entities or concepts? Ratatiag thex for all en-
tity results,k = 0.5989 (p < .05, 95% Confidence intervéd.5923 0.6055), while for
all results based on concept queries was 0.5447 (p < .05, 95% Confidence inter-
val [0.53810.5512). So it appears that judges are slightly more reliable disgng
information about entities rather than concepts, backiegctaim made by Hayes et
al. that there is more agreement in general about ‘lesstatighings like people and
places rather than abstract concepts (Hayes and HalpiB).280wever, agreement is
still very similar and moderate for both information abontiges and concepts.

However, is this disparity in agreement between entities@ncepts affected by
media type? For content about entities encoded in hypemext0.5112 ( < .05,
95% Confidence intervdD.5019 0.5205), while for information about concepts en-
coded in hypertextx = 0.5271 (p < .05, 95% Confidence interv).5178 0.5364).
Taking confidence intervals into account, there is no sigaifi difference in rele-
vance judgments between entities and concepts in hypevebdpage results. How-
ever, relevance judgments of entity information encodedife Semantic Web led to
‘substantial’ agreement, as shown ky= 0.6622 ( < .05, 95% Confidence interval
[0.6528 0.6715), while associated descriptions for concepts on the Secmafeth had
substantially less agreement on relevance, with0.5364 (p < .05, 95% Confidence
interval [0.5271,0.5457). As far as reliability is concerned, information about €on
cepts encoded on the Semantic Web is indistinguishable ¢amoept-based informa-
tion encoded in hypertext, while information about ensiteded on the Semantic Web
is much more reliably rated for relevance than concepts eewl éhe very same entities
encoded in hypertext. Although this seems unusual, uposideration it makes con-
siderable sense: Agreement on entity-based informatignbaahindered rather than
helped by multimedia and the lack of a structured focus of-pafpes, while the more
lean and information-rich Semantic Web languages leagedesbt about the primary
referent. For example, there may be disagreement amonggwadgut whether a page
selling an Earl May jazz album was ‘about’ Earl May the muaigibut the Semantic
Web would ideally separate these two things clearly, hadisginct representations
for Earl May and his music. Also, this is even a stronger \alih on the hypothesis
that on the Semantic Web, agreement on entities will be hitjtaan abstract concepts
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(Hayes and Halpin, 2008).

Given the (at least) moderate agreement across relevathgen@nts for both web-
page and Semantic Web results, pooled voting was used tesabs®ry relevance
scores for each result. For each result, if at least two othhee judges scored the
result as relevant to the query, the result itself were cmrsed relevant for the rest of
the evaluation. Otherwise, the result was considered to®levant, even if one of the
judges found it relevant. After this pooled voting proceslwas completed to test for
relevancy, a number of statistics can be gleaned from tbeaety judgments. THee-
mantic Web relevancy corpus the 200 judged queries and 2000 results derived from
searching the Semantic Web using FALCOM48le the hypertext relevancy corpus
is the 200 judged queries and 2000 results derived from seagcie hypertext Web
using Yahoo! Web searcBoth the hypertext and Semantic corpus can be combined to
create theotal relevancy corpusthecorpus of 400 judged queries and 4000 results
In the total relevancy corpus each query given is presentieg tso there are only 200
unique queries for the 400 judged results. This was donddua als to compare the
four corpora conditions (Semantic Web, hypertext, endity] concept) fairly, and each
condition had its presentation randomized. However, asre/néerested primarily in
the differing roles of entity and concept queries on the Sg#imaVeb, we will focus
on this condition only in the context of the Semantic Web aoittihe hypertext Web.

For the queries, much of the data is summarized in Table ®$igpéertext’ means
that the result was taken only over the hypertext relevangyus and ‘Semantic Web’
indicates the same for the Semantic Web relevancy corpusuli®dor ‘Entity (SW)’
and ‘Concept (SW)’ were calculated only over the Semantib Yegéevancy corpus and
percentages were taken over the results from the SemankticéMsancy corpus. This
is because we are primarily concerned with how entities amgtepts differ over the
Semantic Web, not the hypertext Web. The percentages folvessand unresolved
for ‘hypertext’ and ‘Semantic Web’ were taken over the hyperand Semantic Web
relevancy corpora in order to allow direct comparison of 8smantic Web and hy-
pertext search results. However, the percentages for “EevBnt’ (a relevant result
at the top ranking) and ‘Top Non-Relevant’ (a non-relevasuit at the top ranking)
were computed as percentages over all relevant queriessaagcludes unresolved
queries. For ease of reference, a pie-chart for the hygesvancy corpus is given
in Figure 9.3 and for the Semantic Web relevancy corpus iar€i§.4.

Resolvedqueries aregjueries that return at least one relevant reslthe top 10
results, whileunresolvedare queries that return no relevant queries in the top 10
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Results: Hypertext | Semantic Wely Entity (SW) | Concepts (SW
Resolved: 197 (98%)| 132 (66%) 70 (53%) 62 (47%)
Unresolved: 3 (2%) 68 (34%) 42 (62%) 26 (38%)
Top Relevant: 121 (61%)| 76 (58%) 47 (62%) | 29 (38%)
Top Non-Relevant] 76 (39%) | 56 (42%) 23 (41%) 33 (59%)

Table 9.3: Results of Hypertext and Semantic Web Relevance Judgments

Non-Top Relevant
Unresolved P

Top Relevant

Figure 9.3: Results of Querying the Hypertext Web.

Non-Top Relevant

Unresolved

Top Relevant

Figure 9.4: Results of Querying the Semantic Web.
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results For the total relevancy corpus, there were 71 (18%) unvesdodjueries that
did not have any results. For the hypertext relevancy corpol 3 (2%) queries
were unresolved, while 68 (34%) of the queries were unresbfer the Semantic
Web. This simply means that the hypertext search enginessalatways returned at
least one relevant result in the top 10, but for the Seman&b Wmost a third of all
gueries did not return any relevant result. This only meaesetis much that is still
to be represented on the Semantic Web. There was no inierseetween those few
gueries that were unresolved for the hypertext search eragid the numerous queries
that did not produce any results on the Semantic Web. Quira¢gave the hypertext
search engines difficulty were those like ‘fable,” since @myufor the definition of
a ‘fable’ was over-run by results about a video-game thatl ike same name. For
the Semantic Web, entity queries about specific places veith ommon names like
‘willow ridge’ or not-so-well known people like ‘monica jags’ led to no results in
the top 10, while concepts like ‘doctor’ and ‘tv’ caused fdesbs as well. The reason
some concept queries were hard to satisfy was because trengeiveb simply had
information that was too specific for the particular con¢eptch as informatioonly
on a few particular television shows in the top 10.

Another endemic problem was the take-over of common coneépames by pop-
ular products (like video-games, novels, or even housirigrgents) and companies
and music bands. Overall, on the Semantic Web it is far mdfiewlt to locate rele-
vant results about entities than concepts. Of the unredaueries for the Semantic
Web relevancy corpus, there were 47 (58%) entity queries3@n@2%) unresolved
concept queries. Apparently, there are quite a few enpeeple are interested in, such
as the ‘Wilson County News, that do not have a URI yet on the&wic Web, and
so this to some extent validates the OKKAM hypothesis of Bmicpt al. that there
are many entities that were still in need of a URI (2007a). E\ay, it appears these
entities were only about one-quarter of what users werekewy for.

Another question is how many queries had a relevant resuheis top result?
In general, 197 queries (50%) had top-ranked relevantteeful the total relevancy
corpus. However, while the hypertext relevancy corpus hatl (61%) top-ranked
relevant results, the Semantic Web relevancy corpus ordy76a(58%) top-ranked
relevant results. A lack of top-ranked relevant resultsobees particularly acute on
the Semantic Web for queries about concepts. For the Sesnaab relevancy corpus,
there were 47 (63%) top-ranked relevant queries aboutesiéind only 29 (38%) about
concepts. It appears that while search terms often dir&ttly the user to information
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about a relevant entity, for concepts this happens lesn.ofteis is likely due to there
being many concepts whose natural language term is beinbassithe name of some
other entity (such as the term ‘fable’ being used as a compame), and the fact that
many concepts are ambiguous and have multiple senses enatunal language.

What makes a more compelling case for relevance feedbalek rsumber of times
anonrelevant result was the top-ranked (top non-relevantiit@sresponse to a query.
For the entire relevancy corpus, there were 132 (33.0%)egierhere a non-relevant
result was in the top position of the returned results. Ferypertext Web relevance
corpus there were 76 (39%) queries with a non-relevant tepltiewhile for the Se-
mantic Web relevance corpus, 56 (42%) of all queries had arelewant top result.
While queries on the Semantic Web are more likely to turn upeievant results,
when a relevant query is returned, both for the hypertext Webthe Semantic Web
it is quite likely that a non-relevant result will be in theptposition of the result list.
For the Semantic Web top non-relevant results, 23 (41%)efgtkeries about entities
had a top non-relevant result, while there were 33 (59%)igs@bout concepts that
had a top non-relevant result. In particular, this meanisdbacepts were overall more
likely to have a top non-relevant result in response to ayquetdine with our earlier
insights about the different behavior of concepts andiestdn the Semantic Web.

Excluding unresolved queries, there is an average of 3.4V. 514) relevant re-
sults per query in the hypertext Web relevancy corpus andemnage of 1.93 (S.D. 2.2)
relevant results per query for the Semantic Web relevangyuso While having more
than one relevant result in the top 10 for a hypertext searghme is an advantage, hav-
ing more than one co-referential URI on the Semantic Web relalem, and with most
queries producing about two relevant URIs seems to suppetiytpothesis that on the
Linked Data Web, multiple people are actually producingtipld URIs for the same
thing. There were 80 queries that had more than one releganlty with an average
of 3.36 (S.D. 2.14) relevant results per query. With regéodiifferences between en-
tities and concepts, there were substantial differencesnhe 80 queries with more
than one relevant result in the Semantic Web relevance spgmiity queries have an
average of 2.79 (S.D. 1.59) relevant results, while congapties have an average of
4 (S.D. 2.50) relevant results. This means that abstractegia on the Semantic Web
often havemanyshared URIs, while in the case of an entity being mentionethen
Semantic Web, it usually has two URIs. From inspection oftiestwith many rele-
vant results, it appears the usual case is that DBpedia andN&bhave a substantial
amount of overlap in the concepts to which they give URIs.@xample, they have dis-
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tinct URIs for such concepts as ‘violinh{t p: / / dbpedi a. or g/ resource/ Violin

vs.http:// ww. w3. or g/ 2006/ 03/ wn/ wn20/ i nst ances/ synset - vi ol i n- noun- 1).

Likewise, most repetition of entity URIs comes from WordNetd DBpedia, both of

which have distinct URIs for famous people like ‘Charles wiar

(http://dbpedia. org/ resource/ Charl es Darw n and

http:// ww. w3. or g/ 2006/ 03/ wn/ wn20/ i nst ances/ synset - Dar wi n- noun- 1).
How is a user supposed to choose between equally authegitaRls from W3C

WordNet or DBpedia? Our information-retrieval based systiscovers which Se-

mantic Web URI better ‘matches’ the information in the reletvhypertext web-pages.

9.2 Information Retrieval Framework

In our experiment we tested two general kinds of informatietnieval frameworks:
vector-space models and language models. Indloéor-space modeflocument mod-
els are considered to be vectors of terms (usually calleddgi/@s they are usually, al-
though not exclusively, from natural language) where thigliag function and query
expansion has no principled basis besides empirical eesRinking is usually done
via a comparison using the cosine distance, a natural casopametric between vec-
tors. The key to success with vector-space models tends tioebining of the pa-
rameters of their weighing function. While fine-turning sleeparameters has led to
much practical success in information retrieval, the paians have little formally-
proven basis but are instead based on common-sense tesuiileti document length
and average document length.

Another approach, thenguage modehpproach, takes a formally principled and
probabilistic approach to determining the ranking and Wwiigy function. Instead of
each document being considered some parametrized waydeiney vector, the doc-
uments are each considered to be samples from an underigobglplistic language
modelMp, of which D itself is only a single observation. In this manner, the guer
Q can itself also be considered a sample from a language madelarly language
modeling efforts (Ponte and Croft, 1998), the probabiligtithe language model of a
document would generate the query was the comparison uncfithe document. A
more sophisticated approach to language models consltrthe query was a sam-
ple from an underlyingelevance modeadf unknown relevant documents, but that the
model could be estimated by computing the co-occurrencéefjtiery terms with
every term in the vocabulary. In this way, the query itselbwast considered a lim-
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ited sample, so the it is automatically expanded before ¢laeck has even begun by
re-sampling the underlying relevance model.

In detail, we will now inspect the various weighting and raxgkfunctions of the
two frameworks. A number of different options for the paréeng of each weighting
function, and the appropriate ranking function, will be siolered.

9.2.1 Vector Space Models
9.2.1.1 Representation

Each vector-space model has as a parameter the factbe maximumwvindow size
which is the number of words, ranked in descending orderagfifency, that are used
in the document models. In other words, the size of the vedtothe vector-space
model ism. Words with a zero frequency are excluded from the documextain

9.2.1.2 Weighting Function: BM25

The current state of the art weighting function for vectpase models i8M25, one
of a family of weighting functions explored by Roberson (Rdbon et al., 1998) and
a descendant of theidf weighting scheme pioneered by Sparck Jones and Robertson
(Robertson and Sparck Jones, 1976). In particular, weusdla version dBM25with
the slight performance-enhancing modifications used initigiery system (Allan
et al., 2000). This weighting scheme has been carefullyrapéid and routinely shows
excellent performance in TREC competitions (Craswell et2005). The InQuery
BM25 function assigns the following weight to a wagebccurring in a documerid:

n(q,D) log(0.5+N/df(q))

Dq = 9.2
" n(q,D)+0.5+ 15,5y 10g(10-+IogN) (9-2)

TheBM25 weighting function is summed for every tege Q. For everyg, BM25
calculates the number of occurrences of a tgrfrom the query in the documei,
n(g,D), and then weighs this by the length of documehof documenD in compar-
ison to the average document lengtlg(dl). This is in essence the equivalent of term
frequency intf.id f. The BM25 weighting function then takes into account the total
number of documentd and the document frequencigd$(q) of the query term. This
second component is theéf component of classicaf.id f.
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9.2.1.3 Comparison Function: Cosine and InQuery

The vector-space models have an intuitive comparison ifumab the form of cosine
measurements. In particular, the cosine comparison fumetigiven by Equation 9.3,
for a documenD with queryQ, where bothD andQ containg words, iterating over
all words.

> qQqDq

|D||Q| /quq /quZ

The only question is whether or not the vectors should be abized to have a Eu-

cogD,Q) = (9.3)

clidean weight of 1, and whether or not the query terms therasshould be weighted.
We investigate both options. The classical cosine is gigaroaine which normalizes
the vector lengths and then proceeds to weight both the geemys and the vector
terms byBM25. The version without normalization is calledjueryafter thelnQuery
system (Allan et al., 2000). Thequerycomparison function is the same@ssineex-
cept without normalization each word in the query can be idened to have uniform
weighing.

9.2.1.4 Relevance: Okapi, LCA, and Ponte

There are quite a few options on how to expand queries in @akrepace model. One
popular and straightforward method, first proposedRbgchio(Rocchio, 1971) and at
one point used by th@kapisystem (Robertson et al., 1994), is to expand the query by
taking the average of thgetotal relevant document modd®s with a documenb € R,

and then simply replacing the quegywith the topm words from averaged relevant
document models. This process is given by Equation 9.4 amddsed to a®kapt

okapiQ) = TlozpD (9.4)

Another state of the art query expansion technique is kn@iwoeal Content Anal-
ysis(lca) (Xu and Croft, 1996). Given a que with query termgy;...gx and a set
of resultsD and a set of relevant documerRsthenlca ranks everyw € V by Equa-
tion 9.5, wheren is the size of the relevant documeRdd f,, is the inverse document
frequency of wordv, andDq andD,, are the frequencies of the wordsandg € Qin
relevant documerd € R.

lca(w; Q) = 0. 1+
n

1/Iogn

id fq
Iog ERDqDW> (9.5)
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After each wordv € V has been ranked bga, then the query expanded by LCA is just
the topmwords given bylca. Local Content Analysis attempts to select words from
relevant documents to expand the query that have limitedguity, and so it does
extra processing compared to thlkea pimethod that simply averages the most frequent
words in the relevant documents. In comparison, Local Gur&ealysis performs an
operation similar in effect tof.id f on the possibly relevant terms, and so attempting
by virtue of weighing to select only wordgthat both appear frequently with terms in
gueryq but have a low overall frequencid(fy) in all the results.

The final method we will use is the heuristic method develdpe@®onte (1998),
which we callponte Like Ica, ponteranks each wordv € V, but it does so differ-
ently. Instead of taking a heuristic-approach IBkapior LCA, it takes a probabilistic
approach. Given a set of relevant documedRts D, Ponte’s approach estimates the
probability of each wordv € V being in the relevant documei(w|D), divided by its
overall probability of the word to occur in the resuRéw). Then thePonteapproach
gives eaclw € V a score as given in Equation 9.6 and then expands the quesity u
them most relevant words as ranked by their scores.

Pontdw;R) = D%RIog (Pé)\zv\lv?) (9.6)

9.2.2 Language Models

9.2.2.1 Representation

Language modeling frameworks in information retrievakesgnt each document as a
language model given by an underlying multinomial prolgbdistribution of word

occurrences. Thus, for each ward: V there is a value that gives how likely an obser-

vation of wordw is givenD, i.e. P(w|up(V)) (Ponte and Croft, 1998). The document
model distributionup (v) is then estimated using the parametgr which allows a lin-
ear interpolation that takes into account the backgrountadrility of observingwv in

the entire collectiol©. This is given in Equation 9.7.
n(w,D n(w,C

o =Yoo+ (1 20) T

The parametelp just takes into account the relative likelihood of the word a

(9.7)

observed in the given documdntcompared to the word given the entire collection of
documentsC. |D| is the total number of words in documeBt while n(w,D) is the
frequency of wordd in documentD. Further,n(w,C) is the frequency of occurrence
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of the wordw in the entire collectiorC divided by the occurrence of all wordsin
collectionC.

9.2.2.2 Language Modeling Baseline

When no relevance judgments are available, the languagelmgdapproach ranks
documentd by the probability that the quer§ could be observed during repeated
random sampling from the distributiam (). The typical sampling process assumes
that words are drawn independently, with replacement,imgatb the following re-
trieval score being assigned to document

P(QD) = Q (9.8)
(QID) quuD( )

The ranking function in Equation 9.8 is callgdery-likelihoodranking and is used
as a baseline for our language-modeling experiments.

9.2.2.3 Language Models and Relevance Feedback

The classical language-modeling approach to IR does neigaa natural mechanism
to perform relevance feedback. However, a popular extartdithe approach involves
estimating a relevance-based modglin addition to the document-based modg|
and comparing the resulting language models using infoomdheoretic measures.
Estimation ofup has been described above, so this section will describe &ys of
estimating the relevance modg{, and a way of measuring distance betwegrand
up for the purposes of document ranking.

Let R=r1...rg be the set ok relevant documents, identified during the feedback
process. One way of constructing a language mod& igfto average the document
models of each document in the set:

k k .
) = ¢ 3t = 7 5 ©9)

Heren(w,r;) is the number of times the wosd occurs in the'th relevant document,
and|r;| is the length of that document. This model is abbreviatedrafor relevance
model.

Another way to estimate the same distribution would beaicatenatell relevant
documents into one long string of text, and count word fregies in that string:

— Zillln(W,ri) 9.10
el = So (019
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Here the numeratdrk_, n(w, r;) represents the total number of times the wertcurs

in the concatenated string, and the denominator is thelesfghe concatenated string.
The difference between Equations 9.9 and 9.10 is that thedioireats every document
equally, regardless of its length, whereas the latter &lamger documents (they are
not individually penalized by dividing their contributirfgiequenciesi(w,r;) by their
length|ri|). This model is abbreviated &6 from hereon.

9.2.2.4 Comparison Function: Cross Entropy

We now want to re-compute the retrieval score of docurnebased on the estimated
language model of the relevant clags What is needed is a principled way of com-
paring a relevance modek against a document language modgl One way of
comparing probability that has shown the best performanaaripirical information
retrieval research (Lavrenko, 2008) is cross entropy. itii&ly, cross entropy is an
information-theoretic measure that measures the averagwer of bits needed to
identify the probability of distributiorp being generated i was encoded using given
probability distributionp rather tharg itself. For the discrete case this is defined as:

H(p,a) = — 5 p(x)log(q(x)) (9.11)

If one considers that theg = p and that document model distributiap = g, then
the two models can be compared directly using cross-entagpghown in Equation
9.12. This use of cross entropy also fulfills the ProbabRgnking Principle and so is
directly comparable to vector-space ranking via cosin@gmko, 2008).

—H(ur||up) = Z/UR(W>|09UD(W) (9.12)

we
Note that either thaveragedelevance modeir ayg Or theconcatenatedelevance

modelur con Can be used in Equation 9.12. We refer to the formemasnd to the
latter ag f in the following experiments.

9.3 Evaluation Metrics

The two most popular measures for determining system peeoce recall andpre-
cision, were originally introduced to compare information retakesystems. Given

that ‘positive’ R) is a relevant result and every document in the collecGorthen

Recall= % andPrecision= % In this way, a search engine with perfect recall
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would require that it retrievall the relevant resultsvhile a perfectly precise informa-
tion retrieval engine retrieved only ten relevant restiiswever, note that recall is not
penalized by retrieving both relevant and irrelevant doents, so that perfect recall
could be achieved by retrievirggl documents, relevant and irrelevant, and presenting
them to the user. Due to this, precision is usually regardede@most important statis-
tic, particularly as the Open World Principle states th& impossiblefor evaluations

to categorizall relevant results on the Web for a given query. Also, standatibns

of recall and precision have no clear cut way of dealing wéthked results in ad-hoc
information retrieval, such that a relevant result at th& fiank is more important than

a relevant result at the last rank. Due to these featuregarhiration retrieval systems,
the metrics ofmean average precisicand an accompanying significance test known
as theWilcoxon signed-rank testave been developed, which are the ones we employ
to evaluate our system.

9.3.1 Mean Average Precision

In order to deal with ranked data, precision is modified tptseision at rankp. Note
that this measure takes into account recall as well, as digion at one rank is greater
than precision at another rank, the first rank wilohave greater recall than the second
rank. With our system, given that users only look at the toprésults (Baeza-Yates
and Ribeiro-Neto, 1999), we will focus on precision at rafkot less.

To give an intuitive example of ranked precision, a quickegke is given. Assume
our search engine had returned 6 out of 10 relevant reshids,the precision at rank
10 would be 06. If the first three results were relevant and then only teetlaree re-
sults were relevant, precision at rank 1 would b@, precision at rank 3 would still be
1.0, precision at rank 5 would be@) precision at rank 8 would be®) and precision
at rank 10 would return to.8. In order to calculate a single evaluation, the precision
at each rank with a relevant result can then be averaged hytnber of relevant re-

sults. So, in our exampl:2HLOELOLSE5610 regyits in an average precision oF 8.
However, as information retrieval systems generally nediktevaluated across many
different queries, then for each query, the average pmatetross all queries is aver-
aged, producing thmean average precisioiMAP), the standard single digit method
for evaluating information retrieval systems. When conmgasystems over multiple
gueries, often the term ‘mean average precision’ is justteshedaverage precision

a convention we shall employ since we do not perform any persganalysis. When
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combined with average precision at various ranks, thisigesvan overview of a sys-
tem’s performance over a large number of queries. In ordestoprehensively test the
effectiveness of various parameters, we will test over naemage precision at rank
10, and for the best performing parameters, we will inspesamaverage precision at
rank 1. This tests the ability of the system to return a rele@emantic Web URI at

the ‘top’ rank.

9.3.2 Wilcoxon Sign Test

Another problem in evaluating information retrieval systeis evaluating the signifi-
cance of the results. In particular, standard significaststike thet-testdo not apply
to information retrieval. First, it is generally thoughattthe retrieved data is not sam-
pled from a normal distribution. We have shown in Chapteiat tihe amount and kinds
of data on the Semantic Web generally follow the non-nornoalgy law distribution.
Second, the-testmakes the assumption that the underlying scale istenval scale
such that the differences between the rank of each resigbane meaningful constant,
such that a precision at rank 2 is precisely three times assgras precision at rank
6. However, it has been found that users value highly rangsdlts, but not in any ab-
solute manner, so that search engine rankings are bettagtihof as arordinal scale
where the magnitudes of differences do not matter (BaeresYand Ribeiro-Neto,
1999). One test that allows significance testing but onlymes an ordinal scale and
does not assume the data has been sampled from a normddudistriis theWilcoxon
signed rank testas given by Equation 9.13 (Baeza-Yates and Ribeiro-N&@9)1L

W= gRi (9.13)

In this equation, there am samples to be compared, where eatha non-zero
difference.R; is then the signed (positive or negative) difference betwibe two sys-
tems. So a system whose parameters gave it a mean averagepret. 50 compared
to another set of parameters that had a mean average pnecisit® would then have
a signed difference oR0, while the reverse comparison would have a signed differ-
ence of—.20. Once then has been calculated from a Wilcoxon testp-&alue for
rejecting the null hypothesis (that the two sets of pararsetere the same) at some
significance level can be calculated. We shall use the siginifie level otx = 0.05,
and unless explicitly otherwise stated, the Wilcoxon tesit aiways be comparing
whatever parameters or results are under scrutiny tbeélgerforming parameters. If
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the result is théestresult, then the test is with respect to thest baselinparameters.
For every group of tests, the best baseline will be expjicddnoted as such.

9.4 Feedback Evaluation

9.4.1 Hypertext to Semantic Web Feedback
9.4.1.1 Results

A number of parameters for our system were evaluated tordetewhich parameters
provide the best results. For each of the parameter conimsatwe compared the
use of relevance feedback to a baseline system which didseotalevance feedback,
yet used the same parameters with the exception of any relevi@edback-related
parameters. The baseline system without feedback can alsorsidered an unsuper-
vised algorithm, while a relevance feedback system candoggtit of as a supervised
algorithm. For example, the relevant hypertext web-pdgean be considered to be
training data, while the Semantic Web d&awe wish to re-rank can be considered
to be test data. The hypertext web-pages and Semantic Wabadatdisjoint sets
(DNR=0). For evaluation we used mean average precision (MAP) \wilstandard
Wilcoxon sign-test, which we will often just call ‘averageepision.’

For vector-space models, tbh&api Ica, and ponterelevance weighting functions
were all run, each trying both thequeryandcosinecomparison functions. The pri-
mary parameter to be varied was tWendow sizgm), the number of top frequency
words to be used in the vectors for both the query model andidbeament models.
Baselines for botltosineandinquerywere run with no relevance feedback. The pa-
rameterm was varied over 3.0,20,50,100,300, 1000 3000. The results in terms of
mean average precision are given in Figure 9.5.

Interestingly enoughokapirelevance feedback weighting with a window size of
100 and annquerycomparison was the best, with a mean average precision®14.8
(p < .05). It outperformed the baseline mfquery, which has an average precision
of 0.5595 p < .05). Overalllca did not perform as well, often performing below the
baseline, although its performance increased as the wist@increased, reaching an
average precision of 0.6262 with= 3000 (p < .05). However, given that a window
size of 10,000 covered most documents, increasing the wirsiee will not likely
result in better performance frolna. The ponterelevance feedback performed very
well, reaching a maximum MAP 0.8756 with a window size of 3Gng inquery
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Figure 9.5: Average Precision Scores for Vector-space Model Parameters: Relevance Feed-

back From Hypertext to Semantic Web

weighing, and so was insignificantly different fromquery (p > .05). Lastly, both
ponteandokapiexperienced a significant decrease in performanoeweas increased,
so it appears that the window sizes of 300 and 100 are indeedalpAlso, as regards
comparing baselinegqueryoutperformecdtosine(p < .05).

For language models, both averaged relevance modeénd concatenated rele-
vance modelsf were investigated, with the primary parameter bamghe number
of non-zero probability words used in the relevance modeé parametem was var-
ied between 100, 300, 1000, 3000,and 10000. Remember thgutry modeis the
relevance model for the language model-based frameworkss Best practice in rel-
evance modeling, the relevance models were not smoothed,fmumber of different
smoothing parameters farwere investigated for the cross entropy comparison func-
tion, ranging frome between .01, .1, .2, .5, .8, .9, and 0.99. The results arengive
Figure 9.6.

The highest performing language model wawith a cross-entropg of .2 and a
m of 10,000, which produced an average precision of 0.861ichwiias significantly
higher than the language model baseline of 0.50#3 (.05) using again am of
10,000 for document models and with a cross entp¥.99). Rather interestingly,
tf always outperformedm, andrm’s best performance had a MAP of 0.7223 using an
€ of .1 and am of 10,000.
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Figure 9.6: Average Precision Scores for Language Model Parameters: Relevance Feedback

From Hypertext to Semantic Web

9.4.1.2 Discussion

Of all parameter combinations, tlekapirelevance feedback works best in combi-
nation with a moderate sized word-windom & 100) and with thanqueryweight-

ing scheme. It should be noted its performance is identicath fa statistical stand-
point with ponte but as both relevance feedback components are similar@hdibe
inquerycomparison an@8M25 weighing, and not surprisingly the algorithms are very
similar. Why wouldinqueryandBM25 be the best performing? The area of optimizing
information retrieval is infamously a black art. In faBiM25 andinquerycombined
present the height of heuristic-driven information retaiealgorithms as explored in
Robertson and Sparck Jones (1976). While its performarmease ovelca is well-
known and not surprising, itis interesting tig¥125 andinqueryperform significantly
better than the language model approach.

The answer is rather subtle. Another observation is in onaete that for vector
models,inqueryalways outperformedosine and that for language modéels always
outperformed'm. Despite the differing frameworks of vector-space modeals lan-
guage models, botbosineandrm share the common characteristic of normalization.
In essence, botbosineandrm normalize by documentsosinenormalizes term fre-
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guencies per vector before comparing vectors, wimeonstructs a relevance model
on a per-relevant document basis before creating the aveetgyance model. In con-
trast,inqueryandt f do not normalizeinquerycompares weighted term frequencies,
andtf constructs a relevance model by combining all the relevalooeiments and
then creating the relevance model from thes poolof all relevant document models.

Thus it appears the answer is that any kind of normalizatiolebgth of the doc-
ument hurts performance. The reason for this is likely bsedhbe text automatically
extracted from hypertext documents is ‘messy, being of ¢mality and bursty, with
highly varying document lengths. As observed in Chapteh& amount of triples in
Semantic Web documents follow a power-law, so there arelywldrying document
lengths of both the relevance model and the document mddaksto these factors, it
is unwise to normalize the models, as that will almost celyalampen the effect of
valuable features like crucial keywords (such as ‘Parigl ‘@ourist’ in disambiguating
variousei f f el -related queries).

Then the reasoBM25-based vector models in particular perform so well is,that
due to its heuristics, it is able to effectively keep trackaoferm’s both document
frequency and inverse document frequency accurately. ,Alsbke most other al-
gorithms,BM25 provides a slight amount of rather unprincipled nondnitg in the
importance of the various variables (Robertson et al., 20T4is is important, as it
provides a way of extenuating the effect of one particulaapeeter (in our case, likely
term frequency and inverse term frequency) and then magsmeering the power
of another parameter (in our case, likely the document lendtvhile BM25 can be
outperformed normally by language models (Lavrenko, 2008)REC competitions
featuring high-quality samples of English, in the non-naleonditions of comparing
natural language and pseudo-natural language terms @drfrom structured data in
RDF, it is not surprising thadtkapi whose non-linearity allows certain highly relevant
terms to have their frequency ‘non-linearly’ heightenechvides better results than
more principled methods that derive their parameters bgroigg the messy RDF and
HTML-based corpus as a sample from a general underlyingikzgg model.

9.4.2 Semantic Web to Hypertext Feedback

In this section, we assume that the user or agent progranohe®w accessed or oth-
erwise examined the associated descriptions from the Seamaab URIs, and these
associated descriptions then form relevance corpus thahea be used as relevance
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feedback to expand a query for the hypertext Web. In this tey/feedback cycle has
been reversed.

9.4.2.1 Results
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Figure 9.7: Average Precision Scores for Vector-space Model Parameters: Relevance Feed-

back From Semantic Web to Hypertext

The results for using Semantic Web documents as relevaadbdek for hypertext
Web search are surprisingly promising. The same paramas$eegplored in Section
9.4.1.1 were again explored. The average precision résulgctor-space models are
given in Figure 9.7. The general trends from Section 9.4akefe similar in this new
data-set. In particulagkapiwith a window size of 100 and thequerycomparison
function again performed best with an average precision.®ZB ( < .05). Also
ponteperformed almost the same, again an insignificant differdram okapi pro-
ducing with the same window size of 100 an average precigior6@31 (p > .05). Uti-
lizing again a large window of 3,000;a had an average precision ab6359 (p < .05).
Similarly, inqueryconsistently outperformecbsinein comparison, withnqueryhav-
ing a baseline average precision of 0.4643<(.05) in comparison with the average
precision ofcosinebeing 0.3470) < .05).

The results for language modeling were similar to the resultSection 9.4.1.1
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and are given in Figure 9.8, although a few differences amthn@pmment. The best
performing language model was with am of 10,000 and a cross entropy smoothing
factor € to .5, which produced an average precision of .654%(.05). In contrast,
the best-performingm, with am of 3,000 anc=.5, only had an average precision of
0.4858 p < .05). Thet f relevance models consistently performed better tharele-
vance modelsg < .05). The baseline for language modeling was also fairly potr

an average performance of 0.4284< .05). This was the ‘best’ baseline using again
anmof 10,000 for document models and cross entropy smoothafigd9. The general
trends from the previous experiment then held, except thetmnng factor was more
moderate and the difference betwadnandrm was even more pronounced. How-
ever, the primary difference worth noting was that bestqrenfingt f language model
outperformed, if barely, thekapi (BM25 andinquery) vector model by a relatively
small but still significant margin of .0126. Statisticalliie difference was significant
(p < .05).
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Figure 9.8: Average Precision Scores for Language Model Parameters: Relevance Feedback

From Hypertext to Semantic Web

9.4.2.2 Discussion

Why istf relevance modeling better th&M25 andinqueryvector-space models in
using relevance feedback from the Semantic Web to hyp@riex¢ high performance
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of BM25 andinquery has already been explained, and that explanation about why
document-based normalization leads to worse performatiltéads. Yet the rise

in performance ot f language models seems odd. However, it makes sense if one
considers the nature of the data involved. Recalling Chaptthere are two distinct
conditions that separated this data-set from the moredypatural language samples
as encountered in TREC (Hawking et al., 2000). In the casesioigurelevant hy-
pertext results as feedback for the Semantic Web, the ml@lacument model was
constructed from a very limited amount of messy hypertetd, dahich had many text
fragments, with a large percentage coming from irrelevaxtuial data to deal with
issues like web-page navigation. This was then comparadsiggemantic Web data.
However, in using the Semantic Web for relevance feedbaelsetissues are reserved:
the relevant document model is constructed out of relatipeistine Semantic Web
data and compared against noisy hypertext documents.

Rather shockingly, as the Semantic Web data is mostly mirhigh-quality cu-
rated data from sources like DBpedia, the actual naturgidage fragments found on
the Semantic Web, such as Wikipedia abstracts, are mucér [setinples of natural
language than the natural language samples found in hyxpeRearthermore, the dis-
tribution of ‘natural’ language terms extracted from RDFe (such as ‘sub class of’
from rdf s: subC assO ), while often irregular, will either be repeated very héavi
or fall into the sparse long tail. These two conditions caentbe dealt with by the
generative f relevance models, since the long tail of automatically geteel words
from RDF will blend into the long tail of natural languagertes, and the probabilis-
tic model can properly ‘dampen’ without resorting to heticiglriven non-linearities.
Therefore, itis on some level not surprising that even hygxéieb search results can
be improved by Semantic Web data, because used in combinaitilo the right rele-
vance feedback parameters, in essence the hypertext sgayicte is being ‘seeded’
with high-quality structured and accurate descriptiorthefreferent of the query to be
used for query expansion.

9.4.3 Evaluating Deployed Systems

However, one area we have not explored is how our systemrpesfagainst state of
the art systems. The performance of relevance feedbaclctio8€.4.1.1 and Section
9.4.2.1 was only compared to baselines that were versionarofveighting function

without a relevance feedback component. While that pdaiduaseline is principled,
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the obvious other needed comparison is against actual yegplcommercial or aca-
demic systems. So we compare the best parameters of thensggtanst actually
deployed systems. The obvious baseline to choose to tassagathe Semantic Web
search engine, FALCON-S, from which we derived our origld@mantic Web results
used in both the analysis of the Semantic Web in Chapter 7ratiteiexperiment in
Section 9.1. We used the original ranking of the top 10 reggilten by FALCON-S
to calculate its average precision, 0.6985. We then condpaméh the best baseline,
inquery, as well as the besbkapiwith inqueryandm = 100) feedback based system
in Figure 9.9. As shown, our feedback based system had signilfy (p < .05) better
average precision (0.8914) than both FALCON-S (0.6985) thedbaseline without
feedback p < .05).
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Figure 9.9: Summary of Best Average Precision Scores: Relevance Feedback From Hypertext

to Semantic Web

Average precision does not have an intuitive interpretati@sides the simple fact
that a system with better average precision will in genesVdr more accurate results
closer to the top. In particular, one scenario we are intedas is havingnly relevant
RDF data accessible from a single URI returned as the toptyesuthat this result
is easily consumed by some program. For example, given drelséamnesia night-
club ibiza, a program should be able to consume RDF retufread the Semantic
Web to produce with high reliability a single map and operinges for a particular
nightclub in Ibiza in the limited screen space of the browsetead of trying to dis-
play structured data for every nightclub called ‘amnesiahie entire world. In Table
9.4, we show that for a significant minority of URIs (42%), FBON-S returned a
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non-relevant Semantic Web URI as the top result (‘Non-Reievop’). Our feedback
system achieves an average precision gain of 20% over FAL-G@Nreturning a rel-
evant result in the top rank (‘Relevant Top’). While a 20%rgai average precision
may not seem huge, in reality the effect is quite dramatipamicular as regards boost-
ing relevant URIs to the top rank. So in Table 9.4, we presesults of how our best
parameter®kapi— inquerywith m= 100 lead to the most relevant Semantic data in
the top result. In particular, notice that now 89% of resdlgaeries now have relevant
data at the top position, as opposed to 58% without feedbBais would result in a
noticeable gain in performance for users, which we wouldeglows Semantic Web
data to be retrieved with high-enough accuracy for actuplayenent.

While performance is boosted for both entities and con¢épesmain improve-
ment comes from concept queries. Indeed, as concept qaeeesten one word and
often ambiguous, not to mention the case where the name afa@epbhas been taken
over by some company, music band, or product, it should nethgarising that results
for concept queries are considerably boosted by relevasmibfick. Results for entity
gueries are also boosted, and are now the most difficult kindRd for our system
to disambiguate. A quick inspection of the results reveads the entity queries that
gave both FALCON-S and our feedback system problems werelynaery difficult
gueries which have a number of Semantic Web URIs that alleskinilar natural
language content in their associated descriptions. An pleamould be a query for
‘sonny and cher, which results in a number of distinct Semantic Web URIse on
for Cher, another one foSonny and Chethe band, and another for “The Sonny Side
of Cher, an album by Cher. For concepts, one difficult comeegs the query ock.
Although the system was able to disambiguate the musicaksieom the geological
sense, there was a large cluster of Semantic Web URIs formac, ranging from
Hard Rockto Rock Musido Alternative RockWith a large cluster of URIs with sim-
ilar content encoded in their associated descriptions, i surprising that both our
system and FALCON-S had difficulty with certain queries.

Although less impressive than the results for using hypeeb-pages for rele-
vance feedback for the Semantic Web, the feedback cycle tlhensemantic Web to
hypertext does improves significantly the results of evenroercial hypertext web-
engines, at least for our set of queries about concepts atitteen The hypertext
results for our experiment were given by Yahoo! Web Searochply called ‘Ya-
hoo!’), and we calculated a mean average precision for Yatmbe 0.4039. This is
slightly less than our baselinequeryranking, which had an average precision of of
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Results: Feedback | FALCON-S
Top Relevant: 118 (89%)| 76 (58%)
Top Non-Relevant: 14 (11%) | 56 (42%)
Top Non-Relevant Entity: | 9 (64%) | 23 (41%)
Top Non-Relevant Concepf:5 (36%) | 33 (59%)

235

Table 9.4: Table Comparing Hypertext-based Relevance Feedback and FALCON-S

0.4643. One might wonder why Yahoo! would not usaraqueryvector-space model

to optimize their own system in order to achieve better perémce. The reasoning is

relatively straightforward: Yahoo! and other commercishich engines must return

results within seconds, and doing vector-space comparigbthe results in order to

re-rank would take too long. While the exact algorithm behahoo! is unknown,

it is likely to be some version of PageRank in combinatiorhvathighly-optimized

for performancéBM25. Therefore, the similar precision for Yahoo! andquerymake

sense. As shown in Figure 9.10, our feedback based systeanhakrage precision
of 0.6549 and so performs significantly € .05) better than Yahoo! angh( .05) the

baselinanquerysystem.
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Figure 9.10: Summary of Best Average Precision Scores: Relevance Feedback From Seman-

tic Web to Hypertext
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9.5 Discussion

These results are not in need of a large discussion, as teagtyckhow our relevance
feedback method works significantly better than variouglraess, both internal base-
lines and state of the art commercial hypertext search esgnd Semantic Web search
engines. The parametrization of the precise informatitmese&l components used in
our system is not entirely arbitrary, as argued above ini@e&.4.1.2 and Section
9.4.2.2. The gain of our relevance feedback system, a regged 9% in average pre-
cision over the engine FALCON-S, intuitively makes the igpibf our system to place
the correct URI in response to a query acceptable for moss.u3dne most difficult
step is to select the ‘right’ Semantic Web URI for the useggah and in this regard,
even small differences can make a huge impact, so an impevietm 89% average
precision for a given natural language query makes a laftgreince.

Second, by incorporating human relevance from the Sem#relr, we make sub-
stantial gains over state of the art baseline systems foertgxt Web search. One
important factor is the constant assault of hypertext $eangines by spammers and
others. Given the prevalence of a search engine optimizatid spamming industry,
it is not surprising that the average precision of even a cernial hypertext engine is
not the best, and that it performs less well by a mean averaggsmpn of 29% than
Semantic Web search engines. Semantic Web search engivees much smaller
and cleaner world of data to deal with than the unruly hypértgeb. Thus, even
without relevance feedback from the Semantic Web, an aeepagcision of 69% is
impressive, although far from the almost of 89% precisiat ttan be achieved using
relevance feedback from the hypertext Web. Improving higxéMeb search is dif-
ficult even with relevance feedback. Even with the help oéwvahce feedback from
the Semantic Web, hypertext search is unlikely to achieae-perfect results anytime
soon.

9.6 Conclusion

The final results of our experiment unequivocally demomnstthat our approach of
using feedback from hypertext Web search helps users disgelevant Semantic
Web URIs and associated descriptions. The gain is signtfmasr both baseline sys-
tems without feedback and the state of the art page-ranidlbasehanism used by
FALCON-S and Yahoo! Web search. These results, due to thefisnt and ran-
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domized number of queries used and the fact that relevadgenents involved three
judges, point to a high reliability for these results, so agédireason to be believe the
results will scale. The operative question is: Why doeswask? It is precisely be-
cause the sangensds encoded in hypertext and the Semantic Web results theg the
two disparate sets of data be used to aid each other. As tagainseems, the philo-
sophical work in Chapter 3 on sense and reference laid thendrfor improved search
performance.

The key reason why we have improved search performance todihé where it
should be able to find the ‘best’ relevant URI for an entity oncept is because we
have used relevance feedback for disambiguating concept®mtities. There has
been considerable previous research in disambiguatirigesrin the Web. Some of
the work consists of finding common patterns to disambigpiadper names in general
from other natural language words, such as the technologgmy#oy to determine the
presence of entities in the query log (Mikheev et al., 1988))e further research at-
tempts to link these named entities to their correct senggvas in a list of senses
in some knowledge representation (Vu et al., 2007). Cumesgarch in entity dis-
ambiguation, as exemplified by the approach of Nguyen and Gs® the previous
identification of names for entities as a basis to disamhegnamed entities whose
sense is unknown (2008). However, this stream of entityndisguation research has
a number of limitations, being dependent on a pre-existmg\edge representation
of some sort that literally lists the senses, be it a formablagy or a more informal
thesaurus or even just some textual corpus. These teclnageeusually evaluated
over a corpus such as news stories where the number of engittound and so can
be correlated with the pre-existing knowledge represemgéNguyen and Cao, 2008).
This general methodology ignores the point made by Mastertinat the senses of
English words are fundamentally open-ended, such thaspaoly can infect even the
most mundane of entity names over time (Wilks, 2005a). Agadtby Wilks (Wilks,
2005b), this applies to knowledge representations as feelgfter decades of devel-
opment even the formal terms used in Cyc are experiencingf#l id terms of their
sense. While in natural language and in formal languages déhe Web, this ability
for names to change meaning and for new names to appear leapatively slowly
over the lifetime of an individual, on the Web new entity nanagpear all the time,
and previously stable names are ‘cannibalized’ by newiestiin a regular basis. This
was observed in our analysis of the query logs in Chapter 7M&sterman’s thesis
about the open-ended number of senses is even more imporntdiné Web than it is
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in natural language.

Our technique succeeds insofar as it incorporates justdbessary amount of dis-
ambiguation needed, without fully disambiguating a namieafoentity or concept to
some pre-existing bounded knowledge representation. fitire @oint of the Seman-
tic Web is that knowledge representation is open and unkexdjrahd thus new senses
with their attendant descriptive knowledge represematio RDF may be added to
the Semantic Web at any point. Given any new name with a séniseljkely that
information that connects that name to its sense it is likelype found somewhere
on the Web by an hypertext search engine. Thus, our technguapplying an rel-
evance feedback between hypertext web-pages on the oged-gveb to the equally
open-ended Semantic Web knowledge representation psesgamneraltechnique for
sense disambiguation of names on the Web, although ourimgrs show that the
senses in the Semantic Web trail far behind the senses inygiertext Web, as only
2% queries could find no relevant sense information on thettgpt Web, while 34%
of the queries could not find a sense as the Semantic Web. Howerthose queries
where at least one sense could be found on the Semantic Welzamwe determine
what is the best URI for that sense? Crucially, the querieghbgnselves are usually
ambiguous as regards sense. The URIs also may have mamgulifidades of senses.
For example, is a WordNet URI for the Eiffel Tower a sense lierterm ‘Eiffel Tower’
while somehow a DBpedia URI for the Eiffel Tower is a senseHifiel Tower itself?
Do these two URIs share the same sense, or only the same ssoged degree? What
if the URI is connected to some information that is incoryeat some information that
is correct, about some particular sense? These questidkes tima problem of sense
disambiguation much less of a simple matching problem betwemed entities and
senses, but more of a ranking of senses.

We employ our Wittgensteinian intuition that the context\pded by the click-
ing of the user on web-pages can provide not complete namigg-disambiguation
— which would require some closed list of senses — buntiremum disambiguation
necessary to get the task at hand compledair technique of relevance feedback is
in fact a form of sense disambiguation. Furthermore, we tadeeaccount the open-
ended nature of senses by providing the lists of Semantic Wrls for senses as a
ranking of URIs, with the degree of relevance of the senséefquery being — if
our algorithm performs well — approximated by its place ia thnking of search re-
sults. We clinch the sense disambiguation necessary siecerweially provide for
the judges making the relevance judgments in Section 9..k8apshot’ of the rele-
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vant web-page clicked on by the original user who enteredjtieey in addition to the
guery keywords. Our experiment has a very strict definitibrelvance that confines
the judges to only clicking on web-pages that definitely steasense, and our exper-
iments showed judges had agreement on this task, and saregreen the senses of
web-pages. Then, the entire list of clicked web-pages themused as the necessary
context needed to counter the sparsity of context given bygtlery keywords them-
selves. While this list of clicked web-pages may not provddeugh context to make
the sense of the desired entity or concept completely urguobs, it provides enough
context to make iunambiguous enoughThis position is in line with our Wittgen-
steinian public language position that does not seek tamdita ambiguity, but only to
alleviate it as much as needed. The re-ranking of the reduBeenantic Web URIs by
relevance feedback then takes this new disambiguatioexbanh board. The results
given in Section 9.4.3 demonstrate that this method clisthe necessary disambigua-
tion information as human judges believe the results areelhethe ‘best’ Semantic
Web URI is then not one that simply ‘stands-in’ for the sensestead, the ‘best’
Semantic Web URI for a sense is one whose knowledge repagggnmatches the
aggregated relevant information in the hypertext web-paigéormation that crucially
disambiguated among an open-ended continuum of senses.

One can imagine a new and improved day in the life of the Sem&veb if our
system was deployed on a large scale. Prior to our systerhedddmantic Web there
was little if any attempt to share and re-use URIs, primatig to an inability to find
them. Suppose Ralph was to visit the Eiffel Tower and warteeference it in some
RDF triples produced by his Semantic Web-aware calendanpig software and then
graph merge these triples with other triples, so he couldngBpitously discover his
friend Dan Brickley had just moved from Bristol to Paris. Hower, he would have
to find the best URI for the Eiffel Tower, disambiguating thRIUor the Eiffel Tower
itself from that of the filmA View from the Eiffel TowerAlso, Ralph would need to
find a URI for Dan Brickley the Web developer, making sure disambiguated from
the URI for Dan Brickley the fashion model. He could use a S#maNeb search
engine like FALCON-S, but he would have to manually dig tlglowather unfriendly
RDF triples, and Ralph is not a Semantic Web expert. Howevin, our system he
can seamlessly use natural language queries in a normatteypsearch engine to
find Semantic Web URIs and relevant information about théeEffower. Does he
want the latitude and longitude of the Eiffel Tower? All Ralpas to do is type in
ei ffel tower and begin clicking on results as he normally does when helsesr
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the Web. By simply clicking on a result for the Eiffel TowerkRaris as opposed to the
movie, he resolves a Semantic Web URI for the Eiffel TowenfidBpedia and gets
valuable information about it, such as its latitude and ltude 48. 8583, 2.2945

and location in Paris. When he wishes to correlate this détahis friends, when he
types indan bri ckl ey into a search engine, Ralph clicks on Dan’s homepage. Dan’s
information, such as latitude and longitude and his beirfggns on the dates Ralph is

in Paris, emerges. Also, Ralph notices that in an almose éashion, as the Semantic
Web information is consumed by his calendar program, hisckaasults in the search
engine improve. Ralph has stepped into the ‘virtuous cyai¢he Semantic Web and
Web search (Baeza-Yates, 2008).



Chapter 10
Conclusion and Future Directions

Language is the body of the min&inton Pannekoek(1912)

10.1 Conclusion

As described in the introduction to the thesis, we have gbhah a thorough analysis
of the central problem of the Semantic Web and a practicaltionl. Here we will
describe how we arrived at an analysis of the theoreticddlpro via the contributions
of each chapter. We will also discuss whether or not our esgging solution to the
problem is sufficient, namely by discussing some of the deskb of our system.
Lastly, we will briefly demarcate some space opened for &tieoretical research by
the thesis.

The main theoretical problem confronting the Semantic Wepairticular and the
Web is ‘what does a URI refer to?’ In order to analyze and anskie question, we
employed previous work in the philosophy of language. Afgking the initial ques-
tion in Chapter 1, in order for the question to be taken sehgin Chapter 2 we gave
a brief overview of the development of the Web. The historyhaf Web was traced
from from Licklider's ‘Man-Machine Symbiosis’ hypothesitirough to Douglas En-
gelbart’'s ‘Human Augmentation Project’ and finally to thenfaar hypertext Web and
the Berners-Lee’s vision for URIs to be universal identdfieFar from a detour, this
chapter sets up the crucial notion that architecture of tieé ¥8elf should be a first-
class citizen of investigation. In Chapter 3, we step badak present a sketch of a
unified terminological account of the philosophy of infotina and the philosophy of
language. The main contribution of this chapter was oufffiexation of Dummett’s
neo-Fregean doctrine of sense and reference, which we eéggdoy showing that nat-
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ural language igustone possible language in which the distinction betweenesand
reference appears, and so the distinction between sensefarghce is also present in
any exchange of information, including those of computeramunicating via formal
languages. In Chapter 4 we exemplify the analysis put fatwaChapter 3 by laying
out the architecture of the Web, which consists of a set afi$esuch as ‘resource’ and
principles such as the ‘Principle of Linking’ that define ieal interactions of those
terms, using terminology from the philosophy of language iaformation. Most im-
portantly, we claim that issues of meaning can be brokenthdwo separate issues
of sense and reference. We claim a URI is an identifier for skimeeof content inde-
pendent of a particular encoding, and so a URI identifies aesen

In Chapter 5, we show how the project of the Semantic Web aliydollows from
the hypertext Web, by demonstrating how the primary Serodléb language, RDF,
is an application of Web architecture to the much older kieolge representation of
semantic networks. Our analysis of the Semantic Web in tefmphilosophy of lan-
guage and information leads to a new insight, that the proldé determining the
sense and reference of URIs is fundamentallyuhsolvedoroblem put forward by the
Semantic Web. Also, in Chapter 5, we acknowledge Karencgpiones'’s critique of
the Semantic Web as a mere repetition of logic-based cldsaitificial intelligence.
However, we escape unscathed from her criticism, sincesa®tilURIs as names for
things is the reahewclaim of the Semantic Web, not any particular knowledgeeaepr
sentation scheme. So it is precisely within the realm of UiRé technicaladvance
must be made.

In Chapter 6, we analyze the two most prominent positiongterence and URISs.
The first position, the logicist position advanced primably Hayes, states that for
the Semantic Web, the meaning of a URI is given by whateverat®dsatisfies the
formal semantics of the Semantic Web. This position is shtmlve a direct descen-
dant of the philosophical descriptivist theory of refereneamely that the referent of
a name is given by whatever satisfies the descriptions atedavith the name, as put
forward by Carnap, Russell, and Tarski. However, the pratfailure in deployment
of the early Semantic Web seems to vindicate the predicbbSparck Jones that any
purely logicist approach was doomed to failure. Anothertpmsis the direct refer-
ence position of Berners-Lee, which states that the referdes URI is whatever was
intended by the owner of the URI, which is a direct philosgphidescendant of the
causal theory of reference, that any name refers via sonsakahain directly to a
referent, as championed by Kripke and Putnam. However, altieet observation of
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the principles of Web architecture to the Semantic Web anads-Lee’s direct ref-
erence position, it appears that a new second generatitre &@mantic Web, known
as Linked Data, is experiencing large growth. In Chapter & da the first empirical
large-scale study of this new Linked Data Web, using qudr@sa a large hypertext
search engine to sample the Semantic Web. While we find thay wfethe principles
of Web architecture are actually being followed, we alsceobs that with the tremen-
dous release of data on the Web in the form of Linked Data tisestdl| very little reuse
or sharing of URIs, so that the same referent will tend to hmau#iple URIs. Instead
of solving the problem, with the direct reference positisargone simply mints their
own URIs, and little communication or merge data happensisTwe have shown so
far in the thesis our analysis of the problem, namely thatSemantic Web is a kind
of language that can be defined by its conformance to the prinples of Web archi-
tecture, but nonetheless inherits the problems regardingeference and meaning
from the philosophy of natural language

In Chapter 8, we lay out a solution to the question of ‘whatd@&RI refer to?’ in
the form of a new philosophical position based on Wittgeinstad a practical applica-
tion based on applying relevance feedback from hypertextbeengines to discover
Semantic Web URIs. This public language position holds tiratSemantic Web is a
form of language, and as a language exists as a mechanisro-todmation among
multiple agents, then the meaning — and so the sense — of aslR# use of the URI
by a community of agents. We argue for this by noting that hbéhcausal and de-
scriptivist theories of names attempt to banish the notfease in favor of building
an entire theory of meaning on top of only reference, andttiet lack of success on
the Semantic Web points to a return to the notion of a Frege@tiqgoand objective
notion of sense. Then we argue that if the Semantic Web warlis used as aew
language of URIs, then it has no alternative but to build d#ilceady-existing natural
languages and activities such as hypertext Web searchisludim, the Semantic Web
needs a way to query for a natural language name for some iooicentity and get
precisely the ‘best’ URI for the concept or entity. As shownGhapter 7, currently
state of the art Semantic Web search engines only returewargl Semantic Web URI
in return to a query 58% of the time. Therefore, we proposelsolution to the
problem; since both hypertext web-pages and Semantic Welattaut the same ref-

erent share the sansenseas defined in Chapter 3, regardless of their encoding, we

can use relevance feedback from the hypertext Web searéhesnigp bootstrap the
Semantic Web. Finally, in Chapter 9 we test a deployment @fifstem on a subset
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of the queries for concepts and entities used in Chapter thgUsiman subjects to
manually judge the relevance of both Semantic Web data apdrtext web-pages in
response to a query, we show that our system successfuliythuseelevance feedback
from hypertext web to boost the discovery of relevant Semnaftb URIs for con-
cepts and entities. After exploring relevant parametaus sgstem performs better in
terms of average precision than a baseline without feedaackell as FALCON-S,
producing a relevant Semantic Web URI 89% of the time. Laste/show that using
the relevant Semantic Web URIs as relevance feedback toexteyp\Web search en-
gine also improves performance, resulting in better peréorce in the top 10 results
than both a baseline without feedback and Yahoo! Web sedrbbrefore, our the-
sis conclusively demonstrates tlzatheory of sense and reference suitable enough
to encourage identifier re-usage on the Web can be implemertdeoy employing
relevance feedback from search engine results.

10.2 Future Directions

There are two kinds of future directions the work in this teatiould take. The firstis
various technical improvements that should be implemenyeaxir relevance-feedback
systems, and the second is a more theoretical extensior @hifosophical territory
of the thesis.

10.2.1 Technical Improvements

There are a number of areas where our project needs to be mmaughly inte-
grated with other approaches and improved. In particularceould use better lan-
guage modeling and better explicit query expansion, therparation of multimedia
and machine-translation, the creation of new Semantic RIS When none exists for
a query, and increased scale.

10.2.1.1 Adapting Language Models and Query Expansiontoth e Web

While language models, particularly generative models\angoy (Lavrenko, 2008),

should in general have theoretically higher performanaa thector-space models,
our experiment in Chapter 9 showed a slight but significabditer performance for
vector-space than language models in relevance feedbawckHypertext web-pages
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to the Semantic Web, likely due to the parameters of the laggumodel being gen-
erated by the infamously messy and non-parametric nammgliage data of the Web.
Furthermore, the reason why large-scale search enginestdo general implement
language models for information retrieval is that the cotapanal complexity of cal-
culating distributions over billions of documents does scdle. However, there is
reason to believe that relevance models could be scaled owith Web search in
general and Semantic Web search in particular if they theirianguage sample from
a ‘clean’ and suitably large sample of natural language @sdwone in our relevance-
feedback experiment using relevant Semantic Web resh#égs)these relevance models
would be more effective. The computational complexity ddug reduced via caching
and the use of Bloom filters for the language model. This, doatbwith some sort of
statistical query expansion that would help a user resoiMaguous queries likeock
into rock nusi c or geol ogi cal rock, would likely get our performance to about
89%. Further natural language processing, including bsteanming and lemmatiza-
tion, would also likely improve performance.

10.2.1.2 Integration of Multimedia and Machine Translatio n

Despite the fact that we maintained that the traditionabf@ms of sense and reference
should hold iranyinformation inanylanguage, including formal languages, we did not
investigate any way to incorporate multimedia and othermatural languages into our
system. Instead, we reduced knowledge representationdgeg to a pseudo-natural
language for processing. The incorporation of multimedimantics would make the
entire approach stronger. Also, this approach would failgi@eries given in foreign
languages. A query fdrour de eiffel should return the same Semantic Web URI
for the Eiffel Tower. Yet as our system relies on natural lzege term overlap with
RDF in the associated descriptions, only integration witichine translation would
allow the system to be able to resolve associated desargp#ioross different natural
languages.

10.2.1.3 Automatic Creation of New URIs

One of the looming deficits of our system is that for a subsbaitnount of our queries
there areno Semantic Web URIs. This amount is estimated in Chapter 7 & 34
of all queries, almost as many as there were queries whera-aetevant Semantic
URI was the first result. However, as shown also in Chaptenésd queries with no
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Semantic Web URIs in generdb have relevant information on the hypertext Web,
if not the Semantic Web. In this manner, the automatic geioeraf Semantic Web
triples from natural language text as explored by Brewsdtal. 2007) and Cimiano et
al. (2005) could be used in combination with our system tateranew URIS, with
accessible and automatically generated associated jgses, in response to user
gueries. Furthermore, one could even imagine the reversewfinformation being
created, that is information that is not shared by hypemeti-pages being removed
from associated descriptions.

10.2.1.4 Scale

Lastly, our system and experiment was onlpraof of concepsystem, and it was

tested only over a relatively small (although statisticallgnificant) number of users
and queries automatically harvested from a query enginebdiger would be to deploy

this system with a global-scale hypertext search engine.bEmefit to users would be
instant: they would have access to structured data thatltmutaken advantage of by
programs like SearchMonkey that could automatically fdriia response to certain

types of queries (Mika, 2008). The statistics over the wiBdenantic Web and user
gueries would be interesting, allowing the identificatidrcommunities and a more
data-driven approach to the creation of Semantic Web vdaabs. Given the growing

interest in ‘Semantic Search’ in some version or anothenflarge hypertext search
companies like Google and Microsoft, the adoption of oudbsek system in the wild

is not impossible.

10.2.1.5 The Statistical Semantic Web

What should be apparent here is this project is but the fiegt Bt a new direction
for the Semantic Web, one away from both the logicist Sermahgb and the Linked
Data Web of databases to tBeatistical Semantic Wela Semantic Web constructed
statistically from the behavior and language use of usetiseo¥Veb. One could argue
that the large hypertext Web is in fact precisely this stiagé Semantic Web, but we
would argue that without the use of URIs and the de-linkinthefcontent of the data
from particular encodings through the principles of Webhdecture, these ‘lower-
case’ statistical semantic webs created by hypertext dualcnot part of the Web
but closed data, whereas the Statistical Semantic Web vimeuéth open Web of URIs
and information created through statistical methods. Hewewe do reiterate the
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central position of hypertext search engines should nonblerestimated on the Web,
and we find it astounding that the Semantic Web has ignoreeértgxt Web search

engines, such that this thesis is the first to show how theyearstically be put in a

mutually beneficial feedback cycle.

10.2.2 Theoretical Extensions

One fascinating possibility for future theoretical worktisee impact of the Web to

investigate the questions of intelligence and embodimdiitese questions deserve
more than the cursory treatment we give them here, but teartrent here shows
the potential productivity of considering the Web a firstsslabject of philosophical

investigation.

10.2.2.1 The Extended Mind Hypothesis on the Web

The Extended Mind thesis sets the framework for our undedstg of the utility of
these digital representations on the Web (Clark and Chalmi&98). To explain the
Extended Mind thesis, Clark introduces us to Ralph, a mah antimpaired memory
who navigates about his life via the use of his notebook, miqadar to the Museum
of Modern Art (1998). We will rephrase this example in the eméamiliar terms of
Ralph’s visit to the Eiffel Tower from Chapter 3. Let us assuRalph has a serious
memory impairment. Ralph is trying to navigate to the Eiffever from the airport,
and uses his notebook as a surrogate memory in order to éisttw/location. Ralph
has a map in his notebook to the Eiffel Tower made for the peepurpose of navi-
gating individuals to the monument. Ralph can get to the nmnseith the map, but
without the map he would be lost. In this regard, the map €aalas an ‘external’
representation that can drive the cognitive processes afant in a similar fashion to
the way that classical artificial intelligence assumedrimderepresentations did. In-
terestingly enough, Clark point out that if external fastare driving the process, then
they deserve some of the credit: “If, as we confront some, tagkart of the world
functions as a process which, were it done in the head, wedd@ye no hesitation in
recognizing as part of the cognitive process, then thatgsaine world is (so we claim)
part of the cognitive process” (1998). The map and otherpateepresentations have
been dubbed “cognitive technology” by Clark (2000).

The Web then presents an interesting twist on the Extended Mypothesis ex-
tension that we presented earlier. Again, Ralph is using la-page on his mobile
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phone to find his way to the Museum of Modern Art. While our jpoer¢ example
had Ralph using the Web as ordinary Web users did years agplysdownloading
some directions and following them, we now add a twist. Imaghat Inga and Ralph
are using a map-producing Web site that allows users to addtatmons and correc-
tions, a sort of wiki of maps. Inga, noticing that the mainrante to the Museum of
Modern Art is closed temporarily due to construction andhsodntrance has moved
over a block, adds this annotation to the map, correctingiam as regards where the
entrance to the Museum of Modern Art should be. This comecis propagated at
speeds very close to real-time back to the central datalesedthe Web site. Ralph
is running a few minutes behind Inga, and because this d@reto the map is being
propagated to his map on his personal digital assistarpjRan successfully navigate
to the new entrance a block away. This (near) real-time upglaf the representation
was crucial for Ralph’s success. Given his memory issuelphRaould have oth-
erwise walked right into the closed construction area aildime old entrance to the
Museum and been rather confused. This active manipulatitmupdating of an ex-
ternal representation lets Inga and Ralph possess somefatymamically-changing
collective cognitive state. Furthermore, they can use tiality to update this shared
external representation to influence each other for theiatgr collective success. In
this manner, the external representation is clearly soatal the cognitive credit must
be spread across not only multiple people, but the repragentthey use in common
to successfully accomplish their behavior. Clark and Cleafmagree that cognition
can be socially extended, “What about socially extendeditog? Could my mental
states be partly constituted by the states of other thi?kéfs see no reason why not,
in principle” (1998). How we extend their story is that sdigi@xtended cognition is
now mediated by external representations, in particuladigital representations and
other information accessible on the Web via URIs.

One of the obvious requirements for any process to be part ekeended mind is
that it is accessible when needed to solve some problem. BVieus requirement is
that the representation needed by the subject be withifféstize reach, not separated
from the subject in space or time. So if Ralph’s notebook \thign map to the Eiffel
Tower has been left at home in Boston when he is in Paris, ttebnok cannot count
as part of his extended mind. Furthermore, if his noteboddt&rnly in the past, such
that it was destroyed in a fire before Ralph could use it, thembtebook also could
not count as part of Ralph’s extended mind at the current monihe point here is
that at least a minimal condition for anything to be cogmitiechnology is that it be
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accessible over the bounds of space and time when needed vatisonable latency.
In other words, the external representation must haveahtdicoupling,” (Clark and
Chalmers, 1998). The technical trajectory of Lickliderd&n-Machine Symbiosis”
project, which could be considered the engineering twimefghilosophical Extended
Mind thesis, is precisely to overcome the barriers of time sypace that separate rep-
resentations and their users. The Semantic Web is just test lmcarnation of this
trend.

10.2.2.2 Embodiment Reconsidered

One of the strange repercussions that follows straighdaoiily from a Wittgensteinian
and neo-Fregean approach to sense as inherently objecthexternal is that as more
and more of language, and thus our shared sense that guidéglmavior, gets en-
coded in external representations with the possibilityavé-latency Web access, it
becomes unclear where the precise boundary point is in faedback cycles between
the individual and their external representation. If theleyf connection and discon-
nections happens constantly, over many individuals, a®itlavif a major hypertext
search engine pursued the Semantic Search approach gregrilieevery boundaries
of agents become difficult to detect. If we become dependerihe Web, defining
intelligence in terms of a fully autonomous agent then bez®not even an accurate
portrayal of human intelligence, but “a certain conceptibthe human individual that
may have applied, at best, to that faction of humanity whothadvealth, power, and
leisure to conceptualize themselves as autonomous beiagssng their will through
individual agency and choice” (Hayles, 1999). By jettisunthis conception, yet re-
constructing the commitment to a certain kind or degree di@iment, a new kind
of philosophy that takes the Web seriously can do justiceotopiex phenomenon
such as the advent of the Web and the increasing recognitiwhat Engelbart termed
“collective intelligence” (Engelbart and Ruilifson, 199%ierre Levy notes that cog-
nitive science “has been limited to human intelligence inegal, independent of time,
place, or culture, while intelligence has always been erifi outfitted with signs and
technologies, in the process of becoming, collective”’@99The vast technological
changes humanity has engendered across the world are noapieg the boundaries
of human bodies, and so the domain of cognitive science. fdgdeen a process that
has been ongoing since the dawn of humanity, and whose masentous event was
the evolution of natural language. Only now due to the inikledate of technological
progress, as exemplified by the growth of collective ingellice and new languages
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like the Semantic Web on the Web, do changes in language leeselfrevident within
the scope of a single lifetime.

10.2.2.3 The Science of the Web

While firmly based on Wittgenstein, the position that the 8etit Web is an attempt
to create a new kind of public language goes against a ceytagtism that Wittgen-
stein exhibits when he states that “philosophy may in no wégrfere with the actual
use of language,; it can in the end only describe it” (Wittdeims 1953). Berners-Lee
responds to such notions with a radical riposte, that on tak YWe are not analysing
a world, we are building it” (Berners-Lee, 2003a). This cadlioutlook that engi-
neering systemare philosophy given a digital embodiment is best summarized by
Berners-Lee himself in the statement that “we are not erpartal philosophers, we
are philosophical engineers” (2003a). In contrast to amglguwescriptive science, the
primary difference of what has been termed the “science®i¥eb” is that not only
can engineered systems be constructed to test theoriesnasdtraditional modeling
in almost all scientific fields, but these models can be rel@apon the world at large
through the Web (Berners-Lee et al., 2006b).

We hope that by integrating the Semantic Web with work onrimfation retrieval
as pioneered by Karen Sparck Jones, the Semantic Webdéseliave a new lease on
life and be tested on a large scale. Sparck Jones’s ohjectithe Semantic Web was
that it needed a single agreed upon ontology. As our exegéBisrners-Lee and the
Semantic Web has shown, this single agreed upon ontology smequirement for the
Semantic Web. In contrast, Berners-Lee has long maintairegdnstead decentralized
agreement on the use of URIs is enough, as put by Hendlettl&ademantics goes a
long way” (Hendler, 2007). Yet how do we boot-strap this déadized agreement,
and let users find and re-use the best URIs? After analyzen§é&mantic Web as a new
kind of public language, we hypothesized that the Semanéb 8%ould be grounded
in the everyday behavior of the cybernetic form of life, thiel@spread use of search
engines. While hypertext web search is already done via $omreof adapted infor-
mation retrieval, we show how time-tested techniques ldtevance feedback can be
used on a new kind of Web search: the search for Semantic WébfoilRtoncepts and
entities. Our innovation is that we use well-known techestor relevance feedback
between the hypertext Web and the Semantic Web to increagetformance on this
kind of semantic search. This demonstrates how users ofahmftic Web can take
advantage of the use of search engines over vast amountst o tgive a statistical
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semantics based in natural language to URIs and their att¢iS&mantic Web knowl-
edge representations, and so find and re-use the best URisrfoepts and entities.
The results of our experimental attempt to prove this arenimg. If there is anything
to be learned from Wittgenstein and the Web, it is that al¢foone can never escape
philosophical problems, one can make progress by intengrétem anew.






Appendix A
An Ontology for Web Architecture

The task of classifying all the words of language, or whaitésssame thing, all the ideas
that seek expression, is the most stupendous of logica.tAsk/body but the most ac-
complished logician must break down in it utterly; and eventlie strongest man, it
is the severest possible tax on the logical equipment angdtfacCharles Sanders
Peirce, letter to editor B. E. Smith of the Century Dictionary

In order to better understand the nature of the ‘Web’ in then&wgic Web, a formal
ontology called the ‘Identity of Resources on the Web’ (IR¥fology was created.
This ontology formally shows how terms in earlier chaptgaticularly Chapters 4
and Chapter 5, can be related to the terminology given in &n&p Formal ontologies
have a long history of use in clarifying potentially confugidomains. Traditionally,
the domains that have been most amendable to formal onéslbgive been domains
that are already highly structured, such as scientific doskke biology. However,
one of the most exciting developments in modern knowledgeesentation is the ad-
vent of the Semantic Web, which hopes to combine the priasipf the Web with
the principles of knowledge representation in order to seaynsmall, linked formal
ontologies develop in a vast number of heterogeneous demaine hope is that by
combining the principles of the Web with formal ontologibeth the Web and formal
ontologies will co-evolve together.

Although researchers have paid much attention to what kihidgic best underlies
knowledge representation on the Web, very little work hanlaone from the side of
the knowledge representation community on understandhrag exactly are the core
principles and components of the Web itself. This is notssing, as Web architecture
is mostly an informal body of knowledge phrased in a comiamedf Internet and Web

253
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standards, tutorials and notes, running code, and everranti@dition passed down
in IRC chats and e-mail discussions. However, while eaclushent itself is usually
clear and self-contained, over the years many of the doctart&ve been replaced
with newer versions and extended in various manners, usggame vocabulary dif-
ferently. Some parts of this myriad number of documents lween deprecated, and
only some components are best practices. Furthermore,iofbemally written notes
and even the products of long e-mail list-serv discussiawe had an influence on the
core architecture of the Web. Thus, the knowledge of Webit@ature itself can be to
outsiders, especially those coming from a background imkedge representation, a
rather obscure and even vague field despite its unreasoeffdxtiveness, since many
of its principles are embodied primarily in the minds of itinpary architects who do
not in general attend academic conferences, specificati@sre not mentioned in
academic literature, and the running code that has beerofiihese specifications.

We model these terms and the debates around them usingwdight formal on-
tology in OWL-DL, which we callRW, for ‘Identity of Resources on the Web.” IRW
is meant to be an helpful formal tool for resolving conflictimrguments about identity
and URIs, and as a consequence, it provides a supportingwiacg for implementing
practical solutions in a variety different scenarios (Hiand Presutti, 2009). Further
details of the ontology are available in Halpin and Preq@®09). While there are
limits to any formal ontology in describing such a multi-#ed field, a single ontol-
ogy of how the terms in the various specifications fit togethter a coherent body of
knowledge is necessary. First, we will informally descrsioene of the components of
the Web itself in order to then formally elucidate these comgnts a formal ontology
that allows us to model Web architecture. We will the end B®spnting a number of
surprisingly utilitarian uses that this formal ontologypides.

A.1 Related Work

The foundations of Web architecture have primarily beed @it in various specifi-
cations from the World Wide Web Consortium (W3C) and the rimé¢ Engineering
Task Force (IETF). The W3C and IETF have different strucaned terminology. The
W3C is a more recent and formal body technically concernet thie World Wide
Web, and not the Internet as a whole. The W3C is a membershganation that
features a strict formal process that moves, ideally on @dontime-scale, to cre-
ate a normative W3C Recommendation that defines a Web sthnitecontrast, the
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IETF has existed almost since the the dawn of the Internehaspan organization
that runs off ‘rough consensus and running code,” and inigh its philosophy calls
its documents ‘Request for Comments’ (RFCs), althoughesdtistinguish a level of
confidence, with kinds of documents progressing from thermal ‘Informational’ to
the more mature ‘Internet Drafts’ and finally to ‘Standardack’ documents.

The main source for our terminology is a document entifled Architecture of the
World Wide WellAWWW) as described in in Chapter 4. The other group of steshgla
that we will investigate is the various IETF RFCs around Onii Resource ldentifiers
(URIs, such a$ttp://www.example.ojgand the HyperText Transfer Protocol (HTTP),
which were both developed within the IETF, also describe@Ghapter 4. In particular
the specifications around URIs, originally called ‘Univad®esource Identifiers,” were
first put forward by Berners-Lee in the ‘informational’ IEHFC 1630 (Berners-Lee,
1994a). However, the IETF could not agree on this name andds the later RFC
for Uniform Resource Locations (URLS), in the form of IETF ®A738 came out
(Berners-Lee et al., 1994). URLs became URIs again with th#igation of IETF
RFC 2396 (Berners-Lee et al., 1998), which after a number iabmamendments,
was later itself superseded by the full Internet StandafdFIRFC 3986 (Berners-Lee
et al., 2005). Likewise, HTTP was first defined in RFC 2068 I(fiey et al., 1997),
which was then shortly superseded by IETF the ‘Standarad&’tt& TF RFC 2616
(Fielding et al., 1999). When possible, we will use primatiile definitions of the later
IETF RFCs when it obsoletes a previous RFC. W3C Recommaerdatunlike IETF
RFCs, are generally not made obsolete.

Informal notes are another major source of information. W&C AWWW is an
exegesis of Tim Berners-Lee’s notes on ‘Design Issues: ifactural and philosophi-
cal points’ that exist a collection of unordered personaésa@vailable at:
http://ww. w3. or g/ Desi gnl ssues/ . Another major source of information is Roy
Fielding's dissertation “Architectural Styles and the @@sof Network-based Soft-
ware Architectures,” as Fielding was one of the principahéects of HTTP (2000).
Lastly, much of the interest in Linked Data comes from theiHo Publish Linked
Data on the Web’ note, itself a practical tutorial built frdBerners-Lee’s informal
‘Linked Data’ note (Bizer et al., 2007).
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A.2 The Use of a Formal Ontology

The primary use of a formal ontology in the context of Web dettture is to allow us

to model formally the various distinctions employed by Webthéecture. Although

some other formal logic that deals with actions and eventg Ioeamore suitable for

modeling the temporal transactions of a client and senteraations on the Web, an
ontology is necessary in order to capture the various distins given in Web speci-
fications first. As even Web architects find themselves caafabout the distinctions
between ‘entities’ in HTTP and ‘representations’ in Webhatiexture (Mogul, 2002),

this ontology could be of use as a reference to anyone inéet@s understanding or
even extending existing Web specifications, as well as timtseested in correctly
implementing best practices that are dependent on ratlssuab corners of Web ar-
chitecture, such as Linked Data.

One of the most interesting uses of the ontology should béartage the arguments
around the Identity Crisis in a way that allow those involwedlebates to model for-
mally their positions using extensions to a common ontolg§ starting point. To this
aim, IRW can be discussed, reviewed, and comment on the @y @esign Patterns
wikil. To serve the aim of elucidating arguments, additional neslof IRW have
been developed, in particular to deal with the debate bet\Beeners-Lee and Hayes,
and are briefly introduced in Section A.3.

There have been previous attempts to model at least a sibWebarchitecture as
given in Chapter 4 in a formal ontology, but all lack coveragsome crucial concepts.
For example, while the ontology given by RDF Schema toucpes the vocabulary of
resources via its termdf s: Resour ce, it does not cover the distinction between infor-
mation and non-information resources. The IRE (IdentifiBesources, and Entities),
based on Dolce Ultra Lite (DULJ a light version of the widely-known DOLCE foun-
dational ontology and its extension for describing infotimrobjects (IOL, described
in (Gangemi, 2008)), attempted to model some of these cémegplier (Presutti and
Gangemi, 2008). However, many aspects were not includeRH such as the dis-
tinctions between resources and their Web representatiotise concept of accessing
aweb-page via a web server, that are crucial to the effottsmthe W3C, while many
of the distinctions drawn by DUL+IOL were found to be too ‘ligaveight’ for these
communities (Gangemi et al., 2002). In response to theseetns, the IRE ontology

Ihttp://ont ol ogydesi gnpatt erns. or g/ wi ki / Submi ssi ons: | RW
http://ww. | oa-cnr.it/ontol ogi es/ DUL. ow
Shttp://ww | oa-cnr.it/ontol ogies/ICLite. ow
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has been evolved into the IRW ontology.

We show graphically how this ontology can model the 303 esdion needed for
the Semantic Web via an example. In the example an agengttgimccess a URI
for the Eiffel Tower itself,htt p: // dbpedi a. or g/ resource/ Ei ffel Tower. Upon
attempting to access that resource with a HTTP GET requestRl, since the Eif-
fel Tower itself is not an information resource, no Web repreations are directly
available. Instead, the agent get8G8 See Ot her that in turn redirects them to
an information resource that hosts Web representationst dbe Eiffel Tower, such
ashttp://dbpedi a. org/ page/ Ei ff el _Tower. When this URI returns the 200 sta-
tus code in response to an HTTP GET request, the agent cantiv#dethe URI
http://dbpedi a. org/ page/ Ei ffel _Tower/ is actually an information resource.

The Semantic Web URI which is used to refer to the Eiffel Towself (not the
web-page)http:// dbpedi a. org/ resource/ Ei ffel _Tower, could be any kind of
resource and soouldbe a non-information resource (Connolly, 2006). This examp

is illustrated in Figure A.1, using terms from the IRW ontgyantroduced in Section
A.3.
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Web http:/ /www. dbpedia org resource,/Eiffel Tower
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A Web Page e identifies
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isRealized B&‘ identifies

\HHH@
I

zi-f B

NoninformationResource
The Eiffel Tower Itsell

Figure A.1: 303 Redirection for Semantic Web URIs

In order to introduce the IRW ontology, we will first introdeiits core concepts one
by one, and distinguish when we are communicating about airead part of the core
ontology. The components of the ontology will then be usemdalel successfully the
two primary use-cases, the modeling of the retrieval of ¢ web-pages and then
the retrieval of Semantic Web data using the Linked Dataciples.
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Figure A.2: The IRW ontology illustrated as a graph. Rounded nodes are classes,
while rectangular ones are datatypes. Arcs ending with an empty triangle are
rdf s: subC assOf relationships. Arcs ending with a filled triangle are either object
properties or datatype properties depending of the range node. Arcs’ direction indi-
cates the domain and range of the property. A ‘1’ associated to a property means it is
functional, a ‘T’ means it is transitive, ‘1+' means ‘at least one’. Prefixes are indicated

only if different from i r w; .

A.3 The IRW Ontology

The prefixi rw. is for the namespade t p: //purl.org/ NET/irw of the IRW on-

tology. Terms in the ontology will be given irel et ype font, and if no namespace is

given, we will assume ther w. namespace. The stable version of the ontology can also

be accessed via its PURL. The latest version of the IRW ogyoheay be accessed on-

line* The prefixr df s: is used for the RDF(S) namespdite p: / / waw. W3. or g/ 2000/ 01/ r df - schera#
Notei r: is the ‘information realization’ ontology, also onliRé//hile the IRW ontol-

ogy in full can not graphically explicated due to lack of spate primary classes and

properties are given in Figure A.2. The IRW-related elerm@eieded for the example

“http://ontol ogydesi gnpat t erns. or g/ ont/ web/i rw. owl
Shttp:// ww. ont ol ogydesi gnpatterns. org/ cp/ ow /i nf ormati onreal i zati on. ow
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of 303 redirection are given in Figure 5.5. The IRW ontolotprts withResour ce.
While this class expresses the same intuitiom@dss: Resour ce, we have defined it
again because this version of IRW is within OWL-DL expreggivn OWL Full, this
class is equivalent todf s: Resour ce. Now, we move to modeling the debates around
the Identity Crisis.

A.3.1 Resources and URIs

The notion of a URI is modeled as a clag®l that has exactly one value for the
datatype propertyasURl allowing to specify its value. Modeling URIs as a class al-
lows us to talk about different kinds of URIs, such as IRId€fnationalized Resource
Identifiers) and Semantic Web URIs. A propertient i f i es can then connect a URI
to a resource. Since we want to associate a URI with a paatiailaracter string
like ‘http://ww. exanpl e. org’ for the URI, we also have a property for called
hasURI String. This property then have various sub-properties for futnmeules
such as the conversion of IRIs to URIs, so that a IRI given exaapanese character
set can be converted to a URI. The sub-propertidsastiRl St r ong may be included
like hasRel ativeURI String and hasiasAbsol ut eURI St ri ng for the conversion of
relative URIs to absolute URIs.

e Resource An OWL Class “Anything that might be identified by a URI” (Ja-
cobs and Walsh, 2004). This class is meant to express the is@niteon of
rdfs:Resource but it is defined here in order to have OWL-Digaibility. In an
OWL Full version of this ontology this class would bel : equi val ent C ass
rdf s: Resour ce.

e URI: An OWL Class An abbreviation for Uniform Resource Identifier. “A
global identifier in the context of the World Wide Web” (Jasoénd Walsh,
2004). Any identifier that follows either fulfills the rolevgn in IETF RFC 3986
can fulfill this class, even if it an identifier such as IRI thats a conversion to a
URI or uses a scheme such as URN (Moats, 1997) or URL (Belrewt al.,
1994) that has been subsumed by the concept of URIs.

subClassOfResour ce
e identifies An OWL Object Property The relationship between a URI and a

resource. It is functional as the W3C states one shoulddastistinct URIs to
distinct resources” (Jacobs and Walsh, 2004).
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Inverse Propertyi sl denti fi edBy
Domain URI

Range Resour ce

subPropertyOfr ef er sTo

functional

e hasURIString An OWL Object PropertyThe relationship between a URI and
the character encoding of a URI.

Domain URI

Range xsd: any URI

A.3.2 Access and Reference

One of the largest re-occurring debates in Web is about vehditie notion of ‘identi-
fies’ between URI and resources is actually coherent. Acegre Berners-Lee, URIs
identify exactly one resource (i.el.dentifies is a functional property) via some
causal and historical chain given by the owner or creatadn@tiRlI, a similar position
towards names and reference as given by Kripke (1972). Hagakl disagree with
i denti fies being functional, and would prefer the term be dropped gktber from
Web architecture (Hayes and Halpin, 2008). Instead, Haymgdwse the more pre-
cise termsaccesgaccesses) andreferencdr ef er sTo) (Hayes and Halpin, 2008). In
the tradition of formal model theory and the Russellian dpseist theory of reference
(Russell, 1905), Hayes argues that a URI can refer to a ra&ene any interpretation
that satisfies the model given by the formal semantics of RB&yés and Halpin,
2008). In this way, a URI can refer to more than one resourggsa this can be mod-
eled by the object propertyef er sTo, which is non-functional unlikedenti fi es,
and sa denti fi es can be sub-property ofef er sTo. One aspect of reference is that
the object of reference can be “immediately causally disected” from its subject
(Hayes and Halpin, 2008). This is important, as referenaesésl as a property be-
tween URIs and resources, including not only web-pages Ibatrasources like the
Eiffel Tower or integers that are necessary for the Semakitio

However, it seems there should be another relationshigleégseference: the re-
lationship of ‘access’ for when “the name provides a causdihyway to the thing,
perhaps mediated by the Web” (Hayes and Halpin, 2008). Wetgalrelationship
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theaccesses property, which is a causal connection to the thing identif®@nce this

is an exceptionally common use of Web architecture, it iglusihin the core rw
module. This is modeled again as a property between URIsesmmlirces, although it
is transitive, unlike ef er sTo. If one can accessanda accesseb, andb accesses,
thena accesses (via b). Note that access and reference are not disjoint, for a&s “th
architecture of the Web determines access, but has no difeetnce on reference”
and that one can use a URI that accesses a web-page to alsio et web-page, or
even something completely different.

e accessesAn OWL Object Property The relationship between a resource and
another resource where the former provides a causal pattovihg latter.

Inverse Propertyi sAccessedBy
domainResour ce
range Resour ce

transitive

e refersTa An OWL Object Property The relationship between a resource and
another resource where the former may be immediately dgudiatonnected
from the latter.

Inverse Propertyi sAbout
domain Resour ce

range Resource

A.3.3 Information Resources

There is a controversial sub-classesRe$our ce outlined in AWWW known as ‘in-
formation resources.” As the AWWW defines the notionrdbrmation resourcas “a
resource which has the property that all of its essentialaditaristics can be conveyed
in a message” (Jacobs and Walsh, 2004), which we modeifas mat i onResour ce.
This definition has widely been thought of as unclear, anchagfiwhat set of indi-
viduals belong in this class and what do not, has been a sotipgrpetual debate on
various list-servs, and our formal modeling in combinatiath a few classes from a
subset of DOLCE, DUL+IOL (Gangemi, 2008), hopefully wilbcify the notion. An

I nf or mat i onResour ce is viewed to be equivalent to the notioniaformation object
from DUL+IOL (Gangemi, 2008), such as a musical composjtetext, a word, or
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a picture. An information object is an object defined at all@feabstraction, inde-

pendently from how it is concretely realized. This meansrdormation resource

has, via the r:real i zes property (with inverse r:i sReal i zedBy), at least one

ir:InformationRealization, a concreteealization This term is again imported
from DUL+IOL (Gangemi, 2008). So an information resourcé&ssential charac-

teristics can be conveyed in a single message” implies treiy/thing from a bound

book to an HTTP message can be a realization of an informegswurce (Jacobs and
Walsh, 2004).

Examples of this are descriptions of a resource using Haamguage or depic-
tions of a resource using images. Information resourcescas, but not necessarily,
be identified (either accessed or referred to) with a URILhia manner, the text of
Moby Dick can be an information resource since it could bevegad as a single
message in English, and can be realized by both a particatéc br a webpage con-
taining that text. The definition of information object amdarmation realization can
be thought of as the classic division in philosophy of mintihgen an object given
on a level of abstraction and some concrete thing that esatizat abstraction, where
a single abstraction may have multiple realizations. Téisimilar, but more broad,
that the type-token distinction in philosophy and F&@oxand ABoxdistinction from
description logic used in OWL.

¢ InformationResource An OWL Class*“A resource which has the property that
all of its essential characteristics can be conveyed in ssages (Jacobs and
Walsh, 2004).

subClassOf Resour ce

equivalentClassi ol : I nf or mat i onQbj ect , which is defined by IOL as “a
concrete realization of an expression, e.g. the writterudm@mnt containing the
text of a law” (Gangemi, 2008).

e iriisRealizedBy An OWL Object Property.Imported from IOL. “A relation
between an information realization and an information othje.g. the paper
copy of the Italian Constitution realizes the text of the &titation” (Gangemi,
2008).

Inverse Propertyi r:real i zes
Domaintir: InformationRealization

Rangeir: | nformationCbj ect
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e iriInformationRealization: An OWL Class Imported from IOL. “A piece of
information, such as a musical composition, a text, a wogicture, indepen-
dently from how itis concretely realized” (Gangemi, 200Biis is equivalent to
the broadest notion aépresentatioras defined in AWWW as “data that encodes
information about resource state” (Jacobs and Walsh, 2004)

A.3.4 Web Resources and Web Representations

Up until now, all the work done by the ontology has not had miactio with the Web
per se, but more with the more general ideas of informati@hrasources that apply
equally as well to books as to web-pages. However, we can peuialize this ontol-
ogy to the Web. In particular, representations can be tearesf over a protocol such
as HTTP. However, in doing so they become something weWab representations
(WebRepr esent at i on) with entity body and entity headers. Therefore, this usinef
term ‘representation’ is more narrow that the AWWW's useichihis equivalent to the
notion of any information realization in the large, and @zt focused on representa-
tions sent over the Web. This is due to the AWWW specifying thaw protocols
created for the Web should transmit representations as sictams typed by Internet
media types” (Jacobs and Walsh, 2004). Note also that threxeds given in IETF RFC
2616, a Web representation may be defined as “an entity iadlugth a response that
is subject to content negotiation” such that “there maytaxisltiple representations
associated with a particular response status” (Fieldirad.£1999). Furthermore, one
can distinguishWeb resource@ébResour ce), a subset of information resources that
are usually Web-accessible, such as web-pages, from thingsitnaly carry infor-
mation, like the text of Moby Dick, regardless of whethesibn the Web or not.
However, one problem is that it appears a client may onlysscad\Veb representa-
tion of a resource as a response, and so we need a term foibdlegtine request for a
representation itself. To do this, we turn to the notiomwofity (Enti t y) as defined by
HTTP (Fielding et al., 1999). Entities may be used eitheafcgquest or response, but
a representation is only for a response. Something can betigywithout necessarily
being a representation or being transferred as bits ovewiteefrom any particular
Web resource. For example, the entity headers and entity bbd POST request,
or even a 404 response, is an entity, but does not necesspilgsent the state of a
particular Web resource. The same entity may be transfagdite request or response
of many particular actions by a client. Also, different URiay return the same entity,
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such as when one URI hosts a copy of a resource given by arndRiedn order to
model entities, we use the populasConponent ontology design pattern.

e WebResource An OWL Class “A network data object or service” (Fielding
et al., 1999). As such, this is a resource that is accessialthe Web (Hayes
and Halpin, 2008). Therefore, a Web Resource must have sitdea URI and
be realized by at least one Web Representation.

subClassOfI nf or mat i onResour ce
irisRealizedBy\VebRepr esent at i on whereminCardinality(1)

isldentifiedBy URI whereminCardinality(1)

e Entity: An OWL Class“The information transferred as the payload of a request
orresponse” (Fielding et al., 1999). “An entity consistswtainformation in the
form of entity-header fields and content in the form of antgrtody” (Fielding
etal., 1999).

subClassOfi ol : I nfor mat i onReal i zati on
hasComponen€nt i t yHeader whereminCardinality(1)

hasComponen€nt i t yBody

e EntityBody. An OWL Clas3NVhatever information is sent “in the request or re-
sponse is in “a format and encoding defined by the entity-&efgelds” (Fielding
et al., 1999). Also called in HTTP the ‘content’ of a messdgel(ling et al.,
1999).

e EntityHeader “Entity-header fields define metainformation about thetgnt
body or, if no body is present, about the resource identifiedhie request”
(Fielding et al., 1999). Sometimes called in HTTP “metasmiation” (Field-
ing et al., 1999). Various sub-classes of this class cana@lefiirP status codes
(St at usCode), content encodingvedi aType), content languagé€gnt ent Language),
date of creationlfat eCr eat i on, date of modificatiorifat eModi fi cati on and
the like.

e WebRepresentatianAn OWL Class “A sequence of octets, along with repre-
sentation metadata describing those octets, that calestiturecord of the state
of the resource at the time when the representation is gexkr@erners-Lee
et al., 2005). Note that the term ‘representation” is usedHis class in IETF
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RFC 3968, but has been changed to ‘Web Representation’ &matept from the
more general notion of ‘representation’ used in the W3C AWWAAcobs and
Walsh, 2004)

subClassOfEntity

A.3.5 Media Types, Generic, and Fixed Resources

One intriguing problem, central to the notion of Web repreéagons and resources, is
the connection between media types and resources. Vdemitrk has been done in
this area, likely due to the lack of use of content negotratiogeneral on the hyper-
text Web. For example, instead of using content negotiabaeturn versions of the
same resource in multiple languages, many sites use axplls. The only substan-
tial work on this has been Berner-Lee’s n@eneric Resourceshere he outlines an
ontology of types of resources, conditioned by how the resouaries over HTTP re-
qguests (Berners-Lee, 1996b). Berners-Lee has informaity/that a generic resource
is equivalent to information resources, since the main t@ob part of a generic re-
source is the information itself, not any particular reatian of the information. So,
for example, a resource like ‘the weather report of Oaxas& generic resource, as
is the text of Moby Dick in any language. However, the ‘weatreport of Oaxaca
today’ is not a generic resource, nor is Moby Dick in Engligkesources may also
vary over time. For example, the text of Moby Dick will be thense over time and
S0 be “time-invariant,” but the resource for the ‘weathgram of Oaxaca’ will change
over time and be “time-specific’ (Berners-Lee, 1996b). Ramnore, resources may
vary over media-type. For example, the same information beagiven in some cus-
tom XML dialect or RDF, or the same depiction may be given ifedent formats like
JPG and SVG. These resources are all imported from Berreg'sant ontology, and
all quotes in the following definitions are from the ontoldgyhere are also ‘fixed
resources’ that, regardless of time and natural languagaysa delver the same repre-
sentation. For example, a resource for Moby Dick that gavayd the same edition in
the same language as plain text would be a fixed resource d€hnef a fixed resource
is surprisingly common, as it equates a single web-pageauidsource.

e ont:GenericResourceAn OWL Class“This resource is a resource that can vary
by media-type over any number of dimensions” (Berners-1L8686a).

6Available atht t p: / / waw. w3. or g/ 2006/ gen/ ont .
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subClassOf Resour ce

equivalentClassWitH nf or mat i onResour ce

e ont:TimelnvariantResource An OWL Class“A resource of which all represen-

tations are in the same version. Representations of thenmaswill not change
as a result of the resource being updated to a version witl t{Berners-Lee,
1996a).

subClassOfResour ce
disjointClassWithont : Ti neSpeci fi cResour ce

ir:realizedBy VbRepr esent at i on where hasConponent Dat eCreati on
and Dat eLast Modi fi ati on and wheremaxCardinality (1) and minCardinal-

ity(1)
ont:LanguageSpecificResourcéAn OWL Class“A resource of which all rep-
resentations are in the same language” (Berners-Lee, 1996a

subClassOfResour ce

disjointClassWithont : Languagel nvari ant Resour ce

ir: realizedBy. WebRepr esent at i on wherehasConponent Cont ent Language
maxCardinality(1) and minCardinality(1)
ont:MediaTypeSpecificResourcAn OWL Class“A resource of which all rep-
resentations are in the same media-type” (Berners-Le&a)99

subClassOfResour ce

disjointClassWithont : Languagel nvari ant Resour ce

realizedBy WebRepr esent at i on wherehasConponent Medi aType where
maxCardinality(1) and minCardinality(1)
ont:FixedResource An OWL Class “A resource from which only one entity
will ever come” (Berners-Lee, 1996a).

subClassOf Resour ce

disjointClassWithont : Languagel nvari ant Resour ce

realizedBy WebRepr esent at i on wheremaxCardinality(1) and minCardi-
nality(1).
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A.3.6 Hypertext Web Transactions

The typical Web transaction is started by an agent, given thassAgent , which is
some client in the context of the Web (Jacobs and Walsh, 2004% agent can have
arequest(r equest ) from a URI an representation. The Entity then contains a,URI
which is the URI where that identifies the URI of the resoutoe request is acting
upon, and this is modeled via thequestmechanism. Both of these properties are a
sub-property oficcess. An Agent can then request a representation from a URI. We
also introduce the cla¥®b Server for the generic notion of web serverwhich has
aresol ves property. The propertyesolvess the resolution of a URI to a concrete
Web server, which currently is done by mapping a URI to an Iéhesk or addresses.
So each\ébServer has at least oneRl . In order for the resolution to be successful,
the Web It also has bocat i onOf property with at least onéb Representati on,
indicating the Web Server concretely can respond to an HEGRest with a partic-
ular Web Representation. Sincequests, resol ves, andresponses are all sub-
properties of the transitive propertigcesses, this part of the ontology models the
physical and causal pathway between a given request for akdRd responded to Web
Representation. Then there isesponseroperty that is the inverse of thequest
property that concretely returns the representation.

The entity given in the request may have a preferred megie;gnd the response
should have a media-type as well. The media-type, suchpplsi cation/ xnl or
appl i cation/rdf +xm , tells the agent how to interpret the entity body of the resgo
(the returned Web representation of the resource). Theaxtgdes are found in the
list given online by IANA’ Each of the media-types can be given a sub-class of our
Medi aType class. The relationship betweerMadi aType and aEntity is given by
the encodes relationship. Note that each Web Representation should hasingle
media-type.

A URI may also have aedi rect sTo property, a sub-property @iccesses, that
we can use to model HTTP redirection. This can be done via eeruwf different
techniques, ranging from a ‘Content-Location’ HTTP enhgader to a 300-hundred
level HTTP status code. Note that, even in the light of the WAG’s httpRange-14
decision, since redirection can be used between just irghom resources that have
nothing to do with the Semantic Web, their domain and rangens¢hing about the
type of resource.

"http://www.iana.org/assignments/media-types/
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e Agent An OWL ClassA program that establishes connections for the purpose
of sending requests (Fielding et al., 1999). Also known &@8gent’ in the W3C
AWWW, which is “A person or a piece of software acting on thé&imation
space on behalf of a person, entity, or process” (Jacobs atshy\2004).

subClassOfResour ce
e request An OWL Object Property’A request message from a client to a server
includes, within the first line of that message, the methoddapplied to the

resource, the identifier of the resource, and the protoasimein use” (Fielding
etal., 1999).

Inverse Propertyr esponse
subPropertyOf accesses
domain Agent
range URI
e WebServerAn OWL Class“An application program that accepts connections in
order to service requests by sending back responses’ifigedtial., 1999). Note

that “any server may act as an origin server, proxy, gatearaynnel, switching
behavior based on the nature of each request” (Fielding,et399).

subClassOf Resour ce
e resolvedBy An OWL Object PropertyThe relationship between a Web Server
and a Web URI that hosts a representation of the resourcéfiddrby the URI.
Inverse Propertyr esol ves
subPropertyOf accesses
domain WebSer ver
range URI
minCardinality(1)
e response An OWL Object Property‘After receiving and interpreting a request

message, a server responds with an HTTP response messadin(-et al.,
1999).

Inverse Propertyi sResponseBy

subPropertyOf access
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domain Entity

e locatedOn An OWL Object PropertyA relation between a Web Representation
and a Web Server, indicating that the entity can be obtaiyeeldp. an HTTP
request to the Web server.

InversePropertyi sLocat i onOf
subPropertyOf access
domain WebRepr esent ati on
range \\ebSer ver
e MediaType An OWL Class “the media type of the underlying data” of a re-

sponse (Fielding et al., 1999). The various registered agglies and their as-
sociated IETF RFC and can each be given its own sub-class.

subClassOf Resour ce
e isEncodedin An OWL Object PropertyThe relationship between a entity and
its media type.
InversePropertyencoded| n
domain Entity
range Medi aType
minCardinality(1)andmaxCardinality(1)f applied to a\ébRepr esent at i on.

e redirectsTo An OWL Object PropertyThe relationship between one URI and
another where any requested Entity is sent to the URI giveéheasbject of this

property.
Inverse Propertyr edi r ect edFrom
subPropertyOf access
domain URI

range URI

A.3.7 Modeling the Semantic Web and Linked Data

In order to model explicitly the redirection solution to theentity Crisis” by the
W3C TAG, a few new properties have been minted. These newepiep are the
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redirects303To andr edi rect sHashTo. Obviously,redi rect s303To models the
TAG’s ‘solution’ to httpRange-14vhile r edi r ect sHashTo represents the hash con-
vention.

With these kinds of redirections in hand, we can now modeltypecal Seman-
tic Web transaction. A new sub-classdRl , Semant i cWebURI is given, where the
Semantic Web URas a constraint that it must have at least peé rects prop-
erty. The Semantic Web is supposed to use URIs not for Weliress (‘documents’)
but for abstract concepts and real-world things themselvdse redirection allows
the URI to refer to or identity a resource that is not accéssim the Web. In the
‘Linked Data Tutorial’ note, these are calledn-information resourceBizer et al.,
2007). Although this term is controversial and hard to deéibstractly, operationally
it simply means a resource that is not Web-accessible teatfiore should, to com-
ply with the Linked Data initiative, using redirection tosmve to another resource.
Although the space of non-information resources is redffifarge and hard to draw
precise boundaries around, we list a few exemplars in oadsetve as what Dennett
would call “intuition-pumps” in order to help us understattis concept (1981). In
particular, a new class callddbnl nf or mat i onResour ce that represents things that
can not themselves — for whatever reason — be realized agle siigitally encoded
message, is introduced and is disjoint wittf or mat i onResour ce. A number of dif-
ferent kinds of things may bidonl nf or mat i onResour ces. Since this concept is the
cause of much confusion and debate, it is detailed with tv@ufit sub-classes. A
physical entity resourc@Physi cal Enti t yResour ce), is a resource that is ‘touchable’
like physical people, artifacts, places, bodies, chensahktances, biological entities,
etc. mapping to a subset of “entities” within OKKAM (Bouquett al., 2007a). A
conceptual resourc€Concept ual Resour ce) refers to resources that are created in a
social process that can’t be completely realized digitalich as legal entities, politi-
cal entities, social relations, as well as the concept aédnand imaginary objects like
unicorns.

This kind of resource is aassociated description@ssoci at edDescri pti on),
which is justan Web resource that can be accessed via redirédom a Semantic Web
URI (Bizer et al., 2007). For example, in DBpetithe resourcdbpedi a: / r esour ce/ Ei f f el _Tower
redirects to some RDF/XML atbpedi a: / data/ Ei ffel _Tower, and to an HTML
page atlbpedi a: / page/ Ei f f el _Tower depending on the requested media type (Auer
et al., 2007). This Linked Data typical scenario can be gdired: aWebC i ent

8pPrefixdbpedi a: is used for the namespabet p: / / dpedi a. or g
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request s aSemant i cWebURI x and the request is redirected (e.g. via hash or 303 redi-
rection) to another URI, where this second URI identifieAssoci at edDescri pti on

that has onésAbout property to a non-information resource. We model

Associ at edDescri ption as a subclass ¢bResour ce.

e SemanticWebURIANn OWL ClassA URI used to identify any resource that is
not accessible on the Web.

subClassOf URI
redirectsTo Associ at edDescri ption
identifies Nonl nf or mat i onResour ce
¢ NonlInformationResource An OWL Class All resources that are not informa-
tion resources
subClassOf WebResour ce
complementQfl nf or mat i onResour ce
redirectedFrom Semant i c\W\ebURI
¢ PhysicalEntityResource An OWL Class Some thing that occupies its own
space and has its own mass in the real world but is not Welssitite.
subClassOf Nonl nf or mat i onResour ce
e ConceptualResourceAn OWL Class Resources that are created in the social
communication process. A conceptual resource does ndtiéxi's not in a

social communication. For example: legal entities, pditentities, social rela-
tions, concepts, and the like.

subClassOf Nonl nf or mat i onResour ce
e AssociatedDescriptionAn OWL Class A resource that exists primarily to de-
scribe a non-Web accessible resource.
subClassOf \WebResour ce
redirectedFrom Semant i c\WebURI
e redirects303ToAn OWL Object PropertyA redirection that uses the HTTP 303
status code.

Inverse Propertyr edi r ect ed303Fr om
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domain URI
range URI

functional

e redirectsHashTo An OWL Object Property A redirection that works via the
fragment identifier being removed from the URI.

Inverse Propertyr edi r ect edHashFrom
domain URI

range URI

A.4 Uses of the IRW Ontology

The IRW ontology has many uses in the real world of the Webs&heses can operate
on a number of different levels, both theoretical and pcattiOn the level of theory, it
can help clarify the various arguments over Web architegtsuich as the relationship
between resources and representations. On a practichl leeeTAG’s decision of
httpRange-14as been considered ambiguous, and the IRW ontology calvedbis
difficulty by making resources more self-describing. Lygstican be used to determine
if some URI is enabled to host Linked Data.

A.4.1 Resolving the Identity Crisis

One purpose of this ontology is to describe, in formal dethié exact nature of the
conflicts between the various sides of the Identity Crisisatie. The main conflict
between Hayes and Berners-Lee can then be cast as an argoveerthree IRW
properties. Berners-Lee’s slogan that ‘URIs identify ohimg’ is modeled by hav-
ing thei dentifies property befunctional i.e. a URI can only identify one re-
source. Furthermore, he would also hold th&eaant i cWebURI ref er sTo exactly
oneNonl nf or mat i onResour ce.

Hayes'’s response would be thaent i f i es should be eliminated and there can be
no constraints whatsoever ogsf er sTo and thus no constraints on the usage of URIs
for referring to things on the Semantic Web, while typicaplstext Web transactions
can be modeled functionally withiccesses. Although IRW models Berners-Lee’s
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more general notion of identification viaent i fi es, IRW also captures Hayes'’s per-
spective with the propertiesf er sTo andaccesses. Lastly, the criticisms of redi-
rection modeled withedi r ect sTo has mainly to do with the fact that the domain can
only be aURI rather than &emant i cVWebURI , which we also explicitly model. Thus,
there is no way to ever definitely be sure that a URI is a Sem&vib URI and so one
can never be sure that a URI identifies a non-informationuneso We show how IRW
can solve this problem in Section A.4.2.

A.4.2 The Self-Describing Semantic Web

The IRW ontology can help explicity model and make ava#atn the rest of the
Semantic Web the often subterranean details of Web arthitec The IRW ontol-
ogy can also solve the problem noted earlier that curreniyyimpossible to describe
whether or not some resource describes some non-Web dieedsng, such that
there is no “definition, description, some other kind of gation of what the identi-
fier is intended to identify” (Pepper, 2006). Solving thisidze done on via adding
IRW statements to associated descriptions accessibleewea®ic Web URIs. There
would be a number of advantages if web-pages that have RDierdorould distin-
guish themselves as such, in the same way that HTML ‘validudeents are cur-
rently validated by W3C Validators. This can be done by endbegla IRW state-
ment in RDF/ XML documents, RDF returned from SPARQL endmiand RDFa
or GRDDL statement in XHTML or XML documents (Adida et al.,8). Ide-
ally, this would be in conjunction with some sort of graphit@go to distinguish
the page as ‘Semantic Web Enabled, much as current webspeaye be marked
up with a logo for ‘XHTML 1.0 Valid. This is useful because teéeting RDF ‘in
the wild’ on the Web, such as embedded RDFa, can be difficulhéomans. The
main problem is that amonl nf or nat i onResour ce has no Web representation to
embed such a statement in. Take for example the Semantic \Rélcidated by
Pat Hayes for himselfiww. i hre. us/ user s/ phayes/ Pat Hayes. ht m . While orig-
inally a stand-alone web-page, currently Hayes has the W$RI303 redirection to
http://wwmv i hnt. us/ user s/ phayes/ Pat HayesAbout . ht m .2 This latter web-page
could easily use a combination of RDFa as IRW to mark itsetlisip representation of
a non-information resource by including the statement gthayes: Pat Hayes. ht m
rdf:type Nonl nformati onResour ce and adding

9Letphayes: stand forhttp://ww. i hnt. us/ users/ phayes.
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phayes: Pat Hayes. htm irw redirects303To phayes: Pat HayesAbout . htni .

A.4.3 Linked Data Validation

One subset of this second application is the use of IRW t@nsyatize the process of
Linked Data validation. Currently, the only Linked Data idalor isVapour, which

is coded procedurally and whose results can not themselvgwdsented as RDF
(Berrueta et al., 2008). The IRW and the HTTP in RDF vocalyutamn be used to
record whether or not each Linked Data resource is propedyected using 303 redi-
rection, and the IRW vocabulary can be used to make sure k808 redirection
can lead accessoth an associated description in HTML and in RDF (Koch et al.,
2008). An example of Linked Data validation is given belovesming that the URI
http://dbpedi a. org/ resource/ Ei ffel Tower is claiming to be hosting data in ac-
cordance with the Linked Data principles, we can check ihafollowing ways*®

Input
http://dbpedi a. org/ resource/ Ei ffel Tower

Check

e If HTTP 303 Request with content request tygpel i cati on/ rdf +xnl returns
a RDF file

e If HTTP 303 Request with content request tyyext/htm returns an HTML
file

Output (if succeeded)
dbpedi a: resource/ Ei ffel _Tower redirects303To
dbpedi a: page/ Ei ff el _Tower
dbpedi a: resource/ Ei ffel _Tower redirects303To
dbpedi a: dat a/ Ei f f el _Tower

Inferences
dbpedi a: dat a/ Ei ff el _Tower i sAbout
dbpedi a: resour ce/ Ei ff el _Tower
dbpedi a. or g: page/ Ei ff el _Tower i sAbout

10with the namespaatbpedi a: being forht t p: // dbpedi a. or g.
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dbpedi a. org: resource/ Ei ffel _Tower

dbpedi a: resource/ Ei ffel Tower rdf:type Nonlnformati onResource
dbpedi a. org: data/ Ei ffel Tower rdf:type Associ atedDescription
dbpedi a: page/ Ei ffel Tower rdf:type Associ atedDescription

A.5 Conclusion

Overall, the IRW ontology can serve as a foundational ogtplaf Web architecture,
the “dark side of Semantic Web” that Hendler believes mag ¢ine Semantic Web a
crucial advantage over previous efforts in knowledge regmeation (2007). What is
surprising is that it has taken so long for an ontology to leatd for Web architec-
ture. However, the debates between advocates of Web arthigecan themselves be
highly contentious and the terminology often misunderdtoBurthermore, the vari-
ous documents that describe this problem are spread thoaugtany informal and
semi-formal notes and standards (and arguments over eligtg)| so systematizing
the terminology and modeling it formally was perhaps mofé&adilt than would be
expected. Future work needs to be done to standardize IRWuathe:r evolve the
ontology through the W3C and the wider communities arouedmantic Web and
Web architecture, which will doubtless result in refinenseiotIRW. It is far too easy
to take the Web for granted. It is always those things thatkrsest to us that are the
most difficult to speak about. Yet by developing a coherenglege for describing
Web architecture, a concrete step in establishing a newdiptiilosophy of the Web
has been taken.
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