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Abstract

This thesis builds a foundation for the philosophy of the Webby examining the crucial

question: What does a Uniform Resource Identifier (URI) mean? Does it have a sense,

and can it refer to things? A philosophical and historical introduction to the Web ex-

plains the primary purpose of the Web as a universal information space for naming and

accessing information via URIs. A terminology, based on distinctions in philosophy, is

employed to define precisely what is meant by information, language, representation,

and reference. These terms are then employed to create a foundational ontology and

principles of Web architecture. From this perspective, theSemantic Web is then viewed

as the application of the principles of Web architecture to knowledge representation.

However, the classical philosophical problems of sense andreference that have been

the source of debate within the philosophy of language return. Three main positions are

inspected: the logicist position, as exemplified by the descriptivist theory of reference

and the first-generation Semantic Web, the direct referenceposition, as exemplified by

Putnam and Kripke’s causal theory of reference and the second-generation Linked Data

initiative, and a Wittgensteinian position that views the Semantic Web as yet another

public language. After identifying the public language position as the most promising,

a solution of using people’s everyday use of search engines as relevance feedback is

proposed as a Wittgensteinian way to determine sense of URIs. This solution is then

evaluated on a sample of the Semantic Web discovered by via using queries from a

hypertext search engine query log. The results are evaluated and the technique of us-

ing relevance feedback from hypertext Web searches to determine relevant Semantic

Web URIs in response to user queries is shown to considerablyimprove baseline per-

formance. Future work for the Web that follows from our argument and experiments

is detailed, and outlines of a future philosophy of the Web laid out.
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Chapter 1

Introduction

To imagine a language means to imagine a form of life.Ludwig Wittgenstein (1953)

The World Wide Web is without a doubt one of the most significant computational

phenomena to date. Yet there are some questions that cannot be answered without a

theoreticalunderstanding of the Web. Although the Web is impressive as apractical

success story, there has been little in the way of developinga theoretical framework

to understand what – if anything – is different about the Web from the standpoint of

long-standing questions of sense and reference in philosophy. While this situation

may have been tolerable so far, serving as no real barrier to the further growth of

the Web, with the development of the Semantic Web, a next generation of the Web

“in which information is given well-defined meaning, betterenabling computers and

people to work in cooperation,” these philosophical questions come to the forefront,

and only a practical solution to them can help the Semantic Web repeat the success of

the hypertext Web (Berners-Lee et al., 2001).

1.1 Motivation

There is little doubt that the Semantic Web faces gloomy prospects. On first inspection,

the Semantic Web appears to be a close cousin to another intellectual project, known

politely as ‘classical artificial intelligence’ (also known as ‘Good-Old Fashioned AI’),

an ambitious project whose progress has been relatively glacial and whose assump-

tions have been found to be cognitively questionable (Clark, 1997). The initial bet of

the Semantic Web was that somehow theWebpart of the Semantic Web would some-

how overcome whatever problems the Semantic Web inherited from classical artificial

1



2 Chapter 1. Introduction

intelligence, in particular, its reliance on logic and inference as the basis of meaning

(Halpin, 2004). However, progress on the Semantic Web has also been relatively slow

over the last decade. Both new techniques and large amounts of data have not yet

caused the Semantic Web to repeat the phenomenal success of the hypertext Web.

In order to even understand the astounding ascent of the Web we have to under-

stand what fundamental component serves as its foundation.While we will go into

this question in much greater detail in Chapter 4, tentatively we propose that the Web

consists of a space of names calledUniform Resource Identifiers(URIs), a unique

identifier whose syntax is given in Berners-Lee et al. (2005). Familiar examples of

URIs include URIs for accessing web-pages, such ashttp://www.example.org, al-

though even something as simple as a telephone number can be given a URI such as

tel:+1-816-555-1212. It is precisely the use of URIs as their fundamental element

that makes both the hypertext and Semantic Web part of the Web.

The first problem that is self-evident to anyone who actuallyattempts to deploy any

‘real world’ data on the Semantic Web is that there is little guidance on how to identify

data using URIs, as well as what information to allow access to from these URIs.

For a long time, this question was unanswered, and recently has only been cryptically

answered (Sauermann and Cygniak, 2008). The second self-evident problem that is

unavoidable to anyone using the Semantic Web for data integration is that different

people create different URIs for the same thing. Recently, aset of principles known as

‘Linked Data’ have given some guidance, but only on a superficial level (Bizer et al.,

2007).

The essential bet of the Semantic Web is that decentralized agents will come to

an agreement on using thesameURI to name a thing, including things that aren’t ac-

cessible on the Web, like people, places, and abstract concepts. Yet there is virtually

no ability to even find URIs for things on the Semantic Web. Currently, each applica-

tion creates its own new URI for a thing, repeating the localism of classical artificial

intelligence. Furthermore, it appears that most things either have no URIs or far too

many.

1.2 Hypothesis

The scientific hypothesis of this thesis must be stated in a two-fold fashion, first to

state the problem and then to propose a solution. The problemis the simple question:

What is the meaning of a URI?. In order to analyze this problem further, we will
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propose thatthe Semantic Web is a kind of language that can be defined by its

conformance to the principles of Web architecture, but nonetheless determining

the meaning of a URI decomposes into a theory of sense and reference, so the

Semantic Web inherits the classical problems regarding sense and reference from

the philosophy of natural language. Our proposed solution is then thata theory of

sense and reference suitable to encourage identifier re-usage on the Web can be

implemented by employing relevance feedback from search engine results.

In order to orient the reader to the Web, we give a brief introduction to its history

and significance in Chapter 2. We then introduce the philosophical terminology that

serves as the foundation the thesis in Chapter 3. Finally, weuse this terminology to

give an exegesis of Web architecture in Chapter 4. In Chapter5 we propose that the

Semantic Web, at least as embodied by the Resource Description Framework (RDF),

is a kind of URI-based knowledge representation language for data integration based

on the principles of Web architecture.

We address current theories of sense and reference in Chapter 6 and propose a

neo-Wittgensteinian theory of sense and meaning for the Webin Chapter 8. There are

three distinct positions to this question on the Semantic Web, each corresponding to a

distinct philosophical theory of reference. The first response is thelogicist position,

which states thatthe referent(s) of a URI is determined by whatever model(s) satisfy the

formal semantics of the Semantic Web(Hayes, 2004). This answer is identified with

both the formal semantics of the Semantic Web itself and the traditional Russellian

theory of names and its descriptivist descendants (Russell, 1905). While this answer

may be sufficient for automated inference engines, this answer is insufficient for hu-

mans, as it often crucially under-determines what kind of things the URI refers to. As

the prevailing position in early Semantic Web research, this position has borne little

fruit. Another response is thedirect reference positionfor the Web, which states that

the meaning of a URI is whatever was intended by the owner.This answer is identified

with the intuitive understanding of many of the original Webarchitects like Berners-

Lee and a special case of Putnam’s ‘natural kind’ theory of meaning. This position

is also nearly identical to Kripke’s famous response to Russell, the causal theory of

reference (Kripke, 1972; Putnam, 1975).

In Chapter 7, we describe a search engine query log from a major hypertext search

engine (MicrosoftLive.com), and how we derive query terms for people, places, and

abstract concepts from this query log and then use those to derive Semantic Web URIs.

From this query-driven analysis of the deployed Semantic Web, we empirically demon-
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strate that following the principles of Web architecture and endorsing the direct refer-

ence position does not lead to URI re-usage, but that insteadthere are still likely to be

multiple URIs for the same thing and that it is not easy for users to retrieve these URIs

in response to a query given as keywords to a search engine. Wefinally turn to the third

position, thepublic language position, which states that sincethe Semantic Web is a

form of languageand asa language exists as a mechanism for co-ordination among

multiple agents, then the meaning of a URI is the use of the URIby a community of

agents. As vague as this position seems at first glance, we argue thisanalysis of sense

and reference is the best fit to how natural language works, and it supersedes and even

subsumes the two other positions. While there are ‘semiotic’ theories of reference,

we will not inspect these in this thesis, although we believethat these theories can be

incorporated into a public language position. As this theory of meaning works for nat-

ural language, it follows that it is a good bet for the Semantic Web, for the Semantic

Web is just a form of language, albeit an unusual one.

The public language position implies a public mechanism that lets agents in turn

create, find, and re-use URIs. While it may be intuitively correct to endorse a neo-

Wittgensteinian theory of meaning for the Semantic Web, this does little for the Se-

mantic Web if a practical implementation can not be demonstrated. As Wittgenstein

would say, one must remember that every “language game” comes with a “form of

life” (1953). Without a doubt, one activity that seems to be prevalent among users of

the Web is searching for web-pages using natural language query terms via a search en-

gine (Halpin and Thompson, 2005). Therefore, the obvious solution to the problem of

finding out what a URI means is to take advantage of current search engines. Chapter

8 details on a high-level of abstraction a design for an implementation of determin-

ing URI meaning based on relevance feedback from users of keyword-based hypertext

search engines. This puts the the Semantic Web in a “virtuouscycle” with the behavior

of users on the hypertext Web (Baeza-Yates, 2008). Our implementation is then tested

with real data and real users in Chapter 9, and we show how our results improve var-

ious baseline systems for the information retrieval of Semantic Web URIs. Finally in

Chapter 10 we summarize the work so far and discuss the advantages and limitations

of our particular proposed solution. We also present plans for future work as well as

further philosophical questions that arise from the thesis.

Each of these chapters builds upon each other to make the thesis complete as a

whole. Readers interested in particular subjects may wish to focus their attention on

particular components, although they are warned that concepts and findings developed
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in earlier chapters are referred to in later chapters. As thenature of the project is in an

interdisciplinary and emergent area, there is no singular and comprehensive literature

review in a separate chapter, but instead the literature is reviewed and mentioned as

necessary throughout the thesis.

1.3 Scope

This thesis is explicitly limited in scope, concentrating only on the terminology neces-

sary to phrase a single, if broad, question: “How can we determine the meaning of a

URI on the Semantic Web?” Although the thesis is interdisciplinary, as it involves el-

ements as diverse as the philosophy of language and machine-learning, these elements

are only harnessed insofar as they are necessary to phrase our central hypothesis and

present a possible solution.

Due to this constraint, this thesis is not an attempt to develop a philosophy of

computation (Smith, 2002a), or a philosophy of information(Floridi, 2004), or even

a comprehensive “philosophy of the Web” (Halpin, 2008b). These are much larger

projects outside the scope of a single thesis, and even a single individual. However, in

combination with the fully-formed work in the philosophy ofmind and language, we

hope that at least this thesis provides a starting point for future work in these areas. So

we use notions from philosophy selectively, and then define the terms in lieu of our

goal of articulating the principles of Web architecture andthe Semantic Web, rather

than attempting to articulate or define the terms of a systematic philosophy of the Web.

Many of the philosophical terms in this thesis could be explored much further, but

are necessarily not explored, as to constrain the thesis to areasonable size. Unlike a

philosophical thesis, counter-arguments and arguments are generally not given for ter-

minological definitions, but instead references are given to the key works that explicate

these notions further.

This thesis does not inspect every single possible answer tothe question ofWhat

is the meaning of a URI?, but only three distinct positions. An inspection of every

possible theory of meaning and reference is beyond the scopeof the thesis, as is an

inspection of the tremendous secondary literature that hasaccrued over the years for

even those limited viewpoints that we do inspect in Chapter 6and Chapter 8. Instead,

we will focus only on theories of meaning and reference that have been brought up

explicitly in the various arguments over this question in the Web by the primary archi-

tects of the Web and the Semantic Web. Our proposed solution rests on a theory of
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meaning based on Wittgensteinian, one that is one of the mostinfamously dense and

infuriatingly obscure treatments of sense and reference.

Finally, while the experimental component has done its bestto be realistic, it is in

no way complete. Pains have been taken to ensure that the experiment, unlike much

work in the Semantic Web, at least uses real data, feedback from real users, and is

properly evaluated over a wide range of algorithms and parameters. Yet a real imple-

mentation of our proposed solution would require full-scale implementation and co-

operation of both a major hypertext search engine and a Semantic Web search engine.

Obviously, this is beyond the means of a thesis, as is any foundational or even ground-

breaking work in information retrieval. Instead, we show how information retrieval can

be applied to the Semantic Web to help solve one of its most difficult problems. While

various parts of the experiment could no doubt be optimized and scaled up still further,

for a proof-of-concept solution to a very difficult problem,this experiment should be

sufficient.

1.4 Notational Conventions

In order to aid the reader, the thesis employs a number of notational conventions. In

particular, we only use “double” quotes to quote a particular author or other work.

When a new word is introduced and deployed in an unusual manner to be clarified

later, we use ‘single’ quotes. The use of ‘single’ quotes is also used when a word is

supposed to be understood as the wordquaword, a mention of the word, rather than

a use of the word. When a term is defined, the word is first labeled usingbold and

italic fonts, and either immediately followed or preceded by the definition given in

italics. Mathematical or formal terms areitalicized, as is the use ofemphasisin any

sentence. Finally, the names of books and other large works are often italicized. In

general, technical terms like HTTP are often abbreviated bytheir capitalized initials.

One of the largest problems of this whole area historically has been a rather ad-hoc use

of terms, and we hope this fairly rigorous notational convention helps separate the use,

mention, definition, and direct quotations of words.

1.5 Summary

Despite its ambitious title, this thesis is amodestattempt to both articulate and apply

the principles of Web architecture in order to answer a question at the heart of the
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Semantic Web:What does a URI mean?We provide a solution by analyzing the

primary positions in philosophy of language and Web architecture, and by constructing

a proof-of-concept solution. We do not claim to provide a complete or unique solution,

but do argue our solution is better than other competing positions and solutions, in

particular in lieu of our implementation. We do not claim to have solved any of these

problems regarding meaning and reference for language in general, especially natural

language, and are fully confident that philosophers will continue arguing over these

issues for at least the next century. We do present a proof-of-concept solution for these

problems of meaning and reference in the special and limiting case of the Semantic

Web.





Chapter 2

The Significance of the Web

If we could rid ourselves of all pride, if to determine our species we kept strictly to what

historic and prehistoric periods show us to be the constant characteristic of man and of

intelligence, we should not say Homo Sapiens but Homo Faber.In short, intelligence,

considered in what seems to be its original feature, is the faculty of manufacturing

artificial objects, especially tools for making tools.Henri Bergson (1911)

The subject matter of this thesis is the nature of sense and reference on the World

Wide Web, and this chapter provides the necessary background information to motivate

the thesis and to make the central hypothesis of the thesis comprehensible. In this

thesis, we consider the World Wide Web (from hereon referredto only as ‘the Web’)

as a first-class subject matter for study. The first chapter delves into the origins of the

Web so that the question of meaning and reference on the Web can be understood in

its proper context.

Why the Web? Why not look at more interesting problems in a subject like ar-

tificial intelligence? In hisOne Hundred Billion Lines of C++, computer scientist-

turned-philosopher Brian Cantwell Smith notes that the models of computing used in

debates over reference and representation tend to frame thedebate as if it were between

“classical” logic-based symbolic reasoners and some “connectionist” and “embodied”

alternative ranging from neural networks to epigenetic robotics (1997). Smith then

goes on to aptly state that the kinds of computational systems discussed in artificial

intelligence and philosophy tend to ignore the vast majority of existing systems, for “it

is impossible to make an exact estimate, but there are probably something on the order

of 10, or one hundred billion lines of C++ in the world. And we are barely started.

In sum: symbolic AI systems constitute approximately 0.01%of written software”

9
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(1997). The same small fraction likely holds true of “non-symbolic AI” computational

systems such as robots, artificial life, and connectionist networks. While numbers by

themselves hold little intellectual weight, one could always argue that the vast majority

of computational systems may have no impact on our understanding of representation

and intelligence. In this thesis we argue otherwise. The wide class of computational

systems present a “middle distance” where questions of reference, representation, and

intelligence come to the forefront and may even be more tractable than in the case for

humans (Smith, 1995). One of the the most significant membersto date of this wider

class of computational systems is the World Wide Web, described by Tim Berners-Lee,

the person widely acclaimed to be the ‘inventor’ of the Web, as “a universal informa-

tion space”(1992).

Michael Wheeler, a philosopher who is well-known for his Heideggerian defense

of embodiment, surmises that “the power of the Web as a technological innovation

is now beyond doubt” but “what is less well appreciated is thepotential power of the

Web to have a conceptual impact on cognitive science” and so this thesis may provide a

new “fourth way” in addition to the “three kinds of cognitivescience or artificial intel-

ligence: classical, connectionist, and (something like) embodied-embedded” (2008).

While countless papers have been produced on the technical aspects of the Web, very

little has been done explicitly on the WebquaWeb as a subject matter. This does not

mean there has not been interest, although the interest has come in particular more from

the side of those working on developing the Web rather than those already entrenched

in philosophy, linguistics, and artificial intelligence. In particular, the workshop series

on Identity, Reference, and the Webhas provoked many articles on these topics from

prominent Web architects, although not from philosophers per se (Halpin et al., 2006;

Bouquet et al., 2007b, 2008). In this spirit, what we will undertake in this thesis as a

whole is to apply many well-known philosophical theories ofreference and represen-

tation to the phenomenon of the Web.

In order to establish the relative autonomy of the Web as a subject matter, we

recount its origins and so its relationship to other projects, both intellectual such as

Engelbart’s Human Augmentation Project, as well as more purely technical projects

such as the Internet (1962). It may seem odd to begin out this thesis, which involves

very specific questions about meaning and reference on the Web, with a thorough his-

tory of the Web. To understand these questions we must first have an understanding

of the boundaries of the Web and the normative documents thatdefine the Web. The

Web is a fuzzy and ill-defined subject matter whose precise boundaries and even def-
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inition are unclear. Unlike some subject matters like chemistry, the subject matter of

the Web is not necessarily very stable, for the Web is not a ‘natural kind,’ as it is a

technical artifact. So we will take the advice of the philosopher of technology Gilbert

Simondon, “Instead of starting from the individuality of the technical object, or even

from its specificity, which is very unstable, try to define thelaws of its genesis in the

framework of this individuality or specificity, it is betterto invert the problem: It is

from the criterion of the genesis that we can define the individuality and the specificity

of the technical object: the technical object is not this or that thing, givenhic et nunc

but that which is generated” (1958). In other words, we must first trace the creation

of the Web before attempting to define it, imposing on the Web what Fredric Jameson

calls “the one absolute and we may even say transhistorical imperative, that is: Always

historicize!” (1981). We build on the work of this chapter inChapter 4 to delineate the

precise principles of the Web.

2.1 The Origins of the Web

What is the Web, and what is its significance? At first, it appears to be a relative upstart

upon the historical scene, with little connection to anything before it, an ahistorical and

unprincipled ‘hack’ that came unto the world unforeseen andwith dubious academic

credentials. The purpose of this section is to dispel this myth.

The intellectual trajectory of the Web is a fascinating, if mostly unknown, history.

Although it is well-known that the Web bears some striking similarity to Vannevar

Bush’s ‘Memex’ idea from 1945 (Bush, 1945), the Web is itselfusually thought more

of as a technological innovation rather than an intellectually rich subject matter such as

artificial intelligence or cognitive science. However, theWeb’s heritage is just as rich

as artificial intelligence and cognitive science, and can betraced back to the same roots,

namely the ‘Man-Machine Symbiosis’ project of Licklider (1960). The ‘Man-Machine

Symbiosis’ project gave birth to two streams of research. The first strand is that of ar-

tificial intelligence done in the spirit of McCarthy, Minsky, and others involved in the

original Dartmouth proposal (McCarthy et al., 1955). However, there exists another

lesser-known strand of research, the work on ‘human augmentation’ exemplified by

the work of Engelbart that eventually gave us both the mouse and the Internet (1962).

Human augmentation, instead of hoping to replicate human intelligence as artificial

intelligence did, only thought to enhance it. The Web itselfis a descendant of Engel-

bart’s vision, and this historical trajectory leading fromLicklider to the creation of the
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Web, is detailed in the following sections.

2.2 The Man-Machine Symbiosis Project

The first precursor to the Web was glimpsed, although never implemented, by Van-

nevar Bush. For Bush, the primary barrier to increased productivity was the lack of

an ability to easily recall and create records, and Bush saw in microfiche the basic ele-

ment needed to create what he termed the “Memex,” a system that lets any information

be stored, recalled, and annotated through a series of “associative trails” (1945). The

Memex would lead to “wholly new forms of encyclopedias with amesh of associative

trails,” a feature that became the inspiration for “linking” in hypertext (Bush, 1945).

However, Bush could not implement his vision on the analoguecomputers of his day.

The Web had to wait for the invention of digital computers andnetworks, both of

which bear some debt to the work of J.C.R. Licklider, a disciple of Norbert Wiener

(Licklider, 1960). Wiener thought of feedback as an overarching principle of organi-

zation in any science, and one that was equally universal among humans and machines

(1948). Licklider expanded this notion of feedback loops toa vision of low-latency

feedback between humans and digital computers. The intellectual project of ‘Man-

Machine Symbiosis’ is distinct and prior from cognitive science and artificial intel-

ligence, both of which hypothesize that the human mind can beconstrued as either

computational itself or even implemented on a computer. Licklider held that while the

human mind itself might not be computational (although Licklider cleverly remained

agnostic on that particular gambit), the human mind was definitely complementedby

computers. As Licklider himself put it, “The fig tree is pollinated only by the insect

Blastophaga grossorun. The larva of the insect lives in the ovary of the fig tree, and

there it gets its food. The tree and the insect are thus heavily interdependent: the tree

cannot reproduce without the insect; the insect cannot eat without the tree; together,

they constitute not only a viable but a productive and thriving partnership. This coop-

erative ‘living together in intimate association, or even close union, of two dissimilar

organisms’ is called symbiosis. The hope is that, in not too many years, human brains

and computing machines will be coupled together very tightly, and that the resulting

partnership will think as no human brain has ever thought andprocess data in a way

not approached by the information-handling machines we know today” (1960). The

goal of ‘Man-Machine Symbiosis’ is then the enabling of reliable coupling between the

humans and their ‘external’ information as given in digitalcomputers. To obtain this
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coupling, the barriers of time and space needed to be overcome so that the symbiosis

could operate as a single process.

The ‘Man-Machine Symbiosis’ project was not merely an philosophical project,

but an engineering project. In order to provide the funding needed to assemble what

Licklider termed his “galactic network” of researchers to implement the first step of

the project, Licklider became the institutional architectof the Information Process-

ing Techniques Office at the Advanced Research Projects Agency (ARPA) (Waldrop,

2001). Licklider first tackled the barrier of time. Early computers had large time lags

in between the input of a program to a computer on a medium suchas punch-cards and

the reception of the program’s output. This lag could then beovercome via the use of

time-sharing, taking advantage of the fact that the computer, despite its centralized sin-

gle processor, could run multiple programs in a non-linear fashion. Instead of idling

while waiting for the next program or human interaction, in moments nearly imper-

ceptible to the human eye, a computer would share its time among multiple humans

(McCarthy, 1992).

Douglas Engelbart had independently generated a proposal for a “Human Augmen-

tation Framework’ that shared the same goal as the ‘Man-Machine Symbiosis’ project

of Licklider, although it differed by placing the human at the center, focusing on the

ability of the machine to extend to the human user, while Licklider imagined a more

egalitarian partnership between humans and digital computers (1962). This focus on

human factors led Engelbart to the realization that the primary reason for the high la-

tency between the human and the machine was the interface of the human user to the

machine itself, as a keyboard was at best a limited channel. After extensive testing

of what devices enabled the lowest latency between humans and machines, Engelbart

invented the mouse and other, less successful interfaces, like the one-handed ‘chord’

keyboard (Waldrop, 2001). By employing these interfaces, the temporal latency be-

tween humans and computers was decreased even further.

2.3 The Internet

The second barrier to be overcome was space, so that any computer should be ac-

cessible regardless of its physical location. The Internet“came out of our frustration

that there were only a limited number of large, powerful research computers in the

country, and that many research investigators who should have access to them were

geographically separated from them” (Leiner et al., 2003).Licklider’s lieutenant Bob
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Taylor and his successor Larry Roberts contracted out Bolt,Beranek, and Newman

(BBN) to create the Interface Message Processor, the hardware needed to connect the

various time-sharing computers of Licklider’s “galactic network” that evolved into the

ARPANet (Waldrop, 2001). While BBN provided the hardware for the ARPANet, the

software was left undetermined, so an informal group of graduate students constituted

the Internet Engineering Task Force (IETF) to create software to run the Internet (Wal-

drop, 2001).

The IETF has historically been the main body that creates theprotocols that run

the Internet. It still maintains the informal nature of its foundation, with no formal

structure such as a board of directors, although it is officially overseen by the Internet

Society. The IETF informally credits as their main organizing principle the credo “We

reject kings, presidents, and voting. We believe in rough consensus and running code”

(Hafner and Lyons, 1996). Decisions do not have to be ratifiedby consensus or even

majority voting, but require only a rough measure of agreement on an idea. The most

important product of these list-serv discussions and meetings are IETF RFCs (Request

for Comments) which differ in their degree of reliability, from the unstable ‘Experi-

mental’ to the most stable ‘Standards Track.’ The RFCs defineInternet standards such

as URIs and HTTP (Berners-Lee et al., 1996, 2005). RFCs, while not strictly academic

publications, have ade factonormative force on the Internet and therefore on the Web,

and so they will be referenced considerably throughout thisthesis.

Before the Internet, networks were assumed to be static and closed systems, so

one either communicated with a network or not. However, early network researchers

determined that there could be “open architecture networking” where a meta-level “in-

ternetworking architecture” would allow diverse networksto connect to each other, so

that “they required that one be used as a component of the other, rather than acting as

a peer of the other in offering end-to-end service” (Leiner et al., 2003). In the IETF,

Robert Kahn and Vint Cerf devised a protocol that took into account, among others,

four key factors, as cited below (Leiner et al., 2003):

1. Each distinct network would have to stand on its own and no internal changes

could be required to any such network to connect it to the Internet.

2. Communications would be on a best effort basis. If a packetdidn’t make it to

the final destination, it would shortly be retransmitted from the source.

3. Black boxes would be used to connect the networks; these would later be called

gateways and routers. There would be no information retained by the gateways
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about the individual flows of packets passing through them, thereby keeping

them simple and avoiding complicated adaptation and recovery from various

failure modes.

4. There would be no global control at the operations level.

In this protocol, data is subdivided into ‘packets’ that areall treated independently

by the network. Data is first divided into relatively equal sized packets by TCP (Trans-

mission Control Protocol), which then sends the packets over the network using IP

(Internet Protocol). Together, these two protocols form a single protocol, TCP/IP

(Cerf and Kahn, 1974). Each computer is named by an Internet Number, a four byte

destination address such as 152.2.210.122, and IP routes the system through various

black-boxes, like gateways and routers, that do not try to reconstruct the original data

from the packet. At the recipient’s end, TCP collects the incoming packets and then

reconstructs the data.

The Internet connects computers over space, and so providesthe physical layer

over which the “universal information space” of the Web is implemented. However, it

was a number of decades before the latency of space and time became low enough for

the Web to become not only universalizing in theory, but universalizing in practice. An

historical example of attempting a Web-like system before the latency was acceptable

would be the NLS (oNLine System) of Engelbart (1962). The NLSwas literally built

as the second node of the Internet, the Network Information Center, the ancestor of

the domain name system. The NLS allowed any text to be hierarchically organized in

a series of outlines with summaries, giving the user freedomto move through various

levels of information and link information together. The most innovative feature of

the NLS was a journal for users to publish information in and ajournal for others to

comment upon, a precursor of blogs and wikis (Waldrop, 2001).

However, Engelbart’s vision could not be realized on the slow computers of his

day. Although time-sharing computers reduced temporal latency on single machines,

too many users sharing a single machine made the latency unacceptably high, espe-

cially when using an application like NLS. Furthermore, hiszeal for reducing latency

made the NLS far too difficult to use, as it depended on obscurecommands that were

far too complex for the average user to master within a reasonable amount of time (Bar-

dini, 2000). It was only after the failure of the NLS that researchers at Xerox PARC

developed the personal computer, which by providing each user their own computer

reduced the temporal latency to an acceptable amount (Waldrop, 2001). When these
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computers were connected with the Internet and given easy-to-use interfaces as devel-

oped at Xerox PARC, both temporal and spatial latencies weremade low enough for

ordinary users to access the Internet. This convergence of technologies, the personal

computer and the Internet, is what allowed the Web to be implemented successfully

and enabled its wildfire growth, while previous attempts like NLS were doomed to

failure as they were conceived before the technological infrastructure to support them

had matured.

2.4 The Modern World Wide Web

Perhaps due to its own anarchic nature, the IETF had produceda multitude of in-

compatible protocols such as FTP (File Transfer Protocol) and Gopher (Postel and

Reynolds, 1985; Anklesaria et al., 1993). While protocols could each communicate

with other computers over the Internet, there was no universal format to identify infor-

mation regardless of protocol. One IETF participant, Tim Berners-Lee, had the concept

of a “universal information space” which he dubbed the “World Wide Web” (1992).

His original proposal to his employer CERN brings his beliefin universality to the

forefront, “We should work towards a universal linked information system, in which

generality and portability are more important than fancy graphics and complex extra

facilities” (Berners-Lee, 1989). The practical reason forBerners-Lee’s proposal was

to connect the tremendous amounts of data generated by physicists at CERN together.

Later as he developed his ideas, Berners-Lee came into direct contact with Engelbart,

who encouraged him to continue with the idea of the Web despite his academic work

being rejected at conferences like ACM Hypertext 1991.1

In the IETF, Berners-Lee, Fielding, Connolly, Masinter, and others spear-headed

the development of URIs (Universal Resource Identifiers), HTML (HyperText Markup

Language) and HTTP (HyperText Transfer Protocol). By beingable to reference any-

thing with equal ease due to URIs, a web of information would form based on “the few

basic, common rules of ‘protocol’ that would allow one computer to talk to another,

in such a way that when all computers everywhere did it, the system would thrive,

not break down” (Berners-Lee, 2000). The Web is avirtual space for naming infor-

mationbuilt on top of the physical infrastructure of the Internet that could move bits

around, and the Web was built through specifications that could be implemented by

anyone, “What was often difficult for people to understand about the design was that

1Personal communication with Berners-Lee.
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there was nothing else beyond URIs, HTTP, and HTML. There wasno central com-

puter ‘controlling’ the Web, no single network on which these protocols worked, not

even an organization anywhere that ‘ran’ the Web. The Web wasnot a physical ‘thing’

that existed in a certain ‘place.’ It was a ‘space’ in which information could exist”

(Berners-Lee, 2000).

The very idea of auniversalinformation space seemed at least ambitious, if not

de factoimpossible, to many. The IETF rejected Berners-Lee’s idea that any identi-

fication scheme could be universal. In order to get the initiative of the Web off the

ground, Berners-Lee surrendered to the IETF and changed thename of his universal

naming system fromUniversal Resource Identifiers(URIs) toUniform Resource Lo-

cators(URLs) (Berners-Lee, 2000). The Web begin growing at a prodigious rate once

the employer of Berners-Lee, CERN, released any intellectual property rights they had

to the Web. The growth of the Web increased even more dramatically after Mosaic,

the first graphical browser, was released. However, browservendors started adding

supposed ‘new features’ that soon led to a ‘lock-in’ where certain sites could only be

viewed by one particular corporate browser. These ‘browserwars’ began to fracture

the rapidly growing Web into incompatible information spaces, thus nearly defeating

the proposed universality of the Web (Berners-Lee, 2000).

Berners-Lee in particular realized it was in the long-term interest of the Web to

have a new form of standards body that would preserve its universality by allowing

corporations and others to have a more structured contribution than possible with the

IETF. With the informal position of merit Berners-Lee had asthe supposed inventor

of the Web (although he freely admits that the invention of the Web was a collec-

tive endeavor), he and others constituted the World Wide WebConsortium (W3C);

a non-profit dedicated to “leading the Web to its full potential by developing proto-

cols and guidelines that ensure long-term growth for the Web” (Jacobs, 1999). In the

W3C, membership was open to any organization, commercial ornon-profit organiza-

tion. Unlike the IETF, W3C membership came at a considerablemembership fee. The

W3C is organized as a strict representative democracy, witheach member organiza-

tion sending one member to the Advisory Committee of the W3C,although decisions

technically are always made by the Director, Berners-Lee himself. By opening up

a “vendor neutral” space, companies who previously were interested primarily in ad-

vancing the technology for their own benefit could be broughtto the table. The primary

product of the World Wide Web Consortium is a W3C Recommendation, a standard

for the Web that is explicitly voted on and endorsed by the W3Cmembership. W3C
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Recommendations are thought to similar to IETF RFCs, with normative force due to

the degree of formal verification given via voting by the W3C Membership. A number

of W3C Recommendations have become very well known technologies, ranging from

the vendor-neutral versions of HTML (Raggett et al., 1999),which stopped the fracture

of the universal information space at the hands of the browser wars, to XML, which

has become a prominent transfer syntax for almost any type ofdata (Bray et al., 1998).

This thesis will cite W3C Recommendations when appropriate, as these are one of the

main normative documents that define the Web. With IETF RFCs,these normative

standards collectively define the foundations of the Web. Itis by agreement on these

standards that the Web functions as a whole. However, the rough-and-ready process of

the IETF and even W3C has led to a terminological confusion that must be sorted in

order to inspect the problem of how URIs can identify things outside the Web itself.



Chapter 3

Philosophical Prolegomenon

Philosophy, more rigorously understood, is the disciplinethat consists of creating con-

cepts.Gilles Deleuze and Felix Guattari(1991)

A major focus of this thesis is to use terminology from philosophy of computation,

language, and the mind to produce a small set of fairly well-defined terms that we

can use to express the question: What does a URI refer to? Afterwards, we use these

terms to determine what the boundaries of the Web are in Chapter 4 and to clarify the

Semantic Web in Chapter 5.

For the sake of brevity we will not in this chapter explore allthe nuances and conse-

quences arising from our admittedly broad-sweeping terminology. This is unfortunate,

as there is just not enough space to address, much less defuse, all possible counter-

arguments. In this manner, this chapter will be decidedly non-philosophical, although

we will attempt to mitigate this problem by at least providing references to well-known

philosophers from whom we have adopted our terminology, although often we will use

their terms in a slightly-modified form so that the terminology may fit the problem at

hand. The theoretical framework and terminological definitions given in this chapter

provide the foundation for the entire thesis, coming to a head in our proposed solu-

tion to the issues of reference and representation on the Semantic Web in Chapter 8.

While this chapter may not appear directly relevant to the Web, the philosophical ter-

minology established here will be used to discipline the wild and unruly terminology

of Web architecture in the next chapter. Again, we claim neither that our historical

and philosophical foundations of Web architecture are complete and systematic, but

just systematic and complete enough to pose and solve our hypothesis, without either

the question or our solution using vacuous terminology. Otherwise, the result will

19
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be terminological confusion, causing any reader to fall into a conceptual swamp of

undefined and fuzzy terms like ‘meaning’, ‘reference’, and ‘representation.’ We first

explore the notion of ‘information’ at the heart of Berners-Lee’s definition of the Web

as a ‘universal information space’ and then rebuild a notionof ‘digitality’ and finally

‘representation’ on top of our notion of information, sincethe Web is composed of not

just any representations, but digital representations.

3.1 Preliminaries

On the surface a term like ‘representation’ seems to be what Brian Cantwell Smith calls

“physically spooky,” since a representation can refer to something with which it is not

in physical contact (Smith, 1995). This spookiness is a consequence of a violation of

common-sensephysics, since representations appear to have a non-physical relation-

ship with things that are far away in time and space. This relationship of ‘aboutness’

or intentionalityis often called ‘reference.’ While it would be premature to define ‘ref-

erence,’ a few examples will illustrate its usage: someone can think about the Eiffel

Tower in Paris without being in Paris, or even having ever setfoot in France; a human

can imagine what the Eiffel Tower would look like if it were painted blue, and one

can even think of a situation where the Eiffel Tower wasn’t called the Eiffel Tower.

Furthermore, a human can dream about the Eiffel Tower, make aplan to visit it, and

so on, all while being distant from the Eiffel Tower. Reference also works temporally

as well as distally, for one can talk about someone who is no longer living such as

Gustave Eiffel. Despite appearances, reference is not epiphenomenal, for reference

has real effects on the behavior of agents. Specifically, onecan remember what one

had for dinner yesterday, and this may impact on what one wants for dinner today, and

one can book a plane ticket to visit the Eiffel Tower after making a plan to visit it.

Can we get to the heart of this mystery at the heart of representation and other in-

tentional terminology? The trick would be to define what precisely our common-sense

notion of reference is, and to do this requires some terminological ground work while

avoiding delving into amateur quantum physics. The terminology here is supposed to

reconstruct rather carefully some common-sense demarcations in an uncontroversial

yet broad manner so that these terms can deal with a suitably broad range of phenom-

ena, including the Web. To pin the supposed ‘spookiness’ of reference down, we will

introduce a few terms. Athing is a general-purpose term used to denoteevents, ob-

jects, and proto-objects in a “patch of metaphysical flux,” where a thing can be defined
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by having some regularity in time and space that can distinguish it from other possible

things(Smith, 1995). Aregularity is a lack of difference in time and space at a given

level of abstraction. We shall often use the termprocessinterchangeably with things to

evoke the dynamic and temporally unstable character of a ‘thing.’ We will also some-

times use the termsystemwhen we are emphasizing the factthat one thing can also

be, on a different level of abstraction, given as multiple things. This can be considered

a mere change of focus, for the term ‘thing’ emphasizes the everyday, solid, and static

nature of the “metaphysical flux,” while the term ‘process’ refers more to its dynamic

aspect (Smith, 1995).All things and processesare theworld. There are generally two

kinds of separation possible in processes in a relativistically invariant theory, a phys-

ical theory that obeys the rules of special relativity so that the theory looks the same

for any constant velocity observer, as processes may be separated in time or space.

Things that are separated by time and spacearedistal while those things that are not

separated by time and space areproximal. As synonyms for distal and proximal, we

will use non-local andlocal, or justdisconnectedandconnected. Although this may

seem to be an excess of adjectives to describe a simple distinction, this aforementioned

distinction will underpin our notions of representation and reference. In figures, local

relationships will be marked with a dotted line, while distal (and so possibly referen-

tial) relationships are marked with the uniform bold line.

While a discussion about counterfactuals and causation is far beyond our scope,

we will rely on the common-sense intuition thatif one thing is connected with another

thing and a change in the former thing is followed by a change in the latter thing,

that former process may havecausedthe change in the latter process. In other words,

the first thing iseffective, and the other things that may be effected by a particular

thing are within itseffective reach. Anything that appears to violate these common-

sense intuitions about physics and causationis spooky, while anything that does not

is non-spooky. A property of the distal is that it is beyond effective reach; as Smith

puts it, “distance is where no action is at” (1995). For example, a tourist hitting their

toe on the Eiffel Tower has no immediate effect on someone in Edinburgh. With these

preliminary terms in hand, we return to the topic of the Web.

3.2 Information, Encoding, and Content

The Web has been defined as a “universal information space” byBerners-Lee, and

we will take this definition seriously and attempt to unravelit, in the hope that it will
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provide clues on how we can define both ‘representation’ and ‘reference’ in a man-

ner that can do justice to the Web (1992). The strategy to be employed is to inspect

Berners-Lee’s evocative notion of the Web as a universal information space in order to

provide a less complex notion of information that can serve as the foundation for build-

ing the more complex notion of representation. The first question to be answered then

is the perennial question: What is information? Although wecannot comprehensively

answer this question in full, we can sketch some crucial distinctions.

In order to make progress on defining the Web, we will have to reformulate the

notion of information, taking inspiration from Shannon’s communication theory while

allowing the central concept of information to be grounded in the wider philosophy of

language. To rephrase,information is whatever regularities held in common between

two things, asourceand areceiver(Shannon and Weaver, 1963). To have something

in common means to share the same regularities, e.g. parcelsof time and space that

cannot be distinguished at a given level of abstraction. This definition correlates with

information being the inverse of the amount of ‘noise’ or randomness in a system, and

the amount of information being equivalent to a reduction inuncertainty. This preser-

vation or failure to preserve information can be thought of as the sending of amessage

between the source and the receiver over a channel.Whether or not the information

is preserved over time or space is due to the properties of a physical substrateknown

as thechannel. Themessagerealizes on some level of abstraction the information,

so we will often call some particular message with some particular information an

‘information-bearing message.’ Already, information reveals itself to be not just a sin-

gular thing, but something that exists at multiple levels. In particular, we are interested

in two more distinctions in information: that between abstraction and realization, and

that between content and encoding.

The first distinction is between the information itself on a level of abstraction, and

the particular realization of information. Information isoften thought of as an abstrac-

tion, and this is true insofar as the same information can be realized by many possible

messages. In order to cope with this, a distinction should bemade between the infor-

mation on a level of abstraction from any of the concrete realizations themselves that

embody the information at a given juncture in space-time. Touse an example, Daniel

in Paris (the source) is trying to send a message to Amy (the receiver), a secretary

in Boston, that one of her fellow workers, Ralph, has won a trip to the Eiffel Tower.

Daniel can send this message in a variety of realizations: e-mail, a letter in the post,

or even via a friend who happens to be passing through Boston.The information itself
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is just the precise physical regularity at a level of abstraction, and these regularities

can be embodied by many different possible messages, but these messages are not ar-

bitrary, but must have a certain ability to preserve the regularity – so in the case of

Daniel, it’s unlikely he could convey his message from Paristo Boston using smoke

signals. It would simply not reach the receiver in any recognizable form. So, alevel

of abstractionis certain physical differences and regularities that can be recognized

by an agent and so may have a causal effect on the agent. For example, given a hand-

written letter in English, one can focus on the low-level of abstraction, such as the

details of the various pen-strokes and the texture of the paper, or progressively higher

levels of abstraction, such as recognizing letters in an alphabet, words, or sentences,

or even some larger units of discourse that express the thought ‘Ralph won a ticket to

Paris.’ To say that some thing realizes the information is ofcourse arealizationof the

information, which is athe physical thing that realizes the regularities of the informa-

tion due to its local characteristics, just like a particular information-bearing message

but more broadly construed. The concrete voltages down the wire realize an e-mail

message, as does a physical book realize some sentences in English. It is common

practice to elide various levels of abstraction and just talk about information, but often

it is useful to pull apart the abstract pattern of regularities from those physical things

in the world that realize them. Since the term ‘information’is used indiscriminately

to refer to information on a level of abstraction and the realization of some abstract

information, we will use the terminformation realizationor justrealizationwhen dis-

cussing a particular realization of information and use thetermabstract information

on the rare occasion when we wish to emphasizeinformation on a level of abstraction

regardless of its particular realization. When the term ‘information’ by itself is used,

we are referring to both abstract information and any of its particular realizations.

The second distinction is not as obvious as the distinction between abstract infor-

mation and its realization: the distinction between the content and encoding of infor-

mation. Shannon’s theory deals with finding the optimal encoding and size of channel

so that the message can be guaranteed to get from the sender tothe receiver (Shannon

and Weaver, 1963). Yet, how can an encoding be distinguishedfrom the content of

information itself? Goodman defines what we would call an encoding as a series of

marks, where amark is a physical characteristicranging from marks on paper one

can use to discern alphabetic characters to ranges of voltage that can be thought of as

bits (1968). To be reliable in conveying information, an encoding should be physically

“differentiable” and thus maintain what Goodman calls “character indifference” so that
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(at least within some context) each character (characteristic) can not be mistaken for

another character. So, anencodingis a set of precise regularities that can be realized

by the message. Encodings are usually given these regularities in virtue of being in a

language, which is explicated in Section 3.3.

Is our distinction of ‘encoding’ re-stating the differencebetween abstract infor-

mation and realization? It is not. Although it would seem that information becomes

somehow concrete within a particular region of space-time when it is encoded, on

closer inspection, an encoding can still exist on a level of abstraction without being

concretely realized in space-time. The term ‘Eiffel Tower’carries information in an

encoding, but it is realized when some speaker uses it in an actual utterance. The text

of Moby Dickcan be thought of as abstract information, a story about a white whale.

The text ofMoby Dick in Englishis an encoding of the abstract information ofMoby

Dick, with precise regularities given by thevery lettersof the language. The content

of the novelMoby Dickcould be encoded in a different language, like French, and the

precise regularities that convey thesameinformation at a level of abstraction could be

given bydifferentphysical characteristics and sodifferent encodings. In the case of

French versus English, different words and other linguistic nuances would exist, but

the information would – at a level of abstraction, since obviously there are nuances

possible in French that do not exist in English, and vice versa – be the same. So even

the text ofMoby Dickin a particular encoding like English exists at a level of abstrac-

tion, as it could be realized in multiple things in space-time, as a copy in English of

Moby Dickcould be realized by two different physical books, one in Edinburgh and

the other in Jakarta. In fact, these realizations could alsobe quite different, such as a

realization of Moby Dick in English as a web-page going down the wire as a particular

set of voltages at a given time, and as a particular book on someone’s bookshelf.1

There is more to information than encoding. Shannon’s theory does not explain the

notion of information fully, since giving someone the number of bits that a message

contains does not tell the receiverwhat information is encoded. Shannon explicitly

states that “the fundamental problem of communication is that of reproducing at one

1There certainly vast metaphysical difficulties that we are purposefully ignoring in our distinction
between realization and abstract information. Namely, do not realizations themselvesexist on a level of
abstraction? To some extent this can be thought of as true: isa particular copy ofMoby Dickon my shelf
today the same realization tomorrow? These metaphysical conundrums can have their Gordian knots
cut in a straightforward manner: A realization is composed of locally-connected causal regularities, and
how this realization is thought of as varying over space-time is irrelevant for the time being, as long as
the realization from one moment to another, or from one portion of space to another, is connected to its
former self.
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point either exactly or approximately a message selected atanother point. Frequently

the messages have meaning; that is they refer to or are correlated according to some

system with certain physical or conceptual entities. Thesesemantic aspects of commu-

nication are irrelevant to the engineering problem” (1963). He is correct, at least for

his particular engineering problem. However, Shannon’s use of the term ‘information’

is for our purposes the same as the ‘encoding’ of information, but a more fully-fledged

notion of information is needed. Many intuitions about the notion of information have

to deal with not only how the information is encoded or how to encode it, but what

a particular message is about, thecontentof an information-bearing message. ‘Con-

tent’ is a term we adopt from Israel and Perry, as opposed to the more confusing term

‘semantic information’ as employed by Floridi and Dretske (Israel and Perry, 1990;

Dretske, 1981; Floridi, 2004).

While the notion of an information’s content is hard to pin down, it is easy to

illustrate. Just determining that a single employee out of eight won the lottery requires

at least a three bit encoding and does not tell Amy which employee in particular won

the lottery. Only a particular three bits will tell Amy precisely who won the lottery.

Shannon’s theory only measures how many bits are needed to tell Amy precisely who

won. After all, the false message that another office-mate Sandro won a trip to Paris is

also three bits. Yet content is not independent of the encoding, for content is conveyed

by virtue of a particular encoding and a particular encodingimposes constraints on

what content can be sent (Shannon and Weaver, 1963). Let’s imagine that Daniel is

using a code of bits specially designed for this problem, rather than natural language, to

tell Amy who won the free plane ticket to Paris. The content ofthe encoding001 could

be Ralph while the content of the encoding010 could be Sandro. If there are only two

possible bits of information and all eight employees need one unique encoding, Daniel

cannot send a message specifying which friend got the trip since there aren’t enough

options in the encodings to go round. An encoding of at least three bits is needed to

give each employee a unique encoding. If01 has the content that ‘either Sandro or

Ralph won the ticket’ the message has not been successfully transferred if the purpose

of the message is to tell Amypreciselywhich employee won the ticket.

One of the first attempts to formulate a theory of informational content was due

to Carnap and Bar-Hillel (1952). Their theory attempted to bind a theory of con-

tent closely to first-order predicate logic, and so while their “theory lies explicitly and

wholly within semantics” they explicitly do not address “the information which the

sender intended to convey by transmitting a certain messagenor about the information
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a receiver obtained with a certain message,” since they believed these notions could

eventually be derived from their formal apparatus (Carnap and Bar-Hillel, 1952). Their

overly restrictive notion of the content of information as logic did not gain widespread

traction, and neither did other attempts to develop alternative theories of information

such as that of Donald McKay (1955). In contrast, Dretske’ssemantic theory of in-

formationdefines the notion of content to be compatible with Shannon’sinformation

theory, and his notions have gained some traction within thephilosophical community

(Dretske, 1981). To Dretske, the content of a message and theamount of information

as studied by Shannon are different, for “saying ‘There is a gnu in my backyard’ does

not have more content than the utterance ‘There is a dog in my backyard’ since the

former is, statistically, less probable” (1981). According to Shannon, there is more

information in the former case precisely because it is less likely than the latter and so

would require more bits to encode (Dretske, 1981). So while information that is less

frequent may require a larger number of bits in an encoding, the content of information

should be viewed as separable if compatible with Shannon’s information theory, since

otherwise one is led to the “absurd view that among competentspeakers of language,

gibberish has more meaning than semantic discourse becauseit is much less frequent”

(Dretske, 1981). Shannon and Dretkse are talking about distinct, but intertwined, no-

tions that should be separated, namely the distinction between encoding and content.

Is there a way to precisely define the content of a message? Dretske defines the

content of information as “a signalr carries the information thats is F when the condi-

tional probability ofs’s beingF, givenr (andk) is 1 (but, givenk alone, less than 1).k

is the knowledge of the receiver” (1981). To simplify, thecontentof any information-

bearing message iswhatever is held in common between the source and the receiver as

a result of the conveyance of a particular message. While this is similar to our defini-

tion of information itself, it is different. Information can measure the total in common

between a source and receiversimpliciter. For example, two distal humans can share

quite a lot in common, and so share information, despite never having conveyed a mes-

sage between each other. The content is whatever is shared incommon as a result of

a particular message, such as the conveyance of sentence ‘Ralph won a ticket to the

Eiffel Tower.’ The content of a message is called the “facts”by Dretske, (F). This con-

tent is conveyed from the source (s) successfully to the receiver (r) when the content

can be used by the receiver with certainty,and that before the receipt of the message

the receiver was not certain of that particular content. Daniel can only successfully

convey the content that ‘Ralph won a trip to Paris’ if before receiving the message
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Amy does not know that Ralph won the trip to Paris and after receiving the message

Amy does know that fact. To communicate content successfully, both the source and

receiver have to be using the same encoding scheme (bits, English, etc.) and the source

has to encode the content relative to what the receiver already knows or capacities the

receiver possesses. Thus, if Amy does not know who is specified by the term “Ralph”

given by the encoding scheme, but only knows him as ‘the guy with the black beard,’

Daniel needs to explain in his message the additional fact that the ‘fellow with the

black beard at your office is Ralph.’ However, we should interpret the term ‘certainty’

more loosely than Dretske would. Dretkse himself notes thatinformation “does not

mean that a signal must tell us everything about a source to tell us something,” it just

has to tell enough so that the receiver is now certain about the content within the do-

main (1981). Millikan rightfully notes that Dretske stateshis definition too strongly,

for this probability of 1 is just an approximation of a statistically “good bet” indexed to

some domain where the information was learned to be recognized (2004). For exam-

ple, lightening carries the content that “a thunderstorm isnearby” in rainy climes but in

an arid prairie lightning can convey a dust-storm. However,often the reverse is true, as

the same content is carried by messages in different encodings, like the message from

Daniel to Amy being encoded in either English or French.

In our example, the message that ‘Ralph won a plane ticket to France’ can be en-

coded in two different languages and still have the same relationship to content.The

relationship of an encoding to its contentis aninterpretation. The interpretation ‘fills’

in the necessary background left out of the encoding, and maps the encoding to some

content. In our previous example using binary digits as an encoding scheme, a mapping

could be made between the encoding001 to the content of Ralph while the encoding

010 could be mapped to the content of Sandro. An interpretation requires aninter-

preteror an agent that is capable of carrying out an interpretation from a particular

encoding and a particular content. The word ‘interpretation’ is probably one of the

most embattled words, and an in-depth study of its usage far exceeds the scope of this

thesis. Somewhat unusually, our usage of the term ‘interpretation’ is as a relationship

between an interpreter and some encoding, not a first-order thing itself. This is done

on purpose, in order to emphasize the fact that someinterpreting agentis needed to

actually make the interpretation from some encoding to content. When the word ‘in-

terpretation’ is used as a noun, we mean the content given by aparticular relationship

between an agent and an encoding. Usual definitions of ‘interpretation’ tend to con-

flate these issues. In formal semantics, the word ‘interpretation’ often can be used
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either in the sense of “an interpretation structure, which is a ‘possible world’ consid-

ered as something independent of any particular vocabulary” (and so any agent) or “an

interpretation mapping from a vocabulary into the structure” or as shorthand for both

(Hayes, 2004). The difference in use of the term seems somewhat divided by fields.

For example, computational linguists often use “interpretation” to mean what Hayes

called the “interpretation structure.” In contrast, we usethe term ‘interpretation’ to

mean what Hayes called the “interpretation mapping,” reserving the word ‘content’ for

the “interpretation structure” or structures selected by aparticular agent in relationship

to some encoding. Also, this quick aside into matters of interpretation does not explic-

itly take on a formal definition of interpretation as done in model theory, although our

general definition has been designed to be compatible with model-theoretic and other

formal approaches to interpretation.

To uphold our requirement for physical non-spookiness, in order for an interpreta-

tion to take place, the interpreter and some realization of the encoding must be con-

nected in some way, such as a human looking at bytes or a machine processing various

voltages. In this manner, the examples of interpretation are almost always from partic-

ular information realizations in some particular encodingto some particular content.

However, the relationship of interpretation is not bound toa particular realization of

any information, but also functions at a level of abstraction as well, since obviously

many particular realizations of the same abstract information can have the same inter-

pretation. Imagine that Amy is bilingual, and speaks both French and English, so if

Daniel had two messages, one in English and another in French, explaining that Ralph

has a plane ticket, both messages would have the same interpretation to the same con-

tent. So, while information has to be realized concretely inorder to be interpreted

in a given message by an agent, as many messages can have the same interpretation

across many agents, the interpretation is thought to be between the encoding and the

content, even when the encoding is at a level of abstraction.So, the single sentence

‘Ralph won a plane ticket to Paris’ may have a single interpretation across many dif-

ferent utterances. However, if the agent and their background information changes,

the interpretation may change, as obviously if the e-mail from Daniel was intercepted

and read by some secret agent not at Ralph’s office, obviouslythe secret agent may not

know who Ralph is while Amy will.

The content of a particular message depends very much on the encoding scheme

used by the interpreter. For example, one can interpret the encoding11 as either the

number eleven in the decimal encoding scheme, or the number three in the binary
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encoding scheme. Unlike many others, including Dretske, weshall make no claims

about the nature of information, interpretation, and truth, in particular if what appears

to be ‘false’ information is really misinformation or pseudo-information. By remaining

studiously neutral on this long-standing debate, our definition of information is suitably

vague enough so that even encodings that are interpreted to be ‘false’ still count as

information. For example, if Daniel was sending the messageto Amy that Ralph had

a free plane ticket to Paris as some sort of jest or lie, Amy could still decode and

interpret the message, and by filling in normal background assumptions (as Dretske

put it, the “channel assumptions”) she might assume that themessage was true (1981).

Amy would still have an interpretation of the content of the message, it would just be

different from Daniel’s interpretation. In other words, information may always have an

encoding and content and nothing forces some information realization to be interpreted

to the same content by all interpreters.

Interestingly enough, this opens the door to the possibility of a sender sending an

encoding to a receiver that lacks the necessary capacity to decode it. The encoding

would not then have an interpretation to content. This wouldbe the standard definition

of data, which is information without an interpretation. Our definition works well

with other ‘textbook’ definitions of data and information, such as that of Davis and

Olson, which states that “information is data that has been processed into a form that

is meaningful to the recipient” (1985). This does not mean that the encoding does not

possibly have an interpretation, but at that given moment itcannot be interpreted. One

example would be if the message from Daniel that Ralph had wonthe plane ticket

had been delivered via e-mail in French. While Amy could havebeen aware of some

very limited aspects of the e-mail (such as the time sent and the sender), she would

lack the necessary knowledge of French to decode the message’s content and so to

have an interpretation of the message. In this manner, the e-mail from Daniel, while

having a definite interpretation for French speakers, wouldlack an interpretation for

Amy. To Amy, the message would just be data. Of course, Amy could learn French

and eventually read the message, or send it to a machine-translation program, or ask a

French speaker to translate the message for her, and so couldeventually transform the

encoding from data to information. One can also imagine cognitive constraints leading

to a lack of an interpretation. For example, the volume of data gathered by modern

telescopes is absolutely enormous, so large that much of it lies as uninterpreted reams

of data rather than information for scientists, as it is beyond a single human to interpret

this data, and even groups of humans trying to interpret it ina distributed manner are
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still struggling to catch up with the volume of data producedby the telescopes.

These terms are all illustrated in Figure 3.1. A source (Amy)is sending a receiver

(Daniel) a message. The information-bearing message realizes some particular encod-

ing such as a few sentences in English and a picture of the Eiffel Tower, and the content

of the message can be interpreted to be about the actual Eiffel Tower.

Figure 3.1: Information, Encoding, Content

Information, which appeared so simple, is now revealed to bea multi-faceted phe-

nomenon. To summarize, information is what is held or could be held in common

between a sender and a receiver. Information is always thought of at a level of ab-

straction, and so abstract information can be realized concretely by some realization,

like a particular message. Information, on both the level ofabstract information and a

particular realization, has two sides: encoding and content. The encoding is the precise

regularities that can convey the information in a particular message, while the content

is what is in common between the receiver and the sender as a result of the conveyance

of a particular message. The thought ‘Ralph won a plane ticket to Paris’ is the content,

given an encoding in English by Daniel, and realized as some bits sent over the wire

to Amy. These notions of encoding and content are not strictly separable, which is

why they together compose the notion of information. An updated famous maxim of

Hegel could be applied to the new-fangled concept of information: There is no en-

coding without content, and no content without encoding (1959). In a similar vein,

while we canimaginethere being information without any realizations, we onlyknow

information through its concrete realizations.
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3.3 Meaning and Purpose

The notion of interpretation implies the transfer of an encoding and an act of the in-

terpreter that relates that encoding to content, nothing more. When Daniel sends Amy

the e-mail to tell her Ralph had a plane ticket to Paris, Amy interpreted the message by

filling in various background information, and so determining that Ralph at her office

has a plane ticket to Paris. Amy has successfully interpreted the message. The effect

upon an agent of an interpretation of some encoding is difficult to visualize, and one

attempt that resonates is the notion ofassertoric contentgiven by Dummett(1973). Ig-

noring his larger project, we can simply say one way to tell ifan agent has interpreted

an encoding to some content is that the agent would ‘assent’ to various questions about

this content. So, if Daniel asked Amy if she got the message about Ralph, minimally

she should assert that she did, and if she does not, then perhaps she did not get the

message.

Yet, if Amy merely sat at her desk, content in her knowledge, but did not tell Ralph,

thensomethingwould have gone awry from Daniel’s standpoint. Obviously, the point

of sending a message is for the information to have some causal effect on the agent,

which would be manifested in the behavior of the agent. Thiscausal effect of informa-

tion on agents, often demonstrated by behavior, is themeaningof the information.2

So, the meaning of the message for Amy that ‘Ralph won the plane ticket’ is precisely

the behavior exhibited by Amy, such as her getting up from herdesk and telling Ralph

verbally that he has a plane ticket to Paris. The meaning of information is quite man-

ifold, as it may cause the behavior of multiple agents in whatare calledinformational

links by Gareth Evans (1982). For example, when Ralph hears from Amy he won a

plane ticket, he may go to book a hotel and tell his wife; theseactions are Ralph’s

behavioral manifestations, the meaning of the message for Ralph, that is caused by

Amy conveying the message. Since the message from Amy to Ralph realized the same

abstract information that the message from Daniel to Amy realized, the behavior of

both Amy and Ralph is created by the same abstract information, even if there were

different distinct messages (an e-mail from Daniel, an utterance from Amy) conveying

this information. The meaning of a piece of information, even a single message, may

and usually does spread beyond a single agent receiving a single message. So, one can

2This does not necessarily mean that the receiver has changedin some observable manner, instead,
the effect of the message on the receiver may cause the receiver to stay the same. This would be exem-
plified when measuring the degradation of information on a hard-drive, where the amount of information
preserved from the selfsame hard-drive at one moment in timeto another is considered the message.
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legitimately use the term ‘meaning’ both in the context of a single realization or the

more abstract information that can be realized by multiple realizations.

However, what if Amy doesn’t actappropriatelywhen receiving the message?

What if upon receiving the message, she simply deletes it? Thepurposeof information

is the intended meaning of information, often given by the intended behavior of the re-

ceiver intended by the sender of a message. The sender of the message, Daniel, wants

Ralph to receive it – that is the purpose of his original e-mail to Amy. Information

often has a ‘purpose’ that is beyond its particular content.For example, Daniel could

be trying to reward Ralph for his astounding performance in his job, and believes that a

vacation to Paris may ensure his future good behavior at work. Ralph may not be able

to deduce any of this from the content of the message he receives. There are numer-

ous reasons for the purpose also being at odds with the meaning of the message; the

information may not have the same meaning for the sender as itdoes for the receiver,

and so the sender may be sending a message that causes meaningful behavior for the

receiver that the sender did not predict. A single sentence like ‘Police!’ might always

have the same interpretation to content (i.e. to a nearby policeman) but it would be

radically different in both meaning and purpose if it was muttered by a thief who had

just managed to pick-pocket a tourist than if the exact same expression was used by

the tourist who had just been pick-pocketed. This shows how meaning is essentially

related to the wider context of the utterance, as explored innatural language by the

theory of ‘speech acts’ of Austin and Searle (Searle, 1969).Furthermore, the meaning

of a message may include the attempt by the receiver to createsome future behavior

in the sender. Also,when an agent is trying to determine some information in order

to direct its meaningful behavior, the agent can be said to have aninformation need.

Everything from a frog wandering around looking for flies in its environment to a stu-

dent asking a teacher a question or an agent typing in search terms into a Web search

engine count as information needs.

A purpose is inherentlynormative, i.e. that informationshould, but does not nec-

essarily have to, fulfill its purpose to produce a particularmeaning. This normativity

could be grounded out in a number of different ways, but one prominent story is that

all normativity must ultimately be grounded out in evolution, so fulfilling Dennett’s

condition that “all normativity does ride on Darwin’s coat-tails” (Smith, 2002b). This

is an important aspect, because it tells a story about purpose of information even when

the sender is not another human agent, but the environment atlarge. For example, the

message given by a frog’s retina that a large dark spot is nearby may cause the mean-
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ingful behavior of tongue-flicking, since the tongue-flicking accomplishes the purpose

of the frog feeding itself. In this way, Millikan grounds normativity out in terms on

whether or not some information fulfills a “proper function”(1984). While the notion

of a proper function is too large a subject to analyze thoroughly here, Millikan sum-

marizes her more extended presentation into the evolutionary Language, Thought, and

Other Biological Categories(1984) by saying “ A thing’s proper functions are effects

which, in the past, have accounted for selection of its ancestors for reproduction, or

accounted for selection of things from which it has been copied, or for selection of

ancestors of the mechanisms” (Millikan, 2000). So, for example, the function of the

eye to blink was selected because it protected the eyes from harm and so increased the

survival of eye-blinking species. She later extends this definition to deal not just with

natural selection of genes, but mimetic selection, where imitation counts as a form of

reproduction, and in this way accounts for the extension of eye-blinking as a signal

of recognition to the complex use of language (Millikan, 2004). Also, many things

spread, especially by imitation, regardless of any proper function. As Millikan notices,

“Many conventions seem to have no functions. They seem to proliferate only because

people are creatures of habit, or unthinking conformists, or because they venerate tra-

dition, and so forth” (Millikan, 2000). From this we can get adefinition ofconvention,

such as choosing to drive on the right side of the road as opposed to the left, as the

use of a thing based purely on previous history, without regard to imitation or natural

selection. While a proper function is a natural purpose, many technological artifacts

have an ‘unnatural’ purpose, particularly those designed in some laboratory or by some

enthusiasts and not yet released ‘into the wild’ to suffer the travails of selection either

by nature or the market. This is the purpose for which an artifact has been designed,

which it may or may not succeed. In many cases, it is hard to even detect the purpose

of some particular information, and the connection to evolution will be vague at best.

In most of the examples we are dealing with, our notion of success is straightforward;

the message to Amy that Ralph won the plane ticket is successful if Amy receives the

content of the message, and this can be detected by Amy actingappropriately, such as

when she tells Ralph that he has a plane ticket to Paris. Without the ability to accurately

receive and transmit messages, one would assume that the species would be less likely

to survive, and technology such as sending e-mails is successful insofar as it provides

a benefit to its users over, say, carrier pigeons. As Andy Clark puts, it “by seeing tools

as entities with their own selective histories” we can understand what Terrence Deacon

calls the “flurry of adaption...going on outside the brain” (Clark, 2002; Deacon, 1997).
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Despite Dretske’s use of terms like “certainty” and “knowledge,” we can use our

story about information in ways that apply to technology such as computers whose

epistemic properties are even more uncertain than those of humans. The successful

conveyance of a message requires that its regularity is preserved over some channel so

that the message is capable of evoking the correct and purposeful meaningful behavior

from agents. What Dretske calls “knowledge” are the regularities already present in

the system that may contribute to the information being successfully conveyed between

agents. So one could easily replace the natural language message about a free trip to

Paris between two humans to be a message to book an aeroplane ticket for Ralph from

one dumb server to another over the Internet. For this to be successful, the servers must

share the same encoding schemes so that the content of the message can be decoded.

These computers may not interpret the content of the encoding of the message in the

same manner that a human does – since the computers obviouslydo not know that

Ralph is, say, human – but they interpret the message nonetheless, and the sign of

this interpretation is that the message has some meaningfulphysical effect upon the

machine, causing it to send other messages to other machinesthat eventually results in

a plane ticket being printed for Ralph. However, the evoked behavior is not arbitrary,

just as an interpretation is not arbitrary. If the plane ticket given by Daniel sends Ralph

to Berlin, something has gone amiss in the computer’s interpretation of the booking,

and its meaningful behavior is no longer in line with the purpose of the message.

3.4 Language and Models

The encodings and content of information do not in general come in self-contained

bundles, with each encoding being interpreted to some free-standing propositional con-

tent. Instead, encodings and content come in entire interlocking informational systems.

One feature of these systems is that encodings are layered inside of each other and

content is also layered upon other content. The perfect example would be an English

sentence in an e-mail message, where a series of bits are usedto encode the letters of

the alphabet, and the alphabet is then used to encode words. Likewise, the content of a

sentence may depend on the content of the words in the sentence. When this happens,

one is no longer dealing with a simple message, but some form of language. Alan-

guagecan be defined asa system in which information is related to other information

systematically. In a language, this is a relationship between how the encoding of some

information can change the interpretation of other encodings. Messages always have
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encodings, and usually these encodings are part of languages. To be more brief, in-

formation isencoded inlanguages. The relationships between encodings and content

are usually taken to be based on some form of (not necessarilyformalizable or even

understood) rules. If one is referring toa system in which the encoding of information

is related to other encodings systematically, then one is talking about thesyntaxof a

language. If one is referring toa system in which the content of information is related

to other content systematically, then one is referring to thesemanticsof the language.

Particular encodings and content thenare accepted bythe syntax and semantics of a

language respectively.

Also, we do not restrict our use of the word ‘language’ to primarily linguistic

forms, but use the term ‘language’ for anything where there is a systematic relation-

ship between syntax and (even an informal) semantics. One such investigation into

non-linguistic languages is Nelson Goodman’sLanguages of Art(1968). Although our

examples so far have been in natural language, our definitionof language is purpose-

fully neutral regarding languages for humans (or even possibly languages for other

animals) and ‘formal’ languages for machines such as programming languages for

computers. There areiconic languagesbased on imagesandnatural languagesbased

on human linguistic expressions, as well asformal languageswith an explicitly defined

syntax and possibly model-theoretic semantics, and so the purpose of these formal lan-

guages can be interpretation by computers. Many computer languages not considered

to be programming languages are languages insofar as they have some normative or

even informal interpretation, such as HTML. Furthermore, due to some bias against

computer languages actually being first-class languages, sometimes the termformat

is a synonym for computer-based language, often one that cannot directly execute as

a program. Lastly, just as encodings and content may be embedded in each other to

form a language, languages themselves may be embedded in each other to form new

languages.A language embedded as a subset of another languageis adialector vo-

cabularyof the language. Many machine languages like XML have as their primary

purpose the expression of other dialects (Bray et al., 1998).

A particular message in a languageis anexpressionof the language. The lower-

level of a language can beterms, regularities in marks, that may or may not have their

own interpretation, such as the words or alphabet.Any combination of terms that is

valid according to the language’s syntaxis asentencein the language, andany com-

bination of terms that has an interpretation to content according to the language’s

semanticsis a statementin the language. In this way, marks form the syntax of a
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language. The relationship between semantics and syntax can be straightforward or

only vaguely known, depending on the language in question. For example, formal

languages almost always have an explicitly humanly-definedsyntax and even model-

theoretic semantics, while the semantics of English seem toescape easy definition,

although its syntax is reasonably well-understood. One principle used in the study of

languages, attributed to Frege, is the principle ofcompositionality, wherethe content

of a sentence is related systematically to terms in which it is composed. Indeed, while

the debate is still out if human languages are truly compositional (Dowty, 2007), pro-

gramming languages almost always are compositional. The content of the sentence

such as ‘Ralph has a plane ticket to Paris so he should go to theairport!’ can then be

composed from the more elementary content of the sub-statements, such as ‘Ralph has

a plane ticket’ which in turn can have its content impacted bywords such as ‘Paris’

and ‘ticket.’ The argument about whether sentences, words,or clauses are the minimal

building block of content (and as such can be assigned a ‘truth value’) is beyond our

scope. Do note one result of the distinction between encoding and content is that sen-

tences that are accepted by the syntax (encoding) of a language, such as Chomsky’s

famous “Colourless green ideas sleep furiously” may have noobvious interpretation

(to content) outside of the pragmatics of Chomsky’s particular exposition (1957). The

reverse is also true. Statements that may not be grammatically correct can in the right

context possess content, like most natural language utterances in speech.

An act of interpretation is usually thought of as a mapping from some sentences in a

language to the content of some state-of-affairs in a world.This world is often thought

to be the everyday world of concrete trees, houses, and landscapes that humans in-

habit. We will not engage in any metaphysical speculation asregards the nature of

the world besides our previous minimal definitions of physically connected or discon-

nected things and processes, so allowing for others to debate the existence of possible

worlds or the metaphysical status of the past and future. Regardless, informally an in-

terpretation can be considered to be a mapping from sentences to the physical world it-

self, a mapping rather appropriately labeled ‘God Forthcoming’ (Halpin, 2004). How-

ever, often we do not have access to the world itself and it is unclear if a simplistic

definition such as “the truth of a sentence consists in its agreement with (or corre-

spondence to) reality” makes any sense, for “all these formulations can lead to various

misunderstandings, for none of them is sufficiently preciseand clear” (Tarski, 1944).

In an attempt to define a formal notion of truth, Tarksi definedthe interpretation of a

language, which he terms the “object” language, in terms of a“meta-language” (1944).
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If both the language and the meta-language are suitably formalized, the interpretation

of the language can then be expressed in terms of a satisfaction of a mathematical

model, wheresatisfactioncan be defined asan interpretation to a mathematical model

that defines whether or not every sentence in the language canbe interpreted to con-

tent, which in the tradition of Frege is usually thought of as a ‘truth’ value. The model

‘stands-in’ for the vague and fuzzy world or some portion thereof. While Tarksi orig-

inally applied this only to suitably formal languages, others such as Montague have

tried to apply this approach, with varying degrees of success and failure, to natural

language. Amodel-theoretic semanticsis a semantics wherean interpretation of a

language’s sentences is to a mathematical model. Themodel is a mathematical rep-

resentation of the world or the language itself. The relationship is summarized below

in Figure 3.2, where the relationship between the model and the world is thought to be

distal (such that the modelrepresentsthe world). This is not always the case, as when

the model can be thought of as ranging over the world itself.

The adequacy of models is usually judged by whether or not they fulfill the pur-

poses to which the language is designed, or whether or not their behavior adequately

serves as a model of some portion of the world. Given a model-theoretic semantics,

an interpretation can be given as “a minimal formal description of those aspects of

a world which is just sufficient to establish the truth or falsity of any expression” in

the language (Hayes, 2004). While again the history and debate over these terms is

outside the scope of this thesis, in general the original notion, as pioneered by Carnap

(1947), is that a certainkind of thing may only be described, and so given anintension,

while thethings that satisfy this description(which may be more than one thing) are

extensions. Sentences areconsistentif they can be satisfied, inconsistentif otherwise.

Lastly, note that anentailmentis where an interpretation of one sentence to some con-

tent always satisfies the interpretation of another sentence to some content, i.e. the

first statement entails the second. In contrast, aninference is asyntactic relationship

where one sentence can be used to construct another sentencein a language. In detail,

as shown in Figure 3.2, the syntactic inference mechanisms over time produce more

valid inferences, and because these inferences ‘line up’ with entailments, they also

may accurately describe the world outside the formal system. Ideally, this model also

‘lines-up’ with the world, so the inferences give one more correct statements about

the world. Models can be formally captured using various mathematical techniques,

of which we have primarily described what is known as denotational semantics, but

axiomatic and operational semantics are equally powerful formalisms. Inference can
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Figure 3.2: Models, Entailment, and Inference

usually be accomplished by some local inference procedure,like a computer program.

The inference procedure of a language issoundif every inferred sentence can be satis-

fied(i.e. the inference mechanism preserves ‘truth’), and it iscompleteif every satisfied

sentence can be shown to be entailed(i.e. all ‘true’ statements can be proven). This is

necessarily a quick overview of the large field of formal semantics, and these issues are

discussed more in depth in Chapter 6. This is illustrated in Figure 3.2 as the parallel

between the causal relationships of the syntactic sentences and their interpretations to

a model thatsemanticallyrefers to the world.

3.5 Digitality, Concepts, and Entities

One of the defining characteristics of information on the Webis that this information

is digital, bits and bytes being shipped around by various protocols. Yet there is no

clear notion of what ‘being’ digital consists of, and a working notion of digitality is

necessary to understand what can and can not be shipped around as bytes on the Web.

Much like the Web itself, we can know something digital when we spot it, and we can

build digital devices, but developing an encompassing notion of digitality is a difficult

task, one that we only characterize briefly here.

One philosophical essay that comes surprisingly close to defining a notion of digi-
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tality is Nelson Goodman’sLanguages of Art: Given some physically distinguishable

marks, which could compose an encoding, Goodman (1968) defined marks as “finitely

differentiable” when it is possible to determine for any given mark whether itis identi-

cal to another mark or marks. This can be considered equivalent to how in categorical

perception, despite variation in handwriting, a person perceives hand-written letters as

being from a finite alphabet. So,equivalence classes of marks can be thought of as an

application of the philosophical notion of types. This seems close to ‘digital,’ so that

given a number of types of content in a language, a system is digital if any mark of the

encoding can be interpreted to one and only one type of content. Therefore, in between

any two types of content or encoding there can not be an infinite number of other types.

Digital systems are the opposite of Bateson’s famous definition of information: Being

digital is simply having a difference that does not make difference (Bateson, 2001).

This is not to say there are characteristics of a mark which donot reflect its assignment

in a type, and these are precisely the characteristics whichare lost in digital systems.

So in an analogue system, every difference in some mark makesa difference, since

between any two types there is another type that subsumes a unique characteristic of

the token. In this manner, the prototypical digital system is the discrete distribution of

integers, while the continuous numbers are the analogue system par excellence, since

between any real number there is another real number.

Lewis took aim at Goodman’s interpretation of digitality interms of determinism

by arguing that digitality was actually a way to represent possibly continuous systems

using the combinatorics of discrete digital states (1971).To take a less literal example,

discrete mathematics can represent continuous subject matters. This insight caused

Haugeland to point out that digital systems are always abstractions built on top of ana-

log systems (1981). The reason we build these abstractions is because digital systems

allow perfect reliability, so that once a system is in a digital type (also called a ‘digital

state’), it does not change unless it is explicitly made to change, allowing both flaw-

less copying and perfect reliability. Haugeland reveals the purpose of digitality to be

“a mundane engineering notion, root and branch. It only makes sense as a practical

means to cope with the vagarities and vicissitudes, the noise and drift, of earthy exis-

tence” (Haugeland, 1981). Yet Haugeland does not tell us what digitality actually is,

although he tells us what it does, and so it is unclear why certain systems like com-

puters have been wildly successful due to their digitally (as in the success of analogue

computers was not so widespread), while others like ‘integer personality ratings’ have

not been as successful. Without a coherent definition of digitality, it is impossible to
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even in principle answer questions like whether or not digitality is purely subjective

(Mueller, 2007).

In contrast, it seems sensible to state that certain physical processes have the po-

tential to be digital objectively. Different interpreterscan interpret the same physical

encoding as ‘digital’ in different ways. The marks ‘11’ can be interpreted as eleven in

decimal and three in binary notation. So there are multiple ways one can state a sys-

tem is digital since digitality is a convergence between an abstract mode of interpre-

tation and an objective system that physically implements acorrespondence between

the possible states of the system and discrete types of content in the interpretation. An

interpretation isdiscrete interpretationwhen it isa relationship from an encoding to

content where the encoding is finitely differentiable and the type of the encoding de-

termines the content. In order to distinguish these types in the encoding, there must

be some physical regularity in the information realizationthat serves as aboundary.

Due to this, digitality then allows some finitely differentiable encoding to map via an

interpretation to content. When reading letters in a book, we concentrate on the let-

ters, not any minor variations in the quality of the printing– these analogue details are

left out of our discrete interpretation of the marks that represent letters to the letters

themselves. Reading is a convergence between an encoding that can be discretely in-

terpreted to the alphabet (and onwards and upwards to words,followed by language in

general), and a realization in a particular book that can support and maintain the encod-

ing. If we attempt to use an analogue substrate as a realization, such as writing letters

in water, and this physical substrate does not have the proper physical characteristics

then digitality seems to elude us. Any information isdigital when the boundaries in

a particular encoding capable of a discrete interpretationcan converge with a regu-

larity in a physical realization. This would include sentences in a language that can

be realized by sound-waves or the text in an e-mail message that can be re-encoded as

bits, and then this encoding realized by a series of voltages. In all these cases, the rel-

evant discrete boundaries can be captured by a realization.Theparticular realization

of digital informationis given by adigital system. Since the encoding of the informa-

tion can be captured perfectly by a realization, they can be captured by many possible

realizations, and thus can be copied safely and effectively, just as an e-mail message

can be sent many times or a digital image reproduced countlessly.

To implement a digital system, there must be a small chance that the information

realization can be considered to be in a state that is not partof the discrete types given

by the encoding. The regularities that compose the physicalboundary allows within a
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margin of error a boundary decision to be made in the discreteinterpretation of the en-

coding. So, an information realization is capable of upholding digitality if that buffer

created by the margin of error has an infinitesimal chance at any given time of being

in a state that is not part of the encoding’s discrete state. For example, the hands on a

clock can be on the precise boundary between the markings on the clock, just not for

very long. In a digital system, on a given level of abstraction, the margin of error does

not propagate upwards to higher levels of abstraction that supervene on the lower level

of abstraction. This first level of abstraction is ‘first-order’ digital, and other latter lev-

els can be ‘higher-order’ digital. First-order digital systems are created from analogue

physics, as we have outlined earlier, and of course higher-order digital systems can

be built on top of lower-order digital systems. Although in adiscrete interpretation,

the encoding must be finitely differentiable, the content – as interpreted by an agent –

does not have to be capable of being divided into a finite number of discrete types. For

example, the encoding00 could map to the content ‘Any human except Ralph or San-

dro.’ Or, in order to capture apparently analogue music stored in a digital format, one

should sample the wavelength twice as often as the highest frequency of the waveform,

and this leads the human to have an analogue experience of themusic when the music

is interpreted by their stereo. So, higher-order analog canbe built on top of lower-

order digital systems. Furthermore, digital realizationsinteract with and are based on

analogue systems. Digital information, no matter how many layers of encoding are

built into each other, are realized in very concrete and therefore analogue realizations.

So we will make one metaphysical claim in the spirit of Brian Cantwell Smith, by

pre-supposing an analog world, not a fundamentally digitalworld like that proposed

by Fredkin (Smith, 1995; Fredkin, 2003). Some realizationsof information are better

than others. Since we can create physical systems through engineering, we can cre-

ate physical substrata that have low probabilities of beingin states that do not map

to digital at a given level of abstraction. As put by Turing, “The digital computers ...

may be classified amongst the ‘discrete state machines,’ these are the machines which

move by sudden jumps or clicks from one quite definite state toanother. These states

are sufficiently different for the possibility of confusionbetween them to be ignored.

Strictly speaking there are no such machines. Everything really moves continuously”

(Turing, 1950).

There are many things that are not digital. Some philosophers like Brian Cantwell

Smith hold this “slop” or “fuzziness” of regularities to be afundamental property of

many things in the world, like abstract concepts and rather physical people and places
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(1995). Theanalogueis the rather large and heterogeneous set ofeverything that is

not digital. This would include people, such as Ralph himself, who can berepresented

but not realized as a message, as well as places, like Mount Everest, whose precise

boundaries are rather indeterminate. Indeed, things that are fundamentallyanalogue

we will call entities, wherethe regularities of the thing can only be realized by the

thing itself, not in another realization. This is not to say that the content of entities

is itself analogue, so that Ralph can not be distinguished from another person like

Sandro, or a place like France cannot be distinguished from Britain. All we mean is

that the regularities that define people and places are not finitely differentiable and so

cannot be realized in a single digital message. Ralph and Sandro are deeply analogue

physical bodies of skin and hair who can be represented, but not realized, by a single

digital representation, while places like the Eiffel Towerare literally physical areas of

space upon the earth that can likewise be represented, but not realized by some digital

substratum. Even when analogue entities may be differentiable, as we can differentiate

Ralph from Sandro and France from Britain, these analogue entities can themselves

not be realized digitally and copied. Whole places and people cannot just be copied

and shipped in a message in bits over a wire! In order to distinguish this use of the term

‘entity’ from the use of the term ‘entity’ in HTTP, we will usesomewhat facetiously

the adjective ‘physical’ to describe these kinds of entities.

Another thing that has difficulty being realized by a single message areconcepts,

where thethe regularities of the thing only exist at a level of abstraction that can-

not be encoded by a single realization. Unlike analogue entities, one does not have a

definitive local physical thing one can bump up against and touch, because a concept

only exists on a level of abstraction that seems physically realized by many disparate

things, and may not be completely realized by any of them. Under the rubric of con-

cept comes many things, including imaginary things like unicorns and the concept of

a ‘horse.’ There simply are no unicorns to bump against, and while all horses may

to some extent realize the concept of a horse, the concept of ahorse is not given by

any single horse, but instead a way an agent has of recognizing some thing is actually

a realization of a ‘horse.’ Furthermore, there are abstractconcepts that are to some

extent imagined to be infinite, such as concepts like the integers that are generated by

some combinatorial rules. Obviously, no bounded and connected region of space-time

can realize the concept, so concepts are different from analogue entities. It is debatable

whether concepts are at some level of abstraction ‘really’ digital or analogue. Concepts

may be differentiable, a unicorn can be distinguished from ahorse, or even finitely dif-
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ferentiable, since an integer like seven can be distinguished from any other integer. Yet

while particular messages can represent concepts, just as some mathematical expres-

sions can represent the concept of the integers or a picture of a unicorn can represent

the concept of a unicorn, one would not say that a single realization can adequately

capture all the regularities inherent in a concept. So, justas one cannot just ship a

physical person as a message, one cannot completely encode aconcept and then re-

alize it as a single message. Realizations always fall shortof concepts. In order to

emphasize that these concepts are a broader class than a single realization or a single

physical entity, we shall sometimes use the adjective ‘abstract’ in front of the term

‘concept’ in order to be clear.

To return to the Web, the success of the Web lies in no small part on the vast prolif-

eration of digital computers that allow users to create, store, and retrieve information,

and use the Web as a naming space to share this information with others. While, ac-

cording to Hayles, “the world as we sense it on the human scaleis basically analogue,”

the Web is yet another development in a long-line of biological modifications and tech-

nological prostheses to impose digitalization on an analogue world (2005). The vast

proliferation of digital technologies is possible becausethere are physical substrata,

some more so than others, which support the realization of digital information and

give us the advantages that Haugeland rightfully points outis the purpose of the digi-

tal: flawless copying and perfect reliability in a flawed and imperfect world (1981).

3.6 Representations

By claiming to be a “universal space of information,” the Webis asserting itself to be

a space where any encoding can be transferred about any content (Berners-Lee et al.,

1992). However, there are some distinct differences between kinds of content, for

some content can be distal and other content can be local. In amessage between two

computers, if the content is a set of commands to ‘display these bytes on the screen’

then the client can translate these bytes to the screen directly without any worry about

what those bytes represent to a human user. However, the content of the message may

involve some distal components, such as the string ‘Ralph won a ticket to the Eiffel

Tower in Paris,’ which refers to many things outside of the computer. Differences

between receivers allow the self-same content of a message to be both distal and local,

depending on the interpreting agent. The message to ‘display these bytes on the screen’

could cause a rendering of a depiction of the Eiffel Tower to be displayed on the screen,
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so the self-same message causes not only a computer to display some bytes but also

causes a human agent to receive information about what the Eiffel Tower in Paris looks

like.

Any encoding of information that has distal content in some respect is called a

representation, regardless of the particular language the information is encoded in.

Representations are then a subset of information, and inherit the characteristics out-

lined of all information, such as having one or more possibleencodings, one or more

realizations, and often a purpose and the ability to evoke meaningful behavior from

agents. To have some relationship to a thing that one is disconnected from is to be

aboutsomething else. Generally,the relationship of a thing to another thing to which

one is immediately causally disconnectedis a relationship ofreferenceto a referent

or referents, the distal thing or things referred to by a representation. The thing which

refers to the referent(s) we call the ‘representation,’ andtake this to be equivalent

to being asymbol. To refer to something is todenotesomething, so the content of

a representation is itsdenotation. In the tradition of Bretano, the reference relation is

consideredintentionaldue to its apparent physical spookiness. It appears there issome

great looming contradiction: If the content is whatever is held in common between the

source and the receiver as a result of the conveyance of a particular message, then how

can the source and receiver share some information they are disconnected from?

We will have to make a somewhat convoluted trek to resolve this paradox. The very

idea of representation is usually left under-defined as a “standing-in” intuition, that a

representation is a representation by virtue of “standing-in” for its referent (Haugeland,

1991). The classic definition of a symbol from the Physical Symbol Systems Hypoth-

esis is the genesis of this intuition regarding representations: “An entityX designates

an entityY relative to a processP, if, whenP takesX as input, its behavior depends on

Y” (Newell, 1980).

There are two subtleties to Newell’s definition. Firstly, the notion of a representa-

tion is grounded in the behavior of an agent. So, what precisely counts as a represen-

tation is never context-free, but dependent upon the agent completing some purpose

with the representation. Secondly, the representationsimulatesits referent, and so the

representation must be local to an agent while the referent may be non-local: “This is

the symbolic aspect, that havingX (the symbol) is tantamount to havingY (the thing

designated) for the purposes of processP” (Newell, 1980). We will callX a represen-

tation,Y thereferentof the representation, a processP the representation-usingagent.

This definition does not seem to help us in our goal of avoidingphysical spookiness,
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since it pre-supposes a strangely Cartesian dichotomy between the referent and its rep-

resentation. To the extent that this distinction is held a priori, then it is physically

spooky, as it seems to require the referent and representation to somehow magically

line up in order for the representation to serve as a substitute for its missing referent.

The only way to escape this trap is to give a non-spooky theoryof how representa-

tions arise from referents. Brian Cantwell Smith tackles this challenge by developing

a theory of representations that explains how they arise temporally (1995). Imagine

Ralph finally gets to Paris and is trying to get to the Eiffel Tower. In the distance,

Ralph sees the Eiffel Tower. At that very moment, Ralph and the Eiffel Tower are both

physically connected via light-rays. At the moment of tracking, connected as they are

by light, Ralph, its light cone, and the Eiffel Tower are a system, not distinct individ-

uals. An alien visitor might even think they were a single individual, a ‘Ralph-Eiffel

Tower’ system. While walking towards the Eiffel Tower, whenthe Eiffel Tower dis-

appears from view (such as from being too close to it and having the view blocked

by other buildings), Ralph keeps staring into the horizon, focused not on the point the

Eiffel Tower was at before it went out of view, but the point where he thinks the Eiffel

Tower would be, given his own walking towards it. Only when parts of the physical

world, Ralph and the Eiffel Tower, are physically separatedcan the agent then use a

representation, such as the case of Ralph using an internal ‘mental image’ of the Eiffel

Tower to direct his walking towards it, even though he cannotsee it. The agent is dis-

tinguished from the referent of its representation by virtue of not only disconnection

but by the agent’s attempt to track the referent, “a long-distance coupling against all the

laws of physics” (Smith, 1995). The local physical processes used to track the object

by the subject are the representation.

This notion of representation is independent of the representation being either inter-

nal or external to the particular agent, regardless of how one defines these boundaries.3

Imagine that Ralph had been to the Eiffel Tower once before. He could have marked

its location on a piece of paper by scribbling a small map. Then, the marking on the

map could help guide him back as the Eiffel Tower disappears behind other buildings

in the distance. This characteristic of the definition of representation being capable

of including ‘external’ representations is especially important for any definition of a

representation to be suitable for the Web, since the Web is composed of information

that is considered to be external to its human users.

3The defining of “external” and “internal” boundaries is actually non-trivial, as shown in Halpin
(2008a).
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However fuzzy the details of Smith’s story about representations may be, what is

clear is that instead of positing a connection between a referent and a representation a

priori, they are introduced as products of a temporal process. This process is at least

theoretically non-spooky since the entire process is capable of being grounded out in

physics without any spooky action at a distance. To be grounded out in physics, all

changes must be given in terms of connection in space and time, or in other words, via

effective reach. Representations are “a way of exploiting local freedom or slop in order

to establish coordination with what is beyond effective reach” (Smith, 1995). In order

to clarify Smith’s story and improve the definition of the Physical Symbol Systems

Hypothesis, we consider Smith’s theory of the “origin of objects” to be areferential

chain with distinct stages (Halpin, 2006):

• Presentation: ProcessS is connected with processO.

• Input : The processS is connected withR. Some local connection ofS putsR

in some causal relationship with processO. This is entirely non-spooky sinceS

andO are both connected withR. R eventually becomes the representation.

• Separation: ProcessesO and S change in such a way that the processes are

disconnected.

• Output : Due to some local change in processS, Suses its connection withR to

initiate local meaningful behavior that is in part caused byR.4

In the ‘input’ stage, thereferent is the cause of some characteristic(s) of the in-

formation. The relationship ofreferenceis the relationship between the encoding of

the information (the representation) and the referent. Therelationship of interpreta-

tion becomes one of reference when the distal aspects of the content are crucial for

the meaningful behavior of the agent, as given by the ‘output’ stage. So we have con-

structed an ability to talk about representations and reference while not presupposing

that behavior depends on internal representations or that representations exist a priori

at all. Representations are only needed when the relevant intelligent behavior requires

some sort of distal co-ordination with a disconnected thing.

As a representation is just a particular kind of encoding of information, the inter-

pretation of a representation results in content that is dependent on a distal referent

via the referential chain. In this manner, the act of reference can then be defined as

4In terms of Newell’s earlier definition, 0 isX while S is P andR is Y.
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Figure 3.3: The Referential Chain

the interpretation of a representation. This would make ournotion of representation

susceptible to being labeled acorrespondence theory of truth(Smith, 1987), where a

representation refers by some sort of structural correspondence to some referent. How-

ever, our notion of representation is much weaker, requiring only a causation between

the referent and the representation – and not just any causalrelationship, but one that

is meaningful for the interpreting agent – as opposed to sometighter notion of cor-

respondence such as some structural ‘isomorphism’ betweena representation and its

“target,” the term used by Cummins to describe what we have called the “referent” of a

representation (1996). So an interpretation or an act of reference should therefore not

be viewed as mapping to referents, but a mapping to some content where that content

leads to meaningful behavior precisely because of some referential chain. This leads

to the notion of a Fregean ‘objective’ sense, which we turn toshortly in Section 3.7.

To give an example, a picture of the Eiffel Tower has an interpretation to some content

that, while locally embodied as something like a mental image of the Eiffel Tower, is

effective due to its historical connection to the distal andactual Eiffel Tower itself.

Up until now, it has been implicitly assumed that the referent is some physical

entity that is non-local to the representation, but the physical entity was still existent,

such as the Eiffel Tower. However, remember that the definition of non-local includes

anythingthe representation is disconnected from, and so includes physical entities that

may exist in the past or the future. The existence of a representation does not imply

the existence of the referent or the direct acquaintance of the referent by the agent us-

ing a representation. A representation only implies that some aspect of the content is
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non-local. However, this seems to contradict our ‘input’ stage in the representational

cycle, which implies that part of our definition of representation is historical: for every

re-presentation there must be a presentation, an encounter with the thing presented. By

these conditions, the famous example of Putnam’s example ofan ant tracing a picture

of Winston Churchill by sheer accident in the sand would not count as a representation

(1975). If Ralph didn’t know where the Eiffel Tower was, but navigated the streets of

Paris and found the Eiffel Tower by reference to a tracing of aKandinsky painting in

his notebook, then Ralph would not then be engaged in any representation-dependent

meaningful behavior, since the Kandinsky painting lacks the initial presentation with

the Eiffel Tower. The presentation does not have to be done bythe subject that en-

countered the thing directly. However, the definition of a representation does not mean

that thesameagent using the representation had to be the agent with the original pre-

sentation. A representation that is created by one agent in the presence of a referent

can be used by another agent as a ‘stand-in’ for that referentif the second agent shares

the same interpretation from encoding to distal content. So, instead of relying on his

own vision, Ralph buys a map and so relies on the ‘second-order’ representation of

the map-maker, who has some historical connection to someone who actually traveled

the streets of Paris and figured out where the Eiffel Tower was. In this regard, our

definition of representation is very much historical, and the original presentation of

the referent can be far back in time, even evolutionary time,as given by accounts like

those of Millikan (1984). One can obviously refer to GustaveEiffel even though he is

long dead and buried, and so no longer exists.

Also, the referent of a representation may be aconcept, like the concept of a horse,

unicorns and other imaginary things, referents to future states such as ‘see you next

year,’ and descriptive phrases whose supposedexactreferent is unknown, such as ‘the

longest hair on your head on your next birthday.’ While all these types of concepts

are quite diverse, they are united by the fact that they cannot be completely realized by

local information, as they depend on partial aspects of an agent’s local information, the

future, or things that do not exist. Concepts that are constructed by definition, including

imaginary referents, also have a type of ‘presence,’ it is just that the ‘presentation’

of the referent is created via the initial description of thereferent. Just because a

referent is a concept – as opposed to a physical entity – does not mean the content of

the representation cannot have an meaningful effect on the interpreter. For example,

exchanging representations of ‘ghosts’ - even if they do notquite identify a coherent

class of referents - can govern the behavior of ghost-hunters. Indeed, it is the power
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and flexibility of representations of these sorts that provide humans the capability to

escape the causal prison of their local environment, to planand imagine the future.

Our use of representation and reference is very broad, so that the phenomenon of

representation can be thought of as nearly everywhere. Our message in the example,

the denoting phrase that ‘Ralph has won a ticket to Paris,’ includes acts of reference

to Ralph, Paris, the past, and implications for Ralph’s future activity. Indeed, with

our definition of reference, it appears that almost all linguistic sentences other than

those describing the immediate local environment involve some representational as-

pect. Indeed, representations exist at multiple levels of abstraction and composition.

For example, the ‘text of Moby Dick’ in English locally carries the information about

the ‘story about a white whale’ on one level of abstraction. However, the story itself is

mired in representation, involving distal referents such as whales, harpoons, and 19th-

century New England. In this case, it is useful to separate from the broader class of

representations those things whose primary purpose is to represent distal content from

those things that only have some representational content.For example, an encyclope-

dia article about the Eiffel Tower or a picture of the Eiffel Tower by itself have as their

primary purpose the representation of the Eiffel Tower, as opposed to a map of Paris

or a movie like the ‘Lavender Hill Mob’ that simply features the Eiffel Tower as part

of a more general or different purpose. In the cases where it is the primary purpose of

something to be a representation, we will call that representation adescriptionif it is

in a natural or formal language or adepictionif it is in an iconic language.

3.7 Sense and Reference

The tradition most of these definitions have come from has been one strictly in line with

the philosophy of cognitive science and the mind, as exemplified by Brian Cantwell

Smith and Dretske, who tends to spend much energy discussingthe nature of terms

like ‘information’ and ‘representation.’ However, there is an important connection

that seems to have been missed by Dretske and others, the connection between infor-

mation, sense, and reference. This is likely because Frege himself was quite cryptic

with regards to any definition of ‘sense.’ Therefore, we haveno choice but to return

to Frege’s original controversial theory of sense and reference as given inSinn und

Bedeutung(Frege, 1892).5

5The ambiguous translation of this work from original Germanhas been a source of great philo-
sophical confusion. While the word ‘Sinn’ has almost alwaysbeen translated into ‘sense,’ the word
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The key idea lies in Frege’s contention that the meaning of any term in a language

is determined by what Frege calls the “sense” of the sentences that use the term, rather

than any direct reference of the term (1892). For Frege, the referents of a term should

be assigned to truth-values, but two statements may share the same truth-value but

have different senses. According to Frege, two sentences could be the same only if

they shared the same sense. Take for example the two sentences “Hesperus is the

Evening Star” and “Phosphorus is the Morning Star.” (Frege,1892). Since the ancient

Greeks did not know that ‘The Morning Star is the same as the Evening Star,’ they did

not know that the names ‘Hesperus’ and ‘Phosphorus’ share the same referent when

they baptized the same star, the planet Venus, with two different names (Frege, 1892).

Therefore, Frege says that these two sentences have distinct ‘senses’ even if they share

the same referent, so sense is not just a function to referents. Frege pointed out that, far

from being meaningless, statements of identity that would be mere tautologies from the

point of view of a theory of reference are actually meaningful if one realizes different

terms can have distinct senses. One can understand a statement like ‘The Morning

Star is the Evening Star’ without knowing that both refer to Venus. In fact, one may

only know that the ‘Morning Star’ refers to Venus. By learning the ‘Morning Star’

and the ‘Evening Star’ are not distinct senses but a single sense, one is doing actual

meaningful cognitive workby putting these two senses together. While the idea of a

notion of ‘sense’ seems intuitive from the example, it is famously hard to define, even

informally. Frege defines ‘sense’ in terms of the mysteriousmode of presentation, for

“to think of then being connected with a sign (name, combination of words, letters),

besides that to which the sign refers, which may be called thereference of the sign,

also what I should like to call the sense of the sign, wherein the mode of presentation is

contained” (1892). This rather cryptic statement has caused multiple decades of debate

by philosophers of language like Russell and Kripke who haveattempted to banish the

notion of sense and simply build a theory of meaning from the concept of reference.

These attempts are detailed in Chapter 6.

Regardless of what precisely ‘sense’ is, Frege believed that the notion of sense is

what allows an agent to understand sentences that may not have a referent, for “the

words ‘the celestial body most distant from Earth’ has a sense, but it is very doubtful

‘Bedeutung’ has been translated intoeither‘reference’ or ‘meaning,’ depending on the translator. While
‘Bedeutung’ is most usually translated into the fuzzy English word ‘meaning’ by most German speakers,
theuseto which Frege puts it is much more in line with how the word ‘reference’ is used in philoso-
phy. So in the tradition of Michael Dummett, we will translate Frege’s ‘Bedeutung” into ‘reference’
(Dummett, 1973).
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there is also a thing they refer to...in grasping a sense, onecertainly is not assured of

referring to anything” (Frege, 1892). So it is the concept ofsense that should be given

a priority over reference. This is not to deny the role of reference whatsoever, since

“to say that reference is not an ingredient in meaning is not to deny that reference

is a consequence of meaning..it is only to say that understanding which speaker of

a language has a word in that language...can never consist merely in his associating

a certain thing with it as its referent; there must be some particular meansby which

this association is effected, the knowledge of which constitutes his grasp of its sense”

(Dummett, 1973).

Sense is in no way an ‘encoded’ referent, since the referent is distal from the sense

usually. Instead, the sense of a sentence would naturally lead an agent to correctly

guess the referents of the sentence. Yet how could this be detected? Again, sense

is also not merely some encoded meaning, nor is sense strictly ‘in the head’ with no

effect on meaningful behavior. As put by Wittgenstein, “When I think in language,

there aren’t ‘meanings’ going through my mind in addition tothe verbal expressions:

the language is itself the vehicle of thought” (1953). Senseis the bedrock upon which

meaning is constructed, and must be encoded in a language. Infact, according to

Frege, sense can only be determined from a sentence in a language, and the sense of

a sentence almost always requires an understanding of the other sentences in a given

discourse. Without determining from a number of possible senses a sentencemayhave,

which sense the sentencedoeshave, one cannot meaningfully act. However, the sense

used by the agent may be incorrect according to the creator ofthe sentence’s purpose,

but that does not prevent the agent from acting.

So, how can sense be determined, or at least detected? After all, almostanything

counts as meaningful behavior. While sense determination is a difficult and context-

ridden question that seems to require some full or at least ‘molecular’ language un-

derstanding, the best account of sense detection so far is given by the earlier notion

of assertoric content of Dummett, which is simply that an agent can be thought of as

interpreting to a sense if they can answer a number of ‘yes-no’ binary questions about

the sense in a way that makes ‘sense’ to other agents speakingthe language (Dummett,

1973). There is a tantalizing connection of Dummett’s assertoric content as answers to

binary questions to the information-theoretic reduction of uncertainty through binary

choices (bits), as the content of information cannot be derived without enough bits in

the encoding. Overall, Dummett’s notion of sense as grounded in actual language use

naturally leads to another question: Is sense objective?
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The reason the notion of sense was thought of as so objectionable by many philoso-

phers like Russell and Kripke was that it was viewed as a private, individual notion,

much like the Lockean notion of anidea. Frege himself clearly rejects this, strictly

separating the notion of a sense from an individual subjective idea of a referent. Far

from subjective, Frege believed that sense was inherentlyobjective, “the reference of

a proper name is the object itself which we designate by usingit; the idea which we

have in that case is wholly subjective, in between lies the sense, which is indeed no

longer subjective like the idea, but is yet not the object itself” (1892). A sense is ob-

jective insofar as it is a shared part of an inherently publiclanguage, since a sense is

the “common property of many people, and so is not a part of a mode of the individual

mind. For one can hardly deny that mankind has a common store of thoughts which

is transmitted from one generation to another” (1892). While the exact nature of a

sense is still unclear, its main characteristic is that it should be whatever isobjectively

sharedbetween agents as regards their use of terms in a language. Itis precisely this

notion that sense is ‘objective’ that allows us to connect our work in the philosophy of

information and representation to the philosophy of language.

This is namely because the Fregean notion of sense isidentical with our recon-

structed notion of informationalcontent. These terms should be viewed as identical.

The content of information is precisely what is shared between the source and the re-

ceiver as a result of the conveyance of a particular message.By definition, this holding

of content in common which is the result of the transmission of an information-bearing

messagemustby definition involve at leasttwo things: a source and a receiver. Fur-

thermore, if the source and receiver are considered to be human agents capable of

speaking natural language, then by the act of sharing sentences, which are just encod-

ings shared over written letters or acoustic waves in natural language, the two speakers

of language are sharing the content of those sentences. Since the content is possessed

by two people, and is by definition of information thesamecontent, insofar assub-

jectiveis defined to be that which is only possessed by a single agent and objectiveis

defined to be that which is possessed by more than one agent (although not necessarily

all agents), thencontent is objective.

Most of the productive concepts reconstructed earlier thenmap straightforwardly

to terms in philosophy of language. Sentences and terms natural in a language have

both a syntactic encoding and a semantic content or sense, that can multiply real-

ized over differing mediums. A sentence is a fully-fledged information-carrying mes-

sage, that can have multiple realizations in the form of different utterances at different
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points in space and time. The Gricean notion of a speaker’s intentions then maps to

our purposes, and his more fully-fledged notion of linguistic meaning maps closely

to our notion of meaning. The problem of word senses is now revealed to be much

larger than previously supposed, as it now stretches acrossto all sorts of non-natural

languages. Everything from messages in computer protocols(formal languages) to

paintings (iconic languages) are now just encodings of information, and these too have

senses and possible sense ambiguities.

Representations are not just then ‘in the head’ but also present in sentences in

the form ofnames. In particular, a name in natural language is no more than some

encoding that has as its interpretation the sense of a distalreferent. The class ofproper

names, long a source of interest, is just a representation in natural language whose

referent is an entity, such that the name ‘Ralph’ refers to the person Ralph, while the

larger class of names such as ‘towers’ or ‘integers’ can refer to groups of entities and

concepts. There may be some objection to the idea that a merenamein a sentence is a

full-blooded representation. However, unlike some theories of representation such as

those put forward by Cummins, we do not require that there be some “isomorphism”

or other structured relationship between the representation and the referent (1996). We

only require the much less-demanding causal relationship with some impact upon the

sense (content) and thus the meaningful behavior of the agent. While it is obvious

there is nothing inherent in the term ‘Eiffel Tower’ that leads the letters or phonemes

in the name to correspond in any significant structural way with the Eiffel Tower itself,

as long as the sense of the name is dependent onthere being a referentthat the name

‘stands-in’ for, so a name like the ‘Eiffel Tower’ is still a representation of the Eiffel

Tower itself.

3.8 Conclusion

In conclusion, we concur with Dummett that any account of meaning will have in

essence three layers, where the outer layer has priority over the inner layers (1993).

First, the “core” would be the “theory of reference” while “surrounding the theory of

reference will be a shell, forming the theory of sense” so that “the theory of reference

and the theory of sense form together one part of the theory ofmeaning: the other,

supplementary, part is the theory of force”, or as we would put it, a theory of purpose

(Dummett, 1993). So nothing in the philosophical account presented so far is new,

although the manner of reconstruction and recombination may be new. We have built
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from a fairly simple account of connection and disconnection from Brian Cantwell

Smith, moving to the account of information encoding and content from Dretske, to

then a notion of purpose and meaning derived from Millikan, and then finally returning

to an account of digitality from Haugeland and an account of reference and represen-

tation from Brian Cantwell Smith again. Then, at the last possible juncture, we show

that Frege’s account of sense can be seen as the same as our account of content for

information in general given in Section 3.2.

The convergence of informational content with linguistic sense is liberating for the

philosophy of language, because while previously, issues of sense and reference seem

to have primarily been bound to natural languages, the move of identifying content

with sense and sentences with encodings then opens a whole new enterprise: the im-

pact of sense and reference on non-natural languages, in particular the study of formal

languages created by digital technology. Our interest in this is how these issues of

meaning, sense, and reference can be analyzed in context with the World Wide Web.

Surprisingly, classical problems of sense and reference re-emerge with a vengeance on

the Web. However, first we must define the foundational terminology of the Web itself.



Chapter 4

The Principles of Web Architecture

You have abandoned the old domain, the old concepts. Here youare in a new domain,

for which new concepts will give you the knowledge. The sign that a real change in

locus and problematic has occurred, and that a new adventureis beginning, the ad-

venture of science in development.Louis Althusser (1963)

While the significance and history of the Web have been explained, the task remains

to show that the Web is a well-defined system with a unique combination of properties.

In Chapter 5 we will demonstrate how these principles can in turn be applied to the

Semantic Web.

Can the various technologies that go under the rubric of the World Wide Web be

found to have common principles and terminology? This question would at first seem

to be shallow, for one could say that any technology that is described by its creators, or

even the public at large, can be considered trivially ‘part of the Web.’ To further com-

plicate the matter, the terms like the ‘Web’ and the ‘Internet’ are taken to be synonyms

in common parlance, and so are often deployed as synonyms. Ina single broad stroke,

we can distinguish the Web and the Internet. The Internet is atype of packet-switching

network as defined by its use of the TCP/IP protocol. The purpose of the Internet is

to get data from one computer to another. In contrast, the Webis a space of names

for information defined by its usage of URIs. So, the purpose of the Web is the use

of URIs for accessing and referring to information. The Web and the Internet are then

strictly separable, for the Web, as a space of URIs, could be realized on top of other

types of networks that move bits around, much as the same virtual machine can be

realized on top of differing physical computers. For example, one could imagine the

Web being built on top of a network built on principles different from TCP/IP, such as

55
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OSI, an early competitor to the TCP/IP stack of networking protocols (Zimmerman,

1980). Likewise, before the Web, there were a number of different protocols with their

own naming schemes built upon the Internet like Gopher (Anklesaria et al., 1993).

Is it not presumptuous of us to even hope that such an unruly phenomenon such

as the Web even has guiding principles? Again we must appeal to the fact that unlike

natural language or chemistry, the Web is like other engineered artifacts, created by

particular individuals with a purpose, and designed with this purpose in mind. Unlike

the case of the proper function of natural language, where natural selection itself will

forever remain silent to our questions, the principal designers of the Web are still alive

to be questioned in person, and their design rationale is overtly written down on various

notes, often scribbled on some of the earliest web-pages of the Web itself. It is gener-

ally thought of that the core of the Web consists of the following standards, given in

their earliest incarnation: HTTP (Berners-Lee et al., 1996), URI (Berners-Lee, 1994a),

and HTML (Berners-Lee and Connolly, 1993). So the basic protocols and data formats

that proved to be successful were the creation of a fairly small number of people, such

as Tim Berners-Lee, Roy Fielding, and Dan Connolly.

The primary source for our terminology and principles of Webarchitecture is a

document entitledThe Architecture of the World Wide Web(AWWW), a W3C Recom-

mendation edited by Ian Jacobs and Norm Walsh to “describe the properties we desire

of the Web and the design choices that have been made to achieve them” (Jacobs and

Walsh, 2004). The AWWW is an attempt to systematize the thinking that went into

the design of the Web by some of its primary architects, and assuch is both close

to our project and an inspiration. In particular, this document is an exegesis of Tim

Berners-Lee’s notes on “Design Issues: Architectural and philosophical points”1 and

Roy Fielding’s dissertationArchitectural Styles and the Design of Network-based Soft-

ware Architectures(Fielding, 2000). The rationale for the creation of such a document

of principles of the Web developed organically over the existence of the W3C, as new

proposed technologies were sometimes considered to be either informally compliant

or non-compliant with Web architecture. When the proponents of some technology

were told that their particular technology was not compliant with Web architecture,

they would often demand that somewhere there be a description of this elusive Web

architecture. The W3C in response set up the Technical Architecture Group (TAG) to

“document and build consensus” upon “the underlying principles that should be ad-

1There exist a collection of unordered personal notes available at:
http://www.w3.org/DesignIssues/, which we also refer directly to in the course of this chapter.
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hered to by all Web components, whether developed inside or outside W3C,” as stated

in its charter.2 The TAG also maintains a numbered list of problems (althoughthe

numbers are in no way sequential) that attempts to resolve issues in Web architecture

by consensus, with the results released as notes called ‘W3CTAG findings,’ which are

also referred to in this discussion. The TAG’s only Recommendation at the time of

writing is the aforementionedArchitecture of the Web: Volume 1but it is reasonable to

assume that more volumes ofArchitecture of the Webmay be produced after enough

findings have been accumulated. The W3C TAG’s AWWW is a blend of common-

sense and sometimes surprising conclusions about Web architecture that attempts to

unify diverse web technologies with a finite set of core design principles, constraints,

and good practices (Jacobs and Walsh, 2004). However, the terminology in AWWW

is often thought to be too informal and ungrounded to use by many, and we attempt

to remedy this in the next few chapters by fusing the terminology of Web architecture

with our philosophical terminology developed in Chapter 3.

4.1 The Terminology of the Web

To begin our reconstruction of Web architecture, the first task is the definition of terms,

as otherwise the technical terminology of the Web can lead toas much misunderstand-

ing as understanding. To cite an extreme example, people coming from communities

like the artificial intelligence community use terms like ‘representation’ in a way that is

different from those involved in Web architecture. We beginwith the terms commonly

associated with a typical exemplary Web interaction. For anagent to learn about there-

sourceknown as the Eiffel Tower in Paris, a person can access itsrepresentationusing

its Uniform Resource Identifier (URI)http://www.tour-eiffel.fr/ and retrieve a

webpage in the HTMLlanguageusing the HTTPprotocol.

4.1.1 Protocols

A protocol is a convention for transmitting information between two or more agents,

an equally broad definition that encompasses everything from computer protocols like

TCP/IP to conventions in natural language like those employed in diplomacy. A pro-

tocol often specifies more than just the particular encoding, but also may attempt to

2Quoted from their charter, available on the Web at:http://www.w3.org/2001/07/19-tag (last
accessed April 20th, 2007).
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specify the interpretation of this encoding and the meaningful behavior that the sense

of the information should engender in an agent. Apayloadis the information trans-

mitted by a protocol. Galloway notes that protocols are “the principle of organization

native to computers in distributed networks” and that agreement on protocols are nec-

essary for any sort of network to succeed in the acts of communication (2004). The

paradigmatic case of a protocol is TCP/IP, where the payloadtransmitted is just bits

in the body of the message, with the header being used by TCP toensure the lossless

delivery of the bytes. TCP/IP transmits strictly an encoding of data as bits and does

not force any particular interpretation on the bits; the payload could be a picture of the

Eiffel Tower, web-pages about the Eiffel Tower, or just meaningless random bits. All

TCP/IP does is move some particular bits from one individualcomputer to another,

and any language that is built on top of the bit-level is strictly outside the bounds of

TCP/IP. Since these bits are usually communication with some purpose, the payload

of the protocol is almost always an encoding to some sense above and beyond that of

the raw bits themselves.

The Web is based on aclient-server architecture, meaning thatprotocols take the

form of a request for information and a response with information. Theclient is de-

fined asthe agent that is requesting informationand theserveris defined asthe agent

that is responding to the request. In a protocol, anendpointis any process that either

requests or responds to a protocol, and so includes both client and servers. The client

is often called auser-agentsince it is the user of the Web. A user-agent may be any-

thing from a web-browser to some sort of automated reasoningengine that is working

on behalf of another agent, often the specifically human user. The main protocol in this

exposition will be theHyperText Transfer Protocol(HTTP), as most recently defined

by IETF RFC 2616 (Fielding et al., 1999). HTTP is a protocol originally intended for

the transfer of hypertext documents, although its now ubiquitous nature often lets it be

used for the transfer of almost any encoding over the Web, such as its use to transfer

XML-based SOAP (originally theSimple Object Access Protocol) messages in Web

Services (Box et al., 2000). HTTP consists of sending amethod, a request for a cer-

tain type of response from a user-agent to the server, including information that may

change the state of the server. These methods have a list ofheadersthatspecify some

information that may be used by the server to determine the response. Therequestis

the method used by the agent and the headers, along with a blank line and an optional

message body.

The methods in HTTP are HEAD, GET, POST, PUT, DELETE, TRACE, OP-
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GET /index.html HTTP/1.0

User-Agent: Mozilla/5.0

Accept: */*

Host: www.example.org

Connection: Keep-Alive

Figure 4.1: An HTTP Request from a client

TIONS, and CONNECT. We will only be concerned with the most frequently used

HTTP method, GET. GET is informally considered ‘commitment-free,’ which means

that the method has no side effects for either the user-agentor the server, besides the

receiving of the response (Berners-Lee et al., 1996). So a GET method should not be

used to change the state of a user-agent, such as charging someone for buying a plane

ticket to Paris. To change the state of the information on theserver or the user-agent,

either PUT (for uploading data directly to the server) or POST (for transferring data

to the server that will require additional processing, suchas when one fills in a HTML

form) should be used. A sample request tohttp:///www.example.org from a Web

browser user-agent is given in Figure 4.1.

The first part of an HTTP response from the server then consists of an HTTPstatus

codewhich isone of a finite number of codes which gives the user-agent information

about the server’s HTTP response itself.The two most known status codes are HTTP

200, which means that the request was successful, or 404, which means the user-agent

asked for data that was not found on the server. The first digitof the status code indi-

cates what general class of response it is. For example, the two hundred level response

codes mean in general a successful request, although 206 means partial success. The

four hundred level response codes indicate that the user-agent asked for a request that

the server could not fulfill, while the one hundred level is informational, three hun-

dred level is redirectional, and five hundred level means server error. After the status

codes there is anHTTP entity which is “the information transferred as the payload of

a request or response” (Fielding et al., 1999). This technical use of the word ‘entity’

should be distinguished from our earlier use of the term ‘entity’ to describe a thing like

the Eiffel Tower that can only be realized by itself, not transferred as abstract informa-

tion in another realization. In order to do so, we will take care to preface the protocol

name ‘HTTP’ before any ‘HTTP entity,’ while the term ‘entity’ by itself refers to the

more philosophical notion of an entity. An HTTP entity consists of “entity-header
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HTTP/1.1 200 OK

Date: Wed, 16 Apr 2008 14:12:09 GMT

Server: Apache/2.2.4 (Fedora)

Accept-Ranges: bytes

Connection: close

Content-Type: text/html; charset=ISO-8859-1

Content-Language: fr

Figure 4.2: An HTTP Response from a server

fields and... an entity-body” (Fielding et al., 1999) AnHTTP responseconsists ofthe

combination of the status code and the HTTP entity. These responses from the server

can include an additional header, which specifies the date and last modified date as well

as optional information that can determine if the desired representation is in the cache

and the content-type of the representation. A sample HTTP response to the previous

example request, excluding the HTTP entity-body, is given in Figure 4.2.

In the HTTP response, an HTTP entity body is returned. The encoding of the HTTP

entity body is given by the HTTP entity header fields that specify its Content-type

andContent-language. These are both considered different languages, as a single

webpage can be composed in multiple languages, such as the text being given in En-

glish with various formatting given in HTML. Every HTTP entity body should have its

particular encoding specified by theContent-type. The formal languages that can be

explicitly given in a response or request in HTTPare calledcontent types. In the exam-

ple response, based on the header that the content type istext/html a user-agent can

interpret (‘display as a web-page’) the encoding of the HTTPentity body as HTML.

Since the same encoding can theoretically represent many different languages besides

HTML, a user-agent can only know definitely how to process a message through the

content type. If no content type is provided, the agent can guess the content type

through various heuristics including looking at the bytes themselves, a process infor-

mally calledsniffing. A user-agent can specify what media types they (can) prefer, so

that a web-server that can only present JPEG images can specify this by also asking

for the content typeimage/jpeg in the request.

Content-types in HTTP were later generalized as ‘Internet Media Types’ so they

could be applied with any Internet protocol, not just HTTP and MIME (Multimedia

Internet Message Extensions, an e-mail protocol) (Postel, 1994). Amedia typecon-
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sists ofa two-part scheme that separates the type and a subtype of an encoding, with

a slash indicating the distinction, as intext/html. Internet media types are centrally

registered with IANA athttp://www.iana.org/assignments/media-types/, al-

though certain ‘experimental’ media types (those beginning with ‘x-’) can be created

in a decentralized manner (Postel, 1994). A central registry of media types guarantees

the interoperability of the Web, although increasingly newmedia-types are dependent

on extensions to specific applications (plug-ins) in order to run. Support for every-

thing from new markup languages to programming languages such as Javascript can

be declared via support of its media type.

To move from concrete bits to abstract definitions, a protocol can be defined and

implemented in many different types of way. In the early ARPANet, the first wide-area

network and foundation of the Internet, the protocol was ‘hard-wired’ in the hardware

of the Interface Message Processor (IMP), a separate machine attached to computers in

order to interface them with ARPANet (Hafner and Lyons, 1996). As more and more

networks multiplied, these heterogeneous networks began using different protocols.

While the invention of TCP/IP let these heterogeneous networks communicate, TCP/IP

does not interpret messages beyond bits. Further protocolsbuilt on top of TCP/IP, such

as FTP (File Transfer Protocol) for the retrieval of files (Postel and Reynolds, 1985),

Gopher for the retrieval of documents (Anklesaria et al., 1993), and SMTP (Simple

Mail Transfer Protocol) for the transfer of mail (Postel, 1982). Since one computer

might hold many different kinds of information, IP addresses were not enough as they

only identified where a particular device was on the network.Thus each protocol

created its own naming scheme to allow it to refer to and access things on a more

fine-grained level than IP addresses. Furthermore, each of these protocols was often

associated (via registration with a governing body like IANA, the Internet Assigned

Numbers Authority) with particular ports, such that port 25 was used by SMTP andport

70 by Gopher. With this explosion of protocols and naming schemes, each Internet

application was its own ‘walled garden.’ Names created using a particular protocol

were incapable of being used outside the original protocol,until the advent of the

naming scheme of the Web (Berners-Lee, 2000).

4.1.2 Uniform Resource Identifiers

The World Wide Web is defined by the AWWW as “an information space in which

the items of interest, referred to as resources, are identified by global identifiers called
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Uniform Resource Identifiers (URI)” (Jacobs and Walsh, 2004). This naming scheme,

not any particular language like HTML, is the primary identifying characteristic of

the Web. URIs arose from a need to organize the “many protocols and systems for

document search and retrieval” that were in use on the Internet, especially considering

that “many more protocols or refinements of existing protocols are to be expected in

a field whose expansion is explosive” (Berners-Lee, 1994a).Despite the “plethora of

protocols and data formats,” if any system was “to achieve global search and readership

of documents across differing computing platforms,” gateways that can “allow global

access” should “remain possible” (Berners-Lee, 1994a). The obvious answer was to

consider all data on the Internet to be a single space of nameswith global scope.

URIs accomplish their universality over protocols by moving all the information

used by the protocol within the name itself. The information needed to identify any

protocol-specific information is all specified in the name itself: the name of the pro-

tocol, the port used by the protocol, any queries the protocol is responding to, and

the hierarchical structure used by the protocol. The Web is then first and foremost a

naming initiative “to encode the names and addresses of objects on the Internet” rather

than anything to do with hypertext (Berners-Lee, 1994a). The notion of a URI can

be viewed as a ‘meta-name,’ a name which takes the existing protocol-specific Inter-

net addresses and wraps themin the name itself, a process analogous to reflection in

programming languages (Smith, 1984). Instead of limiting itself to only existing pro-

tocols, the URI scheme also abstracts away from any particular set of protocols, so

that even protocols in the future or non-Internet protocolscan be given a URI; “the

Web is considered to include objects accessed using an extendable number of proto-

cols, existing, invented for the Web itself, or to be invented in the future” (Berners-Lee,

1994a).

One could question why one would want to name information outside the context

of a particular protocol. The benefit is that the use of URIs “allows different types of

resource identifiers to be used in the same context, even whenthe mechanisms used

to access those resources may differ” (Berners-Lee et al., 2005). This is an advantage

precisely because it “allows the identifiers to be reused in many different contexts, thus

permitting new applications or protocols to leverage a pre-existing, large, and widely

used set of resource identifiers” (Berners-Lee et al., 2005). This ability to access with

a single naming convention the immense amount of data on the entire Internet gives an

application such as the ubiquitous Web browser a vast advantage over an application

that can only consume application-specific information.
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Although the full syntax in Backus-Naur form is given in IETFRFC 3986 (Berners-

Lee et al., 2005), a URI can be given as the regular expressionURI= [scheme ":"]

[hierarchical component]* [ "?" query ]? [ "#" fragment]?. A scheme

is a name of the protocol or other naming convention used to begin the URI.The

scheme of a URI does not determine the protocol that a user-agent has to employ to

use the URI. For example, a HTTP request may be used onftp://www.example.org.

The scheme of a URI merely indicates a preferred protocol foruse with the URI. A

hierarchical componentis the left to right dominant component of the URI that syntac-

tically identifies the resource.URIs are federated, insofar as each scheme identifies the

syntax of its hierarchical component. For example, with HTTP the hierarchical com-

ponent is given by[authority] [//] [":" port]? ["/" path component]*.

Theauthority is a name that is usually a domain name, naming authority, or a raw IP

address, and so is often the name of the server. However, in URI schemes liketel for

telephone numbers, there is no notion of an authority in the scheme. The hierarchical

component contains special reserved characters that are inHTTP characters such as

the backslash for locations as in a file system. Forabsolute URIs, there must be a

single scheme and the scheme and the hierarchical componentmust together identify a

resourcesuch ashttp://www.example.com:80/monument/EiffelTower in HTTP,

which identifies the resource accessible from port 80 of the authoritywww.example.com

with the path component/monument/EiffelTower. The port authority is usually left

out, and assumed to be 80 by HTTP-enabled clients. Interestingly enough there are also

relative URIsin some schemes like HTTP, where the path component itself isenough

to identify a resource within certain contexts, like that of a web-page. This is because

the scheme and authority itself may have substituted some special characters that serve

as indexical expressions, such as ‘.’ for the current location in the path component and

‘..’ as the previous level in the path component. So,../EiffelTower is a perfectly

acceptable relative URI. Relative URIs have a straightforward translation into absolute

URIs, and it is trivial to compare absolute URIs for equality(Berners-Lee et al., 2005).

The ‘hash’ (#) and ‘question mark’ (?) are special characters at the end of URI. The

question mark denotes ‘query string.’ The ‘query string’ allows for the parametrization

of the HTTP request, typically in the cases where the HTTP response is created dynam-

ically in response to specifics in the HTTP request. The ‘hash’ traditionally declares

a fragment identifier, which identifies fragments of a hypertext documentbut accord-

ing to the TAG, it can also identify a “secondary resource,” which is defined as “some

portion or subset of the primary resource, some view on representations of the pri-
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mary resource, or some other resource defined or described bythose representations”

where the “primary resource” is the resource identified by the URI without reference

to either a hash or question mark (Jacobs and Walsh, 2004). The fragment identifier

(specified by a ‘hash’ followed by some string of characters)is stripped off for the re-

quest to the server, and handled on the client side. Often thefragment identifier causes

the local client to go to a particular part of the accessed HTTP entity. If there was a

web-page about Gustave Eiffel, its introductory paragraphcould be identified with the

URI http://www.example.com/EiffelTower#intro. Figure 4.3 examines a sam-

ple URI,http://www.example.org/EiffelTower#intro:

Figure 4.3: An example URI, with components labeled.

The first feature of URIs, the most noticeable in comparison to IP addresses, is

that they can be human-readable, although they do not have tobe. As an idiom goes,

URIs can be ‘written on the side of a bus.’ URIs can then have aninterpretation due to

their use of terms from natural language, such aswww.whitehouse.gov referring to

the White House or the entire executive branch of the United States government. Yet it

is considered by the W3C TAG to be ill-advised for any agent todepend on whatever

information they can glean from the natural language terms used in URI itself, since

to a machine the natural language terms used by the URI have nointerpretation. For

an agent, all URIs are opaque, with each URI being just a string of characters that

can be used to either refer to or access information, and so syntactically it can only be

checked for equality with other URIs and nothing more. This is captured well by the

good practice ofURI opacity, which states that “agents making use of URIs should not

attempt to infer properties of the referenced resource” (Jacobs and Walsh, 2004). To

rephrase, we could state thata URI should never itself have an interpretation, only the

information referred to or accessed by that URI should have an interpretation.This

point becomes crucial in trying to determine ‘what a URI identifies’ as inspected in



4.1. The Terminology of the Web 65

detail in Chapter 6.

Second, a URI has an owner. Theowner is the agent that is accountable for orig-

inally determining what the URI identifies. Usually for URIs schemes such as HTTP,

where the hierarchical component begins with an authority,the owner of the URI is

simply whoever controls that authority. In HTTP, since URIscan delegate their rela-

tive components to other users, the owner can also be considered the agent that has the

ability to create and alter the information accessible fromthe URI, not just the owner

of the authority. Each scheme should in theory specify what ownership of a URI means

in context of the particular scheme.

4.1.3 Resources and Web Representations

While we have explained what a URIdoesin terms of the Internet, we have yet to de-

fine what a URIis. To inspect the acronym itself, a Uniform Resource Identifier (URI)

is an identifier for a ‘resource.’ Yet this does not solve any terminological woes, for the

term ‘resource’ is undefined in the earliest specification for “Universal Resource Iden-

tifiers” (Berners-Lee, 1994a). Berners-Lee has remarked that one of the best things

about resources is that for so long he never had to define them (Berners-Lee, 2000).

Eventually Berners-Lee attempted to define a resource as “anything that has an iden-

tity” (Berners-Lee et al., 1998). Other specifications wereslightly more detailed, with

Roy Fielding, one of the editors of HTTP, defining (apparently without the notice of

Berners-Lee) a resource as “a network data object or service” (Fielding et al., 1999).

However, at some later point Berners-Lee decided to generalize this notion, and in

some of his later works on defining this slippery notion of ‘resource,’ Berners-Lee was

careful not to define a resource only as information that is accessible via the Web,

since not only may resources be “electronic documents” and “images” but also “not all

resources are network retrievable; e.g., human beings, corporations, and bound books

in a library” (Berners-Lee et al., 1998). Also, resources donot have to be singular but

can be a “collection of other resources” (Berners-Lee et al., 1998).

Resources are not only a concrete realization or sets of possible realizations at a

given temporal juncture, but are a looser category that includes things that change over

time, as “resources are further carefully defined to be information that may change over

time, such as a service for today’s weather report for Los Angeles”(Berners-Lee et al.,

1998). Obviously, a web-page with ‘today’s weather report’is going to change over

time, so what is it that unites the notion of a resource over time? One early IETF RFC
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for URIs, RFC 2396, defines this tentatively as a ‘conceptualmapping’ (presumably

located in the head of an individual creating the representations for the resource) such

that “the resource is the conceptual mapping to an entity or set of entities, not neces-

sarily the entity which corresponds to that mapping at any particular instance in time.

Thus, a resource can remain constant even when its content – the entities to which it

currently corresponds – changes over time, provided that the conceptual mapping is

not changed in the process” (Berners-Lee et al., 1998). Thisobviously begs an im-

portant question: If resources are identified as conceptualmappings in the head of an

individual(s), then how does an agent know, given a URI, whatthe resource is? Is it

our conceptual mapping, or the conceptual mapping of the owner, or some consensus

conceptual mapping? This question and further questions ofidentity come to center

stage in Chapter 6. The latest version of the URI specification deletes the confusing

jargon of “conceptual mappings” and instead re-iterates that URIs can also be things

above and beyond concrete individuals, for “abstract concepts can be resources, such

as the operators and operands of a mathematical equation” (Berners-Lee et al., 2005).

After providing a few telling examples of precisely how widethe notion of a resource

is, the URI specification finally ties the notion of resource directly to the act of identi-

fication given by a URI, for “this specification does not limitthe scope of what might

be a resource; rather, the term ‘resource’ is used in a general sense for whatever might

be identified by a URI” (Berners-Lee et al., 2005). Although this definition seems at

best tautological, the intent should be clear. Aresourceis any thing capable of having

a sense, or in other words, an ‘identity’ in a language. Since a senseis not bound to

particular encoding, in practice within certain protocolsthat allow access to informa-

tion,a resource is typically not a particular encoding of a sense but a sense that can be

given by many encodings. To rephrase in terms of sense,the URI identifies a sense on

a level of abstraction, not the encoding of the sense or a particular realization of the

sense. So, a URI identifies the ‘sense’ of the Eiffel Tower, even if the web-accessible

realization of it in the form of a web-page was accessible from that URI.

However, while this is best practice on the Web, there is nothing to forbid someone

from identifying a particular encoding of information withits own URI and resource.

For example, one could also have a distinct URI for a webpage about the Eiffel Tower

in English, or a webpage about the Eiffel Tower in English in HTML. In other words,

a resource can identify anything at a level of abstraction, and the same thing, such as

a web-page, can be givenmultiple URIs, each corresponding to adifferent level of ab-

straction. Furthermore, due to the decentralized nature of URIs, often different agents
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createmultiple URIs for the same sense, which are then called in Web architecture

co-referential URIs.

We illustrate these distinctions in a typical HTTP interaction in Figure 4.4, where

an agent via a web browser wants to access some information about the Eiffel Tower

via its URI. While on a level of abstraction a protocol allowsa user-agent to identify

some resource, what the user-agent usually accesses concretely is some realization

of that resource in a particular encoding, such as a webpage in HTML or a picture

in the JPEG language (Pennebaker and Mitchell, 1992). In ourexample, the URI is

resolved using the domain name system to an IP address of a concrete server, which

then transmits to the user-agent some concrete bits that realize the resource, i.e. that

can be interpreted to the sense identified by the URI. In this example, most of the

interactions are local, since the webpageencodesthe sense of the resource. This HTTP

entity can then be interpreted by a browser as a rendering on the screen of Ralph’s

browser. Note this is a simplified example, as some status codes like307 may cause

a redirection to yet another URI and so another server, and soon possibly multiple

times, until an HTTP entity may finally be retrieved.

Figure 4.4: A user agent accessing a resource

One of the most confusing issues of the Web is that a URI does not necessarily
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retrieve a single HTTP entity, but can retrieve multiple HTTP entities. This leads to a

surprising and little-known aspect of Web architecture known as content negotiation.

Content Negotiationis a mechanism defined in a protocol that makes it possible to re-

spond to a request with different Web representations of thesame resource depending

on the preference of the user-agent. This is because information may have multiple

encodings in different languages that all encode the same sense, and thus the same

resource should have a singular URI. A representation on theWeb is then just “an

entity that is subject to content negotiation” (Fielding etal., 1999). Historically, the

term ‘representation’ on the Web was originally defined in HTML as “the encoding

of information for interchange” (Berners-Lee and Connolly, 1993). A later definition

given by the W3C did not mention content negotiation explicitly, defining a represen-

tation on the Web as just “data that encodes information about resource state” (Jacobs

and Walsh, 2004). To descend further into a conceptual swamp, “representation” is

one of the most confusing terms in Web architecture, as the term ‘representation’ is

used differently across philosophy. In order to distinguish the technical use of the

term ‘representation’ within Web architecture from the philosophical use of the term

“representation,” we shall use the term ‘Web representation’ to distinguish it from the

ordinary use of the term ‘representation’ as given earlier in Section 3.6. AWeb rep-

resentationis the encoding of the sense given by a resource given in response to a

request, which must then include any headers that specify an interpretation, such as

character encoding and media type. So a Web representation can be considered to

havetwo distinct components, and the headers such as the media type that lets us in-

terpret the encoding, and the payload itself, which is the encoding of the state of the

resource at a given point in time. Notice that Web representations, being digital infor-

mation, can be perfectly realized by messages, and the realization of a particular Web

representation is the concrete bits sent across the ‘wire’ at a given point in space and

time. Also,web-pagesareWeb representations given in HTML. Lastly, note that while

HTTP entities can be a request (such as using HTTP PUT) and response from a server,

Web representations can only be given as a response to a request like HTTP GET.

Our typical Web transaction, as given earlier in Figure 4.4,can become more com-

plex due to this possible separation between sense and encoding on the Web. Different

kinds of Web representations can be specified by user-agentsas preferred or accept-

able, based on the preferences of its users or its capabilities, as has been explained

in Section 4.1.1. The owner of a web-site about the Eiffel Tower decides to host a

resource for images of the Eiffel Tower. The owner creates a URI for this resource,
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http://www.eiffeltower.example.org/image. Since a single URI is used, the

sense (the depiction) that is encoded in either SVG or JPEG isthe same, namely that

of an image of the Eiffel Tower, that is, there are two distinct encodings of the im-

age of the Eiffel Tower available on a server in two differenticonic languages, one

in a vector graphic language known as SVG and one in a bitmap language known as

JPEG (Ferraiolo, 2002; Pennebaker and Mitchell, 1992). These encodings are ren-

dered identically on the screen for the user. If a web-browser only accepted JPEG

images and not SVG images, the browser could request a JPEG bysending a request

for Accept: image/jpeg in the headers. Ideally, the server would then return the

JPEG-encoded image with the HTTP entity headerContent-Type: image/jpeg.

Had the browser wished to accept the SVG picture as well, it could have putAccept:

image/jpeg, image/svg+xml and received the SVG version. In Figure 4.5, the

user agent specifies its preferred media type asimage/jpeg. So, both the SVG and

JPEG images are Web representations of the same resource, animage of the Eiffel

Tower, since both the SVG and JPEG information realize the same content, albeit us-

ing different languages for encoding. Since a single resource is identified by the same

URI http://www.example.org/EiffelTower/image, different user-agents can get

a Web representation of the resource in a language they can interpret, even if they

cannot all interpret the same language.

In Web architecture, content negotiation can also be deployed over not only dif-

fering formal languages, but differing natural languages,as the same content can be

encoded in different natural languages such as French and English. An agent could

request the description about the Eiffel Tower from its URI and set the preferred me-

dia type to ‘Accept-Language: fr’ so that they receive a French version of the

webpage as opposed to an English version. Or they could set their preferred lan-

guage as English but by using ‘Accept-Language: en.’ The preferences specified

in the headers are not mandatory for the server to follow, theserver may only have

a French version of the resource available, and so send the agent a French version of

the description, encoded in HTML or some other formal language, regardless of their

preference. This extension of content negotiation to operate over different natural lan-

guages can be considered controversial. Different naturallanguages may not be able

to encode the same content. Is it really true that two different languages can, even on

a high level of abstraction, encode the same information? Insome cases, this seems

reasonable. Yet it is well-known there are some words in French that are difficult if

not impossible to translate into English, such as ‘frileusement.’ Indeed, saying that
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Figure 4.5: A user agent accessing a resource using content negotiation

one natural language encodes the same content as another natural language is akin

to hubris in the general case. If this is the case, then it is perfectly reasonable to

establish different resources and so URIs for the French andEnglish language encod-

ings of the resource, such ashttp://www.eiffeltower.example.org/francais

andhttp://www.eiffeltower.example.org/english. In fact, if one believes the

same image cannot be truly expressed by both SVG and JPEG image formats, one

could give them distinct URIs as well. Regardless, what Figure 4.5 shows is that the

Web representations are distinct from the resource, even ifthe Web representations are

bound together by realizing the same information given by a resource, since access-

ing a resource via a single URI can returndifferentWeb representations depending on

content negotiation.

The only architectural constraint that connects Web representations to resources

is that they are retrieved by the same URI. So one could imagine a resource with

a URI calledhttp://www.example.org/Moon, that upon accessing using English as

the preferred language would provide a web-page with a picture of the moon, and upon

accessing with something other than English as the preferred language would provide a
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picture of blue cheese. While this seems odd, this situationis definitely possible. What

binds Web representations to a resource? Is a resourcereally just a random bag of Web

representations? Remember that the answer is that the Web representations should

have the samesenseregardless of their particular encoding if it is accessiblefrom the

same URI. This notion depends on our notion of informationalcontent (sense) as given

in Section 3.2, which we define by an appeal to Dretske’s semantic theory of informa-

tion (Dretske, 1981). To recall, Dretske’s definition of semantic information, “a signal

r carries the information thats is F when the conditional probability ofs’s beingF,

givenr (andk) is 1 (but, givenk alone, less than 1).k is the knowledge of the receiver”

(1981). We can then consider the signalr to be a Web representation, withs being a

resource and the receiver being the user-agent. However, instead of some factF about

the resource, we want an interpretation of the Web representation bydifferent user-

agents to be to the same sense. Of course, one cannot control the interpretations of yet

unknown agents, so all sorts of absurdities are possible in theory. As the interpretation

of the same encoding can differ among agents, there is a possibility that the owner

of the URIhttp://www.example.org/Moon really thinks that for French speakers a

picture of blue cheese has the same sense as a picture of the Moon for English speak-

ers, even if users of the resource disagree. However, it should be remembered that the

Web is a space of communication, and that for communication to be successful over

the Web using URIs, it is in the interest of the owner of the resource to deploy Web

representations that they believe the users will share their interpretation. So content

negotiation between a picture of blue cheese and a picture ofthe moon for a resource

that depicts the Moon is, under normal circumstances, the Web equivalent of insanity

at worse or bad manners at best. From a purely normative viewpoint in terms of rele-

vant IETF and W3C standards, it is left to the owner to determine whether or not two

Web representations are equivalent and so can be hosted using content negotiation at

the same URI.

The key to content negotiation is that the owner of a URI neverknows what the

capabilities of the user-agent are, what natural and formallanguages are supported by

it. This is analogous to what Dretske calls the “knowledge” or k of the receiver (1981).

The responsibility of the owner of a URI should be, in order toshare their resource by

as many user-agents as possible, to provide as many Web representations in a variety

of formats as they believe are reasonably necessary. So, theowner of the URI for a

website about the Eiffel Tower may wish to have a number of Webrepresentations in

a wide variety of languages and formats. By failing to provide a Web representation
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in Spanish, they prevent speakers of only Spanish from accessing their resource. Since

the owner of a URI cannot reasonably be expected to predict the capabilities of all

possible user-agents, the owner of the URI should try their best to communicate their

interpretation within their finite means.

The reason URIs identify resources, and not individual Web representations, is that

Web representations are too ephemeral to want to identify inof themselves, being by

definition the response of a server to aparticular response and request for information.

While one could imagine wanting to access a particular Web representation, in reality

what is usually wanted by the user-agent is the sense of the resource, which may be

present in a wide variety of languages. What is important is that the content (sense) gets

transferred and interpreted by the user agent, not the individual bytes of a particular

encoding in a particular language at a particular time.

With this insight in hand, some clarification on the relationship between represen-

tations, resources, and URIs should be given. First, a URI may identify only a single

resource, as otherwise multiple resources would have both the same URI and an iden-

tical set of Web representations with the same sense, and so the resources would be

indistinguishable. The opposite of this iswhen the same resource has multiple URIs,

which is calledURI collision, andURIs that identify the same resourceare considered

co-referential URIs(Jacobs and Walsh, 2004). However, a single URI may not be

identified only with its currently accessible Web representations, since those represen-

tations may change in the future as the resource changes. A resource for the weather in

Paris will have to change in order to remain accurate. Likewise, two sets of otherwise

identical Web representations may be for different resources. These Web representa-

tions may be identical at one point in time but diverge in the future. A resource for

pictures of the tallest monument in Paris would (at the time of writing) be encoded

by the same Web representations as a picture of the Eiffel Tower but if an even larger

monument was built in Paris, then the Web representations for the two resources would

diverge.

4.2 The Principles of Web Architecture

In light of having both the philosophical terminology defined in Chapter 3 and the ter-

minology of the Web defined Section 4.1, it is now possible to show how the various

Web terms are related to each other in a more systematic way. These relationships are

phrased as five finite principles that serve as the normative Principles of Web architec-
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ture: The Principles of Universality, Linking, Self-Description, the Open World, and

Least Power. In practice many applications violate these principles, and by virtue of

their use of URIs and the HTTP protocol, many of these applications would be in some

sense ‘on the Web.’ However, these principles are normativeinsofar as they define what

could be considered as compliance with Web architecture, and so an application that

embodies them is compliant with Web architecture.

4.2.1 Principle of Universality

ThePrinciple of Universalitystates thatany resource can be identified by a URI. The

notion of both a resource and a URI were from their onset universal in ambition, as

Berners-Lee said, “a common feature of almost all the data models of past and pro-

posed systems is something which can be mapped onto a conceptof ’object’ and some

kind of name, address, or identifier for that object. One can therefore define a set of

name spaces in which these objects can be said to exist. In order to abstract the idea

of a generic object, the web needs the concepts of the universal set of objects, and of

the universal set of names or addresses of objects” (1994a).The more informal notes

of Berners-Lee are even more startling in their claims for universality, stating that the

first ‘axiom’ of Web architecture is “Universality” where “by ‘universal’ I mean that

the Web is declared to be able to contain in principle every bit of information acces-

sible by networks” (1996c). Although it appears the germ of the idea of universality

was clearly present in the earliest IETF Internet Drafts for‘Universal Resource Iden-

tifiers’ in IETF 1630 (Berners-Lee, 1994a), in works like HTTP IETF RFC 1945 with

co-authors like Fielding, Berners-Lee constrained himself to only talk about digital

‘network data objects’ that are accessible over the Internet (1996). However, in later

IETF RFCs like RFC 2396, the principle quickly ran amok, as URIs were allowed

to refer to “human beings, corporations, and bound books in alibrary” (Berners-Lee

et al., 1998).

There seems to be a certain way that web-pages are ‘on the Web’in a way that

human beings, corporations, unicorns, and the Eiffel Towerare not. Accessing a web-

page in a browser means to receive some bits, while one cannoteasily imagine what

accessing the Eiffel Tower itself or the concept of a unicornin a browser even means.

This property of being ‘on the Web’ is a common-sense distinction that separates things

like a web-page about the Eiffel Tower from things like the Eiffel Tower itself. The

core of the problem is that the use of term ‘identify’ in URIs is overloaded with two
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distinctions. This distinction is a matter of between the use of URIs toaccessand

reference, between using the URI to access local and refer to the distal. The early

notes of Berners-Lee address this distinction between access and reference, phrasing it

as a distinction between locations and names. As Berners-Lee states, “conventionally,

a ‘name’ has tended to mean a logical way of referring to an object in some abstract

name space, while the term ‘address’ has been used for something which specifies the

physical location” (1991). So, alocation is a term that can be used to access the thing,

while anameis a term that can be used to refer to a thing. Unlike access, reference is

the use of an identifier for a thingto which one is immediately causally disconnected.

Accessis the use of an identifier to create immediately a causal connection to the thing

identified(Hayes and Halpin, 2008). The difference between the use of aURI to access

a hypertext web-page or other sort of information-based resource and the use of a URI

to refer to some non-Web accessible entity or concept ends upbeing quite important,

as this ability to representationally use URIs as ‘stands-in’ for referents forms the basis

of the distinction between the hypertext Web and the Semantic Web.

As noticed in Chapter 3, names can serve as identifiers for distal things. However,

Berners-Lee immediately puts forward the hypothesis that “with wide-area distributed

systems, this distinction blurs” so that “things which at first look like physical ad-

dresses...cease to give the actual location of the object. At the same time, a logical

name...must contain some information which allows the nameserver to know where to

start looking” (1991). He posits a third neutral term, “identifier” that was “generally

referred to a name which was guaranteed to be unique but had little significance as

regards the logical name or physical address” (Berners-Lee, 1991). In other words,

an identifier is a term that can be used to either access or refer, or both accessand

refer to, a thing. The problem at hand for Berners-Lee was how to provide a namefor

his distributed hypertext system that could get “over the problem of documents being

physically moved” (1991). Using simple IP addresses or any scheme that was tied to a

single server would be a mistake, as the resource that was identified on the Web should

be able to move from server to server without having to changeidentifier.

For at least the first generation of the Web, the way to overcome this problem was

to provide a translation mechanism for the Web that could provide a methodology for

transforming “unique identifiers into addresses” (Berners-Lee, 1991). Mechanisms for

translating unique identifiers into addresses already existed in the form of the domain

name system that was instituted by the IETF in the early days of the expansion of

ARPANet (Mockapetris, 1983). Before the advent of the domain name system, the
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ARPANet contained one large mapping of identifiers to IP addresses that was accessed

through the Network Information Center, created and maintained by Engelbart (Hafner

and Lyons, 1996). However, this centralized table of identifier-to-address mappings be-

came too unwieldy for a single machine as ARPANet grew, so a decentralized version

was conceived based ondomain names, where each domain name isa specification

for a tree structured name space, where each component of thedomain name (part of

the name separated by a period) could direct the user-agent to a more specific ‘do-

main name server’ until the translation from an identifier tothe name to IP address

was complete.

Many participants in the IETF felt like the blurring of this distinction that Berners-

Lee made was incorrect, so URIs were bifurcated into two distinct specifications.Uni-

form Resource Locations(URLs) area scheme for locations that allowed user-agents

via an Internet protocol to access a realization of information (Berners-Lee et al.,

1994). In contrast,Uniform Resource Names(URNs) area scheme whose names that

could refer to things outside of the causal reach of the Internet (Sollins and Masinter,

1994). Analogue things like concepts and entities naturally had to be given URNs,

and digital information that can be transmitted over the Internet, like web-pages, were

given URLs. Interestingly enough, URNs countonlyas a naming scheme, as opposed

to a protocol like HTTP, because they cannot access any information. While one could

imagine a particular Web-accessible realization, like a web-page, disappearing from

the Web, it was felt that identifiers for things that were not accessible over the Web

should “be globally unique forever, and may well be used as a reference to a resource

well beyond the lifetime of the resource it identifies or of any naming authority in-

volved in the assignment of its name” (Mealling and Daniel, 1999). Precisely because

of their lack of ability to access information, URNs never gained much traction, while

URLs to access web-pages became the norm. Building on this observation about the

“blurring of identifiers,” the notion of URIs implodes the distinction between identi-

fiers used only for access (URLs) and the identifiers used for reference (URNs).

A Uniform Resource Identifieris a unique identifier that may be used to either or

both refer to or access a resource, whose syntax is given in the latest URI IETF RFC,

currently (Berners-Lee et al., 2005). URIs subsume both URLs and URNs, as shown

in Figure 4.6. Berners-Lee and others were only able to push this standard through the

IETF process years after the take-off of the Web. Indeed, early proposals for universal

names, ranging from attempts to find the ‘true’ names of things in various mystical

traditions to Engelbart’s ‘Every Object Addressable’ principle (1990), all missed the
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crucial advantage of the Web: Classically names in natural language are usually used

for reference, yet on the Web names are can also used to accessinformation. In a

decentralized environment this is crucial for discoveringthe sense of a URI, as illus-

trated by the notions of ‘linking’ and ‘self-description’ detailed next in Section 4.2.2

and Section 4.2.3.

The fact that URIs can be used as names to access as opposed to just refer to in-

formation isnot a direct contrast between the use of names in natural language and

the use of URIs on the Web. Trivially, names in natural language can access things as

well, such as when one is knocking on a door and says “Ralph, come open the door!”

or when one picks a friend out of a large crowd by simply yelling their name. Fur-

thermore, these examples of natural language use of names toaccess holds in an even

more interesting fashion for information that can be realized by the message itself. One

example of this would be the sentence “In ‘Moby Dick,’ one hasthe immortal opening

line ‘Call me Ishmael’...” where it is clear that the name ‘Moby Dick’ refers to some of

the text which is directly uttered in the same sentence. So the difference between URIs

being used for access as opposed to names being used in natural language for refer-

ence is not an absolute distinction, but simply two different kinds of functions that both

kinds of names, both URIs on the Web and names in natural language, can perform.

The matter is more one of emphasis; names in natural languagehave a tendency to be

used often for reference in speech, as the amount of things that are distal that an agent

may wish to talk about far outweighs the amount of things in their immediate vicinity

they could also discuss. Likewise, in common parlance, URIson the Web are almost

synonymous for their ability to access web-pages. Many people would even not even

consider the fact that a URI can be used to refer to some thing to be important, as cru-

cial as this usage is for the Semantic Web. Thus, names of any sort can usually be used

for both access and reference, but URIs are often mostly usedfor access while natural

language names are more often used for reference. So one of the tricks the Semantic

Web has to play is to convey to agents that URIs should be used for reference as well,

in other words, to treat URIs more like natural language names.

4.2.2 Principle of Linking

The Principle of Linking states thatany resource can be linked to another resource

identified by a URI. No resource is an island, and the relationships between resources

are captured by the linking, transforming lone resources into a Web. Alink isa connec-
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Figure 4.6: A Venn Diagram describing the relationships between URIs, URNs, and

URLs

tion between resources. Theresource that the link is directed fromis called itsstarting

resourcewhile theresource a link is directed tois theending resource(DeRose et al.,

2001).

What are links for? Just as URIs links may be used for either access or reference,

or even both. In particular, in HTML the purpose of links is for access to additional

hypertext documents, and so they are sometimes called ‘hyperlinks.’ This access is

often calledfollowing the link, a traversal from one Web representation to another,

that results in access to Web representations of the ending resource. A unidirectional

link that allows access of one resource from another is the predominant kind of link in

hypertext. Furthermore, access by linking is transitive, for if a user-agent can access a

Web representation of the ending resource from the startingresource, then it can access

any links present in the Web representation, and thereby access a Web representation

of an ending resource. It is precisely this ability to transitively access documents by

following links that led the original Web to be a seamless Webof hypertext. While links

can start in Web representations, the main motivation for using URIs as the ending

resource of a link as opposed to a specific Web representationis to preventbroken

links, where a user-agent follows a link to a resource that is no longer there, due to

the Web representation itself changing. As put by the W3C TAG, “Resource state may

evolve over time. Requiring a URI owner to publish a new URI for each change in

resource state would lead to a significant number of broken references. For robustness,

Web architecture promotes independence between an identifier and the state of the

identified resource” (Jacobs and Walsh, 2004).

However, one of the distinguishing features of the Web is that links may be bro-

ken by having access to a Web representation disappear, due to simply the lack of
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hosting a Web representation, loss of ownership of the domain name, or some other

reason. These reasons are given in HTTP status codes, such asthe infamous404 Not

Found that signals that while there is communication with a server, the server does

not host the resource. Further kinds of broken links are possible, such as301 Moved

Permanently or a five hundred level server error, or an inability to even connect with

the server leading to a time-out error. This ability of linksto be ‘broken’ contrasts to

previous hypertext systems. Links were not invented by the Web, but by the hyper-

text research community. Constructs similar to links were enshrined in the earliest of

pre-Web systems, such as Engelbart’soNLine System(NLS) (1962), and were given

as part of the early hypertext work by Theodor Nelson (1965).The plethora of pre-

Web hypertext systems were systematized into the Dexter Reference Model (Halasz

and Schwartz, 1994). According to the Dexter Reference Model, the Web would not

even qualify as hypertext, but as “proto-hypertext,” sincethe Web did not fulfill the

criteria of “consistency,” which requires “in creating a link, we must ensure that all of

its component specifiers resolve to existing components” (Halasz and Schwartz, 1994).

To ensure a link must resolve and therefore not be broken, this mechanism requires a

centralized link index that could maintain the state of eachresource and not allow links

to be created to non-existent or non-accessible resources.Many early competitors to

the Web like HyperG had a centralized link index (Andrews et al., 1995). As an inter-

esting historical aside, it appears that the violation of this principle of maintaining a

centralized link index was the main reason why the World WideWeb was rejected from

its first academic conference, ACM Hypertext 1991, althoughEngelbart did encourage

Berners-Lee and Connolly to pursue the Web further.3 While a centralized link index

would have the benefit of not allowing a link to be broken, the lack of a centralized

link index removes a bottleneck to growth by allowing the owners of resources to link

to other resources without updating any index besides theirown Web representations.

This was doubtless important in enabling the explosive growth of linking. The lack

of any centralized link index, and index of Web representations, is also precisely what

search engines like Google create post-hoc through spidering, in order to have an index

of links and web-pages that enable their keyword search and page ranking algorithms.

As put by Dan Connolly in response to Engelbart, “the design of the Web trades link

consistency guarantees for global scalability” (2002). So, broken links and404 Not

Found status codes are purposefulfeatures, not defects, of the Web.

3Personal communication with Tim Berners-Lee.
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4.2.3 Principle of Self-Description

One of the goals of the Web is for resources to be ‘self-describing,’ currently defined as

“individual documents become self-describing, in the sense that only widely available

information is necessary for understanding them” (Mendelsohn, 2006). While it is un-

clear what “widely-available” means, one notion of “widely-available” is that in order

for some sort of new information to have an interpretation, its interpretation must build

on top of various implicit and ‘common-sense’ information that the interpreting agent

already possesses (Mendelsohn, 2006). The idea that ‘common-sense’ information is

crucial to intelligence and sharing information has long been held central by artificial

intelligence (McCarthy, 1959). The question that confronts the Web is similar in many

regards, but with a change of focus due to the open ended nature of the Web: Given a

URI, how can an agent discover the interpretation of the URI?In many cases, the an-

swer may be similar to how humans learn foreign languages, inwhich case the URI’s

interpretation can be given by its implicit context. However, due to the fact that the

agents are often machines lacking the ability to rely on sophisticated common-sense

interpretative capacities, often the additional information needed to interpret a URI

needs to be made explicit. Of course, at some point even for machine agents there

must be a base-line of capacity that allows thesomeinformation on the Web to be

interpreted, but the question is how such interpretive abilities can be boot-strapped in

the face of new and possibly unknown URIs and Web representations?

The Principle of Self Descriptionstates thatif an interpretation of a URI is not

possible with the implicit capabilities of the agent, information that can aid an agent

in discovering an interpretation of the URI should be accessible from the Web represen-

tation accessible from the URI.Note that the interpretation of a URI can be grounded

in the interpretations of Web representations accessible from the URI, or the use of the

URI in other media. How many and what sort of links are necessary to adequately de-

scribe a resource? A resource is successfully described if an interpretation of a sense

is possible. Any representation can have links to other resources which in turn can

determine valid interpretations for the original resource. This process of following

whatever data is linked in order to determine the interpretation of a URI is informally

called ‘following your nose’ in Web architecture.

The Follow-Your-Nose algorithmstates that if a user-agent encounters a repre-

sentation in a language that the user-agent cannot interpret, the user-agent should, in

order:
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1. Dispose of Fragment Identifiers:As mandated by the URI specification (Berners-

Lee et al., 2005), user-agents can dispose of the fragment identifier in order to

retrieve whatever Web representations are available from the racine (the URI

without fragment identifier). For example, in HTML the fragment identifier of

the URI is stripped off when retrieving the webpage, and thenwhen the browser

retrieves a Web representation, the fragment identifier canbe used to locate a

particular place within the Web representation.

2. Inspect the Media Type: The media type of a Web representation provides

a normative declaration of how to interpret a Web representation. Since the

number of IETF media-types is finite and controlled by the IETF, a user-agent

should be able to interpret these media types.4

3. Follow any Namespace Declarations:Many Web representations use a generic

format like XML to in turn specify a customized dialect. In this case, a language

or dialect is itself given a URI, called anamespace URI, a URI that identifies

that particular dialect. A namespace URI then in turn allows access to anames-

pace document, a Web representation that provides more information about the

dialect. In a Web representation using this dialect, anamespace declaration

thenspecifies the namespace URI. In this case, the user-agent may follow these

namespace declarations in order to get the extra information needed to inter-

pret the Web representation. As a single Web representationmay be encoded in

multiple languages, it may have multiple namespace URIs.

4. Follow any links: The user-agent can follow any links. There are some links

in particular languages that may be preferred, such as the ending resource of a

link header in HTML or in RDF Schema links such asrdfs:isDefinedBylinks,

or links like OWL by theowl:imports(See Chapter 5 for the definition of RDF

and OWL). If links are typed in some fashion, each language may define or

recommend links that have the normative status, and normative links should be

preferred. However, for many kinds of links, their normative status is unclear, so

the user-agent may have to follow any sort of link as a last resort.

Using this algorithm, the user-agent can begin searching for some information that

allows it to interpret the Web representation. It can followthe first three guidelines

4The finite list is available athttp://www.iana.org/assignments/media-types/, and a mapping from
media types to URIs has been proposed athttp://www.w3.org/2001/tag/2002/01-uriMediaType-9.
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and then follow the fourth, applying the above guidelines recursively. Eventually, this

recursive search should bottom out either in a program that allows an interpretation

of the Web representation, such as new inferences produced by the metadata gathered

by the follow-your-nose algorithm or the natural bottomingout point of specifications

given by the IETF in plain, human-readable text. This final fact brings up the point

that the information that gets one an interpretation is not necessarily a program, but

could be a human-readable specification that requires a human to make the mapping

from the names to the intended sense.

4.2.4 The Open World Principle

TheOpen World Principlestates thatthe number of resources on the Web can always

increase. There can always be new acts of identification, carving out anew resource

from the world and identifying it with a URI. At any given moment, a new webpage

may appear on the Web, and it may or may not be linked to. This isa consequence

of the relatively decentralized creation of URIs for resources given by the Principle of

Universality and the decentralized creation of links by thePrinciple of Linking. With-

out any centralized link index, there is no central repository of the state of theentire

Web. While approximations of the state of the entire Web are created by indexing and

caching web-pages by search engines like Google, due to the Open World Principle,

none of these alternatives will necessarily ever be guaranteed to be complete. Imagine

a web-spider updating a search engine index. At any given moment, a new URI could

be added to the Web that the web-spider may not have crawled, or a previously crawled

Web representation may change. So to assume that any collection of resources of the

Web can be a complete picture of the whole Web is at best impudent.

The ramifications of the Open World Principle are surprising, and most clear in

terms of judging whether a statement is true or false. This repercussions transform the

Open World Principle into its logical counterpart, theOpen World Assumption, which

logically states thatstatements that cannot be proven to be true cannot be assumedto

be false. Intuitively, this means that the world cannot be bound. On the Web, the Open

World Principle holds that since the Web can always be made larger, with any given set

of statements that allows an inference, a new statement relevant to that inference may

be found. So any agent’s knowledge of the Web is always partial and incomplete, and

thus the Open World Assumption is a safe bet for agents on the Web. The Open World

Principle is one of the most influential yet challenging principles of the Web, the one
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that arguably separates the Web from traditional research in artificial intelligence and

databases in practice. In these fields, systems tend to make the opposite of the Open

World Assumption, the Closed World Assumption. TheClosed World Assumption

states that logicallystatements that cannot be proven to be true can be assumed to be

false. Intuitively, this means that somehow the world can be bounded. The Closed

World Assumption has been formalized on a number of different occasions, with the

first formalization being due to Reiter (1978).Negation as failureis an implementation

of the Closed World assumption in both logic programming anddatabases, where fail-

ure for the program to prove a statement is true implies the statement is false (Clark,

1978).

4.2.5 Principle of Least Power

The Principle of Least Powerstates that aWeb representation given by a resource

should be described in the least powerful but adequate language. This principle is

also normative, for if there are multiple possible Web representations for a resource,

the owner should chose the Web representation that is given in the ‘least powerful’

language. The Principle of Least Power seems odd, but it is motivated by Berners-Lee’s

observation that “we have to appreciate the reasons for picking not the most powerful

solution but the least powerful language” (1996c). The reasons for this principle are

rather subtle. The receiver of the information accessible from a URI has to be able to

decode the language that the information is encoded in so thereceiver can determine

the sense of the encoding. Furthermore, an agent may be able to decode multiple

languages, but the owner of the URI does not know what languages an agent wanting

to access their URI may possess. Also, the same agent may be able to interpret multiple

languages that can express the same sense. The question always facing any agent trying

to communicate is: what language to use? In closed and centralized systems, this is

ordinarily not a problem, since each agent can be guaranteedto use the same language.

In an open system like the Web, where one may wish to communicate a resource to an

unknown number of agents, each of which may have different language capabilities,

the question of which language to deploy becomes nearly insurmountable. Obviously,

if an agent is trying to encode some sense, then it should minimally choose a language

which is capable of conveying that sense. Yet the same sense can be conveyed by

different languages, as languages in effect encode systemsof senses.

The Principle of Least-Power is a common-sense engineeringsolution to this prob-
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lem of language choice. The solution is simply to build first acommon core language

that fulfills the minimal requirements to communicate whatever sense one wishes to

communicate, and then extend this core language. Using HTMLas an example, one

builds first a common core of useful features such as the ability to have text be bold

and have images inserted in general areas of the text, and then as the technology ma-

tures, to slowly add features such as the precise positioning of images and the ability

to specify font size. The Principle of Least Power allows a straightforward story about

compatibility to be built to honor the maxim that an agent should “be strict when send-

ing and tolerant when receiving,” since it makes the design of a new version an exercise

in strictly extending the previous version of the language (Carpenter, 1996). A gap-

ing hole in the middle of the Principle of Least Power is no consistent definition of

the concept of ‘power,’ and the W3C TAG seems to conflate powerwith the Chomsky

Hierarchy. At this stage, the problem of defining ‘power’ formally must be left as an

open research question.

4.3 Conclusions

The Web, while to a large extent being an undisciplined and poorly-defined space,

does contain a set of defining terms and principles. While previously these terms and

principles have been scattered throughout various informal notes, IETF RFCs, and

W3C Recommendations, in this chapter we have systematized both the terminology

and the principles in a way that reveals how they internally build of each other. In

general, when we are referring to thehypertext Web, we are referringto the use of

URIs and links to access hypertext web-pages using HTTP. Yet there is more to the Web

than hypertext. The next question is how can these principles be applied to domains

outside the hypertext Web, and this will be the topic of Chapter 5, as we apply these

principles to the notion of a knowledge representation language for the Web, a vast

project tantalizing called the ‘Semantic Web.’





Chapter 5

The Semantic Web

All the important revolutions that leap into view must be preceded in the spirit of the

era by a secret revolution that is not visible to everyone, and still less observable by

contemporaries, and that is as difficult to express in words as it is to understand.G.W.

F. Hegel(1959)

The Web is a universal information space, but so far it has been one composed

entirely of hypertext documents. As said by Berners-Lee at the World Wide Web

conference in 1994, “to a computer, then, the web is a flat, boring world devoid of

meaning...this is a pity, as in fact documents on the web describe real objects and

imaginary concepts, and give particular relationships between them” (1994b). The

heart of this particular insight is the realization that it is the content – the sense – of

the information, not its encoding in hypertext, that is of central importance to the Web.

The purpose of the architecture of the Web is to connect information of any kind in a

decentralized manner, and this architecture can be appliedbeyond the hypertext of its

initial incarnation.

The next step in Berners-Lee’s programme to expand the Web beyond hypertext

is called theSemantic Web. The most cited definition of the Semantic Web is given

by Berners-Lee et al. as “the Semantic Web is not a separate Web but an extension of

the current one, in which information is given well-defined meaning, better enabling

computers and people to work in cooperation” (2001). How can information be added

to the Web without encoding it in hypertext? The answer is to find a language capable

of representing the information about “real objects and imaginary concepts.” This

requires aknowledge representation language, a language whose primary purpose is

the representation of non-digital content in a digital formal language.

85
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As the previous exposition of Web architecture explained indetail, resources on

the Web are given by a URI that identifies the same sense on the Web across different

encodings. What drives the Semantic Web is the realization that at least some of the

information on the Web is primarily representational, i.e.information about distal

content. Then instead of the hypertext language, which is mainly concerned with the

presentation and linking of natural language for humans, the Web needs a knowledge

representation language which describes the represented referents as fully as possible

without regard to presentation for humans. The mixture of content and encoding for

presentation forces web-spiders to ‘scrape’ valuable content out of hypertext. In theory,

encoding information directly in a knowledge representation language gives a spider

more reliable and direct access to the information. As Berners-Lee puts it, “most

information on the Web is designed for human consumption, and even if it was derived

from a database with well defined meanings (in at least some terms) for its columns,

that the structure of the data is not evident to a robot browsing the Web” (1998b).

This has led him to consider the Semantic Web as a Web “for expressing information

in a machine processable form” and so making the Web “machine-understandable”

(Berners-Lee, 1998b). This leads to the contrast between the Semantic Web as a ‘Web

of data’ as opposed to the hypertext ‘Web of documents.’ W3C standards such as XML

were originally created, albeit rarely used, precisely in order to separate content and

presentation (Connolly, 1998).

Furthermore, the purpose of the Semantic Web is to expand thescope of the Web

itself. Most of the world’s digital information is not natively stored in hypertext. In-

stead, it is stored in databases and other non-hypertext documents and spreadsheets. As

more and more of this information is being slowly but surely migrating to the Web via

scripts that automatically and dynamically convert data from databases into HTML,

the advocates of the Semantic Web imagine that by having a common knowledge rep-

resentation language across the entire Web, all information that is not currently on

the Web can become part of the Web. This makes the Semantic Webnot a different

and parallel Web to the hypertext Web, but an extension of thecurrent Web, where

hypertext serves as just one possible language.

5.1 A Brief History of Knowledge Representation

The creation of the Semantic Web then depends on the creationof a knowledge repre-

sentation language for the Web, and so the Semantic Web inherits both the successes
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and failures of previous efforts to create knowledge representation languages in arti-

ficial intelligence. The earliest work in digital knowledgerepresentations was spear-

headed by John McCarthy’s attempts to formalize elements ofhuman knowledge in

first-order predicate logic, where the primary vehicle of intelligence was to be consid-

ered some form of inference (1959). These efforts reached their apex in Hayes’sNaive

Physics Manifesto, which called for parts of human understanding to be formalized

as first-order logic. Although actual physics was best understood using mathematical

techniques such as differential equations, Hayes conjectured that most of the human

knowledge of physics, such as “water must be in a container for it not to spill” could

be conceptualized better in first-order logic (1979). Hayestook formalization as a

grand long-term challenge for the entire AI community to pursue, as he said that “we

are never going to get an adequate formalization of common sense by making short

forays into small areas, no matter how many of them we make” (1979). While many

researchers took up the grand challenge of Hayes in various domains, soon a large

number of insidious problems were encountered, primarily in terms of the expressivity

of first-order logic and its undecidability of inference. Inparticular, first-order logic

formalizations were viewed as not expressive enough, beingunable to cope with tem-

poral reasoning as shown by the Frame Problem, and so had to beextended with fluents

and other techniques (McCarthy and Hayes, 1969). Since the goal of artificial intelli-

gence was to create an autonomous human-level intelligence, another central concern

was that predicate calculus did not match very well with how humans actually rea-

soned. For example, humans often use default reasoning, andvarious amendments

must be made for predicate calculus to support this (McCarthy, 1980). Further ef-

forts were made to improve first-order logic with temporal reasoning to overcome the

Frame Problem, as well as the use of fuzzy and probabilistic logic to overcome issues

brought up by default reasoning and the uncertain nature of some knowledge (Koller

and Pfeffer, 1998).

Under increasing criticism from its own former champions like McDermott, first-

order predicate calculus was increasingly abandoned by those in the field of knowledge

representation (1987). McDermott pointed out that formalizing knowledge in logic re-

quires that all knowledge be formalized as a set of axioms andthat “it must be the

case that a significant portion of the inferences we want...are deductions, or it will

simply be irrelevant how many theorems follow deductively from a given axiom set”

(1987). McDermott found that in practice neither can all knowledge be formalized

and that even given some fragment of formalized knowledge, the inferences drawn
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are usually trivial or irrelevant (1987). The debate focused on whether or not there

was a more appropriate manner for AI to model human intelligence besides first-order

logic. Some researchers championed aproceduralview of intelligence that regarded

the representation as itself irrelevant if the program could successfully solve some task

given some input and output. This contrasted heavily with earlier attempts to formalize

human knowledge that it was called thedeclarative versus proceduraldebate. Proce-

dural semanticist Terry Winograd stated that “the operations on symbol structures in

a procedural semantics need not correspond to valid logicalinferences about the enti-

ties they represent” since “the symbol manipulation processes themselves are primary,

and the rules of logic and mathematics are seen as an abstraction from a limited set of

them” (1976). While the procedural view of semantics first delivered impressive results

through programs like SHRDLU (Winograd, 1972), since the ‘semantics’ were ad-hoc

and task-dependent, so they could not be used outside the limited domain in which they

were created. Furthermore, there became a series of intensedebates on whether these

programs often purported to do what they wanted even within their domain, as Dreyfus

argued that it was ridiculous that just because a program waslabeledUNDERSTAND that

it did actually in any way actuallyunderstand(1979). Interestingly enough, the debate

between declarative and procedural semantics is, under theright formal conditions, a

red herring since the Curry-Howard Isomorphism states thatgiven the right program-

ming language, there is a tight coupling between logical proofs and programs so that

the simplification of proofs can be equivalent to steps of computation (Wadler, 2003).

Within AI, research began into other forms of declarative knowledge representa-

tion languages besides first-order logic that were supposedto be in greater concordance

with human intelligence and that could serve as more stable substrates for procedural

knowledge-based systems. Most prominent among these alternatives wereseman-

tic networks, “a graphic notation for representing knowledge in patterns of intercon-

nected nodes and arcs” (1987). Semantic networks are as old as classical logic, dating

back to Porphyry’s explanation of Aristotelian categories(Sowa, 1987). The term

‘semantic network’ was coined by Richard Richens to describe a common knowledge-

representation system for machine-translation systems atthe Cambridge Language Re-

search Unit (1956). While the work at the Cambridge LanguageResearch Unit moved

more towards different knowledge representation languages to represent the underly-

ing structure of thesauri, such as Masterman’s semantic lattices and fans (1961), the

simplistic ‘node-arc-node’ structure of semantic networks soon found favor elsewhere.

Soon semantic networks were being used to represent everything from human mem-
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ory to first-order logic itself (Quillian, 1968; Sowa, 1976). Semantic networks also

continued to be used as an intermediate knowledge representation for natural language

systems by systems like Shapiro’s ‘Semantic Network Processing System,’ as the node

and arc formulation computationally could be detected in the various dependencies

given by words (1979). The approach of semantic networks wasgiven some credibil-

ity by the fact that often when attempting to make diagrams of‘knowledge,’ humans

often start by drawing circles connected by lines, with eachcomponent labeled with

some human-readable description. A semantic network about‘The architect of the Eif-

fel Tower was Gustave Eiffel’ is given in Figure 5.1. Note that it refers declaratively to

things in the world, but uses ‘natural-language-like’ labels on its nodes and edges.

Figure 5.1: An example semantic network

When researchers attempted to communicate or combine theirknowledge repre-

sentation schemes, no-one really knew what the natural language descriptionmeant

except the author, even when semantic networks were used as aformal language. The

link in semantic networks was interpreted in at least three different ways (Woods,

1975) and no widespread agreement existed on the most commonsort-of link, the

IS-A link, which could represent both subclassing, instantiation, close similarity, and

more. This led to an assault on semantic networks by champions of first-order logic

like Hayes, who believed that by providing a formal semantics that defined ‘meaning’,

first-order logic at least allowed knowledge representations to be transportable across

domains, and that many alternative knowledge representations could be re-expressed

in first order-logic (Hayes, 1977). In response, the field of knowledge representation

bifurcated into separate disciplines. Many of the former champions of logic currently
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do not believe that human intelligence can be construed as logical inference, but re-

searchers still actively pursue the field as first order logicis of crucial importance

to many systems such as mathematical theorem-proving and itis still used in many

less ambitious knowledge-reasoning systems such as ISO Common Logic (Delugach,

2007).

The classical artificial intelligence programme, while fixated on finding a formal

language capable of expressing human knowledge, had ignored the problem of in-

ference. This problem came to attention abruptly when KRL (the self-titled Knowl-

edge Representation Language), one of the most flexible knowledge representation

languages pioneered by Winograd, was found to have intractable inference even on

simple problems of cryptarithmetic, because of its representational richness (Bobrow

and Winograd, 1977).1 Furthermore, while highly optimized inference mechanisms

existed for first-order logic, even first-order predicate logic was known to be unde-

cidable. These disadvantages of alternative representational formats and first-order

logic led many researchers, particularly those interestedin an alternative “slot and

value” knowledge representation languageknown asframesto begin researching the

decidability of their inference mechanisms (Minsky, 1975). This research into frames

then evolved into research ondescription logics, where the trade-offs between the

tractability and expressivity were carefully studied (Levensque and Brachman, 1987).

The goal of the field was to produce a logic with decidable inference while maintain-

ing maximum expressivity, as exemplified by languages like KL-ONE (Brachman and

Schmolze, 1985). Although the first description-logic system, KL-ONE, was proven

to have undecidable inference for even subsumption, later research produced a vast

proliferation of description logics with carefully categorized decidability and features

(Schmidt-Schauss, 1989).

Ultimately, the project of artificial intelligence to design a single knowledge repre-

sentation system suitable for creating human-level intelligence has not yet succeeded

and progress seems glacial at best. With no unifying framework, the field of artificial

intelligence itself fragmented into many different diverse communities, each with its

own family of languages and techniques. Researchers into natural language embraced

statistical techniques and went back to practical languageprocessing tasks, while logi-

cians have produced an astounding variety of different knowledge representation lan-

guages, and cognitive scientists moved their interests towards dynamical systems and

specialized biologically-inspired simulations. The lonehold-out seemed to be the Cyc

1Personal communication with Henry S. Thompson.
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project, which continued to pursue the task of formalizing all ‘common-sense’ knowl-

edge in a single knowledge representation language (Lenat,1990). In one critique

of Cyc, Smith instead asked what lessons knowledge representation languages could

learn from hypertext, “Forget intelligence completely, inother words; take the project

as one of constructing the world’s largest hypertext system, with Cyc functioning as

a radically improved (and active) counterpart for the Deweydecimal system. Such a

system might facilitate what numerous projects are struggling to implement: reliable,

content-based searching and indexing schemes for massive textual databases” (1991).

Cantwell Smith’s statement that strangely prefigures not only search engines, but the

revitalization of knowledge representation languages dueto the Semantic Web (1991).

5.2 The Resource Description Framework (RDF)

What makes knowledge representation language on the Webdifferent from classical

knowledge representation? Berners-Lee’s early thoughts,as given in the first World

Wide Web Conference in Geneva in 1994, were that “adding semantics to the Web

involves two things: allowing documents which have information in machine-readable

forms, and allowing links to be created with relationship values” (Berners-Lee, 1994b).

Having information in “machine-readable forms” requires aknowledge representation

language that has some sort of relatively content-neutral syntax for encoding content

(Berners-Lee, 1994b). The parallel to knowledge representation in artificial intelli-

gence is striking, as it also sought to find one universal encoding, albeit encoding

human-intelligence. The second point, of “allowing links,” means that the basic model

of the Semantic Web will be a reflection of the Web itself: the Semantic Web is con-

stituted by connecting resources by links (Berners-Lee, 1994b). The Semantic Web

is then easily construed as a descendant of semantic networks from classical artifi-

cial intelligence, where nodes are resources and arcs are links. Under the aegis of the

W3C, the first knowledge representation language for the Semantic Web, theResource

Description Framework(RDF) was made a W3C Recommendation, and it is clearly

influenced by work in AI on semantic networks. This should come as no surprise, for

RDF was heavily inspired by the work of Ramanathan V. Guha on the Meta-Content

Framework (MCF) (Guha, 1996). Before working on MCF, Guha was chief lieutenant

of the aforementioned Cyc project, the last-ditch Manhattan project of classical artifi-

cial intelligence (R.V.Guha and D.Lenat, 1993). Another important influence on RDF

besides semantic networks was the influence of semantic templates in information ex-
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traction systems. As opposed to the ‘node-arc-node’ form, these templates normally

had a ‘subject-verb-object’ form. Much of this influence from information extraction

and computational linguistics in the design of RDF came fromTim Bray, who was

hired by Netscape to transform Guha’s MCF system into RDF. Formerly, Bray was the

manager of the project of digitizing the New Oxford English Dictionary and then later

of the Open Text search engine, one of the Web’s first search engines. In fact, one

of Guha’s first uses of RDF was as a light-weight knowledge representation system

of subject-verb-object form for his ground-breaking ‘Semantic Search’ information

extraction system (2003). There are nonetheless some key differences between seman-

tic networks (and similar ‘subject-verb-object’ templates from information extraction)

and RDF, as RDF was built in accordance with the Principles ofWeb Architecture as

given in Chapter 4, as detailed in the next subsections.

5.2.1 RDF and the Principle of Universality

Semantic networks fell out of favor because of their use of ambiguous natural lan-

guage terms to identify their nodes and arcs, which became a problem when semantic

networks were transported between domains and different users, a problem that would

be fatal in the decentralized and multi-lingual environment of the Web (Woods, 1975).

According to the Principle of Universality, since a resource can beanything, then a

component of the knowledge representation language shouldbe considered a resource,

and thus can be given a URI. Instead of labeling the arcs and nodes with natural lan-

guage terms, in RDF all the arcs and nodes can be labeled with URIs. Although few

applications had ever taken advantage of the fact before RDF, due to the Principle of

Universality, URIs could be minted for things like the Eiffel Tower quaEiffel-Tower,

an absolute necessity for knowledge representation. Sincethe sense of statements in

knowledge representation is usually about content in the world outside the Web, this

means that the Semantic Web crucially depends on the rather strange fact that URIs

can refer to things outside the Web.

This does not restrict the knowledge-representation language to merely refer to

things that we would normally consider outside of the Web, since normal web-pages

use URIs as well, and so the Semantic Web can easily be used to refer to normal

web-pages. This has some advantages, as it allows RDF to be used to model the

relationships between web-accessible resources, and evenmix distal and proximal of

relationships. This sort of “meta-data” is exemplified by the relationship between a
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web-page and its human author, which in RDF would both be denoted by URIs. Lastly,

this ability to describe everything with URIs leads to some unusual features, for RDF

can then model its own language constructs using URIs, and make statements about

its own core language constructs. However, just as all components of RDF may be

considered resources, just as all resources may not have URIs, all components of RDF

may not have URIs. For example,a string of text or a number may be a component

of RDF, and these are calledliterals by RDF. In RDFspecified anonymous resources

can not be given a URI, and these are calledblank nodes. Yet it would be premature

to declare that the deployment of URIs in RDF signal a major improvement over the

natural language labels, for URIs can be just as ambiguous asnatural language labels.

A further analysis of the scope of this problem is in Chapter 6.

5.2.2 RDF and the Principle of Linking

The second step in Berners-Lee’s vision for the Semantic Web, “allowing links to be

created with relationship values,” follows straightforwardly from the application of

the Principle of Universality to knowledge representation. Since RDF is composed of

resources, and any resource may link to another resource, then any term in RDF may

be linked to another term. This linking forms the heart of RDF, as it allows disparate

URIs to be linked together in order for statements in RDF to bemade. The precise

form of a statement in RDF is atriple, which consists of two resources connected by

a link, as shown in Figure 5.2. This use of RDF shows off the flexibility of using

URIs and links for reference instead of access. Lastly, thisuse of URIs and links

outsideWeb representations like those of hypertext web-pages shows the flexibility of

the linking paradigm, as RDF is an example of the use of the idea of a ‘linkbase’ that

was developed in the hypertext community, in particular in the Microcosm hypertext

system (Fountain et al., 1990).

Any Web representation that containsas its information some form of Semantic

Web languagesuch as RDF is called aSemantic Web document. There are several

options for encoding Semantic Web documents. The W3C standardized an encoding

of RDF is in a verbose XML format called ‘RDF/XML’ and a simpler encoding called

Turtle for triples. (Beckett and Berners-Lee, 2008). In Turtle, a triple is three space-

delimited terms (the subject, predicate, and object) endedin a period. Using names-

paces, withhttp://www.example.org/ being abbreviated asex, one abbreviates the

example in Figure 5.2 toex:EiffelTower ex:hasArchitect ex:Gustave Eiffel.
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Comparing the example given in Figure 5.2 to Figure 5.1, theonly noticeable differ-

ence between RDF and a classical semantic network is the use of URIs.

Figure 5.2: An example RDF statement

There are some restrictions to linking on the Semantic Web. As opposed to the

vast numbers and kinds of links possible in XLink, linking onthe Semantic Web is

directed, like hyperlinks (DeRose et al., 2001) .The starting resource in the tripleis

called thesubject, while the link itself is called thepredicate, andthe ending resource

in the triple is theobject. The predicate is usually a role as opposed to an arc role.

The major restriction on the Semantic Web is that the subjectmust be a URI or a blank

node, and the predicate must also be a URI. The object, on the other hand, is given the

most flexibility, as it may either be a URI, a blank node, or a literal. This predicate-

argument structure is a well-known and familiar structure from logic, linguistics, and

cognitive science. Triples resemble the binary predicatesin propositional logic needed

to express facts, relationships, and the properties of individuals. Furthermore, triples

seem similar to simple natural language sentences, where the subject and objects are

nouns and the predicate is a verb.

From the perspective of the traditional Web, the main feature of RDF is that links in

RDF themselves have a required role URI. It is through this role that URIs are given to

relationships outside the Web in RDF. For example, the relationship of ‘is architect of’

between Gustave Eiffel and the Eiffel Tower could be formalized as a link (as shown

in Figure 5.2), as could the relationship between Tim Berners-Lee and the creation

of his web-page. Since the relationships are abstract, these URIs then refer to these

relationships, the URIs are primarily referential and may not lead to access unlike
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Figure 5.3: Merging RDF triples

links in traditional hypertext systems. A set of RDF triplesis essentially a linkbase,

such as those pioneered in earlier hypertext systems like Microcosm (Fountain et al.,

1990). Similarly, a triple by itself can only state a simple assertion, but webs of links

may be made between triples to explain. A set of triples that share resources is called a

graph, as illustrated in Figure 5.3 by two triples having the same subject, namely that

‘The Eiffel Tower in Paris has an architect called Gustave Eiffel.’

With the ability to make separate statements using URIs, themain purpose of RDF

is revealed to beinformation integration. Due to their reliance on URIs, RDF graphs

cangraph merge, whentwo formerly separate graphs combine with each other when

they use any of the same URIs. The central purpose of URIs is to allow independent

agents to make statements about the same referent. With a common language of URIs,

agents can merge information about the referents of the URIsin a decentralized man-

ner.

5.2.3 RDF and the Principle of Self-Description

Once the Principle of Universality and the Principle of Linking are obeyed, the Princi-

ple of Self-Description naturally follows, and RDF is no exception. Self-description is

a crucial advantage of RDF in decentralized environments, since an agent by following

links can discover the context of a triple needed for its interpretation. As witnessed by

the Brachman and Smith survey of knowledge representation systems, a bugbear of se-

mantic networks was their inability to be transferred outside of the closed domain and

centralized research group that designed them (Brachman and Smith, 1980). The cru-

cial context for usage of a particular semantic network was always lost in transfer, so

that what precisely “IS-A” means could vary immensely between contexts, such as the



96 Chapter 5. The Semantic Web

difference between a sub-class relationship or individualidentity (Brachman, 1983).

By providing self-description, RDF triples can be transported from one context to an-

other, at least in an ideal world where normal conditions hold, such as when the URIs

in the triple can be used to access a web-page describing its content, and correct media

types are used. Furthermore, as RDF is imagined to be used as abasic meta-language

for other dialects, these dialects can also have their intended interpretation discovered

by the follow-your-nose algorithm.

The hypertext Web, when every resource is linked together, provides a seamless

space of linked documents. For example, the W3C tries to deploy its own internal

infrastructure in a manner compatible with the principles of Web architecture. Its e-

mail lists are archived to the Web, and each e-mail is given a URI, so an agent may

follow links seamlessly from one e-mail message to another,and by following links

can launch applications to send e-mail, discovers more about the group, and in new e-

mails reference previous topics. Likewise, an initiative called ‘Linked Data’ attempts

to deploy massive public data-sets as RDF, and its main tenetis to follow the Princi-

ple of Self Description (Bizer et al., 2008). The hope is thatthe Semantic Web can

be thought of as a seamless web of linked data, so that an agentcan discover the in-

terpretation of Semantic Web data by just following links. These links will then go

to more data which may host formal definitions or informal natural language descrip-

tions and multimedia depictions. For example, if one finds anRDF triple such as

ex:EiffelTower ex:hasArchitect ex:Gustave Eiffel and discover more infor-

mation about the Eiffel Tower, like a picture of it or the factthat construction was

finished in 1889 by accessinghttp://www.example.org/EiffelTower. Still, the

devil is in the details, especially when trying to decide exactly how to connect a URI

for the Eiffel Tower itself and another URI for some digital information about it given

in RDF and HTML, as explored in Chapter 6.

Since RDF is supposed to be an all-purpose knowledge representation system for

the Web, RDF statements themselves can also be described using RDF. RDF itself

has a namespace document athttp://www.w3.org/1999/02/22-rdf-syntax-ns#,

which provides a description of RDF in RDF itself. In other words, RDF can be meta-

modeled using RDF itself, in a similar manner to the use of reflection in knowledge

representation and programming languages (Smith, 1984). For example, the notion of

a RDF predicate ishttp://www.w3.org/1999/02/22-rdf-syntax-ns#predicate,

and is defined as “the predicate of the subject RDF statement.” The same holds for

almost all RDF constructs, and a conformant RDF processor can derive from any
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RDF triple a set of axiomatic triples that define RDF itself, such asrdf:predicate

rdf:type rdf:Property (all RDF predicates are of the type property). For any

RDF statement likeex:EiffelTower ex:hasArchitect ex:Gustave Eiffel, an

RDF-aware agent can then infer thatex:hasArchitect rdf:type rdf:predicate,

which states in RDF that an architect relationship is a predicate in a RDF triple. How-

ever, usually RDF is not hosted according to the Principle ofSelf-Description. Use of

the media typeapplication/rdf+xml is not consistent usually, and the namespaces

URI of specifications like the RDF Syntax namespace often allows nothing more than

access to some RDF triples, which is useless to a machine incapable of understand-

ing RDF in the first place, instead of accessing a document that contains some use-

ful human-readable information, such as aResource Directory Description Language

(RDDL) namespace document (Borden and Bray, 2002). A version of RDDL in RDF

exists with an associated automated transform2 makes it even easier for Semantic Web

agents to follow namespace documents to associated resources (Walsh and Thompson,

2007).

5.2.4 RDF and the Open World Principle

The Principle of the Open World is the fundamental principleof inference on the Se-

mantic Web. A relatively simple language for declaring sub-classes and sub-properties,

RDF Schema, abbreviated as RDF(S), was from the beginning part of the vision of

the Semantic Web and developed simultaneously with RDF. Yetdetermining how to

specify exactly what other triples may be inferred from a given RDF triple is a non-

trivial design problem, since it required adding an inference mechanism to a semantic

network, which historically in AI featured little or no inference. Those that do not

remember the history of artificial intelligence are bound torepeat it, and the process of

specifying inference in RDF led to an almost complete repeatof the ‘procedural ver-

sus declarative’ semantics debate. An early W3C Recommendation for RDF defined

its inference procedure by natural language and examples (Lassila and Swick, 1999).

Yet differing interpretations of this early RDF W3C Recommendation led to decidedly

different inference results, and so incompatible RDF processors. This being unaccept-

able for a Web standards organization, the original RDF W3C Recommendation was

deprecated, and rewritten. The original defender of formalsemantics in artificial in-

telligence, Pat Hayes, oversaw the creation of a declarative, formal semantics for RDF

2Also called aGleaning Resource Descriptions from Dialects of Languages(GRDDL) transform
(Connolly, 2007).
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and RDF(S) in order to give them a principled inference mechanism (Hayes, 2004).

The Open World principle was considered to be a consequence of the lack of cen-

tralized knowledge implied by the decentralized creation of URIs and links as given

by the Principles of Universality and Linking. The parallelto the removal of central-

ized link indexes is that on the Semantic Web, “we remove the centralized concepts

of absolute truth, total knowledge, and total provability,and see what we can do with

limited knowledge” (1998c). Hayes argued, in a similar fashion as he had argued in the

original ‘procedural versus declarative’ semantics debate in AI, that the Semantic Web

should just use standard first-order predicate logic. Yet while Berners-Lee accepted the

need for a logic-based semantics, he argued against Hayes for the Principle of Open

World and monotonicity, and the formal semantics of RDF was designed to obey the

Open World Assumption (Hayes, 2002). The reason for maintaining the Open World

Assumption was that adding triples in a graph merge should never change the meaning

of a graph so one could never retract information by simply adding more triples, and

so possibly invalidate previously-made conclusions. Thismonotonicity is considered

key, since otherwise every time a RDF triple was merged into agraph the interpretation

of the graph could change and so the entire graph might have tobe re-interpreted, a

potentially computationally expensive operation. By having a design that allows only

monotonic reasoning, RDF allows interpretations to be changed incrementally in or-

der to scale well in the potentially unbounded partial information of the Web. Hayes

himself eventually came to agree with Berners-Lee on the issue, noting that reasoning

on the Semantic Web “needs to always take place in a potentially open-ended situa-

tion: there is always the possibility that new information might arise from some other

source, so one is never justified in assuming that one has ’all’ the facts about some

topic” (2002).

RDF Schema is on the surface a very simple modeling and inference language

(Brickley and Guha, 2004). Due to the Open World assumption,unlike schemas in

relational databases or XML Schemas, RDF Schemas are not prescriptive, but merely

descriptive, and so an agent cannot validate RDF triples as being either consistent or

inconsistent with an RDF Schema (Thompson et al., 2004). They cannot make the

information given by a triple itself change, but only enrichthe description of an ex-

isting triple. RDF Schema adds two main features to RDF. First, RDF(S) provides a

notion of a class, or a set of resources. Then RDF(S) allows any resource to be given

membership in classes and declare sub-classes (or subsets)of a class that inherit all

the triples created to describe the class. Second, RDF(S) also allows properties to have
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sub-properties and for properties to have types for domainsand ranges, such that in a

triple the subject is the domain and the object is the range ofa property. Imagine that

the propertyex:hasArchitect has the rangeex:Person and domainex:Building.

Note that RDF Schemas are not automatically applied to triples even if they are men-

tioned in a triple, such that for a statement likeex:Eiffel Tower ex:hasArchitect

ex:Gustave Eiffel, the fact that the domain ofex:hasArchitect is buildings and

the range is people is not known unless the RDF Schema is automatically imported and

so merged with the triple itself. If the RDF Schema has been imported (either explic-

itly via owl:imports or the follow-your-nose algorithm), an RDF(S)-aware agentthat

has retrieved the RDF Schema can deduce from the triple thatex:Gustave Eiffel

rdf:type ex:Person, namely that Gustave Eiffel is indeed a person. This sort of

simple reasoning is again encoded as a set of axiomatic triples and rules for inference

and semantic conditions for applying these axioms to infer more triples. See the RDF

Formal Semantics for full details (Hayes, 2004). From here on out, the acronym ‘RDF’

refers to both RDF and RDF(S), whose formal semantics are given together (Hayes,

2004).

In practice, the Principle of the Open World has surprising results. One of the

ramifications in RDF is that there is no proper notion of false, but only the notion

that something is either inferred or not, and if it is not inferred, it may simply be

undefined. Although it seems straightforward, in practice this leads to surprising re-

sults. Take the following example: ‘Gustave is the father ofValentine,’ which in

RDF is ex:Gustave ex:fatherOf ex:Valentine Eiffel. Is George also the fa-

ther of Valentine, i.e.ex:George ex:fatherOf ex:Valentine? Operating under

the closed world assumption, the answer would be ‘no.’ Yet operating under the Open

World Principle, that statement would be possible, for there is no restriction that the

there someone can only have a single father, and in RDF(S) stating such a restriction

is impossible. This restriction is possible in theWeb Ontology Language(abbreviated

OWL, in an obscure reference to A.A. Milne), an open-world extension of RDF that al-

lows restrictions, such as cardinality, to be placed on predicates. However, even if one

set the cardinality of theex:fatherOf predicate to one (so that one could have at most

one father), the results will be surprising: the reasoner will conclude thatex:George

andex:Gustave refer to the same individual. In contrast to the expected behavior of

many other inference engines, including people, there is noUnique Name Assump-

tion, the assumption that each unique name refers to a unique individual, due to the

Open World Principle. The Unique Name Assumption, while very useful for counting,
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makes an implicit assumption about each name referring to only one individual, and

if an individual cannot be found that satisfies the name then that individual must not

exist. This further reinforces the tendency of URIs on the Semantic Web, despite their

global scope, to be ambiguous, a point we shall return to in Chapter 6.

5.2.5 RDF and the Principle of Least Power

Insofar as it is applied to the Semantic Web, the Principle ofLeast Power is strangely

counter-intuitive: traditionally knowledge representation languages were always striv-

ing for greater power, yet the Semantic Web begins with RDF, alanguage purposefully

designed to be the least powerful language. The true bet of the Semantic Web is then

on triples as the most basic language upon which other languages can be based. The

challenge for the Principle of Least Power is how to build therest of the Semantic Web

by expanding on the language of triples.

Inspired by the Principle of Least Power, he envisaged that each language would

extend and build upon lower-level languages. On top of RDF, Berners-Lee envisaged

a whole stack of more expressive languages being constructed. Although the vagari-

ties of the standardization process have caused various changes in the ‘Semantic Web

stack’ and numerous conflicting versions exist, the original and most popular version

of the Semantic Web stack is given in Figure 5.4 (Gerber et al., 2008). The W3C has

commenced standardization efforts in a number of these areas, and research in almost

all levels of the stack has begun. The majority of the research has focused on extending

the Semantic Web with ‘ontologies’ based on description logic like OWL. As should be

suspected given their heritage in artificial intelligence,most of the work in description

logic applied to OWL has focused on determining the most expressive possible lan-

guage that preserves decidable inference. OWL itself workswell with the Open World

Principle, since it only makes an inference by adding inferred statements and classifi-

cations, and so remains monotonic. While almost any possible triple is acceptable in

RDF, OWL allows users to design ontologies that can even add constraints, such as

cardinality and data-typing, that can make some RDF triplesinconsistent with a given

OWL ontology. Another part of the Semantic Web, originally unforeseen, is the query

language SPARQL, a query language for RDF similar to the popular database query

language SQL (Prud’hommeaux and Seaborne, 2008). Current work is focused on

Rule Interchange Format (RIF), a rule-language similar to Prolog for both serializing

normal rules and operating over RDF data (Boley and Kifer, 2008). Other higher-levels
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Figure 5.4: The Semantic Web stack

on the Semantic Web stack such as ‘Logic’ remain mysterious if evocative.

5.3 Information and Non-Information Resources

One question is whether or not there should be some way to distinguish between URIs

used to access web-pages and Semantic Web data, and URIs usedas names for things

like physical entities and abstract concepts that are not ‘on the Web.’ This latter class

of URIs, URIs that are used as names for entities and abstract concepts, are called

Semantic Web URIs. Should a URI be able to both name a non-Web accessible thing

in addition to accessing a representation of the thing? Thisis a difficult question,

as it seems the class of web-pages and physical people shouldbe disjoint (Connolly,

2006). The W3C TAG took on this question, calling it thehttpRange-14issue, which

was phrased as the question: “What is the range of the HTTP dereference function?”

(Connolly, 2006).

The TAG defined a class of resources on the Web called aninformation resource,

which is a resource “whose essential characteristics can beconveyed in a message”

(Jacobs and Walsh, 2004). In particular, this means that aninformation resourceis a

resource that can be realized as an information-bearing message. Note that it is not

necessarily restricted to asingleencoding, but possibly can be realized as multiple en-

codings, just like some fact can be realized by both natural language text in HTML and

RDF. A resource is defined by its sense (content), not the encoding of its Web represen-

tations. So information resources would naturally includeweb-pages and so resources
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on the hypertext Web, as well as most digital things. However, there arethings that

cannot be realized digitally by a message, but only described or depicted by digital

information. These things arenon-information resources. Their only realization is

themselves. Many analogue things therefore are non-information resources. It appears

that this distinction between information resources and non-information resources is

trying to get at the heart of the distinction between a resource being a web-pageabout

the Eiffel Tower and a resourcefor the Eiffel Tower itself. A web-page is an informa-

tion resource, but the Eiffel Tower itself is a non-information resource, as is the text of

Moby Dickor the concept of red.

The distinction is more subtle than it first appears. The question is not whether

somethingis accessible on the Web, but whether itcan beaccessible on the Web by

beingin theorytransmitted as an encoding, and therefore as a Web representation. For

example, imagine a possible world where the Eiffel Tower does not have a web-page.

In this world, it would seem counter-intuitive to claim thatthe web-page of the Eiffel

Tower is then not an information resource just because it happens not toexistat this

moment. This is not as implausible as it sounds, for imagine if the Eiffel Tower’s

web server went down, so thathttp://www.tour-eiffel.fr returned a404 status

code. A more intuitive case is that of the text ofMoby Dick. Is the text ofMoby Dick

an information resource? If the complete text of Moby Dick isn’t on the Web, one

day it might be. However, a particular collector’s edition of Moby Dickcould not be an

information resource, since the part of that resource isn’tthe text, but the physical book

itself. Yet do people have to have remarkably scholastic discussions about whether or

not something isessentiallyinformation before creating a Semantic Web URI?

Our previous terminology as defined in Chapter 3 comes to the rescue. Both a web-

page about the Eiffel Tower and the text ofMoby Dickare, on some level of abstraction,

carrying information about some sense in some encoding. So,if any information re-

source is any resource which can have its sense realized as a Web representation, then

information resourcesmustbe on some level of abstraction digital so that they can be

encoded as Web representations. Then both the text ofMoby Dick and a web-page

about the Eiffel Tower are information resources, even if they are not currently Web-

accessible. Digital information can be transmitted via digital encodings, and socan in

theory be on the Web by being realized as Web representations, even if the resource

does not allow access to Web representations at a given time.Lastly, a particular edi-

tion of Moby Dick, or Moby Dick in French, or even some RDF triples aboutMoby

Dick, are all information resources, with various encodings specified at certain levels
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of abstraction.

It appears that the best story we have to tell about the ratherclumsy term ‘non-

information resource’ is that a non-information resource is a thing that isanalogueand

so resists direct digital encoding, but can only be indirectly encoded via representa-

tions of the thing in a suitable language. This would then at least be the rather odd

combination of physical entities and abstract concepts. Sothe Eiffel Tower itself, Tim

Berners-Lee himself, the integers, and a particular book ata given point in space-time

(i.e. on a particular shelf!) are all non-information resources.

Should there be a class to which a web-page about the Eiffel Tower belongs but

the text of some as-of-yet unwritten novel does not? In otherwords, it seems that

the class of information resources is too large, and we need aterm for things that are

actually accessible over the Web at a given time. We call thiskind of thing aWeb

resource, an information resource that has accessible Web representations that realize

its information. A Web resource can then be thought of as a mapping from time of

request to a series of Web representation responses, where the information realized by

those Web representationsare the Web resource. This definition is close in spirit to the

original pre-Semantic Web thinking behind resources in IETF 1630, as well as in IETF

RFC 2616 where a ‘resource’ is defined as “a network data object or service ” and

coherent with Engelbart’s original use of the term ‘resource’ (Engelbart and Ruilifson,

1999; Fielding et al., 1999). ASemantic Web resourceis a resource that allows access

to Semantic Web documents.

The distinction between information resources and non-information resources has

real effects. When the average hacker on the streets wants toadd some information

to the Semantic Web, the first task is to mint a new URI for the resource at hand, and

the second task is to make some of this information about the resource available as a

Web representation. However, should a Web representation be accessible from a URI

for a non-information resource? If not, should Web representations be accessed from

such a non-information resource? This might confuse the non-information resource

itself with a Web resource that merely represents that resource. Yet how else would

fulfilling the Principle of Self-Description for non-information resources be possible?

To refuse to allow access to any Web representations would make the Semantic Web

completely separate from the Principles of Web Architecture.

Non-information resources needassociated descriptions, information resources

that have as their primary purpose the representation, however incomplete, of some

non-information resource. In other words, associated descriptions are classical exam-
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ples of metadata. According to the TAG, since the associateddescription is a separate

thing from the non-information resource it represents, thenon-information should be

given a separate URI. This would fulfill the common-sense requirement that the URI

for a thing itself on the Semantic Web should beseparatefrom the URI for some in-

formation about the thing. The TAG officially resolvedhttpRange-14by saying that

disambiguation between these two types of resource should be done through the303

See Other HTTP header. The TAG’s official resolution to thehttpRange-14issue is

given below:

• If an HTTP resource responds to a GET request with a two hundred level HTTP

response, then the resource identified by that URI is an information resource;

• If an HTTP resource responds to a GET request with a303 (See Other) re-

sponse, then the resource identified by that URI could be any resource;

• If an HTTP resource responds to a GET request with a four hundred level HTTP

(error) response, then the nature of the resource is unknown.

To give an example, let’s say an agent is trying to access a Semantic Web URI

that names a non-information resource, the Eiffel Tower itself, as illustrated in Fig-

ure 5.5. Upon attempting to access that resource with a HTTP GET request using its

Semantic Web URI, since the Eiffel Tower itself is not an information resource, no

Web representations are directly available. The Semantic Web URI used to refer to the

Eiffel Tower itself,http://www.example.org/EiffelTower, could be any kind of

resource, and so could be a non-information resource. Instead, the agent gets a303

See Other that in turn redirects them to an associated description that hosts Web rep-

resentations about the Eiffel Tower, such as the information resource for the homepage

of the Eiffel Tower. In turn, using content negotiation, an agent could ask for either

thetext/html or application/rdf+xml media type and therefore get redirected to

either a URI for hypertext web-page or a Semantic Web document depending on what

kind of associated description is needed. When this URI returns the 200 status code in

response to an HTTP GET request, the agent can infer that the homepage is actually an

information resource. This303 redirection then allows the non-information resource

given by a Semantic Web URI for the Eiffel Tower itself to comply with the Principle

of Self-Description.

An alternative to the obtuse303 redirection is thehash convention, where one uses

the fragment identifier of a URI to get redirection for free. If one wanted a Semantic
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Figure 5.5: The 303 redirection for URIs

Web URI that referred to a non-information resource like theEiffel Tower itself with-

out the hassle of a 303 redirection, one would usehttp://www.tour-eiffel.fr/#

to refer to the Eiffel Tower itself. Since browsers, following the follow-your-nose algo-

rithm, either dispose of it or treat the fragment identifier as a fragment of a document

or some other Web representation, if an agent tries to accessvia HTTP GET a Seman-

tic Web URI that uses the hash convention, the server will notreturn a404 Not Found

status code, but instead resolve to the URI before the hash,http://www.tour-eiffel,

which can then be treated as an associated description. In this way, Semantic Web in-

ference engines can keep the Semantic Web URI that refers to the Eiffel Tower itself

and an associated description about the Eiffel Tower separate by taking advantage of

some predefined behavior in web browsers.

While at first these distinctions between non-information resources and informa-

tion resources seems ludicrously fine-grained, clarifyingthem and pronouncing an of-

ficial W3C policy on them had an immense impact on the SemanticWeb, since once

there were definite guidelines on how to publish informationon the Semantic Web,

users could start creating Semantic Web URIs and connectingthem to relevant docu-

mentation resources. The TAG’s decision on redirection wasmade part of a tutorial for

publishing Semantic Web information calledHow to Publish Linked Data on the Web

(Bizer et al., 2007).
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5.4 The Semantic Web: Good Old Fashioned AI Re-

dux?

To many, it has seemed that the Semantic Web was nothing but a second coming of

classical artificial intelligence. As put by Yorick Wilks, “Some have taken the initial

presentation of the Semantic Web by Berners-Lee, Hendler and Lassila to be a restate-

ment of the Good Old Fashioned AI agenda in new and fashionable World Wide Web

terms” (2008a). So why would the Semantic Web succeed where classical knowledge

representations failed? The first reason would be a difference in the underlying intel-

lectual project. A second reason would be a difference in technology.

The difference of the project is one both of scope and goal. The Semantic Web is,

at first glance at least, a more modest project than artificialintelligence. To review the

claims of artificial intelligence in order to clarify their relation to the Semantic Web,

we are best served by remembering the goal of AI as stated by John McCarthy at the

1956 Dartmouth Conference, “The study is to proceed on the basis of the conjecture

that every aspect of learning or any other feature of intelligence can in principle be

so precisely described that a machine can be made to simulateit” (McCarthy et al.,

1955). However, ‘intelligence’ itself is not even vaguely defined. The proposal put

forward by McCarthy gave a central role to “common-sense,” so that “a program has

common sense if it automatically deduces for itself a sufficient wide class of immediate

consequences of anything it is told and what it already knows” (1959).

The Semantic Web does not seek to create a theory of intelligence and encode all

common-sense knowledge in some universal representational scheme. The Seman-

tic Web instead leaves “aside the artificial intelligence problem of training machines

to behave like people” but instead tries to develop a representation language that can

complementhuman intelligence, for “the Web was designed as an information space,

with the goal that it should be useful not only for human-human communication, but

also that machines would be able to participate and help” (Berners-Lee, 1998c). Many

of the most difficult problems of artificial intelligence, aslaid out by McCarthy and

Minsky, arise because they are interested in a theory of intelligence in general, be it

human or machine, and so have to explain difficult problems ranging from natural lan-

guage understanding to vision (McCarthy et al., 1955). Berners-Lee is explicit that the

project of encoding intelligence in general is not part of the problem, as the Seman-

tic Web “does not imply some magical artificial intelligencewhich allows machines

to comprehend human mumblings. It only indicates a machine’s ability to solve a
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well-defined problem by performing well-defined operationson existing well-defined

data” (Berners-Lee, 1998c). The goal of the Semantic Web is not to provide a theory

of intelligence, but instead to enable new – if still untheorized – forms of collective

intelligence. As phrased by Licklider, this would be a “man-machine symbiosis,” in

which in “the anticipated symbiotic partnership, men will set the goals, formulate the

hypotheses, determine the criteria, and perform the evaluations. Computing machines

will do the routinizable work that must be done to prepare theway for insights and

decisions” (1960). So a theory of collective intelligence may still rely on a theory of

general intelligence as promised by artificial intelligence, but the Semantic Web itself

will not provide such a theory.

While the goals of the Semantic Web are different, it does still employ the same

fundamental technology as classical artificial intelligence: knowledge representation

languages. As put by Berners-Lee, “The Semantic Web is what we will get if we per-

form the same globalization process to knowledge representation that the Web initially

did to hypertext” (Berners-Lee, 1998c). Yet there is a question about whether or not

knowledge representationitself might be the problem, not just scale. As put by Karen

Spärck Jones, one of the founders of information retrieval, “there are serious problems

about the core [Semantic Web] idea of combining substantiveformal description with

world-wide reach, i.e. having your cake and eating it, even if the cake is only envisaged

as more like a modest sponge cake than the rich fruit cake thatAI would like to have”

(2004). According to Spärck Jones, the problem may lie at the heart of the Semantic

Web in its very use ofknowledge representation languageitself. So far we have shown

that the properties of at least RDF as a knowledge representation language puts the

emphasis on ‘Web’ as opposed to ‘Semantic’ in the Semantic Web, as it has a number

of properties – a graph structure, the ability to make unconstrained statements, and the

like – that have their basis in the tradition of the Web, rather than knowledge represen-

tation in AI. As the Web has proved to be extraordinarily successful, the hope of the

Semantic Web is that any knowledge representation languagewhich is based on the

same principles as the Web may fare better than its ancestorsin artificial intelligence.

However, these changes in the formalism of RDF due to the influence of the Web are

all relatively minor, and while counter-intuitive to traditional knowledge representa-

tion, these changes to the formalism based on the principlesof Web architecture have

yet to be vindicated as the Semantic Web has not yet reached widespread use.

Overlooked by Spärck Jones in her critique of the Semantic Web, the only substan-

tive difference between traditional knowledge representation and the Semantic Web is
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the central role of URIs. Just as the later principles of Web architecture build upon

the Principle of Universality, so the Semantic Web builds ontop of the use of URIs

as well. The true bet of the Semantic Web isnot a bet on the return of knowledge

representation languages, but a bet on the universality of URIs, namely that agents in a

decentralized and global manner can use URIs to share meaning even about non-Web

accessible things using URIs. As this use of URIs as the basicelement of meaning is

central to the Semantic Web, and as it is a genuinelynewtechnical claim, it is precisely

in the understanding of the status of meaning and reference of URIs that any newtheo-

retical claim must be made. Furthermore, it is precisely within the realm of URIs that

anytechnicalclaim to advance must be made.



Chapter 6

The Identity Crisis

Meaning is what essence becomes when it is divorced from the object of reference and

wedded to the word.W.V.O. Quine (1951).

6.1 What Do URIs Refer to?

For multiple agents to exchange knowledge representationson the Semantic Web, they

must share the meaning of a URI. How can agents determine whata URI refers to? The

question lies at the heart of Web architecture itself, although it only becomes noticeable

on the Semantic Web. On the hypertext Web URIs trivially identify the hypertext web-

pages that those URI allow access to, although content negotiation does complicate

even that simple story. While on the hypertext Web this question could be ignored

as an obscure edge-case, for the Semantic Web this question is absolutely central,

since the information identified by Semantic Web URIs shouldbe shared universally

in a decentralized manner. In a nutshell, the problem is thatURIs identify not only

hypertext documents and other digital information, but analogue things that have no

causal connection to the Web. How can a Semantic Web URI for the Eiffel Tower be

used to refer to the Eiffel Tower in Paris itself? Should the Eiffel Tower itself have a

URI? If so, should that URI allow access to any Web representations? This cluster of

questions has been dubbed theIdentity Crisisof the Semantic Web.

As regards any theory of meaning for URIs, in the realm of official Web standards,

the jury is still out. In the specification of RDF, Hayes notesthat “exactly what is con-

sidered to be the ‘meaning’ of an assertion in RDF or RDF(S) insome broad sense may

depend on many factors, including social conventions, comments in natural language”

109
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so unfortunately “much of this meaning will be inaccessibleto machine processing”

such that a “a full analysis of meaning” is “a large research topic” (Hayes, 2004). As

the entire Semantic Web is built on top of the notion of URIs having some sort of

sharable ‘meaning’ or ‘referent,’ there is no choice but to engage questions of meaning

and reference. However, upon pursuing this question, one surprisingly finds there is

no clear answer, but instead a conceptual quagmire dominated by two positions.

The first position, thedirect reference position, is that the meaning of a URI is

whatever was intended by the owner. The owner of the URI should be able to unam-

biguously declare and communicate the meaning of any URI, including a Semantic

Web URI. In this position, the referent is generally considered to be some individual

unambiguoussinglething, like the Eiffel Tower ortheconcept of unicorns. This view-

point is the one generally held by many Web architects, like Berners-Lee, who imagine

it holds not just for the Semantic Web, but the entire Web.

The second position, thelogicist position, is that for the Semantic Web, the meaning

of a URI is given by whatever things satisfy the model(s) given by the formal seman-

tics of the Semantic Web. Adherents of this position hold that the referent of a URI is

ambiguous, as many different things can satisfy whatever model is given by the inter-

pretation of some sets of sentences using the URI. There are afew minor variations on

this theme, with some people believing a URI has no meaning initself, but only in the

context of its use in other triples, while others hold that one should be able to access

logical descriptions from the URI itself. This position is generally held by logicians,

who claim that the Semantic Web is entirely distinct from thehypertext Web.

These two antagonistic positions were subterranean in the development of the Se-

mantic Web, until a critical point was reached in an argumentbetween Pat Hayes, the

AI researcher primarily responsible for the formal semantics of the Semantic Web, and

Berners-Lee. This argument was provoked by an issue called ‘Social Meaning and

RDF’ and was brought about by the following draft statement in theRDF Concepts

and Abstract Syntax Recommendation, “the meaning of an RDF document includes

the social meaning, the formal meaning, and the social meaning of the formal entail-

ments” so that “when an RDF graph is asserted in the Web, its publisher is saying

something about their view of the world” and “such an assertion should be understood

to carry the same social import and responsibilities as an assertion in any other format”

(2004). During the period of comments for the RDF Working Drafts, Bijan Parsia com-

mented that the above-mentioned sentences do not “really specify anything and thus

can be ignored” or are “dangerously underthought and underspecified” and so should
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be removed (Parsia, 2003). While at first these sentences about the meaning of RDF

seemed to be rather harmless and in concordance with common-sense, the repercus-

sions on the actual implementation of the Semantic Web are surprisingly large, since

“an RDF graph may contain ‘defining information’ that is opaque to logical reasoners.

This information may be used by human interpreters of RDF information, or program-

mers writing software to perform specialized forms of deduction in the Semantic Web”

(Klyne and Carroll, 2004). In other words, a special type ofnon-logicalreasoning can

therefore be used by the Semantic Web.

An example of this extra-logical reasoning engendered by the fact that URIs iden-

tify ‘one thing’ is as follows. Assume that a human agent has found a URI for the Eiffel

Tower from DBpedia, and so by accessing the URI a Semantic Webagent can discover

a number of facts about the Eiffel Tower, such that it is in Paris and that its architect

is Gustave Eiffel, and these statements are accessed as an RDF graph (Auer et al.,

2007). However, a human can have considerable background knowledge about the

Eiffel Tower, such as a vague belief that at some point in timeit was the tallest build-

ing in the world. This information is confirmed by the human agent employing the

follow-your-nose algorithm, where by following the subject of any triple, the human

would be redirected to the hypertext Wikipedia article about the Eiffel Tower, where

the agent discovers via a human-readable description that the Eiffel Tower was in fact

the tallest building until 1930, when it was superseded in height by New York City’s

Chrysler building. This information isnot explicitly in the RDF graphs provided. It is

difficult to even phrase this sort of temporal information inRDF. Furthermore, the hu-

man agent discovers another URI for the Eiffel Tower, a RDF version of Wordnet in the

file synset-Eiffel Tower-noun-1.rdf (van Assem et al., 2006). When the human

agent accesses this URI, there is little information in the RDF graph except that this

URI is used for a noun. However, the human-readablegloss property explains that

the referent of this URI is ‘a wrought iron tower 300 metres high that was constructed

in Paris in 1889; for many years it was the tallest man-made structure.’ Therefore, the

human agent believes that there is indeed a singular entity called the ‘Eiffel Tower’ in

Paris, and that this entity was in fact at some point the tallest building in the world,

and so the two URIs are equivalent in some sense, although theURIs do not formally

match. What the ‘Social Meaning’ clause was trying to state is that the human should

be able tonon-logicallyinfer that both URIs refer to the Eiffel Tower in Paris, and they

use this information to merge the RDF graphs, resulting in perhaps some improved

inferences in the future.
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This use-case was put forward primarily by Berners-Lee, andthe W3C RDF Work-

ing Group decided that deciding on the relationship betweenthe social and formal

meaning of RDF was beyond the scope of the RDF Working Group todecide, so the

RDF Working Group appealed to the W3C TAG for a decision. As TAG member

Connolly noticed, they “didn’t see a way to specify how this works for RDF without

specifying how it works for the rest of the Web at the same time” (Berners-Lee, 2003b).

In particular, Berners-Lee then put forward his own viewpoint that “a single meaning

is given to each URI,” which is summarized by the slogan that aURI “identifies one

thing.” (2003c).

In response, Hayes said that “it is simply untenable to claimthat all names iden-

tify one thing” (2003a). Furthermore, he goes on to state that this is one of the basic

results of the knowledge representation community and 20thcentury linguistic seman-

tics, and so that the W3C cannot by fiat render the judgment that a URI identifies one

thing. Berners-Lee rejects Hayes’s claim that the SemanticWeb must somehow build

upon the results of logic and natural language, instead claiming that “this system is

different from natural language: we designed it such that each URI identifies one and

only one concrete thing in the real world or one and only one globally shared concept”

(2003a). In exasperation, Hayes retorted that “I’m not saying that the ‘unique identi-

fication’ condition is an unattainable ideal: I’m saying that it doesn’t make sense, that

it isn’t true, and that it could not possibly be true. I’m saying that it iscrazy” (2003b).

While Hayes did not explain his own position fully, as he was the editor of the formal

semantics of RDF and had the support of other logicians in theRDF Working Group,

the issue deadlocked and the RDF Working Group was unable to come to a consensus.

In order to move RDF from a Working Draft to a Recommendation,the W3C RDF

Working Group removed all references to social meaning fromthe RDF documents.

One should be worried when two prominent researchers such asBerners-Lee and

Hayes have such a titanic disagreement, where no sort of consensus agreement seems

forthcoming. Yet who is right? Berners-Lee’s viewpoint seems intuitive and easy to

understand, and some people would say that it qualifies as common-sense. However,

the argument would seem to have been won by Hayes, as many people would also

agree that his defense of ambiguity in names is also common-sense, and Hayes also

has the backing of his knowledge of the formal semantics of logic. Still, there is reason

to pause to consider the possibility that Berners-Lee is correct. First, while Berners-

Lee’s notion of unambiguous names may seem counter to many ofour intuitions about

the common-sense knowledge that many names are indeed of ambiguous, Berners-Lee
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can claim that his viewpoint also is shared with philosophers and logicians such as

Kripke, as explored in Section 6.3. Furthermore, while Hayes may appear to have a

common-sense understanding of ambiguity, as explored in Section 6.2, Hayes actually

is arguing for the much more radical claim that in the case of the Semantic Web only

inference as defined by a formal logic can restrict interpretations, and hence ambigu-

ity. In this vein, it should should be remembered that as far as practical results are

concerned, the project of logic-based modeling of common-sense knowledge in clas-

sical artificial intelligence earlier inaugurated by Hayesis commonly viewed to be a

failure by current researchers in AI and cognitive science (Wheeler, 2005). In contrast,

despite the eerily similar argument that Berners-Lee had with original hypertext aca-

demic researchers about broken links and with the IETF aboutthe impossibility of a

single naming scheme for the entire Internet, the Web is without a doubt an unparal-

leled success. While in general the intuitions of Berners-Lee may seem to be wrong

according to academia, history has proven him right in the past. Therefore, one should

take his pronouncements seriously.

The Identity Crisis is not just a conflict between merely two differing individual

opinions, but a conflict between two entire disciplines: thenascent discipline of ‘Web

Science’ as given by the principles of Web architecture, andthat of knowledge rep-

resentation in AI and logic (Berners-Lee et al., 2006b). Berners-Lee’s background is

in the Internet standardization bodies like the IETF, and itis primarily his intuitions

behind Web architecture as given in Chapter 5. As discussed in Chapter 2, Hayes is a

formidable character in the field of artificial intelligence, since it was his background

in logic that jump-started the field of knowledge representation. If two entire fields,

who have joined common-cause in the Semantic Web, are at odds, then trouble at the

level of theoryis afoot.

Troubles at levels of theory invariably cause trouble in practice. So this disagree-

ment would not be nearly as worrisome were not the Semantic Web itself not in such

a state of perpetual disrepair, making it practically unusable. In a manner disturbingly

similar to classical artificial intelligence, the SemanticWeb is always thought of as

soon-to-be arriving, the ‘next’ big thing, but its actual uses are few and far between.

The reason given by Semantic Web advocates is that the Semantic Web is suffering

from simple engineering problems, such as a lack of some new standard, some easily-

accessible list of vocabularies, or a dearth of Semantic Web-enabled programs. The

fact that the Semantic Web has not yet experienced the dizzying growth of the original

hypertext Web, even after an even longer period of gestation, points to the fact that
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something is fundamentally awry. The root of the problem is the dependence of the

Semantic Web on using URIs as names for referents.

Far from being a mandarin metaphysical pursuit, this problem is the very first prac-

tical issue one encounters as soon as one wants to actually use the Semantic Web. If

an agent receives a graph in RDF, then the agent should be ableto determine an inter-

pretation of these triples. The inference procedure itselfmay help this problem, but it

may instead make it worse, simply producing more uninterpretable RDF statements.

The agent could employ the follow-your-nose algorithm, butwhat information, if any,

should be accessible at these Semantic Web-enabled URIs? Ifa user wants to add

some information to the Semantic Web, how many URIs should they create? One for

the representation, and another for the referent the representation isabout? In other

words, one for the associated description and another one for the non-information re-

source the associated description is about? Should the sameURI for the Eiffel Tower

itself be the one that is used to access a web-page about the Eiffel Tower?

What is then necessary to explain these vast differences over such a basic issue

would be a more complete explanation of the differing background assumptions be-

tween Berner-Lee’s direct reference position and Hayes’s logicist position. URIs on

the Semantic Web can be thought of as analogous to natural languagenames, as names

in natural language can be used to refer as well. Therefore, what needs to be done is

to distinguish within analytic philosophy the various theories on naming and reference

in general, and then see how these various theories either door do not apply to the

Semantic Web. What is remarkable is that the position of Hayes, the logicist posi-

tion, corresponds to a well-known theory of meaning and reference, the ‘descriptivist

theory of reference’ attributed to early Wittgenstein, Carnap, Russell, and turned into

its pure logicist form by Tarski (Luntley, 1999). However, it is common currency in

philosophical circles that the descriptivist theory of reference was overthrown by the

‘causal theory of reference’ championed by Kripke and extended by Putnam (Luntley,

1999). It is precisely this causal theory of reference that Berners-Lee justifies in his

direct reference position. Thus, the curious coincidence is that both opposing positions

on the Semantic Web correspond toequallyopposing positions in philosophy. Under-

standing these positions belongs primarily to the domain ofphilosophy, even if Hayes

and especially Berners-Lee do not articulate their positions with the relevant academic

citations. In this manner, the precise domain of philosophythat the Identity Crisis falls

under is the philosophy of language. The purpose of the rest of this chapter is then

the full explication of these two theories of reference in philosophy of language, and
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then to inspect their practical success (or lack thereof) inthe context of the Semantic

Web, while at the end offering a critique of both, paving the way for a third theory of

meaning.

6.2 The Logicist Position and the Descriptivist Theory

of Reference

The origin of the logicist position is the descriptivist theory of reference. In thede-

scriptivist theory of reference, the referent of a name is given by whatever satisfies the

descriptions associated with the name. Usually, the descriptions are thought to be log-

ical, so a name is actually a disguised logical description.The referent of the name is

then equivalent to the set of possible things, given normally by a mathematical model,

such that all statements containing the name are satisfied.

6.2.1 Logical Atomism

The roots of the descriptivist theory of reference lay with the confluence of philoso-

phers who are known aslogical atomists, a term coined by Bertrand Russell, and in-

fluential to later epistemological projects like thelogical positivismof Rudolf Carnap.

Although eventually abandoned by Bertrand Russell, logical atomism is a vast school

of thought that has proven tremendously influential, even inits current discredited

state, for our purposes we will only concern ourselves with one particular doctrine:

The problem of how natural language terms relate to the logical descriptions, and log-

ical descriptions to the world. Bertrand Russell begins theinvestigation of the con-

nection between logic and language is his landmark investigationOn Denotingwith a

deceptively simple question: “is the King of France bald?” (1905). To what referent

does the description “the King of France” refer to? (Russell, 1905) Since in Russell’s

time there was no King of France, it could not refer to anything like what Carnap later

called “elementary sense data” (Carnap, 1928). In this regard, Russell makes a crucial

distinction. According to Russell, elementary sensory experiences are known through

acquaintance, in which we have some sort of direct ‘presentation of’ the thing (1905).

Yet knowledge of a thing can be based ondescription, which are those “things we only

reach by means of denoting phrases” (Russell, 1905). Russell believed that “all think-

ing has to start from acquaintance, but it succeeds in thinkingaboutmany things with

which we have no acquaintance” via the use of description (1905). Russell was most
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interested in whether those things with which we have directacquaintance can be con-

sidered true or false, or whether a more mysterious third category such as ‘nonsense’

is needed. Russell opts to reject creating imaginary but true ‘things’ as well as any

third category, but instead holds that statements such as “the King of France is bald”

are false, since “it is false that there is an entity which is now the King of France and is

bald” (Russell, 1905). This solution then raises the alarming possibility that “the King

of France is not bald” may also come out false, which would seem to violate the Law

of the Excluded Middle. So, Russell counters this move by introducing the fact that

“the King of France is bald” is actually a complex logical statement involving scope

and quantification, namely(∃x.F(x)∧G(x))∧ (∀y.F(y)→ x = y), whereF is “being

the King of France” andG is “being bald” (Russell, 1905). According to the analysis,

‘The King of France’ is merely adisguisedcomplex logical statement. Furthermore,

this treatment can be extended to proper names such as ‘Sir Walter Scott,’ who can

be identified with ‘the author of Waverly,’ so that instead ofbeing a tautology, even

a proper name of a person, even if known through acquaintance, is sort of short-hand

for a large cluster of logical statements. So to use our previous example, the ‘Eiffel

Tower’ can be thought of as a short-hand for not only that ‘there exists an entity known

as the Eiffel Tower’ but also the logical statement was ‘the aforementioned entity had

Gustave Eiffel as its architect.’ If someone did not know that ‘the aforementioned en-

tity was also the tallest building in the world up until 1930,’ one could then make a

statement such as ‘The Eiffel Tower is identical to the tallest building in the world up

until 1930’ without merely stating a tautology, and such a statement would add true

and consistent knowledge to a hearer who was not aware of the statement.

While the first proponent of logical atomism was Bertrand Russell, one of its most

systematic presentations is in his student Ludwig Wittgenstein’s early philosophical

work theTractatus Logico-Philosophicus. In it, Wittgenstein strongly argues for his

own version oflogical atomism, that logic is the true language of the world; “logic is

not a body of doctrine, but a mirror image of the world” for “the facts in logical space”

are the world (1921). So logical statements are “laid against reality like a measure”

(1921). This is possible because the world is metaphysically determinate at its base,

being composed of “simple” and “unalterable” objects that “make up the substance of

the world” so that “the configuration of objects produces states of affairs” where “the

totality of existing states of affairs is the world” (Wittgenstein, 1921). In other words,

there is no – as Brian Cantwell Smith would put it – “flex” or “slop” in this picture,

no underlying “metaphysical flux” that somehow resists easily being constrained into
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these fully determinate “objects” (1995). Although the nature of the world consists of

true logical facts, humans, since they “picture facts” to themselves, can nonetheless

makefalse logical statements, since these pictures merely “model reality” (Wittgen-

stein, 1921). Contrary to his own logical atomist mentor Russell, Wittgenstein thought

that the primary job of the logician is then to state true facts, and “what we cannot speak

about” in the form of true logical statements “we must pass over in silence,” a phrase

he believed was consistently misinterpreted by even his teacher Bertrand Russell and

later philosophers like Carnap (Wittgenstein, 1921). Notethat unlike the more mature

standpoint of Hayes, the logical atomism of Wittgenstein allowed logical statements

to directly refer to single things in the world, Wittgenstein and other logical atomists

reified the logical modelto be the worlditself.

This position was further developed by Rudolf Carnap. According to Carnap, in

his The Logical Structure of the World, all statements (at least, “scientific” statements

with “cognitive content” about the world) can then be reduced to logical statements,

where the content of this logical language is given by sensory experiences (1928).

These “elementary experiences” cannot be directly described, as they are irreducible,

but only described by a network of logical predicates that treat these experiences as

logical constants (Carnap, 1928). While Carnap’s ultimategoal was to render any

scientific hypothesis either verifiable by sense experienceor not; their general position

was since natural language is part of the world, the structure of language too must

be logical, and range over these elementary sense experiences. In this regard, names

are given to their referents by concordance with a logical structure ranging over these

elementary sensory experiences. Carnap’s project was similar in spirit to Chomsky’s

syntactic theory of language, but focused on semantics rather than syntax: Carnap

hoped to develop a semantic and logical definition of meaningthat would validate

only sentences with ‘meaning.’

As sensible as logical atomism appeared, there are difficulties in building any the-

ory of reference on, as Quine put it, such a “slender basis” aselementary sense data

and logic (1951). The crux of the problem for any descriptivist theory of names is

that names for any “kind of abstract entities like properties, classes, relations, num-

bers, propositions” could not have an interpretation to anycontent using such a simple

sensory epistemology (Carnap, 1950). Carnap’sEmpiricism, Semantics, and Ontology

made an argument for basing such entities purely on linguistic form itself. Carnap

believed that, despite the difficulty of determining the interpretation of names for ab-

stract entities, “such a language does not imply embracing aPlatonic ontology but is
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perfectly compatible with empiricism” (1950). His position was that while “if someone

wishes to speak in his language about a new kind of entity, he has to introduce a system

of new ways of speaking, subject to new rules,” which Carnap calls the “construction

of a linguistic framework for the new entities in question.”From within a linguistic

framework, Carnap believed to commit to any statement aboutthe “existence or reality

of the total system of the new entities” was to make a “pseudo-statement without cog-

nitive content” (1950). Although this particular positionof Carnap’s was devastated

by Quine’s argument against analyticity inThe Two Dogmas of Empiricism, Carnap

made an important advance in the idea of a name of even abstract things being defined

by linguistic descriptions, the problems brought up by Quine forced later logicians to

abandon the notion of the logic ranging over “elementary sense data” (Quine, 1951).

6.2.2 Tarski’s Formal Semantics

Tarski abandoned the quaint epistemology of Russell and Carnap and defined reference

purely in terms of logic in hisThe Concept of Truth in Formal Languages(Tarski,

1935). Reference was just defined as a consequence of the truth only in terms of

satisfaction of a formal language (1935). To set up his exposition, Tarksi defines two

languages, the first being the syntacticobject language Land the second being the

meta-language M. Themeta-languageshould bemore expressive(in the sense given

in Section 5.2.5) such that it can describe every sentence inthe object language, and

furthermore, that it contain axioms that allow the truth of every sentence in the object

language to be defined. In his first move, Tarski definesthe formal conception of

truth as ‘Convention T,’ namely that for a given sentences in L, there is a statement

p in M that is a theorem defining the truth ofs, that is, the truth ofs is determined

via a translation ofs into M (Tarski, 1935). Tarski then later shows that truth can be

formally defined as “s is true if and only if p” (Tarski, 1944). For example, if the

object language is exemplified by a sentence uttered by some speaker of English and

the meta-language was an English description of the real world; ‘The Eiffel Tower is in

Paris’ is true if and only if the Eiffel Tower is in Paris. The sentence ‘The Eiffel Tower

is in Paris’ must be satisfied by the Eiffel Toweractually beingin Paris. While this

would at first seem circular, its non-circularity is better seen through when the object

language is not English, but another language such as German. In this case, “‘Der

Eiffelturm ist in Paris’ is true if and only if the Eiffel Tower is in Paris.” However,

Tarksi was not interested in informal languages such as English, but in determining the
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meaning of a new formal language via translations to mathematical models or other

formal languages with well-known models. If one was defininga formal semantics for

some fragment of a knowledge representation language like RDF, a statement such as

http://www.eiffeltower.example.org ex:location dbpedia:Paris is true if

and only if∃ab.R(a,b) whereR, a, andb are given in first-order predicate logic.

This straightforward approach to formal semantics runs into a difficulty, as shown

in the above example; if one is defining a formal Tarski-stylesemantics for a language,

what should one do when one encounters complex statements, such as ‘the Eiffel Tower

is in Paris and had as an architect Gustave Eiffel.’ The answer is at the heart of Tarksi’s

project, namely that the second component of Tarski’s formal semantics is to use the

principle of compositionality so that any complex sentencecan have its truth conditions

derived from the truth conditions of its constituents. To dothis, the meta-language has

to have finitely many axioms, and each of the truth-defining theorems produced by the

meta-language have to be generated from the axioms (Tarski,1935). So, the aforemen-

tioned complex sentence is true if and only if∃ab.R(a,b)∧Q(a,c), whereQ can be

thearchitect of relationship,c can be Gustave Eiffel anda the Eiffel Tower. Tarksi’s

theory as explained so far only deals with ‘closed’ sentences, i.e. sentences containing

no variables or quantification. The third, and final component of Tarski’s formal se-

mantics is to use the notion of satisfaction viaextensionto define truth (Tarski, 1935).

For a sentence such as ‘all monuments have a location,’ we cantranslate the sentence

to∀a, l .monument(a)→ hasLocation(a, l) which is true if and only if there is an exten-

sionx from the world that satisfies the logical statements made about a. In particular,

Tarksi has as his preferred extensions infinite ordered pairs, where the ordered set could

be anything (Tarski, 1935). For formal languages, as explained in Section 3.3, a model-

theoretic semantics with a model composed by set theory was standard. For example,

the ordered pairs in some model of(Ei f f elTower,Paris) would satisfy our exam-

ple statement, as would(ScottMonument,Edinburgh) but not(Paris,Ei f f elTower).

However, there is no reason why these models could not be “GodForthcoming,” things

in the the real world itself, albeit given in set-theoretic terms that would violate the

“metaphysical flux” of the world (Smith, 1995). Henceforth we will assume all exten-

sions used by Tarski-style semantics are models. To summarize Tarksi’s remarkably

successful programme, model-theoretic semantics can produce a theory of truth that

defines the semantics of a sentence in terms of the use of a translation of the sentence

into some formal language with a finite number of axioms, thenusing composition-

ality to define the truth of complex sentences in terms of basic sentences, and finally



120 Chapter 6. The Identity Crisis

determining the truth of those basic sentences in terms of what things in a model sat-

isfy the extensions of the basic sentences as given by the axioms. This work marks the

high-point of the logicist programme, as all questions of meaning are reduced to ques-

tions about giving the interpretation of a sentence in termsof a formal notion of truth,

and this notion of truth is not restricted by the logical atomist’s quaint epistemology

of elementary sense data, but instead can range over any possible formal language and

any possible worlds.

6.2.3 In Defense of Ambiguity

The descriptivist theory of reference, taken to its conclusion, results in the logicist po-

sition on the Semantic Web. While this work in the descriptivist theory of reference

seems distant from the Identity Crisis of the Web, it is in fact central to the position

of Hayes and the Semantic Web as a whole. This is primarily because Hayes’s back-

ground was in the logicist tradition, with his particular specialty being the creation

of Tarski-style semantics for knowledge representation languages. What Hayes calls

the “basic results in 20th century linguistic semantics” that Berners-Lee’s dictum that

“URIs identify one thing” violates is the interpretation ofURIs in a Tarski-style for-

mal semantics (Hayes, 2003a). For the logicist position, thesemanticsin the Semantic

Web derive from the Tarski-style formal semantics Hayes created for the Semantic

Web (2004).

Before delving into the RDF Formal Semantics, it should be noticed that these

semantics are done by extension, including not only subjects and objects but properties,

which is unusual in light of standard formal semantics givenby Hayes for first-order

logic in KIF (2001). The reason for this is the Principle of Linking, in particular, the

unusual features of RDF that “a property may be applied to itself” and that classes

“may contain themselves” (Hayes, 2004). This is done by distinguishing the classqua

class and propertyquaproperty in RDF from whatever their extensions are, so while

a class and property in RDF may or may not be satisfied by some model or world, the

extension of the class or property are not considered to havethe sameidentityas the

property or class.

A simple example should suffice. What is the formal semanticsof ex:EiffelTower

ex:architect ex:Gustave Eiffel? To simplify slightly, Hayes defines the formal

semantics of set theory, where there is a set of resources that compose the model of

the language, a set of properties, and a set of URIs that can refer to resources. The
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interpretation of any RDF statement is then given as an extensional mapping from the

set of properties to the powerset of resources, to the set of pairs of resources. So,

given a set-theoretic model consisting of elements (given by italics) Gustave Eiffel

and the Eiffel Towerandbeing the architect of, thenex:EiffelTower |= the Eiffel

Tower, ex:Gustave Eiffel |= Gustave Eiffelandex:architect |= being the archi-

tect of, so that the entire triple maps to a set of pairs:ex:EiffelTower ex:architect

ex:Gustave Eiffel|= (..., (the Eiffel Tower, Gustave Eiffel), ...). Someone using

common-sense human intuitions will likely believe that this interpretation maps to our

common-sense content ofex:EiffelTower ex:architect ex:Gustave EiffelTower,

and using the axiomatic triples defined in the RDF formal semantics, a few new triples

can be inferred, such asex:architect rdf:type rdf:Property.

However, the inherent pluralism of the Tarski approach to models also means

that another equally valid interpretation would be the inverse, i.e. the mapping of

ex:EiffelTower to Gustave Eiffelandex:Gustave Eiffel to the Eiffel Tower. In

other words,ex:architect |= being the architect of, so that the entire triple maps to

a set of pairsex:EiffelTower ex:architect ex:Gustave Eiffel|= ..., (Gustave

Eiffel, Eiffel Tower), ...). Due to the unconstrained nature of RDF,ex:architect has

no ‘natural’ relationship to anything in particular, but could easily be assigned either

the Eiffel Toweror Gustave Eiffeljust as easily asbeing the architect of.

Furthermore, the model could just as easily be given by something as abstract as

the integers1 and2, and an equally valid mapping would be forex:EiffelTower

|= 1 and ex:Gustave Eiffel |= 2, so thatex:architect |= being the architect

of, so that the entire triple maps to a set of pairsex:EiffelTower ex:architect

ex:Gustave Eiffel|= (..., (1,2), ...). Indeed, the extreme pluralism of a Tarski-style

semantics shows that, at least if all one has is a single lone triple statement, that triple

can be satisfied by any model. This is no mere oddity of formal languages, this would

also hold for any lone sentence in a language like English – such as “Gustave Eiffel

is the architect of the Eiffel Tower” – as long as one subscribed to a Tarski-style se-

mantics for natural language, such as Montague semantics (Montague, 1970). As the

number of triples increased, the amount of possible things that satisfy the model is

thought to decrease, but in such a loose language as RDF, as mandated by the Principle

of Linking, Hayes notes that it is “usually impossible to assert enough in any language

to completely constrain the interpretations to a single possible world, so there is no

such thing as ‘the’ unique interpretation” (2004). This descriptivist theory of refer-

ence, where descriptions are logical statements in RDF, is illustrated in Figure 6.1.
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Figure 6.1: The descriptivist theory of reference for URIs

Despite appearances to the contrary, Hayes is not defendinga viewpoint arguing

for any common-sense understanding of ambiguity, such as how words like ‘bank’ in

a natural language like English can have many possible senses. Indeed, what Hayes is

arguing is the ambiguity built into formal model-theoreticsemantics. This kind of am-

biguity is not his discovery, but a well-known issue in formal semantics dating back to

the original Scott-Strachey formal semantics (Scott and Strachey, 1971). One question

might be whether or not these two traditions – the ambiguity of natural language and

the ambiguity of formal model-theoretic interpretations –can be brought together. The

essayIn Defense of Ambiguitytouches primarily upon ambiguity in model-theoretic

interpretations, although examples are deployed from natural language, in laying out

a vigorous case against Berners-Lee’s position that a “URI denotes one thing” (Hayes

and Halpin, 2008). What is at stake is the Principle of Universality, namely that any-

thing can be identified by a URI. Hayes puts forward the thesisthat the word ‘identify’

is simply incoherent, as it has two distinct readings, as explored earlier in Section 4.2.1,

that ofaccessandreference.

While Hayes makes no claim that access to some Web representations via HTTP

is not possible, he claims that such access to Web representations is orthogonal to the

question of what a URI could refer to, since “the architecture of the Web determines ac-

cess, but has no direct influence on reference” (Hayes and Halpin, 2008). Furthermore,
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and this statement shows where Hayes’s logicist understanding of ambiguity radically

parts path with natural language understandings of ambiguity: Hayes claims that ref-

erence to resources is completelyindependentof whatever Web representations can be

accessed, even if those contain logical expressions. However, in natural language, one

is not completely unconstrained in one’s use of reference, but one is instead bound to

the ambiguity given in the shared conventions of the language, a point we will return

to when trying to explicitly bring these viewpoints together in Section 8.1.3.

Hayes makes it explicit that he subscribes to the logical atomist epistemology of

Russell, as he says that “reference can either be established by either description or os-

tention” with ostention being defined as the use of Russellian demonstrative (like ‘that’

or ‘this’) identifying a particular “patch of sense data” via a statement such as ‘that is

the Eiffel Tower,’ just as Russell used the notion of acquaintance (2006). Since most

of the things referred to by names are not accessible, reference can only be determined

by description, and these descriptions are inherently ambiguous (Hayes and Halpin,

2008).

The argument over the ambiguity of description is exemplified in not only in logical

descriptions, but natural language descriptions. If a person is trying to identify the

Eiffel Tower to a friend, then the person may attempt to communicate their thought

about the Eiffel Tower by uttering a description such as “themonument in Paris.” Yet

even the friend may think they are talking about the Arc de Triomphe without further

information. If the person tries to give further descriptions, such as “the steel tower,”

then the hearer might think of the Eiffel Tower, but there areno guarantees. The hearer

may also think of the steel dome of Galeries Lafayette. Even if the person said, “the

structure made by Gustave Eiffel,” the hearer may think of a lesser-known structure like

La Ruche. One can imagine that with enough descriptions a person could uniquely pick

out the referent for the hearer. Even with an infinite amount of descriptions this may

be impossible, since it involves the large presumption thatthe hearer shares our same

metaphysical or perceptual ontology of things in the world.The hearer may simply

have no conception that the Eiffel Tower even exists, and so may be unable to grasp

the referent – reduce the set of possible referents to a unique thing – regardless of the

number of descriptions given.

Even what appears to be a stable reference by description canbe easily disrupted

by new information. Hayes illustrates this by referring to afamous example about

whether “a fitted carpet was ‘in’ an office or ‘part of’ the office in which “two com-

petent, intelligent adult native speakers of English each discovered, to their mutual
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amazement, that the other would believe what they thought was an obviously false

claim” but that “over an hour of discussion it gradually emerged, by a process of in-

duction from many examples, that they understood the meaning of ‘office’ differently”

(Hayes and Halpin, 2008). For one person ‘office’ referred to“roughly, an inhabitable

place” while for the other it referred to “something like a volume of space defined by

the architectural walls” (Hayes and Halpin, 2008). These two people had shared the

same office for years, and only upon the appearance of a carpet, it seemed that they

had different mental meanings for ‘office’ and more generally, for ‘room.’ Neither are

wrong per se, it’s just that different concepts of ‘office’ were being deployed, concepts

whose differences were so subtle that only in rare or ‘edge’ case were their very real

differences revealed.

On the Semantic Web, the negative effects of adding new information also hold.

Often simple formal ontologies are more stable, as “if all one wants to say about per-

sons is that they have mailboxes and friends, then one can treat ‘person’ as a simple

category” (Hayes and Halpin, 2008). Even when a stable situation of mutual reference

has been reached in some simple formal ontology, it can be upset by the addition of

new ontological distinctions, as can be made by so-called “upper ontologies” such as

DOLCE (Gangemi et al., 2002). For example, DOLCE claims thatthe identity of a

person continues over time, while other upper-level ontologies do not (Gangemi et al.,

2002). Does the Semantic Web distinguish “Tim Berners-Lee the continuant from Tim

Berners-Lee the four dimensional history?” (Hayes and Halpin, 2008). For purposes

of inference, such a minor distinction can really matter. Ifone is not careful with

one’s upper-level ontology, one can produce “immediate logical contradictions, such

as inferring that Berners-Lee is both 52 years old and 7 yearsold” (Hayes and Halpin,

2008).

The situation with descriptions in real life, with the possibility of multiple underly-

ing ontologies and differing interpretations, is thought by Hayes and others to be mod-

eled on the radical model-theoretic pluralism of Tarski-style formal semantics, i.e. for

any language “sufficient to express arithmetic” to have manydifferent ‘non-standard’

models (2008). As our example showed, RDF in general says so little inferentially that

many different models can satisfy almost any given RDF statement. Therefore, Hayes

considers it essential to ditch the vague word ‘identify’ asused in URIs, and distin-

guish between the ability of URIs to access and refer. While access is constrained by

Web architecture, according to Hayes, reference is absolutely unconstrained except by

formal semantics, and so “the relationship between access and reference is essentially
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arbitrary” (Hayes and Halpin, 2008). From this philosophical position, the Identity Cri-

sis dissolves into a pseudo-problem, for the same URI can indeed access a web-page

and refer to a person unproblematically, as they no longer have to obey the dictum to

identify one thing. Hayes compares this situation to that ofoverloading, using a single

name to refer to multiple referents, and instead of being a problem, “it is a way of

using names efficiently” and not a problem for communication, as “natural language

is rife with lexical ambiguity which does not hinder normal communication,” as these

ambiguities can almost always be resolved by sufficient context (2008). Overall, the

argument of Hayes against Berners-Lee in the Identity Crisis is the position of keeping

the formal semantics of reference separate from the Web as given by the Principles of

Web architecture.

6.2.4 Logicism Unbound on the Semantic Web

While the logicist position may seem relatively sensible, the logicist position would

also hold that the Semantic Web is more or less unremarkable,since “the Semantic

Web languages would operate exactly unchanged if the identifiers in them were not

URIs at all, and if the Web did not exist” (Hayes, 2006). In this manner, we should be

worried, for then the Semantic Web would be no different fromthe traditional project

of knowledge representation in classical artificial intelligence. Indeed, thefirst gener-

ation of the Semantic Web was built upon this logicist vision, witha focus on infer-

ence, exemplified by the creation of inference programs and hosts of academic papers

detailing how description logics could efficiently implement Open World reasoning

(Haarslev and Mueller, 2003; Tsarkov and Horrocks, 2003). Given the emphasis on

inference, not surprisingly almost all work in producing information for the Seman-

tic Web became focused on the creation of formal ontologies,and while some of the

simple ones such as FOAF (Friend-Of-A-Friend) survived, most of these ontologies

languish unused (Brickley and Miller, 2000). This completedisregard for the Princi-

ples of Web architecture make sense from the logicist perspective, as the referential

mechanism of RDF and other Semantic Web languages should have absolutely no re-

lationship with the accessibility of Web representations.While this first generation

of the Semantic Web was an academic success story, the Semantic Web nonetheless

did not have the tremendous growth of the original hypertextWeb. Indeed, its success

seems to be confined primarily to becoming a de-facto standard among the knowledge

representation community in AI, rather than the more universal vision of Berners-Lee.
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There was never a consensus on the first generation Semantic Web about how log-

ical descriptions determine, even ambiguously, the referents of a URI. One implicit

viewpoint dominant on the first-generation Semantic Web is alocalist reading of the

scope of URIs; the a URI refers to whatever could satisfy the model of just the cur-

rent RDF graph given by some Web representation. Yet this makes it difficult, if not

impossible, for the Semantic Web to be used for its primary purpose of data integra-

tion. One proposal on this point was to assume the localist reading of any Semantic

Web statement unless other URIs were explicitly imported via owl:imports state-

ments (Parsia and Patel-Schneider, 2006). However, this would put the responsibility

for data integration on the server-side hosting of Web representations, not data integra-

tion ‘on-the-fly’ by a user-agent. The second option, theholist reading, is that a URI

refers to whatever can satisfy the model given byeverygraph that uses the URI on the

Semantic Web. Yet this option makes little sense, for as given by the Principle of the

Open World, it is impossible to gather all uses of a URI in Semantic Web statements

spread throughout the entire Web.

One possibility in combining the Principles of Web architecture with a logicist

theory of reference would be to have a URI refer to whatever satisfied all logical de-

scriptions which are accessible from the URI itself, a viewpoint championed by David

Booth under the titleURI Declarations(2008). This particular possibility of using

URIs as names would be an almost perfect analogy to Russell’sdefinition of names

as a cluster of logical descriptions (Russell, 1905). URI Declarations have a num-

ber of advantages over both the localist and holist logicistreadings of URIs. First,

URI Declarations allow the URI to access “a set of core assertions that are intended

to characterize the resource” that can then be determined bythe owner of the URI

(Booth, 2008). This means that when an agent encounters a previously unseen URI

in a Semantic Web statement and the interpretation of the statement itself is not sat-

isfactory, the agent can use the Principle of Self-Description to discover some core

assertions. However, the creation of other statements using this URI is not banned, for

“different URI users will necessarily wish to make” possibly “mutually incompatible”

and so “different sets of assertions involving the URI” (Booth, 2008). According to

Booth, these “mandatory core assertions permit the meaningof a URI to be anchored,

to prevent it from drifting, and this in turn increases the likelihood that independent

assertions made using the URI can be successfully joined” (2008).

While this standpoint makes sense, it is also very limiting for agents and may not

encourage re-use, since “if you do not want to accept the coreassertions specified by
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the URI Declaration, then you should not use that URI to make statements about its

denoted resource” (2008). If one doesn’t agree with the interpretation of the core as-

sertions in the URI Declaration, then one should mint a new URI. In turn, this violates

the strict separation of reference and access that Hayes puts forward as central to the

formal semantics of RDF, even though the URI Declaration still maintains a belief in

the primacy of logic (Hayes, 2006). Furthermore, it is unclear where the follow-your-

nose algorithm should stop in its quest for accessing logical statements. Should an

agent follow a HTTPLink header, or theLink elements in HTML? Should the agent

follow HTTP redirect headers, and if so, which ones? These questions are unanswered

by the follow-your-nose algorithm. While Rees has developed a more formally speci-

fied algorithm called theURI Documentation Protocol, there is no W3C standardized

follow-your-nose algorithm for logical descriptions associated with a URI, and many

other possibilities, such asConcise Bounded Descriptions(Rees, 2008; Stickler, 2005).

For at least these reasons, URI Declarations have not reached widespread usage.

The inability of a purely descriptivist theory of referenceto reach standardization,

or even ad-hoc conventional usage, has led the initial first-generation Semantic Web

applications to fail. Most of these first generation OWL or RDF(S) ontologies, such

as DOLCE, did not in any way re-use URIs and did not let any Web representations

be dereferencable from the original URIs (Gangemi et al., 2002). OWL ontologies

were stored as one large inaccessible file, difficult to indexby search engines and vir-

tually impossible to find by anyone except the creator of the file. This lack of URI

re-usage and the inability to communicate about the referents of Semantic URIs have

led to the actual possible referents of many Semantic Web URIs to be so drastically

underdetermined as to make the URI itself unusable. Strictly speaking, it was impos-

sible to determine a reference except via the relatively weak inference mechanisms of

OWL and RDF, which usually did not infer much of interest as predicted by McDer-

mott earlier in 1987. In an attempt to ameliorate the situation, natural language strings

were added to describe Semantic Web URIs using properties like rdfs:label, but it

was left unknown how this information affected the formal semantics. Since an agent

could never be clear about the referential status of a Semantic Web URI, rather than

trust already-existing Semantic Web URIs, everyone simplycreated new URIs rather

than re-using them. This dire situation has led the first-generation of the Semantic Web

to be more like scattered semantic islands rather than vast inter-linked semantic con-

tinents, a ghostly web of logical reference separate from the hypertext Web. Yet the

failure of this first-generation of the Semantic Web should not be surprising, for it is
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not a test of the Semantic Web hypothesis as a knowledge representation language built

according to the principles of Web architecture. The first-generation of the Semantic

Web has almostnothingto do with the Principles of Web architecture besides the Open

World Principle, and so is only a decentralized version of knowledge representation as

used in classical artificial intelligence with a single logic-based monotonic semantic

network language. As such, the failure of the first generation of the Semantic Web

is the failure of a decentralized version of the logic-basedAI defended by Hayes’s

In Defense of Logicrather than the Semantic Web per se, and this failure should be

depressingly familiar (1977).

6.3 The Direct Reference Position and the Causal The-

ory of Reference

The alternative slogan of Berners-Lee, that “URIs identifyone thing,” may not be com-

pletely untenable after all (2003c). It appears to even be intuitive, for when one says

‘I went to visit the Eiffel Tower,’ one believes one is talking about a veryparticu-

lar thing in thereal world called the ‘Eiffel Tower,’ not a cluster of descriptions or

model of the world. The direct theory of reference of Berners-Lee has a parallel in

philosophy, namely Saul Kripke’s ‘causal theory of reference,’ the classic devastating

argument against the descriptivist theory of reference, and so the logicist position of

Hayes (Kripke, 1972). In contrast to the descriptivist theory of reference, where the

content of any name is determined by ambiguous interpretation of logical descriptions,

in thecausal theory of referenceany name refers via some causal chain directly to a

referent(Kripke, 1972).

6.3.1 Kripke’s Causal Theory of Proper Names

The causal theory of reference was meant to be an attack on thedescriptivist theory

of reference attributed to Russell, and its effect in philosophy has been to discredit

any neo-Russellian descriptivist theory of reference (Luntley, 1999). Surprisingly, the

causal theory of reference also has its origin in logic, since Kripke as a modal logician

felt a theory of reference was needed that could make logicalstatements about things

in different logically possible worlds (Kripke, 1972). However, while Kripke did not

directly confront the related position of Tarski, his argument does nonetheless attempt

to undermine the ambiguity inherent in Tarski’s model-theoretic semantics, although



6.3. The Direct Reference Position and the Causal Theory of Reference 129

a Tarski-style semantics can merely ‘flatten’ models of possible words into a singular

model (Luntley, 1999). Still, as a response in philosophy oflanguage, it is accepted as

a classical refutation of the descriptivist theory of reference.

In Kripke’s Naming and Necessity, an agent fixes a name to a referent by a process

calledbaptism, in which the referent, known through direct acquaintance is associated

with a name via some local and causally effective action by the agent (1972). After-

wards, a historical and causal chain between a current user of the name and past users

allows the referent of a name to be transmitted unambiguously through time, even in

other possible worlds. For example, a certain historical personage was given the name

‘Gustave Eiffel’ via a rather literal baptism, and the name ‘Gustave Eiffel’ would still

refer to that baptized person, even if he had not been the architect of the Eiffel Tower,

and so failed to satisfy that definite description. Later, the causal chain of people talk-

ing about ‘Gustave Eiffel’ would identify that very person,even after Gustave Eiffel

was dead and gone. In this regard, a name functions much like arepresentation as

given by our representation cycle in Section 3.6, where somebaptismal ‘input stage’

between a name and a thing is necessary to assign the name directly to the referent.

Descriptions aren’t entirely out of the picture on Kripke’saccount; they are necessary

for disambiguation when the context of use allows more than one interpretation of a

name, and they figure in the process by which things actually get their names, if the

thing cannot be directly identified. However, this use of descriptions is a mere af-

terthought with no causal bearing on determining the referent of the name itself, for as

Kripke puts it, “let us suppose that we do fix the reference of aname by a description.

Even if we do so, we do not then make the name synonymous with the description, but

instead we use the name rigidly to refer to the object so named, even in talking about

counterfactual situations where the thing named would not satisfy the description in

question” (1972). So what is crucial is not satisfying any description, but the act of

baptism and the causal transmission of the name.

6.3.2 Putnam’s Theory of Natural Kinds

Kripke’s examples of the causal theory of reference used proper names, such as ‘Ci-

cero’ or ‘Aristotle,’ and he did not extend his analysis to the whole of language in a

principled manner. However, Hilary Putnam, in hisThe Meaning of ‘Meaning,’ex-

tends Kripke’s analysis to all sorts of names outside traditional proper names, and in

particular Putnam uses for his examples the names of naturalkinds (1975). Putnam
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was motivated by an attempt to defeat what he believes is the false distinction between

intension and extension. The set of logical descriptions, which Putnam identifies with

a “psychological state,” that something must satisfy to be given a name is theintension,

while those things in a given interpretation that actually satisfy these descriptions, is

theextension(1975). Putnam notices that while a single extension can have multiple

intensions it satisfies, such as the Eiffel Tower both being “in Paris” and “a monument,”

a single intension is supposed to have the same extension in agiven interpretation. If

two people are looking for a “monument in Paris,” the Eiffel Tower should satisfy them

both, even though the Eiffel Tower can also have many other possible descriptions.

Putnam’s analysis can be summarized as follows: Imagine that there is a world

“very much like Earth” called ‘Twin Earth.’ On Twin Earth “the liquid called ‘water’

is notH20 but a different liquid” whose chemical formula is abbreviated asXYZ, and

that thisXYZ is “indistinguishable from water at normal temperatures and pressures”,

since it “tastes like water and quenches thirst like water” (Putnam, 1975). A person

from Earth wouldincorrectly identify XYZ for their normal referent of water, as it

would satisfy all their descriptions. In this regard, this shows that meanings “ain’t in

the head” but are in fact determined, not by individual language use or descriptions, but

by some indexical relationship to “stuff that is like water around here” normally. That

“stuff” shouldget its name and meaning fromexperts, since “probably every adult

speaker even knows the necessary and sufficient condition ‘water isH20,’ but only a

few adult speakers could distinguish water from liquids which superficially resembled

water...in case of doubt, other speakers would rely on the judgment of these ‘expert’

speakers” who would ideally testXYZ and determine that it was indeed, not water

(Putnam, 1975). Indeed, less outlandish examples, such as the difference between

“beech trees” and “elm trees” are trotted out by Putnam to show that a large amount

of our names for things, perhaps even extending beyond natural kinds, are actually

determined by expert knowledge (1975). In this way, Kripke’s baptism can extend to

almost all languages, and scientists can be considered a special sort of naming authority

capable of baptizing all sorts of things with a greater authority than everyone else. As

even Putnam explicitly acknowledges “Kripke’s doctrine that natural-kind words are

rigid designators and our doctrine that they are indexical are but two ways of making

the same point” (1975).
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6.3.3 Direct Reference on the Web

This expert-ruled causal theory of reference is naturally close to the direct reference po-

sition of Berners-Lee, whose background is in expert-created databases. He naturally

assumes the causal theory of reference is uncontroversial,for in database schemas,

what a termrefers tois a matter best left to the expert designer of the database. So

Kripke and Putnam’s account of unambiguous names can then betransposed to the

Web with a few minor variations in order to obey Berner-Lee’s“crazy” dictum that

“URIs identify one thing” regardless of interpretation or even accessible Web rep-

resentations (2003c). While it may be a surprise to find Berners-Lee to be a closet

Kripkean, Berners-Lee says as much, “that the Web is not the final arbiter of meaning,

because URI ownership is primary, and the look-up system of HTTP is...secondary”

(Berners-Lee, 2003c). There is also an element of Grice in the direct theory of refer-

ence, for theintendedinterpretation and perhaps even purpose of the owner is the one

that really matters to Berners-Lee, not any publicly accessible particular Web repre-

sentation (1957). However, ultimately Berners-Lee has farmore in common with the

causal theory of reference, since although the URI owner’s intention determines the

referent, after the minting of the new URI for the resource, the intended interpretation

is somehow never supposed to vary (Berners-Lee, 1998a).

To apply the causal theory of reference as to URIs, baptism isgiven by the registra-

tion of the domain name, which gives a legally binding owner to a URI. The referent of

a URI is established by fiat by the owner, and then optionally can be communicated to

others in a causal chain in the form of publishing Web representations accessible from

the URI or by creating Semantic Web statements about the URI.This causal theory of

reference for URIs is illustrated in Figure 6.2.

In this manner, the owner of the URI can thereby determine thereferent of the URI

and communicate it to others, but ultimately the act of baptism and so the determination

of the referent are in the hands of the owner of the URI, the self-professed ‘expert’ in

the new vocabulary term introduced to the Semantic Web by hisURI, and the owner has

no real responsibility to host any Web representations at the URI. Since the owner can

causally establish a name for a non-Web accessible thing viasimply minting a new URI

without hostingany representation, under the causal theory of reference the Semantic

Web can be treated as having a giant translation manual mapping URIs directly to

referents, where the URIs refer directly to objects in the world outside of the Web.

In this manual, one could look up the URIhttp://www.example.org/GustaveEiffel and
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Figure 6.2: The causal theory of reference for URIs

get back Gustave Eiffel himself. From the direct reference position, if an agent got a

URI like http://www.example.org/Gustave Eiffel and one wanted to know what

the URI referred to, one could use a service such aswhois to look up the owner of

the URI, and then call them over the telephone to ask them whatthe URI referred

to if there was any doubt in the matter. Since obviously such URIs cannot access

things outside the Web, what kinds of Web representations, if any, could this giant

Semantic Web dictionary return? If it returns no Web representation, how can a user-

agent distinguish a URI for a referent outside the Web from that of a URI for some

Web-accessible resource? This question is partially answered by303 redirection, but

it is far from satisfactory, as it only allows one to recognize when a URImaynot refer

to an information resource, a very weak promise indeed.

6.3.4 Linked Data: The Second-Generation Semantic Web

While some recognized that the purely logicist first-generation Semantic Web of on-

tologies is a failure, lately the Semantic Web seems to be taking off under a new name,

‘Linked Data’ (Bizer et al., 2007).Linked Data is an application of the principles

of Web architecture to the Semantic Web. Due to its logicist heritage in classical AI,

the first-generation Semantic Web neglected to host accessible Web representations or

even use HTTP URIs, as URIs were just regarded as a weird sort of name, with ref-
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erence and meaning being taken care of by the Tarski-style formal semantics of the

Semantic Web. In contrast, Linked Data recommends that HTTPURIs should be used

for everything, and that for any non-information resource,one is likely to have to mint

not two, butthreeURIs, “an identifier for the resource” as well as two associated de-

scriptions that can be accessed by content negotiation. Thefirst associated description

should be a human-readable HTML-based associated description. The second associ-

ated description should allow access to RDF (Bizer et al., 2007). Furthermore, Linked

Data encourages the Principles of Linking by encouraging interlinking between data-

sets. Following the Principle of Self-Description, LinkedData vocabularies are to

allow the retrieval of associated descriptions in both RDF and HTML via 303 redirec-

tion for non-information resources. Vocabularies used in Linked Data are encouraged

to have accessible namespace documents that describe the Semantic Web terms used in

the vocabulary. Lastly, in the spirit of the Principle of theOpen World and Least Power,

the use of simple Semantic Web languages like RDF and RDF(S) are encouraged over

more complex languages like OWL.

A few large data-sets, such as a transformation of Wikipediato RDF calledDBpe-

dia, as well as geographical data inGeonamesand biomedical knowledge to RDF in

theBio2RDFproject were released as Linked Data (Bizer et al., 2008). This Linked

Data initiative is thesecond generationof the Semantic Web. Unlike thefirst gener-

ation approach, it also implemented a Kripkean distinction between non-information

resources and mere representations of these non-information resources. The distinc-

tion is Kripkean insofar as the difference between a non-information resource and its

associated description (or any other resource) is assumed to be determined absolutely

by the owner of the URI. In marked contrast to its predecessor, the second-generation

Semantic Web ignored almost all inference, and focused on producing as much Se-

mantic Web information as possible, even if the published data was inconsistent. The

growth of Linked Data has so far been astounding, as it grew from a few million to over

a 100 million reusable RDF documents, containing possibly billions of triples (Oren

et al., 2008).

While the Linked Data initiative created URIs for many things, such as those things

referred to by Wikipedia URIs, it has not created URIs foreverything, such as the local

pub and the proper names of people not famous enough to be on Wikipedia. For

any real-world Semantic Web application, it is precisely these types of URIs that are

necessary for data integration over something as simple as aSemantic Web-enabled

review aggregation site like Revyu (Heath and Motta, 2007).Where are these URIs to
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come from, especially if the relevant things or owners of things aren’t going to mint the

URI themselves? However, if every single application creates these not-so-well-known

URIs themselves, then each application will create its own distinct URIs, so that these

URIs cannot be used for a graph merger or any other sort of information integration.

The Linked Data method has so far been to ignore these issues,although in practice

the massive export of Wikipedia into DBPedia, a Linked Data-enabled version of the

structured data in Wikipedia, seems to have led the way in minting many useful URIs

(Auer et al., 2007).

Besides the Linked Data initiative, another outcome of the Kripkean analysis of

creating URIs for non-information resources is the OKKAM project, which declares

as its motto the famous principle of Occam’s Razor, namely rephrasing the famous

maxim to “entity identifiers should not be multiplied beyondnecessity” (Bouquet et al.,

2007a). The goal of this ambitious project is to provide HTTPURIs for every conceiv-

able ‘entity,’ where an entity is taken to be some concrete ‘thing’ such as “electronic

documents to bound books, from people to cars, from conferences to unicorns” as

opposed to a more ‘abstract concept’ such as “predicates, relations, assertions” (Bou-

quet et al., 2007a). Roughly speaking, the distinction is equivalent to the distinction

in description logics between ‘entities’ as individuals inanABoxand ‘concepts’ in a

TBoxwhich assertions can use, so that an OWL reasoner can use the formal ontology

(or terminology) of theTBoxto classify and make assertions about the entities (Hor-

rocks, 1998). Following Hayes’s insight that high-level ontological distinctions are

morelikely to produce ambiguity, OKKAM puts forward the thesis that “while any at-

tempt at ‘forcing’ the use of the same URIs for ‘logical resources’ [abstract concepts]

is likely to fail (as every application context has its own peculiarities, and people tend

to have different views even about the same domain), the samedoes not hold for enti-

ties” (Bouquet et al., 2007a). Everyone is likely to disagree about the concept of justice

or even personhood but OKKAM supposes there is unlikely to bedisagreement about

physical entities like Gustave Eiffel or the Eiffel Tower. However, in a decidedly Krip-

kean move, instead of building a huge database that containslogical descriptions of the

entities, OKKAM merely will construct an enormous and open-ended list of Semantic

Web URIs to serve as names for referents. OKKAM can be thoughtof as the reverse of

URI declarations, the only documentation resources to be attached to these OKKAM

Semantic Web URIs will be non-logical: collections of pictures, text from other web-

pages which mentions the same referent, and the like. OKKAM stores “untyped data

for the reason that typing an entity’s attributes would require us to classify the entity”
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because any logical description could lead to disagreementand thus harm re-use of the

URIs (Bouquet et al., 2007a). OKKAM so hopes to concretely realize the dream of the

Semantic Web as a giant manual that can translate URIs for non-information resources

to referents, but without logical descriptions at all.

6.4 Conclusion

The direct reference position attempts to philosophicallyjustify a ‘common-sense’

notion of reference without sense, and thus it is unsurprising that an autodidact like

Berners-Lee has his intuitions about reference fall in linewith Kripke and Putnam,

even if he is not personally familiar with their work. The logicist position hopes to

replace sense with the semantic value of being either true orfalse, as Frege himself

did for mathematical statements. So, while the descriptivist and the causal theories of

reference may appear to be contradictory, in reality both ofthese theories of reference

attempt to exterminate a rich notion of ‘sense’ from a theoryof meaning. In this way,

the logicist and direct reference position, although they approach getting rid of sense

in different manners, on an abstract level are guilty of the same maneuver.

It is precisely the Fregean distinction between ‘sense’ and‘reference’ that provoked

both Russell and Kripke’s intellectual projects to build anentire theory of meaning

on top of only reference, since the notion of ‘sense’ was thought of by both Rus-

sell and Kripke as vague and unnecessary. Therefore, the only way forward seems

to be to move from the primacy of reference over sense to the primacy of a more

all-encompassing notion of sense over reference. As definedearlier, URIs identify re-

sources, which are objective senses. Therefore URIs don’t directly refer to anything,

they only refer through mediation of a sense. A theory of meaning that takes into ac-

count the objective notion of sense needs to be rehabilitated. A hint of the path to be

taken ahead is given currently, but in Chapter 8 we present infull this third position

based on Wittgenstein’s understanding of sense and reference. This follows naturally

from our division of content and encoding, as well as the identification of informa-

tional content with a Fregean sense. As Dummett put it, “Frege’s thesis that sense is

objective is thus implicitly an anticipation of Wittgenstein’s doctrine that meaning is

use” (1993).

However, before moving to a third position on sense and reference, we need to de-

termine whether or not the direct reference position and itsrealization in Linked Data is

actually empirically triumphant or not? While it may seem sodue to the large amount
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of data being released as Linked Data, already there are problems arising. On the level

of theory, Berners-Lee’s Kripkean vision of the Semantic Web as a giant database that

maps from URIs to referents is immediately beset by Quine’s famous thesis on the

indeterminacy of translation(1960). The application of the argument of radical trans-

lation and interpretation is not explored in detail in the thesis, the interested reader can

consult Hayes and Halpin (2008). However, before criticizing the direct reference posi-

tion purely on theoretical grounds, an empirical examination of the second-generation

Semantic Web and Linked Data, needs to be undertaken. Perhaps people on Liked

Data do indeed have each URI refer to a unique thing, and that they really are re-using

URIs. Unlike the earlier logicist Semantic Web, this possibility cannot be dismissed

but needs to be investigated empirically, as the Linked DataWeb actually exists in the

wild. This empirical work is done in the next chapter, Chapter 7.



Chapter 7

An Empirical Analysis of the Semantic

Web

The Database of Intentions is simply this: the aggregate results of every search ever

entered, every result list ever tendered, and every path taken as a result.John Batelle

(2003)

Are there too many URIs for the same thing on the Semantic Web?Or do most

things not have a URI on the Semantic Web? Only a large-scale sampling and statisti-

cal analysis of the Semantic Web can answer this question. Asan added benefit, such

a statistical analysis can prove or disprove some widely held assumptions, such as de-

termining if there is an endemic over-use of constructs likeowl:sameAs, which states

that two URIs ‘identify the same thing,’ and whether the W3C TAG’s recommendation

of 303 redirection is being followed. Furthermore, such an analysis can quantify the

contrast between the direct reference position and the logicist position on the Semantic

Web. This can be partially measured by inspecting the deployment (or lack thereof) of

constructs in RDF(S) and OWL needed for inference. Only withan empirical analysis

of the Semantic Web in hand can we determine the success or failure of Berner-Lee’s

direct reference position that a URI should identify ‘one thing.’

Our methodology is to analyze an hypertext Web search query log to discover a

number of non-information resources thatactualusers are attempting to find informa-

tion about. In particular, we will use a sample of Microsoft’s Live.comquery log to

sample the second-generation Semantic Web, the Linked DataWeb. Furthermore, our

methodology of using a query log leads us to pose and answer the question: Is there

anything ordinary users are actually interested in on the Semantic Web?

137



138 Chapter 7. An Empirical Analysis of the Semantic Web

7.1 Previous Work

For the first-generation of the Semantic Web, there was very little data-driven analysis

of the ontologies, primarily because so few were actually inexistence. Even in the

domains where Semantic Web ontologies existed, due to a lackof following the prin-

ciples of Web architecture, these ontologies could not easily be discovered. With the

advent of Semantic Web search engines such as Swoogle, an empirical analysis of the

actual deployment of the Semantic Web became possible (Dinget al., 2004).

The first large-scale analysis of the Semantic Web was done via an inspection of the

index of Swoogle by Ding and Finin (2006). In 2006, Ding and Finin first estimated the

size of the Semantic Web to be 4.91 million Semantic Web documents via searching

Google for the media typeapplication/rdf+xml (2006). As this might not include

data that is hosted using the wrong media type, using Google to include all FOAF

files served as HTML and RSS 1.0 files, Ding and Finin estimatedthe size of the

Semantic Web would optimistically be increased by two magnitudes. By inspecting

the index of Swoogle, consisting of 3.7 million URIs with 1.4million Semantic Web

documents, they determined that by far the most popular Semantic Web vocabulary

was FOAF (Ding and Finin, 2006). Of the remaining top ten sources of Semantic Web

information, the rest consisted of Dublin Core, Proof Markup Language, and RSS 1.0

documents. Both the number of domains hosting Semantic Web documents and the

number of distinct URIs in triples were found to exhibit a ‘power-law’ distribution by

visual inspection (Ding and Finin, 2006). As regards the number of sites hosting RDF

files, the ‘top’ of the distribution was found to bewww.livejournal.com, followed

by other social networking sites releasing FOAF files. The most popular Semantic

Web term was therdf:type property, followed by FOAF, and then RSS 1.0 (Ding and

Finin, 2006).

Although the study of Ding and Finin was of great importance as it was the first

empirical study of the Semantic Web, their work has a number of limitations (2006).

Its primary limitation was it was unknown if any of the Semantic Web documents con-

tained information that anyone would want to actually re-use. Intuitively, most of the

data on this first-generation Semantic Web was likely to be oflimited value. For exam-

ple, the vast majority of data on the Semantic Web in 2006 was caused by Livejournal

exporting every user’s profile as FOAF – usually without the user’s knowledge – with-

out linking to other Semantic Web URIs, serving with the correct MIME type, and

deploying303 re-direction. The second main source of data in Ding and Finin’s study,
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RSS 1.0, is also of limited value. RSS, originally an XML-based protocol generally

used for newsfeeds, was given a RDF-compatible syntax, creating RSS 1.0 (Beged-

Dov et al., 2001). First, its use has been surpassed by the non-RDF based Atom and

the continued use of XML-based RSS feeds. Second, the very application of RDF in

RSS 1.0 is questionable, as the data is primarily information about site updates, and

so RSS 1.0 data is rarely merged, re-used, or even linked to ina manner that takes

advantage of RDF. Due to the idiosyncratic nature of the datasources of the first gen-

eration Semantic Web, it is not surprising that the majorityof the data contained little

information that couldsatisfy the information needof the average user of the Web.

The principles of Web architecture were finally applied to the Semantic Web in the

form of the Linked Data initiative (Bizer et al., 2007). To summarize, the Linked Data

initiative required that RDF data actually be accessible from a Semantic Web URI in

response to HTTP GET. Furthermore, URIs for non-information resources like entities

and concepts were required to use303 redirection and employ content-negotiation to

make both human and machine-readable versions of the information accessible. Other

Linked Data good practices are the re-use of URIs, or at leastthe use ofowl:sameAs

to identify when two URIs identify the ‘same’ thing, and the interlinking of diverse

data-sets. Due to the Linked Data initiative, the size of theSemantic Web has recently

increased in size by several magnitudes due to the conversion of a large number of

high-quality databases into RDF (Bizer and Seaborne, 2004). Since the study by Ding

and Finin missed the rise of Linked Data, the time is ripe for more empirical studies of

the Semantic Web. It is unclear how the dynamics of the Semantic Web are changing.

While the number of URIs indexed by Linked Data search engines like Sindice shows

that the general trend of the number of URIs on the Semantic Web visually follows

a ‘power-law,’ the correct mathematical analysis has not been done to show this to

be the case (Oren et al., 2008). The only large-scale study ofLinked Data Web at

this time has been by Hausenblas et al., and it estimated the size of the Linked Data

Web at approximately 2 billion triples (2008). The focus of that study was only on

interlinking between data-sets, and it estimated that there were approximately 3 million

interlinks between the various data-sets. The most popularinterlinking property by far

wasdbpedia:hasPhotoCollection, with approximately 2 million occurrences, most

likely due to the term being used by a Linked Data exporter around the popular photo-

hosting service Flickr (Auer et al., 2007). In summary, the Linked Data phenomenon

is huge, much larger than the first-generation Semantic Web,and its properties have

not been fully studied. In particular, there has been littlework on determining how the
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issues of the reference of URIs play out in the wild given by Linked Data.

7.2 Sampling the Semantic Web via Query Logs

The main problem facing any empirical analysis of the Semantic Web is one ofsam-

pling. As almost any database can easily be exported to RDF, any sample of the Se-

mantic Web can be biased by the automated release of large, ifultimately useless,

data-sets. This was demonstrated in an exemplary fashion bythe release of RSS 1.0

data. RDF vocabulary terms that have little content, such asrss:item, quickly bias

the statistical analysis. With the advent of Linked Data, this has to some extent already

happened with large numbers of databases being released as Linked Data ranging from

the BBC’s John Peel recordings to the MusicBrainz audio CD collection (Hausenblas

et al., 2008). How much of the Linked Data Web is aimed for general use? Obviously,

components like DBpedia, the export of Wikipedia to Linked Data, could be very use-

ful (Auer et al., 2007). The vast majority of data released into the Semantic Web is of

appeal only to a niche audience, such as the great appeal of Bio2RDF to health care and

life-sciences. Just as RSS 1.0 and the Livejournal export ofFOAF biased sampling of

the first-generation Semantic Web, the release of a large Linked Data sets such as the

Bio2RDF, containing approximately 65 million triples and so rivaling the size of DB-

pedia, can bias any sampling of the second-generation Semantic Web (Belleau et al.,

2008; Auer et al., 2007). For example, if one just counted thenumber of URIs used

on the Semantic Web, one would quickly find thatbio2rdf:xProteinLinks would

prove to be, in sheer number, a very popular term despite its relative lack of use out-

side the biomedical community. It is a small step then to imagine ‘semantic spamming’

that releases large amounts of bogus URIs into the Semantic Web. Furthermore, due

to the Open World Principle, it is impossible to determine how many actual separate

providers of Semantic Web data there are, so a priori choosing seed samples or to

‘weight’ any sample is difficult to do in a principled manner.Unlike the original Web,

which grew at least in an organic fashion for its first few years, the second-generation

Semantic Web progresses in very noticeable ‘fits and starts’as large data-sets are re-

leased, so each data-set can vastly alter any empirical analysis. The question is not

how to avoid bias in sampling, butto choose the kind of bias one wants. We are aiming

for a bias towards the ordinary user of the Web.

What information is available on the Semantic Web that ordinary users are actually

interested in, and how do we sample this data? The obvious candidate for exploring
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this would be to look at a major search engine query log, as it gives a sample of the

interests of many users in aggregate. Since Semantic Web search engines are currently

used mostly by Semantic Web developers and not by ordinary users, the query log of

a popular hypertext search engine should be sampled as opposed to a more specialized

search engine. Furthermore, the query log should be from a general purpose search

engine, not one that puts some constraints on the search suchas searching only within

bibliographies, as that would prematurely restrict the kinds of queries. The entire

bet of the Semantic Web is that it will contain information that many ordinary users

will want to re-use and merge via Semantic-Web enabled applications, and that this

information will primarily be about non-information resources such as entities like

people and places and abstract concepts. Thus, the ideal sampling of the Semantic

Web would be to extract query terms referring to physical entities and abstract concepts

from a hypertext search engine query log, and then by virtue of a Semantic Web search

engine we can determine precisely how much information the Semantic Web contains

on these subjects.

7.2.1 The Live.com Query Log

There has been much work on query log analysis in order to discover how to best satisfy

the information needs of users on the Web. Since most search query logs of any size

belong to search engine companies, it is often difficult for researchers outside those

companies to analyze these query logs, and therefore most research in search query

logs deal with small or special-purpose query logs, such as the Web track in the TREC

competition (Hawking et al., 2000). A few employees of largesearch corporations have

released detailed studies of their search engine query logs. In particular Silverstein et

al.’s analysis of a billion queries in the Altavista query log is considered to be a large

‘gold-standard’ study of query logs (Silverstein et al., 1999).

In order to extract concepts and entities, we analyze the query log of approxi-

mately 15 million distinct queries from Microsoft Live Search, and all references to

the ‘query log’ are to this Microsoft query log, as provided by Microsoft due to a

2007 ‘Beyond Search’ award. This query log contains 14,921,285 queries. Of these

queries, 7,095,302 (48%) were unique. Corrected for capitalization, 4,465,912 (30%)

were unique. Of all queries, only 228,593 (2%) queries used some form of advanced

keywords, while 709,102 (5%) used boolean operators and 266,308 (2%) used quo-

tation, leading to a total of 1,204,003 (17%) queries using some advanced techniques
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provided by the search engine. The average number of terms per query was 1.76. Note

that these extremely brief queries are normal for hypertextWeb search engines, with

an average query length of 2.35 being reported by Silverstein et al. for the Altavista

query log (Silverstein et al., 1999).

7.2.2 Kinds of Queries

Search engine query studies show generally three distinct kinds of user querying be-

havior:navigationalqueries,transactionalqueries, andinformationalqueries (Broder,

2002). Fornavigational queries,the query serves as an abbreviated URI, such as

when the queryGoogle is used to accesshttp://www.google.com. For transac-

tional queries,the query is an attempt to perform a certain transaction, such as the

purchase of a plane ticket.Informational queriesexpress the information need of the

user for some unknown information. The query analysis of Broder estimated that in-

formational queries account for 48% of all queries, while transactional queries account

for 30% and navigational for 20%, with 2% unclassified (2002). However, studies have

shown only a 70-80% confidence in categorizing queries (Jansen et al., 2008). Also,

informational queries maynotbe the most important kinds of queries on the Web, since

the top ten queries of theLive.comquery log areall navigational queries, as shown in

Table 7.1. These distinctions between types of queries are important since only a sub-

set of all queries,informationalqueries, will deal with information that could be found

on the Semantic Web. In order for there to be a fair analysis ofthe Semantic Web,

transactional and navigational queries should be removed if possible from the query

log.

In an attempt to remove at least a subset of the navigational queries, any query

containing a top-level domain (also known as ‘TLD,’ such as.com) was removed from

the query log. While this would have removedgoogle.com it fails to remove just

google, so this was augmented by removing the non-TLD form of the top500 websites

as provided by Alexa.1 Combined, this removed 953,720 (6%) queries from the query

log.

The top ten queries of theLive.comquery log, with navigational and transactional

queries manually removed, are given in Table 7.2. When navigational queries are

removed, a second trend is that popular queries on the Web areheavily dependent on

time. Obviously, these queries are mostly related to eitherwell-known people and

1A service that ranks popular websites, available athttp://www.alexa.com/.



7.2. Sampling the Semantic Web via Query Logs 143

154398 google

132652 yahoo

85664 myspace

72992 ebay

37675 mapquest

27353 my space

23452 aol

20703 american idol

20313 yahoo mail

16060 map quest

Table 7.1: Top 10 queries in query log

11383 weather

7311 david blaine

5279 games

5085 nascar

4815 lyrics

4814 videotaped killing

4418 maps

4039 kelly blue book

2950 dracula castle

2939 ohio bear attack

Table 7.2: Top 10 queries filtered for entities and concepts
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events in the news at the time of the query log collection. At the time of query log

collection, David Blaine attempted to break various world-records on live television,

and there was a high-profile video-taped killing in Kansas. Some of the queries are

genuinely general purpose queries, such as ‘people’ and ‘lyrics.’ Due to the fact that

the top queries tend to be navigational queriesand that the most popular queries are

driven by current events, a sampling regime that is not biased towards the usually

transient popularity of a query is necessary.

It should be clear that queries for information about entities and concepts (i.e. non-

information resources) will be a sub-category of the much wider class of informational

queries. For example, an informational query might be for the ‘weather report for

Paris,’ perhaps phrased as the queryweather Paris, while the types of queries for

physical entities like the Eiffel Tower could be the precisewhen was the Eiffel

Tower built? or the foreshortenedEiffel Tower. While the distinction between

informational queries for an information resource as opposed to informational queries

about a non-information resource is fuzzy, this is due to theuse of varying levels of

abstraction that can be used in terms of interpreting the information need expressed

by the query. This problem is made especially difficult giventhe small number of

words used in Web search queries. Due to this problem, it should be expected that

any sampling of the query log should be overly vigilant in theattempted deletion of

transactional and navigational queries, while at the same time liberal in the acceptance

of possible informational queries, not trying to distinguish a query for a weather report

from a query about the weather itself.

7.2.3 Extracting Queries for Entities and Concepts

Automatically classifying informational queries is difficult. Rule-based approaches

that claim to work over entire query logs like those of Jansenet al. are dubious at best,

since they work by applying very loose specifications such as“query length greater

than 2” and “any query using natural language terms” (2008).More promising work

has applied both supervised and unsupervised machine-learning to discover informa-

tional queries, but only achieved an accuracy of 50% when examined by human judges

(Baeza-Yates et al., 2006). A number of machine-learning algorithms could be em-

ployed to learn named entities, but the sparse amount of linguistic context in query

logs makes identifying a named entity difficult in an unsupervised manner, and there

is virtually no labeled data for supervised learning (Whitelaw et al., 2008). Even most
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rule-based approaches for named entity recognition rely heavily upon capitalization

and punctuation, such as ‘I.B.M.’ and ‘Gustave Eiffel,’ features that are lacking from

query logs (Mikheev et al., 1998).

We call queries that are automatically identified to be about physical entities in

the query logentity queries. For the discovery of entity queries, people and places

are obvious places to begin. An updated version of the systemthat was the highest

performer at MUC-7 (Mikheev et al., 1998), a straightforward gazetteer-based and

rule-based named entity recognizer, was employed to discover the names of people

and places. The gazetteer for names was based on a list of names maintained by the

Social Security Administration and the gazetteer for placenames was based on the

gazetteer provided by the Alexandria Digital Library Project. Although it could be

possible to separate out people and places, this was not done. First, both of these are

types of entities. Second, the names of many locations such as ‘Paris’ can also be used

as a name, such as the proper name ‘Paris Hilton.’ This gazetteer-based approach was

chosen to provide high precision, even at the cost of a dramatically reduced recall. This

is an acceptable trade-off as we are attempting only to sample the number of queries

that would be likely to have URIs on the Semantic Web. A high-quality sample of the

query log is more important than a large one for this purpose.Of a random sample of

100 entity queries, a judge considered 94% to be correctly categorized as entities such

as people or places.

From the unique queries in the query log, totaling 4,465,912queries, a total of

509,659 queries (11%) were identified as either people or places by the named-entity

recognizer. The top 10entity queriesare given in Table 7.3. Some transactional and

navigational queries, despite their relatively lower frequency overall in the query log,

are highly clustered towards the top of the entity query distribution. These navigational

queries such aschase andoffice max have clearly snuck into the top ten due to their

use of common names in their website names. Furthermore, a number of queries for

brands that use names, like ‘harley davidson’ or ‘nick’ are present. Still, a number of

legitimate real proper names for entities, such as ‘jessicaalba’ and ‘marcus vick’ were

discovered.

A method for discovering abstract concepts in the query log is more challenging.

These queries are calledconcept queries, queries that are automatically identified to

be about abstract concepts in a query log. Previous attempts at discovering abstract

concepts have employed machine-learning over truly massive query logs and document

collections from Google (Paşca, 2007). Since this massiveamount of data was not
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7311 david blaine

4039 kelly blue book

3053 chase

2997 jessica alba

2100 nick

1415 office max

1280 michael hayden

1139 harley davidson

1098 marcus vick

1092 keith urban

Table 7.3: Top 10 entity queries in query log

available, we employed WordNet instead. WordNet consists of approximately 207,000

words with unique synsets. Our algorithm for discovering abstract concepts in query

logs using WordNet was straightforward: we only chose queries of length one where

the query had a hyponym and hypernym, due to the difficulty of WordNet dealing with

some multi-word queries. This assured that the query was fora class that was suitably

abstract (having a hyponym) but not so abstract as to be virtually meaningless (had a

hypernym). This resulted in a more restricted 16,698 concept queries (.004% of total

queries in the query log). The top 10 concept queries are given in Table 7.4. Again,

a number of clearly transactional queries have managed to find themselves among the

concept queries, such aschase anddrudge, as well as a number of queries where

the sense of a word has been taken over by a proper name, such assprint andaim.

Again, this is due to the preponderance of navigational names towards the top of the

query distribution. Of a random sample of 100 concept queries, a judge considered

98% to be classified correctly as concepts. The top ten concept queries are presented

in Table 7.4. While some of the queries could be considered somewhat navigational

(such as those for maps and dictionaries), they could all be considered informational

queries about some abstract concept.

7.2.4 Power-Law Detection

when rank-ordered, the frequency of queries follows what isknown as a ‘power-law’

distribution, with a relatively small number of very popular queries and a long-tail of
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11383 weather

10321 dictionary

3675 people

3217 music

2192 autism

1468 map

1198 travel

1191 pregnancy

1104 news

1052 charter

Table 7.4: Top 10 concept queries in query log

queries only occurring once or twice, where most of the mass of the distribution is

in the long tail and the ‘top’ of the distribution exponentially decreases. Since this

distribution is common on the Web, we will define it precisely: A power-law is a

relationship between two scalar quantitiesx andy of the form:

y = cxα +b (7.1)

whereα andc are constants characterizing the given power-law, andb being some

constant or variable dependent onx that becomes constant asymptotically. Typically it

is applied to rank-ordered frequency diagrams, where the frequency of some measure-

ment is given on the vertical axis while the rank order of the measurements in terms

of their frequency is given on the horizontal axis. Theα exponent is the scaling expo-

nent that determines the slope of the top of the distributionand provides the remarkable

property of scale-invariance, such that if a true power-lawis observed, as more samples

are added to the distribution, theα remains constant, i.e. the distribution is ‘scale-free’

(Watts and Strogatz, 1998). It is crucial to note that a power-law distribution violates

the assumptions of the normal Gaussian distribution, such that routine statistics such

as averages and standard deviations can be andusuallyare misleading. In fact, one of

the most positive signs of a non-normal distribution like a power-law distribution is a

very large standard deviation.

One of the most common power law distributions is known as Zipf’s Law, which

was originally observed in word frequency estimates. Zipf’s Law states that given a fi-

nite sample of a natural language of adequate size, the frequency of a word is inversely
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proportional to the word’s rank in a ranked frequency distribution (Zipf, 1949). In

other words, the most frequent word ‘the’ will have twice as many occurrences as the

next most frequent word, ‘of.’ This sort of distribution seems to be apparent in many

evolved systems (Cancho and Sole, 2003), from the link structure of the hypertext Web

(Barabasi et al., 2000) to financial systems (May et al., 2008). Is such a distribution

evident from Linked Data? One important question is how to detect power-law distri-

butions in actual data. Equation 7.1 can also be written as:

logy = α logx+ logc (7.2)

When written in this form, a fundamental property of power-laws becomes appar-

ent: when plotted in log-log space, power-laws are ‘straight’ lines. Thus, the most

widely used method to check whether a distribution follows apower-law is to apply a

logarithmic transformation, and then perform linear regression, estimating the slope of

the function in logarithmic space to beα, as done by Ding and Finin (2006). However,

standard least-square regression has been shown to producesystematic bias, in particu-

lar due to fluctuations of the long tail (Clauset et al., 2007). To determine a power-law

accurately requires minimizing the bias in the value of the scaling exponent and the

beginning of the long tail via maximum likelihood estimation. See Newman (2005)

and Clauset et al. (2007) for the technical details.

Determining whether a particular distribution is a ‘good fit’ for a power-law is dif-

ficult, as most ‘goodness-of-fit’ tests employ normal Gaussian assumptions violated by

potential power-law distributions. Luckily, the non-parametric Kolmogorov-Smirnov

test can be employed for any distribution and so is ideal for measuring ‘goodness-of-

fit’ of a given finite distribution to a power-law function. While the details are given

at length in Clauset et al. (2007), intuitively the Kolmogorov-Smirnov test can be

thought of as follows: Given a reference distributionP, such as an ideal power-law

distribution generating function, and a sample distribution Q of sizen suspected of

being a power-law, where one is testing the hypothesis thatQ is not drawn fromP,

then the Kolmogorov-Smirnov test compares the cumulative frequency of bothP and

Q to discover the greatest discrepancy (theD-statistic) between the two distributions.

This D-statistic is then tested against the critical value ofp-statistic atn, which varies

per function. The Kolmogorov-Smirnov test is valid even forpower-law distributions

sinceQ’s cumulative density function is asymptotically normallydistributed and this

can be compared to the cumulative density function ofP.

For a power-law distribution generating function, we can get a critical p-value by
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generating artificial data using the scaling exponentα and lower-bound equal to those

found in the supposed fitted power-law distribution. A power-law is fit to this artificial

data, and then the Kolmogorov-Smirnov test is then done for each distribution that was

artificially generated comparing it to itsownfitted power-law. Thep-value is then just

the fraction of the amount of times theD-statistic is larger for the artificially-generated

distribution than theD-statistic of the empirically-found distribution. Therefore, the

larger thep-value, the more likely a genuine power-law has been found inthe empirical

data. According to Clauset, “once we have calculated ourp-value, we need to make

a decision about whether it issmall enough to rule outthe power-law hypothesis”

(emphasis added) (Clauset et al., 2007). The power-law hypothesis is simply that the

distribution was generated by a power-law generating function. The null hypothesis is

that by chance a function would generate the power-law distribution observed in the

empirical data.

The null hypothesis is rejected if theD statistic ismorethan the criticalp-value for

n, p being the probability that the distribution was drawn from apower-law generating

function given the estimated parameters. In order to determine how well the power-law

method fits, whenever a power-law is reported, theD-statistic is also reported, and we

will determine whether or not the fit was significant according to the liberalp > .1.

The query frequencies for entity and concept queries are plotted in logarithmic

space in Figure 7.1. Both entity and concept queries appear to be linear in log-space,

and so can be considered candidates for power-laws. Using the method described

above, theα of the queries for entities was calculated to be 2.31, with long tail behav-

ior starting around a frequency of 17 and a Kolmogorov-Smirnov D-statistic of .0241

(p > .1), indicating a significant good fit. Theα of the queries for concept queries was

calculated to be 2.12, with long tail behavior starting around a frequency of 36 with a

Kolmogorov-SmirnovD-statistic of .0170 (p > .1), also indicating a significant good

fit for the power law. Given their two remarkably similarα statistics and high goodness

of fit, one can safely conclude that these query logs do indeedfollow power-law dis-

tributions. This indicates our sample of entities and concepts are representative of the

larger query log, which is well-known to follow power-law distributions (Baeza-Yates

and Ribeiro-Neto, 1999).
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Figure 7.1: The rank-ordered frequency distribution of extracted entity and concept queries,

with the entity queries given by green and the concept queries by blue.

7.2.5 Querying the Semantic Web

Both the concept queries and the entity queries are used to query the Semantic Web.

Since our goal was to discover how much of interest for ordinary users was present

on the Semantic Web, one problem with using the entire query log was that it would

contain a vast amount of unique queries that would be unlikely to be repeated. So,

we excluded a portion of the long tail from the study by removing all queries of less

than frequency 10. The parameter 10 was chosen as it was the number that could

reduce both entity and concept queries to the same magnitude. Due to the power-

law behavior of both entity and concept queries, this truncation consists of ‘removing’

a large amount of the long tail, while maintaining the entire‘top’ of the power-law

distribution, as well as some significant component of the long tail. This procedure is

justified insofar as the ‘long-tail’ likely consists of queries that are never or very rarely

repeated, while the remaining queries represents queries that are likely to be repeated.

This pruning of low-frequency queries from our sampling does likely exclude many

‘difficult’ or ‘specialist’ queries, but we are aiming for queries that are general-purpose
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and popular. We call thesequeries with more than 10 URIs returned from the Semantic

Webthe crawled queriesto distinguish them from the greater query log. Likewise,

crawled entity queriesareentity queries with more than 10 URIs returned from the

Semantic Web, and similarly forcrawled concept queries.

This truncation reduced the amount of queries significantly, from 587,283 to 7,848

queries, removing 99% of the queries. It reduced the number of entity queries from

570,585 to 5,308 (a 91% reduction) and the amount of concept queries from 16,698

to 2,540 (an 85% reduction). This gap in the result of pruningoff the ‘long tail’ is

interesting, as it shows that while there is a lower amount ofconcept queries than

entity queries overall, concept queries are repeated by a magnitude or so more often

than entity queries. The only caveat is that our identification of concept queries via

WordNet is likely more stringent than our identification of entity queries, and thus

leads to fewer concept queries overall. Furthermore, the vast majority of entity queries,

as opposed to concept queries, appear to be queries that are only made once or a very

few times. This would make a certain amount of sense, as many queries for people and

places arenot for famous people and places, but for infrequently-mentioned people

and places, such aswayne way, san mateo and sara matthews. Some concepts

were as diverse asgastropod andaccolade. Still, the crawled queries are still biased

significantly in favour of entity queries, with 68% being entity queries and only 32%

being concept queries.

The FALCON-S Object Semantic Web search engine (Cheng et al., 2008) was

used to query the Semantic Web for selected entity and concept queries between Au-

gust 3rd and 4th 2008. The results of running the crawled queries against a Semantic

Web search engine were surprisingly fruitful, although varying immensely. For entity

queries, there was an average of 1,339 URIs (S.D. 8,000) returned per query. On the

other hand, for concept queries, there were an average of 26,294 URIs (S.D. 14,1580)

returned per query, with no queries returning zero documents. Given the high standard

deviation of these results, it is likely that there is eithera power-law in the result-

ing Semantic Web URIs for the queries, or some other non-normal distribution. As

shown in Figure 7.2, when plotted in logarithmic space, bothentity queries and con-

cept queries show a distribution that is heavily skewed towards a very large number

of high-frequency results, with a steep drop-off to almost zero results instead of the

characteristic long tail of a power law. Far from having no information that might be

relevant to ordinary user queries, the Semantic Web search engines returned either too

many URIs possibly relevant to the query or none at all.
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Figure 7.2: The rank-ordered frequency distribution of the number of URIs returned from entity

and concept queries, with the entity queries given by green and the concept queries by blue.

Another question is whether or not there is any correlation between the amount

of URIs returned from the Semantic Web and the frequency of the query. As shown

by Figure 7.3, there isno correlation between the amount of URIs returned from the

Semantic Web and the popularity of the query. For entity queries, the Spearman’s rank

correlation statistic was an insignificant .0077 (p > .05), while for concept queries, the

correlation was still insignificant at .0125 (p > .05). Just because a query is popular or

unpopular does not mean the Semantic Web will be more or less likely to satisfy the

information need of the query. This makes sense, as the vast majority of queries are

heavily dependent on current events and fashion, and the Semantic Web is not updated

often enough to deal with this kind of information, so there is an inevitable temporal lag

between the time information appears in the world outside the Semantic Web and its

digitization on the Semantic Web. Yet as shown by Figure 7.2,the amount ofpossibly

useful information for the vast majority of queries is stillsurprisingly large, although

how many of the returned Semantic Web URIs are actually relevant to human users is

not yet known.
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Figure 7.3: The rank-ordered popularity of entity and concept queries is on the x-axis, with the

y axis displaying the number of Semantic Web URIs returned, with the entity queries given by

green and the concept queries by blue.

7.3 Empirical Analysis of the Semantic Web

A number of statistics associated with the results of running each query against the

Semantic Web are analyzed. First, we investigate statistics about these Semantic Web

URIs and their resources themselves, such as their associated status codes and me-

dia types. In particular, we focus on the relative prominence of 303 redirection and

the hash convention. Then we statistically inspect the URIsactually conveyed by the

Semantic Web documents accessible from these URIs.

Surprisingly, there is a deluge of possible Semantic Web URIs for any given query.

Due to the high number of results for each query, we restricted our analysis tothe top 10

Semantic Web URI results for each queryas given by FALCON-S’s Page-ranking based

algorithm and distinguish this subset from all the URIs returned by the Semantic Web,

by calling this subset thecrawled URIs. Concept URIsarecrawled URIs from the

crawled concept querieswhile entity URIsarecrawled URIs from the crawled entity

queries. Although crawled URIs are a small subset of the total URIs retrieved, given
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that user behavior in general inspects the first ten URIs returned by this search (Granka

et al., 2004), it makes more sense to sample these ten URIs perquery than to sample

every URI retrieved. The crawled URIs totaled 70,128 URIs, composed of 25,400

(36%) concept URIs and 44,728 (63.78%) entity URIs. These URIs were crawled

using HTTP GET with a preference for application-type ofapplication+rdf/xml in

order to prefer RDF files served by content negotiation, and any 303 redirection was

followed.

Of all crawled queries, a total of 6,673 (85%) had at least 10 crawled URIs. All

concept queries had at least 10 crawled URIs and only 4,133 ofthe entity queries

(12%) did not have 10 URIs. Inspecting just the set of queriesthat did not have 10

crawled URIs, the average number of URIs when 10 URIs were notreturned was

2.89 (S.D. 2.88). So, the trend observed earlier was repeated in this smaller data-set,

namely that while most of the time too many URIs are retrievedfrom the Semantic

Web, sometimes there areno URIs retrieved from the Semantic Web for certain entity

queries. Looking at the data more closely, 357 (30%) of the crawled queries with

less than 10 results returnedno URIs, while 138 (12%) returned a single URI and

113 returned two URIs (10%). These queries with zero resultsseem to be mainly for

not well-known places such asplaya linda (a hotel in Majorica), fairly unknown

people such aswilliam ravies, misspellings, or popular truncations of names for

people such assteven colbertbush. This observation helps to explain the sudden

drop in Semantic Web URIs returned for queries in Figure 7.1.There was little overlap

between the the crawled URIs retrieved by different queries, with an overlap in entity

queries of 546 URIs (1%) and an overlap in concept queries of 1031 URIs (4%). In

other words, the various queries weren’t just retrieving the same small group of URIs

over and over again.

7.3.1 URI-based Statistics

In this section, we inspect the various kinds of statistics we can detect on the ‘macro-

level’ of the crawled URIs without actually accessing any Semantic Web documents

from the URIs. For all crawled URIs, Web representations were found to be served

with 12 different media types. In the event of any forwarding(such as use of the

303 or hash convention), the media-type of the retrieved file wasreported. The vast

majority of Web representations retrieved from crawled URIs (93%) used the correct

media-type (application/rdf+xml), although the amount of URIs returned with the
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56,893 93.31% application/rdf+xml

2,410 3.44% text/plain

1,246 2.04% text/html

167 .27% image/jpeg

147 .24% application/xml

54 .09% text/xml

31 .05% image/png

14 .02% image/svg+xml

3 .00% image/gif

2 .00% application/rdf-xml

Table 7.5: Top 10 media types

text/plain is large, followed bytext/html andapplication/xml. This is likely a

side effect of being unable to access or being unable to override the default media-types

given by the Web server.

The HTTP status returned by attempting to access the variouscrawled URIs is

given in Table 7.6. In particular, the most revealing statistic is that the majority of

the Semantic Web sampled by the crawled URIs is served using the303 convention,

not the hash convention. In fact, a total of 51,762 (73%) of crawled URIs use the

303 convention, while only 1,662 (2%) of the crawled URIs usethe hash convention.

Of these URIs returning the hash convention, manual inspection showed many to be

FOAF files. This shows the vast majority of the second-generation Semantic Web is

following the 303 convention and so obeying the W3C and the guide to publishing

Linked Data (Bizer et al., 2007). Thus, Berners-Lee’s vision is to some extent coming

true: The second generation of the Semantic Web is taking off, and is at least implicitly

endorsing Berners-Lee’s direct reference position. Yet this statistic as regards usage of

the303 convention is misleading in the broad sense, as most of the URIs are from a

single source, DBpedia, as shown later in Table 7.7.

The majority of URIs, 51,873 (74%), served a Web representation via303 redirec-

tion, and so returned the200 status code when the Web representation was accessed

after the redirection.200 status codes without303 redirection still form a substantial

fraction of Semantic Web URIs. There are several reasons forthis; all hash convention

URIs would by default still technically commit a redirect tobe served by a200 status
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51,873 73.97% 303

6,061 8.65% 200

4,517 6.44% 404

4,257 6.07% 500

3,147 4.49% 300

246 0.35% 406

20 0.03% 403

4 0.00% 302

3 0.00% 502

Table 7.6: Top 10 HTTP status codes for crawled URIs

code. However, this is only a minority (27%) of those URIs returning a200 status

code. The rest are likely caused by people serving RDF that donot have the access

to the Web server configuration needed to serve RDF using the303 redirection, while

many others may have started serving RDF before the TAG decision was made or are

not aware of the TAG decision. For example, some earlier RDF-enabled repositories

like W3C WordNet did redirection by300 redirection. A small percentage may be

ordinary web-pages, perhaps containing some meta-data as enabled by GRDDL, that

just happened to be indexed by the Semantic Web search engine(Connolly, 2007). Fur-

thermore, of these crawled URIs, 9,156 (13%) URIs had no Web representation that

was accessible via HTTP, shown by the use of a4xx or a5xx-level status code.

The top 10 hosts of Semantic Web data in the crawled URIs are given by Table

7.7. DBpedia, the export of Wikipedia to RDF, dominates the results with 83% of all

URIs coming from either Wikipedia or DBpedia (Auer et al., 2007). The W3C itself is

the third largest exporter of RDF with a share of 5%. Upon closer inspection, most of

the URIs crawled from the W3C derive from the W3C-hosted export of the linguistic

database Wordnet. The domain of the Frei Universität Berlin has a significant 2% of all

RDF data, which is due primarily to its Flickr photo export toRDF. An RDF-version

of Cyc and the biomedical data hosting site Bio2RDF also hostsmall but significant

amounts of Semantic Web data (Lenat, 1990; Belleau et al., 2008). The Russian-blog

hosting siteLiveinternet.ru carries on the tradition of FOAF exporting of Livejour-

nal. Truesense is another export of WordNet to RDF, althoughnot as frequently used

as W3C Wordnet. Towards the end of the distribution there is the RDF version of Uni-
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veristät Trier’s widely used DBLP academic citation database andOntoworld.org, a

RDF-enabled wiki for the Semantic Web research community (Völkel et al., 2006).

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

URI frequency−ordered domain names

N
um

be
r 

of
 U

R
Is

cr
aw

le
d

 

 
entity URIs
concept URIs
Total Semantic Web URIs

Figure 7.4: The rank-ordered distribution of the domain names hosting Semantic Web data

from the crawled URIs ordered by number of URIs hosted.

The average number of URIs hosted by any domain name was 1,268(S.D. 16,060),

with the average number of entity URIs hosted by any domain being 1,236 (S.D.

15,458) and the average number of concept URIs hosted by any domain being 1,0327

URIs (S.D. 6,650). The very high standard deviations are usually a sign of power-law

distribution, as shown in Figure 7.4. Attempting to fit a power-law distribution, theα
of the rank-ordered domain list frequency distribution is 1.53, with long tail behavior

starting around 175 and a Kolmogorov-SmirnovD-statistic of .1414 (p < .1), indicat-

ing insignificant fit for the power-law distribution. In other words, while a few sources

like DBpedia dominate the crawled URIs, with a rapidly decreasing number of smaller

sites such as Cyc and the W3C, the long-tail of individual URIs hosting their FOAF

files on their personal websites are still rather insignificant compared to the ‘top’ major
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54,698 78.00% dbpedia.org

3,584 5.11% wikipedia.org

3,448 4.92% w3.org

1,704 2.43% fuberlin.de

811 1.16% cyc.com

701 1.00% bio2rdf.org

599 0.85% liveinternet.ru

417 0.59% truesense.net

322 0.46% dblp.unitrier.de

314 0.47% ontoworld.org

Table 7.7: Top 10 domain names for URIs for crawled URIs

sites hosting Semantic Web data. This is likely because the Linked Data is being artifi-

cially generated in large ‘chunks’ by projects like W3C Wordnet and DBpedia, and so

do not organically form the power-law distribution characteristic of naturally-evolving

complex systems.

There is some interesting variation in domain names betweenquerying for entities

and concepts. While DBpedia dominates both entities and concept URIs, both Word-

Net and Cyc show themselves to be useful for retrieving information about concepts.

This is not surprising, as one of the primary claims of projects like Cyc and WordNet

are to encode abstract ‘common-sense’ knowledge and lexical knowledge respectively,

and this would naturally fall more under the domain of abstract concepts than physical

entities.

The top ten domains of crawled URIs for entity queries are given in Table 7.8 and

are noticeably different from the top crawled URIs for concept queries, which are given

in Table 7.9. This data-set is even more overwhelmingly dominated by DBpedia, and

to a lesser extent, ordinary Wikipedia URIs that were crawled due to their interlinking

with DBpedia. Furthermore, the rest of the domain distribution is more or less the

same, although towards the end there is another DBLP bibliographic database and

openlinksw.com, the site of a commercial Semantic Web and database company.The

semi-automatically constructed TAP database of named entities, the oldest large-scale

RDF source of data, also appears towards the end (Guha et al.,2003).

More noticeable by its absence than presence is the absence of WordNet and Cyc
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18,831 74.14% dbpedia.org

3,031 11.93% w3.org

709 2.79% cyc.com

555 2.19% bio2rdf.org

243 0.96% fuberlin.de

169 0.67% ontoworld.org

222 0.87% wikipedia.org

132 0.52% liveinternet.ru

103 0.41% semanticweb.org

Table 7.8: Top crawled concept URIs

in the list of top sources for entity URIs. Previously in workon lexical resources like

WordNet and even machine-readable dictionaries like the Oxford English Dictionary,

there has been much focus on the level of terms in the languageand on the level of

nouns for abstract concepts, and related adjectives, verbs, and adverbs. Many fre-

quently used words, especially those that are of interest tothose searching the Web,

may not be found so easily among terms in lexical resources like WordNet, since these

centrally-curated dictionaries do not include many popular people and places in cur-

rent events and fashion, such as particular musicians that capture the passing fancy

of the moment or particular hotels in popular tourist destinations. Yet collectively-

edited databases like Wikipedia do contain such trivial information on current events

and fashion, and it is precisely this information that composes much of the information

need of Web searches and likely even larger discourse outside the Web.

7.3.2 Triple-based Statistics

In this section, we move our analysis down from the level of URIs to the level of the

triples accessible from the URIs. Since a number of crawled URIs were inaccessi-

ble (returning some HTTP error code when accessed), this reduced the total number

of accessible crawled URIsto 60,972, a reduction of (13%) from the crawled URIs.

The accessible crawled URIs contained 24,074 accessible crawled concept URIs (95%

of all crawled concept URIs) and 36,898 accessible crawled entity URIs (82% of all

crawled entity URIs). Thus, the accessible crawled URIs maintained a bias towards

entity URIs (61% of all accessible crawled URIs) compared toconcept URIs (39% of
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35,867 80.19% dbpedia.org

3,362 7.52% wikipedia.org

1,461 3.26% fuberlin.de

467 1.04% www.liveinternet.ru

417 0.93 % www.w3.org

261 0.58 % dblp.unitrier.de

171 0.38% openlinksw.com

145 0.32% ontoworld.org

139 0.31% dblp.l3s.de

127 0.28% tap.stanford.edu

Table 7.9: Top crawled entity URIs

all accessible crawled URIs). Each of the crawled accessible URIs was accessed, and

this resulted in a total of 59,228 Web representations with only 48 URIs not allowing

access to a Semantic Web document. These non-Semantic Web documents were usu-

ally ordinary web-pages from which RDF triples could be extracted via GRDDL or

RDFa (Connolly, 2007; Adida et al., 2008). These crawled Semantic Web Documents

we will call thecrawled Semantic Web documents, and the total sum of triples in these

documents are called thecrawled triples.

There were a total of 411,574 RDF triples in the crawled triples, with 242,829

(59%) triples for concepts and 168,745 (41%) triples for entity URIs. Concepts seem

to require more triples to describe than entities. There were a total of 814,222 URIs

in the triples. The internal structure of these triples is ofsurprising interest. Of these

triples, there were a total of 1,051 blank nodes, a measly .25% of all triples in the

corpus, of which 772 (73%) were subjects and only 279 (27%) were in the object

position. This means that the use of blank nodes, whose purpose is as syntactic place-

holders in URIs for objects like lists and in representingn-ary arguments in RDF, is

almost non-existent in our sample. Of the non-blank node triples, the composition was

split between URI nodes (66%) and a surprisingly large minority of RDF literals nodes

(34%). These literals contain some form of information in either ‘unstructured’ natural

language or some form of structured information in a formal language, such as integer

values.

Of the literals, a total of 403,119 were RDF string literals,while only 2% were of
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403,119 97.95% RDF plain literal

3,103 0.75% http://www.w3.org/2001/XMLSchema#integer

2,789 0.68% http://www.w3.org/2001/XMLSchema#string

1,185 0.29% http://www.w3.org/2001/XMLSchema#double

522 0.13% http://www.w3.org/2001/XMLSchema#date

248 0.06% http://www.w3.org/2001/XMLSchema#float

136 0.03% http://www.w3.org/2001/XMLSchema#gYear

65 0.02% http://www.w3.org/2001/XMLSchema#gYearMonth

59 0.01% http://dbpedia.org/units/Rank

46 0.01% http://dbpedia.org/units/Dollar

14 0.00% http://www.w3.org/2001/XMLSchema#int

9 0.00% http://dbpedia.org/units/Percent

Table 7.10: Common data types in crawled triples

some other data type, with the top 10 frequent data-types given in Table 7.10. The most

frequent data-types are from XML Schema (Biron and Malhotra, 2004), while others

are customized for DBpedia. It appears that the vast majority of RDF in the Semantic

Web of interest to average users are simple URI-based triples with rich information

in natural language. This also goes against the intuition ofBerners-Lee that the vast

majority of Semantic Web data that is of interest to ordinaryusers would be the highly

structured data of exported databases (1998c) and against the logicist programme for

complex ontologies that enable rich inference. Instead, what is of interest on the Se-

mantic Web is stored mainly in natural language, with RDF adding only a minimal

structure to essentially fragments of natural language. While it could be argued that

this particular finding is merely an artifact of DBpedia, it should be acknowledged that

DBpediais most of Linked Data, at least in our query-based sample. We are not study-

ing the Semantic Web as some of its designers wouldlike to have it, but as itactually

exists, and part of its existence is that DBpedia forms a hugecentral cluster that for

ordinary users is the most interesting and useful part of Linked Data. However, it is

very possible that this is also an artifact of the indexing ofFALCON-S, which also

concentrates on DBpedia.

One interesting question is the predominance of the variouskinds of Semantic Web

knowledge representation terms on the Semantic Web, since this would show what
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kinds of inference could actually be deployed on the Semantic Web. First, of the total

1,093,212 URIs in triples harvested from the crawled accessible URIs, only 243,776

(22%) were from one of the primary W3C Semantic Web knowledgerepresentation

languages, either RDF, RDF(S), or OWL. Of these, the RDF vocabulary itself was

the most popular, with 109,300 URIs (45%), followed fairly closely by the RDF(S)

vocabulary with 100,340 URIs (41%), and OWL being dwarfed byRDF and RDF(S)

with only 34,136 URIs (14%). This does not mean that OWL is irrelevant to the other

corpus, as ontologies constructed with OWL could be deployed to model the concepts

and entities employed in ‘instance’ data. Yet while OWL has been an academic success

story, as regards practical deployment, RDF terms and RDF(S)-based inference seems

to be the foundation of the Semantic Web in practice.

What precise URI-based terms are used in these knowledge representation lan-

guages? The top constructs in either RDF, RDF(S), or OWL in crawled triples are given

in Table 7.11. To summarize, RDF(S) class and sub-class reasoning is very popular,

with this construction consisting of nearly half (48%) of knowledge representation use

of the Semantic Web. The second most popular use of knowledgerepresentation (22%)

is for natural language annotation, describing a particular Semantic Web resource us-

ing natural language and connecting this natural language description to the URI via

the use ofrdfs:comment or rdfs:label. There are surprisingly few (4%) actual on-

tologies in the crawled Semantic Web resources. Furthermore, non-traditional features

of RDF(S), such as the use ofrdfs:property, frequently occur. Even reification of

RDF triples, officially discouraged by the Semantic Web community, accounts for only

95 triples, and there is also fairly heavy use of discouragedRDF constructs to represent

different kinds of lists, such asrdf:Alt (349 occurrences) andrdf:Bag (344 occur-

rences). Lastly, while many Semantic Web researchers originally hoped that the use

of inverse functional properties would allow the merger of Semantic Web data, there

were zero explicitly declared usages ofowl:inverseFunctionalProperty. Overall,

the usage of OWL, RDF(S), and RDF terms in the corpus also follows to some degree

a power-law like distribution, whereα equal to 1.5, with long tail behaviour starting

around 90, although the Kolmogorov-SmirnovD-statistic of .1911 (p< .1) reveals this

to be insignificant. This is because while a few terms vastly dominate, the vast majority

of other terms arenot used at all. This has repercussions for both Semantic Web imple-

menters and vocabulary specification within the W3C, since obviously some level of

concentration of effort upon the most frequently-deployedterms would be reasonable.

One of the most popular OWL constructs is indeed the controversialowl:sameAs
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term, which is used to declare some sort of global equivalence between two URIs.

While a tiny portion (.47%) of overall Semantic Web languageterm usage, it is far from

insignificant, with 1,157 occurrences. The use ofowl:sameAs in the wild is rather dif-

ferent from the role it plays in popular debate than one wouldsuppose. Logicians hold

that owl:sameAs is only for what is properly considered individuals in description

logic, so that classes and properties should use the more restricted and semantically

correctowl:equivalentClass andowl:equivalentProperty. Yet this best prac-

tice in logic hasn’t reached the Linked Data community, asowl:equivalentClass

has only 2 occurrences and there are none ofowl:equivalentProperty. Instead, the

Linked Data movement usesowl:sameAs to simply “state that another data source also

provides information about a specific non-information resource,” so leadingowl:sameAs

to tend to mean ‘more-or-less the same thing as’ (Bizer et al., 2007). This practice leads

to the fear that the use ofowl:sameAs would propagate too far, such that many URIs

for perhaps differing referents would be declared identical (Ginsberg, 2006).

Both critiques ofowl:sameAs appear to be wrong. Given the amount of Semantic

Web URIs returned by the queries, while there is considerable use ofowl:sameAs,

it appears that the manual discovery and publication of co-referential URIs using

owl:sameAs falls far behind the actual growth of the Semantic Web. One could even

say thatowl:sameAs is not being used enough. The real problem is not that distinct

things are being given the same URI, but thereverse; namely that it appears endemic

that the same thing has multiple URIs. Berners-Lee’s hypothesis appears to be wrong:

A single thing is likely to be identified by more than a single URI on the Semantic

Web.

The top 10 Semantic Web vocabularies used in the crawled triples, including those

terms outside of the W3C-approved Semantic Web knowledge representation languages,

are shown in Table 7.12. The results should not be surprising, in particular the vast

dominance of DBpedia. Perhaps surprising is the high frequency of Cyc terms, as

well as terms from SKOS, the Simple Knowledge Organization System of the W3C,

whose primary source of deployment is the W3C’s export of WordNet to RDF (Miles

and Bechhofer, 2008). FOAF is also significant, although notnearly as dominant as

was found earlier by Ding and Finin (2006). Also popular is YAGO (Yet Another

Global Ontology), a merger of WordNet and Wikipedia category hierarchies employed

by DBpedia (Suchanek et al., 2007).

There are significant differences in the vocabulary level between entities and con-

cepts. DBpedia URIs occur more often in entity triples than concept triples: 267,323
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73,451 30.31% rdfs:Class

47,044 19.30% rdfs:comment

44,113 18.10% rdfs:subClassOf

8,630 3.54% owl:Ontology

7,256 2.97% rdfs:label

6,618 2.14% rdf:Subject

5,107 2.09% owl:ObjectProperty

3,642 1.49% rdfs:subPropertyOf

1,157 0.47% owl:sameAs

535 0.29% rdfs:range

Table 7.11: RDF and OWL constructs in crawled triples

URIs for entities compared to 66,325 URIs for concepts. There are also far more FOAF

URIs in entity triples, ranging from 2,531 FOAF triples as opposed to 732 for concept

triples. In contrast, there are 1,105 WordNet URIs in concept triples compared to 731

URIs in entity triples. In general, it seems that the patternfor vocabularies found in

URIs holds for vocabularies on the triple-level, and that concepts have a slightly more

diverse range of sources than entities.

What URIs are the most popular in the triples themselves? An analysis of the top

ten most frequent URIs inanyposition in Semantic Web triples is given in Table 7.13,

and the results are of interest. The first triple is the ubiquitousrdf:type term that sep-

arates predicates, subjects, and objects. Further triplesfrom Cyc, RDF(S), and OWL

are also very popular. Yet one very popular URI resource is actually just a Seman-

tic Web version of a Wikipedia redirection,dbpedia:redirect. Since most of these

URIs are obviously being hosted by303 redirection, this shows that one crucial error

in exporting a database into RDF is the lack of URI re-usage, because these types of

large-scale exports simply mint new URIs for everything in the database. For exam-

ple, it would be far better to have a single URI for these Wikipedia redirections with a

single303 redirection rather than numerous redirections done using aspecialized DB-

pedia vocabulary term inside a Semantic Web document. More surprisingly, bizarre

hubs of entities emerge, mainly large lists of entities withcommon names indexed by

Wikipedia, such as a list of Harvard graduates and people whohave Dallas, Texas as a

hometown. The emergence of these URIs as highly frequent on apopularity list is the
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366,849 33.55% DBpedia URIs

109,300 9.99% RDF URIs

100,340 9.17% RDF(S) URIs

94,520 8.65% Cyc URIs

34,136 3.12% OWL URIs

6,563 0.60% SKOS URIs

4,728 0.43% dblp.l3s.de

3,263 0.29% FOAF URIS

2,170 0.20% YAGO URIs

1,836 0.16% WordNet URI

Table 7.12: Top vocabulary URIs in crawled triples

Semantic Web equivalent, albeit non-malicious, of a link farm on hypertext search en-

gines. Since many people with common names are in these documents, they are heav-

ily linked to, so the employment of algorithms like PageRankover the Semantic Web

cannot discriminate these lists of links from the more information-rich Semantic Web

documents (Brin and Page, 1998). While the top of the distribution of URIs in triples

is a strange mixture of the reassuring and odd, the distribution of URIs in Linked Data

follows a power-law distribution, as observed visually by Oren et al. (2008) and shown

again in Figure 7.5. Using the maximum likelihood method advocated by Clauset et

al., for the first time the actual parameters of this power-law can be given: theα of the

power law is 2.00, with long-tail behavior commencing around a frequency of 32, and

a Kolomogorov-SmirnovD-statistic of .0157 (p > .1), demonstrating an exceptionally

good fit (Clauset et al., 2007).

7.4 Conclusion

The empirical analysis of the Semantic Web presented in thisstudy is by no means

complete, for it is only a moderately small sample, althoughit is an important one

as this sample is driven by Web search queries by actual users. The results of this

empirical analysis show a transformation from the first-generation logicist Semantic

Web to the second-generation Web of Linked Data. The Semantic Web as it existed in

the first-generation was a motley collection of RDF triples,heavily dominated by a few
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Figure 7.5: The rank-ordered frequency distribution of all distinct URIs in crawled Semantic

Web triples.

exports of social networking data into FOAF and a long-tail of complex academically-

produced ontologies. Linked Data - at least the section of itthat is of interest to users

querying the Web for information - is dominated heavily by DBpedia and consists

primarily of collections of triples that provide a minimal structure to natural language

(Ding and Finin, 2006). While the logicist Semantic Web can be acknowledged as a

failure as regards practical deployment, the second-generation Web of Linked Data,

heavily inspired by the Principles of Web architecture, hastaken off. We have shown

that for a wide-range of queries by ordinary users, relevantinformation may very well

be on the Semantic Web. Furthermore, the success of the Linked Data Web points to

what appears to be a practical victory for Berners-Lee’s direct reference position, as

almost all of the Linked Data Web consists of exports of databases and almost all of it

employs the303 redirection convention.

One could argue that these results are more characteristic of FALCON-S and DB-

pedia than the second-generation ‘Linked Data’ Semantic Web as a whole. However,

we would respond that it is natural in decentralized information systems for power law

distributions, where one source of data massively outweighs others in weight to evolve,

and the ‘giant component’ of Linked Data is DBpedia (Barabasi et al., 2000). In fact,

if such a ‘giant component’ and long tail were not observed, it would be cause for sus-

picion. Furthermore, the resultsshouldbe checked against other Semantic Web search

engines besides FALCON-S, and future work with different Semantic Web search en-

gines will be done for future work.
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108,909 13.37% http://www.w3.org/1999/02/22-rdf-syntax-ns#type

62,469 7.67% http://www.cyc.com/2004/06/04/cyc#guid

47,021 5.77% http://www.w3.org/2000/01/rdf-schema#comment

44,113 5.42% http://www.w3.org/2000/01/rdf-schema#subClassOf

26,789 3.29% http://www.w3.org/2002/07/owl#Class

14,615 1.79% http://dbpedia.org/property/wikiPageUsesTemplate

11,402 1.40% http://www.cyc.com/2004/06/04/cyc#EnglishWord

9,492 1.17% http://dbpedia.org/resource/Listof HarvardUniversity people

8,149 1.17% http://dbpedia.org/property/redirect

7,918 1.00% http://dbpedia.org/resource/Dallas%2CTexas

Table 7.13: Top 10 URIs in crawled triples

On the level of triples, there are some surprising conclusions. The triples on the

Semantic Web contain a vast range of data, and the exact kindsof URIs used in the

triples are somewhat unpredictable. However, the kinds of vocabularies actually de-

ployed are almost entirely from a few large vocabularies, such as DBpedia, DBLP,

WordNet, YAGO, and FOAF. This again points to a victory of Berners-Lee’s idea that

a few large vocabularies with well-defined terms could dominate the Semantic Web

(Berners-Lee and Kagal, 2004). In a further defeat for the logicist position, the kinds

of triples that structured this data do not contain many OWL terms optimized for infer-

ence, but consist almost entirely of relatively straightforward RDF(S) expressions for

sub-class relationships and for annotations in natural language. Overall, the Seman-

tic Web is primarily being used to provide structured relationships between fragments

of natural language, andnot for inference. Given the lack of use of inference and

the widespread use of the303 convention, the vision of Berners-Lee and the di-

rect reference position is the victor in practice over the earlier logicist Semantic Web

championed by Hayes.

All is possibly not well with Berners-Lee’s vision of a Semantic Web where ref-

erence is established by fiat. The entire purpose of the Semantic Web is supposedly

decentralized data integration via the re-use of public identifiers. While the number of

RDF properties, or kinds of links, are dominated by a few large vocabularies, as regards

re-using URIs to identify things in the world, Linked Data may not be faring well. The

most noticeable result of this keyword-driven analysis of the Semantic Web is that a
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truly huge list of URIs have been returned for each keyword. At first glance, this has

far more in common with the hypertext Web than the Semantic Web, as normal hyper-

text search engines usually respond with a long list of URIs in response to a hypertext

search. However, it should be remembered that there is a crucial difference between

the work done in this chapter and hypertext Web search: that we were searching for

Semantic Web URIs for concepts and entities, not just relevant web-pages. In the ideal

Semantic Search scenario, for every reasonable unambiguous query for an entity or

concept, the single ‘best’ URI for that entity or concept would be returned. So does

this mean that necessarily there are many URIs for a single referent being returned?

Indeed, at this point, we cannot determine that too many URIsfor a single concept

or entity exist on the Semantic Web from the experiment results given here without

further analysis. A number of alternative hypotheses are possible. As these URIs were

returned by common information retrieval techniques, it isvery possible that every Se-

mantic Web document that mentioned the term is returned, andthis would naturally

overgenerate URIs, even if like a golden needle in a haystack, somewherein the list

of returned URIs was the one and only one Semantic Web URI for the concept or en-

tity. Second, it could very well be that query itself is ambiguous, and thus naturally

there would be more than one URI for an entity or concept returned, as the query term

would retrieve at least one URI for every sense. It could evenbe that each URI de-

notes a slightly different sense of the term of query term, sothat none of these URIs

can be thought of as the ‘best’ Semantic Web URI for that concept or entity. With so

many possible hypotheses, at this moment we cannot judge whether or not Berners-

Lee’s direct reference position to use only one URI for a concept or entity is being

followed. What is needed is for humans to inspect at least a subset of these queries to

see if any of the returned URIs genuinely do refer to the same entity or concept, as is

done in Chapter 9. Yet, first we need to determine how to reducethe ambiguity of the

queries themselves, so we can be sure that the returned URIs are genuinely about what

referents the agent was trying to express with the keywords.In order to capture the

phenomenon of reference in relationship to natural language in a more sophisticated

manner than done in Chapter 6, we outline both a new position on sense and reference,

and a practical system for capturing the sense of keyword searches in Chapter 8.



Chapter 8

A Solution to the Identity Crisis: From

Wittgenstein to Search Engines

The solution to any problem in AI may be found in the writings of Wittgenstein, though

the details of implementations are rather sketchyR.M. Duck-Lewis (Hirst, 2000), as

quoted in Wilks (2008a).

It appears we are at an impasse at the Identity Crisis. First,both the positions champi-

oned by Berners-Lee and Hayes seem to ground out in some theory where meaning is

determined by reference. While the failure of the first-generation Semantic Web shows

that reference via logical descriptions is not enough, the growth of the Linked Data

project shows that the application of the principles of Web architecture to knowledge

representation works. This in turn seems to have implicitlyvalidated Berners-Lee’s

direct reference position. Yet that is far from true; what isapparent from our analysis

of Linked Data in Chapter 7 is primarily that the Identity Crisis persists in a new form

on the Linked Data Web; there appear to betoo manyURIs for some things, while

no URIs for other things. Having someone declare a URI to refer somehow directly

to some referent byfiat does not work in a decentralized system like the Web. As

differing users export differing representations to the Web in a decentralized manner,

new URIs are always minted, leading each Linked Data source to be fairly closed, and

so running the risk of fracturing the Semantic Web into isolated ‘semantic’ islands in-

stead of becoming a unified ‘semantic continent.’ The critical missing element of the

Semantic Web is some mechanism that allows users to come to agreement on URIs and

then share and re-use them, a problem ignored both by the logicist and direct reference

positions. In this chapter, we outline a third position, thepublic language position.

169
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Rather surprisingly, the way forward is to be found in a footnote of Kripke’s in

Naming and Necessity, where Kripke says that “a name refers to an object if there

exists a chain of communication, stretching back to baptism, at each stage of which

there was a successful intention to preserve reference” (1972). Yet Kripke stipulates

an unreasonable condition. It is almost impossible to determine with certainty if ref-

erence has been preserved in of and itself due to the inherit ambiguity in natural lan-

guage. More importantly, Kripke admits even thecausaltheory of reference is not a

purelycausal story, at least in the way the term ‘causal’ has been defined in Chapter 3,

where causal is exemplified as a purely physical story dependent on local connections,

such as when a ball on a billiard table hits another ball andcausesthe latter ball to

move. Kripke admits there must be a chain ofcommunication, and this communica-

tion must exist in the form of information encoded in alanguage, which for distal and

so representational content, this language must be phrasedin terms of descriptions and

depictions. The language responsible for naming conventions that Kripke hints at is

not a private language, or a logical language, but asocial language capable of having

causal effects upon the world and its users, and so being “objective” as was required

of the concept of sense by Frege (1892). So, in our pursuit of atheory of reference and

meaning for the Semantic Web, we are drawn into the waiting arms of Wittgenstein.

8.1 Wittgenstein and the Public Language Position

It is precisely thesocialnotion of language that has been strangely missing from the

debates on reference and meaning on the Semantic Web so far. One of the hidden

presumptions of the logicist position, as promoted from Carnap to Hayes, is the tra-

dition that language can be aprivatephenomenon, that it can be possessed and used

by asingleidealized agent to accurately describe and refer to the world. Wittgenstein,

whoseTractatuswas the original inspiration for this position, returned torefute this

point in hisPhilosophical Investigations(1953). In this later work, Wittgenstein gives

a forceful argument against private language and logicism,whose defenders he be-

lieved had misinterpreted his outlook in theTractatus. This ‘late’ Wittgenstein opens

up the way for a new conception of language based on thepublicuse of language.1 To

briefly outline Wittgenstein’s arguments inPhilosophical Investigationsis an impossi-

ble task, due to both the density of his thought, his brief aphoristic style, and the vast

1This adjective ‘late’ is used to distinguish his philosophyfrom his earlier work on theTractatus,
although the rupture between these two periods may be exaggerated by his interpreters.
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range of topics he covers. To complicate matters, the ‘late’Wittgenstein has produced

a massive secondary literature, which due to space constraints we will ignore, focusing

only via direct quotation from Wittgenstein himself on a fewaspects of his work with

consequences for computational implementations on the Semantic Web.

The purpose of this section is to clarify a few key concepts ofWittgenstein, in

particular, his analysis of ‘the form of life’ and ‘languagegames,’ the dictum ‘meaning-

is-use’ and the status of reference in a Wittgensteinian theory of language. From this

exposition we will attempt to determine what a Wittgensteinian response to the Identity

Crisis would be, a position we call thepublic language position. From this position

we will determine the design requirements for a practical implementation for helping

to solve the Identity Crisis.

8.1.1 Language Games and Data Integration

When Wittgenstein was arguing with Piero Sraffa that everything in the world must be

expressible by the grammar of logic, Sraffa made a flicking ofhis fingers underneath

his chin, asking Wittgenstein, “what was the grammar of that?” (Monk, 1991). Real-

izing that no logical grammar did justice to Sraffa’s act, Wittgenstein abandoned his

view of language as logic and rephrased it in terms of a “language game” (1953). The

term ‘language-game’ is “meant to bring into prominence thefact that the speaking of

language is part of an activity, or of a form of life” (Wittgenstein, 1953). So, languages

are composed ofactions in the world. Earlier in Chapter 3 we defined the ‘meaning’ of

a term to be the concrete activity of the agent that encounters or uses the term, and so

encompasses communicative actions like Sraffa’s flicking of the fingers as meaning-

ful. Wittgenstein also points out that all the terms in a language derive their meaning

from this interwoven web of action and words, so that the words compose a language

in virtue of their relationships to other words and actions,for “these phenomena have

no one thing in common which makes us use the same word for all –but that they are

related to one another in many different ways. And it is because of this relationship,

or these relationships, that we call them all ‘language’...” (1953). However, there is no

onemonolithic language, but a variety of different language-games that represent the

multiplicity of uses in which language can be applied; “the functions of words” are as

diverse as the purposes of “tools in a tool-box” as “there arecountless different kinds

of use of what we call ‘symbols’, ‘words’, ‘sentences”’ (Wittgenstein, 1953). The

purpose of a particular language-game is not the transmission of subjective and inner
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intentions from one agent to another in some sort Gricean manner, but the creation of

co-ordinated action driven by a purpose (Grice, 1957).

Wittgenstein says “to invent a language could mean to inventan instrument for a

particular purpose” (Wittgenstein, 1953). The purposes ofevolved natural languages

are incredibly varied, but new formal languages are invented for a purpose, at least as

we defined the term in Chapter 3. What is the purpose of the Semantic Web? Why

would anyone participate in this particular language game rather than the language

game of the hypertext Web, or some other language game altogether? On this point,

the Semantic Web is positively schizophrenic, vacillatingbetween afirst-generationvi-

sion of classical artificial intelligence replete with inference-driven agents, andsecond-

generationvision of opening databases according to the Principles of Web architecture

for applications that cannot yet be imagined. Obviously, these purposes have only been

successful at attracting artificial intelligence researchers and true believers in Berners-

Lee to the fold of the Semantic Web.

What the Semantic Web needs is a convincing purpose that willattract large num-

bers of users: “the Semantic Web is a solution in need of a problem” (Halpin and

Thompson, 2006). The best way to understand the purpose of a language, including a

formal language, is not to inspect what the language specificationsaysit does, but to

observe what itactuallydoes in operation. In this, the only benefit of RDF over tradi-

tional semantic networks is the use of URIs, which allows differing graphs that share

the same RDF to automatically merge. So regardless of what its proponents say, the

purpose of the Semantic Web isdata integration. However, as there is almost no re-use

of URIs on the Semantic Web, as a language-game for data-integration the Semantic

Web also seems to be a failure. The first-generation of the Semantic Web ignored the

re-usage of URIs due to its logicist position that held URIs to be merely an odd sort of

symbol, no better or worse than any other. The second-generation of the Semantic Web

tends to mint new URIs for everything in order to preserve theunique and particular

meaningful use of a term in each database. What is lacking from the Semantic Web is

obvious:agents should be able to easily discover and re-use URIs for things outside

the Web like concepts and entities.

8.1.2 Against Private Language

Wittgenstein attacks the very idea of aprivate language, a language that is somehow

only understood by a single person and hence untranslatableto other languages, where
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“the individual words of this language are to refer to what can only be known to the

person speaking; to his immediate private sensations. So another person cannot under-

stand the language” (1953). His primary example is the use ofa language to describe

sensations of pain. Wittgenstein argues that such a language is absurd, as there would

be no “right” way to use the private word for the sensation, for “whatever is going to

seem right to me is right” (Wittgenstein, 1953). In his second famous attack on private

language, Wittgenstein phrases an attack on private codes of behavior in the infamous

example of rule-following in a game like chess, stating that, “It is not possible that

there should have been only one occasion on which only one person obeyed a rule”

(Wittgenstein, 1953). There can be no norms for behavior, and therefore no meaning,

in a private language game. This follows from the insight that norms ultimately in-

volve others, where the norm is repeated in different circumstances and mediates the

collective behavior of multiple agents.

On the Semantic Web, the logicist and direct reference positions both conceive

language as a private language. The causal theory of reference of Kripke, Putnam,and

Berners-Lee believes that a name is established by fiat by an individual or some ap-

proved authority, such as science or the domain name registry, and so is dependent on

some notion of what the individual or science wants a name to ‘really’ mean. In con-

trast, the descriptivist theory of reference of Hayes, Russell, and Tarski holds that the

referent is established by the use of logical descriptions regardless of what any indi-

vidual ‘means’ by the term. However, the descriptivist theory of referencealsoignores

any public or social aspect of the descriptions: the descriptions can be created by an

individual without regard to any social convention and the satisfaction of the descrip-

tive terms is given by either objective features of the worldor satisfaction of the model.

Furthermore, both the causal and descriptivist theory of reference crucially depend on

some notion of ‘sense-data’ that can be assigned a name, either by a description or

direct acquaintance.

Strangely enough, there is a deep affinity between both the descriptivist and causal

theories of reference, for a Kripkean baptism is just some sort of causalrelationship

between sense data and a name, exemplified by the act of saying‘the name of that is the

Eiffel Tower.’ This account of baptism isprecisely the same asRussell’s account of the

use of names via direct acquaintance with ‘sense-data,’ given a slightly more modern

update with Hayes’s account of ostention for naming on the Semantic Web (Hayes

and Halpin, 2008). Furthermore, there is in no difference inestablishing a name via

baptism-acquaintance than there is establishing a name by the use of descriptive terms.
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A Russellian descriptivist would simply have some ‘sense-data’ that they could label

with ‘that is an iron tower’ and then generalize to other setsof ‘sense data’ to which one

can apply the terms ‘iron’ and ‘tower’ via more complex logical statements involving

towers and their descriptions. Likewise, the idea of directacquaintance with sense data

equally underpins both Putnam and Berners-Lee. Both think that reference should be

determined by some “guardians of meaning,” for instead of just labeling a patch of

sense-data with the term ‘iron tower,’ the scientists wouldlabel the sense-data with the

use of a name like ‘iron tower’ only after it successfully passed some authoritative test,

such as a test for the chemical composition of iron (Wilks, 1975).

Using the famous example of the ‘duck-rabbit’, Wittgenstein undermines the very

idea of establishing a referent via direct acquaintance andbaptism (1953). After all,

if one can not determine that a simple sketch is of a ‘duck’ or a‘rabbit,’ then how

cananyoneobjectively and without ambiguity attach a name to some data? The in-

determinacy of the infamous ‘duck-rabbit’ shows that at least in some cases there is

no determinate nature of our phenomenological ‘sense-data.’ Having disposed of the

notion of ostention somehow providing direct access to sense-data, baptism of even

indeterminate sense-data – by either Kripkean baptism or Russellian descriptions – is

attacked next. Wittgenstein holds that any act of baptism isincapable of assigning a

name if the act is done by a private individual, “naming appears as aqueerconnection

of a world with an object – and you really get such a queer connection of a word when

a philosopher tries to bring out the relations between name and thing by staring at an

object in front of him and repeating a name or even the word ‘this’ innumerable times”

(Wittgenstein, 1953). Only in the very rarefied form of life known as academic philos-

ophy does this happen evenin theory. This is because “naming is so far not a move in

the language-game any more than putting a piece in its place on a board is a move in

chess. We may say:nothinghas so far been done, when a thing has been named. It

has not evengot a name except in the language game. This is what Frege meant too,

when he said that a word has meaning only as part of a sentence”(Wittgenstein, 1953).

Indeed, naming as a purely private convention serves no purpose. It is only as part

of a wider language-game that anything can have a name in the first place. Even what

appears to be the most private of sensory experiences is bothdetermined and expressed

by a public language.
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8.1.3 The Public Language Position

In order to escape the philosophical quagmire of private language, Wittgenstein points

out, “Do not ask yourself ‘how does it work with me?’ – ask ‘What do I know about

someone else?’ (1953). A language ispublic and inexorablysocial, involving more

than one agent. Acommunitycan be defined sparsely asa group of agents that use

the same language. Note that languages are not monoliths, as an agent may use many

languages, and may only share certain intersections of names in various languages with

other agents. As a public language-game is used by more than asingle agent involved,

it is proper to say that acommunity uses a languagerather than an individual agent.

So a third position, in contrast to both the logicist and direct reference positions, can

now be staked. Thepublic language positionstates that sincethe Semantic Web is a

form of languagethen asa language exists as a mechanism for co-ordination among

multiple agents, then the meaning of a URI is the use of the URIby a community of

agents.

To contrast this position with the direct reference position, the meaning of a URI

is not determined by whatever referent is assigned to it by its owner, unless the owner

and other agents actually can come to an agreement on its meaning. The public lan-

guage position does not give the owner of a URI any particularprivilege, except for the

obvious asymmetric technical privilege of having the ability to influence the use of the

URI through hosting an accessible Web representation or redirecting to another URI.

Unlike the causal theory of reference and the descriptivisttheory of reference,

Wittgenstein does not equate the meaning of a sentence with ‘truth’ or the satisfac-

tion of a model as somethingoutsidethe language-game. Wittgenstein retorts that

only “in our language” can “we apply the calculus of truth” (1953). From Frege to

Tarski, the logicist camp’s reduction of meaning to truth-conditions only makes sense

in terms oftheir particular language-game of logic, which while useful in the realm

of mathematics, fails when the wider social aspects of meaning come into play. The

model(s) that satisfy the descriptions are only interesting insofar as the inferences they

allow to play meaningful roles within a wider language-game. In the case where the

inferences and the use of the URI are at odds, an agent using the URI can justignore

the inferences in determining the meaning of the URI.

Ambiguity is built into a Wittgensteinian public language position, and the kind

of ambiguity that Wittgenstein is concerned with is not the logicist kind of ambiguity

resulting from entailments failing to constrain interpretations. Earlier in Section 6.2,
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Hayes defended the notion that names were fundamentally ambiguous. While this is

common-sense, he put forward the thesis that reference could not be determined at

all by external factors, but is instead determined purely bythe individual using the

name, who can assign to it any interpretation they wish. Thisis to some extent sim-

ilar to Kripke and Berners-Lee’s assignment of a referent via baptism as explored in

Section 6.3, and as such is also a private language argument.Yet unlike their direct

reference position, Hayes holds that the reference given inan interpretation happens

to be incommunicable unambiguously via description, as “there will always be some

slack, some possible doubt about what exactly is being referred to” (Hayes and Halpin,

2008). Again, the ambiguity in the logicist position is muchwider than Wittgensteinian

ambiguity. For Wittgenstein, ambiguity is naturally constrained by the conventions of

the language game and the form of life, which are restricted in turn by the external

world. While the Wittgensteinian public language positionwould note that there is

always some ambiguity in language, worrying about this ambiguity misses the point,

as the point of a language game is not to pin down names to referents exactly, but

instead to share enough of a convention to accomplish some task or solve some prob-

lem. Ambiguity is usually solved by the embodied or implicitcontext given in the

language-game – it is not without reason that Wittgenstein begins thePhilosophical

Investigationscontrasting the Augustinian approach of assigning the builders to ob-

jects with the language game of builders moving slabs or rockaround. For the builders,

their task at hand determines their meaning of the word. Thus, some ambiguity may

be necessary for successful communication. The role of descriptions and inference is

not in determining referents, but only when the various agents in a language-game are

not clear about the role of a name in a language game, so that “an explanation may

indeed rest on another one that has been given, but none in need of another – unless

we require it to prevent a misunderstanding” (Wittgenstein, 1953). In this manner, in-

ference and entailments that restrict interpretations, asdefended by Hayes, are only a

primitive logical analogue to the real-world context that both constrains ambiguity in a

language game while usually never dispelling it. While someinferential mechanisms

can be useful when errors are made in a language game, in general inference can not

express the constraints and even the world given by the contextual use of name in a

language game.

From the perspective of the public language position, when anew URI comes into

play on the Semantic Web, the agents do not have to specify thereferents of the URI

to use it meaningfully. This justifies the earlier observation of Hayes that attempts to
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over-specify reference can in fact lead to disagreement (Hayes and Halpin, 2008). If

the referent of a name has to be specified for the name to be used, it only has to be

specified to the minimal conditions necessary to co-ordinate actions between agents.

Contra Berners-Lee’s direct reference position, only in very rare language games does

the referent of some representation have to be specified in an‘unambiguous’ manner.

How does the public language position actually play out on the Semantic Web? To

apply Wittgenstein to the Semantic Web, the first observation is then that the Semantic

Web is a newlanguage-game. There is no reason why language-games in a Wittgen-

steinian sense have to be restricted to natural languages, for Wittgenstein himself notes

that “new types of language, new language-games, as we may say, come into exis-

tence, and others become obsolete and get forgotten” (1953). The struggle over the

Identity Crisis within the Semantic Web is precisely the struggle over the conventions

of reference needed for a new language. Remember that we havedefined earlier in

Chapter 3 the term ‘language’ and ‘sense’ to beneutralbetween formal languages for

computers and natural languages. Formal languages are often mistakenly assumed to

be meaningless due to their not taking into account the concrete activity that occurs as

a result of their use but instead to be pure “syntax churning”(Harnad, 1990). Given

that agents can be computers as much as humans, with their ownnorms for behavior

– such as protocols – there seems to be no reason why computers, or combinations

of computers and humans, cannot create and use new language-games. After all, the

moving around of voltage-driven bits by a computer is just asreal and meaningful as a

human moving their body around and uttering sounds. It is just that what is meaning-

ful for a computer may be meaningless to a human observer! Still, with the Semantic

Web, we are hoping to create a language to mediate data integration between various

human-created sources of data, and so one criterion of the Semantic Web is that it

shouldbothbe meaningful for computers and humans.

Are URIs somehow different from names in natural language? The answer to this

goes back to the notion of the Semantic Web being a game wherenewnames can be

created primarily formachinesrather than humans to use. While Wittgenstein him-

self does not give an adequate treatment of the creation of new language-games, other

philosophers like Searle have pursued this line of inquiry.Unlike names in natural

language based on what Anscombe termed “brute facts,” such as ‘trees’, ‘forests’,

and ‘leaves,’ Searle points out that some names existonly due to social conventions

(Anscombe, 1958; Searle, 1995). The existence of a name – which Searle classifies as

one kind of “institutional fact” – only exists in the contextof some social phenomenon,
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just as the name ‘money’ and its concrete referents only exist in the context of com-

mercial exchange (1995). Both the name and the actual use of money are not based

on any regularities of the physical things, but instead depend on a collective agreement

that bestows a certain function upon the use of the name and associated activities of

the language-game. There is no reason certain sound-waves or even bits of paper are

associated with the linguistic term ‘money’. Also, names ofinstitutional facts can refer

to classes or kinds of things: There is nothing in therealizationof money, such as a

piece of thin paper, that would necessitate it being an all-purpose-mechanism to indi-

cate value; it is precisely this fluidity of encodings that allows money to have manifold

realizations from encodings in stock-market databases to bars of gold. This agreed

upon purpose of a new name and its referent in a language givesthe name and referent

its status function(Searle, 1995). In order to convey the status function, the referent of

the name can be given some additional physical mark(s), called astatus indicatorthat

demarcates the special role the realization is playing in some language-game, such as

a seal and writing which were attached to money. Once some community has accepted

that particular status function, then the status function impacts on the activity of that

community, but “the object is no different...that functionis manifested only in actual

transactions; hence our interest is not in the object but in the processes and events

where the functions are manifested” (Searle, 1995). The agreement on status functions

does not have to beconscious. We simply use money to exchange commodities and

expect other agents to value the nature of our agreement, andare not even overtly con-

scious of the agreement; the language-game is simply accepted asgiven. However, a

nameonlyhas this status function because agents collectively agreethat the name does

at some point, and convey the usage of this name in a language-game to others. If peo-

ple refused to believe that there was a class of institutional facts called money, money

itself would return to being worthless paper overnight. Onefeature of language-games

is brought into the clear by institutional facts: most institutional facts only exist due

to the existence of other institutional facts and associated activities. For example, the

collective agreement that is money comes along with many debts and obligations, such

as the agreement that the money can be exchanged for goods in proportion to its value,

and it also comes with a cluster of other names, such as ‘bank’and ‘interest’ that it

cannot exist without. The same even goes for proper names such as the ‘Eiffel Tower,’

which exists in a cluster with Paris, France and Gustave Eiffel.

The parallel of URIs with names in natural language for institutional facts should

be straightforward. The Semantic Web needs URIs to be accepted as names for things,
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in particular entities and concepts that cannot be realizedas some encodings transfer-

able over the Web. In order for URIs to be used as names for these kind of things,

URIs need at first to be explicitly and collectively agreed upon by a community, and

then as more and more applications use these URIs, this usageof URIs as names will

unconsciously actuallybecomenames for things. The status function of these URIs is

their use as identifiers for data merger in RDF triples, and the somewhat unsatisfactory

status indicator that separates URIs for things not on the Web from other URIs is their

use of the303 or hash convention. The URI by itself is not special, for to someone

outside the language-game of the Semantic Web, the URI for the Eiffel Tower itself

would just access another web-page about the Eiffel Tower. So the sheerassumption

of the use of URIs as some sort of universal naming conventionis doomed to failure,

as there is no reason a URI, which is just a particular character string in of and itself, is

a better name than any other string of characters, like Digital Object Identifiers (DOIs)

or just names in natural language (Kahn and Wilensky, 2006).The main reason URIs

work for names for certain types of information like hypertext web-pages is that they

allow accessto these web-pages. Of course, this advantage can be lost with regards to

using URIs as names for things like entities and concepts, sothe principles of provid-

ing some accessible Web representation should be followed.Any naming convention

cannot be taken for granted, but must be established by explicit or implicit agreement

in order to boot-strap its use in the wild.2

8.1.4 The Representational Nexus

How can new language-games, like the Semantic Web’s language-game of URIs, be

created? Searle and Wittgenstein offer us no answer. Worse,for the purpose of the

Semantic Web, it is important that these URIs be used referentially, yet Wittgenstein

appears to completely dismiss notions of reference by stating that “the meaning of

a word is its use in the language” (Wittgenstein, 1953). By throwing the problem

of reference out of the window, Wittgenstein is actually in good company, with Quine

having argued for the “inscrutability of reference” and Chomsky, who despite his heavy

2A parallel may be made to Kripke’s examples of the causal theory of reference; one reason that
Kripke’s argument for unambiguous naming has been so successful was because Kripke employed
widely accepted famous names such as “Cicero” in his examples, since Kripke rightfully assumed most
of his readers were already in the naming-using community ofthat particular name (1972). For names of
not well-known people like ‘Kavita Thomas,’ the ‘famous name’ convention of Kripke’s examples does
not hold. Furthermore, for people there is a clear and legal process of baptism. This is not obviously the
case for URIs likehttp://www.example.org/EiffelTower.
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leanings towards a stance close to Carnap in logic in his syntactic theory, has claimed

that the existence of reference in semantics is questionable (Chomsky, 2000).

Reference has not been banished from the conceptual landscape quite so easily, but

can still be saved even in a neo-Wittgensteinian public language position. Having the

reference somehow be attached to a name via a causal chain is also not enough, as

that supposed ‘causal’ chain has nothing to do with the meaningful and co-ordinated

behavior of agents. However, we can return to thereferential chainas given in Sec-

tion 3.6 to construct a theory of reference compatible with aWittgensteinian notion

of meaning. The referential chain maintains some surface similarity with the causal

theory of reference, for the stage ofpresentationis similar to Kripke’sbaptism(1972).

The main difference is that in the referential chain the stage of outputcorresponds to

local behavior that is in part caused by the representation,and the representationis a

representation precisely because of the fact that the agent’s behaviordependson some

aspect of the representation that was caused by its initial connection to a referent. So,

reference no longer is some ephemeral epiphenomenon that should be disposed of,

but something that incarnates itself in the meaningful behavior of an agent. This is

precisely where the referential chain inspired by Brian Cantwell Smith and the causal

theory of reference of Kripke radically diverge. In contrast, Kripke wants the act of

reference to somehow hold in all possible worlds, regardless of the meaningful behav-

ior of agents employing the name (Kripke, 1972). Thus, in ourinterpretation, while

all sorts of names in a language can have no referent but have asense, at leastsome

of those things that have a sense can have a referent. It is in this manner that we can

establish the priority of meaning and sense over reference yet simultaneously maintain

the existence of reference. Both sense and reference must beunderstood to operate

simultaneously.

If we are to take this reading of the concept of reference seriously, then there are

serious repercussions for the Semantic Web. In particular,it dethrones the notion of any

formal knowledge representation language like RDF or OWL being somehow superior

to natural language. A representation in a formal language should be put on the same

footing as natural language, or even below. If any information whose distal referent

has an effect on the meaningful behavior of an agent is to count as representational,

then the space of representations on the Web explodes in sizeto encompass much of

the hypertext Web. If the Semantic Web is fundamentally about extending the Web to

those things outside the Web, then we have to acknowledge that most of the current

hypertext Web is already representational. We call the multitude of representations
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that share a referentthe representational nexusof the referent, a potentially large

collection of representations in a variety of formal, natural, and even iconic languages

that all share the same referent. For example, if one uses a search engine to look for the

‘Eiffel Tower,’ one gets a large number of web-pages that areto some extent allabout

the Eiffel Tower by virtue of having some meaningful relationship with it, ranging from

pictures of the Eiffel Tower, maps to the Eiffel Tower, and even possibly even videos

of the Eiffel Tower. These would all count as representations of the Eiffel Tower, and

so would be part of the representational nexus of the Eiffel Tower.

Since sense walks hand-in-hand with our notion of reference, then it can also be

said that multiple representations on the Web, both in hypertext and on the Semantic

Web, can share the same sense. It is precisely this point thatwe so laboriously argued

in Chapter 3, where we gave an account of the construction of arobust notion of sense

on top of information given in multiple and possibly non-natural language encodings.

The sprawling representational nexus of a referent, in which almost anything literally

counts as a representational by virtue of its causal and historical relationship with at

least some referent or another, can then be subdivided and re-factored into senses.

Senses are where referents affect behavior of the agents in the language-game. Unlike

the definitions of senses as glosses in dictionaries, these senses on the Web exist as

information in a vast array of different encodings. In particular, thesamesense can

be shared between a representation of the Eiffel Tower in a formal knowledge rep-

resentation language like RDF and in a hypertext web-page that is about the Eiffel

Tower in natural language. The classic problems of word-sense disambiguation return

as problems of URI-sense disambiguation, where the problemis to identify aclusterof

representations in various encodings that all embody the same sense. We can imagine

this problem being especially difficult, for as argued in Section 3.2, the same sense can

be interpreted from many different encodings, ranging frommultimedia encodings like

video to formal languages.

How can we detect the sense of a URI on the Semantic Web, especially if many

agents arenotusing URIs as names with definite senses? In this regard, pureempirical

observation of the behavior of Semantic Web enabled-agentsdoes not help, as these

kind of agents are still academic curiosities and do not crawl an use the Semantic Web

in any real sense now. Also, while the Semantic Web may use URIs as names for

things not accessible to the Web, a URI that did not allow access to any representa-

tions would be an empty move in a private language-game. In a public language game,

a URI should access descriptions or depictions of what it refers to in order for other
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agents to determinehowsuch a URI can meaningful govern their behavior. The crit-

ical role of associated descriptions gives us the crucial clue of how to build the new

language-game of the Semantic Web: any new language-game must be boot-strapped

from already-existing language-games, and the primary language-game on the Web

is natural language text. Since both associated descriptions in some Semantic Web

language like RDF and hypertext web-pages can all share the same sense, the question

then becomes one of combining natural language text with information on the Seman-

tic Web. Many efforts in automated ontology creation like those of Brewster et al. are

already moving in this direction (2007). However, our question is different: given the

tremendous number of Semantic Web URIs found in Chapter 7, how can we associate

already existingSemantic Web URIs with natural language text? Once a Semantic

Web URI has been attached to some sense by having it parasite on natural language

(and possibly multimedia and the other forms of information), then agents can detect

the sense of a URI even in a decentralized environment like the Web.

The most revolutionary concept of Wittgenstein is theform of life, and everything

else in his philosophy flows from this. The key to understanding the form-of-life is

that the meaning of a word isnot just in other words, but in the entire activity of the

agents that share the language that uses the word. If the Semantic Web is to succeed,

it must take into account not only natural language, but the real activity of users on

the Web, in order to base a new ‘language-game’ upon this formof life. Currently,

the primary approach is to build Semantic Web ontologies direct from the text in web-

pages in natural language (Brewster et al., 2007). We shouldnotice that there is a

particular use of natural language on the Web that is hegemonic: the searching for

information by using brief natural language keywords. While this is far from the only

use of the Web, it is by far the most dominant, as shown by various studies of user

behavior on the Web (Battelle, 2005). This constant and nearobsessive use of Web

search enginesis the de-facto cybernetic form of life on the Web. So, any attempt to

‘boot-strap’ a new language-game for the Semantic Web will have to take into account

that the use of natural language keyword-based Web search isfundamentalfor the Web,

a point routinely ignored by both the direct reference and the logicist positions. The

foundation to boot-strap the use of URIs as names for things on the Semantic Web is

on top of hypertext search engine queries and the resulting hypertext web pages.
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8.2 Solving the Identity Crisis Through Web Search

At this turning point we descend from an argument intheoryto the level ofpractice,

a move from the philosophy of engineering to philosophical engineering. By almost

any possible metric that takes into account real users of theWeb, the Semantic Web

seems to be a failure, as virtually no Semantic Web applications have been released that

have had an impact outside the academic research community.However, we should

remind ourselves that the failure of the first generation Semantic Web so far has merely

been the failure of the logicist position of Hayes and other formal ontologists, not an

underlying failure of the concept of the Semantic Web itself, which is just the extension

of URIs to be used as names for things not accessible on the Web. As our empirical

analysis of the Semantic Web in Chapter 7 showed, the direct reference position also

seems headed to trouble, as it appears that many things will have multiple URIs, with

each new data-set creating its own URI.

If “to understand a language is to be the master of a technique,” we must make at

least a tentative sketch and implementation that demonstrates how the Semantic Web

can be a language in the manner proposed by the public language position (Wittgen-

stein, 1953). The requirement is straightforward:the system should allow URIs for

non-Web accessible things to be easily found with their meaning shared as broadly as

possible. In our exposition of Wittgenstein, we have determined fourdesiderata for

applying the public language position to creating a system:

• Agents should be able to easily discover and re-use SemanticWeb URIs.

• Agents should not have to change their behavior in order to utilize these Seman-

tic Web URIs.

• The selection of appropriate Semantic Web URI should take into account the

entire representational nexus of the non-information resource.

• Agents should come to some sort of collective agreement about what URIs for

non-information resources refer to.

Our proposed system is to put ahypertext search system into a feedback-loop with

Semantic Web URIs. The system fulfills the four desiderata. First, it would allow users

to easily discover Semantic Web URIs by typing in simple natural language query

terms. Both the direct reference and logicist position put forward versions of what a

URI means as some sort of private language position which hopes to determine what
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a Semantic Web URI means without mentioning the informationneeds of agents. In-

stead, we shall seek to incorporate the contextualized information needs of agents into

the meaning of a Semantic Web URI by matching queries for information to informa-

tion in the form of associated descriptions accessible via Semantic Web URIs. Thus, if

the user wants to discover information about the Eiffel Tower, it would suffice to type

in eiffel tower as the query terms to discover a Semantic Web URI for the Eiffel

Tower and associated information. Such a system would not bea parallel and separate

search engine for the Semantic Web, but can be built on top of current hypertext search

engines that operate in conjunction with an index of Semantic Web URIs and associ-

ated descriptions. Again, if an agent is looking for information on the Eiffel Tower, the

agent would go to an existing hypertext search engine and useit. Our system would let

the users do that, but then simultaneously run their query against the Semantic Web,

in order to discover if there are any URIs with associated information on the Semantic

Web about the information need expressed by their query. As shown by Chapter 7,

for many queries about non-information resources such as entities and concepts, there

is a high likelihood that there is information on the Semantic Web relevant to such

information needs. Thus, this system satisfies the first two criteria.

Also as demonstrated by Chapter 7, there is possiblytoo muchrelevant informa-

tion in the Semantic Web that could satisfy these queries, and even possibly multiple

Semantic Web URIs for a given entity or concept. A large part of the problem may be

that the query itself drastically under-determines the sense of the information need. For

example, a query foreiffel may equally be for the Eiffel Tower or Gustave Eiffel. It

would be unlikely that a normal user would be able to sort through masses of RDF data,

which to most human agents is indecipherable, even with the aid of special-purpose

Semantic Web browsers like the Tabulator (Berners-Lee et al., 2006a). Fulfilling our

third requirement, instead of forcing a human agent to change their form-of-life and to

somehow adapt to using RDF natively, our system takes advantage of what every user

of hypertext web search engines already does: the selectingand browsing of the web-

pages returned by the hypertext search engine. If a user chooses one of the hypertext

URIs correctly, this can beimplicit approval that the web-page represents the intended

referent of the search terms. Furthermore, these web-pagesare part of the same rep-

resentational nexus as the Semantic Web URI and so share its sense. Our system can

then use these as inputs to an algorithm that compares these selected web-pages to the

returned associated descriptions from the Semantic Web URIs, so that the retrieved

Semantic Web URIs can then be ranked in order, with the Semantic Web URIs and
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the associated description that most closely matches the selected web-pages becoming

the top returned URIs. This method is known asrelevance feedbackin information

retrieval (Rocchio, 1971). So, if a user of our system clicked on a web-page about the

Eiffel Tower in Paris, the Semantic Web URI whose associateddescription that most

closely matched that result – the Semantic Web URI about the Eiffel Tower in Paris as

opposed to a Semantic Web URI that denotes Gustave Eiffel – would alsobe returned.

The system can then take into account the entire vast representational nexus retrieved

by the hypertext search engine as well as the various associated descriptions of Seman-

tic Web URIs in order to determine the appropriate Semantic Web URI for a given set

of query terms.

If a human-readable associated description is presented insome usable form to the

human agent, the agent can quickly determine if the SemanticWeb URI is relevant or

not. This relevance feedback from the Semantic Web URI can then be fed back into the

hypertext search engine, completing a cycle of feedback. Asmore and more users use

the system, the amount of selected web-pages will increase,and this information can

then be used to choose a URI that has an associated description that carries as much

of this information as possible. As multiple users use the search-based system, each

of them can be considered to have ‘voted’ on a particular Semantic Web URI via their

selection of hypertext web-pages, and the Semantic Web URIsthat are collectively

chosen rise to the top. So our system takes advantage of the ordinary ‘wisdom-of-

crowds’ of human agents searching the Web in order to reach collective agreement

about what the Semantic Web URIs refer to and what they mean. It is this extension of

our system that fulfills the fourth requirement of the publiclanguage position.

8.3 Justification of System

In a broad stroke, we have reduced the Identity Crisis to be fundamentally an informa-

tion retrieval problem. We will call this theSemantic Searchparadigm:the attempt to

retrieve Semantic Web URIs and possibly associated descriptionsin response to query

words, in order to refer to our particular information retrieval problem. To phrase this

paradigm formally, given a queryQ, we wish to maximize the likelihood of relevant

Semantic Web URIs (U ) being retrieved from the Semantic Web. To do this, we will

use the URI’s associated descriptions, orD. For the particular use-case of the Seman-

tic Web, it would be best to have a single ‘best’ URIu returned in response to a query

Q. However, given the large number of URIs that could be returned in response to a
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query as observed in Chapter 7, it seems that it is better to assume that more than a

single URI will be retrieved. Due to the foundationalProbability Ranking Principle,

the order in which to rank the documents is by their estimatedprobability of relevance

with respect to the query. As stated by van Rijsbergen, “if a reference retrieval sys-

tem’s response to each request is a ranking of the documents in the collection in order

of decreasing probability of relevance to the user who submitted the request, where the

probabilities are estimated as accurately as possible on the basis of whatever data has

been made available to the system for this purpose, the overall ranking will be the best

that is obtainable on the basis of that data” (van Rijsbergen, 1979). Given the scenario

where the system in penalized if it returns a non-relevant document, then the Probabil-

ity Ranking is optimal, since it minimizes expected loss. This has been formally proven

(Ripley, 1996), although the proof requires that the probabilities for every document

D and queryQ as well as relevance values are known. Since the ProbabilityRanking

Principle is optimal, it should return the most optimal URIu for the queryQ in the first

position of the ranking. In this way, the ad-hoc informationretrieval paradigm used by

Web search engines solves the Semantic Search problem of finding the ‘best’ URI for

a given query in the information retrieval paradigm withoutany major changes to the

general paradigm.

However, one large problem with information retrieval systems lies in the query it-

self. As observed in our query log in Chapter 7, the average query length is barely two

words. This is a result of Belkin’s Anomalous State of Knowledge (ASK) hypothesis,

namely that “an information need arises from a recognized anomaly in the user’s state

of knowledge...and, in general, the user is unable to specify precisely what is needed

to resolve that anomaly” (1982). Since the agent does not know precisely what infor-

mation they lack, they have trouble phrasing accurate keywords in natural language

to describe the information. This problem is ameliorated somewhat in the Semantic

Search paradigm, as the user is generally aware of the natural language name of what

entity or concept for which they are seeking a URI. However, even in Semantic Search,

the ASK hypothesis still holds, as often the natural language name of the entity or con-

cept is ambiguous by itself. Furthermore, if our system is using as its criteria for the

‘best’ URI the associated description with the most relevant and complete information,

then the retrieved Semantic Web URIs, even if they all refer to the same thing as the

query, can still have substantial differences in terms of the ‘goodness-of-fit’ to a query

due to differences in associated descriptions.

In order to deal with these problems, we will employrelevance feedback, theuse
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of explicit relevance judgments from users of a query in order to expand the query. By

‘expand the query,’ we mean that the usually rather short query is expanded into a much

larger query by adding words from the known relevant documents. The hypothesis of

relevance feedback, as pioneered by Rocchio in the SMART retrieval system, is that

the relevant documents will disambiguate and in general give a better description of

the information need of the query than the query itself (1971). This has been shown

in general to improve retrieval performance significantly,both in early studies and in

later work (Lavrenko et al., 2002).

Our novel solution to the Semantic Search problem is to use hypertext web-pages

that share the same sense of the query as the URIs. These can then be retrieved by

running the queryQ against a normal hypertext Web search engine. Another question

is how to get the associated descriptionsD, which can then be built on top of current

indexes orSemantic Searchengines like FALCON-S built on top of the Semantic Web

(Cheng et al., 2008).

Indeed, one problem that is beyond the scope of this thesis isthe general infor-

mation retrieval problem of building either a better searchengine for either RDF or

hypertext. Instead, our system is built on top of current hypertext and Semantic Web

search engines. The insight of our system is that search engines forboth the Semantic

Web and the hypertext Web, can be put in what Baeza-Yates calls a “virtuous cycle”

(2008). While Baeza-Yates wishes to use the Semantic Web in order to “effectively

make [hypertext Web] search easier,” our system does thereverse: We use hypertext

search in order to make using the Semantic Web easier. Our system shows how the

problem of finding URIs for non-information resources can bebuilt on top of existing

search infrastructure withno modification to the often delicately parametrized basic

hypertext and Semantic Web search engines.

8.3.1 Information Retrieval Components

In this section we will establish our vocabulary in terms of information retrieval, used

in this chapter and in Chapter 9. We will use this terminologyto give an algorithmic de-

scription of our system, and then a detailed description of its operational steps. We can

consider a hypertext search engineHypertextSearchto be a function from a queryQ to

a set of web-pagesZ, HypertextSearch(Q) = Z, where the relevant web-pagesW⊂ Z.

In parallel, we can consider a Semantic Web search engineSemSearchto be a function

from model of the queryQ to URIsU , that due to the transitivity of access, can be sub-
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stituted by their associated descriptionsD soSemSearch(Q) = D. Note that we useD

both to mean ‘associated descriptions’ in our systemand the more general concept of

retrieved documents in information retrieval, which for our system are the same. Thus,

our system can then be considered a re-ranking ‘feedback’ system based on query ex-

pansion which starting withFeedback(Q), transforms intoHypertextSearch(Q) = Z

andSemSearch(Q)) =U and use selected relevant documentsR to expand the queryQ

and re-rankD, and since each associated descriptionDi has an associated URIUi, this

leads toFeedback(Q) = U .

8.3.1.1 Models

In order to explain our system, a description of the general information retrieval prob-

lem is necessary, along with the vector-space model of Salton with t f .id f term weight-

ing as a guiding example. Given a set of documents (such as associated descriptions

or web-pages)D, we can consider all these documents in some native encodingto be

transformed to models, often calleduD. The modelDi of each document in the index

of the search engine is thedocument model. SoDi is then just the transformation of the

raw terms in each document into anm-dimensional term list, where eachm is some pa-

rameter, which is at most the number of unique terms in the entire collectionC. The set

of terms in the entire collection is called thevocabulary V. Usuallym is parametrized

to be some smaller amount, such as the top 30 most frequent terms in each document.

Thus,w∈V represents a single term, such as ‘tower.’ These are referred to aswords

since documents are assumed to be in natural language, although for our systemw is

also automatically extracted from RDF triples. A certain amount of prepossessing can

be done on words in the form of stemming or morphological analysis to reduce terms

to a common base term, so that ‘tower’ and ‘towers’ or ‘going’and ‘go’ map to the

same term. If a term in the vocabularyw∈V is not present in the documentD, then

it will either have a value of zero or some ‘weighted’ value ifsmoothing is employed.

We will examine different possible values ofm in constructing document models for

our system.

8.3.1.2 Weighting

The key question in information retrieval is how to ‘weight’the valueDw as to fulfill

the Probability Ranking Principle. The simplest option is to use the term frequency

(t f ), whereDw = n(w,D), wheren(w,D) is the number of occurrences ofw in D
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(Salton et al., 1975). However, this technique also performs poorly in practice, as

it does not take into account how frequent a term is over all documentsD. So t f

can be ‘inverted’ in order to determine how rare a term is overall documents (id f )

(Jones, 1972). For example in English, the term ‘the’ would have a high frequency in

a given documentd but would also have a high frequency in all indexed documentsD,

while the term ‘Eiffel’ would have a high term-frequency in some relevant documents

R⊂ D, but a low frequency overall inD, leading one to suspect that documents inR

might be relevant. Mathematically, given a wordw in a document, with the frequency

normalized over the sizem of the document, the term frequency for wordwi (t fi) is

given byt fi =
n(wi ,D)

∑w∈W n(w,D) . The inverse term frequency takes into accountall documents

O where the termwi occurs once, so thatid fi = log |D|
|O⊂D| and thereforet fi.id fi =

t fi · id fi. The weighting scheme used byt f .id f is only one option of many possible

weighting schemes, and we will focus more on the highly parametrized and effective

BM25 when evaluating our system (Robertson et al., 1994), although other forms of

weighting such as language modeling will be explored (Ponteand Croft, 1998).

8.3.1.3 Smoothing

The opposite problem of weighting the occurrence of words ina document is also

pernicious to information-systems, namely the problem ofsmoothingwords in the

document and query models (Zhai and Lafferty, 2001). Intuitively, if a word w is

missing inD, thenw = 0. However, in many calculations that require some form of

multiplication or division, the presence of a zero in a weight can factor out otherwise

relevant weights from other terms in the vocabulary, or leadto errors. The solution

of smoothing is just to add a small non-zero factorε to eachw = 0, therefore having

w = ε. There are a wide variety of possible smoothing techniques,ranging from the

simple setting ofε to a constant, to having it be chosen at random from some particular

distribution like the Dirichlet distribution. This smoothing function we will consider

part of our transformation of the query or document into a model, and we will use

the smoothing function most appropriate to each weighting scheme of our system, as

usually the appropriate smoothing function is dependent onthe weighting function.

8.3.1.4 Comparing Documents to Queries

Having a set of weighted and smoothed document modelsD does not in of itself pro-

duce a ranking, since the ranking is always in relationship to queryQ. However, since
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our document models are term vectors where each term is fromw∈V, and each termq

in the queryQ is alsoq∈V, the query itself can be transformed to aquery model uQ. As

most queries are only a few words, many systems produce a verysparse term represen-

tation, which then have to be weighted and smoothed. Some probabilistic information

retrieval models such as ‘relevance models’ automaticallyexpand the queryQ. Since

all the models inhabit the same spaceV, they can be directly compared to each other

using aranking function, so that for everyD ∈C, Comparison(Q,D) = γD, whereQ

andD are transformed into query modelsuQ anduD respectively, whileγD is therele-

vance scoreof D for queryQ, which is generally smaller the closerD ‘matches’Q. The

descending order byγ satisfies Robertson’s Probability Ranking Principle (1977), and

we will not investigate alternate methods of presenting theresults, such as clustering-

based methods. Various weightings in different frameworkshave their own preferred

methods of comparison. For example, vector-space models may be compared via co-

sine distance, while cross-entropy is more appropriate forcomparing the distributions

resulting from probabilistic weighting schemes.

8.3.1.5 Relevance Feedback

One immediate problem in almost any comparison of the query model and the doc-

ument models is the sparseness of the query model. There are many different tech-

niques for incorporating relevance feedback, each based onthe differing methods for

transforming the relevant documents (Z, given by “selecting’ (Select) relevantZ from

web-pagesW) into relevant document modelsRand then combining or creating a new

query modelQ from this information. For example, for vector space modelsthe well-

known Rocchio algorithm attempts to re-calculate the querymodel vector to match the

centroid of the document (1971) to relevance models that ‘automatically’ expand the

query model into a distribution (Lavrenko and Croft, 2001).Thus, for the relevance

feedback functionQ2 = Relevance(R) that produces a new expanded queryQ2 given

a set of relevant document modelsR, we will use the precise relevance function most

appropriate for the weighting function.

8.3.2 Detailed Description of System

Using the terminology given above, we can unpack the entire system into the following

algorithm given by Figure 8.1. Details of every step are given in the next section, and

illustrated in Figure 8.2 (placed at end of chapter).
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Algorithm 8.3.1: FEEDBACK(Q)

U ← SemSearch(Q)

D← access(U)

Z← HypertextSearch(Q)

R← Select(Z)

Q2← Relevance(Q,R)

for each Di ∈D
{

γD←Compare(Q2,Di)

Present(D)

Figure 8.1: Feedback-Driven Semantic Search

To go through the diagram one step at a time, in Step 1 the system presents the agent

with a text box where the agent can enter a query (Q). In Step 2, the agent formulates

the query in terms of natural language keywords, and thus theFeedbackQalgorithm

begins. In Step 3, a number of URIs are returned by automatically running the queryQ

against a Semantic Web Search engine that does not incorporate hypertext-based rele-

vance, such that a number of URIs are returned (U = SemSearch(Q)). In Step 4, the

system accesses each URIUi ∈U and gets a collection of associated descriptionsD in

RDF. Each of these associated descriptionsDi is indexed by its URIUi. For Step 5, the

exact same queryQ is sent to a hypertext Web Search engine (HypertextSearch(Q)),

which then returns a series of URIs, which are accessed in order to retrieve hypertext

web-pages (Z). Since we are not interested in the URIs of the hypertext web-pages,

they are not maintained past Step 6. In Step 6, each of the result web-pages (or snippets

thereof) is displayed to the agent, and the agent examines (via clicking on or ‘choosing’

a hypertext web-page) some subset of web-pagesR⊂ Z, and this subset is given to be

the relevant web-pages,R= Select(Z). Optionally, if the query has been repeated in the

past, the query may be expanded using the previously discovered relevant web-pages

and relevant associated descriptions in RDF from previous usage sessions. Some tech-

niques in information retrieval like relevance modeling, would automatically expand

the query at this stage, regarding it as merely a sample from alarger language model.

In Step 7, every relevant web-page is transformed into a document model. In order to
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do this, the web-page is first normalized to Unicode and then stripped of all HTML.

Note that a variant of this algorithmcoulduse features of HTML, such as whether or

not text is in the title, and factor this in the document modelusing inference networks

(Baeza-Yates and Ribeiro-Neto, 1999). Then, the document undergoes organization

and stemming to normalize a set of terms from the vocabulary.Once a set of terms

in the vocabulary have been established, terms with non-zero counts are also weighted

via some weighting function, and terms with a zero-count aregiven a smoothing func-

tion. Relevance feedback takes place in Step 8, where the various relevant document

models are factored into the query model. This can take placein a number of ways,

such as forming a single document relevance model (R) or considering each of the rele-

vant document models separately. Regardless, the query is expanded into a less sparse

queryQ2 via the use of relevance feedback, leading toQ2 = Relevance(Q,R).

First, eachDi ∈ D is transformed into a ‘pseudo-document,’ a reduction of RDF

into a ‘bag-of-words.’ This is done because associated descriptions are composed of

RDF triples. Therefore, a number of questions arise about how to create some sort of

representation that can be compared to the expanded query model. Obviously, the only

challenge is how to deal with URIs. Instead of discarding them or keeping them (which

would be equivalent, since they would not be found inV and thus excluded from any

D), URIs must be treated as separate words in natural languageif they are to be part

of a document model. As a cursory glance at some URIs reveals,there is important

information in them, due to the propensity of humans to use natural language terms in

their Semantic Web URI, called the ‘Fido-FIDO’ fallacy in philosophy (Ryle, 1949).

For example, the URIhttp://www.example.org/ArchitectOf generally denotes

an “architect” relationship, such that the tripleex:EiffelTower ex:hasArchitect

ex:Gustave Eiffel could be reduced automatically to the pseudo-natural language

terms ‘Eiffel Tower has architect of Gustave Eiffel.’ This allows URIs to be part ofV

and so compared toQ. The heuristics we employ in Step 11 to reduce URIs to natural

language terms are straightforward:

• Reduce to last rightmost hierarchical component.

• If URI contains a fragment identifier (#), consider all characters right of the

fragment the last rightmost hierarchical component.

• Remove non-rightmost hierarchical component.

• Tokenize on space, capitalization, and underscore.
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So, the URIhttp://www.example.org/hasArchitectwould be reduced to two

tokens, ‘has’ and ‘architect,’ whilehttp://www.example.org/Gustave Eiffel will

be reduced to ‘Gustave’ and ‘Eiffel’ respectively. Then, inStep 12, each associated

description is given its ranking scoreγD via a ranking function,γD←Compare(Q2,D)

that compares the expanded query to the document. In Step 13,these ranked URIs are

then arranged in descending order by their ranking score. Atthis point, the system

looks up the topmostD in its index to discoverDi and thereforeUi, or the URI that

allowed access to the associated descriptionD in the first place. Note that the index of

URIs and associated descriptions keeps track of which URI isused to get the associated

description, so that even if the same encoding of an associated description is given by

multiple URIs, the associated descriptionDi can be tracked down to the URIUi that

originally had a causal role to play in the production of its document model. At this

point, the URI and its associated description is presented,possibly in a variety of ways

including the direct display of meta-data on the search result bar or use of the RDF

triples in an application. Optionally the system may in Step14 determine if an agent

examined (or some other program used) the associated description, and add these to a

cache of relevant URIs. Also optionally in Step 15 the relevant hypertext web-pages in

the form of the relevant document models and even relevant Semantic Web URIs and

their associated descriptions can be cached. Finally, in Step 16 the agent may enter

another query.

8.3.3 Other Methods

Our system has a number of advantages over other systems, namely in that it does

not require the end user to use a specialized language for discovering URIs or nav-

igating Semantic Web data, but instead lets them use a normalWeb-search interface

with queries in natural language. Furthermore, the disambiguation and discovery of

relevant URIs then happens as a side-effect of their normal behavior of examining

web-pages. Lastly, this method helps users discover URIs and re-use them, rather than

create new ones for each query. The advantages of our system and difference with

other approaches are given in this section.

8.3.3.1 URI Co-reference Resolution with RKBExplorer

Another attempt to automate the discovery of co-reference is to create aConsistent

Reference Servicethat automatically finds both explicitly declared equivalences with
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owl:sameAs and inverse functional properties and then calculates their closure (Jaffri

et al., 2008). As implemented inRKBExplorer.com, the system stores the result of its

closure calculations in its own RDF/XML file using a specialized Semantic Web co-

reference vocabulary. They recommend that each Linked Datasource maintains their

own co-reference server, and have demonstrated their system on bibliographic data

and WordNet (Glaser et al., 2008). While they claim that unlike OKKAM, a Consis-

tent Reference Service does not simply create ‘new’ URIs forthings, in reality these

co-reference bundles are given their own URI and their own associated descriptions,

which in turn are indexed by Semantic Web Search engines likeSindice, so inevitably

leading to an explosion of new URIs (Glaser et al., 2008). With RKBExplorer.com,

each Semantic Web URI now is being ‘shadowed’ by a URI for a co-reference bundle!

Also, the Consistent Reference Services only deal with co-reference at the level of for-

mally declared logical co-reference in OWL, and it neglectsthe very source that lets

human agents detect co-reference: the associated descriptions. The primary advantage

of our proposed system over Consistent Reference Services is that our system does not

create new URIs, but merely brings the likely correct Semantic Web URI to a user’s

attention, by taking relevance feedback and associated descriptions into account.

8.3.3.2 Semantic Search

There are many commercial companies likeHakia.comand Powerset.comnow of-

fering what they call ‘Semantic Search,’ although the exactdefinition of ‘Semantic

Search’ seems to vary, with the common denominator being theuse of some knowledge

representation to augment information retrieval, such as the use of natural language

processing to discover implicit knowledge representations implicit in queries or doc-

uments. Another approach, more related to ours, is to try to connect already-existing

and explicit knowledge representations. For example, these knowledge representations

could be given by explicit mark-up inside hypertext or by discovering complementary

knowledge representations to queries. In this vein, the closest system to ours in spirit

in theMicrosearchsystem (Mika, 2008). This system has been re-deployed commer-

cially by Yahoo! asSearch Monkey, and takes a similar approach to ours. Microsearch

also retrieves hypertext web-pages based on query terms anddisplays meta-data in a

human-usable fashion on the result list, also using Simile (Huynh et al., 2007). Mi-

crosearch is similar to our system insofar as it associates hypertext web-pages with Se-

mantic Web information. However, there are two main practical differences between

our system and Microsearch. Microsearch does not attempt todetermine authoritative
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URIs and associated descriptions based on query terms, but only extracts Semantic

Web informationalready present on the pagein the form of either associated RDFa

or a conversion of microformats to RDF in a manner similar to GRDDL (Adida et al.,

2008; Suda, 2006; Connolly, 2007). The Semantic Web information is displayed di-

rectly parallel to each individual web-page. Therefore, Microsearch is still basing its

information retrieval on the level of web-page, as opposed to attempting to discover

the best Semantic Web URI and associated description related to the intended referent

of the query. Due to this shortcoming, itonly extracts Semantic Web information it-

self, and does not run the query in parallel on the Linked DataWeb. So, Microsearch

does not attempt to find the best Semantic Web URI that matchesthe intended referent

of the query, and thus does not help resolve the Identity Crisis by encouraging URI

re-usage.

Worse still, Microsearch extractsall structured data from the web-page, without

any regard for the similarity of the query terms. This Semantic Web information (in

particular, information related to time and people) is aggregated and displayed in a

‘box’ near the search results. While this approach seems to work for relatively simple

queries about people who only have only a small amount of Semantic Web information

about them on the Web, for queries like ‘The Eiffel Tower’ toomuch is brought up,

and information about events at the Eiffel Tower and movies like ‘The Plot to Blow Up

the Eiffel Tower’ are mixed, leading to a bewildering agglomeration of structured data

displayed to the user. Lastly, no relevance feedback is taken into account to refine this

Semantic Web data. Instead of pursuing a synchronous relationship with the Semantic

Web, the Yahoo! research team behind Microsearch has now moved their focus to the

more difficult problem of large-scale Semantic Web information extraction from text,

with all the problems that entails, including excessive URIcreation (Baeza-Yates et al.,

2008).

8.3.3.3 Ontology Creation from Text

Our system isnot attempting to do information extraction over the Web representa-

tions in order to present the users just the relevant web-pages or extracted ‘answers,’

as is traditional in information extraction frameworks andquestion-answering systems

(Etzioni et al., 2004; Kwok et al., 2001). Unlike question-answering systems, we are

not attempting to answer a query forspecificinformation, but only to find URIs with

appropriate associated descriptions for non-informationresources, rather than return

specific ‘answers’ encoded in natural language. Furthermore, we are not employing
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any techniques to transform natural language text directlyinto ontologies for later use,

such as the formal-concept analysis method put forward by Cimiano et al. or the dy-

namic iterative method using knowledge extraction patterns put forward by Brewster

et al. (2007; 2005). This problem of learning ontologies is by itself very difficult and

outside the scope of this thesis. These text-to-ontology methodologies seek to ground

RDF triples in individual natural language sentences or phrases, which could be con-

sidered amicroscopicapproach to associating text with RDF, usually withnewRDF

triples generated directly from that text. Instead, we are pursuing amacroscopicap-

proach that groundsalready-existingRDF triples in associated descriptions with entire

collections of web-pages. The information in these already-existing associated de-

scriptions may overlap with the text in the web-page, and a central hypothesis of our

system is that this will indeed be the case, but we do not attempt to release this infor-

mation in someintermediateform onto the Semantic Web directly. The approach to

generating Semantic Web ontologies directly from text was necessitated by the first-

generation Semantic Web’s lack of usable data. The second-generation Web of Linked

Data has the problem is the reverse: There is too much Semantic Web information

for a given query! However, it is likely there are many queries for non-information

resources for which no relevant Semantic Web URI exists, andin this particular realm

ontology construction from text will be vital. This particular problem of discovering

queries that have no relevant URIs and then creating new URIsis beyond the scope of

this thesis, but is potentially exciting future work.

8.3.3.4 Ontology Alignment

One opposing methodology for the URI re-use problem is some form of ontology

alignment. In Semantic Web ontology alignment, the various terms in two or more

different languages are ‘matched’ together with other terms that have the same con-

tent, for example, matching ‘Eiffel Tower’ to ‘Tour Eiffel.’ There is a long history

of ontology alignment or ‘mapping’ research in knowledge representation, and the ad-

vent of the Semantic Web has led to a revival of these techniques (Euzenat and Shvaiko,

2007). Ontology alignment employs a number of distinct heuristics, ranging from the

syntactic manipulation of the knowledge representation language to methods based on

detecting high-level formal semantic similarities (Bundyet al., 2006; Shvaiko and Eu-

zenat, 2005). The advantage of ontology alignment is that itsupposedly allows the

users of the program to maintain their “semantic autonomy,”so as to maintain their

own irreducibly unique perspective on the world while stillmapping their terms to the
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terms of other agents (Zurawski et al., 2008). As attractiveas it appears, ontology

alignment has proven itself not to work in practice. While oncertain selected ontolo-

gies, a particular method may claim to get high recall and precision, so far whenever an

ontology alignment system is ported to a new domain the method fails to produce an

acceptable level of performance (at best approximately 50%recall and 60% precision)

and having unacceptable runtimes, ranging from a few minutes to hours (Caracciolo

et al., 2008). This has led the general practice within the Semantic Web community to

rely on manually created ontology alignments. Some of this may no doubt be due to

irreconcilable social distinctions between certain concepts, such as whether ‘marriage’

has a constraint of one man and one woman (Ginsberg, 2006). Merging all ontologies

that mention a term in order to produce an ‘ideal’ associateddescription would easily

lead to ontologies with an excess of spurious and inconsistent information.

More importantly, ontology alignment may be criticized as simply the wrong tech-

nique for the Semantic Web, trying to solve a problem that would otherwise not exist

if the correct technical infrastructure were created and URIs could be easily found in

the first place. From a philosophical perspective, most of the ontologies created on

the Semantic Web are created by lone individuals and often not re-used by anyone

else, so mapping between them is the equivalent of mapping between private language

games instead of creating a new public language game. The entire point of the Seman-

tic Web is to create URIs for common concepts and physical entities, and only if the

URIs are re-used can graph merger take place. Until very recently, with the advent of

Semantic Web search engines for ontologies like Swoogle, itwas impossible to even

find already-created ontologies, thus leading users with noother recourse than to cre-

ate their own ontologies. One would suspect that once users have an ability to find

URIs, they would not have mint new URIs, but instead re-use URIs, much as names

are re-used in natural language and code re-used in open source projects. So our sys-

tem attempts to solve the very problem that creates the need for ontology alignment on

the Semantic Web in the first place.

8.3.3.5 Sense Disambiguation

As would naturally follow from the public language position, URI disambiguation is

an analogue with word-sense disambiguation, where insteadof associating a number

of sentences with a distinct sense, we are associating a number of hypertext web-pages

with a distinct URI. Furthermore, multiple co-referentialSemantic Web URIs can be

considered a class of URIs that share the same sense. It is unclear how well humans
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can actually label senses, although performance of word-sense disambiguation sys-

tems seems to be reasonable (Kilgarriff, 1993). Despite these difficulties, algorithms

that make the assumptions that collocated words can discriminate between senses and

that a single discourse uses a single sense have been able to produce very accurate

results (Yarowsky, 1995). Furthermore, automated word-sense disambiguation tech-

niques have been shown to work over a substantial number of senses gathered from

different sources and a large number of texts (Stevenson andWilks, 1999). Even

so, there are a few practical issues with the notion of word-sense. Unlike part-of-

speech tagging, there is no clearly delimited set of word-senses, although in practice

both finitely-bounded machine-readable dictionaries and manually-created lexical re-

sources like WordNet tend to be used (Miller, 1995). However, in an open-ended

domain like text on the Web, the number of senses becomes evenmore noticeably

open-ended, such that word-sense disambiguation becomes difficult yet again (Steven-

son and Wilks, 1999). Worse, even natural language is continually evolving, with new

senses being introduced, old senses disappearing from use,and senses drifting over

time. This is especially noticeable in the world of Web queries as explored in Chapter

7, as these are driven by fashion and current events.

We take inspiration from the successful statistical work onword-sense disambigua-

tion by transforming ‘one sense per discourse’ into ‘one sense per query.’ Our algo-

rithm addsadditional context by associating hypertext web-pages – which are gener-

ally more rich in information than Semantic Web documents – with URIs, and then

assumes the user, since they are searching for information about a particular sense,

will automatically click on web-pages that give a single sense (Yarowsky, 1995). Our

algorithm then can be said to determine sense on thedocument-level as opposed to

word-level. A critic could respond that if the query terms were ambiguous, the am-

biguity would be passed on to the search results, which wouldthen be a mixture of

web-pages about different referents. If the user meant a little-known sense of a query

term, perhaps all the high-ranked search results would refer to another more prominent

sense. These criticisms would be true if we did not rely on theuser-behavior of ac-

cessing URIs to determine a subset of web-pages in the searchresults that are actually

about what the user considers to be the same referent. By manually examining the

web-pages, the user sorts this out, so for our purposes, relevance feedback serves as

the primary source of URI disambiguation.
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8.4 Conclusion

It could be considered ironic that in our system logical knowledge representations are

explicitly transformed into a ‘bag of natural language words’ in order to allow agents

to actually discover and use these knowledge representations. The feature of some

theories of meaning is that some entity like the dog Fido was represented by some

symbol calledFIDO (Ryle, 1949). This was considered by Ryle to be a defect, and the

very label ‘Fido-FIDO’ was invented as a derogatory term by Ryle to insult theories

of meaning such as Carnap’sMeaning and Necessitythat made such a move (Ryle,

1949).

While Ryle was right to point out the ridiculous nature of the‘Fido-FIDO’ principle

in theories of meaning, the ‘Fido-FIDO’ principlealsodescribes perfectly the common

practice of using natural language terms in knowledge representation systems (Wilks,

2008a). This principle returns to the Semantic Web as a crucial advantage for our sys-

tem! While the ‘Fido-FIDO’ pattern of URIs breaks the principle of URI Opacity,3

it crucially allows knowledge representation languages tobe put on the same footing

as both user queries and web-pages. Once this move of transforming knowledge rep-

resentation to natural language form is accepted, then the highly optimized methods

of information retrieval can be applied to the Identity Crisis. In particular, this move

allows the crucial notion of relevance, reformulated for the Semantic Web in terms

of being anaccuraterepresentation of the intended referent of a query, to be applied

to the Semantic Web. Then we can take advantage of the vast representational nexus

of the hypertext Web to ‘boot-strap’ through ordinary user behavior a philosophically

well-founded notion of URI meaning on the Semantic Web, and so provide a practical

application of the Wittgensteinian public language position.

From a purely pragmatic standpoint, given the historical shipwreck of classical

artificial intelligence, it may make more sense for the Semantic Web to harness its

fortune to the phenomenal success of information retrievalrather than knowledge rep-

resentation. Yet one could argue that our system’s rather ruthless taking advantage of

the ‘Fido-FIDO’ phenomenon on the Semantic Web is purely an artifact of our algo-

rithm, and that the connection from Wittgenstein to Web search engines is far from

philosophically well-grounded. On the contrary, the discipline of information retrieval

is directlydescended from Wittgenstein himself via the under-appreciated philosopher

3Perhaps it is better termed the ‘Fido-http://www.example.org/FIDO’ theory of meaning on the
Semantic Web.
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and linguist Margaret Masterman. One of the six students of Wittgenstein’s course that

becameThe Blue Book, she was exposed directly by Wittgenstein to the conceptual

apparatus of thePhilosophical Investigations(Sowa, 2006). Twenty years later, she

founded the Cambridge Language Research Unit. Overall, Masterman was convinced

that a scientific theory of computational language based on are a neo-Wittgensteinian

‘semantics’ could be created, and that this theory could be computational and created

from empirical data (Sowa, 2006). As seen by the virtual take-over of artificial intel-

ligence and natural language processing by statistical methods, it is clear that Master-

man and Karen Spärck Jones’s often implicit neo-Wittgensteinian approach was ahead

of their time. Information retrieval, and its data-driven,statistical methodology,are

neo-Wittgensteinian philosophy of language given computational flesh.

The history of how Wittgenstein, via Masterman, influenced information retrieval

and thus search engines is a fascinating trajectory. Wittgenstein’s infamous dictum that

“meaning is use” seems often itself meaningless upon first glance; how can “meaning

is use” possibly be operationalized into a methodology thatcould form the basis for

a science of language (Wittgenstein, 1953)? The answer is obvious: in studying the

structure of language empirically, which can be done computationally by the statistical

analysis of actual samples of human language. In other words, the building of “lan-

guage processing programs which had a sound philosophical basis” (Wilks, 2005a).

To Masterman, key to this entire effort was the primacy of semantics over syntax, and

“the use of a thesaurus as the main vehicle of operations” (Wilks, 2005a). As opposed

to the use of logic by Carnap (and later Chomsky) in describing language, Masterman

hoped to use lattices and ‘fans’ to provide a mathematical foundation for the structure

of thesauri, a non-logical mathematical theory of language. Her interest in this led

to the revision of her colleague Richens’s semantic networkmachine-translation in-

terlingua into a more empirically justified group of open-ended semantic primitives –

although this would be an externalized language like any other, not a mere reflection of

an internal mental language resembling Fodor’s ‘Language of Thought’ (1975) – that

could arise organically and be detected from language use (Wilks, 2005a). This list

of semantic primitives and attendant emphasis on the use of semantics in parsing (as

opposed to the purely syntactic approach of Chomsky) were first used by Masterman

in machine translation (Masterman, 1961), and then influenced heavily any systems in

natural language processing, such as the work of Wilks in resolving ambiguities using

preference semantics and the work of Schank using conceptual dependency graphs to

discover identical sentences regardless of their syntactic form (Schank, 1972; Wilks,
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1975). Another student of Braithwaite and Masterman, Yorick Wilks put forward the

most explicit linking of Wittgenstein’s ‘meaning is use’ tostatistical studies of natural

language by noting that for the first time the sheer size of human text on the Web may

allow us to quantify the meaning of words as use using statistical techniques such as

skip-grams (2008b).

However, our work does not rely only on statistics based in other words to quantify

the “meaning is use”, but on information retrieval techniques, in particular, relevance

feedback. The foundations for information retrieval that we build upon were also in-

fluenced by Wittgenstein via another student of Masterman and her husband Richard

Braithwaithe, Karen Spärck Jones (Wilks, 2007). Spärck Jones laid the foundations

of information retrieval, and even hinted at relevance feedback, in her dissertation

Synonymy and Semantic Classification(Jones, 1964). Spärck Jones stated that her

dissertation proposed “a characterisation of, and a basis for deriving, semantic primi-

tives, i.e. the general concepts under which natural language words and messages are

categorized.” (1964). She did this by applying the statistical ‘Theory of Clumps’ of

Roger Needham – a theory that was itself one of the first to explicate what Wittgenstein

called “family resemblances” – to words themselves, leading her to posit that words

could be defined in terms of statistical clumps of other words, a Wittgensteinian in-

sight that contrasts with Needham’s more Kripkean attempt to directly connect words

to things (Needham, 1962). Also, the first traces of relevance feedback can be found

in her thesis, for as noted by Wilks, “these techniques presume that terms which co-

occur in documents with query terms are semantically related to query term uses. They

rely on the implicit existence of an empirically derived thesaurus, or clump dictionary”

(Wilks, 2007). Applying her work over larger and larger sources of data, she later be-

gan to abandon using even the open-ended semantic primitives of Masterman. In her

later critique of artificial intelligence, she cited that one of the key insights of infor-

mation retrieval is that programs should take “words as theystand” and not as mere

adjuncts to some logical knowledge representation system (1999). In contrast, Wilks

points out that statistical techniques from machine-learning have had considerable in-

fluence on artificial intelligence, although not via information retrieval, but instead via

a general breakdown of disciplinary boundaries in artificial intelligence and the in-

fluence of statistics from machine-translation (2005b). Inline with the general move

towards semantic search we put forward, Wilks maintains that light-weight knowledge

representations are becoming increasing crucial to knowledge representation.

It should not be viewed with irony but with a sense of things coming full circle,
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that the methods of information retrieval could be considered crucial to the success of

the Semantic Web, and even vice versa. Earlier in Section 5.4, we gave an overview

of Spärck Jones’s critique of both the logicist position ofthe Semantic Web – which

she termed the ‘high-end’ Semantic Web – and Berners-Lee’s direct reference posi-

tion of the Semantic Web, which Spärck Jones terms the ‘middle end’ version. She

ends up indicating a ‘low-end’ version that deals with very general ‘tags’ may work,

and while the Semantic Web has not experienced exponential growth, tagging has suc-

ceeded (Halpin et al., 2007). However, our work connects something resembling the

‘low-end’ with a rehabilitated version of the Semantic Web,as our experiment shows

that simple queries and statistical information retrievalcan be connected to more struc-

tured knowledge, and in fact is vital for finding and discovering the quality of such

knowledge representations. Indeed, it is clear Spärck Jones’s true target is not the Se-

mantic Web as a system of URIs as common names but what she rightly recognized

as a logicist approach to reviving classical knowledge representation. In this, she is

clearly right, for our system takes advantage of the fact that there isnot “something

better than natural language as a general means of expressing, and hence accessing,

information,” which is tacitly acknowledged by the presence of natural language terms

in URIs (2004). In fact, our system attempts to vindicate a neo-Wittgensteinian public

language position primarily by showing that natural language queries work well for

describing and finding Semantic Web URIs, and that even the knowledge representa-

tions of the Semantic Web ground out in meaningful natural language words that they

share with other representations of the same referents on the Web, like web-pages.

The revival of knowledge representation due to the SemanticWeb initiative is more

of a historical accident than the consequence of any plan, aswho but the refugees from

the failed knowledge representation projects of classicalartificial intelligence would be

desperate enough to join in Berners-Lee’s efforts to createthe Semantic Web? Indeed,

there is no objection to the general notion of discovering some sort of open-ended

common lexicon of semantic primitives for natural languages, a notion initiated com-

putationally by Masterman (Wilks, 2007). One could simply say that the Semantic

Web is the naming of these semantic primitives by URIs ratherthan abbreviated natu-

ral language names, with all the advantages the principles of Web architecture bring.

Lastly, RDF triples could then be considered the minimal structure one could attach to

these semantic primitives (Masterman, 1961). There is nothing in this URI-based ver-

sion of the Semantic Web that ties it to any commitment to a single ontology or even

single knowledge representation language. The bet of usingURIs as a universal nam-
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ing scheme for things can just as easily be tied to statistical methods from information

retrieval as it can to logic-based knowledge representations. However, as Spärck Jones

would remind us, we should proceed next to a test of the systemon real users and real

data.
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Figure 8.2: Diagram of Feedback-Driven Semantic Search System



Chapter 9

Evaluation

You philosophers ask questions without answers, questionsthat have to remain unan-

swered to deserve being called philosophical. According toyou, answered questions

are only technical matters. That’s what they were to begin with. Jean Lyotard (1988)

9.1 Experiment

The primary goal of the experiment is to collect what are known asrelevance judg-

mentsof both Semantic Web documents and hypertext web-pages about non-information

resources such as concepts and entities, and to determine ifthese relevance judgments

can improve the ranking of the results from search engines operating over both hyper-

text and Semantic Web information. The criteria for successis that a query in natural

language terms to a Semantic Web search engine should returnthe single best URI for

the intended referent of the query. In order to determine if our Wittgenstein-inspired

methodology works in practice, an experiment with real human subjects operating over

real queries is needed. A random selection of the entire query-driven Semantic Web

corpus, as described in Chapter 7, is run against both the hypertext and Semantic Web,

and human judges rank both the Semantic Web and hypertext results for relevance.

These relevance rankings are then applied to re-rank the results from the Semantic

Web and hypertext search engines.

9.1.1 Corpus

For our experimental query corpus, 100 entity queries and 100 concept queries were

randomly selected from the crawled URIs from the original corpus for a total experi-

205
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1 ashville north carolina

2 harry potter

3 orlando florida

4 ellis college

5 university of phoenix

6 keith urban

7 carolina

8 el salvador

9 san antonio

10 earl may

Table 9.1: 10 Selected Entity Queries

mental query corpus of 200 queries. Constraints were placedon crawled URIs, such

that at least 10 Semantic Web documents were crawled for eachquery, leading to a

total of 1,000 Semantic Web documents about entities and 1,000 Semantic Web doc-

uments about concepts, for a total of 2,000 experimental Webrepresentations. Then,

the same experimental query corpus was used to crawl the hypertext Web, resulting in

a total of 1,000 web-pages about entities and 1,000 web-pages about concepts. The

web-pages were retrieved using Yahoo! Search, a commercially deployed hypertext

Web search system.1 While the exact algorithm Yahoo! uses is unknown, it is likely

related to PageRank, the original algorithm of their competitor Google, although it is

likely both companies have many modifications to the basic PageRank algorithm (Brin

and Page, 1998). A random selection of ten queries from the entity corpus is given

in Table 9.1 and another random selection of ten queries fromthe concept corpus is

given in Table 9.2. As one can tell, the queries about entities and concepts are spread

across quite diverse domains, ranging from entities over locations (El Salvador) and

people (both fictional such as Harry Potter and non-fictionalsuch as Earl May) and for

concepts over a whole range of abstraction, from sociology to ale.

9.1.2 Defining Relevancy

Since the Web representations were retrieved from search engines, it is entirely pos-

sible that the search engine returned irrelevant search results. This is for a number of

1Available athttp://www.yahoo.com.
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131 sociology

133 clutch

134 telephone

135 ale

136 pillar

137 sequoia

138 aster

139 bedroom

140 tent

141 cinch

Table 9.2: 10 Selected Concept Queries

reasons, primarily including queries in the natural language that use ambiguous terms

and the ability of ‘link farms’ (web-pages consisting of many links) to manipulate

PageRank or other link-based weighing schemes for search engines. For each Web

representation, the human judge had to decide whether or notthe Web representation

wasrelevantto the query, where relevance was definedas whether or not a Web rep-

resentation is about the same thing as the query, which can bedetermined if accurate

information about the thing is expressed by the Web representation. By fulfilling these

requirements, a particular Web representation can be said to ‘satisfy’ the information

need of a particular user.

Our definition of relevance is considerably stronger than most more informal no-

tions of relevance used in the information retrieval literature (Mizarro, 1997). How-

ever, these definitions of relevance are considerably more general-purpose than our

notion of relevance because this broader notion of relevance has to deal with not only

informational queries, but navigational and transactional queries. Furthermore, our

notion of relevance is grounded in the idea of the Web representations actually being

representationsthat refer to some sort of entity or concept in the world, and so share

the same sense as the referent. Therefore, our definition of relevance encompasses

only a subset of all possible informational queries, in particular, those queries where

the information is representational. In this manner, we consider the query terms to be

descriptions of some referent, where more information is needed by a user about the

referent.

A number of types of Web representations that would ordinarily be considered
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relevant are therefore excluded. In particular, there is a restriction that the relevant

information must be present in the Web representation itself. This excludes possibly

relevant information that is accessible via outbound links, even a single link. All man-

ner of Web representations that are collections of links areexcluded from relevancy,

including both ‘link farms’ purposely designed to be highlyranked by page-rank based

search engines (Brin and Page, 1998), as well as legitimate directories of high-quality

links to relevant information. These are excluded precisely because the information,

even if it is only a link transversal away, is still not directly present in the retrieved

Web representation. By this same principle, Web representations that merely redirect

to another resource via some method besides the standardized HTTP303 method are

excluded, since a redirection can be considered a kind of link. They would be con-

sidered relevant only if additional information was included in the Web representation

besides the redirection itself.

Query terms are astoundingly brief, usually only one or two words, and are so li-

able to be highly ambiguous, a problem that is unresolvable using statistical natural

language processing methods due to there being no context for the query terms besides

the query itself. Due to this long-standing problem, there has long been an interest

in combining some form of knowledge representation to disambiguate the queries,

and recently attempts have been made to use Semantic Web to represent background

knowledge (Castells et al., 2007). However, results of disambiguating queries via se-

mantics show that even with some formalized background knowledge, given the vast

number of queries possible, it is non-trivial to attach unambiguous semantics to queries

reliably, and always more and more queries and relevant documents fall into some

‘miscellaneous’ category (Lavrenko, 2008).

All hope is not lost. Wittgenstein’s emphasis on the form-of-life should remind

us that it is not only the linguistic form, but the extra-linguistic activity, that gives

meaning to a language. In the case of search terms, the ambiguity can often be resolved

by attention to what Web representations have been examinedby actual users. In our

experiment, a query is considered not only natural-language terms, but also the Web

representation clicked on by the user is considered part of the query. Since the queries

in the evaluation have been selected from an actual query logfrom MicrosoftLive.com,

we used a query log to select sample hypertext Web representations that an actual user

judged as relevant to the query. If the human judge is in doubtof the intended sense

of search terms in the query, then the human judge can use the associated rendered

Web representation to determine the intended information need of the query. If the
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associated result is itself confusing, the human judges areto assume the most common

use of the word in English. If the term is still confusing, thehuman judge could leave

a comment.

The question of what actually defines ‘accurate information’ is vexing, but can be

defined in a satisfactory manner without resorting to any appeal to a heavy-weight log-

ical notion of truth. In a Wittgensteinian manner, the notion of accurate information

can be grounded out in the notion of sense, where sense is defined by the use of a term

in a language. If a Web representation shares the same sense as the intended referent of

the query, then it contains accurate informationaboutthat referent. However, ascertain-

ing sense is notoriously difficult to do automatically by machine for natural language.

However, being proficient at natural language, humans can determine the sense of even

limited information. If a Web representation does not contain enough information in it

for the human judge to interpret whether or not it shares the same sense as the query,

then the Web representation is not relevant. Therefore, many Web representations that

merely mention the query terms, but do not provide any information about the referent

of the query terms, can be viewed as irrelevant. Given a queryfor ‘Eiffel Tower,’ a

result entitled ‘Monuments in Paris’ would likely be relevant if there was information

about the Eiffel Tower in the page, but a result entitled ‘TheRestaurant in the Eiffel

Tower’ containing only the address and menus of the restaurant would not be relevant.

Following tradition in information retrieval, the human judges are forced to make

binary judges of relevance, so each result must be either relevant or irrelevant to the

query. Human judges are usually inaccurate when forced to make finely-graded rele-

vance judgments, so users prefer binary relevance judgments (Janes, 1993). Generally,

binary relevance judgments have been shown to be statistically stable over time, even

if relevance judgments can differ in minor regards both in between judges and in the

same judge over time (Baeza-Yates and Ribeiro-Neto, 1999).If the human judge faces

any difficulty or has any doubts about their relevance judgment a comment box is given

for them to express this difficulty.

9.1.3 Making Relevance Judgments

For each of the 200 experimental queries, 10 hypertext web-pages and 10 Semantic

Web documents need to be judged for relevance, leading to a total of 4,000 human

judgments for relevance in total for our entire experiment.The human judges each

judged 25 queries presented in a randomized order, and were given a total of 3 hours
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to test the entire sample for relevancy. No researchers werepart of the rating. The

judges were each presented first with ten hypertext web-pages and then with ten Se-

mantic Web documents. So for each query, the judge determines relevance for 20 Web

representations, leading to a total of 20 judgments per query per judge. Each Web rep-

resentation therefore judged by three judges, with a total of 30 judges used in the entire

experiment. So over a single session, the judges gave judgments to 20 distinct results.

The judges were given instructions in line with the definition of relevancy given in

Section 9.1.2.

In order to aid the judges, a Web-based interface was createdto present the queries

and results to the judges. Although an interface that presented the queries and the

search interface in a manner similar to search engines was created, human judges

preferred an interface that presented them the judgment results one-at-a-time, forcing

them to view a rendering of the web-page associated with eachURI originally offered

by the search engine. For each hypertext web-page, the web-page was rendered using

the Firefox Web Browser and PageSaver Pro 2.0. For each Semantic Web document,

the result was rendered (i.e. the triples, any associated text in the subject, and any asso-

ciated depictions) by using the open-source Disco Hyperdata Browser with Firefox.2

In both cases, the resulting rendering of the Web representation was saved at 469x 631

pixel resolution. The reason that the web-page was renderedinstead of a link given

directly to the URI is because of the unstable state of the Web, especially the hypertext

Web. Even caching the HTML would have risked losing much of the graphic element

of the hypertext Web. By creating ‘snapshot’ renderings, each judge at any given time

was guaranteed to be given the same experience in the experiment and to be presented

with the web-page in its intended visual form. However, one side-effect of this is that

web-pages that heavily depended on non-standardized technologies or plug-ins would

not render and were thus presented as blank screen shots to the user.

The judges were each given time to read the instructions as given earlier and were

then allowed a test-run on three queries, and these queries were removed from the

results. During this training phase, a tutor was allowed to explain why each page

was either relevant or irrelevant. Since breaks were allowed for the judges during the

judging session, the judges created a login, and were allowed to log-out and re-start

the experiment at the beginning of the sub-task they were in.The user-interface broke

the evaluation into two steps:

2The Disco Hyperdata Browser, a browser that renders Semantic Web data to HTML, is available at
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.
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• Judging relevant results from a hypertext Web search:The judge was given the

query terms created by an actual human user and an example web-page that a

user selected, whose full snapshot could be viewed by clicking on it. A full

rendering of the retrieved web-page was presented to the user with its title and

summary (as produced by Yahoo! Search) easily viewed by the judge as in

Figure 9.1. The judge clicked on the check-box if the result was considered

relevant. Otherwise, the web-page was by default recorded as not relevant. The

web-page results were presented to the judge one at a time, ten times for each

query.

• Judging relevant results from a Semantic Web search:Next, the judge assessed

all the Semantic Web results for relevancy. The judge was given query terms

and data from the Semantic Web. A title was displayed by retrieving any literal

values fromrdfs:label properties and a summary by retrieving any literal val-

ues fromrdfs:comment values. Using the same interface as in the judgment of

hypertext results, as shown in Figure 9.2, the judge had to determine whether or

not the Semantic Web results were relevant.

Figure 9.1: The interface used to judge web-page results for relevancy.

After the ratings were completed, Fliess’sκ statistic was taken in-order to test the

reliability of inter-judge agreement over the relevancy ranking (Fleiss, 1971). Simple

percentage agreement is not sufficient, as it does not take into account the likelihood

of purely coincidental agreement by the judges: Two judges would naturally have an
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Figure 9.2: The interface used to judge Semantic Web results for relevancy

expected agreement of 50%. While the most common statistic used in assessing inter-

judge reliability that corrects for chance agreement is Cohen’s κ statistic, Cohen’sκ
statistic only applies to either two judges per sample or a single judge making two

judgments of a single sample (Carletta, 1996). However, therelated Fleiss’sκ both

corrects for chance agreement and can be used for more than two judges (Fleiss, 1971).

Fleiss’sκ, from here on referred to only asκ, which givenO as the observed inter-rater

agreement andE as the expected chance agreement between raters, is given inEquation

9.1.

κ =
O−E
1−E

(9.1)

The null hypothesis is that the judges cannot distinguish relevant from irrelevant re-

sults, and so are judging results randomly. Overall, for both relevance judgments over

Semantic Web results and web-page results,κ = 0.5724 (p < .05,95% Confidence in-

terval [0.5678,0.5771]), indicating the rejection of the null hypothesis and moderate

agreement. For web-page results only,κ = 0.5216 (p < .05, 95% Confidence inter-

val [.5150,0.5282]), also indicating the rejection of the null hypothesis and moderate

agreement. Lastly, for only Semantic Web results,κ = 0.5925 (p < .05, 95% Confi-

dence interval[0.5859,0.5991]), further indicating the null hypothesis is to be rejected

and moderate agreement. So, in all cases there is ‘moderate’agreement, which is suf-

ficient given the general difficulty of producing perfectly reliable relevancy judgments.

Interestingly enough, the difference inκ between the web-page results and Semantic
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Web results show that the judges were actuallyslightlymore reliable in their relevancy

judgments of information from the Semantic Web rather than the hypertext Web. This

is likely due to the more widely varying nature of the hypertext results as compared to

the more consistent informational nature of Semantic Web results.

Were judges more reliable with entities or concepts? Recalculating theκ for all en-

tity results,κ = 0.5989 (p < .05, 95% Confidence interval[0.5923,0.6055]), while for

all results based on concept queries wasκ = 0.5447 (p < .05, 95% Confidence inter-

val [0.5381,0.5512]). So it appears that judges are slightly more reliable discovering

information about entities rather than concepts, backing the claim made by Hayes et

al. that there is more agreement in general about ‘less’ abstract things like people and

places rather than abstract concepts (Hayes and Halpin, 2008). However, agreement is

still very similar and moderate for both information about entities and concepts.

However, is this disparity in agreement between entities and concepts affected by

media type? For content about entities encoded in hypertext, κ = 0.5112 (p < .05,

95% Confidence interval[0.5019,0.5205]), while for information about concepts en-

coded in hypertext,κ = 0.5271 (p < .05, 95% Confidence interval[0.5178,0.5364]).

Taking confidence intervals into account, there is no significant difference in rele-

vance judgments between entities and concepts in hypertextweb-page results. How-

ever, relevance judgments of entity information encoded for the Semantic Web led to

‘substantial’ agreement, as shown byκ = 0.6622 (p < .05, 95% Confidence interval

[0.6528,0.6715]), while associated descriptions for concepts on the Semantic Web had

substantially less agreement on relevance, withκ = 0.5364 (p < .05, 95% Confidence

interval [0.5271,0.5457]). As far as reliability is concerned, information about con-

cepts encoded on the Semantic Web is indistinguishable fromconcept-based informa-

tion encoded in hypertext, while information about entities coded on the Semantic Web

is much more reliably rated for relevance than concepts and even the very same entities

encoded in hypertext. Although this seems unusual, upon consideration it makes con-

siderable sense: Agreement on entity-based information may be hindered rather than

helped by multimedia and the lack of a structured focus of web-pages, while the more

lean and information-rich Semantic Web languages leave less doubt about the primary

referent. For example, there may be disagreement among judges about whether a page

selling an Earl May jazz album was ‘about’ Earl May the musician, but the Semantic

Web would ideally separate these two things clearly, havingdistinct representations

for Earl May and his music. Also, this is even a stronger validation on the hypothesis

that on the Semantic Web, agreement on entities will be higher than abstract concepts
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(Hayes and Halpin, 2008).

Given the (at least) moderate agreement across relevance judgments for both web-

page and Semantic Web results, pooled voting was used to assess binary relevance

scores for each result. For each result, if at least two of thethree judges scored the

result as relevant to the query, the result itself were considered relevant for the rest of

the evaluation. Otherwise, the result was considered to be irrelevant, even if one of the

judges found it relevant. After this pooled voting procedure was completed to test for

relevancy, a number of statistics can be gleaned from the relevancy judgments. TheSe-

mantic Web relevancy corpusis the 200 judged queries and 2000 results derived from

searching the Semantic Web using FALCON-Swhile thehypertext relevancy corpus

is the 200 judged queries and 2000 results derived from searching the hypertext Web

using Yahoo! Web search. Both the hypertext and Semantic corpus can be combined to

create thetotal relevancy corpus, thecorpus of 400 judged queries and 4000 results.

In the total relevancy corpus each query given is presented twice, so there are only 200

unique queries for the 400 judged results. This was done to allow us to compare the

four corpora conditions (Semantic Web, hypertext, entity,and concept) fairly, and each

condition had its presentation randomized. However, as we are interested primarily in

the differing roles of entity and concept queries on the Semantic Web, we will focus

on this condition only in the context of the Semantic Web and not the hypertext Web.

For the queries, much of the data is summarized in Table 9.3. ‘Hypertext’ means

that the result was taken only over the hypertext relevancy corpus and ‘Semantic Web’

indicates the same for the Semantic Web relevancy corpus. Results for ‘Entity (SW)’

and ‘Concept (SW)’ were calculated only over the Semantic Web relevancy corpus and

percentages were taken over the results from the Semantic Web relevancy corpus. This

is because we are primarily concerned with how entities and concepts differ over the

Semantic Web, not the hypertext Web. The percentages for resolved and unresolved

for ‘hypertext’ and ‘Semantic Web’ were taken over the hypertext and Semantic Web

relevancy corpora in order to allow direct comparison of theSemantic Web and hy-

pertext search results. However, the percentages for ‘Top Relevant’ (a relevant result

at the top ranking) and ‘Top Non-Relevant’ (a non-relevant result at the top ranking)

were computed as percentages over all relevant queries, andso excludes unresolved

queries. For ease of reference, a pie-chart for the hypertext relevancy corpus is given

in Figure 9.3 and for the Semantic Web relevancy corpus in Figure 9.4.

Resolvedqueries arequeries that return at least one relevant resultin the top 10

results, whileunresolvedare queries that return no relevant queries in the top 10
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Results: Hypertext Semantic Web Entity (SW) Concepts (SW)

Resolved: 197 (98%) 132 (66%) 70 (53%) 62 (47%)

Unresolved: 3 (2%) 68 (34%) 42 (62%) 26 (38%)

Top Relevant: 121 (61%) 76 (58%) 47 (62%) 29 (38%)

Top Non-Relevant: 76 (39%) 56 (42%) 23 (41%) 33 (59%)

Table 9.3: Results of Hypertext and Semantic Web Relevance Judgments

Non−Top Relevant

Top Relevant

Unresolved

Figure 9.3: Results of Querying the Hypertext Web.

Top Relevant

Non−Top Relevant

Unresolved

Figure 9.4: Results of Querying the Semantic Web.
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results. For the total relevancy corpus, there were 71 (18%) unresolved queries that

did not have any results. For the hypertext relevancy corpus, only 3 (2%) queries

were unresolved, while 68 (34%) of the queries were unresolved for the Semantic

Web. This simply means that the hypertext search engines almost always returned at

least one relevant result in the top 10, but for the Semantic Web almost a third of all

queries did not return any relevant result. This only means there is much that is still

to be represented on the Semantic Web. There was no intersection between those few

queries that were unresolved for the hypertext search engine and the numerous queries

that did not produce any results on the Semantic Web. Queriesthat gave the hypertext

search engines difficulty were those like ‘fable,’ since a query for the definition of

a ‘fable’ was over-run by results about a video-game that used the same name. For

the Semantic Web, entity queries about specific places with very common names like

‘willow ridge’ or not-so-well known people like ‘monica james’ led to no results in

the top 10, while concepts like ‘doctor’ and ‘tv’ caused problems as well. The reason

some concept queries were hard to satisfy was because the Semantic Web simply had

information that was too specific for the particular concept, such as informationonly

on a few particular television shows in the top 10.

Another endemic problem was the take-over of common conceptual names by pop-

ular products (like video-games, novels, or even housing detergents) and companies

and music bands. Overall, on the Semantic Web it is far more difficult to locate rele-

vant results about entities than concepts. Of the unresolved queries for the Semantic

Web relevancy corpus, there were 47 (58%) entity queries and33 (42%) unresolved

concept queries. Apparently, there are quite a few entitiespeople are interested in, such

as the ‘Wilson County News,’ that do not have a URI yet on the Semantic Web, and

so this to some extent validates the OKKAM hypothesis of Bouquet et al. that there

are many entities that were still in need of a URI (2007a). However, it appears these

entities were only about one-quarter of what users were searching for.

Another question is how many queries had a relevant result astheir top result?

In general, 197 queries (50%) had top-ranked relevant results for the total relevancy

corpus. However, while the hypertext relevancy corpus had 121 (61%) top-ranked

relevant results, the Semantic Web relevancy corpus only had 76 (58%) top-ranked

relevant results. A lack of top-ranked relevant results becomes particularly acute on

the Semantic Web for queries about concepts. For the Semantic Web relevancy corpus,

there were 47 (63%) top-ranked relevant queries about entities and only 29 (38%) about

concepts. It appears that while search terms often directlytake the user to information
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about a relevant entity, for concepts this happens less often. This is likely due to there

being many concepts whose natural language term is being used as the name of some

other entity (such as the term ‘fable’ being used as a companyname), and the fact that

many concepts are ambiguous and have multiple senses even innatural language.

What makes a more compelling case for relevance feedback is the number of times

anon-relevant result was the top-ranked (top non-relevant) result in response to a query.

For the entire relevancy corpus, there were 132 (33.0%) queries where a non-relevant

result was in the top position of the returned results. For the hypertext Web relevance

corpus there were 76 (39%) queries with a non-relevant top result, while for the Se-

mantic Web relevance corpus, 56 (42%) of all queries had a non-relevant top result.

While queries on the Semantic Web are more likely to turn up norelevant results,

when a relevant query is returned, both for the hypertext Weband the Semantic Web

it is quite likely that a non-relevant result will be in the top position of the result list.

For the Semantic Web top non-relevant results, 23 (41%) of the queries about entities

had a top non-relevant result, while there were 33 (59%) queries about concepts that

had a top non-relevant result. In particular, this means that concepts were overall more

likely to have a top non-relevant result in response to a query, in line with our earlier

insights about the different behavior of concepts and entities on the Semantic Web.

Excluding unresolved queries, there is an average of 3.97 (S.D. 2.14) relevant re-

sults per query in the hypertext Web relevancy corpus and an average of 1.93 (S.D. 2.2)

relevant results per query for the Semantic Web relevancy corpus. While having more

than one relevant result in the top 10 for a hypertext search engine is an advantage, hav-

ing more than one co-referential URI on the Semantic Web is a problem, and with most

queries producing about two relevant URIs seems to support the hypothesis that on the

Linked Data Web, multiple people are actually producing multiple URIs for the same

thing. There were 80 queries that had more than one relevant result, with an average

of 3.36 (S.D. 2.14) relevant results per query. With regardsto differences between en-

tities and concepts, there were substantial differences. From the 80 queries with more

than one relevant result in the Semantic Web relevance corpus, entity queries have an

average of 2.79 (S.D. 1.59) relevant results, while conceptqueries have an average of

4 (S.D. 2.50) relevant results. This means that abstract concepts on the Semantic Web

often havemanyshared URIs, while in the case of an entity being mentioned onthe

Semantic Web, it usually has two URIs. From inspection of entities with many rele-

vant results, it appears the usual case is that DBpedia and WordNet have a substantial

amount of overlap in the concepts to which they give URIs. Forexample, they have dis-
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tinct URIs for such concepts as ‘violin’ (http://dbpedia.org/resource/Violin

vs.http://www.w3.org/2006/03/wn/wn20/instances/synset-violin-noun-1).

Likewise, most repetition of entity URIs comes from WordNetand DBpedia, both of

which have distinct URIs for famous people like ‘Charles Darwin’

(http://dbpedia.org/resource/Charles Darwin and

http://www.w3.org/2006/03/wn/wn20/instances/synset-Darwin-noun-1).

How is a user supposed to choose between equally authoritative URIs from W3C

WordNet or DBpedia? Our information-retrieval based system discovers which Se-

mantic Web URI better ‘matches’ the information in the relevant hypertext web-pages.

9.2 Information Retrieval Framework

In our experiment we tested two general kinds of informationretrieval frameworks:

vector-space models and language models. In thevector-space model, document mod-

els are considered to be vectors of terms (usually called ‘words’ as they are usually, al-

though not exclusively, from natural language) where the weighing function and query

expansion has no principled basis besides empirical results. Ranking is usually done

via a comparison using the cosine distance, a natural comparison metric between vec-

tors. The key to success with vector-space models tends to bethe tuning of the pa-

rameters of their weighing function. While fine-turning these parameters has led to

much practical success in information retrieval, the parameters have little formally-

proven basis but are instead based on common-sense heuristics like document length

and average document length.

Another approach, thelanguage modelapproach, takes a formally principled and

probabilistic approach to determining the ranking and weighting function. Instead of

each document being considered some parametrized word-frequency vector, the doc-

uments are each considered to be samples from an underlying probabilistic language

modelMD, of which D itself is only a single observation. In this manner, the query

Q can itself also be considered a sample from a language model.In early language

modeling efforts (Ponte and Croft, 1998), the probability that the language model of a

document would generate the query was the comparison function of the document. A

more sophisticated approach to language models considers that the query was a sam-

ple from an underlyingrelevance modelof unknown relevant documents, but that the

model could be estimated by computing the co-occurrence of the query terms with

every term in the vocabulary. In this way, the query itself was just considered a lim-
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ited sample, so the it is automatically expanded before the search has even begun by

re-sampling the underlying relevance model.

In detail, we will now inspect the various weighting and ranking functions of the

two frameworks. A number of different options for the parameters of each weighting

function, and the appropriate ranking function, will be considered.

9.2.1 Vector Space Models

9.2.1.1 Representation

Each vector-space model has as a parameter the factorm, the maximumwindow size,

which is the number of words, ranked in descending order of frequency, that are used

in the document models. In other words, the size of the vectors in the vector-space

model ism. Words with a zero frequency are excluded from the document model.

9.2.1.2 Weighting Function: BM25

The current state of the art weighting function for vector-space models isBM25, one

of a family of weighting functions explored by Roberson (Robertson et al., 1998) and

a descendant of thetf.idf weighting scheme pioneered by Spärck Jones and Robertson

(Robertson and Spärck Jones, 1976). In particular, we willuse a version ofBM25with

the slight performance-enhancing modifications used in theInQuery system (Allan

et al., 2000). This weighting scheme has been carefully optimized and routinely shows

excellent performance in TREC competitions (Craswell et al., 2005). The InQuery

BM25 function assigns the following weight to a wordq occurring in a documentD:

Dq =
n(q,D)

n(q,D)+0.5+1.5 dl
avg(dl)

log(0.5+N/d f(q))

log(1.0+ logN)
(9.2)

TheBM25 weighting function is summed for every termq∈Q. For everyq, BM25

calculates the number of occurrences of a termq from the query in the documentD,

n(q,D), and then weighs this by the length of documentdl of documentD in compar-

ison to the average document lengthavg(dl). This is in essence the equivalent of term

frequency int f .id f . TheBM25 weighting function then takes into account the total

number of documentsN and the document frequenciesd f(q) of the query term. This

second component is theid f component of classicalt f .id f .
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9.2.1.3 Comparison Function: Cosine and InQuery

The vector-space models have an intuitive comparison function in the form of cosine

measurements. In particular, the cosine comparison function is given by Equation 9.3,

for a documentD with queryQ, where bothD andQ containq words, iterating over

all words.

cos(D,Q) =
D ·Q
|D||Q|

=
∑qQqDq

√

∑qQ2
q

√

∑qD2
q

(9.3)

The only question is whether or not the vectors should be normalized to have a Eu-

clidean weight of 1, and whether or not the query terms themselves should be weighted.

We investigate both options. The classical cosine is given as cosine, which normalizes

the vector lengths and then proceeds to weight both the queryterms and the vector

terms byBM25. The version without normalization is calledinqueryafter theInQuery

system (Allan et al., 2000). Theinquerycomparison function is the same ascosineex-

cept without normalization each word in the query can be considered to have uniform

weighing.

9.2.1.4 Relevance: Okapi, LCA, and Ponte

There are quite a few options on how to expand queries in a vector-space model. One

popular and straightforward method, first proposed byRocchio(Rocchio, 1971) and at

one point used by theOkapisystem (Robertson et al., 1994), is to expand the query by

taking the average of thej total relevant document modelsR, with a documentD ∈ R,

and then simply replacing the queryQ with the topm words from averaged relevant

document models. This process is given by Equation 9.4 and isreferred to asokapi:

okapi(Q) =
1
j ∑

D∈R
D (9.4)

Another state of the art query expansion technique is known asLocal Content Anal-

ysis(lca) (Xu and Croft, 1996). Given a queryQ with query termsq1...qk and a set

of resultsD and a set of relevant documentsR, thenlca ranks everyw∈ V by Equa-

tion 9.5, wheren is the size of the relevant documentsR, id fw is the inverse document

frequency of wordw, andDq andDw are the frequencies of the wordsw andq∈Q in

relevant documentD ∈ R.

lca(w;Q) = ∏
q∈Q

(

0.1+
1/ logn
1/id fw

log ∑
r∈R

DqDw

)id fq

(9.5)
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After each wordw∈V has been ranked bylca, then the query expanded by LCA is just

the topm words given bylca. Local Content Analysis attempts to select words from

relevant documents to expand the query that have limited ambiguity, and so it does

extra processing compared to theokapimethod that simply averages the most frequent

words in the relevant documents. In comparison, Local Content Analysis performs an

operation similar in effect tot f .id f on the possibly relevant terms, and so attempting

by virtue of weighing to select only wordsw that both appear frequently with terms in

queryq but have a low overall frequency (id fw) in all the results.

The final method we will use is the heuristic method developedby Ponte (1998),

which we callponte. Like lca, ponteranks each wordw ∈ V, but it does so differ-

ently. Instead of taking a heuristic-approach likeOkapior LCA, it takes a probabilistic

approach. Given a set of relevant documentsR∈ D, Ponte’s approach estimates the

probability of each wordw∈V being in the relevant document,P(w|D), divided by its

overall probability of the word to occur in the resultsP(w). Then thePonteapproach

gives eachw∈V a score as given in Equation 9.6 and then expands the query by using

them most relevant words as ranked by their scores.

Ponte(w;R) = ∑
D∈R

log

(

P(w|D)

P(w)

)

(9.6)

9.2.2 Language Models

9.2.2.1 Representation

Language modeling frameworks in information retrieval represent each document as a

language model given by an underlying multinomial probability distribution of word

occurrences. Thus, for each wordw∈V there is a value that gives how likely an obser-

vation of wordw is givenD, i.e. P(w|uD(v)) (Ponte and Croft, 1998). The document

model distributionuD(v) is then estimated using the parameterλD, which allows a lin-

ear interpolation that takes into account the background probability of observingw in

the entire collectionC. This is given in Equation 9.7.

uD(w) = λD
n(w,D)

|D|
+(1−λD)

n(w,C)

∑v∈V n(v,C)
(9.7)

The parameterλD just takes into account the relative likelihood of the word as

observed in the given documentD compared to the word given the entire collection of

documentsC. |D| is the total number of words in documentD, while n(w,D) is the

frequency of wordd in documentD. Further,n(w,C) is the frequency of occurrence
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of the wordw in the entire collectionC divided by the occurrence of all wordsv in

collectionC.

9.2.2.2 Language Modeling Baseline

When no relevance judgments are available, the language modeling approach ranks

documentsD by the probability that the queryQ could be observed during repeated

random sampling from the distributionuD(·). The typical sampling process assumes

that words are drawn independently, with replacement, leading to the following re-

trieval score being assigned to documentD:

P(Q|D) = ∏
q∈Q

uD(Q) (9.8)

The ranking function in Equation 9.8 is calledquery-likelihoodranking and is used

as a baseline for our language-modeling experiments.

9.2.2.3 Language Models and Relevance Feedback

The classical language-modeling approach to IR does not provide a natural mechanism

to perform relevance feedback. However, a popular extension of the approach involves

estimating a relevance-based modeluR in addition to the document-based modeluD,

and comparing the resulting language models using information-theoretic measures.

Estimation ofuD has been described above, so this section will describe two ways of

estimating the relevance modeluR, and a way of measuring distance betweenuQ and

uD for the purposes of document ranking.

Let R= r1. . .rk be the set ofk relevant documents, identified during the feedback

process. One way of constructing a language model ofR is to average the document

models of each document in the set:

uR,avg(w) =
1
k

k

∑
i=1

ur i(w) =
1
k

k

∑
i=1

n(w, r i)

|r i|
(9.9)

Heren(w, r i) is the number of times the wordw occurs in thei′th relevant document,

and|r i| is the length of that document. This model is abbreviated asrm for relevance

model.

Another way to estimate the same distribution would be toconcatenateall relevant

documents into one long string of text, and count word frequencies in that string:

uR,con(w) =
∑k

i=1n(w, r i)

∑k
i=1 |r i|

(9.10)
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Here the numerator∑k
i=1n(w, r i) represents the total number of times the wordw occurs

in the concatenated string, and the denominator is the length of the concatenated string.

The difference between Equations 9.9 and 9.10 is that the former treats every document

equally, regardless of its length, whereas the latter favors longer documents (they are

not individually penalized by dividing their contributingfrequenciesn(w, r i) by their

length|r i|). This model is abbreviated ast f from hereon.

9.2.2.4 Comparison Function: Cross Entropy

We now want to re-compute the retrieval score of documentD based on the estimated

language model of the relevant classuR. What is needed is a principled way of com-

paring a relevance modeluR against a document language modeluD. One way of

comparing probability that has shown the best performance in empirical information

retrieval research (Lavrenko, 2008) is cross entropy. Intuitively, cross entropy is an

information-theoretic measure that measures the average number of bits needed to

identify the probability of distributionp being generated ifp was encoded using given

probability distributionp rather thanq itself. For the discrete case this is defined as:

H(p,q) =−∑
x

p(x)log(q(x)) (9.11)

If one considers that theuR = p and that document model distributionuD = q, then

the two models can be compared directly using cross-entropy, as shown in Equation

9.12. This use of cross entropy also fulfills the ProbabilityRanking Principle and so is

directly comparable to vector-space ranking via cosine (Lavrenko, 2008).

−H(uR||uD) = ∑
w∈V

uR(w) loguD(w) (9.12)

Note that either theaveragedrelevance modeluR,avg or theconcatenatedrelevance

modeluR,con can be used in Equation 9.12. We refer to the former asrm and to the

latter ast f in the following experiments.

9.3 Evaluation Metrics

The two most popular measures for determining system performance,recall andpre-

cision, were originally introduced to compare information retrieval systems. Given

that ‘positive’ (R) is a relevant result and every document in the collectionC, then

Recall= |R∩C|
|R| andPrecision= |R∩C|

|C| . In this way, a search engine with perfect recall
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would require that it retrieveall the relevant resultswhile a perfectly precise informa-

tion retrieval engine retrieved only ten relevant results.However, note that recall is not

penalized by retrieving both relevant and irrelevant documents, so that perfect recall

could be achieved by retrievingall documents, relevant and irrelevant, and presenting

them to the user. Due to this, precision is usually regarded as the most important statis-

tic, particularly as the Open World Principle states that itis impossiblefor evaluations

to categorizeall relevant results on the Web for a given query. Also, standardnotions

of recall and precision have no clear cut way of dealing with ranked results in ad-hoc

information retrieval, such that a relevant result at the first rank is more important than

a relevant result at the last rank. Due to these features of information retrieval systems,

the metrics ofmean average precisionand an accompanying significance test known

as theWilcoxon signed-rank testhave been developed, which are the ones we employ

to evaluate our system.

9.3.1 Mean Average Precision

In order to deal with ranked data, precision is modified to beprecision at rankρ. Note

that this measure takes into account recall as well, as if precision at one rank is greater

than precision at another rank, the first rank willalsohave greater recall than the second

rank. With our system, given that users only look at the top ten results (Baeza-Yates

and Ribeiro-Neto, 1999), we will focus on precision at rank 10 or less.

To give an intuitive example of ranked precision, a quick example is given. Assume

our search engine had returned 6 out of 10 relevant results, then the precision at rank

10 would be 0.6. If the first three results were relevant and then only the last three re-

sults were relevant, precision at rank 1 would be 1.0, precision at rank 3 would still be

1.0, precision at rank 5 would be 0.6, precision at rank 8 would be 0.5, and precision

at rank 10 would return to 0.6. In order to calculate a single evaluation, the precision

at each rank with a relevant result can then be averaged by thenumber of relevant re-

sults. So, in our example,1.0+1.0+1.0+.5+.56+.6
6.0 results in an average precision of 0.78.

However, as information retrieval systems generally need to be evaluated across many

different queries, then for each query, the average precision across all queries is aver-

aged, producing themean average precision(MAP), the standard single digit method

for evaluating information retrieval systems. When comparing systems over multiple

queries, often the term ‘mean average precision’ is just shortenedaverage precision,

a convention we shall employ since we do not perform any per-query analysis. When
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combined with average precision at various ranks, this provides an overview of a sys-

tem’s performance over a large number of queries. In order tocomprehensively test the

effectiveness of various parameters, we will test over meanaverage precision at rank

10, and for the best performing parameters, we will inspect mean average precision at

rank 1. This tests the ability of the system to return a relevant Semantic Web URI at

the ‘top’ rank.

9.3.2 Wilcoxon Sign Test

Another problem in evaluating information retrieval systems is evaluating the signifi-

cance of the results. In particular, standard significant tests like thet-testdo not apply

to information retrieval. First, it is generally thought that the retrieved data is not sam-

pled from a normal distribution. We have shown in Chapter 7 that the amount and kinds

of data on the Semantic Web generally follow the non-normal power law distribution.

Second, thet-testmakes the assumption that the underlying scale is aninterval scale,

such that the differences between the rank of each result aresome meaningful constant,

such that a precision at rank 2 is precisely three times as precise as precision at rank

6. However, it has been found that users value highly ranked results, but not in any ab-

solute manner, so that search engine rankings are better thought of as anordinal scale

where the magnitudes of differences do not matter (Baeza-Yates and Ribeiro-Neto,

1999). One test that allows significance testing but only assumes an ordinal scale and

does not assume the data has been sampled from a normal distribution is theWilcoxon

signed rank test, as given by Equation 9.13 (Baeza-Yates and Ribeiro-Neto, 1999).

w =
m

∑
i

Ri (9.13)

In this equation, there arem samples to be compared, where eachi is a non-zero

difference.Ri is then the signed (positive or negative) difference between the two sys-

tems. So a system whose parameters gave it a mean average precision of .50 compared

to another set of parameters that had a mean average precision of .70 would then have

a signed difference of.20, while the reverse comparison would have a signed differ-

ence of−.20. Once thew has been calculated from a Wilcoxon test, ap-value for

rejecting the null hypothesis (that the two sets of parameters were the same) at some

significance level can be calculated. We shall use the significance level ofα = 0.05,

and unless explicitly otherwise stated, the Wilcoxon test will always be comparing

whatever parameters or results are under scrutiny to thebestperforming parameters. If
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the result is thebestresult, then the test is with respect to thebest baselineparameters.

For every group of tests, the best baseline will be explicitly denoted as such.

9.4 Feedback Evaluation

9.4.1 Hypertext to Semantic Web Feedback

9.4.1.1 Results

A number of parameters for our system were evaluated to determine which parameters

provide the best results. For each of the parameter combinations, we compared the

use of relevance feedback to a baseline system which did not use relevance feedback,

yet used the same parameters with the exception of any relevance feedback-related

parameters. The baseline system without feedback can also be considered an unsuper-

vised algorithm, while a relevance feedback system can be thought of as a supervised

algorithm. For example, the relevant hypertext web-pagesR can be considered to be

training data, while the Semantic Web dataD we wish to re-rank can be considered

to be test data. The hypertext web-pages and Semantic Web data are disjoint sets

(D∩R= /0). For evaluation we used mean average precision (MAP) with the standard

Wilcoxon sign-test, which we will often just call ‘average precision.’

For vector-space models, theokapi, lca, andponterelevance weighting functions

were all run, each trying both theinqueryandcosinecomparison functions. The pri-

mary parameter to be varied was thewindow size(m), the number of top frequency

words to be used in the vectors for both the query model and thedocument models.

Baselines for bothcosineand inquerywere run with no relevance feedback. The pa-

rameterm was varied over 5,10,20,50,100,300,1000,3000. The results in terms of

mean average precision are given in Figure 9.5.

Interestingly enough,okapi relevance feedback weighting with a window size of

100 and aninquerycomparison was the best, with a mean average precision of 0.8914

(p < .05). It outperformed the baseline ofinquery, which has an average precision

of 0.5595 (p < .05). Overall,lca did not perform as well, often performing below the

baseline, although its performance increased as the windowsize increased, reaching an

average precision of 0.6262 withm= 3000 (p < .05). However, given that a window

size of 10,000 covered most documents, increasing the window size will not likely

result in better performance fromlca. The ponterelevance feedback performed very

well, reaching a maximum MAP 0.8756 with a window size of 300 using inquery
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Figure 9.5: Average Precision Scores for Vector-space Model Parameters: Relevance Feed-

back From Hypertext to Semantic Web

weighing, and so was insignificantly different frominquery (p > .05). Lastly, both

ponteandokapiexperienced a significant decrease in performance asmwas increased,

so it appears that the window sizes of 300 and 100 are indeed optimal. Also, as regards

comparing baselines,inqueryoutperformedcosine(p < .05).

For language models, both averaged relevance modelsrm and concatenated rele-

vance modelst f were investigated, with the primary parameter beingm, the number

of non-zero probability words used in the relevance model. The parameterm was var-

ied between 100, 300, 1000, 3000,and 10000. Remember that the query modelis the

relevance model for the language model-based frameworks. As is best practice in rel-

evance modeling, the relevance models were not smoothed, but a number of different

smoothing parameters forε were investigated for the cross entropy comparison func-

tion, ranging fromε between .01, .1, .2, .5, .8, .9, and 0.99. The results are given in

Figure 9.6.

The highest performing language model wast f with a cross-entropyε of .2 and a

m of 10,000, which produced an average precision of 0.8611, which was significantly

higher than the language model baseline of 0.5043 (p < .05) using again anm of

10,000 for document models and with a cross entropyε of .99). Rather interestingly,

t f always outperformedrm, andrm’s best performance had a MAP of 0.7223 using an

ε of .1 and am of 10,000.



228 Chapter 9. Evaluation

Figure 9.6: Average Precision Scores for Language Model Parameters: Relevance Feedback

From Hypertext to Semantic Web

9.4.1.2 Discussion

Of all parameter combinations, theokapi relevance feedback works best in combi-

nation with a moderate sized word-window (m = 100) and with theinqueryweight-

ing scheme. It should be noted its performance is identical from a statistical stand-

point with ponte, but as both relevance feedback components are similar and both use

inquerycomparison andBM25 weighing, and not surprisingly the algorithms are very

similar. Why wouldinqueryandBM25 be the best performing? The area of optimizing

information retrieval is infamously a black art. In fact,BM25 andinquerycombined

present the height of heuristic-driven information retrieval algorithms as explored in

Robertson and Spärck Jones (1976). While its performance increase overlca is well-

known and not surprising, it is interesting thatBM25 andinqueryperform significantly

better than the language model approach.

The answer is rather subtle. Another observation is in order; note that for vector

models,inqueryalways outperformedcosine, and that for language modelst f always

outperformedrm. Despite the differing frameworks of vector-space models and lan-

guage models, bothcosineandrm share the common characteristic of normalization.

In essence, bothcosineandrm normalize by documents:cosinenormalizes term fre-
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quencies per vector before comparing vectors, whilerm constructs a relevance model

on a per-relevant document basis before creating the average relevance model. In con-

trast,inqueryandt f do not normalize:inquerycompares weighted term frequencies,

and t f constructs a relevance model by combining all the relevancedocuments and

then creating the relevance model from theraw poolof all relevant document models.

Thus it appears the answer is that any kind of normalization by length of the doc-

ument hurts performance. The reason for this is likely because the text automatically

extracted from hypertext documents is ‘messy,’ being of lowquality and bursty, with

highly varying document lengths. As observed in Chapter 7, the amount of triples in

Semantic Web documents follow a power-law, so there are wildly varying document

lengths of both the relevance model and the document models.Due to these factors, it

is unwise to normalize the models, as that will almost certainly dampen the effect of

valuable features like crucial keywords (such as ‘Paris’ and ‘tourist’ in disambiguating

variouseiffel-related queries).

Then the reasonBM25-based vector models in particular perform so well is that,

due to its heuristics, it is able to effectively keep track ofa term’s both document

frequency and inverse document frequency accurately. Also, unlike most other al-

gorithms,BM25 provides a slight amount of rather unprincipled non-linearity in the

importance of the various variables (Robertson et al., 2004). This is important, as it

provides a way of extenuating the effect of one particular parameter (in our case, likely

term frequency and inverse term frequency) and then massively lowering the power

of another parameter (in our case, likely the document length). While BM25 can be

outperformed normally by language models (Lavrenko, 2008)in TREC competitions

featuring high-quality samples of English, in the non-normal conditions of comparing

natural language and pseudo-natural language terms extracted from structured data in

RDF, it is not surprising thatokapi, whose non-linearity allows certain highly relevant

terms to have their frequency ‘non-linearly’ heightened, provides better results than

more principled methods that derive their parameters by regarding the messy RDF and

HTML-based corpus as a sample from a general underlying language model.

9.4.2 Semantic Web to Hypertext Feedback

In this section, we assume that the user or agent program has somehow accessed or oth-

erwise examined the associated descriptions from the Semantic Web URIs, and these

associated descriptions then form relevance corpus that can then be used as relevance
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feedback to expand a query for the hypertext Web. In this way,the feedback cycle has

been reversed.

9.4.2.1 Results

Figure 9.7: Average Precision Scores for Vector-space Model Parameters: Relevance Feed-

back From Semantic Web to Hypertext

The results for using Semantic Web documents as relevance feedback for hypertext

Web search are surprisingly promising. The same parametersas explored in Section

9.4.1.1 were again explored. The average precision resultsfor vector-space models are

given in Figure 9.7. The general trends from Section 9.4.1.1were similar in this new

data-set. In particular,okapiwith a window size of 100 and theinquerycomparison

function again performed best with an average precision of 0.6423 (p < .05). Also

ponteperformed almost the same, again an insignificant difference fromokapi, pro-

ducing with the same window size of 100 an average precision of 0.6131 (p> .05). Uti-

lizing again a large window of 3,000,lca had an average precision of 0.5359 (p< .05).

Similarly, inqueryconsistently outperformedcosinein comparison, withinqueryhav-

ing a baseline average precision of 0.4643 (p < .05) in comparison with the average

precision ofcosinebeing 0.3470 (p < .05).

The results for language modeling were similar to the results in Section 9.4.1.1
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and are given in Figure 9.8, although a few differences are worth comment. The best

performing language model wast f with a m of 10,000 and a cross entropy smoothing

factor ε to .5, which produced an average precision of .6549 (p < .05). In contrast,

the best-performingrm, with am of 3,000 andε=.5, only had an average precision of

0.4858 (p < .05). Thet f relevance models consistently performed better thanrm rele-

vance models (p < .05). The baseline for language modeling was also fairly poorwith

an average performance of 0.4284 (p < .05). This was the ‘best’ baseline using again

anmof 10,000 for document models and cross entropy smoothingε of .99. The general

trends from the previous experiment then held, except the smoothing factor was more

moderate and the difference betweent f and rm was even more pronounced. How-

ever, the primary difference worth noting was that best performingt f language model

outperformed, if barely, theokapi (BM25 andinquery) vector model by a relatively

small but still significant margin of .0126. Statistically,the difference was significant

(p < .05).

Figure 9.8: Average Precision Scores for Language Model Parameters: Relevance Feedback

From Hypertext to Semantic Web

9.4.2.2 Discussion

Why is t f relevance modeling better thanBM25 andinqueryvector-space models in

using relevance feedback from the Semantic Web to hypertext? The high performance
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of BM25 andinquery has already been explained, and that explanation about why

document-based normalization leads to worse performance still holds. Yet the rise

in performance oft f language models seems odd. However, it makes sense if one

considers the nature of the data involved. Recalling Chapter 7, there are two distinct

conditions that separated this data-set from the more typical natural language samples

as encountered in TREC (Hawking et al., 2000). In the case of using relevant hy-

pertext results as feedback for the Semantic Web, the relevant document model was

constructed from a very limited amount of messy hypertext data, which had many text

fragments, with a large percentage coming from irrelevant textual data to deal with

issues like web-page navigation. This was then compared against Semantic Web data.

However, in using the Semantic Web for relevance feedback, these issues are reserved:

the relevant document model is constructed out of relatively pristine Semantic Web

data and compared against noisy hypertext documents.

Rather shockingly, as the Semantic Web data is mostly manually high-quality cu-

rated data from sources like DBpedia, the actual natural language fragments found on

the Semantic Web, such as Wikipedia abstracts, are much better samples of natural

language than the natural language samples found in hypertext. Furthermore, the dis-

tribution of ‘natural’ language terms extracted from RDF terms (such as ‘sub class of’

from rdfs:subClassOf), while often irregular, will either be repeated very heavily

or fall into the sparse long tail. These two conditions can then be dealt with by the

generativet f relevance models, since the long tail of automatically generated words

from RDF will blend into the long tail of natural language terms, and the probabilis-

tic model can properly ‘dampen’ without resorting to heuristic-driven non-linearities.

Therefore, it is on some level not surprising that even hypertext Web search results can

be improved by Semantic Web data, because used in combination with the right rele-

vance feedback parameters, in essence the hypertext searchengine is being ‘seeded’

with high-quality structured and accurate descriptions ofthe referent of the query to be

used for query expansion.

9.4.3 Evaluating Deployed Systems

However, one area we have not explored is how our system performs against state of

the art systems. The performance of relevance feedback in Section 9.4.1.1 and Section

9.4.2.1 was only compared to baselines that were versions ofour weighting function

without a relevance feedback component. While that particular baseline is principled,
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the obvious other needed comparison is against actual deployed commercial or aca-

demic systems. So we compare the best parameters of the system against actually

deployed systems. The obvious baseline to choose to test against is the Semantic Web

search engine, FALCON-S, from which we derived our originalSemantic Web results

used in both the analysis of the Semantic Web in Chapter 7 and in the experiment in

Section 9.1. We used the original ranking of the top 10 results given by FALCON-S

to calculate its average precision, 0.6985. We then compared both the best baseline,

inquery, as well as the best (okapiwith inqueryandm= 100) feedback based system

in Figure 9.9. As shown, our feedback based system had significantly (p < .05) better

average precision (0.8914) than both FALCON-S (0.6985) andthe baseline without

feedback (p < .05).

Figure 9.9: Summary of Best Average Precision Scores: Relevance Feedback From Hypertext

to Semantic Web

Average precision does not have an intuitive interpretation, besides the simple fact

that a system with better average precision will in general deliver more accurate results

closer to the top. In particular, one scenario we are interested in is havingonly relevant

RDF data accessible from a single URI returned as the top result, so that this result

is easily consumed by some program. For example, given the search ‘amnesia night-

club ibiza,’ a program should be able to consume RDF returnedfrom the Semantic

Web to produce with high reliability a single map and openingtimes for a particular

nightclub in Ibiza in the limited screen space of the browser, instead of trying to dis-

play structured data for every nightclub called ‘amnesia’ in the entire world. In Table

9.4, we show that for a significant minority of URIs (42%), FALCON-S returned a
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non-relevant Semantic Web URI as the top result (‘Non-Relevant Top’). Our feedback

system achieves an average precision gain of 20% over FALCON-S in returning a rel-

evant result in the top rank (‘Relevant Top’). While a 20% gain in average precision

may not seem huge, in reality the effect is quite dramatic, inparticular as regards boost-

ing relevant URIs to the top rank. So in Table 9.4, we present results of how our best

parametersokapi− inquerywith m= 100 lead to the most relevant Semantic data in

the top result. In particular, notice that now 89% of resolved queries now have relevant

data at the top position, as opposed to 58% without feedback.This would result in a

noticeable gain in performance for users, which we would argue allows Semantic Web

data to be retrieved with high-enough accuracy for actual deployment.

While performance is boosted for both entities and concepts, the main improve-

ment comes from concept queries. Indeed, as concept queriesare often one word and

often ambiguous, not to mention the case where the name of a concept has been taken

over by some company, music band, or product, it should not besurprising that results

for concept queries are considerably boosted by relevance feedback. Results for entity

queries are also boosted, and are now the most difficult kind of URI for our system

to disambiguate. A quick inspection of the results reveals that the entity queries that

gave both FALCON-S and our feedback system problems were mainly very difficult

queries which have a number of Semantic Web URIs that all share similar natural

language content in their associated descriptions. An example would be a query for

‘sonny and cher,’ which results in a number of distinct Semantic Web URIs: one

for Cher, another one forSonny and Cherthe band, and another for “The Sonny Side

of Cher,’ an album by Cher. For concepts, one difficult concept was the queryrock.

Although the system was able to disambiguate the musical sense from the geological

sense, there was a large cluster of Semantic Web URIs for rockmusic, ranging from

Hard Rockto Rock Musicto Alternative Rock. With a large cluster of URIs with sim-

ilar content encoded in their associated descriptions, it is not surprising that both our

system and FALCON-S had difficulty with certain queries.

Although less impressive than the results for using hypertext web-pages for rele-

vance feedback for the Semantic Web, the feedback cycle fromthe Semantic Web to

hypertext does improves significantly the results of even commercial hypertext web-

engines, at least for our set of queries about concepts and entities. The hypertext

results for our experiment were given by Yahoo! Web Search (simply called ‘Ya-

hoo!’), and we calculated a mean average precision for Yahoo! to be 0.4039. This is

slightly less than our baselineinqueryranking, which had an average precision of of
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Results: Feedback FALCON-S

Top Relevant: 118 (89%) 76 (58%)

Top Non-Relevant: 14 (11%) 56 (42%)

Top Non-Relevant Entity: 9 (64%) 23 (41%)

Top Non-Relevant Concept:5 (36%) 33 (59%)

Table 9.4: Table Comparing Hypertext-based Relevance Feedback and FALCON-S

0.4643. One might wonder why Yahoo! would not use aninqueryvector-space model

to optimize their own system in order to achieve better performance. The reasoning is

relatively straightforward: Yahoo! and other commercial search engines must return

results within seconds, and doing vector-space comparisons of the results in order to

re-rank would take too long. While the exact algorithm behind Yahoo! is unknown,

it is likely to be some version of PageRank in combination with a highly-optimized

for performanceBM25. Therefore, the similar precision for Yahoo! andinquerymake

sense. As shown in Figure 9.10, our feedback based system hadan average precision

of 0.6549 and so performs significantly (p < .05) better than Yahoo! and (p < .05) the

baselineinquerysystem.

Figure 9.10: Summary of Best Average Precision Scores: Relevance Feedback From Seman-

tic Web to Hypertext
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9.5 Discussion

These results are not in need of a large discussion, as they clearly show our relevance

feedback method works significantly better than various baselines, both internal base-

lines and state of the art commercial hypertext search engines and Semantic Web search

engines. The parametrization of the precise information retrieval components used in

our system is not entirely arbitrary, as argued above in Section 9.4.1.2 and Section

9.4.2.2. The gain of our relevance feedback system, a respectable 19% in average pre-

cision over the engine FALCON-S, intuitively makes the ability of our system to place

the correct URI in response to a query acceptable for most users. The most difficult

step is to select the ‘right’ Semantic Web URI for the user’s need, and in this regard,

even small differences can make a huge impact, so an improvement to 89% average

precision for a given natural language query makes a large difference.

Second, by incorporating human relevance from the SemanticWeb, we make sub-

stantial gains over state of the art baseline systems for hypertext Web search. One

important factor is the constant assault of hypertext search engines by spammers and

others. Given the prevalence of a search engine optimization and spamming industry,

it is not surprising that the average precision of even a commercial hypertext engine is

not the best, and that it performs less well by a mean average precision of 29% than

Semantic Web search engines. Semantic Web search engines have a much smaller

and cleaner world of data to deal with than the unruly hypertext Web. Thus, even

without relevance feedback from the Semantic Web, an average precision of 69% is

impressive, although far from the almost of 89% precision that can be achieved using

relevance feedback from the hypertext Web. Improving hypertext Web search is dif-

ficult even with relevance feedback. Even with the help of relevance feedback from

the Semantic Web, hypertext search is unlikely to achieve near-perfect results anytime

soon.

9.6 Conclusion

The final results of our experiment unequivocally demonstrate that our approach of

using feedback from hypertext Web search helps users discover relevant Semantic

Web URIs and associated descriptions. The gain is significant over both baseline sys-

tems without feedback and the state of the art page-rank based mechanism used by

FALCON-S and Yahoo! Web search. These results, due to the significant and ran-
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domized number of queries used and the fact that relevance judgments involved three

judges, point to a high reliability for these results, so we have reason to be believe the

results will scale. The operative question is: Why does thiswork? It is precisely be-

cause the samesenseis encoded in hypertext and the Semantic Web results that these

two disparate sets of data be used to aid each other. As distant as it seems, the philo-

sophical work in Chapter 3 on sense and reference laid the ground for improved search

performance.

The key reason why we have improved search performance to thepoint where it

should be able to find the ‘best’ relevant URI for an entity or concept is because we

have used relevance feedback for disambiguating concepts and entities. There has

been considerable previous research in disambiguating entities on the Web. Some of

the work consists of finding common patterns to disambiguateproper names in general

from other natural language words, such as the technology weemploy to determine the

presence of entities in the query log (Mikheev et al., 1998),while further research at-

tempts to link these named entities to their correct sense asgiven in a list of senses

in some knowledge representation (Vu et al., 2007). Currentresearch in entity dis-

ambiguation, as exemplified by the approach of Nguyen and Cao, use the previous

identification of names for entities as a basis to disambiguate named entities whose

sense is unknown (2008). However, this stream of entity disambiguation research has

a number of limitations, being dependent on a pre-existing knowledge representation

of some sort that literally lists the senses, be it a formal ontology or a more informal

thesaurus or even just some textual corpus. These techniques are usually evaluated

over a corpus such as news stories where the number of entities is bound and so can

be correlated with the pre-existing knowledge representation (Nguyen and Cao, 2008).

This general methodology ignores the point made by Masterman that the senses of

English words are fundamentally open-ended, such that polysemy can infect even the

most mundane of entity names over time (Wilks, 2005a). As noticed by Wilks (Wilks,

2005b), this applies to knowledge representations as well,for after decades of devel-

opment even the formal terms used in Cyc are experiencing a ‘drift’ in terms of their

sense. While in natural language and in formal languages before the Web, this ability

for names to change meaning and for new names to appear happened relatively slowly

over the lifetime of an individual, on the Web new entity names appear all the time,

and previously stable names are ‘cannibalized’ by new entities on a regular basis. This

was observed in our analysis of the query logs in Chapter 7. SoMasterman’s thesis

about the open-ended number of senses is even more importanton the Web than it is
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in natural language.

Our technique succeeds insofar as it incorporates just the necessary amount of dis-

ambiguation needed, without fully disambiguating a name for an entity or concept to

some pre-existing bounded knowledge representation. The entire point of the Seman-

tic Web is that knowledge representation is open and unbounded, and thus new senses

with their attendant descriptive knowledge representations in RDF may be added to

the Semantic Web at any point. Given any new name with a sense,it is likely that

information that connects that name to its sense it is likelyto be found somewhere

on the Web by an hypertext search engine. Thus, our technique, by applying an rel-

evance feedback between hypertext web-pages on the open-ended Web to the equally

open-ended Semantic Web knowledge representation presents ageneraltechnique for

sense disambiguation of names on the Web, although our experiments show that the

senses in the Semantic Web trail far behind the senses in the hypertext Web, as only

2% queries could find no relevant sense information on the hypertext Web, while 34%

of the queries could not find a sense as the Semantic Web. However, for those queries

where at least one sense could be found on the Semantic Web, how can we determine

what is the best URI for that sense? Crucially, the queries bythemselves are usually

ambiguous as regards sense. The URIs also may have many different shades of senses.

For example, is a WordNet URI for the Eiffel Tower a sense for the term ‘Eiffel Tower’

while somehow a DBpedia URI for the Eiffel Tower is a sense forEiffel Tower itself?

Do these two URIs share the same sense, or only the same sense to some degree? What

if the URI is connected to some information that is incorrect, but some information that

is correct, about some particular sense? These questions make the problem of sense

disambiguation much less of a simple matching problem between named entities and

senses, but more of a ranking of senses.

We employ our Wittgensteinian intuition that the context provided by the click-

ing of the user on web-pages can provide not complete named-entity disambiguation

– which would require some closed list of senses – but theminimum disambiguation

necessary to get the task at hand complete. Our technique of relevance feedback is

in fact a form of sense disambiguation. Furthermore, we takeinto account the open-

ended nature of senses by providing the lists of Semantic WebURIs for senses as a

ranking of URIs, with the degree of relevance of the sense of the query being – if

our algorithm performs well – approximated by its place in the ranking of search re-

sults. We clinch the sense disambiguation necessary since we crucially provide for

the judges making the relevance judgments in Section 9.1.3 a‘snapshot’ of the rele-



9.6. Conclusion 239

vant web-page clicked on by the original user who entered thequery in addition to the

query keywords. Our experiment has a very strict definition of relevance that confines

the judges to only clicking on web-pages that definitely share a sense, and our exper-

iments showed judges had agreement on this task, and so agreement on the senses of

web-pages. Then, the entire list of clicked web-pages then are used as the necessary

context needed to counter the sparsity of context given by the query keywords them-

selves. While this list of clicked web-pages may not provideenough context to make

the sense of the desired entity or concept completely unambiguous, it provides enough

context to make itunambiguous enough. This position is in line with our Wittgen-

steinian public language position that does not seek to eliminate ambiguity, but only to

alleviate it as much as needed. The re-ranking of the returned Semantic Web URIs by

relevance feedback then takes this new disambiguation context on board. The results

given in Section 9.4.3 demonstrate that this method clinches the necessary disambigua-

tion information as human judges believe the results are better. The ‘best’ Semantic

Web URI is then not one that simply ‘stands-in’ for the sense.Instead, the ‘best’

Semantic Web URI for a sense is one whose knowledge representation matches the

aggregated relevant information in the hypertext web-pages, information that crucially

disambiguated among an open-ended continuum of senses.

One can imagine a new and improved day in the life of the Semantic Web if our

system was deployed on a large scale. Prior to our system, on the Semantic Web there

was little if any attempt to share and re-use URIs, primarilydue to an inability to find

them. Suppose Ralph was to visit the Eiffel Tower and wanted to reference it in some

RDF triples produced by his Semantic Web-aware calendar planning software and then

graph merge these triples with other triples, so he could serendipitously discover his

friend Dan Brickley had just moved from Bristol to Paris. However, he would have

to find the best URI for the Eiffel Tower, disambiguating the URI for the Eiffel Tower

itself from that of the filmA View from the Eiffel Tower. Also, Ralph would need to

find a URI for Dan Brickley the Web developer, making sure it isdisambiguated from

the URI for Dan Brickley the fashion model. He could use a Semantic Web search

engine like FALCON-S, but he would have to manually dig through rather unfriendly

RDF triples, and Ralph is not a Semantic Web expert. However,with our system he

can seamlessly use natural language queries in a normal hypertext search engine to

find Semantic Web URIs and relevant information about the Eiffel Tower. Does he

want the latitude and longitude of the Eiffel Tower? All Ralph has to do is type in

eiffel tower and begin clicking on results as he normally does when he searches
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the Web. By simply clicking on a result for the Eiffel Tower inParis as opposed to the

movie, he resolves a Semantic Web URI for the Eiffel Tower from DBpedia and gets

valuable information about it, such as its latitude and longitude 48.8583, 2.2945

and location in Paris. When he wishes to correlate this data with his friends, when he

types indan brickley into a search engine, Ralph clicks on Dan’s homepage. Dan’s

information, such as latitude and longitude and his being inParis on the dates Ralph is

in Paris, emerges. Also, Ralph notices that in an almost eerie fashion, as the Semantic

Web information is consumed by his calendar program, his search results in the search

engine improve. Ralph has stepped into the ‘virtuous cycle’of the Semantic Web and

Web search (Baeza-Yates, 2008).
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Conclusion and Future Directions

Language is the body of the mind.Anton Pannekoek(1912)

10.1 Conclusion

As described in the introduction to the thesis, we have givenboth a thorough analysis

of the central problem of the Semantic Web and a practical solution. Here we will

describe how we arrived at an analysis of the theoretical problem via the contributions

of each chapter. We will also discuss whether or not our engineering solution to the

problem is sufficient, namely by discussing some of the drawbacks of our system.

Lastly, we will briefly demarcate some space opened for future theoretical research by

the thesis.

The main theoretical problem confronting the Semantic Web in particular and the

Web is ‘what does a URI refer to?’ In order to analyze and answer this question, we

employed previous work in the philosophy of language. Afterasking the initial ques-

tion in Chapter 1, in order for the question to be taken seriously, in Chapter 2 we gave

a brief overview of the development of the Web. The history ofthe Web was traced

from from Licklider’s ‘Man-Machine Symbiosis’ hypothesis, through to Douglas En-

gelbart’s ‘Human Augmentation Project’ and finally to the familiar hypertext Web and

the Berners-Lee’s vision for URIs to be universal identifiers. Far from a detour, this

chapter sets up the crucial notion that architecture of the Web itself should be a first-

class citizen of investigation. In Chapter 3, we step back and present a sketch of a

unified terminological account of the philosophy of information and the philosophy of

language. The main contribution of this chapter was our re-affirmation of Dummett’s

neo-Fregean doctrine of sense and reference, which we expanded by showing that nat-

241
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ural language isjust one possible language in which the distinction between sense and

reference appears, and so the distinction between sense andreference is also present in

any exchange of information, including those of computers communicating via formal

languages. In Chapter 4 we exemplify the analysis put forward in Chapter 3 by laying

out the architecture of the Web, which consists of a set of terms such as ‘resource’ and

principles such as the ‘Principle of Linking’ that define theideal interactions of those

terms, using terminology from the philosophy of language and information. Most im-

portantly, we claim that issues of meaning can be broken intothe two separate issues

of sense and reference. We claim a URI is an identifier for somekind of content inde-

pendent of a particular encoding, and so a URI identifies a sense.

In Chapter 5, we show how the project of the Semantic Web naturally follows from

the hypertext Web, by demonstrating how the primary Semantic Web language, RDF,

is an application of Web architecture to the much older knowledge representation of

semantic networks. Our analysis of the Semantic Web in termsof philosophy of lan-

guage and information leads to a new insight, that the problem of determining the

sense and reference of URIs is fundamentally theunsolvedproblem put forward by the

Semantic Web. Also, in Chapter 5, we acknowledge Karen Spärck Jones’s critique of

the Semantic Web as a mere repetition of logic-based classical artificial intelligence.

However, we escape unscathed from her criticism, since the use of URIs as names for

things is the realnewclaim of the Semantic Web, not any particular knowledge repre-

sentation scheme. So it is precisely within the realm of URIsthat technicaladvance

must be made.

In Chapter 6, we analyze the two most prominent positions on reference and URIs.

The first position, the logicist position advanced primarily by Hayes, states that for

the Semantic Web, the meaning of a URI is given by whatever model(s) satisfies the

formal semantics of the Semantic Web. This position is shownto be a direct descen-

dant of the philosophical descriptivist theory of reference, namely that the referent of

a name is given by whatever satisfies the descriptions associated with the name, as put

forward by Carnap, Russell, and Tarski. However, the practical failure in deployment

of the early Semantic Web seems to vindicate the predictionsof Spärck Jones that any

purely logicist approach was doomed to failure. Another position is the direct refer-

ence position of Berners-Lee, which states that the referent of a URI is whatever was

intended by the owner of the URI, which is a direct philosophical descendant of the

causal theory of reference, that any name refers via some causal chain directly to a

referent, as championed by Kripke and Putnam. However, due to the observation of
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the principles of Web architecture to the Semantic Web and Berners-Lee’s direct ref-

erence position, it appears that a new second generation of the Semantic Web, known

as Linked Data, is experiencing large growth. In Chapter 7, we do the first empirical

large-scale study of this new Linked Data Web, using queriesfrom a large hypertext

search engine to sample the Semantic Web. While we find that many of the principles

of Web architecture are actually being followed, we also observe that with the tremen-

dous release of data on the Web in the form of Linked Data thereis still very little reuse

or sharing of URIs, so that the same referent will tend to havemultiple URIs. Instead

of solving the problem, with the direct reference position everyone simply mints their

own URIs, and little communication or merge data happens. Thus, we have shown so

far in the thesis our analysis of the problem, namely thatthe Semantic Web is a kind

of language that can be defined by its conformance to the principles of Web archi-

tecture, but nonetheless inherits the problems regarding reference and meaning

from the philosophy of natural language.

In Chapter 8, we lay out a solution to the question of ‘what does a URI refer to?’ in

the form of a new philosophical position based on Wittgenstein and a practical applica-

tion based on applying relevance feedback from hypertext search engines to discover

Semantic Web URIs. This public language position holds thatthe Semantic Web is a

form of language, and as a language exists as a mechanism for co-ordination among

multiple agents, then the meaning – and so the sense – of a URI is the use of the URI

by a community of agents. We argue for this by noting that boththe causal and de-

scriptivist theories of names attempt to banish the notion of sense in favor of building

an entire theory of meaning on top of only reference, and thattheir lack of success on

the Semantic Web points to a return to the notion of a Fregean public and objective

notion of sense. Then we argue that if the Semantic Web wants to be used as anew

language of URIs, then it has no alternative but to build off of already-existing natural

languages and activities such as hypertext Web search. In this vein, the Semantic Web

needs a way to query for a natural language name for some concept or entity and get

precisely the ‘best’ URI for the concept or entity. As shown in Chapter 7, currently

state of the art Semantic Web search engines only return a relevant Semantic Web URI

in return to a query 58% of the time. Therefore, we propose anovelsolution to the

problem; since both hypertext web-pages and Semantic Web data about the same ref-

erent share the samesenseas defined in Chapter 3, regardless of their encoding, we

can use relevance feedback from the hypertext Web search engines to bootstrap the

Semantic Web. Finally, in Chapter 9 we test a deployment of the system on a subset



244 Chapter 10. Conclusion and Future Directions

of the queries for concepts and entities used in Chapter 7. Using human subjects to

manually judge the relevance of both Semantic Web data and hypertext web-pages in

response to a query, we show that our system successfully uses the relevance feedback

from hypertext web to boost the discovery of relevant Semantic Web URIs for con-

cepts and entities. After exploring relevant parameters, our system performs better in

terms of average precision than a baseline without feedbackas well as FALCON-S,

producing a relevant Semantic Web URI 89% of the time. Lastly, we show that using

the relevant Semantic Web URIs as relevance feedback to a hypertext Web search en-

gine also improves performance, resulting in better performance in the top 10 results

than both a baseline without feedback and Yahoo! Web search.Therefore, our the-

sis conclusively demonstrates thata theory of sense and reference suitable enough

to encourage identifier re-usage on the Web can be implemented by employing

relevance feedback from search engine results.

10.2 Future Directions

There are two kinds of future directions the work in this thesis should take. The first is

various technical improvements that should be implementedby our relevance-feedback

systems, and the second is a more theoretical extension of the philosophical territory

of the thesis.

10.2.1 Technical Improvements

There are a number of areas where our project needs to be more thoroughly inte-

grated with other approaches and improved. In particular, we could use better lan-

guage modeling and better explicit query expansion, the incorporation of multimedia

and machine-translation, the creation of new Semantic Web URIs when none exists for

a query, and increased scale.

10.2.1.1 Adapting Language Models and Query Expansion to th e Web

While language models, particularly generative models as given by (Lavrenko, 2008),

should in general have theoretically higher performance than vector-space models,

our experiment in Chapter 9 showed a slight but significantlybetter performance for

vector-space than language models in relevance feedback from hypertext web-pages
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to the Semantic Web, likely due to the parameters of the language model being gen-

erated by the infamously messy and non-parametric natural language data of the Web.

Furthermore, the reason why large-scale search engines do not in general implement

language models for information retrieval is that the computational complexity of cal-

culating distributions over billions of documents does notscale. However, there is

reason to believe that relevance models could be scaled to work with Web search in

general and Semantic Web search in particular if they built their language sample from

a ‘clean’ and suitably large sample of natural language (as was done in our relevance-

feedback experiment using relevant Semantic Web results) then these relevance models

would be more effective. The computational complexity could be reduced via caching

and the use of Bloom filters for the language model. This, combined with some sort of

statistical query expansion that would help a user resolve ambiguous queries likerock

into rock music or geological rock, would likely get our performance to about

89%. Further natural language processing, including better stemming and lemmatiza-

tion, would also likely improve performance.

10.2.1.2 Integration of Multimedia and Machine Translatio n

Despite the fact that we maintained that the traditional problems of sense and reference

should hold inanyinformation inanylanguage, including formal languages, we did not

investigate any way to incorporate multimedia and other non-natural languages into our

system. Instead, we reduced knowledge representation languages to a pseudo-natural

language for processing. The incorporation of multimedia semantics would make the

entire approach stronger. Also, this approach would fail for queries given in foreign

languages. A query fortour de eiffel should return the same Semantic Web URI

for the Eiffel Tower. Yet as our system relies on natural language term overlap with

RDF in the associated descriptions, only integration with machine translation would

allow the system to be able to resolve associated descriptions across different natural

languages.

10.2.1.3 Automatic Creation of New URIs

One of the looming deficits of our system is that for a substantial amount of our queries

there areno Semantic Web URIs. This amount is estimated in Chapter 7 as 34%

of all queries, almost as many as there were queries where a non-relevant Semantic

URI was the first result. However, as shown also in Chapter 7, these queries with no
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Semantic Web URIs in generaldo have relevant information on the hypertext Web,

if not the Semantic Web. In this manner, the automatic generation of Semantic Web

triples from natural language text as explored by Brewster et al. (2007) and Cimiano et

al. (2005) could be used in combination with our system to create new URIs, with

accessible and automatically generated associated descriptions, in response to user

queries. Furthermore, one could even imagine the reverse ofnew information being

created, that is information that is not shared by hypertextweb-pages being removed

from associated descriptions.

10.2.1.4 Scale

Lastly, our system and experiment was only aproof of conceptsystem, and it was

tested only over a relatively small (although statistically significant) number of users

and queries automatically harvested from a query engine. Far better would be to deploy

this system with a global-scale hypertext search engine. The benefit to users would be

instant: they would have access to structured data that could be taken advantage of by

programs like SearchMonkey that could automatically format it in response to certain

types of queries (Mika, 2008). The statistics over the wholeSemantic Web and user

queries would be interesting, allowing the identification of communities and a more

data-driven approach to the creation of Semantic Web vocabularies. Given the growing

interest in ‘Semantic Search’ in some version or another from large hypertext search

companies like Google and Microsoft, the adoption of our feedback system in the wild

is not impossible.

10.2.1.5 The Statistical Semantic Web

What should be apparent here is this project is but the first step in a new direction

for the Semantic Web, one away from both the logicist Semantic Web and the Linked

Data Web of databases to theStatistical Semantic Web, a Semantic Web constructed

statistically from the behavior and language use of users ofthe Web. One could argue

that the large hypertext Web is in fact precisely this statistical Semantic Web, but we

would argue that without the use of URIs and the de-linking ofthe content of the data

from particular encodings through the principles of Web architecture, these ‘lower-

case’ statistical semantic webs created by hypertext are actually not part of the Web

but closed data, whereas the Statistical Semantic Web wouldbe an open Web of URIs

and information created through statistical methods. However, we do reiterate the
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central position of hypertext search engines should not be underestimated on the Web,

and we find it astounding that the Semantic Web has ignored hypertext Web search

engines, such that this thesis is the first to show how they canrealistically be put in a

mutually beneficial feedback cycle.

10.2.2 Theoretical Extensions

One fascinating possibility for future theoretical work isthe impact of the Web to

investigate the questions of intelligence and embodiment.These questions deserve

more than the cursory treatment we give them here, but this treatment here shows

the potential productivity of considering the Web a first class object of philosophical

investigation.

10.2.2.1 The Extended Mind Hypothesis on the Web

The Extended Mind thesis sets the framework for our understanding of the utility of

these digital representations on the Web (Clark and Chalmers, 1998). To explain the

Extended Mind thesis, Clark introduces us to Ralph, a man with an impaired memory

who navigates about his life via the use of his notebook, in particular to the Museum

of Modern Art (1998). We will rephrase this example in the more familiar terms of

Ralph’s visit to the Eiffel Tower from Chapter 3. Let us assume Ralph has a serious

memory impairment. Ralph is trying to navigate to the EiffelTower from the airport,

and uses his notebook as a surrogate memory in order to discover the location. Ralph

has a map in his notebook to the Eiffel Tower made for the precise purpose of navi-

gating individuals to the monument. Ralph can get to the museum with the map, but

without the map he would be lost. In this regard, the map qualifies as an ‘external’

representation that can drive the cognitive processes of anagent in a similar fashion to

the way that classical artificial intelligence assumed internal representations did. In-

terestingly enough, Clark point out that if external factors are driving the process, then

they deserve some of the credit: “If, as we confront some task, a part of the world

functions as a process which, were it done in the head, we would have no hesitation in

recognizing as part of the cognitive process, then that partof the world is (so we claim)

part of the cognitive process” (1998). The map and other external representations have

been dubbed “cognitive technology” by Clark (2000).

The Web then presents an interesting twist on the Extended Mind Hypothesis ex-

tension that we presented earlier. Again, Ralph is using a web-page on his mobile
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phone to find his way to the Museum of Modern Art. While our previous example

had Ralph using the Web as ordinary Web users did years ago, simply downloading

some directions and following them, we now add a twist. Imagine that Inga and Ralph

are using a map-producing Web site that allows users to add annotations and correc-

tions, a sort of wiki of maps. Inga, noticing that the main entrance to the Museum of

Modern Art is closed temporarily due to construction and so the entrance has moved

over a block, adds this annotation to the map, correcting an error as regards where the

entrance to the Museum of Modern Art should be. This correction is propagated at

speeds very close to real-time back to the central database behind the Web site. Ralph

is running a few minutes behind Inga, and because this correction to the map is being

propagated to his map on his personal digital assistant, Ralph can successfully navigate

to the new entrance a block away. This (near) real-time updating of the representation

was crucial for Ralph’s success. Given his memory issues, Ralph would have oth-

erwise walked right into the closed construction area around the old entrance to the

Museum and been rather confused. This active manipulation with updating of an ex-

ternal representation lets Inga and Ralph possess some formof dynamically-changing

collective cognitive state. Furthermore, they can use their ability to update this shared

external representation to influence each other for their greater collective success. In

this manner, the external representation is clearly social, and the cognitive credit must

be spread across not only multiple people, but the representation they use in common

to successfully accomplish their behavior. Clark and Chalmers agree that cognition

can be socially extended, “What about socially extended cognition? Could my mental

states be partly constituted by the states of other thinkers? We see no reason why not,

in principle” (1998). How we extend their story is that socially extended cognition is

now mediated by external representations, in particular bydigital representations and

other information accessible on the Web via URIs.

One of the obvious requirements for any process to be part of an extended mind is

that it is accessible when needed to solve some problem. The obvious requirement is

that the representation needed by the subject be within its effective reach, not separated

from the subject in space or time. So if Ralph’s notebook withthe map to the Eiffel

Tower has been left at home in Boston when he is in Paris, the notebook cannot count

as part of his extended mind. Furthermore, if his notebook exists only in the past, such

that it was destroyed in a fire before Ralph could use it, then the notebook also could

not count as part of Ralph’s extended mind at the current moment. The point here is

that at least a minimal condition for anything to be cognitive technology is that it be
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accessible over the bounds of space and time when needed witha reasonable latency.

In other words, the external representation must have “reliable coupling,” (Clark and

Chalmers, 1998). The technical trajectory of Licklider’s “Man-Machine Symbiosis”

project, which could be considered the engineering twin of the philosophical Extended

Mind thesis, is precisely to overcome the barriers of time and space that separate rep-

resentations and their users. The Semantic Web is just the latest incarnation of this

trend.

10.2.2.2 Embodiment Reconsidered

One of the strange repercussions that follows straightforwardly from a Wittgensteinian

and neo-Fregean approach to sense as inherently objective and external is that as more

and more of language, and thus our shared sense that guides our behavior, gets en-

coded in external representations with the possibility of low-latency Web access, it

becomes unclear where the precise boundary point is in thesefeedback cycles between

the individual and their external representation. If the cycle of connection and discon-

nections happens constantly, over many individuals, as it would if a major hypertext

search engine pursued the Semantic Search approach given here, the very boundaries

of agents become difficult to detect. If we become dependent on the Web, defining

intelligence in terms of a fully autonomous agent then becomes not even an accurate

portrayal of human intelligence, but “a certain conceptionof the human individual that

may have applied, at best, to that faction of humanity who hadthe wealth, power, and

leisure to conceptualize themselves as autonomous beings exercising their will through

individual agency and choice” (Hayles, 1999). By jettisoning this conception, yet re-

constructing the commitment to a certain kind or degree of embodiment, a new kind

of philosophy that takes the Web seriously can do justice to complex phenomenon

such as the advent of the Web and the increasing recognition of what Engelbart termed

“collective intelligence” (Engelbart and Ruilifson, 1999). Pierre Levy notes that cog-

nitive science “has been limited to human intelligence in general, independent of time,

place, or culture, while intelligence has always been artificial, outfitted with signs and

technologies, in the process of becoming, collective”(1994). The vast technological

changes humanity has engendered across the world are now reshaping the boundaries

of human bodies, and so the domain of cognitive science. Thishas been a process that

has been ongoing since the dawn of humanity, and whose most momentous event was

the evolution of natural language. Only now due to the incredible rate of technological

progress, as exemplified by the growth of collective intelligence and new languages
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like the Semantic Web on the Web, do changes in language become self-evident within

the scope of a single lifetime.

10.2.2.3 The Science of the Web

While firmly based on Wittgenstein, the position that the Semantic Web is an attempt

to create a new kind of public language goes against a certainquietism that Wittgen-

stein exhibits when he states that “philosophy may in no way interfere with the actual

use of language; it can in the end only describe it” (Wittgenstein, 1953). Berners-Lee

responds to such notions with a radical riposte, that on the Web “we are not analysing

a world, we are building it” (Berners-Lee, 2003a). This radical outlook that engi-

neering systemsare philosophy given a digital embodiment is best summarized by

Berners-Lee himself in the statement that “we are not experimental philosophers, we

are philosophical engineers” (2003a). In contrast to any purely descriptive science, the

primary difference of what has been termed the “science of the Web” is that not only

can engineered systems be constructed to test theories, as done in traditional modeling

in almost all scientific fields, but these models can be released upon the world at large

through the Web (Berners-Lee et al., 2006b).

We hope that by integrating the Semantic Web with work on information retrieval

as pioneered by Karen Spärck Jones, the Semantic Web itselfcan have a new lease on

life and be tested on a large scale. Spärck Jones’s objection to the Semantic Web was

that it needed a single agreed upon ontology. As our exegesisof Berners-Lee and the

Semantic Web has shown, this single agreed upon ontology is not a requirement for the

Semantic Web. In contrast, Berners-Lee has long maintainedthat instead decentralized

agreement on the use of URIs is enough, as put by Hendler, “a little semantics goes a

long way” (Hendler, 2007). Yet how do we boot-strap this decentralized agreement,

and let users find and re-use the best URIs? After analyzing the Semantic Web as a new

kind of public language, we hypothesized that the Semantic Web should be grounded

in the everyday behavior of the cybernetic form of life, the widespread use of search

engines. While hypertext web search is already done via someform of adapted infor-

mation retrieval, we show how time-tested techniques like relevance feedback can be

used on a new kind of Web search: the search for Semantic Web URIs for concepts and

entities. Our innovation is that we use well-known techniques for relevance feedback

between the hypertext Web and the Semantic Web to increase the performance on this

kind of semantic search. This demonstrates how users of the Semantic Web can take

advantage of the use of search engines over vast amounts of text to give a statistical
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semantics based in natural language to URIs and their attendant Semantic Web knowl-

edge representations, and so find and re-use the best URIs forconcepts and entities.

The results of our experimental attempt to prove this are promising. If there is anything

to be learned from Wittgenstein and the Web, it is that although one can never escape

philosophical problems, one can make progress by interpreting them anew.





Appendix A

An Ontology for Web Architecture

The task of classifying all the words of language, or what’s the same thing, all the ideas

that seek expression, is the most stupendous of logical tasks. Anybody but the most ac-

complished logician must break down in it utterly; and even for the strongest man, it

is the severest possible tax on the logical equipment and faculty. Charles Sanders

Peirce, letter to editor B. E. Smith of the Century Dictionary

In order to better understand the nature of the ‘Web’ in the Semantic Web, a formal

ontology called the ‘Identity of Resources on the Web’ (IRW)ontology was created.

This ontology formally shows how terms in earlier chapters,particularly Chapters 4

and Chapter 5, can be related to the terminology given in Chapter 3. Formal ontologies

have a long history of use in clarifying potentially confusing domains. Traditionally,

the domains that have been most amendable to formal ontologies have been domains

that are already highly structured, such as scientific domains like biology. However,

one of the most exciting developments in modern knowledge representation is the ad-

vent of the Semantic Web, which hopes to combine the principles of the Web with

the principles of knowledge representation in order to see many small, linked formal

ontologies develop in a vast number of heterogeneous domains. The hope is that by

combining the principles of the Web with formal ontologies,both the Web and formal

ontologies will co-evolve together.

Although researchers have paid much attention to what kindsof logic best underlies

knowledge representation on the Web, very little work has been done from the side of

the knowledge representation community on understanding what exactly are the core

principles and components of the Web itself. This is not surprising, as Web architecture

is mostly an informal body of knowledge phrased in a combination of Internet and Web

253
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standards, tutorials and notes, running code, and even an ‘oral’ tradition passed down

in IRC chats and e-mail discussions. However, while each document itself is usually

clear and self-contained, over the years many of the documents have been replaced

with newer versions and extended in various manners, using the same vocabulary dif-

ferently. Some parts of this myriad number of documents havebeen deprecated, and

only some components are best practices. Furthermore, other informally written notes

and even the products of long e-mail list-serv discussions have had an influence on the

core architecture of the Web. Thus, the knowledge of Web architecture itself can be to

outsiders, especially those coming from a background in knowledge representation, a

rather obscure and even vague field despite its unreasonableeffectiveness, since many

of its principles are embodied primarily in the minds of its primary architects who do

not in general attend academic conferences, specificationsthat are not mentioned in

academic literature, and the running code that has been built off these specifications.

We model these terms and the debates around them using a lightweight formal on-

tology in OWL-DL, which we callIRW, for ‘Identity of Resources on the Web.’ IRW

is meant to be an helpful formal tool for resolving conflicting arguments about identity

and URIs, and as a consequence, it provides a supporting vocabulary for implementing

practical solutions in a variety different scenarios (Halpin and Presutti, 2009). Further

details of the ontology are available in Halpin and Presutti(2009). While there are

limits to any formal ontology in describing such a multi-faceted field, a single ontol-

ogy of how the terms in the various specifications fit togetherinto a coherent body of

knowledge is necessary. First, we will informally describesome of the components of

the Web itself in order to then formally elucidate these components a formal ontology

that allows us to model Web architecture. We will the end by presenting a number of

surprisingly utilitarian uses that this formal ontology provides.

A.1 Related Work

The foundations of Web architecture have primarily been laid out in various specifi-

cations from the World Wide Web Consortium (W3C) and the Internet Engineering

Task Force (IETF). The W3C and IETF have different structures and terminology. The

W3C is a more recent and formal body technically concerned with the World Wide

Web, and not the Internet as a whole. The W3C is a membership organization that

features a strict formal process that moves, ideally on a limited time-scale, to cre-

ate a normative W3C Recommendation that defines a Web standard. In contrast, the
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IETF has existed almost since the the dawn of the Internet as an open organization

that runs off ‘rough consensus and running code,’ and in lieuwith its philosophy calls

its documents ‘Request for Comments’ (RFCs), although it does distinguish a level of

confidence, with kinds of documents progressing from the informal ‘Informational’ to

the more mature ‘Internet Drafts’ and finally to ‘Standards Track’ documents.

The main source for our terminology is a document entitledThe Architecture of the

World Wide Web(AWWW) as described in in Chapter 4. The other group of standards

that we will investigate is the various IETF RFCs around Uniform Resource Identifiers

(URIs, such ashttp://www.example.org) and the HyperText Transfer Protocol (HTTP),

which were both developed within the IETF, also described inChapter 4. In particular

the specifications around URIs, originally called ‘Universal Resource Identifiers,’ were

first put forward by Berners-Lee in the ‘informational’ IETFRFC 1630 (Berners-Lee,

1994a). However, the IETF could not agree on this name and as such, the later RFC

for Uniform Resource Locations (URLs), in the form of IETF RFC 1738 came out

(Berners-Lee et al., 1994). URLs became URIs again with the publication of IETF

RFC 2396 (Berners-Lee et al., 1998), which after a number of minor amendments,

was later itself superseded by the full Internet Standard IETF RFC 3986 (Berners-Lee

et al., 2005). Likewise, HTTP was first defined in RFC 2068 (Fielding et al., 1997),

which was then shortly superseded by IETF the ‘Standards track’ IETF RFC 2616

(Fielding et al., 1999). When possible, we will use primarily the definitions of the later

IETF RFCs when it obsoletes a previous RFC. W3C Recommendations, unlike IETF

RFCs, are generally not made obsolete.

Informal notes are another major source of information. TheW3C AWWW is an

exegesis of Tim Berners-Lee’s notes on ‘Design Issues: Architectural and philosophi-

cal points’ that exist a collection of unordered personal notes available at:

http://www.w3.org/DesignIssues/. Another major source of information is Roy

Fielding’s dissertation “Architectural Styles and the Design of Network-based Soft-

ware Architectures,” as Fielding was one of the principal architects of HTTP (2000).

Lastly, much of the interest in Linked Data comes from the ‘How to Publish Linked

Data on the Web’ note, itself a practical tutorial built fromBerners-Lee’s informal

‘Linked Data’ note (Bizer et al., 2007).
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A.2 The Use of a Formal Ontology

The primary use of a formal ontology in the context of Web architecture is to allow us

to model formally the various distinctions employed by Web architecture. Although

some other formal logic that deals with actions and events may be more suitable for

modeling the temporal transactions of a client and server interactions on the Web, an

ontology is necessary in order to capture the various distinctions given in Web speci-

fications first. As even Web architects find themselves confused about the distinctions

between ‘entities’ in HTTP and ‘representations’ in Web architecture (Mogul, 2002),

this ontology could be of use as a reference to anyone interested in understanding or

even extending existing Web specifications, as well as thoseinterested in correctly

implementing best practices that are dependent on rather obscure corners of Web ar-

chitecture, such as Linked Data.

One of the most interesting uses of the ontology should be to phrase the arguments

around the Identity Crisis in a way that allow those involvedin debates to model for-

mally their positions using extensions to a common ontologyas a starting point. To this

aim, IRW can be discussed, reviewed, and comment on the Ontology Design Patterns

wiki1. To serve the aim of elucidating arguments, additional modules of IRW have

been developed, in particular to deal with the debate between Berners-Lee and Hayes,

and are briefly introduced in Section A.3.

There have been previous attempts to model at least a subset of Web architecture as

given in Chapter 4 in a formal ontology, but all lack coverageof some crucial concepts.

For example, while the ontology given by RDF Schema touches upon the vocabulary of

resources via its termrdfs:Resource, it does not cover the distinction between infor-

mation and non-information resources. The IRE (Identifiers, Resources, and Entities),

based on Dolce Ultra Lite (DUL),2 a light version of the widely-known DOLCE foun-

dational ontology and its extension for describing information objects3 (IOL, described

in (Gangemi, 2008)), attempted to model some of these concepts earlier (Presutti and

Gangemi, 2008). However, many aspects were not included in IRE, such as the dis-

tinctions between resources and their Web representations, or the concept of accessing

a web-page via a web server, that are crucial to the efforts within the W3C, while many

of the distinctions drawn by DUL+IOL were found to be too ‘heavy-weight’ for these

communities (Gangemi et al., 2002). In response to these concerns, the IRE ontology

1http://ontologydesignpatterns.org/wiki/Submissions:IRW
2http://www.loa-cnr.it/ontologies/DUL.owl
3http://www.loa-cnr.it/ontologies/IOLite.owl
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has been evolved into the IRW ontology.

We show graphically how this ontology can model the 303 redirection needed for

the Semantic Web via an example. In the example an agent trying to access a URI

for the Eiffel Tower itself,http://dbpedia.org/resource/Eiffel Tower. Upon

attempting to access that resource with a HTTP GET request ona URI, since the Eif-

fel Tower itself is not an information resource, no Web representations are directly

available. Instead, the agent gets a303 See Other that in turn redirects them to

an information resource that hosts Web representations about the Eiffel Tower, such

ashttp://dbpedia.org/page/Eiffel Tower. When this URI returns the 200 sta-

tus code in response to an HTTP GET request, the agent can infer that the URI

http://dbpedia.org/page/Eiffel Tower/ is actually an information resource.

The Semantic Web URI which is used to refer to the Eiffel Toweritself (not the

web-page),http://dbpedia.org/resource/Eiffel Tower, could be any kind of

resource and socouldbe a non-information resource (Connolly, 2006). This example

is illustrated in Figure A.1, using terms from the IRW ontology introduced in Section

A.3.

Figure A.1: 303 Redirection for Semantic Web URIs

In order to introduce the IRW ontology, we will first introduce its core concepts one

by one, and distinguish when we are communicating about a module or part of the core

ontology. The components of the ontology will then be used tomodel successfully the

two primary use-cases, the modeling of the retrieval of hypertext web-pages and then

the retrieval of Semantic Web data using the Linked Data principles.
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Figure A.2: The IRW ontology illustrated as a graph. Rounded nodes are classes,

while rectangular ones are datatypes. Arcs ending with an empty triangle are

rdfs:subClassOf relationships. Arcs ending with a filled triangle are either object

properties or datatype properties depending of the range node. Arcs’ direction indi-

cates the domain and range of the property. A ‘1’ associated to a property means it is

functional, a ‘T’ means it is transitive, ‘1+’ means ‘at least one’. Prefixes are indicated

only if different from irw:.

A.3 The IRW Ontology

The prefixirw: is for the namespacehttp://purl.org/NET/irw/ of the IRW on-

tology. Terms in the ontology will be given inteletype font, and if no namespace is

given, we will assume theirw: namespace. The stable version of the ontology can also

be accessed via its PURL. The latest version of the IRW ontology may be accessed on-

line.4 The prefixrdfs: is used for the RDF(S) namespacehttp://www.w3.org/2000/01/rdf-schema#.

Noteir: is the ‘information realization’ ontology, also online.5 While the IRW ontol-

ogy in full can not graphically explicated due to lack of space, the primary classes and

properties are given in Figure A.2. The IRW-related elements needed for the example

4http://ontologydesignpatterns.org/ont/web/irw.owl
5http://www.ontologydesignpatterns.org/cp/owl/informationrealization.owl
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of 303 redirection are given in Figure 5.5. The IRW ontology starts withResource.

While this class expresses the same intuition asrdfs:Resource, we have defined it

again because this version of IRW is within OWL-DL expressivity. In OWL Full, this

class is equivalent tordfs:Resource. Now, we move to modeling the debates around

the Identity Crisis.

A.3.1 Resources and URIs

The notion of a URI is modeled as a class,URI that has exactly one value for the

datatype propertyhasURI allowing to specify its value. Modeling URIs as a class al-

lows us to talk about different kinds of URIs, such as IRIs (Internationalized Resource

Identifiers) and Semantic Web URIs. A propertyidentifies can then connect a URI

to a resource. Since we want to associate a URI with a particular character string

like ‘http://www.example.org’ for the URI, we also have a property for called

hasURIString. This property then have various sub-properties for futuremodules

such as the conversion of IRIs to URIs, so that a IRI given in the Japanese character

set can be converted to a URI. The sub-properties ofhasURIStrong may be included

like hasRelativeURIString and hashasAbsoluteURIString for the conversion of

relative URIs to absolute URIs.

• Resource: An OWL Class. “Anything that might be identified by a URI” (Ja-

cobs and Walsh, 2004). This class is meant to express the sameintuition of

rdfs:Resource but it is defined here in order to have OWL-DL compaibility. In an

OWL Full version of this ontology this class would beowl:equivalentClass

rdfs:Resource.

• URI: An OWL Class. An abbreviation for Uniform Resource Identifier. “A

global identifier in the context of the World Wide Web” (Jacobs and Walsh,

2004). Any identifier that follows either fulfills the role given in IETF RFC 3986

can fulfill this class, even if it an identifier such as IRI thathas a conversion to a

URI or uses a scheme such as URN (Moats, 1997) or URL (Berners-Lee et al.,

1994) that has been subsumed by the concept of URIs.

subClassOf: Resource

• identifies: An OWL Object Property. The relationship between a URI and a

resource. It is functional as the W3C states one should “assign distinct URIs to

distinct resources” (Jacobs and Walsh, 2004).
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Inverse Property: isIdentifiedBy

Domain: URI

Range: Resource

subPropertyOf: refersTo

functional

• hasURIString: An OWL Object Property. The relationship between a URI and

the character encoding of a URI.

Domain: URI

Range: xsd:anyURI

A.3.2 Access and Reference

One of the largest re-occurring debates in Web is about whether the notion of ‘identi-

fies’ between URI and resources is actually coherent. According to Berners-Lee, URIs

identify exactly one resource (i.e.identifies is a functional property) via some

causal and historical chain given by the owner or creator of the URI, a similar position

towards names and reference as given by Kripke (1972). Hayeswould disagree with

identifies being functional, and would prefer the term be dropped all together from

Web architecture (Hayes and Halpin, 2008). Instead, Hayes would use the more pre-

cise termsaccess(accesses) andreference(refersTo) (Hayes and Halpin, 2008). In

the tradition of formal model theory and the Russellian descriptivist theory of reference

(Russell, 1905), Hayes argues that a URI can refer to a referents in any interpretation

that satisfies the model given by the formal semantics of RDF (Hayes and Halpin,

2008). In this way, a URI can refer to more than one resource, and so this can be mod-

eled by the object propertyrefersTo, which is non-functional unlikeidentifies,

and soidentifies can be sub-property ofrefersTo. One aspect of reference is that

the object of reference can be “immediately causally disconnected” from its subject

(Hayes and Halpin, 2008). This is important, as reference isused as a property be-

tween URIs and resources, including not only web-pages but also resources like the

Eiffel Tower or integers that are necessary for the SemanticWeb

However, it seems there should be another relationship besides reference: the re-

lationship of ‘access’ for when “the name provides a causal pathway to the thing,

perhaps mediated by the Web” (Hayes and Halpin, 2008). We call this relationship
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theaccesses property, which is a causal connection to the thing identified. Since this

is an exceptionally common use of Web architecture, it is used within the coreirw

module. This is modeled again as a property between URIs and resources, although it

is transitive, unlikerefersTo. If one can accessa anda accessesb, andb accessesc,

thena accessesc (via b). Note that access and reference are not disjoint, for as “the

architecture of the Web determines access, but has no directinfluence on reference”

and that one can use a URI that accesses a web-page to also refer to that web-page, or

even something completely different.

• accesses: An OWL Object Property. The relationship between a resource and

another resource where the former provides a causal pathwayto the latter.

Inverse Property: isAccessedBy

domain:Resource

range: Resource

transitive

• refersTo: An OWL Object Property. The relationship between a resource and

another resource where the former may be immediately causally disconnected

from the latter.

Inverse Property: isAbout

domain: Resource

range: Resource

A.3.3 Information Resources

There is a controversial sub-classes ofResource outlined in AWWW known as ‘in-

formation resources.’ As the AWWW defines the notion ofinformation resourceas “a

resource which has the property that all of its essential characteristics can be conveyed

in a message” (Jacobs and Walsh, 2004), which we model asInformationResource.

This definition has widely been thought of as unclear, and defining what set of indi-

viduals belong in this class and what do not, has been a sourceof perpetual debate on

various list-servs, and our formal modeling in combinationwith a few classes from a

subset of DOLCE, DUL+IOL (Gangemi, 2008), hopefully will clarify the notion. An

InformationResource is viewed to be equivalent to the notion ofinformation object

from DUL+IOL (Gangemi, 2008), such as a musical composition, a text, a word, or
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a picture. An information object is an object defined at a level of abstraction, inde-

pendently from how it is concretely realized. This means an information resource

has, via their:realizes property (with inverseir:isRealizedBy), at least one

ir:InformationRealization, a concreterealization. This term is again imported

from DUL+IOL (Gangemi, 2008). So an information resource’s“essential charac-

teristics can be conveyed in a single message” implies that everything from a bound

book to an HTTP message can be a realization of an informationresource (Jacobs and

Walsh, 2004).

Examples of this are descriptions of a resource using natural language or depic-

tions of a resource using images. Information resources also can, but not necessarily,

be identified (either accessed or referred to) with a URI. In this manner, the text of

Moby Dick can be an information resource since it could be conveyed as a single

message in English, and can be realized by both a particular book or a webpage con-

taining that text. The definition of information object and information realization can

be thought of as the classic division in philosophy of mind between an object given

on a level of abstraction and some concrete thing that realizes that abstraction, where

a single abstraction may have multiple realizations. This is similar, but more broad,

that the type-token distinction in philosophy and theTBoxandABoxdistinction from

description logic used in OWL.

• InformationResource: An OWL Class. “A resource which has the property that

all of its essential characteristics can be conveyed in a message” (Jacobs and

Walsh, 2004).

subClassOf: Resource

equivalentClass: iol:InformationObject, which is defined by IOL as “a

concrete realization of an expression, e.g. the written document containing the

text of a law” (Gangemi, 2008).

• ir:isRealizedBy: An OWL Object Property.Imported from IOL. “A relation

between an information realization and an information object, e.g. the paper

copy of the Italian Constitution realizes the text of the Constitution” (Gangemi,

2008).

Inverse Property: ir:realizes

Domain: ir:InformationRealization

Range: ir:InformationObject
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• ir:InformationRealization: An OWL Class. Imported from IOL. “A piece of

information, such as a musical composition, a text, a word, apicture, indepen-

dently from how it is concretely realized” (Gangemi, 2008).This is equivalent to

the broadest notion ofrepresentationas defined in AWWW as “data that encodes

information about resource state” (Jacobs and Walsh, 2004).

A.3.4 Web Resources and Web Representations

Up until now, all the work done by the ontology has not had muchto do with the Web

per se, but more with the more general ideas of information and resources that apply

equally as well to books as to web-pages. However, we can now specialize this ontol-

ogy to the Web. In particular, representations can be transferred over a protocol such

as HTTP. However, in doing so they become something we callWeb representations

(WebRepresentation) with entity body and entity headers. Therefore, this use ofthe

term ‘representation’ is more narrow that the AWWW’s use, which is equivalent to the

notion of any information realization in the large, and instead focused on representa-

tions sent over the Web. This is due to the AWWW specifying that “new protocols

created for the Web should transmit representations as octet streams typed by Internet

media types” (Jacobs and Walsh, 2004). Note also that therefore, as given in IETF RFC

2616, a Web representation may be defined as “an entity included with a response that

is subject to content negotiation” such that “there may exist multiple representations

associated with a particular response status” (Fielding etal., 1999). Furthermore, one

can distinguishWeb resources(WebResource), a subset of information resources that

are usually Web-accessible, such as web-pages, from things that simply carry infor-

mation, like the text of Moby Dick, regardless of whether it is on the Web or not.

However, one problem is that it appears a client may only access a Web representa-

tion of a resource as a response, and so we need a term for describing the request for a

representation itself. To do this, we turn to the notion ofentity(Entity) as defined by

HTTP (Fielding et al., 1999). Entities may be used either fora request or response, but

a representation is only for a response. Something can be an entity without necessarily

being a representation or being transferred as bits over thewire from any particular

Web resource. For example, the entity headers and entity body of a POST request,

or even a 404 response, is an entity, but does not necessarilyrepresent the state of a

particular Web resource. The same entity may be transferredas the request or response

of many particular actions by a client. Also, different URIsmay return the same entity,
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such as when one URI hosts a copy of a resource given by anotherURI. In order to

model entities, we use the popularhasComponent ontology design pattern.

• WebResource: An OWL Class. “A network data object or service” (Fielding

et al., 1999). As such, this is a resource that is accessible via the Web (Hayes

and Halpin, 2008). Therefore, a Web Resource must have at least one URI and

be realized by at least one Web Representation.

subClassOf: InformationResource

ir:isRealizedBy: WebRepresentation whereminCardinality(1)

isIdentifiedBy: URI whereminCardinality(1)

• Entity: An OWL Class. “The information transferred as the payload of a request

or response” (Fielding et al., 1999). “An entity consists ofmetainformation in the

form of entity-header fields and content in the form of an entity-body” (Fielding

et al., 1999).

subClassOf: iol:InformationRealization

hasComponent: EntityHeader whereminCardinality(1)

hasComponent: EntityBody

• EntityBody: An OWL ClassWhatever information is sent “in the request or re-

sponse is in “a format and encoding defined by the entity-header fields” (Fielding

et al., 1999). Also called in HTTP the ‘content’ of a message (Fielding et al.,

1999).

• EntityHeader: “Entity-header fields define metainformation about the entity-

body or, if no body is present, about the resource identified by the request”

(Fielding et al., 1999). Sometimes called in HTTP “meta-information” (Field-

ing et al., 1999). Various sub-classes of this class can define HTTP status codes

(StatusCode), content encoding (MediaType), content language (ContentLanguage),

date of creation (DateCreation, date of modification(DateModification and

the like.

• WebRepresentation: An OWL Class. “A sequence of octets, along with repre-

sentation metadata describing those octets, that constitutes a record of the state

of the resource at the time when the representation is generated” (Berners-Lee

et al., 2005). Note that the term ‘representation” is used for this class in IETF
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RFC 3968, but has been changed to ‘Web Representation’ to separate it from the

more general notion of ‘representation’ used in the W3C AWWW(Jacobs and

Walsh, 2004)

subClassOf: Entity

A.3.5 Media Types, Generic, and Fixed Resources

One intriguing problem, central to the notion of Web representations and resources, is

the connection between media types and resources. Very little work has been done in

this area, likely due to the lack of use of content negotiation in general on the hyper-

text Web. For example, instead of using content negotiationto return versions of the

same resource in multiple languages, many sites use explicit links. The only substan-

tial work on this has been Berner-Lee’s noteGeneric Resourceswhere he outlines an

ontology of types of resources, conditioned by how the resource varies over HTTP re-

quests (Berners-Lee, 1996b). Berners-Lee has informally said that a generic resource

is equivalent to information resources, since the main important part of a generic re-

source is the information itself, not any particular realization of the information. So,

for example, a resource like ‘the weather report of Oaxaca’ is a generic resource, as

is the text of Moby Dick in any language. However, the ‘weather report of Oaxaca

today’ is not a generic resource, nor is Moby Dick in English.Resources may also

vary over time. For example, the text of Moby Dick will be the same over time and

so be “time-invariant,” but the resource for the ‘weather report of Oaxaca’ will change

over time and be “time-specific” (Berners-Lee, 1996b). Furthermore, resources may

vary over media-type. For example, the same information maybe given in some cus-

tom XML dialect or RDF, or the same depiction may be given in different formats like

JPG and SVG. These resources are all imported from Berners-Lee’sont ontology, and

all quotes in the following definitions are from the ontology.6 There are also ‘fixed

resources’ that, regardless of time and natural language, always delver the same repre-

sentation. For example, a resource for Moby Dick that gave always the same edition in

the same language as plain text would be a fixed resource. The idea of a fixed resource

is surprisingly common, as it equates a single web-page witha resource.

• ont:GenericResource. An OWL Class. “This resource is a resource that can vary

by media-type over any number of dimensions” (Berners-Lee,1996a).

6Available athttp://www.w3.org/2006/gen/ont.
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subClassOf: Resource

equivalentClassWith: InformationResource

• ont:TimeInvariantResource. An OWL Class. “A resource of which all represen-

tations are in the same version. Representations of the resource will not change

as a result of the resource being updated to a version with time” (Berners-Lee,

1996a).

subClassOf: Resource

disjointClassWith: ont:TimeSpecificResource

ir:realizedBy WebRepresentation wherehasComponent DateCreation

andDateLastModifiation and wheremaxCardinality (1) and minCardinal-

ity(1)

• ont:LanguageSpecificResource. An OWL Class. “A resource of which all rep-

resentations are in the same language” (Berners-Lee, 1996a).

subClassOf: Resource

disjointClassWith: ont:LanguageInvariantResource

ir: realizedBy: WebRepresentationwherehasComponent ContentLanguage

maxCardinality(1) and minCardinality(1)

• ont:MediaTypeSpecificResource. An OWL Class. “A resource of which all rep-

resentations are in the same media-type” (Berners-Lee, 1996a).

subClassOf: Resource

disjointClassWith: ont:LanguageInvariantResource

realizedBy: WebRepresentation wherehasComponent MediaType where

maxCardinality(1) and minCardinality(1).

• ont:FixedResource. An OWL Class. “A resource from which only one entity

will ever come” (Berners-Lee, 1996a).

subClassOf: Resource

disjointClassWith: ont:LanguageInvariantResource

realizedBy: WebRepresentation wheremaxCardinality(1) and minCardi-

nality(1).
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A.3.6 Hypertext Web Transactions

The typical Web transaction is started by an agent, given by aclassAgent, which is

some client in the context of the Web (Jacobs and Walsh, 2004). This agent can have

a request(request) from a URI an representation. The Entity then contains a URI,

which is the URI where that identifies the URI of the resource the request is acting

upon, and this is modeled via therequestmechanism. Both of these properties are a

sub-property ofaccess. An Agent can then request a representation from a URI. We

also introduce the classWeb Server for the generic notion of aweb server, which has

a resolves property. The propertyresolvesis the resolution of a URI to a concrete

Web server, which currently is done by mapping a URI to an IP address or addresses.

So eachWebServer has at least oneURI. In order for the resolution to be successful,

the Web It also has alocationOf property with at least oneWeb Representation,

indicating the Web Server concretely can respond to an HTTP request with a partic-

ular Web Representation. Sincerequests, resolves, andresponses are all sub-

properties of the transitive propertyaccesses, this part of the ontology models the

physical and causal pathway between a given request for a URIand a responded to Web

Representation. Then there is aresponseproperty that is the inverse of therequest

property that concretely returns the representation.

The entity given in the request may have a preferred media-type, and the response

should have a media-type as well. The media-type, such asapplication/xml or

application/rdf+xml, tells the agent how to interpret the entity body of the response

(the returned Web representation of the resource). The media-types are found in the

list given online by IANA.7 Each of the media-types can be given a sub-class of our

MediaType class. The relationship between aMediaType and aEntity is given by

the encodes relationship. Note that each Web Representation should have a single

media-type.

A URI may also have aredirectsTo property, a sub-property ofaccesses, that

we can use to model HTTP redirection. This can be done via a number of different

techniques, ranging from a ‘Content-Location’ HTTP entityheader to a 300-hundred

level HTTP status code. Note that, even in the light of the W3CTAG’s httpRange-14

decision, since redirection can be used between just information resources that have

nothing to do with the Semantic Web, their domain and range say nothing about the

type of resource.

7http://www.iana.org/assignments/media-types/
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• Agent: An OWL Class. A program that establishes connections for the purpose

of sending requests (Fielding et al., 1999). Also known as an‘Agent’ in the W3C

AWWW, which is “A person or a piece of software acting on the information

space on behalf of a person, entity, or process” (Jacobs and Walsh, 2004).

subClassOf: Resource

• request: An OWL Object Property. “A request message from a client to a server

includes, within the first line of that message, the method tobe applied to the

resource, the identifier of the resource, and the protocol version in use” (Fielding

et al., 1999).

Inverse Property: response

subPropertyOf: accesses

domain: Agent

range: URI

• WebServer: An OWL Class. “An application program that accepts connections in

order to service requests by sending back responses”(Fielding et al., 1999). Note

that “any server may act as an origin server, proxy, gateway,or tunnel, switching

behavior based on the nature of each request” (Fielding et al., 1999).

subClassOf: Resource

• resolvedBy: An OWL Object Property. The relationship between a Web Server

and a Web URI that hosts a representation of the resource identified by the URI.

Inverse Property: resolves

subPropertyOf: accesses

domain: WebServer

range: URI

minCardinality(1)

• response: An OWL Object Property. “After receiving and interpreting a request

message, a server responds with an HTTP response message” (Fielding et al.,

1999).

Inverse Property: isResponseBy

subPropertyOf: access
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domain: Entity

• locatedOn: An OWL Object Property. A relation between a Web Representation

and a Web Server, indicating that the entity can be obtained by e.g. an HTTP

request to the Web server.

InverseProperty: isLocationOf

subPropertyOf: access

domain: WebRepresentation

range: WebServer

• MediaType: An OWL Class. “the media type of the underlying data” of a re-

sponse (Fielding et al., 1999). The various registered media-types and their as-

sociated IETF RFC and can each be given its own sub-class.

subClassOf: Resource

• isEncodedIn: An OWL Object Property. The relationship between a entity and

its media type.

InverseProperty: encodedIn

domain: Entity

range: MediaType

minCardinality(1)andmaxCardinality(1)if applied to aWebRepresentation.

• redirectsTo: An OWL Object Property. The relationship between one URI and

another where any requested Entity is sent to the URI given asthe object of this

property.

Inverse Property: redirectedFrom

subPropertyOf: access

domain: URI

range: URI

A.3.7 Modeling the Semantic Web and Linked Data

In order to model explicitly the redirection solution to the“Identity Crisis” by the

W3C TAG, a few new properties have been minted. These new properties are the
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redirects303To andredirectsHashTo. Obviously,redirects303To models the

TAG’s ‘solution’ to httpRange-14while redirectsHashTo represents the hash con-

vention.

With these kinds of redirections in hand, we can now model thetypical Seman-

tic Web transaction. A new sub-class ofURI, SemanticWebURI is given, where the

Semantic Web URIhas a constraint that it must have at least oneredirects prop-

erty. The Semantic Web is supposed to use URIs not for Web resources (‘documents’)

but for abstract concepts and real-world things themselves. The redirection allows

the URI to refer to or identity a resource that is not accessible on the Web. In the

‘Linked Data Tutorial’ note, these are callednon-information resources(Bizer et al.,

2007). Although this term is controversial and hard to defineabstractly, operationally

it simply means a resource that is not Web-accessible that therefore should, to com-

ply with the Linked Data initiative, using redirection to resolve to another resource.

Although the space of non-information resources is relatively large and hard to draw

precise boundaries around, we list a few exemplars in order to serve as what Dennett

would call “intuition-pumps” in order to help us understandthis concept (1981). In

particular, a new class calledNonInformationResource that represents things that

can not themselves – for whatever reason – be realized as a single digitally encoded

message, is introduced and is disjoint withInformationResource. A number of dif-

ferent kinds of things may beNonInformationResources. Since this concept is the

cause of much confusion and debate, it is detailed with two disjoint sub-classes. A

physical entity resource(PhysicalEntityResource), is a resource that is ‘touchable’

like physical people, artifacts, places, bodies, chemicalsubstances, biological entities,

etc. mapping to a subset of “entities” within OKKAM (Bouquetet al., 2007a). A

conceptual resource(ConceptualResource) refers to resources that are created in a

social process that can’t be completely realized digitally, such as legal entities, politi-

cal entities, social relations, as well as the concept of horse and imaginary objects like

unicorns.

This kind of resource is anassociated descriptions(AssociatedDescription),

which is just an Web resource that can be accessed via redirection from a Semantic Web

URI (Bizer et al., 2007). For example, in DBpedia8 the resourcedbpedia:/resource/Eiffel Tower

redirects to some RDF/XML atdbpedia:/data/Eiffel Tower, and to an HTML

page atdbpedia:/page/Eiffel Tower depending on the requested media type (Auer

et al., 2007). This Linked Data typical scenario can be generalized: aWebClient

8Prefixdbpedia: is used for the namespacehttp://dpedia.org
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requests aSemanticWebURI x and the request is redirected (e.g. via hash or 303 redi-

rection) to another URI, where this second URI identifies anAssociatedDescription

that has oneisAbout property to a non-information resource. We model

AssociatedDescription as a subclass ofWebResource.

• SemanticWebURI: An OWL Class. A URI used to identify any resource that is

not accessible on the Web.

subClassOf: URI

redirectsTo: AssociatedDescription

identifies: NonInformationResource

• NonInformationResource: An OWL Class. All resources that are not informa-

tion resources

subClassOf: WebResource

complementOf: InformationResource

redirectedFrom: SemanticWebURI

• PhysicalEntityResource: An OWL Class. Some thing that occupies its own

space and has its own mass in the real world but is not Web-accessible.

subClassOf: NonInformationResource

• ConceptualResource: An OWL Class. Resources that are created in the social

communication process. A conceptual resource does not exist if it’s not in a

social communication. For example: legal entities, political entities, social rela-

tions, concepts, and the like.

subClassOf: NonInformationResource

• AssociatedDescription: An OWL Class. A resource that exists primarily to de-

scribe a non-Web accessible resource.

subClassOf: WebResource

redirectedFrom: SemanticWebURI

• redirects303To: An OWL Object Property. A redirection that uses the HTTP 303

status code.

Inverse Property: redirected303From



272 Appendix A. An Ontology for Web Architecture

domain: URI

range: URI

functional

• redirectsHashTo: An OWL Object Property. A redirection that works via the

fragment identifier being removed from the URI.

Inverse Property: redirectedHashFrom

domain: URI

range: URI

A.4 Uses of the IRW Ontology

The IRW ontology has many uses in the real world of the Web. These uses can operate

on a number of different levels, both theoretical and practical. On the level of theory, it

can help clarify the various arguments over Web architecture, such as the relationship

between resources and representations. On a practical level, the TAG’s decision of

httpRange-14has been considered ambiguous, and the IRW ontology can resolve this

difficulty by making resources more self-describing. Lastly, it can be used to determine

if some URI is enabled to host Linked Data.

A.4.1 Resolving the Identity Crisis

One purpose of this ontology is to describe, in formal detail, the exact nature of the

conflicts between the various sides of the Identity Crisis debate. The main conflict

between Hayes and Berners-Lee can then be cast as an argumentover three IRW

properties. Berners-Lee’s slogan that ‘URIs identify one thing’ is modeled by hav-

ing the identifies property befunctional, i.e. a URI can only identify one re-

source. Furthermore, he would also hold that aSemanticWebURI refersTo exactly

oneNonInformationResource.

Hayes’s response would be thatidentifies should be eliminated and there can be

no constraints whatsoever onrefersTo and thus no constraints on the usage of URIs

for referring to things on the Semantic Web, while typical hypertext Web transactions

can be modeled functionally withaccesses. Although IRW models Berners-Lee’s
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more general notion of identification viaidentifies, IRW also captures Hayes’s per-

spective with the propertiesrefersTo andaccesses. Lastly, the criticisms of redi-

rection modeled withredirectsTo has mainly to do with the fact that the domain can

only be aURI rather than aSemanticWebURI, which we also explicitly model. Thus,

there is no way to ever definitely be sure that a URI is a Semantic Web URI and so one

can never be sure that a URI identifies a non-information resource. We show how IRW

can solve this problem in Section A.4.2.

A.4.2 The Self-Describing Semantic Web

The IRW ontology can help explicitly model and make available to the rest of the

Semantic Web the often subterranean details of Web architecture. The IRW ontol-

ogy can also solve the problem noted earlier that currently it is impossible to describe

whether or not some resource describes some non-Web accessible thing, such that

there is no “definition, description, some other kind of indication of what the identi-

fier is intended to identify” (Pepper, 2006). Solving this can be done on via adding

IRW statements to associated descriptions accessible via Semantic Web URIs. There

would be a number of advantages if web-pages that have RDF content could distin-

guish themselves as such, in the same way that HTML ‘valid’ documents are cur-

rently validated by W3C Validators. This can be done by embedding a IRW state-

ment in RDF/XML documents, RDF returned from SPARQL endpoints, and RDFa

or GRDDL statement in XHTML or XML documents (Adida et al., 2008). Ide-

ally, this would be in conjunction with some sort of graphical logo to distinguish

the page as ‘Semantic Web Enabled,’ much as current web-pages can be marked

up with a logo for ‘XHTML 1.0 Valid.’ This is useful because detecting RDF ‘in

the wild’ on the Web, such as embedded RDFa, can be difficult for humans. The

main problem is that anNonInformationResource has no Web representation to

embed such a statement in. Take for example the Semantic Web URI created by

Pat Hayes for himself:www.ihmc.us/users/phayes/PatHayes.html. While orig-

inally a stand-alone web-page, currently Hayes has the URI use 303 redirection to

http://www.ihmc.us/users/phayes/PatHayesAbout.html.9 This latter web-page

could easily use a combination of RDFa as IRW to mark itself upas a representation of

a non-information resource by including the statement thatphayes:PatHayes.html

rdf:type NonInformationResource and adding

9Let phayes: stand forhttp://www.ihmc.us/users/phayes.
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phayes:PatHayes.html irw:redirects303To phayes:PatHayesAbout.html.

A.4.3 Linked Data Validation

One subset of this second application is the use of IRW to systematize the process of

Linked Data validation. Currently, the only Linked Data validator isVapour, which

is coded procedurally and whose results can not themselves be presented as RDF

(Berrueta et al., 2008). The IRW and the HTTP in RDF vocabulary can be used to

record whether or not each Linked Data resource is properly redirected using 303 redi-

rection, and the IRW vocabulary can be used to make sure that the 303 redirection

can lead accessboth an associated description in HTML and in RDF (Koch et al.,

2008). An example of Linked Data validation is given below. Assuming that the URI

http://dbpedia.org/resource/Eiffel Tower is claiming to be hosting data in ac-

cordance with the Linked Data principles, we can check it in the following ways:10

Input

http://dbpedia.org/resource/Eiffel Tower

Check

• If HTTP 303 Request with content request typeapplication/rdf+xml returns

a RDF file

• If HTTP 303 Request with content request typetext/html returns an HTML

file

Output (if succeeded)

dbpedia:resource/Eiffel Tower redirects303To

dbpedia:page/Eiffel Tower

dbpedia:resource/Eiffel Tower redirects303To

dbpedia:data/Eiffel Tower

Inferences

dbpedia:data/Eiffel Tower isAbout

dbpedia:resource/Eiffel Tower

dbpedia.org:page/Eiffel Tower isAbout

10With the namespacedbpedia: being forhttp://dbpedia.org.
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dbpedia.org:resource/Eiffel Tower

dbpedia:resource/Eiffel Tower rdf:type NonInformationResource

dbpedia.org:data/Eiffel Tower rdf:type AssociatedDescription

dbpedia:page/Eiffel Tower rdf:type AssociatedDescription

A.5 Conclusion

Overall, the IRW ontology can serve as a foundational ontology of Web architecture,

the “dark side of Semantic Web” that Hendler believes may give the Semantic Web a

crucial advantage over previous efforts in knowledge representation (2007). What is

surprising is that it has taken so long for an ontology to be created for Web architec-

ture. However, the debates between advocates of Web architecture can themselves be

highly contentious and the terminology often misunderstood. Furthermore, the vari-

ous documents that describe this problem are spread throughout many informal and

semi-formal notes and standards (and arguments over e-maillists), so systematizing

the terminology and modeling it formally was perhaps more difficult than would be

expected. Future work needs to be done to standardize IRW andfurther evolve the

ontology through the W3C and the wider communities around the Semantic Web and

Web architecture, which will doubtless result in refinements to IRW. It is far too easy

to take the Web for granted. It is always those things that areclosest to us that are the

most difficult to speak about. Yet by developing a coherent language for describing

Web architecture, a concrete step in establishing a new kindof philosophy of the Web

has been taken.
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