The Berners-Lee Hypothesis: Power laws and Group Structure in Flickr

Harry Halpin
World Wide Web Consortium
Massachusetts Institute of Technology
Cambridge, MA, USA
hhalpin@w3.org

Andrea Capocci
University “La Sapienza” of Rome
p. le Aldo Moro 5
Rome, Italy
andrea.capocci@gmail.com

ABSTRACT
An intriguing hypothesis, suggested by Tim Berners-Lee, is that the structure of online groups should conform to a power law distribution. We believe this is likely a consequence of the Dunbar Number, which is a supposed limit to the number of persistent social contacts a user can have in a group. As preliminary results, we show that the number of contacts of a typical Flickr user, the number of groups a user belongs to, and the size of Flickr groups all follow power law distributions. Furthermore, we find some unexpected differences in the internal structure of public and private Flickr groups. For further research, we further operationalize the Berners-Lee hypothesis to suppose that users with a group membership distribution that follows a power law will produce more content for social Web systems.

Categories and Subject Descriptors
H.1.0 [Information Systems]: General

Keywords
Web, power law, group, Dunbar Number, Flickr

1. INTRODUCTION
Despite the advent of the Social Web, where the participation of users is critical, there is still much work to be done to understand the structure of online groups and how these relate to the social contacts, membership in other groups, and even the productivity of users. This is a vital topic for future research in social machines, since it would allow the construction of optimal group membership distributions for users. While intuitively it would seem that a user would join groups that already have many of their social contacts due to preferential attachment, the possibilities of how group structure, membership, and productivity interact are wide and likely depend on cognitive and social factors rather than a overly simplified preferential attachment models. Is there any correlation between a user joining a group and the number of their social contacts already in the group? Does this depend on group size? A simple hypothesis could be that a user would prefer to join many small groups already containing their friends. However, an alternative hypothesis would be that users prefer to join a few large groups, where users can share their interests with others who they may not yet know.

1.1 The Berners-Lee hypothesis
The term “social machine” was coined by Tim Berners-Lee, who is widely acclaimed as the inventor of the Web. Berners-Lee has put forward the hypothesis that “it seems from experience that groups are stable when they have a set of peers, when they have a substructure” so that “neither the set of peers nor the substructure must involve huge numbers, as groups cannot ‘scale’, that is, work effectively with a very large number of liaisons with peers, or when composed as a set of a very large number of parts” [3]. In other words, both membership in only a single large group and a large set of self-reinforcing groups is less than ideal for users. In fact, he likens a single large group to a “global monoculture” and a large set of small groups to a “set of isolated cults.” He counters that instead “the compromise between stability and diversity is served by the same amount of structure at all scales,” in other words, a “fractal distribution,” although Berners-Lee later notices that “scale-free” is a better term than “fractal” [3]. While finding self-similarity is often difficult in actual data, his example of using this “fractal requirement” to discover “how you fit in to society at large (and at small)” lists a distribution that increases by a constant exponential scale of 10 [3]. While finding a scale-free structure in groups on the Web may be difficult, one result of this structure is the generation of a “power law” or, as Berners-Lee puts it, a “Zipf-shaped” distribution [11]. Although this distribution of group membership is possible to detect, even Berners-Lee has “no mathematical theory to demonstrate that this is an optimization of some metric for the resilience of society,” yet the detection of a power law could be a sign of “building an effective society on top of the Web” [3]. The intriguing ‘Berners-Lee’ hypothesis could predict that the most productive users would be members of communities at different scales, scales distributed along some power law.

1.1.1 Power law distributions and the Dunbar Number
An intriguing reason why such a power law distribution may be expected in group size, user membership in groups,
and even participation in groups is due to a phenomenon called the Dunbar Number [6]. The Dunbar Number is a hypothesized cognitive upper limit to the number of individuals one can form a persistent social relationship with at a given time; this upper limit was estimated by Dunbar to be 150 [2]. However, the later work of Dunbar further hypothesized that the Dunbar Number of 150 was just one of a series of circles of intimacy in human social relationships [8]. Refining his original hypothesis, Dunbar hypothesized that the number of social contacts people possess follows a vaguely exponential curve, where one in general has 5 intimate friends, followed by 12-15 members in a sympathy group, followed by 150 more distant friends, followed by 1500 acquaintances [2]. So, to be precise, there is no single Dunbar Number. Instead, there is a Dunbar distribution, where the infamous Dunbar Number is just an estimate of the maximum number of friends one can actively maintain via persistent contact at a single time, a single point on a distribution of social contacts. Empirical work Dunbar and associates committed later seems to have confirmed this in offline networks [10]. The Dunbar distribution could be the underlying cognitive reason for the emergence of group membership following a power law distributions.

Originally, Dunbar had no human data on social networks, but measured the number of social contacts of primates, such as apes, which were observed by studying primate grooming patterns [6]. Dunbar then extrapolated these results to guess the typical number of social contacts of humans by increasing the observed number from apes in order to compensate for the increase in the size of the human neocortex, which later research seemed to confirm [6]. This extrapolation was justified since the “cognitive constraint on the size of social networks in those species that live in intensely social groups” may be the result of “the number or volume of neocortical neurons limits an organism's information processing capacity, and hence the number of social relationships that an individual can monitor simultaneously”[8]. It would be reasonable to believe that just as the advent of language helped increase our cognitive capacities to keep track of our social technologies, we can use social networking Web sites to extend our native cognitive capacities to keep track of social contacts [5]. However, recent research shows that social networking sites report that the online Dunbar Number, reported to be 129 with a deviation of 120, is similar to the off-line Dunbar Number [9]. It should be noted that all these results that estimate the Dunbar Number have a huge deviation, likely predicting that social contacts per individual are distributed by a non-Gaussian distribution like a power law distribution. To differentiate this from the Berners-Lee Hypothesis about group size and group membership, we will say that Dunbar distribution is the predicted power law distribution of the number of social contacts per user. Although the original hypothesis of Dunbar was that there is some uniform maximal number of social contacts due to cognitive constraints is not likely to be correct, his later idea that circles of intimacy follow a power law distribution is of interest and possibly the underlying mechanism of the Berners-Lee Hypothesis. We will first try to show the more basic and well-known Dunbar distribution, and then test the Berners-Lee Hypothesis. We can operationalize both the Dunbar distribution and the Berners-Lee Hypothesis in the following manner:

- The Dunbar Distribution: the social contacts of users themselves are spread on a power law distribution, with a few very hyper-connected users and a large long tail of less connected users.
- The Berners-Lee Hypothesis: the membership of groups themselves should follow a power law distribution, with a few high membership groups and many low membership groups.

These hypotheses are technically independent. However, the scale-free nature of social contacts could also be reflected in a scale-free nature of group contacts, and thus group membership. If the Dunbar distribution generates the Berners-Lee Hypothesis, we would expect a number of results, such that the number of members in a group is inversely correlated with the number of internal connections between users.

2. RESULTS ON FLICKR GROUPS

What is needed to test the Berners-Lee Hypothesis and the Dunbar distribution is a large data set generated by the activity of users in a real-world social machine. While we have not been able to fully validate the Berners-Lee Hypothesis, we have managed to perform an initial descriptive investigation of the structure of Flickr groups that describes a simple form of the Berners-Lee Hypothesis using a large data set crawled from Flickr, and we provide the results below.

First, we should mention the experiments used two large, independently collected Flickr data sets, which were labeled according to their source. One data set, called the “Paris” data set was collected and kindly made available to us by researchers at France Telecom while the “TAGora” data set comes from a large European Union project of the same acronym. Unless otherwise noted, our results are based on the “Paris” data set, and we have clearly labeled where this is not the case. Both data sets are very large; for example, the “Paris” data set contains about 1.7 million individual Flickr users, almost 73 thousand different user groups and around 15 million user-user contact relationships. Note that by “group” in this data set we mean an explicitly joined group with a discrete self-selected number of members. This would be an explicit group that vastly differs from an implicit group such as those detected by community-detection algorithms. With explicit groups, there is the possibility of joining a group where one literally has no connection to anyone else in the group, while this would not be the case for an implicit group found by a community-detection algorithm.

2.1 The Dunbar Number: Social Contact Size on Flickr

Our first step was to turn our attention to the distribution of the number of contacts per user, irrespective of the Flickr groups they belong to. This step tested for the existence of the Dunbar distribution. The results are shown in Fig. 1. The distribution for both the “in-” and “out-” contacts follow overlapping power law distributions, with the characteristic long tail.

From the perspective of Dunbar’s theory, however, the “contact” relationship in Flickr must be seen in the broadest (i.e. least intimate) possible sense. In our data set, 8223 users among the 1.69 million had over the 300 contacts, which is similar to the number suggested by Dunbar as an upper bound of the number of friends a person can have based his Christmas card experiment [6]. In fact,
many users had contacts ranging in the thousands, with the most connected user having over 12,400 contacts. It is quite likely these people are companies or professional photographers whose number of contacts does not really denote a close social relationship.

2.2 The Berners-Lee Hypothesis: Group Size and User Membership on Flickr

Next, in Fig. 2 we show that the frequency of group sizes, as well as user membership (number of groups a user belongs to) also follows a power law distribution. Since group size follows a power law, the Berners-Lee Hypothesis holds in a simple form. As already mentioned, the emergence of power law distributions in group size is not really surprising in this context. Power laws can emerge from any preferential attachment type of phenomena, such as people joining groups which their friends already belong to, as shown earlier [1]. Although previous work does not observe specifically power law behavior in group size, it can be theorized that some preferential attachment mechanism could lead to the emergence of a power law distribution.

However, what is more curious for the Berners-Lee Hypothesis is namely that user membership also follows a power law distribution. So, most users belong to a small to medium number of groups, but a few belong to a truly astounding number of groups. This effect is not easily explained by a simple preferential attachment mechanism, and is more likely to be explained by constraints on attention and cognition that limit many users from joining too many groups.

2.3 Comparison of contact and group distributions found in 2 Flickr samples

As Fig. 3 shows the power laws for group size and user membership as shown earlier in Fig. 2, for both the “Paris” and “TAGora” data sets instead of just the “Paris” data set.

As both of these are large scale, independently collected data sets, it is not surprising there is a degree of overlap. The difference between the two data sets could be explained by the fact that one of the data sets, the “Paris” data set contains more private groups than the “TAGora” data set, which is based on public groups. This variance in the data-sets is explained by the fact that the “TAGora” data set was crawled using publicly available entrance points rather than dumped like the “Paris” data set. As shown in the next section, the
distinction between private and public groups may be important.

2.4 Relationship between group size and internal structure

Finally, the relation between the size of a group (in terms of numbers of members) and its internal structure (measured as the number of internal contact relationships between pairs of users both belonging to the same group) is analyzed in an attempt to test whether or not the Berners-Lee Hypothesis can be built on top of the Dunbar distribution. While specifically power law mechanisms have to our knowledge not specifically been observed in this case, as shown in previous work (e.g. [1]), online users are more likely to join groups that many of their social contacts already participate in.

Fig. 4 shows this result for the “Paris” data set. Here a surprising effect is observed. It seems that the distribution of internal structures is diverging, as if there are basically two independent distributions present in the data. One distribution (the one more on the left), the number of users tends to be low and there is a high number of internal social links in the group, and in the second distribution (the one more on the right), there are far fewer social contacts for yet even more members of the group. This could be explained by the fact that some groups are interest-driven, where the members of the groups are strangers yet united by a common interest, versus smaller groups where members know each other.

In Flickr, the most likely explanation for this effect is that it is the result of the private vs. public group distinction. Smaller groups are more likely to be based on social interaction, while larger groups more likely are to be formed around broadcasting information about some topic. From manual examination of the data set, it seems there are many private groups around interest in sexual and even perhaps pornographic photos. It seems plausible that these private groups consist mostly of a large number of users where the users are not in social contact. In other words, many people view the pictures and they wish to remain unknown to each other. In public groups around less taboo topics, it seems the groups are often smaller but consist of many more people that know each other. As a word of caution, we stress this explanation has not been thoroughly verified, but merely as the most plausible working hypothesis based on a limited manual observation of the data. This hypothesis is left to be confirmed or disproved more thoroughly in future work.

3. CONCLUDING DISCUSSION

The Berners-Lee Hypothesis in its most simple form seems to hold, although the reasons and implications of this are still areas for future research. In general, group size follows a power law. Furthermore, user membership in groups follows a power law. What would be the clearest test of the Berners-Lee Hypothesis would be to determine if the size of groups a user belongs to follows a power law. Furthermore, the Dunbar Number does not hold, since users seem to have a vast variance of social contacts both above and below 150. However, the Dunbar distribution holds, such that the number of social contacts are also distributed as a power law. These results are not surprising, as many decentralized social and technological systems produce power law distributions, as shown by previous work in the context of collaborative tagging [7]. Although these kinds of effects can be explained by preferential attachment, often more realistic models provide better explanations. After all, preferential attachment can easily mimic a distribution but provide in of itself neither a realistic nor novel explanation. For example, tagging is often better explained by the Zipf distribution of natural language terms than preferential attachment. Equally so, cognitive effects likely control group membership. While the topic has been thoroughly explored within tagging, further work should be done on creating a carefully grounded model for explaining the generation of these power law distributions in groups. It should relate these distributions to user behavior and cognitive constraints within technological and social structures. However, the exploration of the precise nature of relationships between these power laws is yet to be done.

While the initial discovery of power law distributions were not surprising, we have found some surprising results when inspecting the intersection of the Berners-Lee Hypothesis and the Dunbar distribution in order to predict whether or not group size and user membership in groups can be correlated with the number of social contacts in the group. In particular, there seems to be two distinct distributions, which reflect the disjoint internal structure of public vs. private Flickr groups. A more thorough exploration of this issue is also needed. Also necessary is to distinguish formal membership in a group, which requires very little effort from a user in an online platform, from sustained engagement with a group.

Furthermore, one could imagine a number of effects that could quantify the comments of Berners-Lee that users that follow a power law distribution in their group membership display “effectiveness on global scale” [3]. While determining the optimal behavior for any group relative to goals is difficult, there are some possible measurements that do not require a psychological analysis of the nature of some particular group. Is there any correlation between membership in groups and the amount of content generated? Does this depend on group size? What is the overlap between mem-
bers and groups? A simple hypothesis could be that many small groups would encourage user contributions. However, an alternative hypothesis would be that a few large groups would be more stable and more likely to generate activity. To operationalize this notion, a system displaying a power law distribution of membership in groups could be:

- Demographically more stable over time than a system with a uniform distribution of members per group.
- Likely to have a power law distribution of user activity within each of its groups.
- Likely to produce a higher overall amount of activity over all groups compared to a system with any other group membership distribution.

Lastly, the relationship between user productivity and group structure should also be explored, and we have made tentative steps in this direction by at least formulating some testable hypotheses about the stability and productivity of groups and users. We leave validating and testing these hypotheses to be explored in future work. For example, a comprehensive test of the power law distribution needs to be done using Monte Carlo methods rather than the descriptions given here, as what appears to be a power law distribution is often a log-normal or exponential distributions. [4].

4. ACKNOWLEDGMENTS

We wish to thank the organizers of the Dagstuhl Seminar on Social Web Communities for inviting us to attend and for their support and the group that initiated this work: Andrea Baldassarri, Alain Barrat, Ulrike Lehner, Jose Ramasco, Valentin Robu, and Dario Taraborelli. Furthermore, we also thank the researchers at France Telecom for kindly providing us a large part of the data used in the experiments.

5. REFERENCES


