
P RO LO G A N D L A N G U A G E ANALYSIS
I N T E L L I G E N T RESPONSE

TO C O M P R E H E N S I O N REPLIES
W illia m B u tch er & John G a lle t ly

w ith A n d re w W on g
Umversity of Buckingham

In troduction : The aim of the présent article (1) is to describe a program
for evaluating the correctness of simple English sentences in certain key
contexts. Our initial thinking was influenced by a previous program (2),
which grew in turn out of a conviction that many offcrings in CALL and
language-processing in general were prone to meclianicalness and rigidity.
The user is aware that the computer is not carrying out any linguistic anal
ysis or contextual response, and consequently the possibility of dialogue is
lost.

Word-processing was a vital stage on the road towards real language
Processing. With the addition of multilinguai spell-checkers and hyphen-
ation, search and replace and conditional macros, together with CD-Rom-
based or hard-disc-résident monolingual and bilingual dictionaries, word-
processing has proved itself essential in humanities research and teaching.
But because there is still no real interaction between the System and the
single-word items input, there is little possibility for ‘added value’ , for lhe
machine to contribute positively to the process of communication.

Taking our eue from other areas, where some machine intelligence lias
been demonstrated (3), sometimes even creativity. where expert Systems
may at least attempt to solve problems holistically, we decided to seek
some sort of flexible feedback.

This project used C-Prolog, a language which is liighly suited to advanced
applications. Although based on logic programrning, Prolog is particularly
adapted to non-nurneric programrning, including natural languages (1). It
présents advantages of user-friendliness and concision, being above ail de
scriptive (relational) rather than procédural: its general approach towards
solving a given problem is to describe known facts and relationships in
ternis of goals to bc satisfied rather than a particular sequence of stops.

(1) This article is based on a talk given at the conférence on CALL and
Evaluation at the University of Exeter in September 1989.

(2) J. E. Galletly kl C. W. Butcher with J. Lim IIow, ‘Towards an Intel
ligent Syntax-Checker’ , in Cameron, K. C. (ed.) (1989) Computer As
siste*/ Language Learning. Program Structure and Principlcs, Intellect
Press (Blackwell Scientific Publishers), pp. 81-100. This took the form
of investigating areas of Frcnch syntax, rewriting the gratnmar rides in
computer-comprehensible ternis, and tlius producing a program able to
respond semi-intelligent ly to relatively free input.

(3) Despite R. Last’s (1989) disillusionment about computer-based language
learning and the general rôle of machine intelligence (Artijicial Intelli
gence Techniques in Language Learning, El lis Iiorwood, p. 99).

(1) Clocksin, W. F. & Mellish, C. S. (1987) Programrning m Prolog, 3rd ed.,
Springer-Verlag.

Dur project had relatively broad syntactical objectives while constraining
the input context to that of replies to compréhension passage questions.
The aim was to hâve a prototype program powerful enough for different
sorts of compréhension exercises but also perhaps for processing free input;
and at the same tirne précisé enough to cope with most of the expected
answers to the particular compréhension questions asked.
Spell-checking : The program was designed to run on an H LH Orion
minicomputer using the Unix 4.2 USD operating System. The fïrst stage
was dealing with the individual words input by the user, by rneans of a
spell-checker. A commercially available dictionary was chosen, with ease
of access and its low-to-medium number of 24,000 words, including some
proper names.

The first problem was speed of access. Each Word was sequenlially
searched for in the complété dictionary list, meaning up to 24,000 ac-
cesses, which took an unacceptable average of 3 minutes. Improvement
was obtained by temporarily storing sections of the dictionary in memory.
'l'he first stage was to divide the dictionary into 26 ‘buckets’ , one for each
letter of the alphabet. Uut each of the 26 buckets had then to be divided
into four parts, based on the second letter of the word in question. The
dictionary structure was organised in terms of an ‘AYL tree’ and even more
sophisticated mathematics for estimating their efficiency (5). In practical
terms, the main resuit was that access time was reduced in the first stage
to about 12 seconds, and finally to about 5 seconds.
M orphology : Next came the réalisation that it was extremely naïve
to believe that ail English words appeared in dictionaries, whether in
machine-readable or printed form. English is a semi-morphologieal lan
guage, with préfixés including ni-, nn-, pre- and un-, but also suffixes
governing verb inflexions and plurality of nouns. Therc are also variations
between British and American usages.

T'his last problem lias received poor treatment in general from computer-
based methods. At worst, American usage is forced on one; at best, one
lias a British version or else a choice. What would be idéal of course would
be to hâve cither usage separately, both usages together, or ‘ translation’
from one ‘ language' to the other. In the présent case, however, the quick
solution was adopted of simply adding the most common British spellings
and usages to the American dictionary.

As for préfixés, the rules are weird and wonderful, often causing prob-
lems to native speakers. To hâve machinc-explicit rules for ali cases would
clearly be a boon, especially to foreign learners. Our solutions wore gov-
erned by the lacunas in existing Systems, by difficultios in taking the exist-
ing Systems apart, but also by a desire to emphasise this rule-bascd aspect
of language-learning.

It is reasonable to hope that a big dictionary (100-120,000 words) could
cope with relatively rare préfixés like nn- or mile-. But t he combination of
un- -(- adjective is still productive, with the resuit that no dictionary can
list ail possibilities Nor can one simply allow any un-combination, with or

(5) Knuth, I). E. (1973) The Art of Computer Pvogrannning, Vol. 3, Sorting
and Searching, Addison-Weslcy, p. 453.

without a hyphen, for cases like *ungreen (6) or *uneach are clearly unac-
ceptable. We are not aware of any satisfactory solution to this problem...

The problem of irregular verbs was solved by explicitly including ail
forms, e.g. take, took, laktn, taking and takss. The biggest obstacle en-
countered was that of morphological endings like -s, -ly, -er, -est, -tng
and -cd. This general problem of suffixes is clearly finite, for each English
word lias at most 10 or 15 forms, and one solution is the sledgehammer
one of listing ail forms explicitly. Unfortunately, this was not the solution
adopted by dictionaries accessible to us, undoubtedly for reasons of data
compression.

A major benefit of the explicit, rulc-based approach we adopted instead
was to pinpoint that forms like *comed and *comeed are attempts to form
the past of corne and thus to be able to display a précisé explicatory
message to the user. As regards -ing and -ed, the general solution forms
what lias been called ‘junction analysis’ . Words ending with -eing are
usually incorrect, with exceptions, however, like seeing and shoeing. The
most efficient solution was to list the cases where the infinitive ending
simply receives the suffix -tng, from agrectng through to whtngetng. Then
any other string xxxing was well-formed if xxxe was an infinitive. But words
like thing are also well-formed. \Ve used a wildcard search on an existing
dictionary, and hence listcd ail words (except verbs.. .) ending with -ing.

Similar methods were used to deal with double consonant problems, both
in cases like hoppmg and hoping (7) and in the past-tensc forms in -ed. The
distinction between rodéos and polatoes could clearly only be treated by
an exhaustive listing. Terminal -x, -ch and -y also required explicit rules
and sub-rules (8).

The above problems are encountered in many natural language projects;
our aim was to hâve a working System which would make explicit the
practical rules of spelling morphology in English — and thus présent clcar
advantages in an educational environment. U sers are impressed if errors
like comming or carrycd are detected within free input and corrected with
référencé to the particular word.
Sentence analysis using P rolog and D efinite Clause Gram m ar:
The way was then open for parsing the sentence. The choice here was
between top-down and bottom-up techniques, with top-down ones seeming
préférable for ease of writing and speed of implémentation. What we
sought was a grammar as a collection of ‘rewrite rules’ specifying which
séquences of words are syntactically acceptable.

One sort is ‘Context-Free Grammar’ (see Figure 1). Very briefly, in CFG
the individual words are specified as ‘ terminais’ ; the Chomskian rewrite
rules successively break down the sentence into a noun phrase and a verb

(fi) The * indicates an ungrammatical form.
(7) The word xzxkking was judged correct if xxxk (where k = consonant) was

a permissible infinitive. The word xxxking was judged correct if xxxke
existed.

(8) -x and -tch take -es in the plural, unadorned -ch normally plain -s; car-
rying causes no problem; terminal -ky (k = consonant) gives -kted in the
past., wheieas -vy (v = vowel) gives -vyed.

phrase, and eventually into déterminera, nouns, verbs, etc. (the termi
nais). The left-hand side of eacli rule consists of exactly one terni. Tiie
tree diagram (with the ‘leaves’ as terminais) shows clearly the undcrlying
logical structure of the sentence; and is therefore especially appropriate for
recursive forms like ‘The key of the door of the house that Jack built... ’ .

sentence = noun phrase -f verb phrase
noun phrase = déterminer + noun
verb phrase = verb 4- noun phrase
déterminer = the
noun = cat
noun = fish
verb = eats

To sum up the désirable characteristics of CFG: 1) the grammar rules are
dcscribed in a modular way; 2) there is a feature allovving the représenta
tion of the recursive embedding of phrases; and, 3) there is an established
body of results on CFG which is very useful in designing parsing algo-
rithms.

But CFG is ‘context-free’ : it is difficult for contextual information to be
taken into account. In particular, number arguments (singular and plural),
agreements and lenses cannol easily be integrated.

Fortunately, there exists a category of grammar which retains the three
désirable characteristics, vvhile integrating contextual information and re-
producing the essential structure of Prolog: Definite Clause Grammar (9).
The advantages of Defînite Clause Grammar are clear on reading the two
versions of the same program below(lO).

sentcnce(S0,S) :- noun_phrase(SO,Sl), vcrb.phrase(Sl,S).
noun_phrase(S0,S) :- determiner(SO,Sl), noun(Sl,S).
verb.phrase(SO,S) :- verb(S0,Sl).
verb_phrase(SO,S) :- verb(S0,Sl), noun.phrase(Sl,S).

(9) Pereira, F. C. N. & Warren, D. 11. D. (1980) 'Definite Clause Grammars
for Language Analysis’ , Artificial Intelligence, 13, pp. 231-78.

(10) Derived from Clocksin and Mellish (1987).

de
s i

déter
miner

the the

Figure l

adjective(SO,S) adj(SO,Sl), ailjective(Sl,S).
adjective(SO.S).
determiner([thclS],S).
noun([boy|S],S).
noun([apple!S],S).
verb([eatslS],S).
adj([younglS],S).

sentence — » noun_piira.se, verb.phrase.
noun.phrase — * déterminer, noun.
verb.phrase — *• verb.
verb.phrase — ► verb, noun.phrase.
adjective — * adj, adjective.
adjectivc — » [].
déterminer — *• [tlie].
noun — • [boy],
noun — ♦ [apple],
verb — » [eats].
adj — * [young].

Figure 2
The first program is in ordinary Prolog, whereas the second is in DCG. We
would claim that DCG is especially vvell-organised, readable and concise.
Two details confirm this impression. Lnlike standard Prolog programs,
DCG does not require ‘arguments’ ; and its treatment of recursion is par-
ticularly élégant. Thus the vvay of coping with an indefinite number of
preceding adjectives is simply to hâve the clause ‘adjective’ invoke itself
until no further adjectives are found.

DCG can, more generally, not only provide a description of some of the
basic grammar of English, but it is, above ail, extremely powerful in use
silice it is an exécutable program of Prolog(ll). By means of a well-
proven standard Prolog compiler, DCG can be compiled into efficient code.
11. is difficult. to overemphasise the practical advantages of this additional
simplification to what is already a user-friendly language. The programmer
can think in familiar terms of the Chomskian diagrams, convert this to
grammatical forms like those in Program B, and his work is finished. The
system directly implements the program by converting it successively to
standard Prolog and machine code.

In sum, Definite Clause Grammar formalism provides for three important
linguistic mechanisms: 1) the building of structures such as parse trees; 2)
the treatment of context dependency; and, 3) allowing general conditions
on the constitution of words and phrases.

As a simple example of the second facilily of contextual information,
consider the two ungrammatical sentences: *The boys eats an apple; and,
♦The boy eat an apple.

(11) Colmerauer, A. ‘Metamorphosis Grammars’ , in Bolc, L. (ed.) (1978)
Natural Language Communication with Computers, Springer-Verlag, and
Kowalski, C. A. (1979) Logic for Probltm Solving, Nortli-Holland.

To introduce the concept of singular/plural, one adds to the second pro-
gram:

noun (singular) — - [boy] noun (plural) — *■ [boys]
noun (singular) — *• [applc] noun (plural) — * [apples]
verb (singular) — * [eats] verb (plural) — *■ [eat]

In a similar way, further nurnber arguments or other agreements can be
‘sent down’ the sentence by specifying the appropriate logical arguments.

The third facility, of allowing general conditions, enables new lexical items
to be added, not singly, which would be very tedious, but by specifying
their shared information (plurality, etc.), and then listing ail the words
conccrned.
Dealiug with word groups : With the aid of the powerful tools provided
by DCG, quite extensive numbers of syntactical features were identified
by our program. The présent section describes the vvays in which certain
codifiable features of English Word groups of the highest frequoncy were
implemented.

After dealing with one clause, the program clearly needs to know when
to begin ils parsing again, that is when a new clause is beginning. We
defined an end-of-clause inarker to be connectors like but, although, etc.,
any punctuation mark (except apostrophe), or both together. Clearly this
heuristic requires a great deal of refinement; but it vvas found to work in
practice in nearly ail students’ replies.

I.et us assume the basic sentence to be defined as a noun phrase (NP)
followed by a verb phrase (VP). The NP itself can be composed of different
items: either nouns with any nurnber of adjectives and with or without
articles or subject pronouns, or proper nouns with or without articles. The
rules governing the different possibilities are distinctly messy to express,
but the state transition diagram below neatly summarises inost of them.

Figure 3

After tlie state Sq (beginning of sentence), a possessive pronoun, for
instance, will be followed by zéro or any number of adjectives, then by
a noun, before reaching tlie end State (q £). Specifying the order of
these adjectives is particularly satisfying. A small ycllow Japanest plastic
racmg car is correct, but A ycllow small racing plastic Japancse carsounds
distinctly odd. The order of adjectives lhat the program checked, then,
was: general, colour, origin, material, purpose. Each of the five cléments
can be recursive within itself; and any or ail of them may be omitted
except that object pronouns like me are allowed in the middïe of a clause,
and subject pronouns like I are in general not.

Of course, the verb itself may not be a single word but of form might
shake, had been shake.n or even might hâve been being shaken. The sit
uation is again relatively complex, for one can distinguish four different
functions of auxiliaries, making up a total of sixteen different types of ba
sic verb phrases.

Table 1
V p

m o d a u t y P E R F L C T P R O G R E S S I V E P A S S I V E M A I N

. A S P E C T A S P E C T V O I Œ V E R B S

(P * ' /) (P a s s i

1 t b O O K

2 a t | n t t a a c a

) Ha4 i b a t r a

*
m i n a i

I « a »

é a i { n i h * » « i n t i c a

} a i g a i » «

1 » •

• h « 4 6« c a I h l l i 3 (

1 0 m j b c c a

11 « a i 6c > s | i b a t t i

12 t>i » € a c « a U a t u {

I I a i g a i 6 s v t b c c a t h a t c b

1 * O l g & l 6 a b e i a g

13 k « i 6 « « a b c . a | l a a i c a

1 * a i g a i b a v e a c t a 1 0 * 1 8 6

Figure

Figure 4 shows that in row 6. for instance, the word might can be followed
by hâve or shake. Fn general, although the auxiliaries must be in the correct
order, they are ail optional - except, precisely, wlien other auxiliaries are
présent. Tlius might shaken is incorrect; and although the sixteen types
can ail be listed (with. of course, might replaceable by will, shall, can,
etc., and with any verb at ail replacing shake), an algorithm to detect
each of thèse sixteen types and reject ail other combinations would be
extremely complicated. Instcad, certain regularities were observed, such
as the fact that had and hâve are necessarily followed by been or shaken. By
observing the general form which must follow each of the five functions,
highly efficient rules were in fact finally implemented. Anothcr general
problem encountered was that of exceptions to rules. Thus, as we hâve
seen, initial NPs and mid-sentence NPs hâve distinct forms; sentences and

the personal pronoun I begin with a capital letter; a changes to an before
a vowel; / and you are singular prononns but are not followed by ‘singular
verbs, and so on. In each case, hovvever, Prolog’s flexibility allowed us
either to adapt the program State, so that the stage a given sentence had
got to could be explicitly indicated, or else to introduce extra arguments
and hence make the program brandi to the exception codes.
T he Finished Program : For the finished product, attention was paid
to what might seem merely cosmetic features of the human-cornputer in
terface. The simpler and the more pleasant the environment, the more
likely the user to consider the interaction positive. A standard IBM-style
keyboard was used. and a printer was not in evidence.

After an initial menu for the choice of compréhension passage, the passage
chosen is displayed in the top half of the screen, with questions prompted
one at a time in the bottom half. After a complété answer lias been given
by the user, the individual words and the structure are checkcd; and then
a report together with modei answers is provided. If mistakes are detected
at any stage, the user is given up to two further chances to produce a
correct answer. At the end ail questions can be answered again if wished.
The user can at any moment scroll up or down the passage, invoke the
menu or exil the System, these commands being displayed in a separate
window, which disappears when no longer necessary. Screen messages are
brief and indicate clearly what processing is currently going on. Figures 5
and 6 below présents the overall structure of the program from the user’s
point, of view:

Figure 5 Figure 6

Evaluation : We propose the following criteria as a reasonable set for the
évaluation of CALL software, even if in practice it is often the ‘feel’ that is
the most important. We also attempt to évalué our program in the light

of these criteria:

Junctionahty, i.e. user interface - the system provides an easy-to-use
interface. The user may obtain hclp or quit at. any point, and the
comrnands allowed and their rneanings are displayed on a status line.
Particular effort is devoted to simplicity of display.
user-worthmess, i.e. degree of testing - the System (which in fact con-
tains a much largcr number of types than presented here) was tested
with a wide variety of sentences. Users’ productions in front of a
whirring machine are in fact often higlily stereotyped; and in practice,
wc fourni, normallv fell into categories recognisable by the machine.
help and élucidation - as \ve hâve seen, one of the strong points, in
terms of both spelliug and clause structure, is the explicitness and trans-
parency of many of the strategies used, and hence the ease of their
transfer to users. The whole project was designed around the ambi-
tious concept of analysing free input, rather than forcing the interaction
into pre-defmed grammatical situat ions. Clearly a further enhancement
would be sonie sort of démonstration mode where the possibilities of
the system were demonstrated - which might lead the users to be more
advcnturous in the structures of their answcrs.
machine responsiveness - the system response is slowed by the need to
search a large dictionary which is not memory-resident. The dialect of
Prolog used is not endowed with efficient fde handling primitives. An
obvious improvement would be to check for common words first. using
a much smaller dictionary.
augmentation case - ncw compréhension passages with appropriate ques
tions are very easily entered as ASCII files, identified by the file exten
sion. Small-scale extensions which might be envisagcd include improve
ment in the treatment of préfixés and suffixes, in the spell-checker speed
and the addition of fuzzy-matching of mis-spelled words. (The simplest
way is simply to extract ail vowels and then compare consonants between
the doubtful word and the dictionary.) Having categorically specified
many of the grammar rules, the way is clearly open for re-introducing a
degree of fuzziness in them, so as to reproduce the flexibility of actual
language usage. A useful major extension would involve more reliably
identifying ends of clauses. Unusual word order cannot at présent be
coped with by the system. Homograph disambiguation would not in
general présent any insupcrable difficulties, but would be lengthy to iin-
plement.
transferabihty - the System is currently written in Prolog (Edinburgh
syntax) and requires VT1Ü0 terminal émulation. The transfer to a big
IBM PC will become feasible shortly.
authoring - the use of Prolog allows the development of programs on a
higher plane. What is more, DÇG allow grammar rules to be written
in a succinct and readable form. Our program proved in the end rela-
tively readable. On the other hand. graphies are difficult to implement
in Prolog.

C onclusion : The practical detailed implémentation of English grammar
can never be expected to proceed smoothly. One reason is the sheer quan-
tity of information. Foreign learners and others use analogical processos to

a huge extent, but nearly always wilh implicit conditions of operation and
nutnerous exceptions and ‘sub-exceptions’ . The complexity of the prob-
lem is often underestimated; two-thousand-page grammars are still very
far from providing a complété description.

Nevertheless, our linguistic intuition tells us that nearly ail simple sen
tences can be divided into well-formed and not well-formed, and that an
explicit reason can often be found - even if one must attach very consid
érable scepticism to spontaneous explanations by most native-speakers,
despite a commonly-held but erroneous view.

If the rules can be formulatcd, then they can surely be translated into
machine-readable form. The présent project attempted to give body to
that optimistic leap-in-the-dark. Il might be objected that the power of
many of the tools proposed was greater than that necessary for analysing
simple compréhension replies. This is perhaps the case, but the aim was
not to produce a compact, totally robust program for the commercial
market; but rather to try out innovative techniques in prototype form,
concentrating on real problems that are at présent unsolved even by multi-
million-ecu endeavours. It was felt that ‘you can never hâve too many
horsepower’ .

The sticking-point of our sort of approach may résidé in its very indi-
viduality. The more complex a program, the higher the risk of internai
contradiction; but above ail, the more difficult for the program to be sub-
sequently added to. There is clearly a huge gap between prototypes in
limited contexts and the robustness and reliability required for a success-
ful commercial product.

At présent, many of the language-processing packages widely available
are at a linguistically impovcrished lcvel. This is despite the huge in-
crease of numbers of non-native speakers of English learning the language
and, very often, producing written documents in it. We hope that this
dual challenge, of meeting the nccds of both language learners and 'real’
language users, can be tackled simultaneously. We also émit a plea for
increased communication between computer scientists with an interest in
language matters and language specialists with a knowledge of computing.
This inust be a viable way forward!

