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Chapter 1

Introduction

1.1 Recommendations for students

Alternating current, or AC, is any current or voltage that switches direction over time, usually
following a sinusoidal-shaped trajectory. A challenge with AC is how to quantify it, because its
amplitude constantly varies. However, if that variation is periodic, we may determine how often it
reverses direction, the time between reversals, the peak values it reaches, etc.

Most of the electrical power in the world is conveyed in AC form rather than DC. This is
historically due to two factors: AC electric motors are simpler and therefore inherently more reliable
than DC electric motors; and, AC voltage and current may be proportionately stepped up or down
by a device called a transformer for the purpose of high-efficiency transport over long distances. For
many years the transformation of DC voltage and current could not be performed as efficiently as
it is for AC, which made AC the clear choice for electric power systems. Modern technology has
closed that gap, but electric power grids are and will likely remain AC for a very long time.

Important concepts related to AC include energy, voltage, sources versus loads, polarity,
oscillations, generators and motors, Faraday’s Law of Electromagnetic Induction,
transformers, primary versus secondary coils, the mathematical sine function, degrees of angle,
Ohm’s Law, Joule’s Law, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law, period,
frequency, wavelength, energy dissipation, RMS values, wave-shapes, electrical meters, and
phase.

AC circuit analysis makes extensive use of trigonometric functions such as sine and cosine. An
active reading strategy to apply in this Tutorial is using a scientific calculator to compute sine values
for some of the angle values shown in the graphs and see for yourself how the sine values for those
angles match the graphs presented.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to measure the turns ratio of a
transformer? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

3
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• How might an experiment be designed and conducted to measure the frequency of AC in an
electrical power system? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• What applications are there for AC?

• What does it mean for an electrical component to be a source?

• What does it mean for an electrical component to be a load?

• Why is AC used instead of DC for most electrical power systems?

• What does a transformer do, and how does one work?

• How may we specify the amplitude of an AC quantity?

• How may we specify the rate at which an AC quantity alternates?

• How does period relate to frequency?

• When and where do familiar DC circuit laws apply to AC circuits?

• What is wavelength, and how is it measured?

• How does wavelength relate to frequency?

• How may we rate the energy-delivery capability of an AC voltage/current in terms comparable
with DC?

• Why is the RMS equivalent value of a square wave so much larger than that of a sine wave
given the same peak value?

• What does it mean if one AC waveform leads or lags another?

Readers with an interest in music theory may find the Derivations and Technical References

section “Musical pitch” helpful in relating those concepts with AC electrical signals.
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1.2 Challenging concepts related to alternating current

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• RMS versus Peak versus Average – the very idea of assigning a fixed number for AC
voltage or current that (by definition) constantly changes magnitude and direction seems
strange. Consequently, there is more than one way to do it. We may assign that value according
to the highest magnitude reached in a cycle, in which case we call it the peak measurement.
We may mathematically integrate the waveform over time to figure the mean magnitude, in
which case we call it the average measurement. Or we may figure out what level of DC (voltage
or current) causes the exact same amount of average power to be dissipated by a standard
resistive load, in which case we call it the RMS measurement. One common mistake here is
to think that the relationship between RMS, average, and peak measurements is a matter of
fixed ratios. The value “0.707” is memorized by every beginning electronics student as the
ratio between RMS and peak, but what is commonly overlooked is that this particular ratio
holds true for perfect sine-waves only! A wave with a different shape will have a different
mathematical relationship between peak and RMS values.

• Phase shift – like voltage, phase shift is a relative quantity. A single AC waveform, without
another waveform to compare to, cannot have a phase value at all. Only when two waves of
the same frequency are compared against one another may we intelligently state a phase shift,
or time displacement, between the two. Properly reading phase shifts from an oscillograph can
also be challenging for students, and requires reminding that time goes from left to right on
an oscillograph: i.e. the wave reaching its peak first (left) compared to the other is leading,
while the other is lagging. Another confusing aspect of phase shift is that it may be expressed
in multiple ways: e.g. +90o phase shift is equivalent to −270o phase shift, since waves repeat
their patterns every 360 degrees.

Time spent with an oscilloscope and a sine-wave signal generator is often very helpful to
understand the properties of AC waveforms, especially if the oscilloscope provides RMS, peak, and
other analytical features to check one’s interpretation of the waveform against divisions marked on
the display. The “First-time oscilloscope experiment ideas” section of the Case Tutorial chapter is
a good one to follow for initial oscilloscope experiments.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Apply the concepts of period, frequency, and amplitude to oscillographs

Assessment – Given an oscillograph of an AC voltage or current waveform, measure its
period, its frequency, and its amplitude; e.g. pose problems in the form of the “AC voltage
oscillographs” Quantitative Reasoning question.

• Outcome – Apply the concept of RMS measurement to sine, square, and triangle waveforms

Assessment – Apply a sine wave from a signal generator to the input of a digital
oscilloscope, then predict its RMS value based on peak measurements. Then, confirm the
accuracy of that prediction using either the oscilloscope’s RMS measurement capability or a
true-RMS multimeter.

Assessment – Apply a triangle wave from a signal generator to the input of a digital
oscilloscope, then predict its RMS value based on peak measurements. Then, confirm the
accuracy of that prediction using either the oscilloscope’s RMS measurement capability or a
true-RMS multimeter.

Assessment – Apply a square wave from a signal generator to the input of a digital
oscilloscope, then predict its RMS value based on peak measurements. Then, confirm the
accuracy of that prediction using either the oscilloscope’s RMS measurement capability or a
true-RMS multimeter.

• Outcome – Apply the concept of phase shift to oscillographs

Assessment – Given an oscillograph showing multiple AC voltage or current waveforms,
measure the amount of phase shift between them; e.g. pose problems in the form of the “Phase
shift from oscillographs” Quantitative Reasoning question.

• Outcome – Prove the concept of transformer turns ratios by experiment

Assessment – Design and conduct an experiment to determine the turns ratio of a
transformer from voltage measurements.
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• Outcome – Independent research

Assessment – Read and summarize in your own words reliable source documents on the
history of electric power systems around the world. Recommended readings include Networks

of Power – electrification in Western Society, 1880-1930 by Thomas Parker Hughes.

Assessment – Locate transformer datasheets and properly interpret some of the
information contained in those documents including turns ratio, winding configuration, voltage
ratings, current ratings, power ratings, etc.
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Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9
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2.1 Example: sensitive audio detector circuit

A useful project for sensing low-voltage signals is this “sensitive audio detector” circuit using
headphones to convert electrical energy into acoustic energy you can hear:

Test probes

1 kΩ

1 kΩ

High-quality
8 Ω impedance

closed-cup audio
headphones

100 kΩ audio-taper
potentiometer

step-down transformer

1N4148 fast
switching diodes

Any AC signal with a frequency between approximately 20 Hz and 20 kHz (depending on the
range of your own hearing) may be heard using this test instrument. Such an audio detector is
extremely useful for probing audio amplifier circuits, allowing you to hear the signal at different
points along the amplification circuitry. With good-quality headphones or earbuds, the sensitivity
is great enough to allow the user to hear 60 Hz electrical “noise” even without direct contact of the
probes (e.g. grounding one probe and holding the other near the noise source, or connecting both
probes to an inductive pick-up coil). Even DC signals may be sensed by listening for a “click” or
“scratching” noise whenever the test probes come into contact with a DC voltage source.

An interesting application of this test instrument is as a null detector in precision electrical
measurement circuits such as Wheatstone bridges, where its purpose is to aurally indicate a lack of
electrical potential between two points. To use this as a null detector in a DC circuit, you must
connect one of the test probes in series with a pushbutton switch or some other convenient means of
disconnection and reconnection, in order to make small DC voltages/currents audible. For example,
when used to sense voltage between the measurement points of a Wheatstone bridge circuit it will
indicate a state of balance when it produces no sound at all in response to being connected and
disconnected from those points. Any time the bridge is not perfectly balanced, there will be an
audible “click” in the headphones/earbuds when connected and disconnected from the circuit even
with currents less than one microAmpere.
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The transformer acts to match the low impedance of the headphones (typically 8 Ohms) to a much
greater impedance presented at the high-turns winding, this impedance transformation described by
the following formula:

ZP

ZS
=

(

NP

NS

)2

Where,

ZP = impedance at transformer’s primary winding, in Ohms

ZS = impedance at transformer’s secondary winding, in Ohms

NP = number of turns within transformer’s primary winding

NS = number of turns within transformer’s secondary winding

An excellent choice for this transformer is a reclaimed power transformer from a common
household microwave oven. When microwave ovens fail, it is usually the magnetron tube or some
other component, not the power transformer. With microwave ovens being so common in American
households, it should be easy to recover a power transformer from one if needed. Normally, this
type of transformer steps up 120 Volts AC from the home’s power wiring to approximately 2 kV AC
necessary to energize the oven’s magnetron tube. Here, we are using it as a step-down transformer,
a microwave oven transformer’s high-voltage ratings providing excellent isolation for safety in this
application, ensuring no conductive connection whatsoever between the headphones and the circuit
under test. It is recommended that you cut the connection between one end of the microwave oven’s
high-voltage winding1 and the iron core of the transformer, so that the high-voltage winding is
completely isolated from the frame.

A transformer with a large iron core such as a microwave oven power transformer also helps make
very low-voltage DC signals audible by its ability to store energy. When connecting the detector
circuit to a DC source, the transformer will build up a magnetic field of one polarity corresponding
to the polarity of the applied voltage. When the connection to the source is broken (by lifting one or
both of the test probes away from the point(s) of contact), this magnetic field rapidly collapses and
in doing so delivers all that stored energy over a brief time interval to the only load still connected:
the headphones. Energy, of course, is always conserved, but it is possible for the transformer in this
context to release more power (i.e. energy transfer per unit time) than it receives. Thus, in addition
to providing safe electrical isolation between the circuit under test and the headphones, as well as
impedance transformation for weak AC signals, the transformer also augments weak DC signals by
its ability to inductively store (and rapidly release) energy.

The two parallel-connected diodes serve to limit the maximum amount of voltage across the
transformer’s primary winding. These silicon model 1N4148 diodes have a typical forward voltage
of approximately 0.7 Volts, meaning neither is able to conduct electricity unless the voltage across
it reaches this value (in the correct polarity). Thus, any voltage less than 0.7 Volts (peak) will
pass to the transformer’s primary winding unattenuated, but any signal voltage greater than this
will become “clipped” to a maximum value of 0.7 Volts. If the perceived volume at this peak
signal amplitude is still too loud, one may insert a series resistance between the diode pair and the

1This is typically how microwave oven power transformers are wired: with the high-voltage winding connected at
one end to chassis ground. Here, we neither need nor want this feature, but instead would prefer an isolated winding.
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transformer’s primary winding, experimenting with this resistor’s value until a suitable maximum
volume is found

A potentiometer provides simple volume control, useful for attenuating volume when sensing
stronger signals. The two resistors in series with the test probes provide a minimum resistance
between the test probes and transformer winding to prevent the transformer from excessively loading
the circuit under test, as well as provide a maximum volume limit for listening. You may find it
possible to use series resistors much greater than 1 kiloOhm each if your headphones are sensitive
and your sense of hearing is acute. A good practice is to set the potentiometer to a position of
minimal volume when first testing a signal of unknown magnitude, so that the resulting volume
produced by the headphones will not be too loud. This is analogous to setting a manually-ranged
multimeter to the highest range when testing a voltage or current, so that if the signal happens to
be stronger than expected the meter’s pointer will not be violently thrown to maximum position on
its scale.
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2.2 First-time oscilloscope experiment ideas

One of the most useful test instruments for electronic circuits is the oscilloscope, used to create
a graphical plot of voltage over time. Oscilloscopes are extremely important for measuring AC
(alternating) signals as well as transient (momentary) signals. When first learning the operation
of oscilloscopes, it is informative to safely experiment with a real oscilloscope in order to become
accustomed to its controls and functionality. Here is a list of experimental ideas that are safe,
interesting, and rich with learning opportunities:

• Measuring battery voltage – connect an oscilloscope to the terminals of a battery, then
interpret that battery’s voltage using the divisions on the screen’s vertical axis. Note that you
will need to have the vertical coupling configured for “DC” in order for this to work!

• Measuring voltage noise in a simple DC motor circuit – connect a DC motor to
a battery or other suitable DC voltage source so that the motor runs continuously. Then,
connect the oscilloscope probe terminals in parallel with that running motor. If configured
for “DC” vertical coupling, you should see the elevated (DC) voltage powering the motor
superimposed on a significant amount of jagged “noise” created by the motor’s pulsing current
draw. Setting the vertical coupling to “AC” allows you to zoom in on that noise while blocking
the elevated DC voltage, so that the noise graph remains centered in the screen. You may also
try connecting a capacitor in parallel with the running DC motor to see the effect it has in
mitigating this voltage “noise”.

• Measuring current pulsations in a simple DC motor circuit – insert a low-value (1
Ohm or less) shunt resistor in series with the DC motor described above, then connect the
oscilloscope probe terminals in parallel with that shunt resistor. If configured for “DC” vertical
coupling, you should see a graphical representation of that motor’s pulsating current as it runs.
Instantaneous current may be measured by taking the oscilloscope’s voltage measurement at
any point in time and dividing that value by the known shunt resistor value (i.e. using Ohm’s
Law I = V

R ).

• Measuring DC motor inrush circuit – using the same battery-shunt-motor circuit
described above, configure the oscilloscope for a slow timebase (i.e. 1 second or more
per division) and then have is graph the motor’s current when started and stopped by
connecting/disconnecting the DC voltage source. Electric motors of all kinds typically draw
high current when initially starting to rotate, their current tapering off over time as they come
up to normal speed.

• Measuring a 1 kHz square wave signal – most oscilloscopes provide a test terminal on their
front panels outputting a 1 kHz square-wave signal useful for adjusting ×10 probes. However,
even with plain ×1 probes this is still a useful test for learning to use an oscilloscope’s basic
functions. After locking the pulse waveform on the screen, use the vertical and horizontal
divisions to verify the signal’s magnitude, period, and frequency. The period (i.e. time per
cycle) should be 1 millisecond if the frequency is 1000 Hz; i.e. a signal alternating at 1000
cycles per second will take just 1 millisecond to evolve one cycle.
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• Detecting ambient electric fields – connect the oscilloscope’s probe tip to a long wire and
use that wire as a crude antenna to pick up AC electric fields with respect to Earth ground
(the oscilloscope will already have an Earth-ground reference from its line power cord).

• Detecting magnetic fields – connect the oscilloscope’s probe tip and ground clip to a wire
coil, then place that coil nearby any AC line-powered device to plot the induced voltage. Note
that the coil will be maximally sensitive if it has a large diameter and the multiple loops are
close together (i.e. make a “flat” coil rather than a cylindrical coil).

• Measuring switch contact “bounce” – connect the oscilloscope in parallel with a resistor
that receives power from a DC voltage source through a switch. Configure the oscilloscope for
“single-sweep” capture, and use it to display the transient “bouncing” of the switch’s contacts
as they open and close.

• Measuring rotational speed – connect the oscilloscope to the terminals of a small induction
AC motor. Spinning the motor shaft will produce a small AC voltage due to the residual
magnetism of the motor’s rotor, and the frequency of this AC voltage will be directly
proportional to the shaft’s speed. A simple “shaded-pole” AC motor such as the type used for
household fans works well for this purpose.

• Measuring light over time – connect the oscilloscope to the terminals of a light-emitting
diode (LED) which also functions as a simple photovoltaic cell when exposed to light. Point
the LED’s lens at a light source and measure the effect registered on the oscilloscope’s display.
This is particularly interesting if the light source happens to pulse!

• Measuring temperature over time – build a simple series voltage-divider network using
one fixed-value resistor and a thermistor (i.e. temperature-dependent resistor) and energize
this divider network with a suitable DC voltage source. Measure voltage across either the
resistor or the thermistor using an oscilloscope configured for “DC” vertical coupling and set
for a very slow timebase (e.g. 1 second per division). This will generate a plot representing
temperature changes over time.

• Measuring sound – connect the oscilloscope to the terminals of a permanent-magnet
loudspeaker, which is also able to function as a simple microphone. Speaking into the
loudspeaker’s cone will cause its diaphragm to vibrate and thereby produce a weak AC voltage
measurable by the oscilloscope. If you configure the oscilloscope for “single-sweep’ operation
you will be able to capture hand-claps and other transient sounds.

• Measuring capacitor soakage – connect the oscilloscope to the terminals of an electrolytic
capacitor, a type well-known for a phenomenon called soakage. Configure the oscilloscope for
“DC” coupling and a very slow timebase (i.e. multiple seconds per division). Short-circuit
those terminals and watch the capacitor’s voltage fall to zero. When you disconnect the
shorting wire, however, you will notice the voltage value slowly rise over time due to this
“soakage” effect, where some of the capacitor’s stored energy was not dissipated during the
short-circuit duration and slowly manifests itself at the capacitor’s terminals.

• Measuring various signals in a 555 timer circuit – consult the datasheet for a
simple relaxation oscillator circuit based on a model 555 integrated circuit (IC), build the
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recommended “astable” test circuit, and use the oscilloscope to measure various pulsating
and oscillating voltage signals in the circuit. The same datasheet may also provide sample
waveforms which you may compare with your measured oscillographs.
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Chapter 3

Tutorial
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3.1 AC versus DC

Energy is that which is able to set matter into motion, and it is known to exist in many different
forms. One of those forms is electrical: imparting energy to mobile electric charge carriers, very
similar to how molecules within a pressurized liquid possess energy. Electricity is the term we used
to describe the transfer of energy to and from electric charge carriers, similar to the way we use the
word hydraulics to describe the transfer of energy to and from liquids.

Voltage is the difference in energy experienced by an electric charge carrier if it moves (or were
to move) from one physical location to another. The hydraulic equivalent of voltage is pressure drop

or pressure rise from one location in a hydraulic system to another. When electric charge carriers
flow from one location to another and experience a change in energy as a result, it means they have
either acquired energy from an external source or delivered energy to an external load.

wire

wire

Lamp

Battery

Pump

Valve

(source)

(load)

(source)

(load)Greater

Lesser

(energy)

Greater
(energy)
Lesser

Greater

Lesser

(energy) Greater

Lesser

(energy)

Charge carriers moving

Charge carriers moving

Fluid moving

Fluid moving

In the electric circuit (left), a battery imparts energy to electric charge carriers, taking them
from a condition of lesser energy (−) to greater energy (+). Flowing through the wires and through
the lamp, this electric current delivers energy to the lamp and in so doing the charge carriers suffer
a loss of energy (from + to −). Energy is conserved, which in this case means the amount of energy
lost by charge carriers through the lamp exactly equals the amount of energy delivered to them by
the battery. Electric charge carriers convey energy from source to load in an electric circuit.

In the hydraulic circuit (right), a pump imparts energy to fluid molecules, taking them from a
condition of lesser energy (−) to greater energy (+). Passing through the pipes and through the
restriction valve, those fluid molecules deliver energy to the valve and in so doing suffer a loss of
energy (from + to −). Energy is conserved, which in this case means the amount of energy lost by
fluid molecules through the restriction valve exactly equals the amount of energy delivered to them
by the pump. Fluid molecules convey energy from source to load in a hydraulic circuit.
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If we reverse the source in each circuit, we find both the direction of flow and the +/− polarity

symbols reverse as well, but each source remains a source and each load remains a load:

wire

wire

Lamp

Battery

Pump Valve

(source)

(load)

(source)

(load)Lesser

(energy) Greater
(energy)

Lesser

(energy)

Lesser

(energy)

Charge carriers moving

Charge carriers moving

Fluid moving

Fluid moving

Greater

Greater

Lesser

Greater

Each of these systems, in both orientations, delivers energy from source to load. Neither the
electric lamp nor the hydraulic valve functions differently when direction of flow and voltage
(pressure) polarities reverse. In fact, if the source in each circuit were replaced by one that
periodically oscillated in direction, each system would continue to transfer energy from source to
load, albeit in pulses rather than continuously.

This is the essence of an alternating current circuit: one where the directions of flow and/or
voltage (pressure) polarities regularly reverse.

Three major reasons explain the existence of “AC” electric circuits:

• Alternating-current (AC) generators and motors are simpler in construction and more reliable
than direct-current (DC) generators and motors.

• Alternating-current (AC) works with devices called transformers that work to make electric
power transmission more economical than direct-current (DC).

• If we use electricity as a signal to represent an oscillating parameter (e.g. sound waves,
vibration, nerve impulses), then the signal must oscillate as well.
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3.2 Transformers

Although the subject of transformers is complex enough to warrant its own tutorial, we will briefly
examine them here as uniquely AC electrical components. In its simplest form a “transformer”
consists of a pair of wire coils sharing a mutual magnetic loop, such that any magnetic field created
by electric current passing through one coil must pass through the other coil as well. Such a device
is shown in pictorial form (left) as well as schematic form (right):
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voltage
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I

I

iron core

R

I I

wire coil wire coil

Primary Secondary

Φ

Φ

Primary Secondary

A simple transformer circuit

AC
voltage
source

Load
coil coil

iron
core

If the electrical source energizing the first (“primary”) coil outputs a varying current, the
magnetic field produced by that coil must vary as well, and this variation over time induces voltage
in the second (“secondary”) coil as described by Faraday’s Law of Electromagnetic Induction:

V = N
dΦ

dt

Where,
V = Voltage applied to the coil or induced by the coil (Volts)
N = Number of turns of wire
dΦ
dt = Rate of change of magnetic flux (Webers per second)

In order for this induction to occur, however, the magnetic field must vary over time, which is
why transformers only function with AC and not with DC. Direct current – that is, electric current
constant in amplitude and direction – would produce a constant magnetic field, and with no rate-
of-change this magnetic field would not induce any voltage in the secondary coil. An alternating

current, by its very nature, never ceases to change in strength and it is this ceaseless variation that
makes a transformer work.
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A useful consequence of this mutual inductance is the ability of a transformer to “step up” and
“step down” AC voltage and current in accordance with the ratio of “turns” in each of the wire coils.
A transformer with more turns of wire in the load (secondary) coil than in the source (primary) coil
is called a step-up transformer. A transformer with fewer turns in its secondary than in its primary
is called a step-down transformer :
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In accordance with the Law of Energy Conservation, the continuous power in the secondary
circuit will be (nearly) equal to the continuous power in the primary circuit, any difference between
the two power values being the result of dissipative losses in the transformer (e.g. wire resistance in
the coils, magnetic hysteresis in the core, both converting some of the electrical energy into heat).
An ideal transformer outputs exactly as much power as it takes in from the source, as illustrated by
these examples:

Step-up transformer
1:5 ratio

120 VAC 600 VAC 150 Ω

4 A20 A

PP = 2400 W

PP = IP VP PS = IS VS

PS = 2400 W

PP = (120 V) (20 A) PS = (600 V) (4 A)

PP = IP VP PS = IS VS

Step-down transformer
10:1 ratio

480 VAC 48 VAC 6 Ω

8 A0.8 A

PP = (480 V) (0.8 A) PS = (48 V) (8 A)

PS = 384 WPP = 384 W

Primary Secondary Primary Secondary

As you might imagine, an electrical component having no moving parts that is able to convert
high-voltage to low-voltage (and vice-versa) is very useful, especially for electrical power systems.
The fact that these devices require AC and cannot function on DC is one of the most significant
historical reasons why AC triumphed over DC for electrical power distribution.
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3.3 AC quantities

Voltage and current in a steady-state direct-current (DC) circuit are easy to quantify. Voltage is
simply the energy difference between two locations in the circuit per quantity of charge carriers1,
while current is the rate of charge carrier flow2. In an alternating-current (AC) circuit, however,
these values constantly shift in amplitude and in direction. Rather than specify a constant value
for either, we must express these as waves oscillating over time. Shown below is a sine wave as
plotted on a test instrument known as an oscilloscope3, so named because its shape is defined by
the trigonometric sine function, typical of the voltage induced in the coils of an AC generator (also
called an alternator) as its shaft rotates through the angles of a full circle:
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By definition, one cycle of a wave is 360 degrees of revolution, during which the wave will reach
both a positive peak value as well as a negative peak value. Peak value, in fact, is a simple method of
quantifying AC amplitude. Sometimes it is useful to express an AC quantity in terms of its over-all
wave height from positive peak to negative peak, and we call this the Peak-to-Peak amplitude of the
wave.

A pleasant discovery in resistive AC circuits is that values of voltage and current at any given
instant in time relate to one another by all the same laws and principles learned for DC resistor
circuits. For example, if a 3 Ohm resistor has an alternating current passing through it, the moment
in time when that current reaches a value of 4 Amperes the voltage drop across that resistor will be
12 Volts in accordance with Ohm’s Law. Joule’s and Kirchhoff’s Laws (both voltage and current)
similarly apply at any specific instant in time within an AC circuit, for example:

• 150 mA (pk) through a resistor dropping 3 V (pk) gives a peak power of 450 mW

• Two series-connected AC voltage sources, one peaking at 5 V and the other peaking at 2 V
simultaneously, create a total voltage of 7 V (pk).

• Two parallel-connected AC current sources, one peaking at 200 mA and the other peaking at
300 mA simultaneously, create a total current of 500 mA (pk).

1One Volt of voltage is equivalent to one Joule of energy difference per Coulomb of charge carriers.
2One Ampere of current is equivalent to one Coulomb of electric charges moving past a point every second of time.
3An oscilloscope is simply a graphical voltmeter, plotting voltage (vertical axis) as a function of time (horizontal

axis). The plot generated by an oscilloscope is called an oscillograph.
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A feature uniquely distinguishing AC from DC is the periodic nature of the former: AC voltages
and currents repeatedly vary in amplitude and alternate in direction. The amount of time required
for the voltage or current to come “full-circle” to repeat the same pattern is called the period of that
wave. By definition, period is the amount of time equivalent to 360 degrees of rotation in the wave’s
evolution, and may be measured horizontally between any two points on the wave representing a
repetition of the cyclic pattern:

0

100%

-100%
0o 90o 180o 270o 360o 450o 540o 630o 720o

Period

Period

Period

Period

Period is typically measured in seconds, and the reciprocal of period is called frequency (f) which
used to be measured in cycles per second (cps) but now has its own unit of the Hertz (Hz)4. For
example, in many parts of the world the standard frequency for AC power systems is 60 Hz, equating
to a period of 16.67 milliseconds. In other parts of the world the standard frequency for AC electric
power is 50 Hz, with a period of 20 milliseconds.

If an alternating quantity happens to move through space with a known velocity, as is the case
with electromagnetic waves (moving at the speed of light) and with acoustic vibrations (moving at
the speed of sound5), we may describe the period of the wave in terms of physical distance as well
as time. The distance covered by a propagating wave over one whole cycle (i.e. traveling for a time
duration of one period) is called the wavelength and is symbolized by the Greek letter “lambda” (λ):

λf = c

Where,
λ = Wavelength in meters
f = Frequency in cycles per second, or Hertz
c = Propagation velocity, approximately 3× 108 meters per second for electromagnetic waves

For example, radio waves emanating from a transmitting antenna operating at a frequency of
99.1 MHz will have a wavelength of 3.027 meters.

4Alternatively, frequency may be expressed as inverse seconds, e.g. 60 s−1 instead of 60 cps or 60 Hz. Yet another
way of expressing the frequency of an AC quantity is in terms of the number of radians per second covered by the
evolving wave. This is called natural frequency or angular velocity, and it is symbolized as a lower-case Greek letter
“omega” (ω) instead of f .

5The speed of sound varies with the type of material the sound waves must propagate through, and as such it is
not a fixed limit. Similarly, the speed of light varies with material as well, but at least with the speed of light we have
a maximum velocity defined through a perfect vacuum: approximately 3× 108 meters per second.
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3.4 Quantifying AC voltage and current

Alternating current (AC) was first applied to early electrical power systems in order to realize certain
efficiencies that were impossible for DC with the technology of the day. As such, it became necessary
to rate AC voltage and current in terms that could be equitably compared to DC. In an electric
power system, the purpose is to use electricity as an energy-delivery medium, and so a natural basis
for comparison between AC and DC was to rate AC in terms of equivalent energy-delivery with DC.

This concept may not be obvious at first, and so some elaboration is helpful. Imagine setting up
an AC sine-wave voltage source with a peak amplitude of 100 Volts so that it energizes a resistor,
and also setting up a DC voltage source of 100 Volts connected to an identical resistor. Which of
these two resistors will dissipate more energy in the form of heat over an identical span of time?

+
−R R(continuous)

Heat Heat

100 V (pk) 100 V

It should be clear to see that the DC-powered resistor will dissipate more heat, because the DC
source outputs 100 Volts continuously while the AC source only outputs 100 Volts intermittently.
Simply put, the DC source works harder than the AC source given equal peak voltage value.
Therefore, peak amplitude is a misleading indicator of AC voltage or current when compared to
DC on the basis of work done.

If the AC source happens to output a sinusoidal (i.e. sine-wave-shaped) voltage, the ratio between
the power dissipated by the resistor at 100 Volts DC versus the power dissipated by an identical

resistor at 100 Volts (peak) AC is
√
2
2 , which is approximately 0.707. Thus, our 100 Volt (pk) AC

voltage is equivalent in work value to a 70.7 Volt DC source. Conversely, the AC source would have
to reach peak voltage of 141.4 Volts (peak) to achieve the same energy-delivery effectiveness as a
100 Volt DC source. We refer to this DC-equivalent value as the Root-Mean-Square6 or RMS value
of the AC waveform.

6This strange-sounding designation comes from the mathematical steps necessary to calculate the equivalence.
First, we need to compute the instantaneous power dissipated by the load at multiple points in time within one cycle
of the source’s AC voltage or current. Whether we are working with voltage or current, computing power for a given

resistance involves a quadratic (square) function: P = I2R or P = V
2

R
. After calculating a set of instantaneous

power values throughout one cycle, we average (i.e. mean) those values together to simulate the same total amount
of energy delivered by a steady (DC) voltage or current. Last, we take the average power delivered to the load and
compute from that the equivalent DC voltage or current necessary for that amount of power given the original load

resistance value, which necessarily involves a square-root function: either V =
√
PR for voltage or I =

√

P

R
for

current. Therefore, the DC-power-equivalent value of an AC voltage or current is the root of the mean of the square

for a set of instantaneous values within the AC cycle, or RMS. The Programming References chapter of this learning
module shows how these calculations may be performed using the C++ programming language, beginning on page
69 of section 5.6.
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The conversion ratio between peak and RMS values for any AC waveform depends strongly on
the particular shape of that waveform. For sinusoidal waves the conversion factor is

√
2, but it is

not the same for other wave-shapes:
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+
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Heat Heat
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100 V

2

1 : 1

3

Ratio

: 1

: 1

Given equal peak amplitudes, the “triangle” wave-shape is weaker than the sine wave, while a
square wave is stronger than a sine wave. The differences are easy to understand if you carefully
examine the wave-shapes and see which shape spends more time closer to its peak value throughout
the cycle than another.

For the reasons stated earlier, voltage and current values in AC electric power circuits are always
specified in RMS units. This poses a problem for AC voltmeters and ammeters tasked with reporting
voltage and current values in RMS terms, because neither analog meter mechanisms nor digital
electronic circuits naturally respond to the heating power of an AC signal. Clever circuits exist to
compute RMS values, and the meters employing them are called true-RMS instruments, but these
circuits are relatively expensive to manufacture compared to circuits responding either to the average
or peak values of an AC signal. Analog meters and cheap digital meters typically respond to the
averaged (mean) absolute-values of an AC waveform, which is not equal to the RMS value7, and so
these non-RMS meters are intentionally mis-calibrated so as to register RMS values when measuring

sinusoidal voltages and currents. If measuring some other wave-shape, these non-RMS meters will
not accurately register the actual RMS value of the AC signal.

7The RMS value of an AC waveform is based on the square-root of the averaged instantaneous power values, each
of those derived from the square of the instantaneous voltage or current values within an AC cycle. The “average” of
a waveform’s absolute-valued instantaneous amplitudes is not the same, as it omits the squares and the square-roots.
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3.5 Phase shift

When two AC waveforms having the same frequency (i.e. same period) are compared against one
another in the time-domain, we may express the difference in angle between them as a quantity
called phase. Two waves that are perfectly synchronized with each other are said to be in phase,
while two waves out of step with one another are said to be out of phase or phase-shifted. Some
examples of sine wave pairs appear below:
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When two waveform reach their respective peaks at different times, the waveform that’s ahead
is said to be leading and the waveform that’s behind is said to be lagging. Quantifying phase shift is
as easy as measuring the difference in time between respective features (e.g. between positive peaks,
between negative peaks, or between zero-crossing points of similar slope) and comparing that to the
period, setting that quotient equal to a ratio between phase shift (θ) and 360o:
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tperiod

Time

tshift

tshift

tperiod
=

θ

360o

Like voltage, phase is a relative quantity: it exists only as a difference between two or more
waveforms. Often the voltage waveform of the circuit’s source is taken to be the “reference” wave
against which the phase angle of all other voltages and currents in the circuit are measured. Phase
shift is a fixed quantity when two or more waves exist at the same frequency, but phase continuously
varies between waves of differing frequency.
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Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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4.1 Musical pitch

In musical terms, frequency is equivalent to pitch. Low-pitch notes such as those produced by a tuba
or bassoon consist of air molecule vibrations that are relatively slow (low frequency). High-pitch
notes such as those produced by a flute or whistle consist of the same type of vibrations in the air,
only vibrating at a much faster rate (higher frequency).

An international standard exists to define the pitch of tones used in Western music, using
seven letters (A through G) and modifying characters called sharps and flats. Furthermore, the
scientific pitch notation scheme uses numerical subscripts to differentiate between repeated letters.
Every repetition of letters in the sequence represents a doubling of pitch called an octave: A4 is
standardized1 at 440 Hz, which means the next “A” in increased pitch (symbolized as A5) must be
880 Hz. The “A” pitch below A4 (symbolized as A3) is 220 Hz. There is rationale for the repeated
lettering of pitches: two pitches bearing the same letter (e.g. A3 and A4) sound very much alike to
the human ear.

Counting all the white and black keys on a piano keyboard, we see there exist twelve pitches
starting at any particular tone and ascending or descending until just before reaching a similarly-
labeled tone. Thus, each octave (i.e. doubling of frequency) is divided into twelve distinct pitches
in the Western musical system:

A B C D E F G A B C D E F G A BD E F GC

A#

Bb
ororororor or or or or or or or or or or

G# C# D# F#F#C# D# C# D#A#G# F# A#G#

Db Eb Gb Ab BbDb Eb Gb Ab BbDb Eb Gb Ab

A4 = 440 HzA3 = 220 Hz A5 = 880 Hz

In the equal-temperament pitch system, each interval in the twelve-step division represents the
same ratio of frequencies. Specifically, we may mathematically predict the next pitch in a twelve-tone
equal-temperament system using the following formula:

fn = f02
n

12

Where,
f0 = Frequency (pitch) of the starting tone
fn = Frequency (pitch) of the tone n steps above

If one octave spans twelve contiguous keys on a piano keyboard, then the frequency of the
next-octave higher pitch must be 2

12

12 which is 21 or double the starting frequency.

1Perhaps the word standardized is too strong a term to describe the cacophony of pitch “standards” found in the
musical world. Some orchestras tune their instruments such that A4 is something other than 440 Hz (e.g. 441 Hz,
442 Hz), and some types of instruments (notably, keyboard percussion instruments such as vibraphone, glockenspiel,
and marimba) are usually manufactured with A4 set to 442 Hz. Melody and harmony are both defined by the ratios

of pitch frequencies, and so musical pieces are still readily identified and enjoyed when played on other “standard”
tunings. Problems arise, however, when instruments tuned to disparate pitch standards play together.
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The following table lists equal-tempered tones and pitch frequencies between A4 and A6:

Letter Mathematical Pitch

symbol expression (Hz)

A4 440× 2(0/12) 440.00

A♯
4 or B♭

4 440× 2(1/12) 466.16

B4 440× 2(2/12) 493.88

C5 440× 2(3/12) 523.25

C♯
5 or D♭

5 440× 2(4/12) 554.37

D5 440× 2(5/12) 587.33

D♯
5 or E♭

5 440× 2(6/12) 622.25

E5 440× 2(7/12) 659.26

F5 440× 2(8/12) 698.46

F♯
5 or G♭

5 440× 2(9/12) 739.99

G5 440× 2(10/12) 783.99

G♯
5 or A♭

5 440× 2(11/12) 830.61

A5 440× 2(12/12) 880.00

A♯
5 or B♭

5 440× 2(13/12) 932.33

B5 440× 2(14/12) 987.77

C6 440× 2(15/12) 1046.50

C♯
6 or D♭

6 440× 2(16/12) 1108.73

D6 440× 2(17/12) 1174.66

D♯
6 or E♭

6 440× 2(18/12) 1244.51

E6 440× 2(19/12) 1318.51

F6 440× 2(20/12) 1396.91

F♯
6 or G♭

6 440× 2(21/12) 1479.98

G6 440× 2(22/12) 1567.98

G♯
6 or A♭

6 440× 2(23/12) 1661.22

A6 440× 2(24/12) 1760.00

It is important to understand that while 440 vibrations per second (i.e. 440 Hz) is often considered
the “standard” pitch for A4, this is a convention and not a physical necessity. In fact the “standard”
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pitch for “A” has indeed changed significantly in the history of Western music. This fact points
us toward an essential truth of music: relative pitch is more important than absolute pitch. If an
orchestra de-tuned all their instruments such that every musician’s “A” was 430 Hz instead of 440
Hz, and all the other notes were proportionately shifted (i.e. every pitch now being 430

440 of its normal
value), anyone could still recognize and appreciate the songs played. Melodies would still sound
correct, and harmonies would still be harmonious. Perhaps there would be a few unique individuals
who could tell the difference and would be irritated by it, but to the rest of us it would still be
beautiful music.

In honor of this fact, much of music theory is oriented around the concept of an interval : the
relative “distance” between different pitches. Mathematically, an interval is a ratio of two pitches
to each other. For the interval called an “octave,” the ratio is 2:1 (or powers of 2:1, such as 4:1 or
8:1).

The pitch-distance between any two adjacent keys on a piano keyboard is called a half-step or a
semitone. Mathematically, it is equal to a pitch ratio of 21/12, or approximately 1.0595. To illustrate,
the interval separating C from C♯ is a half-step. So is the interval separating G♯ from A. So is the
interval separating E from F:

A BD E F GC

A#

Bb
ororororor or or

G# C# D#F#C# D#

Db Eb Gb Ab Db Eb

Half-step Half-step

Half-step

There are 12 such half-steps, or semitones, in the span of one octave. You can see this for yourself
by starting at any key on a piano keyboard and counting every key either upward or downward until
you reach the next octave of the original key: 12 steps are necessary to reach the octave pitch. You
can also see this by referencing the previous table of pitches, counting the number of steps to go
from A4 to A5, or any other octave span.
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A whole step, also called a whole-tone, is simply the span covered by two half-steps,
mathematically equal to a pitch ratio of 22/12, or approximately 1.1225. The pitch-difference between
D and E is a whole step. So is the the interval separating G♯ from A♯. So is the interval separating
D♯ to F:

A BD E F GC

A#

Bb
ororororor or or

G# C# D#F#C# D#

Db Eb Gb Ab Db Eb

Whole-step

Whole-step

Whole-step

Music theorists give names to all the different intervals up to and including the octave:

Interval name Symbol Pitch ratio Whole+Half steps

Perfect Unison P1 20/12 (no steps)

Minor Second m2 21/12 1 half-step

Major Second M2 22/12 1 whole-step

Minor Third m3 23/12 1 whole-step + 1 half-step

Major Third M3 24/12 2 whole-steps

Perfect Fourth P4 25/12 2 whole-steps + 1 half-step

Augmented Fourth aug4 26/12 3 whole-steps

Diminished Fifth dim5 a.k.a. a “tri-tone” interval

Perfect Fifth P5 27/12 3 whole-steps + 1 half-step

Minor Sixth m6 28/12 4 whole-steps

Major Sixth M6 29/12 4 whole-steps + 1 half-step

Minor Seventh m7 210/12 5 whole-steps

Major Seventh M7 211/12 5 whole-steps + 1 half-step

Perfect Octave P8 212/12 6 whole-steps

Some of these intervals are very nearly rational in the mathematical sense of the word: a ratio
of two integers. For example, the major third interval (24/12) is very nearly equal to the fraction
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5
4 ; the perfect fourth (25/12) very nearly equal to the fraction 4

3 ; and the perfect fifth (27/12) very
nearly equal to 3

2 . Some tuning systems deviating from equal-temperament (e.g. just temperament
being one of them) actually fix these ratios at their rational values, the purpose being to achieve
slightly more precise harmony when those pitches are played together.



Chapter 5

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

33
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5.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments

to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point

variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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5.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.
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5.3 Simple plotting of sinusoidal waves using C++

Like the vast majority of computer programming languages, C and C++ offer an extensive library
of mathematical functions ready-made for use in programs of your own design. Here we will examine
a C++ program written to calculate the instantaneous values of a sine wave over one full period:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

C++ lacks a standard library of graphics functions for plotting curves and other mathematical
shapes to the computer’s screen, and so this program instead uses standard console characters to
do the same. In this particular case it plots blank space characters and star characters (*) to the
console in order to mimic a pixel-based graphical display.

This program is deceptively terse. From the small number of lines of code it doesn’t look very
complicated, but there is a lot going on here. We will explore the operation of this program in
stages, first by examining its console output (on the following page), and then analyzing its lines of
code.
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The result is a somewhat crude, but functional image of a sine wave plotted with amplitude on
the horizontal axis and angle on the vertical axis:
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float and int), names, and declarations

• Variable assignment/initialization (=)

• Comparison (==)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

• Comments (//)

• Custom functions: prototyping, return values, arguments

Looking at the source code listing, we see the obligatory7 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have two variables declared, two for instructions, and two cout

statements. Variable x is a floating-point variable, intended to store the angle values we will send to
the sine function. Variable n is an integer variable, capable only of counting in whole-number steps.
A for loop instructs the computer to repeat some operation multiple times, the number of repeats
determined by the value of some variable within the for instruction’s parentheses.

7The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using advanced mathematical functions such as sine.
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Our first for instruction bases its repeats on the value of x, beginning by initializing it to a value
of zero and then incrementing it in steps of 0.2 so long as x is less than or equal to 2π. This for
loop has its own set of “curly-brace” symbols enclosing multiple lines of code, again with those lines
indented to make it visually clear they belong within the for loop.

Within this outer for loop lies another for instruction, with its repeats based on the value of
our integer variable n. Unlike the outer for loop which has brace symbols ({}) enclosing multiple
lines of code, the inner for loop has no braces of its own because only one line of code belongs
to it (a cout instruction printing blank spaces to the console, found immediately below the for

statement and indented to make its ownership visually clear). This inner for instruction’s repeats
continue so long as n remains less than the value of 40 sin(x) + 40, incrementing from 0 upwards in
whole-number steps (this is what ++n means in the C and C++ languages: to increment an integer
variable by a single-step). Below that is another cout instruction, this one printing a star character
to the console (*).

It may not be clear to the reader how these two for instructions work together to create a
sinusoidal pattern of characters on the computer’s console display, and so we will spend some more
time dissecting the code. A useful problem-solving strategy for understanding this program is to
simplify the system. In this case we will replace all lines of code within the outer for loop with a
single cout instruction printing values of x and sin(x). This will generate a listing of these variables’
values, which as we know governs the two for loops’ behavior. Once we see these numerical values,
it will become easier to grasp what the for loops and their associated cout instructions are trying
to achieve.
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Rather than delete the original lines of code, which would require re-typing them at some point
in the future, we will apply a common programming “trick” of commenting out those lines we don’t
want to be executed. In C and C++, and double-forward-slash (//) marks the beginning of an inline
comment, with all characters to the right of the double-slashes ignored by the compiler. They will
still be in the source code, readable to any human eyes, but will be absent from the program as far
as the computer is concerned. Then, when we’re ready to reinstate these code lines again, all we
need to do is delete the comment symbols:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << sin(x) << endl;

}

return 0;

}

Re-compiling the modified code and re-running it produces the following results:

0 0

0.2 0.198669

0.4 0.389418

0.6 0.564642

0.8 0.717356

1 0.841471

1.2 0.932039

1.4 0.98545

1.6 0.999574

1.8 0.973848

2 0.909297

2.2 0.808496

2.4 0.675463
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2.6 0.515501

2.8 0.334988

3 0.14112

3.2 -0.0583747

3.4 -0.255542

3.6 -0.442521

3.8 -0.611858

4 -0.756803

4.2 -0.871576

4.4 -0.951602

4.6 -0.993691

4.8 -0.996165

5 -0.958924

5.2 -0.883455

5.4 -0.772765

5.6 -0.631267

5.8 -0.464603

6 -0.279417

6.2 -0.083091

Not surprisingly, we see the variable x increment from zero to 6.2 (approximately 2π) in steps of
0.2. The sine of this angle value evolves from 0 to very nearly +1, back (almost) to zero as x goes
past π, very nearly equaling −1, and finally returning close to zero. This is what we would expect of
the trigonometric sine function with its angle expressed in radians rather than degrees (2π radians
being equal to 360 degrees, a full circle).

This experiment proves to us what x and sin(x) are doing in the program, but to more clearly
see how the inner for loop functions it would be helpful to print the value of 40 * sin(x) + 40

since this is the actual value checked by the inner for loop as it increments n from zero upward.
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Modifying the code once more for another experiment:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << 40 * sin(x) + 40 << endl;

}

return 0;

}

Re-compiling this new code and running it reveals much larger values in the second number
column:

0 40

0.2 47.9468

0.4 55.5767

0.6 62.5857

0.8 68.6942

1 73.6588

1.2 77.2816

1.4 79.418

1.6 79.9829

1.8 78.9539

2 76.3719

2.2 72.3399

2.4 67.0185

2.6 60.62

2.8 53.3995

3 45.6448

3.2 37.665

3.4 29.7783
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3.6 22.2992

3.8 15.5257

4 9.72789

4.2 5.13696

4.4 1.93592

4.6 0.252361

4.8 0.153415

5 1.64302

5.2 4.6618

5.4 9.0894

5.6 14.7493

5.8 21.4159

6 28.8233

6.2 36.6764

Instead of progressing from zero to (nearly) +1 to (nearly) zero to (nearly) −1 and back again
to (nearly) zero, this time the right-hand column of numbers begins at 40, progresses to a value of
(nearly) 80, then back past 40 and (nearly) to zero, then finishes nearly at 40 again. What the 40

* sin(x) + 40 arithmetic8 does is “scale” and “shift” the basic sine function to have a peak value
of 40 and a center value of 40 as well.

8You may recognize this as the common slope-intercept form of a linear equation, y = mx+ b. In this case, 40 is
the slope (m) and 40 also happens to be the intercept (b).
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Now that we clearly recognize the range of 40 * sin(x) + 40, we may remove the comments
from our code and analyze the inner for loop:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

Each time the outer for loop increments the value of x, the inner for loop calculates the value
of 40 sin(x) + 40 and repeats the cout << " " instruction that many times9 to print that same
number of blank spaces on the console. After printing that string of blank spaces, the second cout

statement prints a star character (*) and finishes the line with an endl character (a carriage-return
marking the end of a line and the beginning of a new line on the console’s display). The outer for
loop then increments x again and the process repeats.

Therefore, the outer for loop produces one new line of text on the console per iteration, while the
inner for loop produces one new blank space on that line per iteration. This makes the placement
of each star character (*) proportional to the value of sin(x), the result being a “sideways” plot of
a sine wave on the console.

The scaling of the sine function to produce a range from 0 to +80 rather than −1 to +1 was
intentionally chosen to fit the standard 80-column width of traditional character-based computer
consoles. Modern computer operating systems usually provide terminal windows emulating
traditional consoles, but with font options for resizing characters to yield more or less than 80
columns spanning the console’s width.

9The value of 40 sin(x) + 40 will be a floating-point (i.e. non-round) value, while n is an integer variable and can
therefore only accept whole-numbered (and negative) values. This is not a problem in C++, as the compiler is smart
enough to cause the floating-point value to become truncated to an integer value before assigning it to n.
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Students more accustomed to applied trigonometry than pure mathematics may bristle at the
assumed unit of radians used by C++ when computing the sine function, but this is actually quite
common for computer-based calculations. Even most electronic hand calculators assume radians
unless and until the user sets the degree mode.

We can modify this code have the variable x in degrees rather than radians, simply by multiplying
x by the conversion factor π

180 .

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < (40 * sin(x * (M_PI / 180)) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

This is a good illustration of how mathematical operations may be “nested” within sets of
parentheses, in the same way we do so when writing regular formulae:

40 sin
[

x
( π

180

)]

+ 40

An extremely important computer programming concept we may apply at this juncture, though
by no means necessary for this simple program, is to include our own custom function to calculate
the scaled sine value with its degrees-to-radians conversion. The idea of a programming “function” is
a separate listing of code lying outside of the main function which may be invoked at any time within
the main function. Some legacy programming languages such as FORTRAN and Pascal referred to
these as subroutines.
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Consider the following version of the sine-plotting program with a custom function called
sinecalc:

#include <iostream>

#include <cmath>

using namespace std;

float sinecalc (float);

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < sinecalc(x) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

float sinecalc (float degrees)

{

float radians;

radians = degrees * M_PI / 180;

return 40 * sin (radians) + 40;

}

Note in particular these three alterations made to the code:

• The inclusion of a line before the main function prototyping our custom function, declaring it
will accept a single floating-point value and return a floating-point value.

• The inner for statement is much simpler than before without all the inline arithmetic. Now
it simply “calls” the sinecalc function every time it needs to compute the sine of x.

• Past the end of the main function is where our new sinecalc function resides. Like the main
function itself, it begins with a line stating it will accept a single floating-point variable (named
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degrees) and will return a floating-point value. Also like the main function, it has its own set
of curly-brace symbols ({ }) to enclose its lines of code.

Within the sinecalc function we see an declaration of another variable named radians, an
arithmetic statement performing the degrees-to-radians conversion, and finally a return statement
where the scaled sine value is computed. This returned value is what the for statement “sees” after
calling the sinecalc function.

The path of a program’s execution is no longer simply left-to-right and top-to-bottom once we
start using our own functions like this. Now the execution path jumps from one line to another and
then returns back where it left off. This new pattern of execution may seem strange and confusing,
but it actually makes larger programs easier to manage and design. By encapsulating a particular
algorithm (i.e. a set of instructions and procedures) in its own segment of code separate from the
main function, we make the main function’s code more compact and easier to understand. It is even
possible to save these functions’ code in separate source files so that different human programmers
can work on pieces of the whole program separately as a team10.

10For example, we could save all the main function’s code (including the directive lines) to a file named main.cpp,
then do the same with the sinecalc function’s code (also including the necessary directive lines) in a file named
sine.cpp. The command we would then use to compile and link these two code sets together into an executable
named plot.exe would be g++ -o plot.exe main.cpp sine.cpp.
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As previously mentioned, C++ lacks a standard library of graphics functions for plotting curves
and other mathematical shapes to the computer’s screen, which is why we opted to use standard

console characters to do the same. If a truly graphic output is desired for our waveform plot, there
are relatively simple alternatives. One is to write the C++ source code to output data as numerical
values displayed in columns, one column of numbers representing independent (x) values and the
other column representing dependent (y) values, with each column separated by a comma character
(,) as a delimiter. Here is the re-written program and its text output:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x, y;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

y = sin(x);

cout << x << "," << y << endl;

}

return 0;

}

0,0

0.2,0.198669

0.4,0.389418

0.6,0.564642

0.8,0.717356

1,0.841471

1.2,0.932039

1.4,0.98545

1.6,0.999574

1.8,0.973848

2,0.909297

2.2,0.808496

2.4,0.675463

2.6,0.515501

2.8,0.334988

3,0.14112

3.2,-0.0583747

3.4,-0.255542

3.6,-0.442521
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3.8,-0.611858

4,-0.756803

4.2,-0.871576

4.4,-0.951602

4.6,-0.993691

4.8,-0.996165

5,-0.958924

5.2,-0.883455

5.4,-0.772765

5.6,-0.631267

5.8,-0.464603

6,-0.279417

6.2,-0.083091

We may save this text output to its own file (e.g. data.csv)11 and then import that file into
a graphing program such as a spreadsheet (e.g. Microsoft Excel). Spreadsheet software is designed
to accept comma-separated variable (csv) data and automatically organize the values into columns
and rows. Since spreadsheet software is so readily available, this is an easy option to visualize any
C++ program’s data without having to write C++ code directly generating graphic images.

11A relatively easy way to do this is to run the C++ program from a console, using the redirection symbol (>).
For example, if we saved our source code file under the name sinewave.cpp and then entered g++ -o sinewave.exe

sinewave.cpp at the command-line interface to compile it, the resulting executable file would be named sinewave.exe.
If we simply type ./sinewave.exe and press Enter, the program will run as usual. If, however we type ./sinewave.exe
> data.csv and press Enter, the program will run “silently” with all of its printed text output redirected into a file
named data.csv instead of to the console for us to see.
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Spreadsheets are not the only data-visualizing tools available, though. One such alternative is
the open-source software application called gnuplot. The following example shows how gnuplot

may be instructed12 to read a comma-separated variable file (data.csv) and plot that data to the
computer’s screen:

gnuplot script:

set datafile separator ","

set xrange [0:6.2]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

’data.csv’ using 1:2

12These commands may be entered interactively at the gnuplot prompt or saved to a text file (e.g. format.txt,
called a script) and invoked at the operating system command line (e.g. gnuplot -p format.txt).
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5.4 Plotting two sinusoidal waves with phase angles using

C++

Here we will examine a C++ program written to take input from the user and generate comma-
separated value lists for two sinusoidal waveforms which may be plotted using graphical visualization
software such as a spreadsheet or gnuplot:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float va, vb, pa, pb, f, period, t;

cout << "Enter peak amplitude of voltage A" << endl;

cin >> va;

cout << "Enter phase angle of voltage A" << endl;

cin >> pa;

cout << "Enter peak amplitude of voltage B" << endl;

cin >> vb;

cout << "Enter phase angle of voltage B" << endl;

cin >> pb;

cout << "Enter frequency for both sources" << endl;

cin >> f;

period = 1/f;

for (t = 0 ; t <= (2 * period) ; t = t + (period/100))

{

cout << t << " , " ;

cout << va * sin((t * f + (pa/360)) * 2 * M_PI) << " , ";

cout << vb * sin((t * f + (pb/360)) * 2 * M_PI) << endl;

}

return 0;

}
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float), names, and declarations

• Variable assignment/initialization (cin)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

Looking at the source code listing, we see the obligatory13 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have seven variables declared, all of them floating-point (float)
variables. Several cout statements print text to the screen while cin statements receive typed input
from the user to initialize the values of five of those variables. Variable t represents time, and is
stepped in value from zero to two full periods of the waveforms within the for loop. Within the curly-
brace symbols of the for loop we have a set of cout instructions which print the comma-separated
value data to the computer’s console.

The sine functions are computed within these last cout instructions. The product of time and
frequency (seconds times cycles per second) yields a result in cycles. Phase shift was entered in
degrees, so division by 360 is necessary to case phase shift into cycles because there are 360 degrees
per cycle. The sine function, like all trigonometric functions in computer programming, requires an
input in units of radians which explains the purpose of the 2π multiplier, there being 2π radians per
cycle.

13The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using the sine function.
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Here is a sample run of this program where waveform A is 10 Volts (peak) at an angle of 0 degrees
and waveform B is 5 Volts (peak) with a leading phase shift of 30 degrees, both at a frequency of
60 Hz:

Enter peak amplitude of voltage A 10

Enter phase angle of voltage A 0

Enter peak amplitude of voltage B 5

Enter phase angle of voltage B 30

Enter frequency for both sources 60

0 , 0 , 2.5

0.000166667 , 0.627905 , 2.76696

0.000333333 , 1.25333 , 3.023

0.0005 , 1.87381 , 3.2671

0.000666667 , 2.4869 , 3.49832

0.000833333 , 3.09017 , 3.71572

0.001 , 3.68125 , 3.91847

0.00116667 , 4.25779 , 4.10575

0.00133333 , 4.81754 , 4.27682

The comma-separated value list has been shortened for the sake of brevity (from approximately
200 lines of data). When copied to a plain-text file named data.csv and read by a data visualization
program (in this case, gnuplot), the two sinusoids with their differing amplitudes and 30 degree
phase shift are clear to see. Setting the visualization tool to show four minor divisions in between
every major division mimics the graticule of a traditional oscilloscope:

-10

-5

 0

 5

 10

 0  0.005  0.01  0.015  0.02  0.025  0.03

’data.csv’ using 1:2
’data.csv’ using 1:3
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Any data visualization tool capable of reading a comma-separated value data file is fine for this
purpose, and a spreadsheet such as Microsoft Excel is probably the simplest one to use. My favorite
happens to be gnuplot, and the script I used to make the previous plot is as follows:

set datafile separator ","

set xrange [0:0.034]

set style line 1 lw 2 lc rgb "red"

set style line 2 lw 2 lc rgb "green"

set style line 3 lw 0.25 lc rgb "grey"

set style line 4 lw 0.5 lc rgb "blue"

set mxtics 5

set mytics 5

set grid xtics mxtics ls 4, ls 3

set grid ytics mytics ls 4, ls 3

plot ’data.csv’ using 1:2 with lines ls 1, ’data.csv’ using 1:3 with lines ls 2

A simple way to copy the comma-separated value data into the data.csv file when running the
compiled C++ program is to use the tee operator available on the command-line interface of the
computer’s operating system. Assuming our compiled C++ program is named phaseplot.exe, the
command-line instruction would look something like the following:

phaseplot.exe | tee data.csv

This records all text – including the prompts for the user’s input as well as the entries – into the
data.csv which must be deleted prior to reading by the spreadsheet or other visualization software.
However, some may find the deletion of those few lines easier than the copying-and-pasting of 200+
lines of data to a file.
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5.5 Using C++ to compute RMS value

The root-mean-square or RMS value of an AC voltage or current waveform is the DC equivalent
voltage or current that would dissipate the same power in an identical resistive load. Most AC
voltages and currents are rated by their RMS values rather than their peak values, especially in
electric power circuit, for the sake of equivalence between AC and DC. For example, in the United
States the standard residential receptacle voltage is 120 Volts RMS, which means a resistive heating
element connected to that source would dissipate precisely the same amount of power – averaged
over time – as it would connected to a 120 Volt DC source.

Since alternating current (AC) varies in magnitude over time, the amount of power dissipated by
a resistive load connected to an AC source must also vary from one instant to another. By contrast,
a resistive load connected to a regulated DC source dissipates the same amount of power from
one moment to another. Assuming a sinusoidal AC voltage energizing a resistor, and calculating

instantaneous power using the equation V 2

R , the voltage and power waveforms would appear as
follows:

time

P
V

RV

Note how power is always a positive quantity even as voltage oscillates between positive and
negative values, owing to the squared term in the power equation.

In order to compute the equivalent DC voltage value (i.e. resulting in the same average power
dissipation at the resistor) we must calculate the total amount of energy dissipated by that resistor
over some period of time encompassing at least one whole cycle of the AC voltage, then calculate
the average DC power as energy divided by time14. Once we know the average power for the circuit,
we may use the same power equation to solve for the equivalent DC voltage (V =

√
PR).

Note the square and square-root operations used in this definition of equivalent DC voltage:
when computing instantaneous resistor power at any point in the AC voltage’s waveform we must
square that voltage quantity and then divide by resistance. When computing equivalent DC voltage
at the end we must square-root the power and resistance values. Between those two steps we take
the mathematical average (i.e. the mean) of the AC power values based on total energy dissipated
over a specified time period. Thus, the power-equivalent DC voltage is the square root of the mean
of the square of the instantaneous AC voltage values: root-mean-square, or RMS.

14Energy, of course, is that which sets matter into motion. Power is the rate at which energy transfers over time
( dE
dt

).
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Shown here is the listing of a C++ program performing all these calculations. Values of AC peak
voltage, resistance, time period, and time step interval are embedded in the code, so that when it is
compiled and run it simply reports total energy, equivalent DC power, and equivalent DC voltage
for the simulation:

#include <iostream>

#include <cmath>

using namespace std;

float wave (float);

int main (void)

{

float t, v, p, dcv, dcp;

float t_int = 0.0001;

float t_end = 1.0;

float freq = 60.0;

float vpk = 100.0;

float e = 0.0;

float r = 1.0;

for (t = 0; t <= t_end; t = t + t_int)

{

v = vpk * wave (360 * freq * t);

p = pow (v, 2) / r;

e = e + (p * t_int);

}

dcp = e / t_end;

dcv = sqrt (dcp * r);

cout << "Total energy dissipated = " << e << " Joules" << endl;

cout << "DC equivalent power = " << dcp << " Watts" << endl;

cout << "DC equivalent voltage = " << dcv << " Volts (RMS)" << endl;

return 0;

}

float wave (float degrees)

{

float radians;

radians = degrees * M_PI / 180.0;

return sin (radians);

}
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float), names, and declarations

• Variable assignment/initialization (=)

• Loops (for)

• Basic arithmetic (*, /)

• Arithmetic functions (sin, pow, sqrt, modulus (%))

• Printing text output (cout)

• Custom functions: prototyping, return values, arguments

• Conditionals (if)

• Casting variable types

Studying the source code in the order it will be executed by the computer (left to right, top
to bottom), we see the #include and namespace lines telling the C++ compiler software how to
interpret many of the instructions that follow. We also see the main function enclosing all of our
simulation code. The line int main (void) tells us the main function takes in no data (void) but
returns an integer number value (int). The “left-curly-brace” symbol immediately below that ({)
marks the beginning of the page space where the main function’s code is found, while the “right-
curly-brace” symbol at the bottom (}) marks the end of the main function. All code located between
those brace symbols belongs to the main function. C++ ignores whitespace, and so all indentation
of lines is done merely to make the source code easier for human eyes to read.

Within the main function we see a collection of declarations for floating-point variables used in
this program. Each line terminates with a semicolon character (:) which is necessary for a language
such as C++ that ignores whitespace and therefore must be told where each instruction line ends.
Some of these lines also initialize the variable (i.e. assign a numerical value to it) at the time of
declaration. These initializations are where we see the “hard-coded” values for time interval (t int),
ending time (t end), frequency (freq), peak AC voltage (vpk), total dissipated energy (e, starting
at a value of zero), and resistance (r). For this particular simulation, we are set to calculate at
time intervals of 0.1 milliseconds each, for a period of 1 second, at a frequency of 60 Hz, a peak AC
voltage value of 100 Volts, while energizing a 1 Ohm resistor.

Next comes a for loop, instructing the computer to repeatedly execute code while some condition
is met. In this case, the condition is the value of time (t), starting at zero and increasing by
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increments of t int until the end time (t end) is reached. Within the curly-braced boundaries of
this for loop are three instructions. The first computes the value of a sine wave function with a
peak value of vpk (more details on this to follow, soon!), the second calculates instantaneous power

dissipated by the resistor at that voltage value using Joule’s Law (P = v2

R ), and the third tallies a
running total of energy dissipated by the resistor (i.e. instantaneous power p multiplied by the time
interval t int).

After the for loop finishes looping through those three instructions, we are left with a value for
total energy (e) dissipated by the resistor over the time period spanning from t = 0 to t = t end.
The next instruction computes the average amount of power for this circuit, equal to the power
of a DC source doing the same amount of average work over time as this AC source, taking total
energy and dividing it by total simulated time (dcp = e / t end). After this equivalent DC power
is computed, the next line calculates the equivalent amount of DC voltage needed to dissipate this
much power (dcv = sqrt(dcp * r)) using Joule’s Law (V =

√
PR)

Finally, the program concludes with three cout instructions printing data to the console where
we may view it. First, we show total energy dissipated by the resistor over the simulated time
period, then the equivalent DC power for that same period, and finally the equivalent (RMS) DC
voltage. The last instruction within the main function returns an integer value of zero, not necessary
for program execution but merely a programming convention of C and C++.

As promised previously we will now explore how the sine function gets computed in this program.
Below the main function we see a custom function named wave used to compute the sine of an angle.
This function was prototyped in a line near the beginning of the code listing, but the actual function
with its own lines of code are at the very bottom of the listing. When this function is “called”
by an instruction within main, the computer’s flow of execution jumps down to the wave function
to execute its instructions, and then returns back to main with a floating-point value of the sine
function in hand. The sole purpose of the wave function is to take in an “argument” for the value
of an angle in degrees, convert that into radians which the C++ sin function requires, compute the
sine of that angle, and return the result.

This program would have worked quite nicely with all the angle-conversion and sine instructions
written within the main function, but there is a very practical reason for containing these instructions
within their own custom function called wave: it allows us to easily re-write the wave function to
describe some waveform that is not a sine wave, without altering any lines of code within the main

function. This sort of modular programming is a very good habit to cultivate, as it makes large and
complex programs easier to manage, as well as facilitates re-use of code in future projects.

It’s time to actually run this program and evaluate its results:

Total energy dissipated = 4999.73 Joules

DC equivalent power = 4999.73 Watts

DC equivalent voltage = 70.7088 Volts (RMS)

According to the simulation, an AC sinusoidal source of 100 Volts and 60 Hertz powering a 1
Ohm load resistance for 1 second will expend approximately 5000 Joules of energy, equivalent to a
70.7088 Volt DC source powering the same size load resistance for the same amount of time. The

RMS figure of 70.7088 Volts agrees with the theoretical peak-to-RMS conversion factor of
√
2
2 used

for sinusoidal wave-shapes.
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If we edit the source code for our program to have a total time (t end) of 5 seconds instead of
1 second, we see the total energy figure increase, but no substantial change in either DC equivalent
power or RMS voltage:

Total energy dissipated = 25002.4 Joules

DC equivalent power = 5000.48 Watts

DC equivalent voltage = 70.7141 Volts (RMS)

Ideally the DC equivalent power and voltage would not be affected at all by an extension of time,
but slight rounding errors in the computer’s arithmetic add up to make these tiny variations.
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Now that we have seen how this program successfully computes the RMS value of a peak-specified
sinusoidal voltage, let’s explore other wave-shapes. A square wave is relatively easy to simulate, by
returning a value of +1 from if the angle is less than 180 degrees and return a value of −1 if the
angle is 180 degrees or larger. We may use the if conditional statement to check the angle and
return either −1 or +1 depending on the angle’s value.

Since the angle value in this program actually extends beyond 360 degrees, our revised wave

function will have to re-interpret any angle value greater than 360 as an equivalent angle between 0
and 360 degrees. This calculation is surprisingly easy to do in C/C++, using the modulus operator
(%). This arithmetic operation returns the “remainder” value of an integer quotient. If we take the
given angle value and use modulus to divide by 360 and return the remainder, the result will be a
periodic sequence from 0 to 360 and back to 0 again, even as the actual angle value grows beyond
360.

One caveat to the use of modulus is that it only functions with integer values, and here the
argument to the wave function is a floating-point variable. One solution to this mis-match of variable
types is to cast the floating-point variable degrees into integer form by writing (int)(degrees).
The modified wave function in its entirety appears below:

float wave (float degrees)

{

if ((int)(degrees) % 360 < 180.0)

return 1.0;

if ((int)(degrees) % 360 >= 180.0)

return -1.0;

}

The result of this simulation, still using a simulated time period of 5 seconds, is as follows:

Total energy dissipated = 50005 Joules

DC equivalent power = 10001 Watts

DC equivalent voltage = 100.005 Volts (RMS)

Here we see how the peak value of a square-wave electrical voltage (or current) is equal to its
RMS value. Unlike a sinusoid where the magnitude varies up and down over time, a square wave
is either 100% positive or 100% negative at all times. Thus, a square wave “works just as hard” as
DC, making its peak and RMS values equal.
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That was so much fun, let’s do it again! This time we will simulate a sawtooth waveform that
builds linearly from −1 to +1 as the angle progresses from 0 to 360 degrees, then drops back down
to −1 to repeat the pattern. Once again we will need to use the modulus function of the degrees

angle value compared to 360 to have a periodic sequence of values bound between 0 and 360, but
this time we will not have to use any if statements to conditionally return different values:

float wave (float degrees)

{

return (float)(((int)(degrees) % 360) - 180) / 180;

}

Following the order of operations enforced by the parentheses, this single line of code first casts
degrees into integer format to prepare it for the modulus operation, then it executes modulus
against a value of 360, then it subtracts 180 to make the number value span from −180 to +180
(i.e. a true AC pattern that goes negative and positive), then re-casts that value into floating-point
format, and finally divides by 180 to limit its range from −1 to +1.

The result of this simulated 100 Volt (peak) sawtooth wave over the same time period (5 seconds)
as before, is as follows:

Total energy dissipated = 16668.4 Joules

DC equivalent power = 3333.68 Watts

DC equivalent voltage = 57.738 Volts (RMS)

According to the simulation, an AC sawtooth source of 100 Volts and 60 Hertz powering a 1
Ohm load resistance for 5 seconds will expend approximately 16668 Joules of energy, equivalent to
a 57.738 Volt DC source powering the same size load resistance for the same amount of time. The

RMS figure of 57.738 Volts agrees with the theoretical peak-to-RMS conversion factor of
√
3
3 used

for triangular wave-shapes.
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5.6 Using C++ to compute RMS and Average values

While some digital multimeters have true RMS measurement capability, all analog multimeters are
inherently average15-responding. Since RMS measurements are generally desirable for electrical
power systems, and AC power systems generally exhibit sinusoidal wave-shapes, analog multimeters
are calibrated such that their inherent average-response to the AC voltage or current will be
intentionally skewed to represent the RMS value of that sinusoidal quantity.

It is informative to be able to compare the RMS and average values of a wave-shape given its
peak value, and we may use C++ to do this. Computing the RMS value of a waveform using C++
is shown in detail in section 5.5 beginning on page 62.

For this programming exercise we will borrow most of the code from the RMS-only algorithm
previously referenced, eliminating unnecessary lines and adding in a few more to compute the average
value as well. This program will output two lines of text, one describing the RMS value in relation
to peak value, and the other describing average value in relation to peak

15The average value of an AC waveform centered around zero with a 50% duty cycle will, of course be zero. When we
say “average-responding” what we really mean is that the AC instrument responds to the average of all the absolute

values of the AC waveform. Another way of thinking about this is to imagine the analog instrument averaging a
full-wave rectified version of the AC waveform where all instantaneous values are positive.
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Shown here is the listing of a C++ program performing all these calculations. Values of AC peak
voltage, resistance, time period, and time step interval are embedded in the code, so that when it is
compiled and run it reports equivalent RMS and average voltages:

#include <iostream>

#include <cmath>

using namespace std;

float wave (float);

int main (void)

{

float t, v, dcv;

float t_int = 0.0001;

float t_end = 1.0;

float freq = 60.0;

float vpk = 100.0;

float e = 0.0;

float avg = 0.0;

float r = 1.0;

for (t = 0; t <= t_end; t = t + t_int)

{

v = vpk * wave (360 * freq * t);

e = e + (pow (v, 2) / r * t_int);

avg = avg + (abs(v) * t_int);

}

dcv = sqrt (e / t_end * r);

avg = avg / t_end;

cout << "RMS = " << dcv / vpk * 100 << "\% of peak"<< endl;

cout << "Average = " << avg / vpk * 100 << "\% of peak"<< endl;

return 0;

}

float wave (float degrees)

{

float radians;

radians = degrees * M_PI / 180.0;

return sin (radians);

}
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When we run this program we get the following results:

RMS = 70.7088% of peak

Average = 63.6584% of peak

According to the simulation, a sinusoidal waveform has an RMS value equal to 70.7088% of its
peak value and an average value equal to 63.6584% of its peak value.

Next we will replace the wave function’s sinusoidal code with code simulating a square wave
(shown below) and re-run the program (output shown below that):

float wave (float degrees)

{

if ((int)(degrees) % 360 < 180.0)

return 1.0;

if ((int)(degrees) % 360 >= 180.0)

return -1.0;

}

RMS = 100% of peak

Average = 100.003% of peak

Here we see how both the RMS and average values of a square wave are equal to its peak value.

Lastly, we will simulate a sawtooth waveform and repeat the test:

float wave (float degrees)

{

return (float)(((int)(degrees) % 360) - 180) / 180;

}

RMS = 57.7386% of peak

Average = 50.0026% of peak

Here we see the RMS value of a sawtooth wave is 57.7386% of its peak value, while the average
is one-half its peak.
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In addition to RMS, average, and peak (crest) values for AC waveforms, there are ratios
expressing the proportionality between some of these fundamental measurements. The crest factor

of an AC waveform, for instance, is the ratio of its peak value divided by its RMS value. The form

factor of an AC waveform is the ratio of its peak value divided by its average value.
Our C++ program may be modified to display both of these ratios quite easily by adding two

more cout lines, a partial code listing shown here:

cout << "Crest factor = " << vpk / dcv << endl;

cout << "Form factor = " << vpk / avg << endl;

Results for sine waves, square waves, and triangle waves are summarized here, respectively, from
three runs of this program (each with a different wave function):

Sine wave

RMS = 70.7088% of peak

Average = 63.6584% of peak

Crest factor = 1.41425

Form factor = 1.57089

Square wave

RMS = 100% of peak

Average = 100.003% of peak

Crest factor = 1

Form factor = 0.99997

Sawtooth wave

RMS = 57.7386% of peak

Average = 50.0026% of peak

Crest factor = 1.73194

Form factor = 1.9999

Theoretical crest- and form-factor ratios are
√
2 and π

2 for sine waves; 1 and 1 for square waves;√
3 and 2 for sawtooth and triangle waves.
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As mentioned at the beginning of this section, analog voltmeters and ammeters naturally respond
to the average value of whatever AC quantity being measured, not the RMS value. Since RMS
values are widely used in electrical power circuit measurements, analog instrument calibrations are
intentionally “skewed” to represent the RMS value rather than the average, assuming a sinusoidal
wave-shape. This “skewing” takes the form of artificially multiplying the analog instrument’s natural
response so that it registers more voltage or current than it naturally would, knowing that for a sine
wave the RMS value is more than the average value16.

Measurement errors arise when any analog instrument calibrated to register sinusoidal-RMS
values senses a non-sinusoidal waveshape, this error related to the ratio of crest to form factors (i.e.
the ratio of RMS to average value for that waveshape). A properly-calibrated AC analog voltmeter
or ammeter thus has an intentional calibration factor of π

2
√
2
(approximately 1.111) to make their

average-responding movements register the equivalent RMS value for a sine wave. In order to
compute the measurement error of an analog meter, we simply need to compare this ratio against
the actual average-to-RMS ratio of the waveform being measured. Once again, this is relatively easy
to do in C++, adding just one17 more cout line to the program.

To express error as a percentage deviation from some ideal value, we use the following formula:

Error =
Actual− Ideal

Ideal
× 100%

For our purposes in computing analog meter measurement error, the “actual” ratio of RMS to
average for the tested waveform will be coded as dcv / avg while the “ideal” is π

2
√
2
. Our added

code is shown below:

cout << "Analog meter error = " <<

((dcv / avg) - (M_PI / (2 * sqrt(2)))) / (M_PI / (2 * sqrt(2))) * 100 <<

"\%" << endl;

16It can become very confusing trying to figure out which way an analog instrument’s calibration needs to be
skewed in order to register RMS rather than average Volts or Amperes. A helpful problem-solving strategy is to
put numerical values to the problem, imagining a sinusoidal AC voltage with a peak value of 100 Volts energizing
both RMS-indicating and average-indicating meters. The RMS-indicating meter would read 70.71 Volts while the
average-indicating meter would read 63.66 Volts. Clearly, the average-indicating meter would have to have its reading
multiplied to match the RMS-indicating meter, and so this is a way to confidently conclude the need for a multiplying

factor (rather than a dividing factor) in the analog instrument to force it to register RMS values for a sinusoidal
voltage or current.

17This is a rather long line of code, so it is shown here split into three lines on the page. This is permissible in C
and C++ because these languages do not respect whitespace, instead relying on the semicolon character (;) to denote
the end of the code line.
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Re-running this program three more times (one for each waveshape) yields the following results:

Sine wave

RMS = 70.7088% of peak

Average = 63.6584% of peak

Crest factor = 1.41425

Form factor = 1.57089

Analog meter error = 0.00293172%

Square wave

RMS = 100% of peak

Average = 100.003% of peak

Crest factor = 1

Form factor = 0.99997

Analog meter error = -9.97102%

Sawtooth wave

RMS = 57.7386% of peak

Average = 50.0026% of peak

Crest factor = 1.73194

Form factor = 1.9999

Analog meter error = 3.96073%

As you can see here, our sinusoidal simulation results in a measurement error of practically
zero while the square wave simulation makes the analog meter register −9.97102% too low and the
sawtooth wave simulation makes the analog meter register 3.396073% too high.



Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

75
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Voltage

Electrical source

Electrical load

Alternating current

Direct current

Electromagnetism

Electromagnetic induction

Faraday’s Law of electromagnetic induction

Mutual induction

Wave
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Ohm’s Law

Joule’s Law

Kirchhoff’s Voltage Law

Kirchhoff’s Current Law

Period

Frequency

Wavelength

RMS

Phase
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6.1.3 Plotting a sine wave

Alternating current produced by electromechanical generators (or alternators as they are sometimes
designated) typically follows a sine-wave pattern over time. Plot a sine wave on the following graph,
by tracing the height of a rotating vector inside the circle to the left of the graph:

180o90o0o 270o 360o

90o

180o

270o

0o

To illustrate the principle here, I will show how the point is plotted for a rotation of 45o:

180o90o0o 270o 360o

90o

180o

270o

0o

45o

45o

You may wish to use a protractor to precisely mark the angles along the rotation of the circle,
in making your sine-wave plot.
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Challenges

• Explain how you could similarly plot a cosine wave.

6.1.4 Wire and insulation sizing

In calculating the size of wire necessary (i.e. the conductor’s “gauge” value) to carry sinusoidal
alternating current to a high-power load, which type of measurement is the best to use for current:
peak, average, or RMS? Explain why.

In calculating the thickness of wire insulation necessary to withstand sinusoidal alternating
voltage in a high-voltage power system, which type of measurement is the best to use for voltage:
peak, average, or RMS? Explain why.

Challenges

• Suppose we are selecting a rectifying diode to use in an AC-DC converter circuit. Which
parameter of the diode best relates to RMS, versus to peak, of the AC quantities being rectified?

• Suppose the AC frequency was extremely slow (e.g. 1 cycle per hour) rather than 60 Hz as is
typical for US power systems. Would this low frequency assumption change your answers to
these questions?
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6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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6.2.3 AC voltage oscillographs

Quantify the following parameters in this oscillograph of an AC voltage:

Time
0 10 ms 20 ms 30 ms 40 ms

+5 V

+10 V

-5 V

-10 V

0 V

• Period

• Frequency

• Amplitude
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Quantify the following parameters in this next oscillograph of an AC voltage:

Time
0 10 ms 20 ms 30 ms 40 ms

+5 V

+10 V

-5 V

-10 V

0 V

• Period

• Frequency

• Amplitude
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Quantify the following parameters in this next oscillograph of an AC voltage:

Time
0 10 ms 20 ms

+5 V

+10 V

-5 V

-10 V

0 V

• Period

• Frequency

• Amplitude

Challenges

• How would any of these oscillographs’ appearances change if the period increased?

• How would any of these oscillographs’ appearance change if the frequency increased?

• How would any of these oscillographs’ appearance change if the amplitude increased?

• Calculate the RMS value for each of these voltage waveforms.
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6.2.4 Radio wavelength

Radio waves are comprised of oscillating electric and magnetic fields, which radiate away from
sources of high-frequency AC at (nearly) the speed of light. An important measure of a radio wave
is its wavelength, defined as the distance the wave travels in one complete cycle.

Suppose a radio transmitter operates at a fixed frequency of 950 kHz. Calculate the approximate
wavelength (λ) of the radio waves emanating from the transmitter tower, in the metric distance unit
of meters. Also, write the equation you used to solve for λ.

Challenges

• A very common type of radio antenna is called a quarter-wave design, so named because of its
physical length compared to the wavelength of the radio waves emitted and/or received by it.
How long would this antenna need to be for this particular transmitter?

6.2.5 Load power at 50 Volts

Suppose a DC power source with a voltage of 50 Volts is connected to a 10 Ω load. How much power
will this load dissipate?

Now suppose the same 10 Ω load is connected to a sinusoidal AC power source with a peak

voltage of 50 Volts. Will the load dissipate the same amount of power, more power, or less power?
Explain your answer.

Challenges

• Does the shape of the AC voltage’s wave matter?
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6.2.6 RMS values from oscillographs

Determine the RMS amplitude of this sinusoidal waveform, as displayed by an oscilloscope with a
vertical sensitivity of 0.2 Volts per division:

Now determine the RMS voltage of this square-wave signal, as displayed by an oscilloscope with
a vertical sensitivity of 0.5 Volts per division:

Challenges

• Suppose after calculating the RMS values of these voltage signals, you subsequently discover
the oscilloscope’s probe was set for a 1:10 division ratio when you thought it was 1:1. How
would this affect your calculations, if at all?

• Explain why the timebase setting of the oscilloscope is irrelevant to the question of determining
RMS value.
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6.2.7 Phase shift from oscillographs

Identify the amount of phase shift between the sine and triangle waves, and also which one is leading
versus lagging :

Challenges

• Suppose after calculating the RMS values of these voltage signals, you subsequently discover
the oscilloscope’s probe was set for a 1:10 division ratio when you thought it was 1:1. How
would this affect your calculations, if at all?

• Explain why the timebase setting of the oscilloscope is irrelevant to the question of determining
phase shift.
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6.2.8 Oscillographs comparing sinusoids

Examine the following oscillographs, and from them determine the amplitudes of and phase shift
separating the two sinusoids, as well as their frequency and period. In each case the vertical axis
has a unit of Volts and the horizontal axis a unit of seconds :
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Challenges

• How can we tell both waveforms in each oscillograph have the same frequency, and why might
this fact be important to us?

6.2.9 D’Arsonval versus true-RMS meter measurements

Suppose two voltmeters are connected to source of “mains” AC power in a residence, one meter is
analog (using a D’Arsonval -style permanent magnet moving coil meter mechanism) while the other
is true-RMS digital meter. Both meters register 117 Volts while connected to the AC mains.

Suddenly, a large electrical load is turned on somewhere in the system, both reducing the mains
voltage and slightly distorting the shape of its waveform. The overall effect of this is average AC
voltage has decreased by 4.5% from where it was, while RMS AC voltage has decreased by 6% from
where it was. How much voltage does each voltmeter register now?

Challenges

• Calculate the peak value of the undistorted 117 Volt AC waveform.
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6.2.10 VOM versus DMM voltage measurements

Two voltmeters are connected in parallel to a signal generator, simultaneously measuring the voltage
output by that AC source. One meter is a Fluke model 87-III true RMS digital multimeter (DMM),
while the other is a Simpson model 260 volt-ohm-milliammeter (VOM). These two meters are shown
measuring three different voltage waveforms output by the signal generator: sine wave, square wave,
and triangle wave. In each case, the signal generator’s output amplitude has been adjusted to render
a measurement of 4 Volts on the VOM (set to the 10-Volt scale), while the DMM shows the RMS
value of that same voltage.

Identify which of these photographs was taken while measuring the sine-wave voltage, the square-
wave voltage, and the triangle-wave voltage:
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Challenges

• Sketch superimposed square, sine, and triangle waves all having the same peak values.
Compare these three wave-shapes and then comment on how their relative areas (i.e. the
“integration” over time, graphically equivalent to the area bounded by each wave and the zero
line) relate to a VOM’s measurement error.
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6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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6.3.1 Detecting AC mains distortion

The ideal wave-shape for AC voltages and currents in an electric power system is sinusoidal, because
that is what rotating generators naturally output. However, the presence of certain types of
“switching” loads in AC power systems tends to distort the naturally pure sinusoidal shape of
the system’s voltages and currents. These distortions may actually be harmful to certain system
components, a topic too complex to discuss here.

Explain how we may use a pair of voltmeters – one being a true-RMS digital voltmeter and
the other being a high-quality analog voltmeter – to tell whether or not the AC “mains” voltage
available at a power receptacle is distorted or not.

Challenges

• Identify a single instrument that would be able to answer this question for us, rather than two
voltmeters of different type.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

25 August 2024 – added another section to the Introduction chapter specifically for challenges
related to this module’s topic.

1 July 2024 – divided the Introduction chapter into two sections, one for students and one for
instructors, and added content to the instructor section recommending learning outcomes and
measures.

26 January 2024 – simplified the RMS/peak ratios described in the Tutorial.

25 July 2023 – added a Case Tutorial chapter with a section on building and using a sensitive
audio detector.

3 February 2023 – replaced all instances of “magnitude” with “amplitude” for better clarity.

25 January 2023 – corrected an error in image 4930 where the phase shift time was incorrectly
labeled. Also added some instructor notes.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

26 July 2022 – added “primary” and “secondary” labels to more transformer diagrams for clarity.

14 June 2022 – minor edits to the Tutorial section on quantifying AC, as well as to the Derivations
and Technical References section on musical pitch.

18 May 2022 – minor formatting changes made to the Tutorial chapter.

22 March 2022 – divided Tutorial into sections.
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8 May 2021 – commented out or deleted empty chapters.

18 April 2021 – changed all lower-case Greek letter “phi” symbols (φ) to upper-case (Φ).

5 February 2021 – added brief reference to transformers in the Tutorial as well as in the
Introduction.

27 January 2021 – minor clarifying edits to illustrations of wave parameters in the Tutorial, as
well as a new image added to the Tutorial showing tshift and tperiod clearly on the oscillograph.

28 October 2020 – minor additions to the Introduction chapter, and also to the “Wire and
insulation sizing”.

5 October 2020 – significantly edited the Introduction chapter to make it more suitable as a pre-
study guide and to provide cues useful to instructors leading “inverted” teaching sessions. Also,
made minor edits to the Tutorial.

20 April 2020 – added a another Programming Reference section using C++ to plot two sinusoidal
waveforms with their own phase shifts. Then, used this program to generate some oscillographs for
more Quantitative Reasoning questions.

22 March 2020 – added a Quantitative Reasoning problem comparing the displays of a DMM and
VOM for sine waves, square waves, and triangle waves. Also added another Programming Reference
section using C++ to simulate both the RMS and Average values of various AC wave-shapes, with
a discussion on analog instrument calibration and the errors encountered when measuring non-
sinusoidal waveforms.

9 March 2020 – complete Foundational Concepts section, and added discussion of phase into the
Tutorial.

8 March 2020 – document first created.
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