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Chapter 1

Introduction

1.1 Recommendations for students

Filters are extremely important networks in a variety of electrical and electronic circuits, used to
pass and block certain frequencies. Simple filter networks may be made from a single resistor and
a single capacitor, or from a single resistor and a single inductor, but higher-performing filters
will contain more than just two components. This module focuses on more advanced passive filter
network designs as well as active filters (incorporating electronic amplification).

Important concepts related to filters include capacitive reactance, inductive reactance,
effects of opens versus shorts, voltage divider networks, cutoff frequency, parasitic properties,
resonance, Bode plots, roll-off, decibels, fundamental frequency, harmonic frequency,
exponential functions, real versus imaginary versus complex numbers, gain, impedance,
quadratic formula, source versus load, balanced versus unbalanced signals, , and .

Due to the heavy application of math (in the form of transfer functions), the reader is urged
to apply the mathematical principles as soon as possible. The examples contained in the tutorial
showing how transfer functions, poles, and zeroes are derived from basic filter networks serves this
purpose well, as they provide opportunities to see if you can derive the functions yourself and then
check the correctness of your work against the final results shown. Do not simply read a mathematical
example and assume you understand it just because nothing in the presentation seemed confusing.
Until you can perform the analysis yourself without assistance, you haven’t mastered it!

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to gather enough data to sketch a Bode
plot for a filter network having unknown characteristics? What hypothesis (i.e. prediction)
might you pose for that experiment, and what result(s) would either support or disprove that
hypothesis?

• How might an experiment be designed and conducted to measure the input impedance of a
filter network? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

3
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• In what form do inductors store energy?

• In what form do capacitors store energy?

• How does the problem-solving technique of “limiting cases” help us understand filter networks?

• What are some practical applications of filter networks?

• How is “cutoff frequency” defined for a filter network?

• Why are capacitors usually favored over inductors for creating filter networks?

• What is “resonance” and how does it manifest in both electrical and mechanical systems?

• How does a Bode plot differ from an oscillograph?

• How does a pole-zero plot differ from a Bode plot and also an oscillograph?

• What does “roll-off” mean for a filter network?

• How may the roll-off rate of a filter be made more perfect?

• What are some compromises that often accompany increased roll-off for a filter?

• What does the phrase “brick wall” mean for the response of an ideal filter network?

• How do “L”, “T”, and “π” filter network topologies differ from one another?

• What is a “zero” within an electrical network, and what practical meaning does this term
have?

• What is a “pole” within an electrical network, and what practical meaning does this term
have?

• What does it mean if a complex frequency has a real value of zero?

• What does it mean if a complex frequency has a real value that is positive?

• What does it mean if a complex frequency has a real value that is negative?

• How does one add algebraic fractions with dissimilar denominators?

• What differentiates complex frequency from simple frequency in an AC circuit?

• What does it mean to scale a value?

• What does the “order” value of a filter network represent?

• What advantages do active filters have over passive filters?

• What advantages do passive filters have over active filters?

• How might an experiment be designed and conducted to gather enough data to sketch a Bode
plot for a filter network having unknown characteristics?
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1.2 Challenging concepts related to complex filter networks

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Reasoning from trusted principles – many students enter college-level study of electronics
with an educational background stressing rote memorization at the expense of logical reasoning
from trusted principles, and as such tend to find circuit analysis daunting where there is no
single procedure or single formula always yielding the correct answer(s). These students also
try to rote-memorize circuit configurations rather than use logic to determine what each of
those configurations does. In the case of simple filter networks the tendency is to try to
memorize the component positions and associate them with labels such as “high-pass”, “low-
pass”, etc. A much better approach is to view each new filter network from the perspective
of a voltage divider when subjected to signals of different frequency, using general principles
of “opens” and “shorts” to conclude the effects on the output signal as frequency values go
to extremes (i.e. DC versus super-high frequency). In other words, apply the problem-solving
strategy of limiting cases to every filter circuit so as to figure out its function rather than try
to memorize it!

• Decibels – “decibels” are an attempt to express power ratios (i.e. power gains or attenuation
factors) logarithmically rather than linearly, and as such they tend to generate confusion for
students less familiar (or unfamiliar) with exponential and logarithmic functions.

• Practical filter applications – Bode plots show how filter circuits respond to inputs of
changing frequency, but this is not how filters are typically used in real applications. Rarely
does one find a filter circuit subjected to only one particular frequency at a time – usually
a simultaneous mix of frequencies are seen at the input, and it is the filter’s job to select a
particular range of frequencies to pass through from that simultaneous mix. Understanding
the superposition theorem is helpful for comprehending practical filter applications.

• Transfer function pole – a “pole” in any transfer function is some value of s where that
function’s value (i.e. the gain of the system) goes to infinity. This is where we have an output
signal even with no input signal, usually the result of some energy-storing component in the
system releasing its energy from a prior moment in time where we did have an input signal to
charge it up with energy, s representing the complex frequency of that output signal.

• Transfer function zero – a “zero” in any transfer function is some value of s where that
function’s value (i.e. the gain of the system) goes to zero. This is where we get no signal out
of the system even with signal coming in, s representing the complex frequency of that input
signal.

• Complex frequency – if a complex number is used as an exponential value (i.e. e raised
to the power of a complex number), the “real” portion of that complex number represents
a growth/decay rate while the “imaginary” portion of that complex number represents a
sinusoidal oscillation rate. Specifically s = σ + jω where s is the complex number, σ is
the growth/decay rate, and ω is the oscillation rate. The proper unit of measurement for both
is “per second” which is equivalent to “radians per second” for the oscillation rate.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by the author in the
Tutorial chapter’s examples.

• Outcome – Design a multi-order passive filter network

Assessment – Sketch a schematic diagram and choose component values for a multi-order
filter with a given characteristic and polynomial type (e.g. third-order, low-pass, Butterworth).

• Outcome – Independent research

Assessment – Locate filter network datasheets (e.g. SAW-type filters) and properly
interpret some of the information contained in those documents including pass characteristic(s),
frequency ranges, power ratings, etc.

Assessment – Read and summarize in your own words reliable source documents on the
subject of filter design. Recommended readings include tutorials and primers published by
electronic component manufacturers.

Assessment – Download and run filter-design software (or use web-based applications) to
choose components and topologies for various filter types.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7
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2.1 Example: 3rd-order low-pass filter design

Design parameters:

• Low-pass characteristic

• Ladder topology, unbalanced

• 3rd order Butterworth response

• fcutoff = 15 kHz

• Zin and Zload = 50 Ω

Schematic diagram:

0.2122 µF 0.2122 µF

1.061 mHTo signal source
with 50 Ω Zout

To 50 Ω load

Filter network

SPICE analysis:

frequency

10^3 10^4 10^5 10^6

Hz

10^-6

10^-5

10^-4

10^-3

0.01

0.1

1

V vm(3)
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2.2 Example: 4th-order high-pass filter design

Design parameters:

• High-pass characteristic

• Ladder topology, balanced

• 4th order Butterworth response

• fcutoff = 70 kHz

• Zin and Zload = 100 Ω

Schematic diagram:

To signal source

Filter network

0.2972 mH 0.1230 mH

24.61 nF

24.61 nF

59.44 nF

59.44 nF
with 100 Ω Zout

To 100 Ω load
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Chapter 3

Tutorial
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3.1 Phasor analysis review

When analyzing any AC circuit, it is not enough to simply quantify every voltage and current in
terms of amplitude (e.g. how many Volts or Amperes) as we do in DC circuits. Instead, we must
consider both the amplitude of each signal as well as the amount of phase shift separating them.
A mathematically elegant way of accomplishing both is to use complex numbers which may be
expressed either in rectangular form (e.g. a+ jb) or polar form (e.g. m 6 θ). When we use complex
numbers to represent any AC circuit quantity, we call that value a phasor.

An illustrative example is how we characterize the impedance of passive components. Resistors
function by dissipating energy in the form of heat, with voltage and current waveforms being perfectly
in-phase. Inductors and capacitors, however, function by absorbing and releasing energy rather than
dissipating, and as such we find voltage and current waveforms shifted by one-quarter of a cycle (i.e.
90o) for each, voltage leading current for an inductor and voltage lagging current for a capacitor:

time
P P

V

I

V I

R
V

I I

V
L

time
P

VI

I

V

time

C

ZR = R ∠  0o ZL = XL ∠  +90o ZC = XC ∠  -90o

V leads I by 90 degreesV and I are in-phase V lags I by 90 degrees

ZR = R + j0 ZL = 0 + jXL ZC = 0 - jXC

Graphical expressions of complex-number resistance and reactance values are called phasor
diagrams. Three such diagrams illustrate the difference between a 50 Ω resistor versus an inductor
having 50 Ω of reactance and a capacitor also having 50 Ω of reactance. Each has 50 Ohms of
impedance, but each of these impedances has a different phase angle defined by the phase shift
between the component’s voltage and current:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠  0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠  -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠  90o

ZL = 0 + j50 Ω
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The ratio of voltage to current in a DC network is resistance (R = V
I ), and in an AC circuit where

phase shifts exist is impedance (Z = V
I ). Both are measured in unit of the Ohm (Ω). The ratio

of current to voltage is the reciprocal of these quantities: for DC networks we call it conductance
(G = I

V ) and for AC it is known as admittance (Y = I
V ). We measure both in the unit of Siemens1

(S).

Some examples2 of component impedances and admittances are shown here:

• A 570 Ω resistor at any frequency will have the following impedance and admittance values:

Z = 570 Ω 6 0o (polar form) = 570 + j0 Ω (rectangular form)

Y = 0.0017544 S 6 0o (polar form) = 0.0017544 + j0 S (rectangular form)

• A 3.5 H inductor at a frequency of 120 Hz will have the following impedance and admittance
values:

Z = 2.639 kΩ 6 +90o (polar form) = 0 + j2.639 kΩ (rectangular form)

Y = 0.00037894 S 6 −90o (polar form) = 0 − j0.00037894 S (rectangular form)

• A 0.01 µF capacitor at a frequency of 3 kHz will have the following impedance and admittance
values:

Z = 5.305 kΩ 6 −90o (polar form) = 0 − j5.305 kΩ (rectangular form)

Y = 0.00018850 S 6 90o (polar form) = 0 + j0.00018850 S (rectangular form)

The utility of phasor representation in AC circuits is that with all signal and component values
expressed in phasor form we find most of the foundational principles learned for DC circuit analysis
still apply in AC circuits. Quantities that add in series DC networks (e.g. voltage V , resistance
R) add as phasor quantities in AC networks (e.g. voltage V , impedance Z); additive quantities
in parallel DC networks (e.g. current I, conductance G) add as phasor quantities in AC networks
(e.g. current I, admittance Y ). With phasor quantities, Ohm’s Law, Kirchhoff’s Voltage Law, and
Kirchhoff’s Current Law still hold true in AC networks just as they do for DC.

1Prior to the adoption of German engineer Werner von Siemens’ surname as the unit of measurement for
conductance and admittance, the unit of the Mho served quite well. This, of course, was a sort of pun on the
spelling of Ohm, since “mho” is “ohm” spelled backwards, intended to represent the fact that the reciprocal of any
Ohm value yields a value in Mhos.

2Try calculating these impedance and admittance values from the given component values, to check your
understanding. This is a good learning strategy to apply when reading any mathematical text: work through the
presented examples on your own to see if you achieve the same results! Please note that when you apply either the
XL = 2πfL formula or the XC = 1

2πfC
formula using your calculator to compute reactance, the result will only be a

reactance value and not a (complex) impedance value. In order to attach the desired phase angle to your computed
reactance value, you will have to perform the additional step of multiplying that reactance by a unit phasor which is
nothing more than the quantity of 1 with the correct phase angle. For example, a capacitive reactance of 5.305 kΩ
would be multiplied by 1 6

−90o to yield a capacitive impedance of 5.305 kΩ 6
−90o.
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It is equally valid to express any phasor quantity in either polar or rectangular form. However,
unless we have access to an electronic calculator capable of performing complex-number arithmetic,
we find certain arithmetic operations much easier to perform with one notation more than the
other. Specifically, addition and subtraction are simplest when phasors are in rectangular form,
while multiplication and division are simplest when phasors are in polar form.

Addition of rectangular-form complex numbers consists simply of adding their real components
together to find the real component of the sum, and doing the same with the imaginary components.
Expressing this algebraically, (a+ jb) + (x+ jy) = (a+ x) + j(b+ y). Subtraction follows much the
same pattern: (a+ jb)− (x+ jy) = (a− x) + j(b− y).

Here are some practical examples of rectangular-form phasor arithmetic where the calculations
are simple enough to perform without a calculator:

ZR = 7 + j0 Ω

ZC = 0 - j5 Ω

ZL = 0 + j4 Ω

Zseries = 7 - j1 Ω

YR = 3 + j0 S

YL = 0 - j1 Ω

Yparallel = 3 + j4 S

YC = 0 + j5 S

Series impedances Parallel admittances

Multiplication of polar-form complex numbers consists simply of multiplying their magnitudes
together to find the magnitude of the product, and adding the angles to find the angle of the product.
Expressing this algebraically, (a 6 b) × (x 6 y) = (a × x) 6 (b + y). Division follows a similar pattern:
(a 6 b)÷ (x 6 y) = (a÷ x) 6 (b− y).

Here are some practical examples of polar-form phasor arithmetic where the calculations are
simple enough to perform without a calculator:

3 R

R

4:1 voltage divider

24 V ∠  -71o

6 V ∠  -71o

6 A ∠  30o

2 Ω ∠  -17o

12 V ∠  13o

Voltage drop across an impedance
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When analyzing AC circuits without the use of a complex-number calculator, we invariably
must convert between rectangular and polar forms in order to prepare the phasor values for
addition/subtraction or multiplication/division, respectively. Both conversions are most easily
understood in terms of a right triangle, seeing the rectangular form’s real and imaginary components
as the adjacent and opposite sides, and the polar form’s magnitude and angle as the hypotenuse:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Converting rectangular (x+ jy) into polar (A6 θ):

A =
√

x2 + y2 θ = arctan
y

x

Converting polar (A6 θ) into rectangular (x+ jy):

x = A cos θ y = A sin θ

Some cautionary notes are in order here. First, I highly recommend storing all computed values
in your calculator’s memory rather than re-entering them manually, because you will find even slight
rounding errors tend to become exaggerated with trigonometric functions. Second, when computing
the phase angle (θ) from real and imaginary quantities (x and jy) be careful to verify the angle
against your qualitative expectations. For example, 5 + j5 = 7.0716 45o and −5− j5 = 7.0716 225o,
but you’ll find arctan −5

−5 yields the same result (45o) as arctan 5
5 because −5

−5 = 5
5 . To put it simply,

the arc-tangent function does not “know” whether the phasor exists in the first or in the third
quadrant of the complex plane.

Here are some rectangular and polar equivalents, useful for practice as you master these concepts:

20− j11 = 22.836 − 28.81o 11.49 + j9.642 = 156 40o

−10 + j2 = 10.206 168.7o − 11.82− j2.084 = 126 − 170o
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3.2 Basic filter networks

A filter network is a collection of electrical (and sometimes electronic) components designed to
separate different ranges of frequencies from each other in a complex signal consisting of multiple
frequencies. An every-day example of signal filtering is in the bass and treble controls of an audio
amplifier system, giving the listener control over the intensity of low-frequency (bass) and high-
frequency (treble) tones in the amplified music. Specifically, the bass adjustment regulates the degree
to which low-frequency signals get passed along to the loudspeaker, while the treble adjustment
regulates the degree to which high-frequency signals get passed along to the loudspeaker.

Filter circuits may be classified as one of four types, based on the range of frequencies intended
to pass or block. In the following Bode plots we see the ideal “brick wall3” response of each filter
type (dashed red) overlaid on more realistic filter response curves (bold blue):
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Cutoff frequency is defined as that frequency value at which the signal is reduced to
√
2
2 of the

input signal’s strength, based on the output signal magnitude of a simple RC or LR filter network
when X = R. Any frequency resulting in an output signal stronger than this is within the filter’s

3This rather colorful description of ideal filter response evokes the image of an impenetrable wall completely
stopping the passage of certain signal frequencies.
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passband, with all other frequencies lying in the filter’s stopband. Roll-off is the rate at which a
filter’s cutoff changes with frequency, essentially the “steepness” of its Bode plot. Filters with high
roll-off are more selective, but typically that increase in selectivity is realized only by unequal passage
of signals at slightly different frequencies within the filter’s “passband” (i.e. a passband response
that is not flat). An ideal filter has a perfectly flat passband and infinite roll-off.

Elementary realizations of each filter type using passive components (resistors, capacitors, and/or
inductors) appear below as networks sketched amidst the Bode plots:
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Filter networks such as these behave as frequency-dependent voltage dividers, the voltage-division
ratio depending on the impedance of its reactive components, with inductive reactance being directly
proportional to frequency (XL = 2πfL) and capacitive reactance being inversely proportional to
frequency (XC = 1

2πfC ).
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A good way to approach the analysis of any passive filter network is to imagine how it will
change when subjected to extremely high and extremely low signal frequencies, an application of
the limiting cases method of problem-solving. For example, in the following illustration we see the
four basic types of filters subjected to an input signal frequency of zero Hertz(i.e. DC), causing each
of the capacitors to act as an “open” and each of the inductors to act as a “short”:
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The position of the red dot along the Bode plot shows how much output voltage there would be
when the input signal has a frequency of zero. Performing this same open/short “limiting cases”
analysis at some extremely high frequency where all capacitors act as shorts and all inductors
as opens allows us to conceptually grasp each filter’s behavior at the other end of the frequency
spectrum. This is left as an exercise to the reader, and it is a profitable one when you are new to
the topic of filter networks!
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The “cutoff” frequency (fc) of simple RC and LR filter networks is conventionally defined as
that frequency at which the reactive component’s reactance (either XC or XL) equals the resistor’s
resistance. If we set resistance (R) equal to reactance (2πfL for an inductor, and 1

2πfC for a

capacitor) and then solve each equation for fc, we will arrive at the formulae used to predict cutoff
frequency for simple RC and LR filter networks:

R = 2πfcL R =
1

2πfcC

fc =
R

2πL
fc =

1

2πRC

For simple LC band-pass and band-stop filter networks, the “center” frequency representing
the peak of the pass-band and the valley of the stop-band is calculated simply by the resonant
LC frequency formula. This is the frequency value at which a series LC network has zero total
impedance (together acting as a short) and a parallel LC network has infinite impedance (together
acting as an open):

f =
1

2π
√
LC

All of these formulae, of course, assume perfect components with no parasitic properties, a
source having negligible Thévenin impedance, and no load connected to the filter network’s output
terminals.
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3.3 Output-limited filter networks

Installing an extra resistor into simple RC and LR low-pass and high-pass networks results in the
output signal being limited in various ways. First, we have RC filter networks with limited outputs:

Standard low-pass Low-limited low-pass High-limited low-pass

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Next, LR filter networks with limited outputs:

Standard low-pass Low-limited low-pass High-limited low-pass

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Limiting cases once again enables us to see how and why each of these filter network designs
performs as it does. Simply imagine each of these networks at extremely low and extremely high
frequencies, determine if the reactive component in each acts more like a short or like an open,
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and then based on those determinations figure out how much signal voltage will be output by the
network.

High-pass RC filter networks may also be constructed in similar manner by strategically adding
a second resistor:

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Standard high-pass Low-limited high-pass High-limited high-pass

And, of course, inductor-based versions of these same output-limited high-pass circuits exist as
well:

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Standard high-pass Low-limited high-pass High-limited high-pass
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Output-limited filter networks are frequently used in electronic systems employing negative
feedback, where a signal-boosting system (called an amplifier) re-directs part of the boosted output
signal back around to the amplifier’s input as a means of improving certain performance criteria such
as stability. Often a filter network is placed within this feedback “loop” to favor some frequencies
over others, but if some of those un-favored frequencies are completely cut off by the filter the system
may become unstable for those excluded frequencies.

Here is a visual example of an amplifier system using negative feedback with standard high-pass
filtering in the feedback loop:

Amplifier

Output

Input 1

Input 2

Weak signal in

Boosted signal out

Feedback loop

High-pass filter

Unfortunately, this feedback system will cause trouble for the amplifier because it completely
blocks all DC (zero-frequency) signals from being fed back to Input 2. This will mean that the
amplifier cannot naturally stabilize itself for DC signals using negative feedback as it can for AC
signals. The solution is to modify the filter network to have a low-limited characteristic so that at
least some of the DC signals are able to reach Input 2:

Amplifier

Output

Input 1

Input 2

Weak signal in

Boosted signal out

Feedback loop

High-pass filter
(modified)
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3.4 Balanced versus unbalanced filter networks

So far all of the basic filter networks shown have electrically-common terminals shared between
input and output, this pair of terminals typically connected to ground. Voltage signals referenced
to a common point in a circuit called “ground” are known as ground-referenced, single-ended, or
unbalanced voltage signals:

Low-pass RC filter High-pass RC filter

Ground Ground

R

C R

C

However, not all voltage signals are referenced to ground. Some are measured between two non-
grounded points, and are called differential or balanced voltage signals. Filter networks designed to
be used in such applications must impose the same amount of impedance in series with each line,
and so the series-connected component must be replaced by two equal-valued components as shown
here:

Low-pass RC filter High-pass RC filter

C R

1/2R

1/2R
2C

2C

In order to maintain the same cutoff frequency as the unbalanced version, each balanced filter
network must have its series components sized such that two in series produced the same amount
of series impedance as one in the unbalanced filter network. For the RC low-pass filter this means
having two resistors of half the value (each) as the single resistor in the unbalanced filter, because
two identical resistors connected in series with each other add to make double their resistance in
total. For the RC high-pass filter this means having two capacitors twice the value (each) as the
single capacitor in the unbalanced filter, because two identical capacitors connected in series with
each other diminish to make half their capacitance in total.
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3.5 Filter network topology

Generally speaking, the manner in which a particular filter network’s components interconnect is
referred to as its topology – literally, the shape of the filter network as it appears on a schematic
diagram. Balanced and unbalanced variants of otherwise identically-performing filter networks is
one example of a topological difference, but there are actually a wide range of filter topologies for
any given filtering characteristic. Consider the following low-pass LC filter variations, shown in both
unbalanced (left) and balanced (right) forms:

Input Output Input Output"L" topology

Unbalanced version Balanced version

Input Output "T" topology Input Output

"π" topologyInput Output Input Output
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3.6 Improving roll-off

Most filter networks exhibit a relatively flat “passband” and a sloped “stopband” where the signal
progressively attenuates at frequencies further away from the “cutoff” frequency. The rate at which
the output signal’s strength “rolls off” toward zero is called the roll-off for any given filter network.
For simple filter networks consisting of a single resistor and a single reactive component (capacitor
or inductor), this rate of roll-off is −20 dB per decade, which means for every ten-fold change in
frequency the output voltage becomes ten times weaker (i.e. −20 dB)4.

We may see this −20 dB/decade roll-off in the following Bode plots created using SPICE5,
showing a low-pass (left) and a high-pass (right) filter network each with a 10 kHz cutoff frequency.
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At the 10 kHz point we see the output voltage of each filter diminished from its maximum of

1 Volt to approximately 0.7 Volts (
√
2
2 Volts to be exact) which is the conventional definition of

“cutoff” for a filter network. Each filter’s roll-off profile appears as a straight line thanks to both
the vertical and horizontal axes of the Bode plot being scaled logarithmically, commonly referred to
as a “log-log” plot style. These filter simulations have been configured to make it easy to see the
−20 dB per decade rolloff slope, the output voltage clearly diminishing by a factor of 1

10 for every
10-fold change in frequency.

Obviously, the sloped “roll-off” response of these filter networks falls short of the ideal “brick-
wall” filter response where no signals with frequencies in the stop-band make it through the network.
This is simply impossible using passive components such as resistors, capacitors, and/or inductors.
However, it is possible to approach ideal behavior by building more complex networks having more
reactive components, the values of those additional components carefully chosen to yield the best
filtering characteristics for our application.

4A ten-fold attenuation of power is −10 dB. A ten-fold attenuation of voltage, however, is −20 dB.
5In each case the filter network consisted of a 635 nF capacitor and 25 Ohms of resistance, for a cutoff frequency

of 10.0255 kHz. To generate a plot with both horizontal and vertical axes plotted logarithmically, the NGSPICE
command plot loglog vm(2) was used to plot voltage at output node number 2.
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For example, compare the following low-pass filter networks, each successive network having one
more reactive component than the previous:

R1

C1
First-order filter

R1

C1

Rload

Rload

L2

Second-order filter

R1

C1 Rload

L2

Third-order filterC3

fcutoff

fcutoff

fcutoff

-3 dB

-3 dB

-3 dB

The subscript numbers on each of these components denote which order of filtration it contributes
to. Here, the term “order” refers to the mathematical order of polynomial function6 describing the
behavior of each filter network. Just as polynomial algebraic functions of higher order exhibit sharper
curvatures when graphed, filters with transfer functions of higher order may achieve steeper roll-offs.
A simpler explanation is that the “order” of a filter network is usually7 just the number of reactive
components within it. Note how the third-order filter shown above contains two capacitors and
one inductor (2 + 1 = 3), and how the second-order filter contains one capacitor and one inductor
(1 + 1 = 2).

6A filter whose transfer function only contains an s term is first-order, while a filter with a transfer function
containing an s2 term is second-order, and so on.

7This is not always true. For example, if you need a capacitor with a non-standard value and need to combine two
or more of them in some series/parallel arrangement to achieve that special capacitance value, that sub-network of
capacitors would still just count as one capacitance from the perspective of filter order. Another example is in filter
designs using series and/or parallel LC sub-networks in which an inductor and capacitor together contribute to just
one of the filter’s orders. In general, though, the order number and the number of reactive components are directly
related: building a higher-order filter usually requires more capacitors/inductors to be added.
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Beyond increasing the number of reactive components in a filter network to achieve steeper roll-
off, there is also a broad range of options for component values within any given circuit. Some
combinations of component values, for example, yield a “flat” passband response and modest roll-off
rate. Other combinations may be chosen, though, that achieve a steeper roll-off rate at the expense
of a unstable passband or stop-band. The mathematics involved with filter design are quite complex,
but over many decades several “recipes” for component selection have been standardized according
to their mathematical forms. Five of the most popular include the Bessel, Butterworth, Inverse
Chebyshev, Chebyshev, and Elliptic, listed in order of least-aggressive to most-aggressive roll-off rate
for a given order. The following graph compares these responses, each one showing the Bode plot
for a 5th-order low-pass filter having a cutoff frequency of 10 kHz:

As is evident by this comparative plot, the Bessel filter exhibits a gradual attenuation from the
very start, the output signal gradually drooping in strength to −3 dB at 10 kHz and becoming
progressively weaker beyond that. The Butterworth filter maintains full output signal strength until
somewhere around 8 kHz, rolling off more rapidly than the Bessel after that. The two types of
Chebyshev filters achieve even steeper roll-off rates, but only by compromising smooth response
either in the passband (Chebyshev) or in the stop-band (Inverse Chebyshev), which we commonly
refer to as ripple. The Elliptic filter achieves the most aggressive roll-off rate of them all, but
“ripples” significantly in both the passband and the stopband.
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It is worth noting that the substantial differences in frequency response is often a matter of
component values alone. For example, three of the five filter types shown in the previous comparative
plot (Bessel, Butterworth, and Chebyshev) have identical schematic diagram forms – three parallel
capacitors and two series inductors each – differing only in their capacitor and inductor values. This
is to say, one cannot easily identify a filter’s response type by mere examination of its schematic
diagram!

As we have seen, the pursuit of steeper roll-off rates may require compromise in some of the
other traits of a filter, such as the consistency8 of its passband and/or of its stopband. What has
not been discussed so far, however, are some of the other traits such as these:

• Phase – this refers to the phase shift between output and input at any given frequency,
usually plotted as a frequency-domain function (i.e. phase shift on the vertical axis versus
signal frequency on the horizontal)

• Step response – this refers to the time-domain plot of a filter’s output signal when its input
is the rising edge of a perfect square wave

• Group delay – this is related to, though not identical to, the time delay experienced by a
signal propagating through a filter network

For most applications the primary characteristic for any filter network is its ability to exclude
certain signal frequencies while passing others, but these other characteristics may be quite important
as well. For example, if a filtered signal is compared, mixed, or otherwise processed along with either
the original (unfiltered) signal or a signal filtered by a different network from the same original signal,
phase shift and group delay effects may significantly affect the outcome. Likewise, if a filter network
routinely experiences transient (pulse) signals at its input, a “rippling” step response could be
problematic.

With all these criteria to consider, and the mathematics of filter behavior being so complicated,
practical filter design is usually a task requiring special-purpose filter-design computer software.

8This trait is sometimes referred to as monotonicity, a “monotonic” function being one where the sign of the
slope never reverses. A low-pass filter with a monotonic response, for example, will always output less as frequency
increases, and never go in the other direction. Filters with “ripple” in their Bode plots are non-monotonic in that
their outputs rise and fall as frequency varies in the same direction over certain ranges.
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3.7 Filter transfer functions

A mathematical tool used to describe the behavior of all kinds of systems, but especially filter
networks, is something called a transfer function. This is conceptually similar to gain – being the
ratio of a system’s output to its input – but what makes transfer functions unique is that they are
always mathematical functions of a variable named s rather than being constant values as gains often
are. In order to understand what a transfer function represents, we must first familiarize ourselves
with s. After that, we will apply this concept to all the basic forms of filter networks (low-pass,
high-pass, band-pass, and band-stop) so you may learn by example.

To begin, we will review the concept of reactance, which is the degree to which a component
opposes the flow of alternating current (AC) by way of storing and releasing energy. Reactance is a
mathematical function of frequency (f), which means its value varies as frequency varies. A common
way to denote the dependence of one variable on another is to show the dependent variable followed
by the influencing variable in parentheses. Thus, if we want to express the fact that reactance
(X) is a function of frequency (f), we could simply write X(f) and say “reactance is a function of
frequency”. This dependence is also shown by the well-known inductive and capacitive reactance
formulae, by virtue of the simple fact that reactance is written on the left-hand side of the “equals”
symbol and frequency is found on the right-hand side of each:

XL = 2πfL XC =
1

2πfC

If we specify signal frequency in units of radians per second rather than cycles per second, we
label it as ω (i.e. “angular velocity” or “natural frequency”) and are able to more simply express
reactance as a function of ω, because there are 2π radians in every full cycle (i.e. ω = 2πf):

XL = ωL XC =
1

ωC

With the introduction of the imaginary operator (i or j, both equal to
√
−1) these reactance

functions now describe the complex impedance of an inductor and a capacitor, respectively, which
means we use Z to express the result rather than X:

ZL = jωL ZC =
1

jωC

Impedance is a more complete description of a component’s opposition to the passage of current
than reactance, and it may be algebraically combined with resistance (which is always a real quantity)
to analyze the steady-state behavior of AC networks. Some readers may be more familiar with the
“polar” representations of inductive and capacitive impedance, where the imaginary (j) aspect shows
as a phase angle either pointed straight up (90o) or straight down (270o) on a phasor diagram:

ZL = (2πfL) 6 90o ZC =

(

1

2πfC

)

6 270o

Unfortunately, though, these “shorthand” notations for phase angle don’t lend themselves to
algebraic manipulation, and so ZL = jωL and ZC = 1

jωC are the more mathematically useful forms.
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One more extension is to represent not only the frequency of the signal (ω) and the imaginary
operator (j) but also a new factor describing the growth/decay rate9 of the electrical signal symbolized
by the variable σ:

ZL = (σ + jω)L ZC =
1

(σ + jω)C

This growth/decay rate is useful not only for describing DC signals that rise and fall exponentially,
but also AC signals whose amplitude envelopes similarly rise and fall exponentially. For the sake of
convenience, the real quantity σ and the imaginary quantity jω are combined into a single complex
variable named s, and with this new variable we may completely describe a component’s opposition
to growing/delaying and/or alternating currents in a very simple form:

ZL = sL ZC =
1

sC

The utility of s as the independent variable is that we may predict the impedance of any inductor
or capacitor for not just steady-state sinusoidal signals but also for decaying or growing DC signals,
as well as for decaying or growing sinusoidal signals. This gives us a more complete mathematical
description of any network containing inductors and/or capacitors. When applied to filter networks,
it means we may describe the network’s filtering behavior over a wide range of possible signal
conditions.

9Also known as the Neper frequency, since it is expressed in units of inverse time (reciprocal of seconds) just like
ω and f . For those familiar with the concept of a time constant (τ), you will be pleased to learn that σ = 1

τ
.
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Complex frequency is, well, complicated to understand and so deserves some elaboration. Below
we see an illustration showing various electrical signals (e.g. voltages) described by different
combinations of σ and ω values:

timetimetime

timetime

Zero frequency Low frequency High frequency

timetimetime

(ω = 0) (ω > 0) (ω >> 0)

Constant amplitude
(σ = 0)

Exponential growth
(σ > 0)

Exponential decay
(σ < 0)

time

Frequency directly follows the value of ω, with ω = 0 representing a DC condition. A steady-state
condition of either DC or AC happens when σ = 0. When σ is positive, the signal’s amplitude grows
exponentially; when σ is negative, the signal’s amplitude decays in inverse-exponential fashion.
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The value of s by itself merely describes the characteristics of a signal over time. However, if
we know how various components respond to s we have a way to describe how entire networks of
those components will respond to applied signals. Resistors, of course, always exhibit a constant
opposition to current regardless of growth/decay rate or frequency, and so we will find that s does
not appear as an independent variable for ZR as it does for ZL and ZC :

ZR = R ZL = sL ZC =
1

sC

All the properties of series and parallel networks become useful for combining individual
component impedances to arrive at total network impedance, and also to write equations based
on viewing the circuit as a voltage or current divider.

With this we (finally) arrive at the subject of this section: a transfer function is simply the ratio
of any linear system’s output compared to its input, expressed as a function of s. Readers familiar
with electronic amplifiers may recognize a similar concept known as gain, but the difference between
gain and transfer is that gain is typically a fixed quantity for the circuit in question, in the case of
amplifiers usually determined by resistor values. When the gain in question varies as a function of
signal frequency and/or growth/decay rate, though, and we are able to express it as a mathematical
function with s as the independent variable, we have a powerful tool for analyzing the behavior of
that system over a wide range of signal conditions.

Filter networks are excellent candidates for characterization by transfer function, because we
know the impedance of reactive components varies with frequency (ω) as well as with growth/decay
rate (σ). In order to derive the transfer function for any given filter network, we must describe
the impedance of its components in terms of s and then write a “gain” equation (or, more often, a
“voltage divider” equation) describing how the output signal compares to the input signal.

Transfer functions are often expressed as capital-letter functions of s, such as H(s), G(s), or
T (s). We will regard each filter network as a voltage divider when deriving its transfer function:

SystemInput Output

T(s) = 
Output(s)

Input(s)

Filter
networkVin Vout

G(s) = 
Vout(s)

Vin(s)

In following subsections we will see examples of transfer functions derived for several different
filter networks. For each one the general strategy is to express the impedance of each component as
a function of s, and then write an equation for the network’s output and input voltages viewing the
network as a voltage divider. Good advice for readers is to peruse these examples to recognize the
techniques applied in each case, and then try to do them on your own. Remember that you have not
mastered any concept until you can correctly and reliably apply it on your own without assistance!

You will find that most of the “work” in writing a transfer function consists of properly reducing
rational (i.e. fraction-based) expressions to their simplest form.
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3.7.1 Transfer function poles and zeros

Two terms commonly use to describe characteristics of transfer functions are poles and zeros. These
describe values of s resulting in either infinite gain or zero gain, respectively. Any value of s
resulting in no output from the system is called a zero of that transfer function, mathematically
being any condition resulting in a zero-value numerator10. Conversely, any value of s resulting in
the denominator of the transfer function being zero is called a pole. A “zero” means a particular
input signal condition where nothing exits the filter network; a “pole” means a particular condition
where the network is able to output any amount of signal despite having no input signal. At first
you may think that a “pole” condition is impossible for an electrical filter network, since how can a
passive network generate an output signal with no input signal? If we consider the ability of reactive
components to store and release energy, however, we see how such a thing could happen: imagine the
capacitor(s) and/or inductor(s) of a filter network being “pre-charged” with energy, and then short-
circuiting the input terminals of the filter network to ensure zero input signal: whatever response
we get at the output signal from that stored energy will represent a “pole” condition. Generally
speaking, the more reactive components are present within a filter network, the more unique “pole”
conditions exist for its transfer function.

Poles and zeros are easier to understand when plotted on three-dimensional graphs: the real
and imaginary portions of the s variable occupying the horizontal axes, and the magnitude of the
transfer function fraction displayed as height. Here is a pole-zero plot for the transfer function s2

1+s2
which happens to be the transfer function for a high-pass RC filter with a 10-Ohm resistor and a
0.2-Farad capacitor:

+σ

−σ
+jω

−jω

sRC

1+sRC
=

s(10)(0.2)
1+s(10)(0.2)

This transfer function’s pole appears as a “spike” while its zero appears as a “pit”, both features
appearing to stretch the surface of the three-dimensional function as though it were a rubber mat
held up by a pole at one location and pinned down by an anchor at another.

10For any polynomial function, any value for the independent variable resulting in zero is called a root. The higher-
degree the polynomial, the more roots it will have. For transfer functions, then, numerator roots represent zeros while
denominator roots represent poles.
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One of the valuable insights provided by a three-dimensional pole-zero plot is the system’s
response to an input signal of constant magnitude and varying frequency. This is commonly referred
to as the frequency response of the system, otherwise known as a Bode plot. We may trace the Bode
plot for this system by revealing a cross-sectional slice of the three-dimensional surface along the
vertical plane where σ = 0 (i.e. showing how the system responds to sinusoidal waves of varying
frequency that neither grows nor decays over time):

+σ

−σ
+jω

−jω

sRC

1+sRC
=

s(10)(0.2)
1+s(10)(0.2)

Only one-half of the pole-zero surface has been plotted here, in order to better reveal the cross-
section along the jω axis. The bold, red curve traces the edge of the transfer function surface as it
begins at zero frequency (DC) to increasingly positive values of jω. The red trace is therefore the
Bode plot for this high-pass filter, starting at 0% at a frequency of zero and approaching 100% (i.e.
Vout = Vin) as frequency increases.
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As insightful as three-dimensional pole-zero plots are, they are laborious to plot by hand, and
even with the aid of a computer may require significant11 time to set up. For this reason, pole-zero
plots have traditionally been drawn in a two-dimensional rather than three-dimensional format, from
a “bird’s eye” view looking down at the s-plane. Since this view hides any features of height, poles
and zeros are instead located on the s-plane by × and © symbols, respectively. An example of a
traditional pole-zero plot for our high-pass filter appears here:

+jω

-jω

+σ-σ

Pole at s = (-0.5 + j0)

Zero at s = (0 + j0)

Admittedly, this type of pole-zero plot is much less interesting to view than a three-dimensional
surface plotted by computer, but nevertheless contains useful information about the system. The
single pole lying on the real (σ) axis tells us the system will not self-oscillate (i.e. ω = 0 at the
pole), and that it is inherently stable: when subjected to a pulse, its natural tendency is to decay
to a stable value over time (i.e. σ < 0). The single zero lying at the origin (i.e. σ = 0 and ω = 0)
tells us the system outputs nothing when the input signal is unvarying.

11My first pole-zero plot using the ePiX C++ mathematical visualization library took several hours to get it just
right. Subsequent plots went a lot faster, of course, but they still require substantial amounts of time to adjust for a
useful and aesthetically pleasing appearance.
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3.7.2 Transfer function for an RC low-pass filter

Vin Vout

R

C

G(s) =
Vout(s)

Vin(s)
=

ZC(s)

ZR(s) + ZC(s)

G(s) =
1
sC

R+ 1
sC

G(s) =
1
sC

sRC
sC + 1

sC

G(s) =
1
sC

sRC+1
sC

G(s) =
1

sRC + 1

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 1

0+1 which means the filter network passes 100% of the input signal to the
output terminals. At the other extreme, the transfer function value falls to zero as s approaches
infinity. This is exactly as we would expect for a low-pass filter network: passing low-frequency
signals and attenuating high-frequency signals.

This filter network has a “zero” at infinite frequency and/or infinite growth/decay rate, where
any rapidly-changing input signal is “shorted” by the capacitor’s low reactance value. It has a “pole”
where s is equal to − 1

RC , which means a condition with a short-circuited input where the pre-charged
capacitor is discharging itself through the resistance, creating an inverse-exponential decay from the
original voltage to zero over time. This − 1

RC expression should be familiar to anyone who has

studied RC time-delay circuits, where decaying quantities follow the form e−
1

RC .
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3.7.3 Transfer function for an LR low-pass filter

Vin VoutR

L

G(s) =
Vout(s)

Vin(s)
=

ZR(s)

ZR(s) + ZL(s)

G(s) =
R

R+ sL

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of R

R+0 which means the filter network passes 100% of the input signal to the
output terminals. At the other extreme, the transfer function value falls to zero as s approaches
infinity. This is exactly as we would expect for a low-pass filter network: passing low-frequency
signals and attenuating high-frequency signals.

This filter network has a “zero” at infinite frequency and/or infinite growth/decay rate, where
any rapidly-changing input signal is “blocked” by the inductor’s high reactance value. It has a “pole”
where s is equal to −R

L , which means a condition with a short-circuited input where the pre-charged
inductor is discharging itself through the resistance, creating an inverse-exponential decay from the
original voltage to zero over time. This −R

L expression should be familiar to anyone who has studied

LR time-delay circuits, where decaying quantities follow the form e
− 1

L

R .
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3.7.4 Transfer function for an RC high-pass filter

Vin VoutR

C

G(s) =
Vout(s)

Vin(s)
=

ZR(s)

ZR(s) + ZC(s)

G(s) =
R

R+ 1
sC

G(s) =
R

sRC
sC + 1

sC

G(s) =
R

sRC+1
sC

G(s) =
sRC

sRC + 1

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0

0+1 which means the filter network passes 0% of the input signal to the
output terminals. At the other extreme, the transfer function rises to 100% as s approaches infinity.
This is exactly as we would expect for a high-pass filter network: passing high-frequency signals and
attenuating low-frequency signals.

This filter network has a “zero” at zero frequency and zero growth/decay rate, where any steady
input signal is “blocked” by the capacitor’s high reactance value. It has a “pole” where s is equal
to − 1

RC , which means a condition with a short-circuited input where the pre-charged capacitor is
discharging itself through the resistance, creating an inverse-exponential decay from the original
voltage to zero over time. This − 1

RC expression should be familiar to anyone who has studied RC

time-delay circuits, where decaying quantities follow the form e−
1

RC .
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3.7.5 Transfer function for an LR high-pass filter

Vin Vout

R

L

G(s) =
Vout(s)

Vin(s)
=

ZL(s)

ZR(s) + ZL(s)

G(s) =
sL

R+ sL

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0

R+0 which means the filter network passes 0% of the input signal to the
output terminals. At the other extreme, the transfer function rises to 100% as s approaches infinity.
This is exactly as we would expect for a high-pass filter network: passing high-frequency signals and
attenuating low-frequency signals.

This filter network has a “zero” at zero frequency and zero growth/decay rate, where any steady
input signal is “shorted” by the inductor’s low reactance value. It has a “pole” where s is equal
to −R

L , which means a condition with a short-circuited input where the pre-charged inductor is
discharging itself through the resistance, creating an inverse-exponential decay from the original
voltage to zero over time. This −R

L expression should be familiar to anyone who has studied LR

time-delay circuits, where decaying quantities follow the form e
− 1

L

R .
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3.7.6 Transfer function for an RLC series band-pass filter

Vin VoutR

L C

G(s) =
Vout(s)

Vin(s)
=

ZR(s)

ZR(s) + ZL(s) + ZC(s)

G(s) =
R

R+ sL+ 1
sC

G(s) =
R

sRC
sC + s2LC

sC + 1
sC

G(s) =
R

sRC+s2LC+1
sC

G(s) =
sRC

s2LC + sRC + 1

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0

0+0+1 which means the filter network passes 0% of the input signal to the
output terminals. At the other extreme, the transfer function also approaches 0% as s approaches
infinity, because the s2 denominator term grows to a much larger value than the s term in the
numerator. This is exactly as we would expect for a band-pass filter network: attenuating high-
frequency signals as well as attenuating low-frequency signals.
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The one signal frequency where this filter passes 100% of the input signal is where the s2LC
term is equal to −1 so as to cancel out the “1” constant, leaving the transfer function equal to sRC

sRC .
Solving for that value of s:

s2LC = −1

s2 =
−1

LC

s =

√

−1

LC

s =
j√
LC

Since we know that s = σ + jω, and we’re primarily interested in an AC signal frequency (ω)
rather than a DC decay rate (σ), we can set σ equal to zero and just solve for ω:

jω =
j√
LC

ω =
1√
LC

This result should look familiar, as we know the resonant frequency of a simple LC network is
equal to:

fr =
1

2π
√
LC

Knowing that ω is just another way to express 2πf , we can cast this resonant frequency formula
in terms of angular velocity (radians per second) instead of regular frequency (cycles per second):

2πfr =
1√
LC

ω =
1√
LC
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3.7.7 Transfer function for an RLC shunt band-pass filter

Vin Vout

R

L C

G(s) =
Vout(s)

Vin(s)
=

ZL(s)||ZC(s)

ZR(s) + (ZL(s)||ZC(s))

First we need to derive an expression for the parallel combination of ZL(s) and ZC(s).

ZL(s)||ZC(s) =
1

1
ZL(s) +

1
ZC(s)

ZL(s)||ZC(s) =
1

1
sL + sC

ZL(s)||ZC(s) =
1

1
sL + s2LC

sL

ZL(s)||ZC(s) =
1

s2LC+1
sL

ZL(s)||ZC(s) =
sL

s2LC + 1
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With this expression in hand, we may now proceed as we did with the other filter examples,
setting up the transfer function as a voltage-divider ratio:

G(s) =
sL

s2LC+1

R+ sL
s2LC+1

G(s) =
sL

s2LC+1

R(s2LC+1)
s2LC+1 + sL

s2LC+1

G(s) =
sL

s2LC+1

s2RLC+sL+R
s2LC+1

G(s) =
sL

s2RLC + sL+R

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0

0+0+R which means the filter network passes 0% of the input signal to the
output terminals. At the other extreme, the transfer function also approaches 0% as s approaches
infinity, because the s2 denominator term grows to a much larger value than the s term in the
numerator. This is exactly as we would expect for a band-pass filter network: attenuating high-
frequency signals as well as attenuating low-frequency signals.
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The one signal frequency where this filter passes 100% of the input signal is where the s2RLC
term is equal to −R so as to cancel out the “R” constant, leaving the transfer function equal to sL

sL .
Solving for that value of s:

s2RLC = −R

s2LC = −1

s2 =
−1

LC

s =

√

−1

LC

s =
j√
LC

Since we know that s = σ + jω, and we’re primarily interested in an AC signal frequency (ω)
rather than a DC decay rate (σ), we can set σ equal to zero and just solve for ω:

jω =
j√
LC

ω =
1√
LC

This result should look familiar, as we know the resonant frequency of a simple LC network is
equal to:

fr =
1

2π
√
LC

Knowing that ω is just another way to express 2πf , we can cast this resonant frequency formula
in terms of angular velocity (radians per second) instead of regular frequency (cycles per second):

2πfr =
1√
LC

ω =
1√
LC
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3.7.8 Transfer function for an RLC series band-stop filter

Vin Vout

R

L

C

G(s) =
Vout(s)

Vin(s)
=

ZL(s) + ZC(s)

ZR(s) + ZL(s) + ZC(s)

G(s) =
sL+ 1

sC

R+ sL+ 1
sC

G(s) =
s2LC
sC + 1

sC
sRC
sC + s2LC

sC + 1
sC

G(s) =
s2LC+1

sC
s2LC+sRC+1

sC

G(s) =
s2LC + 1

s2LC + sRC + 1

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0+1

0+0+1 which means the filter network passes 100% of the input signal to the
output terminals. At the other extreme, the transfer function also approaches 100% as s approaches
infinity, because the s2LC terms in both numerator and denominator overshadow both the s and
constant terms in the denominator. This is exactly as we would expect for a band-stop filter network:
passing high-frequency signals as well as passing low-frequency signals.
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The one signal frequency where this filter passes none of the input signal is where the s2LC term
is equal to −1 so as to make the numerator zero, leaving the transfer function equal to 1

sRC . Solving
for that value of s:

s2LC = −1

s2 =
−1

LC

s =

√

−1

LC

s =
j√
LC

Since we know that s = σ + jω, and we’re primarily interested in an AC signal frequency (ω)
rather than a DC decay rate (σ), we can set σ equal to zero and just solve for ω:

jω =
j√
LC

ω =
1√
LC

This result should look familiar, as we know the resonant frequency of a simple LC network is
equal to:

fr =
1

2π
√
LC

Knowing that ω is just another way to express 2πf , we can cast this resonant frequency formula
in terms of angular velocity (radians per second) instead of regular frequency (cycles per second):

2πfr =
1√
LC

ω =
1√
LC
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3.7.9 Transfer function for an RLC shunt band-stop filter

Vin VoutR

L

C

G(s) =
Vout(s)

Vin(s)
=

ZR(s)

ZR(s) + (ZL(s)||ZC(s))

First we need to derive an expression for the parallel combination of ZL(s) and ZC(s).

ZL(s)||ZC(s) =
1

1
ZL(s) +

1
ZC(s)

ZL(s)||ZC(s) =
1

1
sL + sC

ZL(s)||ZC(s) =
1

1
sL + s2LC

sL

ZL(s)||ZC(s) =
1

s2LC+1
sL

ZL(s)||ZC(s) =
sL

s2LC + 1
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With this expression in hand, we may now proceed as we did with the other filter examples,
setting up the transfer function as a voltage-divider ratio:

G(s) =
R

R+ sL
s2LC+1

G(s) =
R

R(s2LC+1)
s2LC+1 + sL

s2LC+1

G(s) =
R

s2RLC+sL+R
s2LC+1

G(s) =
R(s2LC + 1)

s2RLC + sL+R

G(s) =
s2RLC +R

s2RLC + sL+R

When the input voltage signal is absolutely constant (i.e. purely DC, where s = 0) the transfer
function has a value of 0+R

0+0+R which means the filter network passes 100% of the input signal to the
output terminals. At the other extreme, the transfer function also approaches 100% as s approaches
infinity, because the s2LC +R terms in both numerator and denominator overshadow the sL term
in the denominator. This is exactly as we would expect for a band-stop filter network: passing
high-frequency signals as well as passing low-frequency signals.
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The one signal frequency where this filter passes none of the input signal is where the s2RLC
term is equal to −R so as to cancel out the “R” constant, leaving the transfer function equal to 0

sL .
Solving for that value of s:

s2RLC = −R

s2LC = −1

s2 =
−1

LC

s =

√

−1

LC

s =
j√
LC

Since we know that s = σ + jω, and we’re primarily interested in an AC signal frequency (ω)
rather than a DC decay rate (σ), we can set σ equal to zero and just solve for ω:

jω =
j√
LC

ω =
1√
LC

This result should look familiar, as we know the resonant frequency of a simple LC network is
equal to:

fr =
1

2π
√
LC

Knowing that ω is just another way to express 2πf , we can cast this resonant frequency formula
in terms of angular velocity (radians per second) instead of regular frequency (cycles per second):

2πfr =
1√
LC

ω =
1√
LC
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3.8 Filter poles and zeroes

As mentioned previously, one of the valuable insights provided by a pole-zero plot is the system’s
response to an input signal of constant magnitude and varying frequency – commonly referred to
as the frequency response of the system usually shown as a Bode plot. If we take a cross-sectional
slice of the three-dimensional pole-zero plot surface along a vertical plane where σ = 0, we will
see a two-dimensional Bode plot indicating how the system responds to sinusoidal waves of varying
frequency and constant peak amplitude):

+σ

−σ
+jω

−jω

sRC

1+sRC
=

s(10)(0.2)
1+s(10)(0.2)

Only one-half of the pole-zero three-dimensional surface has been plotted above, in order to show
the cross-section along the jω axis where σ = 0. The bold, red curve traces the edge of the transfer
function surface as it begins at zero frequency (DC) to increasingly positive values of jω, indicating
the characteristic frequency response of a single-pole high-pass filter, starting at 0% at a frequency
of zero and approaching 100% (i.e. Vout = Vin) as frequency increases.
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If we carefully examine a more traditional two-dimensional pole-zero plot for this same filter
network where the s-plane is parallel to the page, we may picture the shape of the three-dimensional
surface created by the single (real) pole and single zero of this high-pass filter’s transfer function,
and from that we may discern the shape of the Bode plot:

+σ-σ

+jω

-jω

pole zero

ω0 ∞

Pole-zero plot Bode plot

The Bode plot’s steep portion on the left-hand side where frequency is low is just the cross-section
of the three-dimensional pole-zero surface, the lowest point being where the transfer function’s zero
pins that surface to the ground (i.e. no signal emerging from the filter at DC, or 0 Hz).
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If we do the same with a single-pole low-pass filter network we will once again find that a cross-
section of the three-dimensional pole-zero plot yields a Bode plot showing the filter’s frequency
response for signals having constant amplitude:

+σ

−σ +jω

−jω

R

R+sL
=

5
5+s10

Comparing traditional two-dimensional pole-zero plot and Bode plot for this low-pass filter:

+σ-σ

+jω

-jω

pole

ω0 ∞

Pole-zero plot Bode plot

Though no zeroes appear on the pole-zero plot, this filter’s transfer function does approach zero
as s approaches infinity in any direction, and this explains why the Bode plot decreases toward zero
as frequency rises.

The following subsections will illustrate pole-zero and Bode plots for common multi-pole filter
networks. In each case the reader is encouraged to mentally visualize the three-dimensional pole-zero
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surface as it is stretched by poles and pinned to the ground by zeroes, forming the Bode plot shape
along the cross-sectional cut placed at the imaginary axis.

3.8.1 Two-pole low-pass filter plots

+σ-σ

+jω

-jω

ω0 ∞

Pole-zero plot Bode plot

Transfer function =
ω2
c

s2 + ωc

Q s+ ω2
c

Where,
s = Complex frequency (σ + jω), in per-seconds
ωc = Cutoff frequency (a real number), in radians per second
Q = Quality factor of the filter (a real number), unitless

This transfer function’s constant numerator equal to the square of the cutoff frequency means
there are no finite zeroes. Rather, the function approaches zero as complex frequency goes to infinity
in any direction (i.e. as the function’s denominator approaches infinity).

Quality factor (Q) helps determine the real value of the poles, which is to say how far from
the imaginary axis the poles will lie. A low Q value places the poles farther from the imaginary
axis which results in a Bode plot having more a more gradual curvature, and a filter network with
gentler rolloff. A high Q value places the poles closer to the imaginary axis which results in a Bode
plot having steeper curves and a filter with more aggressive rolloff. Setting Q to infinity causes the
fraction ωc

Q to go to zero and places the poles exactly along the imaginary axis. Such a filter network

would, in theory, oscillate forever at that/those frequency(ies) with no exciting input signal.
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3.8.2 Two-pole high-pass filter plots

+σ-σ

+jω

-jω

ω0 ∞

Pole-zero plot Bode plot

Transfer function =
s2

s2 + ωc

Q s+ ω2
c

Where,
s = Complex frequency (σ + jω), in per-seconds
ωc = Cutoff frequency (a real number), in radians per second
Q = Quality factor of the filter (a real number), unitless

This transfer function’s numerator goes to zero whenever s2 is zero, and this means two
overlapping zeroes located at ±0 radians per second because

√
0 = ±0.
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3.8.3 Two-pole band-pass filter plots

+σ-σ

+jω

-jω

ω0 ∞

Pole-zero plot Bode plot

Transfer function =

ωc

Q s

s2 + ωc

Q s+ ω2
c

Where,
s = Complex frequency (σ + jω), in per-seconds
ωc = Cutoff frequency (a real number), in radians per second
Q = Quality factor of the filter (a real number), unitless

This transfer function’s numerator goes to zero whenever s is zero, but the transfer function
as a whole also approaches zero as complex frequency goes to infinity in any direction (i.e. as the
function’s denominator approaches infinity).
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3.8.4 Two-pole band-stop (notch) filter plots

+σ-σ

+jω

-jω

ω0 ∞

Pole-zero plot Bode plot

Transfer function =
s2 + ω2

z

s2 + ωc

Q s+ ω2
c

Where,
s = Complex frequency (σ + jω), in per-seconds
ωz = Zero or Notch frequency (a real number), in radians per second
ωc = Cutoff frequency (a real number), in radians per second
Q = Quality factor of the filter (a real number), unitless

This transfer function’s numerator goes to zero whenever s = ±jωz, providing two imaginary
zeroes representing frequency values where the notch filter outputs no signal. If the zeroes align
horizontally with the poles on the pole-zero plot (i.e. their imaginary parts are equal) then the Bode
plot will be symmetrical to the left and right of the notch frequency when viewed on a log-log graph
which is the classic notch-type frequency response.
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3.8.5 Two-pole all-pass filter plots

+σ-σ

+jω

-jω

ω0 ∞

Pole-zero plot Bode plot

Transfer function =
s2 − ωc

Q s+ ω2
c

s2 + ωc

Q s+ ω2
c

Where,
s = Complex frequency (σ + jω), in per-seconds
ωc = Cutoff frequency (a real number), in radians per second
Q = Quality factor of the filter (a real number), unitless

This transfer function’s numerator goes to zero at the same imaginary frequency values as the
poles, but with oppositely-signed real frequency values which places the zeroes on the right-hand
side of the s-plane. With poles and zeroes mirrored opposite each other from the imaginary axis,
the Bode plot ends up being a straight and level line. This means the filter passes all frequencies
equally well, which may seem pointless for a filter until we realize that phase shift between input
and output signals and other parameters will not be constant for all frequencies. Therefore, all-pass
filters are often used in applications where we desire phase shift (but not signal magnitude) to vary
as a function of frequency.
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3.8.6 Butterworth filter pole locations

Multi-pole filter networks are given a Butterworth characteristic by locating the poles along the
circumference of a circle at equal angles of 1

2n of one revolution where n is the number of poles:

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

90o 60o

Two Butterworth poles Three Butterworth poles

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Four Butterworth poles

45o

Five Butterworth poles

36o

The “maximally-flat” pass-band response typical of Butterworth low-pass and high-pass filter
networks is due to this equiangular pole spacing.

Zeroes must be located on the pole-zero diagrams in accordance with the desired filter type, e.g.
low-pass, high-pass, etc. and are not shown in these examples12.

12Or, we could say that these zero-less plots all represent low-pass filter functions where the only “zeroes” lie at
infinite frequency values.
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3.8.7 Bessel filter pole locations

Multi-pole filter networks are given a Bessel characteristic by locating the poles along the
circumference of a circle symmetrical about the horizontal axis spaced vertically by D

n where D

is the circle’s diameter and n is the number of poles. The outer-most poles will lie D
2n distance away

from the top and bottom of the circle:

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Two Bessel poles Three Bessel poles

D/2
D/3

D/3

D/4

D/4

D/6

D/6

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

D/4

Four Bessel poles Five Bessel poles

D/8

D/4

D/4

D/8

D/10

D/5

D/5

D/10

D/5

D/5

Again, zeroes must be located on the pole-zero diagrams in accordance with the desired filter
type, e.g. low-pass, high-pass, etc. and are not shown in these examples13.

13Or, we could say that these zero-less plots all represent low-pass filter functions where the only “zeroes” lie at
infinite frequency values.
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3.8.8 Chebyshev filter pole locations

Multi-pole filters with a Chebyshev characteristic have poles located along the circumference of an
ellipse rather than a circle as is the case with Butterworth and Bessel filters:

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Four Butterworth poles Four Chebyshev poles

The Chebyshev pole locations translate to a Bode plot having more “ripple” in the passband.
This makes intuitive sense if you imagine poles stretching the three-dimensional pole-zero surface
as though it were a rubber sheet and zeroes pinning it down to the s-plane like anchors holding a
tent to the ground. The equiangular arrangement of poles around the circumference of a circle for
a Butterworth characteristic have the effect of making that rubber sheet completely flat as it passes
over the imaginary axis, giving Butterworth filter networks their characteristic “maximally-flat”
passband response. Chebyshev pole placement along the circumference of an ellipse, by contrast,
locate all poles closer to the imaginary axis where they have a more individual and pronounced effect
on the shape of that rubber sheet as it passes over the imaginary axis. In other words, the “lumps”
seen in the passband portion of the low-pass or high-pass filter’s Bode plot stem from the effects of
the individual poles
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A comparison of Bode plots for low-pass Chebyshev filter networks of different pole numbers
makes this clear. From left to right we see the Bode plots for a 2-pole, 3-pole, 4-pole, and 5-pole
low-pass Chebyshev filter with a 3 dB ripple passband:

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Each “peak” seen in the passband stems from a pole located in the upper half of the s-plane,
since Bode plots begin at a frequency value of zero and progress to positive frequency values only.
For the 2-pole filter’s Bode plot on the far left we see only one peak in the passband because only the
upper pole’s effect is visible for positive frequencies. For the 3-pole filter’s Bode plot (second from
left) we see a pronounced peak immediately prior to the rolloff and a gently-sloping peak at zero
frequency, representing the two poles having any effect for positive frequencies: one near the cutoff
frequency and the other at zero (i.e. on the real axis of the s-plane). The same general pattern
applies to the 4-pole and 5-pole Chebyshev filter Bode plots.
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3.8.9 Elliptic filter pole/zero locations

With the exception of the band-stop or notch filter type, Butterworth, Bessel, and Chebyshev filter
characteristics may be classified as all-pole because their passband, rolloff, and stopband properties
are really defined by pole locations only, the zeroes lying either at s = 0 or at s = ∞. However,
we may achieve even more aggressive rolloff rates if we strategically add zeroes to a filter’s transfer
function, and this is what is done with the so-called Elliptic characteristic, also known as Cauer in
honor of German mathematician and electrical engineer Wilhelm Cauer.

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Two Elliptic poles and zeroes Three Elliptic poles and two zeroes

+σ-σ

+jω

-jω

+σ-σ

+jω

-jω

Four Elliptic poles and zeroes Five Elliptic poles and four zeroes



3.8. FILTER POLES AND ZEROES 63

When we compare the frequency responses of different low-pass filter characteristics, we see the
effect of these zeroes in the Elliptic (and also in the Inverse-Chebyshev) Bode plots, revealed as
sharp “rippling” in the stopband:

Each of the points along the Bode plot where the graph “dives down” in notch-like fashion is the
frequency of one of the filter network’s zeroes. Clearly, the presence of the additional zeroes granted
by the Elliptic and Inverse Chebyshev filter characteristics is more of an advantage for steep rolloff
than it is for consistent attenuation of signals within the stopband.
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3.9 Passive filter design

Before the advent of computer software capable of selecting component values necessary for desired
filtering characteristics, engineers often relied on standardized tables of component values to
accompany standardized filter network topologies. Here we will present similar tables useful for
Butterworth-characteristic filters, in order to show how this design strategy works.

The design process generally begins with a low-pass filter topology consisting of parallel capacitors
and series inductors, one added for every order of filter desired, with input and load resistances equal
to one Ohm (R1 = Rload = 1Ω) and a cutoff frequency of one radian per second (ω = 1). Even if we
intend to design a high-pass, band-pass, or band-stop filter, and/or with resistance and cutoff values
other than 1 (each), the design process begins with this “normalized” low-pass filter which we later
modify. Below we see the standard “ladder” progression of added reactive elements assumed in this
design:

R1

C1
First-order filter

R1

C1

Rload

Rload

L2

Second-order filter

R1

C1 Rload

L2

Third-order filterC3

fcutoff

fcutoff

fcutoff

-3 dB

-3 dB

-3 dB
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Below we see a table of capacitor and inductor values for low-pass, Butterworth-characteristic,
ladder-topology filter networks up through the 9th order14. Each capacitor value is given in the unit
of Farads, and each inductor in the unit of Henrys, based on the assumption that the input and load
resistances are 1 Ω each and that the cutoff frequency is 1 radian/second:

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

1 2.000 – – – – – – – –

2 1.414 1.414 – – – – – – –

3 1.000 2.000 1.000 – – – – – –

4 0.765 1.848 1.848 0.765 – – – – –

5 0.618 1.618 2.000 1.618 0.618 – – – –

6 0.518 1.414 1.932 1.932 1.414 0.518 – – –

7 0.445 1.247 1.802 2.000 1.802 1.247 0.445 – –

8 0.390 1.111 1.663 1.962 1.962 1.663 1.111 0.390 –

9 0.347 1.000 1.532 1.879 2.000 1.879 1.532 1.000 0.347

Once we decide on the order number for our filter design, and consult the table for component
values, we must scale those values to yield practical capacitances and inductances for input and load
resistances other than 1 Ω and cutoff frequencies other than 1 radian per second. These “scaling”
procedures are fairly easy to perform:

• To scale the table’s component values for input and load resistances greater than 1 Ω, we need
to increase the impedance of each component accordingly. For example, if we wished to scale
our filter design for a 600 Ω load and matching input resistor, every component value would
need to be re-sized to yield 600 times as much impedance. The input and load resistances
would obviously increase to 600 Ω each, while each capacitor value would decrease in value
600-fold and each inductor value would increase in value 600-fold. These changes will result in
a filter designed for different load and input resistances, but still have the same cutoff frequency
as before.

• To scale the table’s component values for cutoff frequencies other than 1 rad/sec, we need to
maintain the same resistance values as before but adjust the capacitor and inductor values
accordingly. Since greater capacitance and greater inductance alike both act to reduce cutoff
frequency, increasing cutoff frequency to some reasonable value consists of decreasing the values
of all capacitors and all inductors by the same factor. For example, if we wished our cutoff
frequency to be 2000 radians per second rather than 1 radian per second, all capacitances
would have to decrease 2000-fold and all inductances would have to decrease 2000-fold.

14This is by no means an exhaustive table for filter designs. Consulting older filter-design books, it is not uncommon
to find tables of normalized values extending out to the 20th order!
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For designing a high-pass filter using this table-based method, we must convert the table’s figures
(which are intended for a low-pass filter network) into figures appropriate for a high-pass filter. This
process is easiest to understand on a simple 1st-order filter network such as this:

Vin Vout

R

C

Cutoff frequency in any simple filter network is defined as the point at which X = R. If we
assume “normalized” component values of 1 Ω for the resistor and 1 Farad for the capacitor, with a
cutoff frequency of 1 radian per second, then the capacitor must exhibit a reactance of 1 Ω as well
at this cutoff frequency (XC = 1

ωC ).
If we wanted to maintain the resistor’s position in this circuit but have the network function as

a high-pass filter rather than a low-pass, we could simply replace the capacitor with an inductor:

Vin Vout

R

L

In order for this high-pass filter to cut off at the same frequency of 1 radian per second as
the original low-pass filter, the inductor must exhibit the same 1 Ω reactance at that frequency
(XL = ωL). Knowing that an inductor-capacitor substitution will work to transform the low-pass
filter into a high-pass filter if those two components exhibit the same reactance, we may set their
reactance values equal to each other and solve for the value of L necessary to replace C:

ωL =
1

ωC

L =
1

ω2C
If the filter network we’re transforming from low-pass to high-pass has a cutoff frequency of 1

radian per second (i.e. ω = 1), the equivalent inductance equation becomes very simple:

L =
1

C
That is to say, finding inductor values with the same reactance at cutoff as the capacitor values

they’re replacing when transforming a low-pass filter into a high-pass, it’s as simple as reciprocating
the original capacitor values. Of course this works for replacing inductors with capacitors as well,
for multi-order filters with both L and C elements: just reciprocate the original inductor values to
find the replacement capacitor values at a cutoff frequency of 1 radian/second.
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3.9.1 Low-pass filter design example

Suppose we need a 4th order Butterworth low-pass filter for 50 Ω input and load resistances, and
with a 5 MHz cutoff frequency. Our first step is to sketch a schematic diagram for this circuit. Here
I will include node numbers in anticipation of using SPICE to simulate its performance:

Rin

50 Ω

C1

L2

C3

L4

Rload 50 Ω

1

0

2 3 4

0 0 0

Vin

4th order Butterworth low-pass filter

Then, we will look up normalized component values from the Butterworth parameter table:

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

4 0.765 1.848 1.848 0.765 – – – – –

This means for a filter network having a cutoff frequency of 1 radian/second and with input and
load resistances of 1 Ω each, C1 would need to be 0.765 Farads, L2 would need to be 1.848 Henrys,
C3 would need to be 1.848 Farads, and L4 would need to be 0.765 Henrys. We know our filter needs
to work with 50 Ω at the input and at the load, and so we must scale each of these capacitor and
inductor values to have 50 times as much impedance. This means each inductor’s value must grow
by a factor of 50, and each capacitor’s value must shrink by a factor of 50:

• C1 = 0.765 Farads ÷ 50 = 0.01530 Farads

• L2 = 1.848 Henrys × 50 = 92.40 Henrys

• C3 = 1.848 Farads ÷ 50 = 0.03696 Farads

• L4 = 0.765 Henrys × 50 = 38.25 Henrys

However, we also must scale these values for the desired cutoff frequency of 5 MHz, which is
31.41593 megaradians per second. This is 31.41593 × 106 greater than the normalizing value of 1
radian per second, which means every capacitor and every inductor must be this many times smaller
than the above figures:

• C1 = 0.765 Farads ÷ 50 ÷ (31.41593× 106) = 0.487 nanoFarads

• L2 = 1.848 Henrys × 50 ÷ (31.41593× 106) = 2.941 microHenrys

• C3 = 1.848 Farads ÷ 50 ÷ (31.41593× 106) = 1.176 nanoFarads

• L4 = 0.765 Henrys × 50 ÷ (31.41593× 106) = 1.218 microHenrys
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When simulated using SPICE, we see a very nice low-pass response that cuts off at 5 MHz.

Rin

50 Ω

C1

L2

C3

L4

Rload 50 Ω

1

0

2 3 4

0 0 0

Vin

4th order Butterworth low-pass filter

* 4th order Butterworth low-pass filter
vin 1 0 ac 1
rin 1 2 50
c1 2 0 0.487e-9
l2 2 3 2.941e-6
c3 3 0 1.176e-9
l4 3 4 1.218e-6
rload 4 0 50
.ac dec 1e3 1e5 1e8
.plot ac loglog vm(4)
.end

frequency

10^5 10^6 10^7 10^8

Hz

10^-6

10^-5

10^-4

10^-3

0.01

0.1

1

V vm(4)
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3.9.2 High-pass filter design example

Suppose we need a 5th order Butterworth high-pass filter for 75 Ω input and load resistances, and
with a 300 kHz cutoff frequency. Our first step is to sketch a schematic diagram for a low-pass filter
circuit, because our published table of Butterworth component values assumes low-pass. Here I will
include node numbers in anticipation of using SPICE to simulate its performance:

Rin

C1

L2

C3 Rload

1

0

2 3

0 0 0

Vin

75 Ω

75 Ω

5th order Butterworth low-pass filter

L4

0

C5

4

Then, we will look up normalized component values from the Butterworth parameter table:

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

5 0.618 1.618 2.000 1.618 0.618 – – – –

This means for a low-pass filter network having a cutoff frequency of 1 radian/second and with
input and load resistances of 1 Ω each, C1 would need to be 0.618 Farads, L2 would need to be 1.618
Henrys, C3 would need to be 2 Farads, L4 would need to be 1.618 Henrys, and C5 would need to
be 0.618 Farads. However, what we are trying to design is a high-pass filter, not a low-pass filter.
To convert from low-pass to high-pass, we must replace each reactive component with its opposite
type, and find new component values based on the reciprocals15 of the old values. In other words,
every Cn becomes 1

Ln
, and every Ln becomes 1

Cn
:

Rin

Rload

1
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2 3

0 0 0

Vin

75 Ω

75 Ω

0

4

5th order Butterworth high-pass filter

L1

C2

L3

C4

L5

This means for our high-pass filter network with a cutoff frequency of 1 radian/second and input
and output resistances of 1 Ω each, L1 would need to be 1.618 Henrys, C2 would need to be 0.618
Farads, L3 would need to be 0.5 Henrys, C4 would need to be 0.618 Farads, and L5 would need to
be 1.618 Henrys.

15Remember that this only works when the cutoff frequency is 1 radian per second, which is the assumed cutoff
frequency for all values given in the table.
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Next comes the impedance scaling and cutoff frequency scaling. We know our filter needs to
work with 75 Ω at the input and at the load, and so we must scale each of these capacitor and
inductor values to have 75 times as much impedance. This means each inductor’s value must grow
by a factor of 75, and each capacitor’s value must shrink by a factor of 75. We also know our cutoff
frequency needs to be 300 kHz, which is 1.884956 megaradians per second (i.e. 1.884956×106) times
more than it is now). This means decreasing each inductance and each capacitance by a factor of
1.884956× 106. Performing both scaling operations in one step, for each component:

• L1 = 1.618 Henrys × 75 ÷ (1.884956× 106) = 64.38 microHenrys

• C2 = 0.618 Farads ÷ 75 ÷ (1.884956× 106) = 4.371 nanoFarads

• L3 = 0.5 Henrys × 75 ÷ (1.884956× 106) = 19.89 microHenrys

• C4 = 0.618 Farads ÷ 75 ÷ (1.884956× 106) = 4.371 nanoFarads

• L5 = 1.618 Henrys × 75 ÷ (1.884956× 106) = 64.38 microHenrys

When simulated using SPICE, we see a very nice high-pass response that cuts off at 300 kHz.
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5th order Butterworth high-pass filter

L1

C2

L3

C4

L5

* 5th order Butterworth high-pass filter
vin 1 0 ac 1
rin 1 2 75
l1 2 0 64.38e-6
c2 2 3 4.371e-9
l3 3 0 19.89e-6
c4 3 4 4.371e-9
l5 4 0 64.38e-6
rload 4 0 75
.ac dec 1e3 1e4 1e7
.plot ac loglog vm(4)
.end

frequency

10^4 10^5 10^6 10^7

Hz

10^-8

10^-7

10^-6

10^-5

10^-4

10^-3
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3.10 Active filters

Filter networks incorporating some form of signal amplification are called active filters, in contrast
to passive filters which only use passive components such as capacitors, inductors, and/or resistors.
Advantages enjoyed by active filters include the following:

• The ability to output a stronger signal than is input

• Consistent performance even when load impedance changes

• The ability to easily “cascade” filter networks to create higher-order filtering

• With active filters we are able to use capacitors as the only reactive elements, and need not
use any inductors

The first advantage of active filters over passive filters is rather obvious: passive filters cannot
amplify, and therefore can only attenuate the signal.

The second advantage is related to the fact that in a passive filter the load impedance (usually
modeled as a resistor) actually affects certain filtering characteristics such as cutoff frequency,
because all electrical power delivered to the load must pass through passive components lying
between the input and output terminals. In an active filter, however, the output signal comes
from the output terminal of an amplifier which means the amplifier is what sources all power to the
load, and in so doing the filtering elements (resistors and capacitors, usually) prior to the amplifier
do not experience any impact from the load. In effect, the amplifier “shields” the filtering elements
from the load.

The third advantage is a direct extension of the second: if the load impedance does not affect the
behavior of the filter network, then it becomes quite easy to connect the output of one filter network
to the input of another to create larger filter networks with higher-order responses. By contrast,
with passive filter network design we must re-compute all prior component values whenever we add
more “orders” to the network precisely because those additional orders constitute a “load” to the
preceding order(s). Thus, active filters enable a more “modular” design approach where we may
combine filter networks without concern for one network affecting the performance of the other.

The fourth advantage is an advantage only because inductors tend to be poorly-behaved
components compared to capacitors. In theory the fundamental behaviors of inductors and
capacitors are beautifully symmetrical to one another: the voltage across an inductor proportional to
its rate-of-change of current over time (V = LdI

dt ) and the current through a capacitor proportional

to its rate-of-change of voltage over time (I = C dV
dt ). In practice, though, inductors exhibit far

greater levels of parasitic properties than capacitors. Inductors have substantial amounts of parasitic
resistance (from wire length and energy dissipation in the core), substantial amounts of parasitic
capacitance (from turn-to-turn separation of the insulated wire), as well as substantial nonlinearities
due to the B-H curve of the ferromagnetic core material. Lastly, inductors are more difficult to shield
than capacitors due to the inherently circuitous shape of magnetic fields, as opposed to electric fields
which may be made to terminate at a conducting surface. To be fair, capacitors are not exempt from
parasitic effects (e.g. equivalent series resistance (ESR) from dielectric energy dissipation effects,
parasitic inductance from lead length, and nonlinearities especially with certain ceramic dielectric
materials), but in general the degree of each of these effects is much less than what we find with
typical inductors. Since all of these parasitic effects tend to degrade the performance of a filter
network from its ideal response, the ability to exclude inductors from our filter design is good.
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With all the advantages offered by active filter designs, one might wonder why passive filters are
used at all. Several applications demand passive filter networks rather than active:

• High-reliability systems

• Power supply ripple filtering

• High-frequency (RF) systems

Passive components tend to be more rugged and reliable than active components, all other
factors being equal. For example, passive components generally tolerate electrostatic discharge, over-
temperature, and transient over-voltage conditions better than most semiconductors. In systems
where exceptionally high reliability and long life is essential, and either a passive or active filter
network will suffice, a designer may opt for passive based solely on superior reliability.

Most power supply designs incorporate low-pass filtering to reduce the amount of “ripple” and
other noise passed along to the DC load(s), and these filter networks are by necessity passive in
nature. The reason for this is that active filters do not transfer power from their inputs to their
outputs, but rather replicate the (filtered) input signal by drawing from a DC power supply of their
own. It would be pointless to use an active low-pass filter at the output of a power supply both
because the power supply’s output could not actually drive any power of its own through the active
filter (thus making the supply’s existence moot) and the active filter would require a DC power
source that was already filtered.

An active filter is able to work only if the bandwidth capability of its amplifier(s) is significantly
greater than the bandwidth of the signal being filtered. In radio-frequency (RF) systems where
signal frequencies are typically in the megaHertz and gigaHertz range – beyond the capabilities of
most operational amplifiers – passive filters are the only practical option.
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Several active low-pass filter topologies appear in the following schematic diagrams, the amplifier
in each case being an operational amplifier (i.e. “opamp”):

−

+Vin

Vout

Buffered low-pass filter

−

+Vin

Vout

Boosted low-pass filter

−

+Vin

Vout

Sallen-Key low-pass filter

−

+
Vout

Vin

Multiple feedback (MFB) low-pass filter

−

+Vin

−

+

−

+
Vout

Cascaded low-pass filter

The upper two active filters shown here are first-order, but the rest are multiple-order (third-
order for the cascaded and second-order for the Sallen-Key and MFB designs). In each case the
low-pass filter network could be made into a high-pass filter simply by swapping the positions of the
filtering resistors and capacitors.

When active filters are cascaded together, their orders simply add. The three first-order filters
connected as shown above create a third-order filter. Two Sallen-Key or MFB filters cascaded
together would create a fourth-order filter.

As with passive filter networks, active filter component selection is a very complicated task made
easier through the use of filter simulation software.
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3.11 Active filter design

Although active filter design is every bit as mathematically complex as passive filter design – a
task worthy of simulation software – there do exist certain “recipes” for selecting component values
necessary for desired filtering characteristics. Here we will explore component values for Butterworth-
characteristic Sallen-Key topology active filters.

The basic Sallen-Key filter topology will have a Butterworth characteristic when the feedback
component’s impedance is half that of the grounding component’s impedance at any given frequency.
For the low-pass version this means a feedback capacitor with twice the capacitance of the grounding
capacitor; for the high-pass this means a grounding resistor with twice the resistance of the feedback
resistor:

−

+Vin

VoutR R

C

2C

Low-pass with Butterworth response

−

+Vin

Vout

R
C

High-pass with Butterworth response

C

 2R

Butterworth response is very desirable for its “maximally flat” passband response in applications
such as data acquisition where we wish to attenuate the measured signal as little as possible for
frequencies within the passband range. A good example of such a filter application would be an
anti-aliasing filter placed before the input of an analog-to-digital converter, to prevent frequencies
beyond the ADC’s sampling limit from arriving full-strength at the ADC’s input. A filter achieving
a more aggressive roll-off at the expense of “ripple” in the passband such as a Chebyshev or Elliptic
response would unfortunately attenuate some of the desired (passband) frequencies more than others,
possibly leading to inaccurate signal voltage measurements. Here, the Butterworth response is ideal
for passing all desired frequencies at (or nearly at) full-strength while significantly attenuating only
the undesired frequencies lying in the stopband.
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Cutoff frequency for any16 low-pass or high-pass Sallen-Key filter is given by the following
formulae:

fc =
1

2π
√
R1R2C1C2

ωc =
1√

R1R2C1C2

In order to have a Sallen-Key filter exhibit a Butterworth response, the 2:1 impedance ratio
of the grounding versus feedback impedances must be maintained. Therefore, Sallen-Key low-pass
and high-pass Butterworth filter networks with component values normalized to 1 Ohm at a cutoff
frequency of 1 radian per second will have the following values:

−

+Vin

Vout

Low-pass with Butterworth response

−

+Vin

Vout

High-pass with Butterworth response

1 Ω 1 Ω

0.707 F

1.414 F

1 F 1 F

1.414 Ω

0.707 Ω

and ωc = 1 radian/sec and ωc = 1 radian/sec

As usual, when designing a Sallen-Key active filter for any particular application, we would need
to scale the component values for both desired input impedance and for desired cutoff frequency.
For the Sallen-Key filter topology, output impedance is largely a function of the opamp’s ability to
source and sink load current, while input impedance is a rather complicated function of component
values and frequency.

16This cutoff frequency formula holds true regardless of whether or not the component values are chosen for a
Butterworth response. Achieving Butterworth, Bessel, Chebyshev, Elliptic, or other response is a matter of these four
components’ particular ratios to each other, but in any case the cutoff frequency will be inversely proportional to the
square-root of the product of all four values.
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3.11.1 Low-pass filter design example

Suppose we need a 2nd order Butterworth low-pass filter with a 30 kHz cutoff frequency and using
10 kΩ resistors, using the Sallen-Key topology. We know that the basic format for 2nd-order
Butterworth-response Sallen-Key low-pass active filters normalized to 1 Ω resistances and 1 radian
per second cutoff follow this prototype design:

−

+Vin

Vout

Low-pass with Butterworth response

1 Ω 1 Ω

0.707 F

1.414 F

and ωc = 1 radian/sec

R1 R2

C1

C2

We will need to scale both the component impedances as well as the cutoff frequency from the
default (normalized) values.

First, scaling the impedances. To go from a default resistor value of 1 Ω to the desired resistor
value 10 kΩ is of course a 10,000-fold magnification. This means making each resistor 10,000 times
larger in resistance and each capacitor 10,000 smaller in capacitance in order to scale up impedances
while not affecting cutoff frequency:

• R1 = 1 Ohm × 10,000 = 10 kiloOhms

• R2 = 1 Ohm × 10,000 = 10 kiloOhms

• C1 = 1.414 Farads ÷ 10,000 = 141.4 microFarads

• C2 = 0.707 Farads ÷ 10,000 = 70.7 microFarads

Next, scaling the cutoff frequency. The normalized value of 1 radian per second ( 1
2π Hertz) scaled

up to 30 kiloHertz represents a scaling factor of 188,495.6. This means every reactive component
in the circuit must be scaled to have the same reactance as it did before at 1 radian/second, but
now at 188,495.6 times that frequency. Since this active filter contains no inductors, we need only
concern ourselves with scaling the capacitor values down by this factor, while the resistors remain
at 10 kΩ each because their impedances do not vary with frequency:

• R1 = 1 Ohm × 10,000 = 10 kiloOhms

• R2 = 1 Ohm × 10,000 = 10 kiloOhms

• C1 = 1.414 Farads ÷ 10,000 ÷ 188,495.6 = 0.750 nanoFarads

• C2 = 0.707 Farads ÷ 10,000 ÷ 188,495.6 = 0.375 microFarads
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When simulated using SPICE17, we see a very nice low-pass response that cuts off at 30 kHz and
exhibits a roll-off of −40 dB per decade:

−

+Vin

VoutR1 R2

C1

C2

1

2

3

4

0

Eopamp

* 2nd order Butterworth low-pass filter 
vin 1 0 ac 1
r1 1 2 10e3
r2 2 3 10e3
c1 2 4 0.75e-9
c2 3 0 0.375e-9
e_opamp 4 0 3 4 9e6
.ac dec 1000 1e3 1e6
.plot ac loglog vm(4)
.end frequency

10^3 10^4 10^5 10^6

Hz

10^-4

10^-3

0.01

0.1

1

V vm(4)

While the calculated resistor and capacitor values certainly deliver the desired filtering
performance, the capacitor values are definitely not standard according to the common E12 series
of values specified in IEC standard 60063. Non-standard resistances are less of a design and
manufacturing problem because it’s easy to replace fixed resistors with adjustable potentiometers
and be able to calibrate the filter’s response thusly. Since variable capacitors are generally not an
option but variable resistors are, it might behoove us to re-scale these component values to make the
capacitances IEC-60063 standard and let the resistances be non-standard. To re-scale these values,
we would need to adjust the capacitances and resistances in opposite directions so as to leave the
cutoff frequency fixed.

For example, we could choose an E12-series capacitance of 0.39 µF for C2 instead of 0.375 µF,
and then use two of these standard-value 0.39 µF capacitors connected in parallel to make C1. This
represents a re-scaling factor of 1.03979 from the non-standard C2 value to the standard C2 value. If
we re-scale all capacitance values upward by this new factor, we will have to re-scale all resistances
downward by the same, making R1 and R2 both 9.61731 kΩ rather than 10 kΩ. When we re-simulate
the Sallen-Key low-pass filter with these new component values to verify our re-scaling work, we
find it still cuts off at 30 kHz.

17Note the use of a controlled voltage source (e opamp) with an open-loop gain of nine million to simulate the
operational amplifier.
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3.11.2 High-pass filter design example

Suppose we need a 2nd order Butterworth high-pass filter with cutoff frequency of 5 kHz and
resistances in the general range of 10 kΩ, with the Sallen-Key topology. We know that the basic
format for 2nd-order Butterworth-response Sallen-Key high-pass active filters normalized to 1 F
capacitances and 1 radian per second cutoff follow this prototype design:

−

+Vin

Vout

and ωc = 1 radian/sec

R1

R2

C1 C2

High-pass with Butterworth response

1 F 1 F

1.414 Ω

0.707 Ω

We will need to scale the component impedances as well as the cutoff frequency from the default
(normalized) values.

First, scaling the impedance. If we want the resistor values to be closer to 10 kΩ rather than
0.707 Ω and 1.414 Ω, respectively, we may simply multiply each of those normalized values by 10,000.
This also requires making each capacitor 10,000 times smaller than the normalized values shown in
order to scale up impedances while not affecting cutoff frequency:

• C1 = 1 Farad ÷ 10,000 = 100 microFarads

• C2 = 1 Farad ÷ 10,000 = 100 microFarads

• R1 = 0.707 Ohms × 10,000 = 7.07 kiloOhms

• R2 = 1.414 Ohms × 10,000 = 14.14 kiloOhms

Next, scaling the cutoff frequency. The normalized value of 1 radian per second ( 1
2π Hertz) scaled

up to 5 kiloHertz represents a scaling factor of 31,415.93. This means every reactive component in
the circuit must be scaled to have the same reactance as it did before at 1 radian/second, but now at
31,415.93 times that frequency. Since this active filter contains no inductors, we need only concern
ourselves with scaling the capacitor values down by this factor, while the resistors remain as they
were because their impedances do not vary with frequency:

• C1 = 1 Farad ÷ 10,000 ÷ 31,415.93 = 3.183 nanoFarads

• C2 = 1 Farad ÷ 10,000 ÷ 31,415.93 = 3.183 nanoFarads

• R1 = 0.707 Ohms × 10,000 = 7.07 kiloOhms

• R2 = 1.414 Ohms × 10,000 = 14.14 kiloOhms
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When simulated using SPICE18, we see a very nice high-pass response that cuts off at 5 kHz and
exhibits a roll-off of −40 dB per decade:

−

+Vin

Vout

R1

R2

C1 C2

0

1

2

3

4

Eopamp

* 2nd order Butterworth high-pass filter
vin 1 0 ac 1
c1 1 2 3.183e-9
c2 2 3 3.183e-9
r1 2 4 7.07e3
r2 3 0 14.14e3
e_opamp 4 0 3 4 9e6
.ac dec 1000 1e2 50e3
.plot ac loglog vm(4)
.end frequency
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While the calculated resistor and capacitor values certainly deliver the desired filtering
performance, none of the component values are standard according to the common E12 series
of values specified in IEC standard 60063. Non-standard resistances are less of a design and
manufacturing problem because it’s easy to replace fixed resistors with adjustable potentiometers
and be able to calibrate the filter’s response thusly. Since variable capacitors are generally not an
option but variable resistors are, it might behoove us to re-scale these component values to make the
capacitances IEC-60063 standard and let the resistances be non-standard. To re-scale these values,
we would need to adjust the capacitances and resistances in opposite directions so as to leave the
cutoff frequency fixed.

For example, we could choose an E12-series capacitance of 3.3 nF for C1 and for C2 instead of
3.183 nF. This represents a re-scaling factor of 1.03673 from each non-standard capacitance value
to each standard capacitance value. If we re-scale all capacitance values upward by this new factor,
we will have to re-scale all resistances downward by the same, making R1 = 6.8196 kΩ and R2 =
13.639 kΩ. When we re-simulate the Sallen-Key high-pass filter with these new component values
to verify our re-scaling work, we find it still cuts off at 5 kHz.

18Note the use of a controlled voltage source (e opamp) with an open-loop gain of nine million to simulate the
operational amplifier.
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Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.
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4.1 Wave screens

Charles Proteus Steinmetz was an electrical engineer employed for many years by the General Electric
Company in New York. He was widely recognized as a genius in this field, and did much to elevate
the mathematical rigor of electrical engineering. In his book Theory and Calculation of Electric
Circuits first published in 1917 he describes the use of capacitance and inductance to form filtering
circuits which he referred to as wave screens useful for separating alternating and direct current
components of any pulsating electrical signal:

78. By “wave screens” the separation of pulsating currents into their alternating and
their continuous component, or the separation of complex alternating currents – and
thus voltages – into their constituent harmonics can be accomplished, and inversely, the
combination of alternating and continuous currents or voltages into resultant complex
alternating or pulsating currents.

The simplest arrangement of such a wave screen for separating, or combining, alternating
and continuous currents into pulsating ones, is the combination, in shunt with each
other, of a capacity, C, and an inductance, L, as shown in Fig. 75. If, then, a
pulsating voltage, e, is impressed upon the system, the pulsating current, i, produced by
it divides, as the continuous component can not pass through the condenser, C, and the
alternating component is barred by the inductance, L, the more completely, the higher
this inductance. Thus the current, i1, in the apparatus, A, is a true alternating current,
while the current, i0, in the apparatus, C, is a slightly pulsating direct current. [page

156]

In this illustration A and C each represent electrical ammeters registering current through their
respective branches of the parallel (“shunt”) network.
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On the next page, Steinmetz describes the use of series LC resonance to form band-pass filters
useful for separating various harmonic1 frequencies from a complex AC signal:

Wave screens based on resonance for a definite frequency by series connection of capacity
and inductance, can be used to separate the current of this frequency from a complex
current or voltage wave, such as those given in Figs. 56 to 63, and thus can be used for
the separation of complex waves into their components, by “harmonic analysis.”

Thus in Fig. 76, if the successive capacities and inductances are chosen such that

2πfL1 =
1

2πfC1
,

6πfL3 =
1

6πfC3
,

10πfL5 =
1

10πfC5
,

2nπfLn =
1

2πfnCn

where f = frequency of the fundamental wave. [page 180]

Steinmetz’s conception of multiple band-pass filter networks tuned to resonate with respective
harmonics of a known fundamental frequency, each one connected to its own ammeter to register
the strength of each harmonic, is analogous to obsolete vibrating-reed frequency meters with their
multiple reeds tuned to different frequencies.

1As mathematically proven by Fourier, any periodic wave of any shape whatsoever is mathematically equivalent to
the sum of a set of sinusoidal waves having frequency values equal to whole-numbered multiples of the fundamental
frequency of the complex wave. For example, a complex-shaped waveform having a frequency of 45 Hz may consist
of a 45 Hz “fundamental” sinusoid (the first harmonic) plus other sinusoidal waves of specific amplitudes having
frequencies of 90 Hz (the second harmonic), 135 Hz (the third harmonic), 180 Hz (the fourth harmonic), etc.



84 CHAPTER 4. HISTORICAL REFERENCES



Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 Decibels

One of the mathematical tools popularly used to gauge increases and decreases of electrical power
is the common logarithm, expressed as a measurement unit called the decibel. The basic idea of
decibels is to express a ratio of two electrical power quantities in logarithmic terms. Every time you
see the unit of “decibel” you can think: this is an expression of how much greater (or how much
smaller) one power is to another. The only question is which two powers are being compared.

Electronic amplifiers are a type of electrical system where comparisons of power are useful.
Students of electronics learn to compare the output power of an amplifier against the input power
as a unitless ratio, called a gain. Take for example an electronic amplifier with a signal input of 40
milliWatts and a signal output of 18.4 Watts:

DC power supply

Signal Pin Signal Pout

40 mW 18.4 W

Gain = 
Pout

Pin

= 
18.4 W

40 mW
= 460

Amplifier

An alternative way to express the gain of this amplifier is to do so using the unit of the Bel,
defined as the common logarithm of the gain ratio:

log

(

Pout

Pin

)

= log

(

18.4 W

40 mW

)

= 2.66276 B

When you see an amplifier gain expressed in the unit of “Bel”, it’s really just a way of saying
“The output signal coming from this amplifier is x powers of ten greater than the input signal.” An
amplifier exhibiting a gain of 1 Bel outputs 10 times as much power as the input signal. An amplifier
with a gain of 2 Bels boosts the input signal by a factor of 100. The amplifier shown above, with a
gain of 2.66276 Bels, boosts the input signal 460-fold.

At some point in technological history it was decided that the “Bel” (B) was too large and
cumbersome, and so it became common to express powers in fractions of a Bel instead: the deciBel
(1 dB = 1

10 of a Bel). Therefore, this is the form of formula you will commonly see for expressing
electrical signal power gains or losses:

dB = 10 log

(

Pout

Pin

)

The gain of our hypothetical electronic amplifier, therefore, would be more commonly expressed
as 26.6276 dB rather than 2.66276 B, although either expression is technically valid1.

1It is interesting to note that although the “Bel” is a metric unit, it is seldom if ever used without the metric prefix
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An operation students often struggle with is converting a decibel figure back into a ratio, since
the concept of logarithms seems to be universally perplexing. Here I will demonstrate how to
algebraically manipulate the decibel formula to solve for the power ratio given a dB figure.

First, we will begin with the decibel formula as given, solving for a value in decibels given a
power ratio:

dB = 10 log(Ratio)

If we wish to solve for the ratio, we must “undo” all the mathematical operations surrounding
that variable. One way to determine how to do this is to reverse the order of operations we would
follow if we knew the ratio and were solving for the dB value. After calculating the ratio, we would
then take the logarithm of that value, and then multiply that logarithm by 10: start with the ratio,
then take the logarithm, then multiply last. To un-do these operations and solve for the ratio, we
must un-do each of these operations in reverse order. First, we must un-do the multiplication (by
dividing by 10):

dB

10
=

10 log(Ratio)

10

dB

10
= log(Ratio)

Next, we must un-do the logarithm function by applying its mathematical inverse to both sides
of the formula – making each expression a power of 10:

10
dB
10 = 10log(Ratio)

10
dB
10 = Ratio

To test our algebra, we can take the previous decibel value for our hypothetical amplifier and
see if this new formula yields the original gain ratio:

Ratio = 10
26.6276 dB

10

Ratio = 102.66276 B

Ratio = 460

Sure enough, we arrive at the correct gain ratio of 460, starting with the decibel gain figure of
26.6276 dB.

“deci” ( 1
10

). One could express powers in microbels, megabels, or any other metric prefix desired, but it is never done
in industry: only the decibel is used.
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We may also use decibels to express power losses in addition to power gains. There are many
practical applications of this in signaling systems, both electronic and optical. One such application
is filtering, where a “filter” circuit screens out certain components of the signal while letting others
pass through (e.g. the bass or treble control for an audio system). Another application is attenuation,
where the entirety of a signal is reduced in magnitude (e.g. the volume control for an audio system).

We will explore yet another application of signal power reduction as a case study for decibels:
cable loss. Cables designed to convey signals over long distances are not perfect conduits of energy,
as some of the signal’s energy is inevitably lost along the way. This is true for different types of
signals, electrical and optical being two popular examples. In the following illustration we see a
signal cable losing power along its length2, such that the power out is less than the power in:

Signal Pin Signal Pout

40 mW

Gain = 
Pout

Pin

= 
40 mW

=

37 mW

37 mW
0.925

Cable

10 log

(

Pout

Pin

)

= 10 log

(

37 mW

40 mW

)

= −0.3386 dB

Contrasting this result against the previous result (with the amplifier) we see a very important
property of decibel figures: any power gain is expressed as a positive decibel value, while any power
loss is expressed as a negative decibel value. Any component outputting the exact same power as it
takes in will exhibit a “gain” value of 0 dB (equivalent to a gain ratio of 1).

Remember that Bels and decibels are nothing more than logarithmic expressions of “greater
than” and “less than”. Positive values represent powers that are greater while negative values
represent powers that are lesser. Zero Bel or decibel values represent no change (neither gain nor
loss) in power.

A couple of simple decibel values are useful to remember for approximations, where you need to
quickly estimate decibel values from power ratios (or vice-versa). Each addition or subtraction of
10 dB exactly represents a 10-fold multiplication or division of power ratio: e.g. +20 dB represents
a power ratio gain of 10 × 10 = 100, whereas −30 dB represents a power ratio reduction of 1

10 × 1
10

× 1
10 = 1

1000 . Each addition or subtraction of 3 dB approximately represents a 2-fold multiplication
or division or power ratio: e.g. +6 dB is approximately equal to a power ratio gain of 2 × 2 = 4,
whereas −12 dB is approximately equal to a power ratio reduction of 1

2 × 1
2 × 1

2 × 1
2 = 1

16 . We
may combine ± 10 dB and ± 3 dB increments to come up with ratios that are products of 10 and
2: e.g. +26 dB is approximately equal to a power ratio gain of 10 × 10 × 2 × 2 = 400.

2For high-frequency signals such as those used in radio communications, the dominant mode of energy dissipation
is dielectric heating, where the AC electric field between the cable conductors excites the molecules of the conductor
insulation. This energy loss manifests as heat, which explains why there is less signal energy present at the load end
of the cable than is input at the source end of the cable. For DC and low-frequency AC circuits the dominant mode
of energy dissipation is cable conductor resistance, which is typically very small.
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Observe what happens if we combine a “gain” component with a “loss” component and calculate
the overall power out versus power in:

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio) Loss = -0.3386 dB

18.4 W

17.02 W

Gain = 26.6276 dB

Loss = 0.925 (ratio)

Amplifier
Cable

The overall gain of this amplifier and cable system expressed as a ratio is equal to the product
of the individual component gain/loss ratios. That is, the gain ratio of the amplifier multiplied by
the loss ratio of the cable yields the overall power ratio for the system:

Overall gain =
17.02 W

40 mW
= (460)(0.925) = 425.5

The overall gain may be alternatively expressed as a decibel figure, in which case it is equal to
the sum of the individual component decibel values. That is, the decibel gain of the amplifier added
to the decibel loss of the cable yields the overall decibel figure for the system:

Overall gain = 10 log

(

17.02 W

40 mW

)

= 26.6276 dB + (−0.3386 dB) = 26.2890 dB

It is often useful to be able to estimate decibel values from power ratios and vice-versa. If we
take the gain ratio of this amplifier and cable system (425.5) and round it down to 400, we may
easily express this gain ratio as an expanded product of 10 and 2:

425.5 ≈ 400 = (10)× (10)× (2)× (2)

Knowing that every 10-fold multiplication of power ratio is an addition of +10 dB, and that
every 2-fold multiplication of power is an addition of +3 dB, we may express the expanded product
as a sum of decibel values:

(10)× (10)× (2)× (2) = (10 dB) + (10 dB) + (3 dB) + (3 dB) = 26 dB

Therefore, our power ratio of 425.5 is approximately equal to +26 decibels.
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Decibels always represent comparisons of power, but that comparison need not always be
Pout/Pin for a system component. We may also use decibels to express an amount of power compared
to some standard reference. If, for example, we wished to express the input power to our hypothetical
amplifier (40 milliWatts) using decibels, we could do so by comparing 40 mW against a standard
“reference” power of exactly 1 milliWatt. The resulting decibel figure would be written as “dBm”
in honor of the 1 milliWatt reference:

Pin = 10 log

(

40 mW

1 mW

)

= 16.0206 dBm

The unit of “dBm” literally means the amount of dB “greater than” 1 milliWatt. In this case,
our input signal of 40 milliWatts is 16.0206 dB greater than a standard reference power of exactly
1 milliWatt. The output power of that amplifier (18.4 Watts) may be expressed in dBm as well:

Pout = 10 log

(

18.4 W

1 mW

)

= 42.6482 dBm

A signal power of 18.4 Watts is 42.6482 dB greater than a standard reference power of exactly 1
milliWatt, and so it has a decibel value of 42.6482 dBm.

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio)

18.4 W

Gain = 26.6276 dB

16.0206 dBm 42.6482 dBm

Amplifier

Notice how the output and input powers expressed in dBm relate to the power gain of the
amplifier. Taking the input power and simply adding the amplifier’s gain factor yields the amplifier’s
output power in dBm:

Pin(dB) + Pgain(dB) = Pout(dB)

16.0206 dBm+ 26.6276 dB = 42.6482 dBm

An electronic signal that begins 16.0206 dB greater than 1 milliWatt, when boosted by an
amplifier gain of 26.6276 dB, will become 42.6482 dB greater than the original reference power of 1
milliWatt.
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We may alternatively express all powers in this hypothetical amplifier in reference to a 1-Watt
standard power, with the resulting power expressed in units of “dBW” (decibels greater than 1
Watt):

Pin = 10 log

(

40 mW

1 W

)

= −13.9794 dBW

Pout = 10 log

(

18.4 W

1 W

)

= 12.6482 dBW

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio)

18.4 W

Gain = 26.6276 dB

-13.9794 dBW 12.6482 dBW

Amplifier

Note how the input power of 40 milliWatts equates to a negative dBW figure because 40
milliWatts is less than the 1 Watt reference, and how the output power of 18.4 Watts equates
to a positive dBW figure because 18.4 Watts is more than the 1 Watt reference. A positive dB
figure means “more than” while a negative dB figure means “less than.”

Note also how the output and input powers expressed in dBW still relate to the power gain of
the amplifier by simple addition, just as they did when previously expressed in units of dBm. Taking
the input power in units of dBW and simply adding the amplifier’s gain factor yields the amplifier’s
output power in dBW:

Pin(dB) + Pgain(dB) = Pout(dB)

−13.9794 dBW+ 26.6276 dB = 12.6482 dBW

An electronic signal that begins 13.9794 dB less than 1 Watt, when boosted by an amplifier gain
of 26.6276 dB, will become 12.6482 dB greater than the original reference power of 1 Watt.
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This is one of the major benefits of using decibels to express powers: we may very easily calculate
power gains and losses by summing a string of dB figures, each dB figure representing the power
gain or power loss of a different system component. Normally, any compounding of ratios involves
multiplication and/or division of those ratios, but with decibels we may simply add and subtract.
One of the interesting mathematical properties of logarithms is that they “transform3” one type of
problem into a simpler type: in this case, a problem of multiplying ratios into a (simpler) problem
of adding decibel figures.

For example, we may express the power dissipated along a cable in terms of decibels per foot;
the longer the cable, of course, the more power will be lost this way, all other factors being equal.
For example, a radio-frequency signal cable having a loss figure of −0.15 decibels per foot at a signal
frequency of 2.4 GHz will suffer −15 dB over 100 feet, and −150 dB over 1000 feet. To illustrate
how decibels may be used to calculate power delivered to a load in such a system, accounting for
various gains and losses along the way using decibel figures:

AC line
power

Cable loss = -0.17 dB/ft

Cable loss = -0.17 dB/ft

Length = 6 feet

Length = 20 feet

Gain = 45 dBPower output = 21.8 dBm

21.8 dBm + (-0.17 dB/ft)(6 ft) + 45 dB + (-0.17 dB/ft)(20 ft)
21.8 dBm - 1.02 dB + 45 dB - 3.4 dB

Oscillator Amplifier

Power delivered to the load = 62.38 dBm

Load

A similar application of decibels is found in multi-stage amplifier circuits, where one stage
amplifies a signal to be fed into a successive stage to be amplified more. The power gains of
these stages, each expressed as a ratio, multiply to make the over-all amplifier’s power gain (ratio).
The power gains of those same stages, each expressed as a decibel figure, add to make the over-all
amplifier’s power gain (dB):

+V

Stage 1 Stage 2 Stage 3

3In fact, logarithms are one of the simplest examples of a transform function, converting one type of mathematical
problem into another type. Other examples of mathematical transform functions used in engineering include the
Fourier transform (converting a time-domain function into a frequency-domain function) and the Laplace transform

(converting a differential equation into an algebraic equation).
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Another common application of decibels is to express ratios of voltage and/or current rather
than power. However, since the unit of the Bel has been defined as an expression of a power ratio,
we cannot simply substitute V or I for P in any of the formulae we’ve seen so far.

Suppose an amplifier has a voltage gain of 2 (i.e. Vout is twice as large as Vin), and we would like
to express this gain in decibels. Since decibels are intended to express power gain and not voltage
gain, we must figure out how much power gain is equivalent to a voltage gain of two. Obviously,
voltage and power are fundamentally different quantities, but if we imagine ourselves connecting a
fixed load resistance to the input signal, and then to the output signal, we will realize that load’s
power dissipation will be more than double when energized by a voltage twice as large. Joule’s Law
is helpful to determine the exact ratio of power dissipation:

P =
V 2

R

Doubling voltage for any given load resistance results in power quadrupling because power is
proportional to the square of the voltage applied to a fixed resistance. Using this as the basis for
applying decibels to a voltage ratio. Knowing that Joule’s Law also declares power is proportional
to the square of the current applied to a fixed resistance (P = I2R) means this same mathematical
relationship will apply to current gains and reductions as well as voltage gains and reductions:

dB = 10 log

(

Pout

Pin

)

= 10 log

(

Vout

Vin

)2

= 10 log

(

Iout
Iin

)2

An algebraic identity of logarithms is that the logarithm of any quantity raised to a power is
equal to that power multiplied by the logarithm of the quantity. Expressed in general terms:

log xy = y log x

Therefore, we may simplify the decibel formula for voltage gain by removing the “2” power and
making it a multiplier:

10 log

(

Vout

Vin

)2

= (2)(10) log

(

Vout

Vin

)

= 20 log

(

Vout

Vin

)

10 log

(

Iout
Iin

)2

= (2)(10) log

(

Iout
Iin

)

= 20 log

(

Iout
Iin

)

Thus, we may use decibels to express voltage or current ratios if we simply substitute 20 instead
of 10 as the multiplier.
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We can see the practicality of using decibels to represent something other than electrical
power by examining this analog meter face, belonging to a Simpson model 260 VOM (Volt-Ohm-
Milliammeter). Note the bottom scale on this meter’s face, calibrated in decibels (DB):

Pay attention to the note on decibels written in the lower-left corner of the meter face, where 0
dB is defined as 0.001 Watt dissipated by 600 Ohms. The fact that 0 dB is defined as 1 milliWatt
means it should (properly) be labeled dBm rather than dB4. A load resistance value is necessary
as part of this definition for dB because this meter cannot measure power directly but must infer
signal power from measurements of AC voltage. Without a specific load resistance, there is no clear
relation between voltage and power. 600 Ohms is an old telecommunications standard for audio-
frequency AC signals, and continues to be used today for voltage-based decibel measurements of
audio-frequency AC signals.

The meter as shown is connected to nothing at all, and so registers 0 Volts AC. This, of course,
corresponds to zero power, and it has no corresponding decibel value because the logarithm of zero
is mathematically undefined5. Practically, it means −∞ dB, which is why the needle at the 0 Volt
position “falls off” the left-hand end of the dB scale.

Close inspection of the dB scale on this meter face reveals another interesting property of decibels,
and that is the nonlinear nature of the dB scale. This contrasts starkly against all the voltage and
current scales on this meter face which are linear. This nonlinearity is a fundamental property of
decibels because it is based on the logarithm function which is nonlinear.

4Such mis-labeling is not that uncommon in the profession, the expectation being that the technician or engineer
working with the instrument ought to be familiar enough with the concept of decibels to know when dB really means
dBm, or dBW, etc.

5Your electronic calculator will complain if you attempt to take the logarithm of zero!
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Now, we will explore what is necessary to make this meter register 0 dBm (i.e. 1 milliWatt) with
an applied AC voltage. 1 milliWatt of power dissipated by 600 Ohms is equivalent to:

V =
√
PR =

√

(0.001)(600) = 0.7746 Volts

Setting the VOM to the 2.5 VAC range and applying just enough AC voltage to bring the needle
to the 0 dB mark allows us to verify that this is indeed equivalent to just under 0.8 Volts (read on
the 2.5 VAC scale):

In the lower-right corner of the meter face we see some notes regarding correction values for
decibel measurements when using different AC voltage ranges. The dB scale is read directly when
the meter is set on the 2.5 VAC range. When set on the 10 VAC range (i.e. a range four times as
great), the meter’s needle will experience a deflection one-fourth as much as when set to the 2.5 VAC
range, and therefore it will point to a lesser (or even negative) value on the dB scale. Converting a
voltage ratio of 0.25 into a decibel figure shows us how much less the needle will register on the dB
scale when the voltage range is quadrupled:

20 log

(

2.5

10

)

= −12.04 dB

Therefore, when using the 10 VAC range instead of the 2.5 VAC range, one must add 12 dB
to the reading. Likewise, we may prove each of the printed correction factors for the alternative
voltage-measurement ranges listed (50 Volt AC range and 250 Volt AC range):

20 log

(

2.5

50

)

= −26.02 dB

20 log

(

2.5

250

)

= −40.0 dB
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5.2 IEC standard component values

Components such as resistors, inductors, and capacitors are manufactured in several standard values,
described by IEC standard 60063. Rather than having a single series of standard values, the IEC
publishes lists called E series based on the number of unique values spanning a single decade (i.e. a
10:1 range).

The shortest of these series, called E3 contains just three values: 10, 22, and 47. The next series
is called E6 with six unique values: 10, 15, 22, 33, 47, and 68. These values represent significant
values for components, meaning the decimal point may be freely moved to create values spanning
multiple decades. For example, “33” simply means one can expect to find components manufactured
in values of 33, 3.3, 0.33, and 0.033 as well as 330, 3.3 k, 33 k, etc.

Although this may seem like a strange standard for component manufacturers to follow, there
is a compelling logic to it. The terms of each series are closer-spaced at the low end than at the
high end, and this allows for series and/or parallel combinations of components to achieve most any
desired value. For example, in the E6 series we only have values with the significant figures 10, 15,
22, 33, 47, and 68, but this doesn’t mean we are limited to total values with these significant figures.
For example, if we needed 80 Ohms of resistance we could connect a 33 Ohm and 47 Ohm resistor
together in series. 50 Ohms could be made from two 68 Ohm resistors in parallel (making 34 Ohms)
plus a 15 Ohm and 1 Ohm resistor in series.

On the next page is a table showing the four most common E-series specified by IEC standard
60063.
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E3 E6 E12 E24

10 10 10 10

11

12 12

13

15 15 15

16

18 18

20

22 22 22 22

24

27 27

30

33 33 33

36

39 39

43

47 47 47 47

51

56 56

62

68 68 68

75

82 82

91

E48, E96, and E192 series are also found in the IEC 60063 standard, used for components with
tighter tolerance ratings than typical.
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5.3 The meaning of the s variable

Euler’s Relation allows us to express rotating sinusoidal wave functions as imaginary exponents of
e. For example, Aejθ represents a phasor6 of length A at an angle of θ radians. Aejωt represents a
phasor of length A rotating at a velocity of ω radians per second at a particular instant in time t.
This happens to be an incredibly useful mathematical “trick” for representing sinusoidal waves in
physical systems. For example, if we wished to mathematically express a sinusoidal AC voltage as a
function of time with a peak voltage value of 10 Volts and a frequency of 60 hertz (377 radians per
second, since ω = 2πf), we could do so like this:

V (t) = 10ej377t

Exponential functions aren’t just useful for expressing sinusoidal waves, however. They also work
well for expressing rates of growth and decay, as is the case with RC and L/R time-delay circuits
where exponential functions describe the charging and discharging of capacitors and inductors. Here,
the exponent is a real number rather than an imaginary number: the expression e−t/τ approaching
zero as time (t) increases. The Greek letter “tau” (τ) represents the time constant of the circuit,
which for capacitive circuits is the product of R and C, and for inductive circuits is the quotient of
L over R. For example, if we wished to mathematically express the decaying voltage across a 33 µF
capacitor initially charged to 10 Volts as it dissipates its stored energy through a 27 kΩ resistor (the
circuit having a time constant of 0.891 seconds, since τ = RC), we could do so like this:

V (t) = 10e−(t/0.891)

The sign of the exponential term here is very important: in this example we see it is a negative
number. This tells us the function decays (approaches zero) over time, since larger positive values of
t result in larger negative values of t/τ (recall from algebra that a negative exponent is the equivalent
of reciprocating the expression, so that e−x = 1

ex ). If the exponent were a real positive number, it
would represent some quantity growing exponentially over time. If the exponent were zero, it would
represent a constant quantity. We expect a discharging resistor-capacitor circuit to exhibit decaying
voltage and current values, and so the negative exponent sign shown here makes sense.

If imaginary exponents of e represent sinusoidal waves, and real exponents of e represent growth
or decay, then a complex exponent of e (having both real and imaginary parts) must represent a
sinusoidal wave growing or decaying in magnitude over time. Engineers use the lower-case Greek
letter “omega” (ω) along with the imaginary operator j to represent the imaginary portion, and the
lower-case Greek letter “sigma”7 (σ) to represent the real portion. For example, if we wished to
mathematically express a sine wave AC voltage with a frequency of 60 hertz (377 radians per second)
and an amplitude beginning at 10 Volts but decaying with a time constant (τ) of 25 milliseconds
(σ = 1/τ = 40 time constants per second), we could do so like this:

V (t) = 10e−40t+j377t

6A “phasor” is a complex-number expression of a sinusoidal function at some moment in time.
7σ is equal to the reciprocal of the signal’s time constant τ . In other words, σ = 1/τ .
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We may factor time from the exponential terms in this expression, since t appears both in the
real and imaginary parts:

V (t) = 10e(−40+j377)t

With t factored out, the remaining terms −40 + j377 completely describe the sinusoidal wave’s
characteristics. The wave’s decay rate is described by the real term (σ = −40 time constants per
second), while the wave’s phase is described by the imaginary term (jω = 377 radians per second).
Engineers use a single variable s to represent the complex quantity σ + jω, such that any growing
or decaying sinusoid may be expressed very succinctly as follows:

Aest = Ae(σ+jω)t = Aeσtejωt

Where,
A = Initial amplitude of the sinusoid (e.g. Volts, Amperes) at time t = 0 (arbitrary units)
s = Complex growth/decay rate and frequency (sec−1)
σ = 1

τ = Real growth/decay rate (time constants per second, or sec−1)
jω = Imaginary frequency (radians per second, or sec−1)
t = Time (seconds)

Separating the expression Aeσtejωt into three parts – A, eσt, and ejωt – we get a complete
description of a rotating phasor:

A = Initial amplitude of the phasor (t = 0)
eσt = How much the phasor’s magnitude has grown (σ > 0) or decayed (σ < 0) at time t
ejωt = Unit phasor (length = 1) at time t
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If we set ω at some constant value and experiment with different values of σ, we can see the
effect σ has on the shape of the wave over time:

timetime
Decaying sinusoidSteady sinusoidGrowing sinusoid

t=0

A

A

time

t=0

A

t=0

Ae(σ + jω)tAe(σ + jω)tAe(σ + jω)t

where σ = 0 and ω > 0 where σ < 0 and ω > 0where σ > 0 and ω > 0

If we set σ at zero and experiment with different values8 of ω, we can see the effect ω has on the
shape of the wave over time:

timetime

t=0

A

time

t=0 t=0

Ae(σ + jω)tAe(σ + jω)tAe(σ + jω)t

A A

Zero frequency Low frequency High frequency

where σ = 0 and ω = 0 where σ = 0 and ω > 0 where σ = 0 and ω >> 0

If we set ω at zero to describe DC signals and experiment with different values of σ, we can see
the effect σ has on the magnitude of DC signals over time:

time

t=0

Ae(σ + jω)t

A

where σ = 0 and ω = 0

time

t=0

Ae(σ + jω)t

A

time

t=0

Ae(σ + jω)t

A

Growing DC Steady DC Decaying DC

where σ > 0 and ω = 0 where σ < 0 and ω = 0

As we will soon see, characterizing a sinusoidal response using the complex variable s allows us to
mathematically describe a great many things. Not only may we describe voltage waveforms using s
as shown in these simple examples, but we may also describe the response of entire physical systems
including electrical filter networks, feedback control systems, servomechanisms, chemical reactions,
and even nuclear chain-reactions. In fact, it is possible to map the essential characteristics of any

8One value of ω not shown in this three-panel graphic comparison is a negative frequency. This is actually not as
profound as it may seem at first. All a negative value of ω will do is ensure that the phasor will rotate in the opposite
direction (clockwise, instead of counter-clockwise as phasor rotation is conventionally defined). The real portion of
the sinusoid will be identical, tracing the same cosine-wave plot over time. Only the imaginary portion of the sinusoid
will be different, as j sin−θ = −j sin θ.
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linear system in terms of how exponentially growing, decaying, or steady sinusoidal waves affect it,
and that mapping takes the form of mathematical functions of s.

When engineers or technicians speak of a resonant system, they mean a circuit containing
inductive and capacitive elements tending to sustain oscillations of a particular frequency (ω).
A lossless resonant system (e.g. a superconducting tank circuit, a frictionless pendulum) may
be expressed by setting the real portion of s equal to zero (σ = 0 ; no growth or decay) and
letting the imaginary portion represent the resonant frequency (jω = j2πf). Real-life resonant
systems inevitably dissipate some energy, and so a real resonant system’s expression will have both
an imaginary portion to describe resonant frequency and a negative real portion to describe the
oscillation’s rate of decay over time.

Systems exhibiting a positive σ value are especially interesting because they represent instability :
unrestrained oscillatory growth over time. An aircraft auto-pilot control system with excessive
sensitivity, for example, is a system where σ could become positive, in which case the aircraft would
begin to pitch (or yaw, or roll) in an oscillating manner until the aircraft fell out of the sky. This
situation, of course, is highly undesirable.
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5.4 Impedance expressed using the s variable

We know that voltage across a capacitor and current “through” a capacitor are related as follows:

I = C
dV

dt

Next, we substitute an expression9 for voltage in terms of s and then use calculus to differentiate
it with respect to time:

I = C
d

dt

(

est
)

I = sCest

The ratio of V
I (the definition of impedance) will then be:

ZC =
V

I
=

est

sCest

ZC =
1

sC

Instead of the common scalar expression for capacitive impedance (ZC = 1
2πfC ) which only tells

us the magnitude of the impedance (in Ohms) but not the phase shift, we have a complex expression
for capacitive impedance (ZC = 1

sC ) describing magnitude, phase shift, and its reaction to the
growth or decay of the signal.

9The expression used here to represent voltage is simply est. I could have used a more complete expression such as
Aest (where A is the initial amplitude of the signal), but as it so happens this amplitude is irrelevant because there
will be an “A” term in both the numerator and denominator of the impedance quotient. Therefore, A cancels out
and is of no consequence.



5.4. IMPEDANCE EXPRESSED USING THE s VARIABLE 103

Likewise, we may do the same for inductors. Recall that voltage across an inductor and current
through an inductor are related as follows:

V = L
dI

dt

Substituting an expression for current in terms of s and using calculus to differentiate it with
respect to time:

V = L
d

dt

(

est
)

V = sLest

The ratio of V
I (the definition of impedance) will then be:

ZL =
V

I
=

sLest

est

ZL = sL

As with capacitors, we now have a complex expression for inductive impedance describing
magnitude, phase shift, and its reaction to signal growth or decay (ZL = sL) instead of merely
having a scalar expression for inductive impedance (ZL = 2πfL).

Resistors directly oppose current by dropping voltage, with no regard to rates of change.
Therefore, there are no derivatives in the relationship between voltage across a resistor and current
through a resistor:

V = IR

If we substitute est for current into this formula, we will see that voltage must equal Rest. Solving
for the ratio of voltage over current to define impedance:

ZR =
V

I
=

Rest

est

ZR = R

Not surprisingly, all traces of s cancel out for a pure resistor: its impedance is exactly equal to
its DC resistance.

In summary:

Inductive impedance (ZL) Capacitive impedance (ZC) Resistive impedance (ZR)

sL 1/sC R
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Now let’s explore these definitions of impedance using real numerical values. First, let’s consider
a 22 µF capacitor exposed to a steady AC signal with a frequency of 500 Hz. Since the signal in
this case is steady (neither growing nor decaying in magnitude), the value of σ will be equal to zero.
ω is equal to 2πf , and so a frequency of 500 Hz is equal to 3141.6 radians per second. Calculating
impedance is as simple as substituting these values for s and computing 1/sC:

ZC =
1

sC
=

1

(σ + jω)C

ZC =
1

(0 + j3141.6 s−1)(22× 10−6 F)

ZC =
1

j0.0691

ZC =
−j

0.0691

ZC = 0− j14.469 Ω (rectangular notation)

ZC = 14.469 Ω 6 − 90o (polar notation)

Thus, the impedance of this capacitor will be 14.469 Ohms at a phase angle of −90o. The purely
imaginary nature of this impedance (its orthogonal phase shift between voltage and current) tells us
there is no net power dissipated by the capacitor. Rather, the capacitor spends its time alternately
absorbing and releasing energy to and from the circuit.
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Next, we will consider the case of a 150 mH inductor exposed to an exponentially rising DC
signal with a time constant (τ) of 5 seconds. 5 seconds per time constant (τ) is equal to 0.2 time
constants per second (σ). Since the signal in this case is DC and not AC, the value of ω will be
equal to zero. Calculating impedance, once again, is as simple as substituting these values for s and
computing sL:

ZL = sL = (σ + jω)L

ZL = (0.2 + j0 s−1)(150× 10−3 H)

ZL = 0.03 + j0 Ω (rectangular notation)

ZL = 0.03 Ω 6 0o (polar notation)

Thus, the impedance of this inductor will be 0.03 Ohms at a phase angle of 0o. The purely real
nature of this impedance (i.e. no phase shift between voltage and current) tells us energy will be
continually absorbed by the inductor, and for this reason it will be seen by the rest of the circuit as
though it were a resistor dissipating energy for however long the signal continues to exponentially
grow.

A phase shift of 0 degrees for a reactive component such as an inductor may come as a surprise
to students accustomed to thinking of inductive impedances always having 90 degree phase shifts!
However, the application of the complex variable s to impedance mathematically demonstrates
we can indeed have conditions of no phase shift given just the right circumstances. This makes
conceptual sense as well if we consider how inductors store energy: if the current through an inductor
increases exponentially over time, never reversing direction, it means the inductor’s magnetic field
will always be growing and therefore absorbing more energy from the rest of the circuit.
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We see something even more interesting happen when we subject a reactive component to a
decaying DC signal. Take for example a 33,000 µF capacitor exposed to a decaying DC signal
with a time constant of 65 milliseconds. 65 milliseconds per time constant (τ) is equal to 15.38
time constants per second (σ). Once again ω will be zero because this is a non-oscillating signal.
Calculating capacitive impedance:

ZC =
1

sC
=

1

(σ + jω)C

ZC =
1

(−15.38 + j0 s−1)(33000× 10−6 F)

ZC =
1

−0.508

ZC = −1.970 + j0 Ω (rectangular notation)

ZC = 1.970 Ω 6 180o (polar notation)

A negative real impedance figure represents a phase shift of 180o between voltage and current.
Once again, this may surprise students of electronics who are accustomed to thinking of capacitive
impedances always having phase shifts of −90 degrees. What a 180 degree phase shift means is
the direction of current with respect to voltage polarity has the capacitor functioning as an energy
source rather than as a load. If we consider what happens to a capacitor when it discharges, the
180 degree phase shift makes sense: current flowing in this direction depletes the capacitor’s plates
of stored charge, which means the electric field within the capacitor weakens over time as it releases
that energy to the rest of the circuit.
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5.5 Butterworth passive filter component values

Passive filter networks having a ladder topology may exhibit any number of desired orders by
progressively adding reactive components in the pattern shown below, each successive stage causing
the filter’s roll-off rate to be steeper. These examples show low-pass filter networks of 1st-order,
2nd-order, and 3rd-order characteristic:

R1

C1
First-order filter

R1

C1

Rload

Rload

L2

Second-order filter

R1

C1 Rload

L2

Third-order filterC3

fcutoff

fcutoff

fcutoff

-3 dB

-3 dB

-3 dB

The choice of component values dictate the filter’s cutoff frequency as well as its transfer function
characteristic (e.g. Bessel, Butterworth, Chebyshev, Elliptic, etc.). That is to say, we could take
the exact same topology and give it different component values causing it to exhibit any of these
characteristics.
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The following table lists capacitances in Farads and inductances in Henrys necessary to implement
the Butterworth polynomial transfer function for a ladder-topology low-pass filter where input and
load resistances are both 1 Ω and whose cutoff frequency (ω) is 1 radian per second:

Rload = 1Ω ; ωcutoff = 1 rad/sec

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

1 2.000 – – – – – – – –

2 1.414 1.414 – – – – – – –

3 1.000 2.000 1.000 – – – – – –

4 0.765 1.848 1.848 0.765 – – – – –

5 0.618 1.618 2.000 1.618 0.618 – – – –

6 0.518 1.414 1.932 1.932 1.414 0.518 – – –

7 0.445 1.247 1.802 2.000 1.802 1.247 0.445 – –

8 0.390 1.111 1.663 1.962 1.962 1.663 1.111 0.390 –

9 0.347 1.000 1.532 1.879 2.000 1.879 1.532 1.000 0.347

These “normalized” component values may be scaled for different input/load resistance values
by multiplying all inductor values by the scaling factor and dividing all capacitance values by the
same scaling factor. For example, to scale the filter’s values for 600 Ω load and input resistances
instead of 1 Ω as assumed by the table, you would multiply each inductance by 600 and divide each
capacitance by 600.

These “normalized” component values may also be scaled for different cutoff frequency values by
dividing all inductor and capacitor values by the same scaling factor. For example, to scale the filter’s
values for a cutoff frequency of 4000 radians per second instead of the 1 radian per second frequency
assumed by the table, you would divide each inductance by 4000 and divide each capacitance by
4000.

The conversion factor between frequency in Hertz and frequency in radians per second is 2π,
given that ω = 2πf . For example, a natural frequency of 1000 radians per second is equal to 159.15
Hertz. Also, 60 Hertz is equal to 376.99 radians per second.
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5.6 Chebyshev passive filter component values

Passive filter networks having a ladder topology may exhibit any number of desired orders by
progressively adding reactive components in the pattern shown below, each successive stage causing
the filter’s roll-off rate to be steeper. These examples show low-pass filter networks of 1st-order,
2nd-order, and 3rd-order characteristic:

R1

C1
First-order filter

R1

C1

Rload

Rload

L2

Second-order filter

R1

C1 Rload

L2

Third-order filterC3

fcutoff

fcutoff

fcutoff

-3 dB

-3 dB

-3 dB

The choice of component values dictate the filter’s cutoff frequency as well as its transfer function
characteristic (e.g. Bessel, Butterworth, Chebyshev, Elliptic, etc.). That is to say, we could take
the exact same topology and give it different component values causing it to exhibit any of these
characteristics.
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The following table lists capacitances in Farads and inductances in Henrys necessary to implement
the Chebyshev polynomial transfer function for a ladder-topology low-pass filter where input and
load resistances are both 1 Ω, where the cutoff frequency (ω) is 1 radian per second, and where the
passband ripple is 1 dB:

Rload = 1Ω ; ωcutoff = 1 rad/sec ; Passband ripple = 1 dB

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

1 1.018 – – – – – – – –

3 2.024 0.994 2.024 – – – – – –

5 2.135 1.091 3.001 1.091 2.135 – – – –

7 2.167 1.112 3.094 1.174 3.094 1.112 2.167 – –

9 2.180 1.119 3.121 1.190 3.175 1.190 3.121 1.119 2.180

For the Chebychev transfer function, only odd-numbered orders allow for equal input and load
resistance values.

These “normalized” component values may be scaled for different input/load resistance values
by multiplying all inductor values by the scaling factor and dividing all capacitance values by the
same scaling factor. For example, to scale the filter’s values for 600 Ω load and input resistances
instead of 1 Ω as assumed by the table, you would multiply each inductance by 600 and divide each
capacitance by 600.

These “normalized” component values may also be scaled for different cutoff frequency values by
dividing all inductor and capacitor values by the same scaling factor. For example, to scale the filter’s
values for a cutoff frequency of 4000 radians per second instead of the 1 radian per second frequency
assumed by the table, you would divide each inductance by 4000 and divide each capacitance by
4000.

The conversion factor between frequency in Hertz and frequency in radians per second is 2π,
given that ω = 2πf . For example, a natural frequency of 1000 radians per second is equal to 159.15
Hertz. Also, 60 Hertz is equal to 376.99 radians per second.
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The following table lists capacitances in Farads and inductances in Henrys necessary to implement
the Chebyshev polynomial transfer function for a ladder-topology low-pass filter where input and
load resistances are both 1 Ω, where the cutoff frequency (ω) is 1 radian per second, and where the
passband ripple is 3 dB:

Rload = 1Ω ; ωcutoff = 1 rad/sec ; Passband ripple = 3 dB

Order C1 L2 C3 L4 C5 L6 C7 L8 C9

1 1.995 – – – – – – – –

3 3.349 0.712 3.349 – – – – – –

5 3.481 0.762 4.538 0.762 3.481 – – – –

7 3.519 0.772 4.639 0.804 4.639 0.772 3.519 – –

9 3.534 0.776 4.669 0.812 4.727 0.812 4.669 0.776 3.534

For the Chebychev transfer function, only odd-numbered orders allow for equal input and load
resistance values.
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5.7 Operational amplifier imperfections

Comparators and operational amplifiers are incredibly useful and practical as electronic circuit
building-blocks, but they are not perfect. For a great many applications these imperfections are
insignificant, but for others they may be debilitating. Therefore, it is important to understand the
ways in which operational amplifiers deviate from ideal behavior.
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5.7.1 Output voltage limits

The output voltage of any amplifier circuit cannot exceed its DC supply “rail” voltages, because all
an amplifier does is modulate its supply voltage. A useful model of a differential amplifier is that of a
potentiometer with its wiper driven by the pointer of an analog voltmeter driven by the differential
voltage applied to the input terminals:

Voltmeter

Vin(+)

Vin(-)

Vout

+V

-V

Positive power
supply "rail"

supply "rail"
Negative power

Red

Black

No matter how much voltage is applied between the + and − input terminals, the potentiometer
can only “swing” as far as the +V and −V “rails” of the DC power supply. This behavior is often
referred to as rail-to-rail output, where the Vout limits are exactly (or very nearly) equal to the DC
rail potentials.

However, many practical amplifier models cannot even swing that far. A more accurate model
for many is one where the potentiometer cannot quite reach the +V and −V rails:

Voltmeter

Vin(+)

Vin(-)

Vout

+V

-V

Positive power
supply "rail"

supply "rail"
Negative power

Red

Black

With the diodes’ voltage drops in effect, Vout is only able to “swing” to within approximately 0.7
Volts of each rail. Such internal voltage drops are typical of comparators and operational amplifiers
using BJTs in the final output stage. Rail-to-rail capability demands FET output transistors which
are capable of operating with mere milliVolts of drain-source voltage drop.
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5.7.2 Input voltage limits and latch-up

As a general rule, input voltages for any integrated circuit should remain within the limits of its
DC power supply “rail” potentials. Many integrated circuits including comparators and operational
amplifiers include “protection” diodes at the input terminals effectively clamping input terminal
potentials to the power supply rails (to within fractions of a Volt). Expanding upon our previous
circuit model, we may show these protection diodes (two per input terminal) connected such that
one will begin conducting if the potential at any input exceeds either power supply rail, essentially
making that input terminal the new “rail” to power the amplifier:
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Vin(-)

Vout
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supply "rail"
Negative power

Red

Black

If the common-mode10 voltage applied to the inputs of a differential amplifier exceeds the point
at which both transistors in the differential pair subcircuit turn off, the amplifier’s output may
saturate rather than respond properly to the differential input voltage. In some designs this may
even lead to a condition where the output remains “latched” in this saturated mode even after the
offending input condition ceases – a phenomenon known as latch-up11.

Amplifiers may fail to function properly even with input voltage values falling well within their
supplied rail voltages. For example, the popular TL08x series of operational amplifiers specify
common-mode voltage limits between +4 Volts above the negative rail voltage and −4 Volts below
the positive rail voltage: if we happened to power one of these opamps on ± 12 Volt rails, the
permissible input signal voltage range for either of its inputs would be −8 Volts to +8 Volts. In

10For a differential amplifier, the common-mode voltage is the amount of voltage with respect to ground that is
shared among both input terminals, typically calculated as the average of the two inputs’ ground-referenced voltages.

In other words, if Vdiff = Vin(+) − Vin(−) then VCM =
Vin(+)+Vin(−)

2
. However, for the sake of determining safe

limits for amplifier input voltage we may more simply define “common-mode voltage” as being any voltage measured
with respect to ground for either of a differential amplifier’s two inputs that may be either high or low enough to
cause a problem for that amplifier.

11Interestingly, the term “latch-up” more properly describes a condition in an integrated circuit where the
particularly layering of semiconductor materials forms a PNPN (thyristor) structure accidently triggered by certain
abnormal input conditions. Like the “latched” state just described, this triggered-thyristor state can only be reset by
cycling power to the circuit.
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contrast, other opamp models such as the MCP600x series offer rail-to-rail inputs capable of receiving
any common-mode voltage up to and including the two DC supply rail voltages.

Some operational amplifiers additionally clamp differential input signals using a pair of paralleled
protection diodes as shown in red below on the simplified opamp model:

Vout

+V

-V

Positive power
supply "rail"

supply "rail"
Negative power

Voltmeter

Vin(+)

Vin(-)

Red

Black

These differential protection diodes attempt to clamp differential voltage to a maximum of 0.7
Volts, which for a typical opamp employing negative feedback is perfectly acceptable because negative
feedback should maintain the differential voltage at approximately zero anyway. However, if one
attempts to use such a differential-clamped opamp as a comparator rather than as an operational
amplifier with negative feedback to compare two input potentials differing by more than 0.7 Volts,
improper circuit operation will result, with possible damage to the opamp as well!
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5.7.3 Input bias current

A generally safe assumption for most circuits is that the input terminals of a comparator or
operational amplifier carry no current. Like the input of an ideal voltmeter, we assume these inputs
have infinite input impedance and therefore pose no load on the sources they sense.

However, this is not entirely true. The input transistor stage of a differential amplifier represents
a finite – albeit very large – impedance, and bipolar junction transistors do require some amount
of base current to function. An inspection of the internal circuitry for the model 741 opamp reveals
the source of these currents as well as their directions:
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Q1 Q2

Q5 Q6

R1 R2R3 R4
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Internal schematic of a model 741 operational amplifier

Vin(-)

Vin(+)

Vout

R12

The two input terminals for the 741 connect to the bases of NPN transistors Q1 and Q2. In
order for these transistors to turn on, current must enter the base terminals from outside the opamp.
These bias currents are quite small – on the order of tens of nanoAmperes, but they do indeed exist
and must find a path through the external circuit.
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Another legacy opamp model is the 324. Its internal circuitry is shown below:
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Internal schematic of a model 324 operational amplifier

Note the two input PNP transistors Q1 and Q2. In order for these transistors to turn on, current
must exit their base terminals and find its way to the negative pole of the power supply through
external circuitry.

Some comparators and opamps have FET inputs rather than BJT inputs, usually in an attempt
to increase input impedance (i.e. decrease bias current). The TL08x opamp series is an example of
this design:

+V

Vin+

Vin-

-V

Q1 Q2

Vout

Internal schematic of a model TL08x operational amplifier
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Knowing that JFETs are designed to have their gate-channel PN junctions reverse-biased, we may
conclude the two P-channel JFETs Q1 and Q2 will exhibit extremely small bias currents entering
their gate terminals from outside the opamp.
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When we connect components to the input terminals of an opamp, we must be sure some pathway
exists for these bias currents to flow in the proper directions. Consider the following examples, where
a voltage divider provides a voltage signal which each opamp then “buffers” as a voltage follower:
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Vout741
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Again, these currents are extremely small in magnitude, and their effects are usually negligible.
However, if they must pass through a high impedance, they will cause an undesired voltage drop to
develop. A common strategy to mitigate the effects of this voltage drop is to insert an equivalent
amount of resistance within the feedback bias current path, assuming the two bias currents will
be approximately equal in magnitude, and therefore the two unwanted voltage drops should be
approximately equal in magnitude but opposite in polarity and so should cancel each other out as
common-mode (not differential) voltage at the opamp inputs:

−

+

+V

R1

R2

Vout

+V

Ibias

Ibias 324

Ibias

Ibias

Verror

Verror

Rfeedback



5.7. OPERATIONAL AMPLIFIER IMPERFECTIONS 119

If we regard the voltage divider as a voltage source with its own internal Thévenin resistance,
we see the bias current must pass through that resistance:

−

+
Vout

+V

Ibias

Ibias 324Ibias

Ibias

Verror

+
−

Verror

RTh
VTh

Rfeedback

The value of the “source’s” Thévenin resistance is equal to the parallel equivalent resistance of
R1 and R2, and so our feedback resistance needs to be equal to the same:

Rfeedback =
1

1
R1

+ 1
R2

It is important to note that the assumption of an opamp’s two bias currents being equal is exactly
that: an assumption and not necessarily reality. Small differences in bias current from one input to
the other can exist, and this difference of bias current is called offset current.
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5.7.4 Input offset voltage

If the input terminals of a differential amplifier are shorted together to ensure zero differential input,
the amplifier’s output should ideally assume a state of zero Volts as well. However, this rarely
happens in practice due to asymmetries in the internal circuitry of the amplifier. In practice, a very
small amount of differential input voltage is necessary to achieve exactly zero Volts at the output,
and this small differential voltage is called the offset voltage or bias voltage of the amplifier.

Some operational amplifier models provide external terminals for the user to connect a
potentiometer, which may be used to “trim” the offset of the amplifier. The legacy 741 opamp
is one of those designs, with offset null terminals labeled:
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Internal schematic of a model 741 operational amplifier
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Externally, the “nulling” potentiometer connects to these two offset terminals and to the negative
power supply terminal:

−

+
Vout

+V

741

Null
adjust

Essentially, the two portions of the potentiometer become connected in parallel with R1 and R2,
respectively, inside the opamp. By externally skewing the equivalent resistances of R1 and R2, the
bias currents through the two halves of the opamp’s differential pair input stage may be likewise
skewed to achieve the desired negation of offset voltage.
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5.7.5 Frequency compensation

A problem common to high-gain amplifier circuits is undesired oscillation, and the root of this
problem is positive feedback : where some of the amplifier’s output signal becomes “fed back” to its
input with a 360o phase shift, so that it continually drives itself into oscillation. This principle finds
constructive application in sinusoidal oscillator circuits, but for non-oscillator circuits it can be a
serious problem.

Most operational amplifier circuits utilize negative feedback (i.e. 180o phase shift) rather than
positive feedback, and so it might seem at first oscillations would not be possible in these circuits.
However, the 360o of phase shift necessary for self-sustaining oscillations may occur in a negative-
feedback circuit if a total of 180o additional phase shift occurs elsewhere in the opamp circuit. One
operating scenario inviting additional phase shift is when the opamp’s output must drive a capacitive
load. At high enough frequencies, the load’s capacitance and stray capacitances in the circuit may
conspire to provide the additional 180o of phase shift necessary to make the total phase shift 360o.

The criteria necessary for self-oscillation is signal feedback with 360o of phase shift and a total
signal gain of at least unity (1). If the 360o of phase shift cannot be avoided, an effective solution
to the problem of unintentional oscillation is to intentionally reduce the opamp’s open-loop gain
as frequency increases, so that at the frequency necessary to achieve 360o phase shift the fed-back
signal has a voltage gain less than one.

Many operational amplifiers are internally compensated for this by the intentional connection of
a capacitor between amplification stages. The internal schematic diagrams of three models of opamp
shown in previous subsections all contain compensation capacitors. They are easy to spot, being the
only capacitor in the entire diagram!

5.7.6 Gain-bandwidth product

Operational amplifier open-loop voltage gain is very high, but degrades for multiple reasons as signal
frequency increases. The mathematical product of amplifier gain and signal frequency is expressed
as the amplifier’s Gain Bandwidth Product, or GBWP.
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5.7.7 Slew rate

The maximum rate at which the output voltage of a comparator or opamp is able to rise or fall is
called the slew rate. If we drive a simple “voltage follower” opamp circuit with a perfect square-
wave signal having instantaneous rise and fall times, what we will see on the output is a slew-limited
waveform with definite rise and fall slopes :

−

+

Vin

Perfect square wave Slew-limited wave

Vout

Slope is always measured as a rise over run, so for these voltage waveforms we may represent their
rising- and falling-edge slopes as a rates-of-change of voltage over time (dVdt ), the input waveform
having a infinite rates of change, and the output waveform having finite rates of change. The reason
for an opamp’s slew rate limitations is based on its internal current limitations and capacitances.
Recall the relationship between voltage and current for any capacitance:

IC = C
dVC

dt

If a current source drives a constant current through a capacitance, that voltage across that
capacitance will either rise or fall (depending on current direction) at a constant rate. An opamp’s
internal transistors are current-limiting devices by nature, and when this limited current energizes
or de-energizes capacitance the result is a linearly-sloping waveform rather than an instantaneous
jump. A major source of capacitance for any opamp is the frequency-compensating capacitance
previously discussed, but any capacitance connected to the opamp as part of the load of course also
contributes to a limited slew rate. This is why opamp datasheets always specify load capacitance
when declaring maximum slew rate (e.g. the model 741 opamp is typically limited to 0.5 Volts per
microsecond, or 500,000 Volts per second, while driving a load having no more than 100 picoFarads
of capacitance).
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5.7.8 Common-mode rejection

Operational amplifiers are differential amplifiers, and as such they are only supposed to respond to
differences in voltage between their two input terminals. Ideally, any common-mode12 voltage is
ignored (i.e. rejected) by the amplifier:

−

+

Vdiff

VCM

Vout

+V

In other words, Vout for an ideal opamp is strictly a function of Vdiff and is entirely independent
of VCM . However, real opamps are not ideal, and as such their output voltages will be slightly
affected by VCM . We may express the relationship between Vout and VCM as a gain, just as we do
for differential voltage:

ACM =
∆Vout

∆VCM
Adiff =

∆Vout

∆Vdiff

Differential voltage gain (Adiff ) is typically referred to as open-loop voltage gain (AOL) and for
most operational amplifiers is an extremely large number. Common-mode voltage gain (ACM ) by
contrast is much smaller (ideally being zero).

The degree to which a differential amplifier rejects a common-mode signal is typically gauged in
comparison to its differential voltage gain. The ratio of Adiff to ACM is called the common-mode
rejection ratio, or CMRR:

CMRR =
Adiff

ACM

CMRR is more often found expressed as a decibel figure, so:

CMRR(dB) = 20 log

(

Adiff

ACM

)

12Here, the term “common-mode” refers to a quantity shared in common by both input terminals of the amplifier.
This is distinct from “differential” which by definition means something different or distinct between the input
terminals.
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Chapter 6

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

125
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6.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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6.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.
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6.3 Butterworth passive filter designer using C++

This simple program calculates the capacitor and inductor values necessary to form a passive ladder-
topology filter network exhibiting a Butterworth polynomial characteristic:

#include <iostream>

#include <cmath>

using namespace std;

// The following array stores coefficients for component values based on

// the assumption of 1 rad/sec cutoff and 1 Ohm input/load impedances,

// from 1st order to 9th order filter networks.

float coeff[10][10] =

{{0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // 0th

{0.000, 2.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // 1st

{0.000, 1.414, 1.414, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // 2nd

{0.000, 1.000, 2.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // 3rd

{0.000, 0.765, 1.848, 1.848, 0.765, 0.000, 0.000, 0.000, 0.000, 0.000}, // 4th

{0.000, 0.618, 1.618, 2.000, 1.618, 0.618, 0.000, 0.000, 0.000, 0.000}, // 5th

{0.000, 0.518, 1.414, 1.932, 1.932, 1.414, 0.518, 0.000, 0.000, 0.000}, // 6th

{0.000, 0.445, 1.247, 1.802, 2.000, 1.802, 1.247, 0.445, 0.000, 0.000}, // 7th

{0.000, 0.390, 1.111, 1.663, 1.962, 1.962, 1.663, 1.111, 0.390, 0.000}, // 8th

{0.000, 0.347, 1.000, 1.532, 1.879, 2.000, 1.879, 1.532, 1.000, 0.347}}; // 9th

int main (void)

{

int n, lowpass, count;

float f, z, x[10];

// Gathering input from the user . . .

cout << "Enter desired order of filter = "; cin >> n;

cout << "Enter 1 for lowpass, 0 for highpass = "; cin >> lowpass;

cout << "Enter desired cutoff frequency (Hz) = "; cin >> f;

cout << "Enter desired input impedance (Ohms) = "; cin >> z;

// Ensuring a minimum filter order of 1

if (n < 1)

n == 1;

// Ensuring a maximum filter order of 9

if (n > 9)

n == 9;
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if (lowpass == 1) // Low-pass filter design

{

for (count = 1 ; count <= n; ++count)

{

x[count] = coeff[n][count];

if (count % 2 != 0) // Scaling capacitor values

{

x[count] = x[count] / z / (f * 2 * M_PI);

cout << "Capacitor C" << count << " = " << x[count] << " Farads" << endl;

}

else // Scaling inductor values

{

x[count] = x[count] * z / (f * 2 * M_PI);

cout << "Inductor L" << count << " = " << x[count] << " Henrys" << endl;

}

}

}

else // High-pass filter design

{

for (count = 1 ; count <= n; ++count)

{

x[count] = 1/(coeff[n][count]);

if (count % 2 != 0) // Scaling inductor values

{

x[count] = x[count] * z / (f * 2 * M_PI);

cout << "Inductor L" << count << " = " << x[count] << " Henrys" << endl;

}

else // Scaling capacitor values

{

x[count] = x[count] / z / (f * 2 * M_PI);

cout << "Capacitor C" << count << " = " << x[count] << " Farads" << endl;

}

}

}

return 0;

}
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Here we will run this program to show how it works to calculate component values for the 5th
order high-pass Butterworth filter described in the Tutorial, with a desired cutoff frequency of 300
kHz and a desired input/load impedance of 75 Ohms:

Enter desired order of filter = 5

Enter 1 for lowpass, 0 for highpass = 0

Enter desired cutoff frequency (Hz) = 300e3

Enter desired input impedance (Ohms) = 75

Inductor L1 = 6.43831e-05 Henrys

Capacitor C2 = 4.37179e-09 Farads

Inductor L3 = 1.98944e-05 Henrys

Capacitor C4 = 4.37179e-09 Farads

Inductor L5 = 6.43831e-05 Henrys

Just as shown in the Tutorial, this program properly computes the values for the components as
follows:

• L1 = 64.3831 µH

• C2 = 4.37179 nF

• L3 = 19.8944 µH

• C4 = 4.37179 nF

• L5 = 64.3831 µH

Note how the program expresses all values in scientific notation, with some decimal-point shifting
necessary to re-express these values using standard metric prefixes. Note also how the program is
able to accept values input in power-of-ten notation, with 300e3 representing 300 kiloHertz.
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Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

139
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Graphing as a problem-solving strategy

Capacitance

Inductance

Reactance

Open

Short
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Voltage divider

Phasor

Phase angle

Bode plot

Cutoff

Passband

Stopband

Bandwidth

Roll-off

Frequency domain

Sinusoidal decomposition (i.e. Fourier’s Theorem)

Time domain

Transfer function

Zero
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Pole

Order

Angular velocity

Neper velocity

“Ohm’s Law” for capacitance

“Ohm’s Law” for inductance

Resonance

Parasitic effect

Normalization

Monotonicity

7.1.3 Single-pole filters

Why are only filters having more than one pole capable of classification as either Butterworth, Bessel,
Chebyshev, or Elliptic?

Challenges

• Why might we wish to choose a Butterworth, Bessel, Chebyshev, or Elliptic filter characteristic
for a particular application?
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7.1.4 Filter component value scaling

Tables of component values are extremely helpful when designing passive filter networks, but the
values as given are never precisely what you will need in your specific filter’s design. Rather, these
tabulated values must be scaled into values suitable for your application.

Explain why this is, and what factor(s) influence this scaling procedure.

Challenges

• Why do multi-order passive filters typically contain both capacitors and inductors?
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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7.2.3 RC filter component selection program

A challenge faced when designing an analog filter network is selecting appropriate component values
from a limited selection such as the common IEC “E12” series11.

One way to make the most of limited component values on a printed circuit board (PCB) design
where you might have to choose component values after the board has been manufactured is to
provided pads where components may be soldered in if needed, but may be left empty if not.
Consider the following PCB layout example, where three places exist for surface-mount resistors
along with one place for a surface-mount capacitor, to form a simple RC filter network:

R1

R2

R3

C1

PCB

Even though the E12 series only provides us with twelve unique values within one decade of
range, being able to combine multiple components in parallel like this enables far more than twelve
unique combinations of resistance within the same range.

Choosing just the right combination of resistances and capacitances to achieve a desired cutoff
frequency, however, is a daunting task because so many possible combinations exist even with just
twelve choices per component (thirteen if you include the option of “no resistor” in the spaces for
R2 and/or R3). Here is where computers can be a useful aid, by automating the selection process.
Consider the following program written in the C language to choose component values for this RC
filter network:

#include <stdio.h>

#include <math.h>

int main (void)

{

float R[13] = {10e3, 12e3, 15e3, 18e3, 22e3, 27e3, 33e3,

39e3, 47e3, 56e3, 68e3, 82e3, 999e9};

float C[12] = {1e-9, 1.2e-9, 1.5e-9, 1.8e-9, 2.2e-9, 2.7e-9,

3.3e-9, 3.9e-9, 4.7e-9, 5.6e-9, 6.8e-9, 8.2e-9};

float f_c, rp, f, error, error_least = 999e9;

float f_match, c1_match, r1_match, r2_match, r3_match;

11The E12 series encompasses values having significant figures of 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82.
For example, a resistor that is 1.8 kΩ would fall within the E12 series, as would a 470 µF capacitor and a 0.15 mH
inductor.
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int r1, r2, r3, c1;

printf ("Enter desired cutoff frequency: ");

scanf ("%f", &f_c);

for (r1 = 0; r1 < 12; ++r1)

for (r2 = 0; r2 < 13; ++r2)

for (r3 = 0; r3 < 13; ++r3)

for (c1 = 0; c1 < 12; ++c1)

{

rp = 1 / (1 / R[r1] + 1 / R[r2] + 1 / R[r3]);

f = 1 / (2 * M_PI * rp * C[c1]);

error = fabs (f - f_c) / f_c;

if (error < error_least)

{

error_least = error;

f_match = f;

r1_match = R[r1];

r2_match = R[r2];

r3_match = R[r3];

c1_match = C[c1];

}

}

rp = 1 / (1 / r1_match + 1 / r2_match + 1 / r3_match);

f = 1 / (2 * M_PI * rp * c1_match);

printf ("Best-match cutoff frequency = %f Hertz\n", f_match);

printf ("Best-match error = %f percent\n", (f - f_c) / f_c * 100.0);

printf ("R1 = %.1f kiloOhms\n", r1_match / 1e3);

if (r2_match < 100e3)

printf ("R2 = %.1f kiloOhms\n", r2_match / 1e3);

if (r3_match < 100e3)

printf ("R3 = %.1f kiloOhms\n", r3_match / 1e3);

printf ("C1 = %.1f nanoFarads\n", c1_match * 1e9);

return 0;

}
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Examine this program’s source code and then answer the following questions:

• How exactly does the program choose the best combination of R and C values for the user-
selected cutoff frequency?

• What is the lowest cutoff frequency possible given the component values available in the two
floating-point arrays?

• What is the highest cutoff frequency possible given the component values available in the two
floating-point arrays?

• What type of RC filter network is this, based on the PCB layout shown?

• Which terminals comprise the input for this RC filter network, and which comprise the output?

Challenges

• What constraints other than cutoff frequency might be important in the design of such a filter
network?

• How could this program be altered to accommodate a different range of possible cutoff
frequencies, given the lowest and highest values answered above?
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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7.3.1 Effects of faults in a multi-order filter

Identify the type of filter network shown in the following schematic:

C1

C2

C3

C4

L1

Identify the effect(s) that capacitor C2 failing open will have on the performance of this filter.

Identify the effect(s) that inductor L1 failing open will have on the performance of this filter.

Identify the effect(s) that capacitor C3 failing shorted will have on the performance of this filter.

Identify the effect(s) that inductor L1 failing shorted will have on the performance of this filter.

Challenges

• Re-draw an unbalanced version of this same filter network.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

9 April 2025 – grammatical error correction in the Tutorial courtesy of Jacob Stormes (“are other
some of the other”). Also edited some of the instructor notes.

28 March 2025 – added an instructor recommendation to the Introduction chapter.

7 November 2024 – minor edits to the Tutorial.

2-3 November 2024 – added a new Tutorial section on the relationship between transfer functions
and filter Bode plots.

30 October 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

5 April 2024 – added content to the (empty) Introduction chapter.

10 March 2024 – added some questions to the module and fixed on mis-spelling of a word.

23 December 2023 – minor edit to image 6112, inverting the phase on two of the AC waveforms
to match the phase of the others.

12 November 2023 – included a Technical Reference section on operational amplifier imperfections.

20 October 2023 – added a new Tutorial section on output-limited filter networks.

9 August 2023 – minor change to C code in the “RC filter component selection program”
Quantitative Reasoning question to avoid potential compiler warnings related to literal formatting
of a “percent” symbol. Also added formatting to the floating-point numerical outputs to show fewer
(unnecessary) trailing zeros.
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23 July 2023 – added a Quantitative Reasoning question showing a program written in C for
selecting common (E12) component values to achieve precise cutoff frequencies in simple single-pole
RC filter circuits.

6-7 September 2022 – added a Programming References chapter with a section showing a C++
program for lowpass and highpass analog filter design, as well as a Case Tutorial chapter with
examples of passive filter designs.

1-13 April 2022 – added more content to the Tutorial chapter, and decided to fold the Case
Tutorial section written on 31 March 2022 into the Tutorial instead.

31 March 2022 – added more content to the Case Tutorial chapter.

30 March 2022 – added more content to the Tutorial chapter.

29 March 2022 – document first created.
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