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Chapter 1

Introduction

If you poll technical college faculty about the algebraic skill they find most lacking in their
new students, the answer you are likely to get more than any other is manipulating equations.
This is arguably the biggest reason why technical students need to learn algebra — because
equations necessary to calculate important quantities aren’t always found in the proper form —
and paradoxically the point of greatest frustration for students and faculty alike. This module seeks
to explain the logic and art of algebraic manipulation in a way that is both simple and practical.
General principles are introduced section-by-section, with practical examples drawn from circuit
analysis included for every principle.

Important concepts related to algebraic manipulation include the symbolic representation of
numbers by non-numerical symbols called variables, the expression of general principles by
equations, mathematics as a language, subscripted variables, mathematical equality, the
commutative property of certain arithmetic operations, how equality remains unaffected by
performing identical operations to both sides of an equation, inverse operations, strategies
for algebraic manipulation, canceling terms when multiplying fractions, order of operations,
factoring, grouping symbols, and substitution.

Here are some good questions to ask of yourself while studying this subject:

e How might you utilize an electronic calculator to perform experiments exploring inverse
arithmetic operations? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

e What does it mean for two arithmetic operations to be the inverse of each other?

e How does a physical balance-beam help explain mathematical equality?

e What are some inverse-operation pairs in arithmetic?

e Why is it recommended to cultivate multiple methods for manipulating similar equations?
e What benefit is there in writing each and every step of an equation’s manipulation?

e What do “grouping” symbols represent in an equation?

3



4 CHAPTER 1. INTRODUCTION

e Why is the order of operations significant to manipulating equations?

e Where might you apply factoring when manipulating an equation?

e What does a root symbol (e.g. square-root) represent in mathematics?

e How do exponents relate to logarithms?

e Why do we have multiple types of logarithm functions (e.g. natural log, common log)?

e How may we derive all the forms of Joule’s Law from the most basic form (P = IV) and
Ohm’s Law?

The Tutorial provides an excellent active-reading opportunity, in that you may perform all the
same manipulations shown in the text. After reading how a particular manipulation was done, you
may write the original equation on a separate sheet of paper and then (without referencing the text)
challenge yourself to manipulate it all on your own. Then, when you think you have arrived at a
solution you may refer to the text to check your answer. This requires self-discipline, as it is much
easier to simply read the original explanation and tell yourself that it all makes sense, but challenging
yourself in this way is vital to building independent problem-solving skill. Technical reading is not
a spectator activity, but has maximum benefit to the reader who takes an active (participatory)
approach.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: manipulated equations

2.1.1 Parallel resistances

The total resistance of a four-resistor parallel network is given by the following equation:

Rtotal =

Where,
Ryiotar = Total parallel resistance (Ohms)
R; = Resistance of resistor #1 (Ohms)
Ry = Resistance of resistor #2 (Ohms)
Rs = Resistance of resistor #3 (Ohms)
R, = Resistance of resistor #4 (Ohms)

Equation manipulated to solve for Ry:

Rl: 1 1 1 1
ﬁm‘(ﬂ+a+m>

Equation manipulated to solve for Rs:

Ry =

1 1 1 1
IMJ%E+E+E)
Equation manipulated to solve for Rs:

R3 =

1 1 1 1
Rl (57 TR T H)
Equation manipulated to solve for Ry:

Ry =
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2.1.2 Voltages in a voltage divider circuit

Voltages in the the following voltage divider circuit are related to each other by the equation shown
below:

Ry
VWW

vgc{@ R, }v

Ry
Vou = ‘/src
' Ry + Ry

Where,
Vsre = DC source voltage (Volts)
Vout = Voltage dropped across resistor Ry (Volts)
Ry = Resistance of resistor #1 (Ohms)
Ry = Resistance of resistor #2 (Ohms)

Equation manipulated to solve for Ry:

Equation manipulated to solve for Rs:



8 CHAPTER 2. CASE TUTORIAL

2.1.3 Voltages in a series-parallel circuit

Voltages in the the following series-parallel circuit are related to each other by the equation shown
below:

v g® RS RE|va

RyR3

_ Ra+R3
Vout - ‘/src

RoR3
Ry + Ra+R3

Where,
Vsre = DC source voltage (Volts)
Vout = Voltage dropped across both resistor Ry and resistor Rz (Volts)
R; = Resistance of resistor #1 (Ohms)
Ry = Resistance of resistor #2 (Ohms)
R3 = Resistance of resistor #3 (Ohms)

Equation manipulated to solve for Ry:

Vire _
Vout 1
Ry = Yeut

Equation manipulated to solve for Rs:

Ry

Equation manipulated to solve for Rs:

R3 Vsre Ry

Vout Rs
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2.1.4 Torricelli’s Theorem

An equation known as Torricelli’s Theorem relates the velocity of water exiting a hole in a
unpressurized container with the height of the liquid above the hole:

v =+/2gh

Where,
v = Velocity of liquid exiting the hole
g = Acceleration of gravity (9.8 meters per second squared, or 32 feet per second squared)
h = Height of liquid column above the hole

Equation manipulated to solve for g:

_ v
)
Equation manipulated to solve for h:
2
h=—
29

2.1.5 Satellite orbital velocity
The velocity necessary for a satellite to maintain a circular orbit around Earth is given by this
equation:

Vs =+/gc+h

Where,
vs = Satellite velocity (feet per second)

ge = Acceleration of Earth gravity at sea level (32 feet per second squared)
h = Orbit altitude, (feet)

Equation manipulated to solve for g.:

@

Equation manipulated to solve for h:

hZ’UE—gc
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2.1.6 Voltages in an AC resistor-capacitor circuit

Voltages in the the following AC circuit are related to each other by the equation shown below:

VSI'C
I_I_I
70
W,

||
| v
v Vr

C

Verc =V VC + VR

Where,
Vsre = AC source voltage (Volts)
Ve = Voltage dropped across capacitor (Volts)
Vr = Voltage dropped across resistor (Volts)

Equation manipulated to solve for Vi:

Vo=V

src

— Vg

Equation manipulated to solve for Vg:

Vg =V2

src

— Ve
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2.1.7 Roller bearing life

The expected operating life of a rolling-contact bearing may be predicted by the following equation:

C
RL = (L)
Where,

R;, = Operating life (millions of shaft revolutions)
C' = Dynamic capacity of bearing (pounds)
L = Radial load applied to bearing (pounds)

o3

Equation manipulated to solve for C:

C'=L(R)™
Equation manipulated to solve for L:
L= ¢ 5
(Rp)10

2.1.8 Pipe size

Mechanical, chemical, and civil engineers must often calculate the size of piping necessary to
transport fluids. One equation used to relate the water-carrying capacity of multiple, small pipes to
the carrying capacity of one large pipe is as follows:

dg 2.5
N=|[—
<d1>

Where,
N = Number of small pipes
d1; = Diameter of each small pipe
ds = Diameter of large pipe

Equation manipulated to solve for da:
d2 _ d1N0.4

Equation manipulated to solve for d;:

T NO4
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2.1.9 Transformer winding turns and impedances

The ratios of electrical transformer winding turns and impedances are related to each other as such:

No [ Zp

N Zs

Where,
N, = Number of primary winding turns
N = Number of secondary winding turns
Z, = Impedance of primary circuit
Z s = Impedance of secondary circuit

Equation manipulated to solve for IN,:

Z
N, = Ny /22
p Zs

Equation manipulated to solve for Ng:

Equation manipulated to solve for Z,,:

Equation manipulated to solve for Z,:
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2.1.10 Ship propulsion
The amount of power required to propel a ship is given by this equation:

D3V?3
T K

P

Where,
P = Power required to turn propeller(s) (horsepower)
D = Vessel displacement (long tons)
V = Velocity (nautical miles per hour)
K = Admiralty coefficient (approximately 70 for a 30 foot long ship, load waterline)

Equation manipulated to solve for D:

-}
1
/—%
Bl
N———
[N

Equation manipulated to solve for V:

<
I
"U
S
N————
wl=

Equation manipulated to solve for K:

v

13



14 CHAPTER 2. CASE TUTORIAL

2.1.11 Broaching a hole

In machining production technology, the time required to “broach” a hole in a plate may be estimated
by the following equation:

L L
T=—+—
¢ R
Where,
T = Time to broach hole (minutes)
L = Length of stroke (feet)
C = Cutting speed (feet per minute)
R. = Return speed (feet per minute)
Equation manipulated to solve for L:
I TCR.
R.+C
Equation manipulated to solve for C:
LR,
C=—r—-—-
TR.— L
Equation manipulated to solve for R.:
LC
R. =

T TC-L
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2.1.12 Brinell hardness

The Brinell hardness of a metal specimen is measured by pressing a ball into the specimen and
measuring the size of the resulting indentation. To calculate Brinell hardness, this equation is used:

F

(") (di — /d} — d?)

H =

Where,
H = Hardness of specimen (Brinell units)
F = Force on ball (kg)
dy = Diameter of ball (mm)
ds = Diameter of indentation (mm)

Equation manipulated to solve for F:

() (1 - i)

Equation manipulated to solve for d,:

=i (0 )

2.1.13 Binary states

In digital electronic systems based on binary numeration, the number of possible states representable
by the system is given by the following equation:

ng = 2"
Where,
ns = Number of possible states
np = Number of binary ”bits”
Equation manipulated to solve for F:
log n
ny =

log 2
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Chapter 3

Tutorial

3.1 What do all these letters mean?

Students new to algebra face something they never encountered with arithmetic: letters placed
together with numbers. For example, any student familiar with multiplication will immediately be
able to compute the following product:

3X5

Three multiplied by five is equivalent to five added to itself three times: 5+ 5+ 5, the product
being fifteen (15). However, the following algebraic expression throws many a new student into
confusion:

nxR

What in the world does n or R mean, any why would we be multiplying letters rather than
numbers? The answer to this very good question is that these letters function as place-holders for
number-values. For example, if we were told that n has a value of 3 and R has a value of 5, then
n X R would be the same as saying 3 x 5, the result once again being 15:

If n stands for 3 and R stands for 5 ,

Then n x R means the same as 3 x 5 which is 15

In other words, as place-holders for numbers n and R may be substituted for the actual numerical
values. In a sense, we may view each of these letters — called variables — as a kind of alias for a
number, subject to the same rules we follow when using numbers. Interesting though this may be,
it is still a fair question to ask why we might ever want to do such a thing. After all, if 3 x 5 is
good enough to signify the multiplication of three and five, what’s the point of declaring a couple of
letters (variables) to be place-holders for three and five, and then multiplying those variables? This
just seems like so much pointless busy-work.

17



18 CHAPTER 3. TUTORIAL

A practical example will show why variables are useful. Consider a set of electrical components
called resistors connected in-line with one another by segments of metal wire. The purpose of a
resistor is to dissipate energy from electrical charge carriers passing through it, that energy being
converted into heat. Resistors may be used as electrical heaters because they become warm when
electricity passes through, but they have many other uses too:

Resistor Resistor Resistor

wire wire wire wire

Every resistor has a resistance value measured in the unit of the Ohm (£2), this value describing
how effective the resistor is at extracting and dissipating energy from passing electric charge carriers.
When multiple resistors are connected in-line like this (i.e. called a series network), the total amount
of resistance from end-to-end is the sum of all the series-connected resistors.

If any series resistor network has a total resistance that is the sum of every resistance value
in that network, then a series resistor network comprised of identical resistors must have a total
resistance equal to the number of resistors multiplied by the resistance of any one of them. For
example, if we built a network of three series-connected resistors, each resistor having 5 Ohms (5 )
of resistance, then the entire network would have a total resistance of 15 (2.

Here is an example of how variables may be useful. Instead of describing the electrical resistance
of a series network comprised of identical resistors in verbal terms, we may simply write an algebraic
equation or formula saying the same thing more efficiently:

Total resistance = n x R

Where,
n = The number of identical series-connected resistors
R = The resistance of any one of those resistors

“Total resistance equals n x R” is much simpler to write and to say than “total resistance is equal
to the number of resistors multiplied by the resistance of any one of them”. It is especially efficient
if the reader happens to already know that the variable R always means “resistance” for electrical
components and that n typically means some whole-numbered quantity of things.

Thus, variables give us the ability to write general mathematical statements applying to wide
ranges of situations. The only resistor network described by the expression 3 x 5 is one where three
5 2 resistors are connected in series, but n x R describes the total resistance for any number of
series-connected resistors of any common value. “3 x 5” merely describes one particular network of
resistors, but “n x R” is more powerful because it describes the general principle.

This is a very practical use of algebraic variables because it lets us easily say complicated things.
In this way, mathematics plays the role of a language for describing principles. Like any language,
algebra has rules of “grammar” we must master in order to use it as a tool of communication with
other people, and we will soon see how these rules help us apply the described principles in ways
that are not immediately apparent.
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It is customary in algebra to use single letters (of any alphabet) as variables, and to interpret
adjacent letters as being multiplied by one another. Thus, n x R = nR. The use of single letters as
variables is limiting, though, especially when we need to represent different quantities of the same
type.

Suppose we wished to write an equation describing total resistance for any series resistor network,
regardless of individual resistance values. In the previous example (nR) we were able to use a single
R variable to represent individual resistance because all the resistors happened to be identical in
value. But how may we represent multiple resistances of different resistance value when we only
have one letter R in the English alphabet?

An answer to this practical problem is something called a subscript'. These are additional
characters written immediately below and to the right of the variable letter, to distinguish similar
variables from one another. For example, if we have a three-resistor series network where each
resistor has a different resistance value, we could write a total resistance equation using subscripts
to keep all the different resistances distinct:

Rr = R;+ Ry + R3

Where,
Rt = Total series resistance
R, = Resistance of resistor #1
Ry = Resistance of resistor #2
R3; = Resistance of resistor #3

The subscript — be it a letter, number, or even a word — does not limit the numerical value of
that variable in any way. It would be a mistake to think that Rs must be larger than R; simply
because 3 is larger than 1. These subscripts merely exist to distinguish each of the R variables in
this question so we don’t confuse one for another. While the letter chosen for any variable is often
constrained by convention (e.g. R for electrical resistance, V for electrical voltage, I for electrical
current), subscripts are entirely arbitrary.

Be aware as well that letters from non-English alphabets are fair to use as variables. This is often
done in physics and engineering where the list of standardized variable letters exceeds the number
of letters in the English alphabet. Greek letters are popular for standardized variables, including p
for magnetic permeability, € for electric permittivity, p for mass density, v for weight density, 8 for
transistor current gain, A for wavelength, 6 for angle, w for angular velocity, etc.

1Other solutions to this problem exist in different mathematics-based disciplines such as computer programming.
In programming, all variables must be described by plain-text characters where there is no provision for subscripts,
and so the solution there is to allow variables to have multi-character names. For example, we might choose to create
a variable named R1 or R_1 in lieu of R; to represent the amount of resistance for resistor #1 in a computer program.
Similarly, we could create a variable named Rtotal to represent total resistance, since the inability to represent
subscripts in plain-text prevents us from making a program variable called R;otq;- The disadvantage of allowing
multi-character variable names is that we must give up the convention of adjacent letters implying multiplication.
The algebraic statement nR means n X R, but in computer programming nR is simply a single variable named “nR”.
If we wish to instruct a computer to multiply two variables together, we must explicitly do so using a “star” character
for the multiplication operator (i.e. n * R).
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3.2 The “equals” symbol

The “equals” symbol (=) simply means two quantities share the same exact value, but many students
find it helpful to visualize mathematical equality in physical terms. For this reason, I will relate the
“equals” symbol to a balance-beam scale used to compare masses:

When the mass of each scale pan is equal to the other, the balance beam comes to rest in the
center position, and we say that those two masses are equal to each other. As shown above with
both pans empty, the scale may be said to embody the equation 0 = 0.

Applying this concept to something previously discussed, we will show the balance beam as a
metaphor for the total resistance equation of a three-resistor series network such as the three resistors
shown below:

X Rl wire R2 wire R3 .
wire wire
( Resistor Resistor Resistor \
< RT >

Rr=R1+ Ry + R3
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This equality remains just as true if we swap the written order. For example, if R+ Ro+R3 = Rr
then it must also be true to say Ry = Ry + Rs + Rs:

Ry + Ro+ R3 = Ry

A fundamental principle in algebra — which is rather obvious when related to the balance-beam
analogy — is that we may arbitrarily manipulate any equation so long as we apply the exact same
manipulation(s) to the terms on both sides of the “equals” symbol. If we imagine a balance-beam
scale in a perfectly balanced condition, we ought to be able to add identical masses to both pans
and still see the beam settle at a perfect balance condition.

For example, if we take our series resistor network equation and add 3 Ohms of resistance to both
sides, it must remain balanced. This manipulation of the equation — so long as it is done exactly the
same to both sides of it — will not invalidate the truth of that equation:

Ry +3Q =Ry + Ry + R3 + 30

It isn’t just addition that works this way. It’s possible for us to apply any mathematical operation
to both sides of an equation and have that equation still remain true.
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Consider the following possibilities of applying identical mathematical operations to both sides
of this equation, where x represents any real-number quantity:

Rr—x=Ri+Rs+Rs—=x (Subtracting x from both sides)

xRy = x(R1 + Re + R3) (Multiplying both sides by x)

Rr . Ry + Ro+ R3

(Dividing both sides by x)
x x

—Rr = —(Ry + Rs + R3) (Negating both sides)

1 1
T = B R s (Reciprocating both sides)
R} = (R1+ Ra+ R3)” (Raising both sides to the power of x)

VRr =+/Ri+ Ry + Rs (Taking the square-root of both sides)

gfr = gRatRatRs (Elevating both sides as powers of x)

log Ry = log(R1 + R2 + R3) (Taking the logarithm of both sides)

sin Ry = sin(R; + Ra + R3) (Applying trigonometric functions to both sides)

d d
%RT = %(Rl + Rs + R3) (Differentiating both sides with respect to x)

/RT dx = /(R1 + Ry + R3) dx (Integrating both sides with respect to x)

Appealing to the balance-beam analogy once more, if we begin with a balance-beam containing
precisely equal masses, even if those masses are comprised of physically different substances or
different configurations of the same substance, we ought to be able to add, subtract, multiply,
divide, etc. both of those masses identically and still end up with the system being in perfect
balance.

As irresistible as this logic may seem, it quite possibly strikes you as being useless. So what if
we can identically manipulate both sides of an equation and have it remain equal? Who cares? Of
what possible use is this in any practical circumstance? If all of these examples seem as pointless to
you as lettered variables once were, read on!
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3.3 Addition and subtraction

The fact that we may freely manipulate algebraic equations so long as we apply the same operations
equally to both sides turns out to be an incredibly useful mathematical tool for re-writing equations
in different forms. Let us return to our three-resistor series resistance equation once more:

Rr = R;+ Ry + R3

This equation is written to be useful if we happen to know the resistance value of each individual
resistor (Ry, Ra, and R3) and we wish to calculate the total resistance of the network (Rr), but
what if our practical problem were different? Suppose we needed to build a three-resistor network
with a certain total resistance (Rr) and had to use two other resistors of pre-determined value (R
and Rz), and were left to calculate the necessary value of the third resistor (R3)? What we need is
an equation written with Rg all by itself on one side and all the other resistances (Rp, R1, and Ra)
on the other side.

Knowing we may subtract any quantity we want from any equation so long as we subtract equally
from both sides is the key to solving this problem. What we may do is subtract R; and Ry from
both sides, one at a time, and see the equation take a different form:

Rr =Ry + Ry + R3 (Equation in its original form,)
Rr—Ri=Ri1+Ry+R3s— Ry (After subtracting Ry from both sides)
Ry — Ry =Ry+ Rs3 (After letting Ry — Ry cancel to a difference of zero)
Rr— Ry — Ry =Ry + R3 — Ry (After subtracting Ry from both sides)

Ry — Ry — Ry = R3 (After letting Ro — Ro cancel to a difference of zero)

Now we have what we want: an equation solved for R3. This tells us we need to take the total
desired resistance value (Rr), subtract the known resistance values of R; and Rg, and what remains
must be the necessary resistance value of Rg.

This example was performed in very explicit, step-by-step fashion for the purpose of avoiding
assumptions. Usually when a person applies such manipulation to an equation they will do so in
fewer steps:

Rt =Ry + Ry + R3 (Equation in its original form)

Rr — (R1+ R2)=R;+ Ry + R3 — (R + Ry) (After subtracting (Ry + Ra) from both sides)

Rr — (R1 + R2) = R3 (After letting Ry + Ry — (R1 + R2) cancel to a difference of zero)

The result is the same, but with fewer steps than before.
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We see how we may exploit the principle of identically manipulating both sides of an equation
to change its form into something more useful to our immediate needs, but it is clear that this
exploitation requires some strategic thinking. We must somehow examine the equation in its original
form, and then decide which manipulations will re-format the equation to our liking.

Arithmetic operations are reversible, which means certain operations “un-do” other operations.
Subtraction, for example, un-does addition. Division un-does multiplication. Square-rooting un-
does squaring. These operation-pairs are called inverse operations, and we must know what they
are in order to judiciously choose operations that will manipulate equations in the way we would
prefer.

You will notice that we chose to subtract R; and Ry from both sides of the series resistance
equation to isolate Rz because in its original form the equation showed R; and Ry being added to
Rj3. Subtraction “un-did” that addition, and allowed us to “cancel” R; and Ry from the right-hand
side of the equation to leave R3 by itself.

Now we will return to our previous problem of solving for R3 in the series resistance equation,
in order to show an alternative method of solution. You will find there is usually more than one
correct method for manipulating an equation to your liking, and that it is good training for your
mind to practice multiple techniques rather than settle on a favorite. Observe the following sequence
of steps, where our first manipulation will be to subtract R3 from both sides rather than subtract
R1 and RQZ

Rr =R + Ry + R3 (Equation in its original form)

Ry — R3 = R;+ Ro + Rs — Rs (After subtracting Rs from both sides)

Rr — R3=R1+ Rs (After letting Rz — R3 cancel to a difference of zero)

Rr— R3s— Rr=Ri1+ Ry — Ry (After subtracting Ry from both sides)

—R3 =Ry + Ry — Ry (After letting Rt — Ry cancel to a difference of zero)

At this point we appear to be very close to our goal of solving for R3. However, note that we
have not yet isolated R3, but rather have isolated —R3. If we add R; and Ry then subtract Ry, the
result will be the resistance of R3 expressed as a negative quantity rather than a positive quantity.

Something we may do next is reverse the sign of both sides of the equation, like this:

—(—R3)=—(R1+ Ry — Rr) (After reversing the sign on both sides)

R3 = —(Ri1 + R2 — Rp) (After replacing —(—Rs3) with R3)

Although this result appears different from what we obtained by subtracting R; and R, in our
first step, it is equally valid.
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3.4 Multiplication and division

Many equations used to describe the behavior of electricity involve multiplication and division.
Perhaps the most familiar is Ohm’s Law, relating voltage (V'), current (I), and resistance (R) for
any component or network of components:

R Battery

wire

(=
wire /l

V — IR Current

Where,
V = Voltage (i.e. energy gained/lost by electric charge carriers)
I = Current (i.e. the rate at which electric charge carriers drift)
R = Resistance (i.e. voltage drop per drift rate)

The equation V' = I R works quite well to compute voltage if I already know the values of current
and resistance. However, what if I a happen to know the amount of voltage (V) across an electrical
resistance (R) and wish to calculate the amount of current (I) through that resistance? I must
manipulate V' = IR to solve for I:

V=IR (Equation in its original form)

I
v = 1R (After dividing both sides by R)
R R
1% ’ L .
R= 1 (After letting % cancel to a quotient of one)

Division was the correct operation to apply to both sides of the equation because this is what
was necessary to “un-do” the multiplication existing between I and R in the original form. Like
subtraction and addition are operationally inverse to each other, so are division and multiplication.

The same strategy works to solve for R, in case you happen to already know the values of V' and
I and need to calculate resistance from them:

V=IR (Equation in its original form)
R L .
=— (After dividing both sides by I)

— =R (After letting § cancel to a quotient of one)
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Of course, we should be able to apply the same principle to manipulate Ohm’s Law starting from
any of its forms. For example, let’s try to manipulate I = % to solve for R. From our previous work

we already know the result should be R = %, but practicing algebraic manipulation is good mental
exercise and so we will do it:

1

J ==

(Equation in its original form)

4

IR = = (After multiplying both sides by R)

IR=V (After letting % cancel to a quotient of one)

IR Vv

= ter dividing both sides by
T 7 After dividing both sides by I
v

R= T (After letting § cancel to a quotient of one)

An alternative solution exists, but it requires reciprocation of the equation:

14
I= R (Equation in its original form)
I \% o .
— = — er dividing both sides by
V=RV (After dividing both sides by V')
I 1 oy .
=== er letting - cancel to a quotient of one
F=  (After letting It tient of one)
V R
— == After reciprocating both sides
I 1
1% . .. R .
7= R (After simplifying 5 to just R)

A very common mistake committed by students new to algebraic manipulation is failing to realize
+ simplifies to + and not to R.
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Fractions tend to confuse many students, and so it is worth taking the time to explore
manipulation of equations containing them. Consider the following equation relating the ratio
(fraction) of voltages in a transformer to the number of turns in each of the transformer’s wire
coils:

Transformer

! i

Vi Ny ‘ ‘ N, Va

! !

Vi M

Vo No

Suppose we wished to solve for N; in this equation. This is possible by multiplying each side by
Ny, but I find it makes more sense to represent this multiplying quantity as a fraction of its own,

(7)) -G (F)

T.
When we do this, Ny cancels out of the right-hand side of the equation, leaving us with N; by
itself on that side which is what we wanted:

NoVy
Vs

Suppose, though, we wished to solve for Ny instead of Nj. It’s possible to do so by taking the

last version of this equation (solved for N7) and multiplying both sides of it by some quantity that
will move the % fraction to the right-hand side of the equation. That quantity will be the fraction

2

%, designed to cancel out both Vi and V5 from the left-hand side:

Vo) (N2 _ (V2
Vi v ) '\n
AL
-3

:Nl

N,

With these examples we see the strategy of multiplication by strategically-chosen fractions in
order to cancel out any variable(s) we wish to eliminate from one side of an equation. At the
beginning of this section we saw how multiplication may be “un-done” by division, but when the
equation in question contains fractions, dividing by more fractions tends to confuse matters by
introducing compound fractions (i.e. a fraction comprised of one or more other fractions). If instead
we multiply fractions (as shown here) rather than divide, we generally avoid the creation of these
cumbersome compound fractions.



28 CHAPTER 3. TUTORIAL

3.5 Proper order of operations

An important concept in arithmetic is proper order of operations, referring to the precedence some
operations have over others?. For example, the correct equivalence for the expression 4 + 3 x 2 is
10 rather than 14, because multiplication takes precedence over addition. Many students learn the
mnemonic PEMDAS to help them remember proper order of operations:

1. Parentheses (and other grouping symbols)

2. Exponents and roots

w

. Multiplication and Division

4. Addition and Subtraction

When an equation contains more than one of the operation types listed by PEMDAS, proper order
of operations becomes important to achieve the correct result. The same is true when manipulating
equations containing more than one PEMDAS operation type: if we manipulate the equation in the
wrong order, we will not obtain a correct result.

For example, consider the following circuit consisting of three resistors connected in series to a
battery, while measuring the voltage across the span of resistors Ry and Rs. Electric current (I) of
known magnitude circulates clockwise in the circuit:

Voltage dropped
across R, and R,

L

Resistor Resistor Resistor

I
—>

Suppose we knew the desired voltage between the labeled points in this circuit, and we also knew
the value of the current flowing through the resistors, and we also knew the resistance of Ry, but
we did not know the resistance of Ry. The equation solving for voltage across both R, and Ry with
a known current is*:

V =I(R; + Ry)

2Tt is worth noting that there is no logical reason why some operations must take precedence over others. Just like
the arbitrary conventions of any particular spoken language, PEMDAS is purely a mathematical convention.

3This equation comes from a recognition that series resistances add, and from Ohm’s Law which tells us voltage is
the product of current and resistance (V = IR).
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Our task, then, is to manipulate this equation to solve for Ry. Before we begin, we must determine
the proper order of operations for evaluating the equation in its present form. Applying PEMDAS,
we must evaluate the contents of the parentheses first (because those symbols group the terms R;
and Ry together as one), then multiply that by I. Documenting this proper order of steps:

1. Addition: R; + Rs
2. Multiplication: I(R; + Rs)

If our goal is to isolate Rs by itself in the equation, we need to “un-do” all the operations
surrounding Ry in the equation, but we need to do so in the correct order. When manipulating
an equation to isolate one variable “buried” amidst other variables and arithmetic operations, the
proper order of steps must be the reverse of the standard order of operations used to evaluate the
original equation. For this particular case it means first un-doing the multiplication with I, then
un-doing the addition with R;. Here are the steps:

V =1(R: + R2) (Equation in its original form)
V. I(Ri+R
T= w (After dividing both sides by I)

14
7= Ri + Ry (After letting § cancel to a quotient of one)

v
T~ R, = Rs (After subtracting Ry)

A useful analogy to help understand the importance of order of operations is to imagine the
evaluation of an equation as being the assembly of a complex machine, where parts must be put
together in a particular order. Manipulating the equation to solve for one variable is akin to removing
one of the parts buried within that machine: to access that part, one must disassemble the machine
in the reverse order of how it was assembled.
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Here is another example of manipulating an equation with a combination of operations that must
be “disassembled” in a particular order. Suppose we are analyzing the following circuit, shown in
standard electrical schematic form rather than as a pictorial illustration:

1]]” e
B w® RS SR,

Using two important electrical principles — Ohm’s Law and Kirchhoff’s Voltage Law* — it is
possible to derive an equation predicting voltage between test points A and B, that equation being
Vap = (I1R1) — (I2R2). The proper order of operations for evaluating this equation appears below:

1. Multiplications: I; Ry and I3 Ro
2. Subtraction: ([1R1) — (I2R2)

Therefore, in order to isolate any of the variables on the right-hand side of the equation, we must
first un-do the subtraction, and then un-do multiplication. Suppose we needed to solve for current

I in this equation. Shown below is one possible solution:

Vag = (I1R1) — (I2R3) (Equation in its original form)
Vag + (I2R2) = (I1R1) — (I2R2) + (I2R2) (After adding IRy to both sides)
Vap + (I2R2) = 1 Ry (After letting —(IaRg) + (IoR2) cancel to a sum of zero)
Vag + (IaR2) — Vap = 1Ry — Vap (After subtracting Vap from both sides)

bRy =11R1 — Vap (After letting Vap — Vap cancel to a difference of zero)

I I —
2By _ LBy —Vag (After dividing both sides by Ry)
R2 RQ
_ LB —Vap

R

I (After letting % cancel to a quotient of one)

40hm’s Law predicts voltage across each resistance being the product of current and resistance (i.e. V = IR).
Kirchhoff’s Voltage Law predicts the algebraic sum of all voltages in a loop must equal zero, and so the voltage
between points A and B must be equal to the difference in voltages across the two resistors.
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3.6 Factoring
An important mathematical tool for manipulating certain equations is factoring, which is where we

identify and isolate one or more variables common to multiple (added) terms. To illustrate its use,
we will explore a circuit multiple electric currents pass through a common resistor:

4

(D) —
_/

I, R
D\ —=
— VAN
_/ AN
2 v
NG

The amount of voltage across the single resistor in this circuit is given by the following equation:

V=LR+ LR+ IsR

Suppose we happened to know the value of all three currents in this circuit (I3, I, I3) as well
as the desired voltage across the resistor (V'), but did not know the necessary resistance value (R).
Clearly, we must manipulate this equation to solve for R, but how can we isolate R when it appears
three times in the equation rather than just once?

Factoring is key to the solution. By identifying the fact that R appears in all three terms on the
right-hand side of the equation, we may re-write that side of the equation as a product between the
common variable R and the sum of the three currents:

V=R + L+ Is)

If this equivalence is not clear to see, just distribute® R to the three current terms inside of the
parentheses and you will find it reverts back to the equation’s original form.

Now that we have factored R out of the original three terms, solving for R is as simple as dividing
both sides of the equation by I; + I3 + I3 to leave R by itself:

V —_
L+L+1I3

Note how the long fraction bar serves as a grouping symbol for the three current terms, just as
those terms were enclosed by parentheses in the factored version of the equation. The fact that the
fraction bar extends over all three current variables informs us that those three terms must be added
before performing the division with voltage.

5 Distribution is the repeated multiplication of each term inside the parentheses by the term outside the parentheses,
resulting in a sum-of-products.
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3.7 Reciprocation

When electrical resistors are connected together in parallel as shown below, the resistance of the
parallel electrical network ends up being less than the lowest-valued resistance in that network. For
nostalgia’s sake we will return to pictorial illustrations instead of schematics:

wire

wire

The equation describing the network resistance of three resistors connected in parallel is ugly:

1
Rparallel =1 . 1 , 1
BT R TR
For anyone new to algebraic manipulation, solving for Ry in this equation is the stuff of
nightmares. However, even an ungainly equation such as this will yield to our tool-set if we remember
that it is permitted to reciprocate both sides of an equation.
To begin, we identify proper order-of-operation for this equation’s evaluation:

1. Reciprocation: yon and 7 and 7

2. Addition: 4 + 3= + -
1

—

3. Reciprocation: —5——
TR T RS

As a demonstration, we will now solve for Rs:

1
Rparaliel = ——1 (Equation in its original form,)
BT R TR
1 1 1 1

—_ = — 4+ — 4+ — After reciprocating both sides
Rparatier  R1 Ry  R3 (Art P g /

1 1 1 1 1 1 1 1
> &5 5 =5 Tt T 5 5 After subtracting = and - from both sides
Rparater R1  Rs R, Ry Rs Ri Rj ( ! 9 R, R3 f )

1 1 1 1
RBooa B R = A (After letting R% — R% and R%, — R%, cancel to differences of zero)
paralle

=Ry (After reciprocating both sides)
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3.8 Powers and roots

Powers are to roots as multiplication is to division, or addition is to subtraction: they are inverse
operations, with one “un-doing” the other. One example of an electrical equation using a power is the
relationship between the “turns ratio” of a transformer versus its “impedance ratio”. None of these
quantities are important to grasp® for the sake of learning how to apply manipulation techniques:

Transformer

T

Zl Nl ‘ ‘ N2 ZZ

!

Zi [N\’
Zy  \ N
Suppose we needed to solve this equation for Na, so that we could determine the number of
“turns” necessary on the right-hand side of the transformer. Assessing proper order-of-operations
for evaluating the value of the impedance ratio (%) in this equation results in the following steps:
s .. N
1. Division: F;
N\ 2
] . 1
2. Squaring: (E)

Therefore, to solve for Ny we must un-do these operations in reverse order:

Z N \®
- = ( 1) (Equation in its original form)

Zy
Z N.
\/ Zl F (After square-rooting both sides)

2

Zy N

- (After square-rooting cancels squaring)

Zy Ny
VA N

Ny ?1 VlNz (After multiplying both sides by Na3)
2

17
Ny 7; =N (After letting % cancel to a quotient of one)

6If you must know, a “transformer” is an electrical component made up of two or more wires coiled around a
common form, the number of times each wire is wrapped around that form being called a turn (N). “Impedance” is
very similar to the concept of resistance, and one of the properties of a transformer is that it makes the impedance
of whatever it’s connected to appear to be different as sensed from the other coil, the ratio of apparent impedances
being equal to the square of the ratio of turns in each coil.
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Noy /22 N
=1 (After dividing both sides by %)

Z Zy
Za Zo

N [ Z1
4

Ny = —2 (After letting 2

[ Z1 z

Zs 22

Equations containing roots are just as easy to manipulate: we simply raise both sides of the

equation to the appropriate power to cancel the root, at the appropriate step in the reverse-order-

of-operations sequence. For example, let us consider the equation describing the velocity of a
communications satellite orbiting the Earth:

v=1+g+h

cancel to a quotient of one)

Where,
v = Satellite velocity
g = Acceleration of Earth gravity at sea level
h = Orbit altitude above sea level

In this equation, g is a well-known constant because it is fixed by the mass and radius from the
center of the Earth at sea level — only v and h are truly variable. Thus, it makes sense that the
practical manipulated form of this equation will be one where we solve for h.

Square-root symbols act as grouping symbols just like parentheses”. Therefore, proper order of
operations requires we first add g and h before computing the square-root. Thus, solving for h
demands we first un-do the square-root:

v=+/g+h (Equation in its original form)
02 = (m)Q (After squaring both sides)
v=g+h (After letting the square cancel the square-root)
Vv¥—g=g+h—yg (After subtracting g from both sides)

v¥—g=h (After letting g — g cancel to a difference of zero)

7 Another example of a mathematical operation which serves to group terms together is the fraction bar. For
example, in the fraction Zz%yg“r’ the “bar” serves to group = + y + 5 together and also to group z — 8 together.
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3.9 Exponents and logarithms

Exponents are to logarithms as powers are to roots, multiplication is to division, and addition is to
subtraction. Once again, these are inverse operations. As such each one may be strategically applied
to “un-do” the other in an equation to help solve for variables.

Logarithms tend to be confusing for many students, and so we will explore what logarithms
mean before we try to apply them in equation manipulation. First, consider what it means to raise
a number such as ten (10) to successively increasing powers:

-3 _ _1 _

e 1072 = =0.01

L
100

-1 _ 1 _

e 10°=1

e 10' =10

e 102 =100
e 10% = 1000

The exponent value simply declares how many times 10 is to be multiplied by itself. Negative
exponents refer to reciprocated quantities, and an exponent of zero simply means 1.

A logarithm is the converse of an exponent: take the logarithm of a number, and it returns
the exponent value you would need as a power of ten to give you that number. The following list
illustrates this principle using the same numbers listed previously:

e log0.001 = -3
e log0.01 = -2
o log0.1=-1

logl =0

log10 =1

log 100 = 2
e log 1000 = 3

The logarithms shown here are called common logarithms because they assume a “base” value
of ten (i.e. 10°8% = ). Logarithms based on Euler’s constant (e) are called natural logarithms, and
are written as In instead of log (i.e. e*% = ).
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Exponential functions based on e and their corresponding natural logarithms are widely applied in
physical sciences, electricity and electronics included. A prime example of this is inverse-exponential
growth and decay in resistor-capacitor and resistor-inductor circuits, examples of each shown below
in schematic form:

Resistor-capacitor Resistor-inductor
network network

R C [E Electric field R Magnetic field
Capacitors store energy Inductors store energy
in electric fields in magnetic fields

Capacitors consist of two conductive plates separated by an insulating material, with the electric
field lines extending between the two plates. When “charged” with energy, capacitors manifest a
voltage between their plates. If connected to a resistor, a “charged” capacitor gradually delivers
its stored energy to the resistor which in turn dissipates it in the form of heat. Inductors consist
of coils of wire, with magnetic field lines looping outside and through the center of the coil. When
“charged” with energy, inductors manifest current through their wire coils. If connected to a resistor,
a “charged” inductor gradually delivers its stored energy to the resistor which in turn dissipates it

in the form of heat.
In either case, the transfer of energy from the capacitor or inductor to the resistor starts rapidly

and then slows to a trickle over time, as described by these exponential equations:
_t _
Vc=V0€ T ILZIOG T

Where,
Ve = Capacitor voltage at time ¢ ; I, = Inductor current at time ¢
Vo = Initial capacitor voltage at time ¢t = 0 ; Iy = Initial inductor current at time ¢t =0

t = Time
7 = The “time constant” of the R-C or L-R network, 7 = RC or 7 = %, respectively

Proper order-of-operations to evaluate either of these equations is as follows:
1. Divide: %

2. Negate: —%

3. Exponentiate: e 7

4. Multiply: Voe_é or Ioe_%

As usual, if we wish to isolate any of the variables on the right-hand side of the equation, we will
need to un-do each of these operations in reverse order.



3.9. EXPONENTS AND LOGARITHMS 37

Suppose we wished to manipulate the capacitor’s inverse-exponential equation to solve for time
(t). A practical application would be to determine how long it would take for the capacitor’s voltage

to decay given the initial voltage value, capacitance value, and resistance value for the network:

Vo = V067£ (Equation in its original form)

Vo Voe T
¢ _ e (After dividing both sides by Vg )

Vo oW
Ve 1 . \ .
o= (After letting 12 cancel to a quotient of one)
0
Ve _t . . :
In = In (e f) (After taking the natural logarithm of both sides)
0
Ve t . . .
1 = To (After letting the natural logarithm cancel the exponential)
T
Ve t L .
—7ln v ="z (—7) (After multiplying both sides by —T)
0 T
Vo , 1
—7ln Vo = t (After letting (—2) (=7) cancel to a product of one)
0

The procedure is similar when solving for 7. Consider this next example, using the resistor-
inductor decay equation:
Iy, = Ioe_$ (Equation in its original form)

I, Ipe =
L foe (After dividing both sides by Ip)
Io Iy

It -7 (After letting % cancel to a quotient of one)
1L ( —L) (After taking the natural logarithm of both sides)
I, 4 (After letting the natural logarithm cancel the exponential)
I, ( t) (r)  (After multiplying both sides by T)

I
L (After letting T cancel to a quotient of one)
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Tln% —¢ o . .
i L (After dividing both sides by In K)
Io To
~t ok |
T= i (After letting ; 7 cancel to a quotient of one)
n & n 1L
Io 0

A different application of logarithms and exponents in electrical circuits is the use of decibels.
This is a fundamentally logarithmic means for expressing ratios of power values at different points
in a circuit. It is frequently used in radio communication circuit calculations because it’s an easy
way to represent large gains and losses in signal power over a relatively narrow range of numerical
values®.

The equation relating a decibel (dB) figure to a power ratio is as follows:

Py

dB = 10log —

g P,
Correct order-of-operations for evaluating this expression is shown here:
N =)
1. Divide: B

2. Logarithm: log%

3. Multiplication: 10log%

Supposing we wished to solve for P, given known values for decibels (dB) and the other power
(P1), we could manipulate this equation using the following steps:

P,
dB = 10log Fl (Equation in its original form)
2

B P,
dB = log — (After dividing both sides by 10)
10 P,

(After exponentiating both sides using 10 as the base)

=5 (After letting the exponent and logarithm cancel)
2

d P
P10770 = F:lPQ (After multiplying both sides by Ps)
2

dB
P10710 = Py (After letting % cancel to a quotient of one)

dB
P10 P,
- © = . (After dividing both sides by 10%3)
dB dB
10710 1010

8This is the same advantage of the Richter scale used to describe earthquake energy, also a logarithmic system.
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P,
P = ﬁ (After letting

10770

daB
10710
dB

10 10

cancel to a quotient of one)

39
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3.10 Substitution

So far the algebraic manipulation techniques we’ve seen have been applied to a single equation at
a time. Another powerful technique called substitution allows us to combine multiple equations to
create wholly new equations useful for practical purposes. Our illustrative application will be a
simple source and resistor circuit, shown below:

V{(D P E }v

With this application we introduce a new electrical variable: power (P). This is a measure of
energy transfer rate, measured in Joules per second, otherwise known as Watts.

Ohm’s Law, which we have already seen, relates voltage and current for a resistance (V = IR).
A new principle called Joule’s Law relates power, voltage, and current:

P=1V

Each of these formulae are useful, but we may find ourselves in a situation where we know values
of some of the variables from each, but not enough to use either equation by itself. For example,
if we happened to know the value of R and the value of V in this circuit and wished to calculate
power (P), neither the Ohm’s Law nor Joule’s Law equations as given to us here will suffice on their
own. Of course, we could manipulate Ohm’s Law to solve for current (I = VoverR) and then take
that computed current value and multiply by the known voltage to arrive at power (P = IV), but
it would be ideal if we just had one equation with power as a function of voltage and resistance.

Algebraic substitution lets us create new equations out of two or more other equations. Taking
the Ohm’s Law and Joule’s Law equations just mentioned and placing them side-by-side:

If we know from Ohm'’s Law that current is truly equal to voltage divided by resistance (I = %),
then we may substitute % in place of I wherever we see I in the Joule’s Law equation. Showing this

substitution below:
1%
P=(—=|V
(%)

Combining the two V variables to simplify this equation yields our desired result:

V2

P
R
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We may illustrate the practicality of substitution once more by creating an equation solving for
power as a function of current and resistance. The key is to identify which variable(s) in Joule’s
Law we do not want as dependent variables for power, then substitute the variable(s) we with to
have in their place. Starting with the two simple forms of Ohm’s Law and Joule’s Law:

V=IR P=1IV
If our goal is to have a power equation in terms of I and R, we must substitute some function of
I and R for V in the original Joule’s Law equation. As it turns out, Ohm’s Law as given to us here
is perfectly suited for that role, serving as a definition of V' in terms of I and R. Substituting IR
for V in Joule’s Law:

P =1I(IR)

Re-writing this to combine the two I variables:

P=1TIR

Similar substitutions may be made to create equations solving for V', I, and R in terms of P.
This is left as an exercise to the reader”.

9Hint: there are multiple ways to arrive at such equations. One way is to apply substitution once more to Ohm’s
and Joule’s Laws, this time substituting parts of Joule’s Law into Ohm’s Law. Another way is to manipulate the two

hybrid equations (P = vz and P = I?R) to solve for V, I, or R.
R
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Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

43
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4.1 Properties of real numbers

The following equations are basic algebraic properties: rules that all real numbers adhere to.

Associative property:

a+(b+c)=(a+b)+c

a(be) = (ab)c

Commutative property:

a+b=b+a

ab = ba

Distributive property:

a(b+c) =ab+bc

Properties of exponents:

a®a¥ = a1y
xT
oy
ay
(ab)® = a”b”

Properties of roots:

vat=aifa>0

ab = /a Vb

b
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4.2 Dimensional analysis

A powerful technique called dimensional analysis helps us check for errors when evaluating formulae
related to physical systems. This entails writing units of measurement in place of variables in physical
formulae, to see how units cancel and combine to form the appropriate unit(s) of measurement for
the result.

For example, let’s take the familiar power formula used to calculate power in a simple DC electric
circuit:

P=1V

Where,
P = Power (Watts)
I = Current (Amperes)
V' = Voltage (Volts)

Each of the units of measurement in the above formula (Watt, Ampere, Volt) are actually
comprised of more fundamental physical units. One Watt of power is one Joule of energy exchanged
per second of time. One Ampere of current is one Coulomb of electric charge moving per second.
One Volt of potential is one Joule of energy per Coulomb of electric charge. When we write the
equation showing these units in their proper orientations, we see that the result (power in Watts,
or Joules per second) actually does agree with the units for Amperes and Volts because the unit
of electric charge (Coulombs) cancels out. In dimensional analysis we customarily distinguish unit
symbols from variables by using non-italicized letters and surrounding each one with square brackets:

P=1V
[Watts] = [Amperes] x [Volts] or [W] = [A][V]
Joules | [ Coulombs o Joules or g _ 9 i
seconds | | seconds Coulombs s| |sl||C

Dimensional analysis gives us a way to “check our work” when setting up new formulae for
physics- and chemistry-type problems.
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4.3 The Ohm’s Law Circle and public education in America

In the United States of America it is widely understood that our public primary and secondary
schools routinely graduate students who are barely (or not even) literate in either or both
grammatical and mathematical senses of the word. Accounts of entry-level college students who
cannot read effectively, cannot write a coherent paragraph, and cannot apply elementary principles
of algebra are too numerous to mention, and college instructors everywhere lament this sad fact.
To be fair, I am not saying all or even most public high school graduates are woefully incompetent,
only enough to pose a major problem for colleges and employers of high school graduates'.

As evidence of this fact, I present to you the “Ohm’s Law Circle” commonly seen on posters in
electrical and electronic theory classrooms across the nation:

Ohm's Law "Circle"

V
| | R

This is a crutch for students who never learned elementary algebra, and it works like this:

e To solve for V', cover up that variable with your thumb and look at what remains: IR

e To solve for I, cover up that variable with your thumb and look at what remains:

~|< =<

e To solve for R, cover up that variable with your thumb and look at what remains:

Closely related to this is another variant of the “Circle” showing each and every variation of
Ohm’s and Joule’s Laws solved for every variable in terms of all the others. All you have to do is
find the manipulated version of the equation you’re looking for, no thumbs required.

As you can tell from reading the Tutorial contained in this module, the task of algebraically
manipulating V' = IR is not difficult to learn. In fact, in over twenty years of teaching I have
yet to encounter a student who cannot learn the elementary algebra necessary to solve for I or R
given V = IR. In most cases this requires no more than a single day’s worth of instruction and
practice. Yet, print shops continue to churn out posters of the “Circle” and instructors continue
to hang them on their classroom walls, encouraging their students to hobble along with this crutch
instead of learning the rudimentary algebra necessary to navigate Ohm’s Law without the aid of
such gimmicks.

Attention educators: do not cripple your students by absolving them of the responsibility to
reason. Throw out your Ohm’s Law Circle posters and teach them to think through the math.

10Of course, this poses problems for society extending well beyond college and entry-level employment. For instance,
a nation will struggle to maintain a functioning democracy if large portions of its electorate lack the literacy necessary
to read and digest complex issues for themselves.



Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

47
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GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.
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GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.
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Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?
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5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel
free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

’ Manipulating both sides of an equation

Inverse operations ‘

’ Order of operations ‘

’Reverse order of operations ‘

Factoring

Distribution

’ Grouping symbol ‘
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

4

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (o) = 1.25663706212(19) x 10~% Henrys per meter (H/m)
Electric permittivity of free space () = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.



56 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46.9 Ki |l ometers
Ti me el apsed 1.18 Hour s
Aver age speed =Bl / B2 km' h

G |WI|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common” arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4°2) - (4*B3%*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4°2) - (4*B3+*B5))) / (2+*B3)
3 a= 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = /b2 — 4dac z=2a

_ —b*y
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4°2) - (4*B3+*B5))
2 X_2 - (-B4 - c1) / c2 |=2*B3

3 a = 9

4 b = 5

5 c = )

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 Solving for n

Solve for n in the following equations:

Equation 1: —56 = —14n
Equation 2: 54 —n =10
Equation 3: % =12
Equation 4: 28 =2 —n
Equation 5: § =12
Equation 6: n3 = 50
Equation 7: % =5
Equation 8: ?—’1‘ =6
Equation 9: \/@ =4

Equation 10:

Next, describe a strategy to test your answers to make sure they are correct.

Mm+8—2n=10

59

e For each of these problems, show more than one procedure for manipulating the equation to
arrive at the same answer.
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5.2.4 Manipulating the kinetic energy equation

A common equation used in physics relates the kinetic energy, velocity, and mass of a moving object:

Ep=-mv

Where,
Ej. = Kinetic energy (Joules)
m = Mass (kilograms)
v = Velocity (meters per second)

Manipulate this equation as many times as necessary to express it in terms of all its variables.

e Explain how kinetic energy relates to but is distinct from potential energy.
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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5.3.1 Identify the mistake, part 1

In this series of algebraic steps there is a mistake. Find the mistake and correct it (as well as all
subsequent steps):

5a — 6ac = 1 — 3a?b

5a —bac 1 —3a?b
a o a

5—6¢c=1-—3ab
3ab+5—6¢c=1

e Explain why this mistake is a common one for students new to algebraic manipulation.

5.3.2 Identify the mistake, part 2

In this series of algebraic steps there is a mistake. Find the mistake and correct it (as well as all
subsequent steps):

[(zy + 2)y + 2]y = 2
[2%y + zy +aly =2
x2y2 + my2 +zy ==z

e Explain why this mistake is a common one for students new to algebraic manipulation.
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5.3.3 Identify the mistake, part 3

In this series of algebraic steps there is a mistake. Find the mistake and correct it (as well as all

subsequent steps):

a?=3a=0
a® = 3a

a=3

Note: this is a difficult problem to see. Although the answer, 3, does satisfy the original equation,
there is still a mistake in the solution!

e Demonstrate how a division-by-zero error is being committed in the original sequence.

5.3.4 Identify the mistake, part 4

In this series of algebraic steps there is a mistake. Find the mistake and correct it (as well as all

subsequent steps):

ol
(b)(a) = 2(0)
abzl
1
=

e There is more than one sequence of steps to solve for ¢ in this equation. Demonstrate at least
two mathematically correct sequences that could be used.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.




Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment' where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic’> dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Fveryone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers — the goal is to practice the articulation and
defense of one’s own reasoning.

No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

e No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

e You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

e Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

e A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

e Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

e Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied? effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge® one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5 Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

7
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

13 June 2023 - edited some of the wording where I was using “function” as a synonym for
“operation”. Also expanded on grouping symbols.

27 November 2022 — placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

12-13 September 2022 — added more equations to the “Solve for n” Quantitative Reasoning
question. Also added another page to the Tutorial section on multiplication and division discussing

fractions.

22 June 2022 - added more examples of algebraic manipulation (circuit-related) to the Case
Tutorial chapter.

14 June 2022 — minor edits to the Tutorial section on multiplication and division, pointing out
that these are inverse functions too. Also added index entries for inverse functions on several pages.

4 February 2022 - added some challenges in various questions to have students demonstrate
strategies for checking their work.

30 August 2021 — minor edits to the Tutorial, among other details adding pictorial diagrams of
circuits to accompany electrical formulae.

9 July 2021 — replaced some TeX-style italicizing markup with LaTeX-style.
27 January 2021 — added a Case Tutorial.

23 August 2020 - significantly edited the Introduction chapter to make it more suitable as a
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pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions. Also,
added questions to the Quantitative and Diagnostic reasoning sections.

1-4 March 2020 — continued writing the Tutorial.

29 February 2020 — document first created (hey, it’s a leap year!).
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Problem-solving: track units of measurement, 65

Problem-solving: visually represent the system,
65

Problem-solving: work in reverse, 66

Qualitatively  approaching a  quantitative
problem, 66

Reading Apprenticeship, 47
Reductio ad absurdum, 66—68
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Schoenbach, Ruth, 47
Scientific method, 52
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Simplifying a system, 65
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Socratic dialogue, 68
SPICE, 47
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Transformer, 27, 33
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