
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Introduction to Assembly Language Programming

© 2020 by Tony R. Kuphaldt – under the terms and conditions of the Creative
Commons Attribution 4.0 International Public License

Last update = 2 June 2020

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Case Tutorial 5

2.1 Example: Motorola 68HC11 adding two numbers . 6
2.2 Example: Motorola 68HC11 blinking an LED . 8
2.3 Example: Motorola 68HC11 blinking two LEDs . 9
2.4 Example: Motorola 68HC11 blinking eight LEDs . 10
2.5 Example: Motorola 68HC11 counting in binary . 11
2.6 Example: Motorola 68HC11 analog input . 12
2.7 Example: Microchip PIC 16F84A bitwise OR . 13
2.8 Example: Microchip PIC 16F84A conditional example 17
2.9 Example: Microchip PIC 16F84A motor control . 19
2.10 Example: Microchip PIC 12F629 energizing a LED 20
2.11 Example: Microchip PIC 16F18346 blinking an LED 21
2.12 Example: Intel Xeon integer addition . 23
2.13 Example: Intel Xeon integer subtraction . 25
2.14 Example: Intel Xeon integer multiplication . 26
2.15 Example: Intel Xeon looping infinitely . 27
2.16 Example: Intel Xeon looping fifteen times . 28
2.17 Example: Intel Xeon integer power . 29

3 Simplified Tutorial 31

4 Full Tutorial 33

5 Historical References 35

5.1 Big-endians and Little-endians . 36

6 Questions 39

6.1 Conceptual reasoning . 43
6.1.1 Reading outline and reflections . 44
6.1.2 Foundational concepts . 45
6.1.3 First conceptual question . 46
6.1.4 Second conceptual question . 46

iii

CONTENTS 1

6.2 Quantitative reasoning . 47
6.2.1 Miscellaneous physical constants . 48
6.2.2 Introduction to spreadsheets . 49
6.2.3 First quantitative problem . 52
6.2.4 Second quantitative problem . 52

6.3 Diagnostic reasoning . 53
6.3.1 First diagnostic scenario . 53
6.3.2 Second diagnostic scenario . 54

A Problem-Solving Strategies 55

B Instructional philosophy 57

B.1 First principles of learning . 58
B.2 Proven strategies for instructors . 59
B.3 Proven strategies for students . 61
B.4 Design of these learning modules . 62

C Tools used 65

D Creative Commons License 69

E References 77

F Version history 79

Index 79

2 CONTENTS

Chapter 1

Introduction

Digital processors follow instructions consisting of binary codes – strings of “high” and “low” states
– called opcodes, and these opcodes are typically written in hexadecimal for the sake of human
readability. However, most human beings find this machine code difficult to follow because the
reader must know all the opcodes in detail, or at least be able to quickly and efficiently reference
them when necessary. Additionally, each microprocessor or microcontroller “family” has its own
arbitrary set of opcodes, even for similar functions. For example, the simple “No Operation” opcode
is 0xEA for the MOS 6502 microprocessor; 0x00 for the Intel 8051 microcontroller; 0x90 for the Intel
x86 series of microprocessors; 0x0000, 0x0020, 0x0040, or 0x0050 for the Microchip PIC 16F84A
microcontroller; and 0xFD****** for Donald Knuth’s hypothetical MMIX processor.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

5

6 CHAPTER 2. CASE TUTORIAL

2.1 Example: Motorola 68HC11 adding two numbers

The following program was written in Motorola 68HC11 machine language and viewed using the
BUFFALO monitor program1 running on a Fox11 trainer board. The code is shown here is “hand-
assembled” machine code, with the hexadecimal codes arranged in the same format one would expect
to see in an assembly-language program. I have inserted comments for each line to help explain the
program:

B6 C1 00 ; Load Accumulator A (opcode 0xB6) from address 0xC100

BB C1 01 ; Add Accumulator A (opcode 0xBB) from address 0xC101

B7 C1 10 ; Store Accumulator A (opcode 0xB7) to address 0xC110

7E E0 00 ; Jump (opcode 0x7E) to address 0xE000 (start of Buffalo monitor)

Next, the “display memory” command was issued to the BUFFALO monitor program to show a
memory map beginning at address 0x0020. Our short program fits within the first line:

>md 0020

0020 B6 C1 00 BB C1 01 B7 C1 10 7E E0 00 FF FF FF FF

0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0040 FF FF FF FF FF FF FF FF FF FF E4 E4 E4 E4 64 E3 d

0050 F3 00 E4 64 E3 F3 00 57 00 20 E4 B6 E7 BA E1 FA d d X

0060 FF FF FF FF FF FF FF FF D0 00 41 6D 64 20 30 30 Amd 00

0070 32 30 0D 20 63 31 30 30 0D FF FF FF FF FF FF FF 20 c100

0080 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 4D 44 MD

0090 20 1B 5B 42 4D 4D 00 20 B6 00 B7 FF 00 00 00 00 [BMM

00A0 00 00 00 00 01 01 01 00 04 21 00 20 00 00 00 72 @ r

Next, we instruct the BUFFALO monitor to execute this program starting at address 0x0020:

>go 0020

1A “monitor” program may be thought of as a very crude operating system for the microprocessor. It provides
a simple interface environment to allow the user to program the memory, execute the program, and perform simple
debugging of any problems. BUFFALO is an acronym, standing for Bit User Fast Friendly Aid to Logical Operation.

2.1. EXAMPLE: MOTOROLA 68HC11 ADDING TWO NUMBERS 7

Lastly, we view memory starting at address 0xC100 to see the numerical values:

>md c100

C100 44 55 6F A1 39 3D A0 D4 24 64 00 B3 9E 06 C9 98 DUo 9= $d

C110 99 06 08 00 63 40 9C 18 B4 00 F0 00 30 D3 09 DC c@ 0

C120 6A 04 57 8E 19 27 D1 88 49 10 04 B5 88 06 16 2A j W ’ I *

C130 05 65 A9 04 15 72 47 7C 4A 44 0D B4 20 49 38 0D e rG JD I8

C140 7D 38 A5 93 30 B4 24 C0 43 08 25 D4 50 91 42 58 8 0 $ C % P BX

C150 9E D0 C0 C1 54 01 88 0C 10 70 55 23 CC 40 01 76 T pU# @ v

C160 2C C5 43 AC F8 1D A1 30 ED 71 AA 18 16 20 2E 1C , C 0 q .

C170 15 6D 25 C5 6E 07 02 72 38 FD 21 2D D5 67 93 24 m% n r8 !- g $

C180 92 43 12 30 0A 89 2C 4F 80 95 79 B6 A4 3C 2C 10 C 0 ,O y <,

Note the values stored in 0xC100 (44) and C101 (55), and in 0xC110 (99) which of course is the
sum of 44 and 55. All the other memory addresses contain random numbers from the last power-up.

8 CHAPTER 2. CASE TUTORIAL

2.2 Example: Motorola 68HC11 blinking an LED

The following assembly-language program was assembled using the as11 assembler and run on an
Axiom CME11E9-EVBU evaluation board in “single-chip” mode. All text to the right of a semicolon
(;) are comments ignored by the assembler.

; ==

; Blinking LED program

;

; LED cathode connected through 1k Ohm resistor to ground

; LED anode connected to PB0 terminal (port B, bit 0)

; ==

; "Equates" (similar to "DEFINE" directives in C programming)

PORTB equ $1004 ; Port B at memory address 0x1004

LED1 equ %00000001 ; Bit 0 select

org $0100 ; program starts at address 0x0100

ldx #PORTB ; load x register with address of PortB

Main

; Turn LED on ("set" the bit)

bset 0,x LED1 ; turn LED1 on

bsr Delay ; branch to subroutine

; Turn LED off ("clear" the bit)

bclr 0,x LED1 ; turn LED1 off

bsr Delay ; branch to subroutine

bra Main ; "branch always" (loop forever)

; Delay subroutine

Delay

ldy #$ffff ; load y register with 0xFFFF

Loop

dey ; decrements Y register

bne Loop ; repeats "Loop" if Y != 0

rts ; return

2.3. EXAMPLE: MOTOROLA 68HC11 BLINKING TWO LEDS 9

2.3 Example: Motorola 68HC11 blinking two LEDs

The following assembly-language program was assembled using the as11 assembler and run on an
Axiom CME11E9-EVBU evaluation board in “single-chip” mode. All text to the right of a semicolon
(;) are comments ignored by the assembler.

; ==

; Blinking two LEDs

;

; LED cathode connected through 1k Ohm resistor to ground

; LED anode connected to PB0 terminal (port B, bit 0)

; LED anode connected to PB1 terminal (port B, bit 1)

; ==

; "Equates" (similar to "DEFINE" directives in C programming)

PORTB equ $1004 ; Port B at memory address 0x1004

LED1 equ %00000001 ; Bit 0 select

LED2 equ %00000010 ; Bit 1 select

org $0100 ; program starts at address 0x0100

ldx #PORTB ; load x with address of PortB

Main

; LED1 on and LED2 off

bset 0,x LED1 ; turn LED1 on

bclr 0,x LED2 ; turn LED2 off

bsr Delay ; branch to subroutine

; LED1 off and LED2 on

bclr 0,x LED1 ; turn LED1 off

bset 0,x LED2 ; turn LED2 on

bsr Delay ; branch to subroutine

bra Main ; "branch always" (loop forever)

; Delay subroutine

Delay

ldy #$ffff ; load y register with 0xFFFF

Loop

dey ; decrements Y register

bne Loop ; repeats "Loop" if Y != 0

rts ; return

10 CHAPTER 2. CASE TUTORIAL

2.4 Example: Motorola 68HC11 blinking eight LEDs

The following assembly-language program was assembled using the as11 assembler and run on an
Axiom CME11E9-EVBU evaluation board in “single-chip” mode. All text to the right of a semicolon
(;) are comments ignored by the assembler.

; ==

; Blinking eight LEDs

;

; LED cathodes connected to ground

; LED anode connected to PB0 terminal (port B, bit 0) through 1k Ohm resistor

; LED anode connected to PB1 terminal (port B, bit 1) through 1k Ohm resistor

; LED anode connected to PB2 terminal (port B, bit 2) through 1k Ohm resistor

; LED anode connected to PB3 terminal (port B, bit 3) through 1k Ohm resistor

; LED anode connected to PB4 terminal (port B, bit 4) through 1k Ohm resistor

; LED anode connected to PB5 terminal (port B, bit 5) through 1k Ohm resistor

; LED anode connected to PB6 terminal (port B, bit 6) through 1k Ohm resistor

; LED anode connected to PB7 terminal (port B, bit 7) through 1k Ohm resistor

; ==

; "Equates" (similar to "DEFINE" directives in C programming)

PORTB equ $1004 ; Port B at memory address $1004

org $0100 ; program starts at address 0x0100

ldaa #%10101010 ; initialize accumulator A with this bit pattern

Main

staa PORTB ; Store accumulator A to Port B

bsr Delay ; Wait

coma ; Invert all bits in accumulator A (complement A)

bra Main ; "branch always" (loop forever)

; Delay subroutine

Delay

ldy #$ffff ; load y register with 0xFFFF

Loop

dey ; decrements Y register

bne Loop ; repeats "Loop" if Y != 0

rts ; return

2.5. EXAMPLE: MOTOROLA 68HC11 COUNTING IN BINARY 11

2.5 Example: Motorola 68HC11 counting in binary

The following assembly-language program was assembled using the as11 assembler and run on an
Axiom CME11E9-EVBU evaluation board in “single-chip” mode. All text to the right of a semicolon
(;) are comments ignored by the assembler.

; ==

; Outputting decrementing register to four LED indicators

;

; LED cathodes connected to ground

; LED anode connected to PB0 terminal (port B, bit 0) through 1k Ohm resistor

; LED anode connected to PB1 terminal (port B, bit 1) through 1k Ohm resistor

; LED anode connected to PB2 terminal (port B, bit 2) through 1k Ohm resistor

; LED anode connected to PB3 terminal (port B, bit 3) through 1k Ohm resistor

; ==

; "Equates" (similar to "DEFINE" directives in C programming)

PORTB equ $1004 ; Port B at memory address 0x1004

org $0100 ; program starting address

ldx PORTB ; load x with address of PortB

ldaa #%00001111 ; Loads register A with the binary value

; 0b00001111 to light up first four LEDs

Outer_loop

staa PORTB ; writes contents of register A to port B,

; where LEDs light up in response

ldy #$6f4d ; Loads register Y with the hex value

; 0x6F4D (approx 0.1 second delay)

Inner_loop

dey ; decrements Y register

bne Inner_loop ; repeats "Loop" if Y != 0

deca ; decrements A register

bne Outer_loop ; repeats Outer_loop if A != 0

bra Outer_loop ; return

12 CHAPTER 2. CASE TUTORIAL

2.6 Example: Motorola 68HC11 analog input

The following assembly-language program was assembled using the as11 assembler and run on an
Axiom CME11E9-EVBU evaluation board in “single-chip” mode. All text to the right of a semicolon
(;) are comments ignored by the assembler.

; ==

; Analog input to binary LED display

; ==

; "Equates" (similar to "DEFINE" directives in C programming)

PORTB equ $1004 ; Port B at memory address 0x1004

OPTION equ $1039 ; "option" register (with ADPU bit 7)

ADCTL equ $1030 ; ADC control register (selects modes and channels)

ADR1 equ $1031 ; ADC result register 1

ADR2 equ $1032 ; ADC result register 2

ADR3 equ $1033 ; ADC result register 3

ADR4 equ $1034 ; ADC result register 4

org $0100 ; Starting address

; These lines configure the ADC channels the way we want them

ldaa #%10000000 ; turns A/D on (bit 7 of "option" word powers up ADCs)

staa OPTION

ldaa #%00110100 ; continuous scan, multiple channel, scans Port E

; channels 4 through 7

staa ADCTL

Main

ldaa ADR1 ; Choose ADC result register 1

staa PORTB

bra Main

2.7. EXAMPLE: MICROCHIP PIC 16F84A BITWISE OR 13

2.7 Example: Microchip PIC 16F84A bitwise OR

The following assembly-language program was assembled and simulated using the MPLABX Integrated
Desktop Environment (version 5.35, using the MPASM assembler):

; Program for PIC 16F84A microcontroller

; Saves numbers into two memory locations, performs bitwise OR

;

RES_VECT CODE 0x0000 ; processor reset vector

GOTO LOOP ; go to beginning of program

x equ 0x0c ; Variable "x" is equivalent to data memory address 0x0c

y equ 0x0d ; Variable "y" is equivalent to data memory address 0x0d

MAIN_PROG CODE ; let linker place main program

LOOP

MOVLW 0x01 ; Moves 1 into W register

MOVWF x ; Moves W register contents into x variable

MOVLW 0x04 ; Moves 4 into W register

MOVWF y ; Moves W register contents into y variable

IORWF x,0 ; Bitwise (W OR x), result stored in W

GOTO LOOP ; loop forever

END

The following screenshot shows the microprocessor’s program memory map, with memory
addresses, 14-bit opcodes, and the disassembled instruction mnemonics and operands represented
by those opcodes:

14 CHAPTER 2. CASE TUTORIAL

Using the debugging and simulation features of the IDE (Integrated Development Environment),
we may step through the program one instruction at a time while monitoring some of the Special
Function Registers:

2.7. EXAMPLE: MICROCHIP PIC 16F84A BITWISE OR 15

16 CHAPTER 2. CASE TUTORIAL

2.8. EXAMPLE: MICROCHIP PIC 16F84A CONDITIONAL EXAMPLE 17

2.8 Example: Microchip PIC 16F84A conditional example

The following assembly-language program was assembled using the gpasm assembler2 and simulated
on the simulpic 16F84A simulator:

; Demonstration program for PIC 16F84A showing how to use btfss and btfsc

; instructions to make an output bit on Port A equal in state to an input

; bit on Port B.

;

; Equivalent to pseudocode:

; if (PortBBit0 == 1)

; then PortABit0 = 1

; else PortABit0 = 0

;

; Assemble using the following command:

; gpasm -p16F84A <filename>.asm

;

#include p16f84a.inc ; This included file contains hexadecimal

; register values for STATUS, TRISA, RP0,

; etc. making programming easier.

org 0x00 ; Program starts at address 0x00

bsf STATUS, RP0 ; Switch to Bank 1 registers by setting RP0

clrf TRISA ; Clear all TRISA bits to declare Port A as output

bcf STATUS, RP0 ; Switch to Bank 0 registers by clearing RP0

clrf PORTA ; Initialize PORTA by clearing output data latches

loop btfss PORTB, 0 ; Skip next instruction if Port B bit 0 is set (=1)

bcf PORTA, 0 ; Clear Port A bit 0 if the instruction is unskipped

btfsc PORTB, 0 ; Skip next instruction if Port B bit 0 is cleared (=0)

bsf PORTA, 0 ; Set Port A bit 0 if the instruction is unskipped

goto loop

end

2Command-line entry: gpasm -p16F84A <filename>.asm

18 CHAPTER 2. CASE TUTORIAL

; Demonstration program for PIC 16F84A showing how to use btfss and btfsc

; instructions to make an output bit on Port A opposite in state to an input

; bit on Port B.

;

; Equivalent to pseudocode:

; if (PortBBit0 == 1)

; then PortABit0 = 0

; else PortABit0 = 1

;

; Assemble using the following command:

; gpasm -p16F84A <filename>.asm

;

#include p16f84a.inc ; This included file contains hexadecimal

; register values for STATUS, TRISA, RP0,

; etc. making programming easier.

org 0x00 ; Program starts at address 0x00

bsf STATUS, RP0 ; Switch to Bank 1 registers by setting RP0

clrf TRISA ; Clear all TRISA bits to declare Port A as output

bcf STATUS, RP0 ; Switch to Bank 0 registers by clearing RP0

clrf PORTA ; Initialize PORTA by clearing output data latches

loop btfss PORTB, 0 ; Skip next instruction if Port B bit 0 is set (=1)

bsf PORTA, 0 ; Set Port A bit 0 if the instruction is unskipped

btfsc PORTB, 0 ; Skip next instruction if Port B bit 0 is cleared (=0)

bcf PORTA, 0 ; Clear Port A bit 0 if the instruction is unskipped

goto loop

end

2.9. EXAMPLE: MICROCHIP PIC 16F84A MOTOR CONTROL 19

2.9 Example: Microchip PIC 16F84A motor control

The following assembly-language program was assembled using the gpasm assembler3 and simulated
on the simulpic 16F84A simulator:

; Motor control program for PIC 16F84A

; Start PBNO to ground on pin 0 on Port B

; Stop PBNC to ground on pin 1 on Port B

outputs equ 0x05 ; Port A register (file 0x05) will be outputs

inputs equ 0x06 ; Port B register (file 0x06) will be inputs

; Bit 0 is the Start signal (active-low)

; Bit 1 is the Stop signal (active-high)

trisa equ 0x05 ; Port A data direction register (file 0x05,

; actually 0x85 but the "8" is implied when RP0 is set)

status equ 0x03 ; Status register (file 0x85)

rp0 equ 5 ; The RP0 bit of the Status register is bit 5

org 0x00 ; Program starts at address 0x00

bsf status, rp0 ; Switch to Bank 1 registers by setting rp0

clrf trisa ; Clear all TRISA bits to declare Port A as output

bcf status, rp0 ; Switch to Bank 0 registers by clearing rp0

clrf outputs ; Initialize PORTA by clearing output data latches

loop btfss inputs, 0 ; Skip next instruction if input bit 0 is set (=1)

; (i.e. Start pushbutton switch unpressed)

bsf outputs, 0 ; Set output bit 0 if the instruction is unskipped

btfsc inputs, 1 ; Skip next instruction if input bit 1 is cleared (=0)

; (i.e. Stop pushbutton switch unpressed)

bcf outputs, 0 ; Clear output bit 0 if the instruction is unskipped

goto loop

end

3Command-line entry: gpasm -p16F84A <filename>.asm

20 CHAPTER 2. CASE TUTORIAL

2.10 Example: Microchip PIC 12F629 energizing a LED

The following assembly-language program was assembled using the MPLABX Integrated Development
Environment assembler (called MPASM) and run on a 12F629 microcontroller IC plugged into a
breadboard, interfaced using a PICkit4 in-circuit programmer/debugger tool connected to pins 6
and 7 (ICSPCLK and ICSPDAT, respectively). General-purpose I/O GP4 is pin 3 on the IC:

list p=12F629

radix dec ; Allows numerical entry in decimal rather than (default) hex

#include "p12f629.inc"

; CONFIG

; __config 0x3FDD __CONFIG _FOSC_INTRCCLK & _WDTE_ON & _PWRTE_OFF &

_MCLRE_OFF & _BOREN_ON & _CP_OFF & _CPD_OFF

; Beginning of program

org 0x00

bsf 131, 5 ; Selecting bank 1 (STATUS 83h, bit 5 = rp0)

bcf 133, 4 ; Setting GP4 as an output (TRISIO 85h)

movlw b’00001111’ ; bit 3 = 1 = WDT 011=/8 WDT= 18 ms x 8 = 0.144 seconds

movwf 129 ; must be in bank 1 (OPTION_REG 81h)

bcf 131, 5 ; Selecting bank 0 (STATUS 83h, bit 5 = rp0)

movlw b’00010000’ ; to set GP4 high and energize the LED

xorwf GPIO,f

sleep

END

2.11. EXAMPLE: MICROCHIP PIC 16F18346 BLINKING AN LED 21

2.11 Example: Microchip PIC 16F18346 blinking an LED

The following assembly-language program was assembled using the MPLABX Integrated Development
Environment assembler (called MPASM) and run on a 16F18346 microcontroller IC plugged into a
“Curiosity” development board:

; Blinking LED program with nested delays

#include "p16f18346.inc"

; CONFIG1

; __config 0x3FCF

__CONFIG _CONFIG1, _FEXTOSC_ECH & _RSTOSC_LFINT & _CLKOUTEN_OFF & _CSWEN_ON &

_FCMEN_ON

; CONFIG2

; __config 0x3FF3

__CONFIG _CONFIG2, _MCLRE_ON & _PWRTE_OFF & _WDTE_OFF & _LPBOREN_OFF &

_BOREN_ON & _BORV_LOW & _PPS1WAY_ON & _STVREN_ON & _DEBUG_OFF

; CONFIG3

; __config 0x3FFF

__CONFIG _CONFIG3, _WRT_OFF & _LVP_ON

; CONFIG4

; __config 0x3FFF

__CONFIG _CONFIG4, _CP_OFF & _CPD_OFF

RES_VECT CODE 0x0000 ; processor reset vector

GOTO START ; go to beginning of program

MAIN_PROG CODE ; let linker place main program

START

BANKSEL PORTA

CLRF PORTA ; Init PORTA

BANKSEL LATA ; Data Latch

CLRF LATA

BANKSEL ANSELA

CLRF ANSELA ; digital I/O

BANKSEL TRISA

MOVLW B’00000000’ ; Set all bits as outputs

MOVWF TRISA

BANKSEL LATA

22 CHAPTER 2. CASE TUTORIAL

LOOP

CALL DELAY1

BSF LATA,2

CALL DELAY1

BCF LATA,2

GOTO LOOP

DELAY1

MOVLW 0x0A ; Delay time loaded into W

MOVWF 0x20 ; Move from W to an address in General RAM

INNERLOOP

CALL DELAY2

DECFSZ 0x20, 1

GOTO INNERLOOP

RETURN

DELAY2

MOVLW 0xFF ; Delay time loaded into W

MOVWF 0x21 ; Move from W to an address in General RAM

INNERLOOP2

DECFSZ 0x21, 1

GOTO INNERLOOP2

RETURN

END

2.12. EXAMPLE: INTEL XEON INTEGER ADDITION 23

2.12 Example: Intel Xeon integer addition

The following program was written in the C language and compiled4 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

void main (void)

{

int x = 2, y = 5, sum;

sum = x + y;

}

Next, the resulting executable file was “disassembled”5 to show the machine-language and
corresponding assembly-language code. Only the portion of the disassembled code related to the
main function is shown here:

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 fc 02 00 00 00 movl $0x2,-0x4(%rbp)

4005cb: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)

4005d2: 8b 45 f8 mov -0x8(%rbp),%eax

4005d5: 8b 55 fc mov -0x4(%rbp),%edx

4005d8: 01 d0 add %edx,%eax

4005da: 89 45 f4 mov %eax,-0xc(%rbp)

4005dd: 5d pop %rbp

4005de: c3 retq

4005df: 90 nop

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x4005c0 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

4Command-line entry: gcc -g -O0 -fno-builtin main.c
5Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

24 CHAPTER 2. CASE TUTORIAL

Next, a program adding four numbers together:

void main (void)

{

int w = 0, x = -6, y = 9, z = 22, sum;

sum = w + x + y + z;

}

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

4005cb: c7 45 f8 fa ff ff ff movl $0xfffffffa,-0x8(%rbp)

4005d2: c7 45 f4 09 00 00 00 movl $0x9,-0xc(%rbp)

4005d9: c7 45 f0 16 00 00 00 movl $0x16,-0x10(%rbp)

4005e0: 8b 45 f8 mov -0x8(%rbp),%eax

4005e3: 8b 55 fc mov -0x4(%rbp),%edx

4005e6: 01 c2 add %eax,%edx

4005e8: 8b 45 f4 mov -0xc(%rbp),%eax

4005eb: 01 c2 add %eax,%edx

4005ed: 8b 45 f0 mov -0x10(%rbp),%eax

4005f0: 01 d0 add %edx,%eax

4005f2: 89 45 ec mov %eax,-0x14(%rbp)

4005f5: 5d pop %rbp

4005f6: c3 retq

4005f7: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)

4005fe: 00 00

2.13. EXAMPLE: INTEL XEON INTEGER SUBTRACTION 25

2.13 Example: Intel Xeon integer subtraction

The following program was written in the C language and compiled6 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

void main (void)

{

int x = 2, y = 5, difference;

difference = x - y;

}

Next, the resulting executable file was “disassembled”7 to show the machine-language and
corresponding assembly-language code. Only the portion of the disassembled code related to the
main function is shown here:

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 fc 02 00 00 00 movl $0x2,-0x4(%rbp)

4005cb: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)

4005d2: 8b 45 f8 mov -0x8(%rbp),%eax

4005d5: 8b 55 fc mov -0x4(%rbp),%edx

4005d8: 89 d1 mov %edx,%ecx

4005da: 29 c1 sub %eax,%ecx

4005dc: 89 c8 mov %ecx,%eax

4005de: 89 45 f4 mov %eax,-0xc(%rbp)

4005e1: 5d pop %rbp

4005e2: c3 retq

4005e3: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)

4005ea: 00 00 00

4005ed: 0f 1f 00 nopl (%rax)

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x4005c0 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

6Command-line entry: gcc -g -O0 -fno-builtin main.c
7Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

26 CHAPTER 2. CASE TUTORIAL

2.14 Example: Intel Xeon integer multiplication

The following program was written in the C language and compiled8 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

void main (void)

{

int x = 4, y = 7, z;

z = x * y;

}

Next, the resulting executable file was “disassembled”9 to show the machine-language and
corresponding assembly-language code. Only the portion of the disassembled code related to the
main function is shown here:

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 fc 04 00 00 00 movl $0x4,-0x4(%rbp)

4005cb: c7 45 f8 07 00 00 00 movl $0x7,-0x8(%rbp)

4005d2: 8b 45 fc mov -0x4(%rbp),%eax

4005d5: 0f af 45 f8 imul -0x8(%rbp),%eax

4005d9: 89 45 f4 mov %eax,-0xc(%rbp)

4005dc: 5d pop %rbp

4005dd: c3 retq

4005de: 66 90 xchg %ax,%ax

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x4005c0 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

8Command-line entry: gcc -g -O0 -fno-builtin main.c
9Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

2.15. EXAMPLE: INTEL XEON LOOPING INFINITELY 27

2.15 Example: Intel Xeon looping infinitely

The following program was written in the C language and compiled10 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

void main (void)

{

int x = 0;

while(1)

++x;

}

Next, the resulting executable file was “disassembled”11 to show the machine-language and
corresponding assembly-language code. Only the portion of the disassembled code related to the
main function is shown here:

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

4005cb: 83 45 fc 01 addl $0x1,-0x4(%rbp)

4005cf: eb fa jmp 4005cb <main+0xb>

4005d1: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)

4005d8: 00 00 00

4005db: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x4005c0 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

10Command-line entry: gcc -g -O0 -fno-builtin main.c
11Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

28 CHAPTER 2. CASE TUTORIAL

2.16 Example: Intel Xeon looping fifteen times

The following program was written in the C language and compiled12 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

void main (void)

{

int n, x = 0;

for (n = 0 ; n < 15 ; ++n)

--x;

}

Next, the resulting executable file was “disassembled”13 to show the machine-language and
corresponding assembly-language code. Only the portion of the disassembled code related to the
main function is shown here:

00000000004005c0 <main>:

4005c0: 55 push %rbp

4005c1: 48 89 e5 mov %rsp,%rbp

4005c4: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

4005cb: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

4005d2: eb 08 jmp 4005dc <main+0x1c>

4005d4: 83 6d f8 01 subl $0x1,-0x8(%rbp)

4005d8: 83 45 fc 01 addl $0x1,-0x4(%rbp)

4005dc: 83 7d fc 0e cmpl $0xe,-0x4(%rbp)

4005e0: 7e f2 jle 4005d4 <main+0x14>

4005e2: 5d pop %rbp

4005e3: c3 retq

4005e4: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)

4005eb: 00 00 00

4005ee: 66 90 xchg %ax,%ax

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x4005c0 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

12Command-line entry: gcc -g -O0 -fno-builtin main.c
13Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

2.17. EXAMPLE: INTEL XEON INTEGER POWER 29

2.17 Example: Intel Xeon integer power

The following program was written in the C language and compiled14 on a computer running the
Linux operating system on an Intel 64-bit Xeon processor:

#include <math.h>

void main (void)

{

int x = 3, y = 5, z;

z = pow(x , y);

}

The power (pow) function is not part of the default C library, and so we need to include the
header file math.h and also “link” the math library with our compiled object code (using the -lm

option when invoking the gcc compiler software) to create an executable file for the computer to
run.

14Command-line entry: gcc -g -O0 -fno-builtin -lm main.c

30 CHAPTER 2. CASE TUTORIAL

Next, the resulting executable file was “disassembled”15 to show the machine-language and
corresponding assembly-language code. Only the portions of the disassembled code related to the
main function and the pow function call are shown here:

00000000004004a0 <pow@plt-0x10>:

4004a0: ff 35 6a 05 20 00 pushq 0x20056a(%rip)

600a10 <_GLOBAL_OFFSET_TABLE_+0x8>

4004a6: ff 25 6c 05 20 00 jmpq *0x20056c(%rip)

600a18 <_GLOBAL_OFFSET_TABLE_+0x10>

4004ac: 0f 1f 40 00 nopl 0x0(%rax)

00000000004004b0 <pow@plt>:

4004b0: ff 25 6a 05 20 00 jmpq *0x20056a(%rip)

600a20 <_GLOBAL_OFFSET_TABLE_+0x18>

4004b6: 68 00 00 00 00 pushq $0x0

4004bb: e9 e0 ff ff ff jmpq 4004a0 <_init+0x18>

0000000000400630 <main>:

400630: 55 push %rbp

400631: 48 89 e5 mov %rsp,%rbp

400634: 48 83 ec 10 sub $0x10,%rsp

400638: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%rbp)

40063f: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)

400646: f2 0f 2a 4d f8 cvtsi2sdl -0x8(%rbp),%xmm1

40064b: f2 0f 2a 45 fc cvtsi2sdl -0x4(%rbp),%xmm0

400650: e8 5b fe ff ff callq 4004b0 <pow@plt>

400655: f2 0f 2c c0 cvttsd2si %xmm0,%eax

400659: 89 45 f4 mov %eax,-0xc(%rbp)

40065c: c9 leaveq

40065d: c3 retq

40065e: 66 90 xchg %ax,%ax

Memory addresses appear in the left-most column, followed by machine-language opcodes and
operands in hexadecimal format. Assembly-language mnemonics and their operands appear on the
farthest-right columns. For example, the first line of code for the main function shows it beginning
at address 0x400630 with the opcode 55, corresponding to the assembly-language mnemonic push

with %rbp as its operand.

15Command-line entry: objdump -d -s -f -m i386:x86-64 a.out

Chapter 3

Simplified Tutorial

(Simplified tutorial text goes here)

31

32 CHAPTER 3. SIMPLIFIED TUTORIAL

Chapter 4

Full Tutorial

(Detailed tutorial text goes here)

33

34 CHAPTER 4. FULL TUTORIAL

Chapter 5

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism

written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

35

36 CHAPTER 5. HISTORICAL REFERENCES

5.1 Big-endians and Little-endians

A fictional novel published in 1726 entitled Gulliver’s Travels Into Several Remote Nations of the

World contains a reference to a dispute between two nations, that of Lilliput and of Blefuscu. The
dispute is over the most trivial of matters, namely which end of an egg should be broken prior
to eating. Clearly a satire by Swift on the religious controversies of his day, the schism between
the “Big-endians” and “Little-endians” served as a convenient reference for computer scientists to
describe the differing ways in which digital data could be organized within a digital system.

Without further adieu, I present to you the passage from Swift’s famous book introducing the
term “Big-endian” into the English lexicon:

. . . our histories of six thousand moons make no mention of any other regions than
the two great empires of Lilliput and Blefuscu. Which two mighty powers have, as I
was going to tell you, been engaged in a most obstinate war for six-and-thirty moons
past. It began upon the following occasion. It is allowed on all hands, that the primitive
way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according
to the ancient practice, happened to cut one of his fingers. Whereupon the emperor his
father published an edict, commanding all his subjects, upon great penalties, to break
the smaller end of their eggs. The people so highly resented this law, that our histories
tell us, there have been six rebellions raised on that account; wherein one emperor lost
his life, and another his crown. These civil commotions were constantly fomented by the
monarchs of Blefuscu; and when they were quelled, the exiles always fled for refuge to that
empire. It is computed that eleven thousand persons have at several times suffered death,
rather than submit to break their eggs at the smaller end. Many hundred large volumes
have been published upon this controversy: but the books of the Big-endians have been
long forbidden, and the whole party rendered incapable by law of holding employments.
During the course of these troubles, the emperors of Blefusca did frequently expostulate
by their ambassadors, accusing us of making a schism in religion, by offending against
a fundamental doctrine of our great prophet Lustrog, in the fifty-fourth chapter of the
Blundecral (which is their Alcoran). This, however, is thought to be a mere strain upon
the text; for the words are these: “that all true believers break their eggs at the convenient
end.” And which is the convenient end, seems, in my humble opinion to be left to every
man’s conscience, or at least in the power of the chief magistrate to determine. Now,
the Big-endian exiles have found so much credit in the emperor of Blefuscu’s court, and
so much private assistance and encouragement from their party here at home, that a
bloody war has been carried on between the two empires for six-and-thirty moons, with
various success; during which time we have lost forty capital ships, and a much a greater
number of smaller vessels, together with thirty thousand of our best seamen and soldiers;
and the damage received by the enemy is reckoned to be somewhat greater than ours.
However, they have now equipped a numerous fleet, and are just preparing to make a
descent upon us; and his imperial majesty, placing great confidence in your valour and
strength, has commanded me to lay this account of his affairs before you.

One of those computer scientists referencing Jonathan Swift’s satirical novel was Danny Cohen, in
a document appropriately dated on April Fool’s Day (April 1), 1980. The tone of Cohen’s document

5.1. BIG-ENDIANS AND LITTLE-ENDIANS 37

is quite humorous, and definitely worth reading especially for those interested in the architectures
of early computing hardware such as the Motorola 68000 microprocessor IC; Digital Equipment
Corporation’s PDP10, PDP11/45, VAX computers; and the IBM model 360 computer. He makes
extensive reference of Swift’s story while describing the fundamental decision of how to organize and
communicate data words in a digital system.

Cohen’s document concludes neatly with the following three sentences, which I include for your
edification:

It may be interesting to notice that the point which Jonathan Swift tried to convey in
Gulliver’s Travels in exactly the opposite of the point of this note.

Swift’s point is that the difference between breaking the egg at the little-end and breaking
it at the big-end is trivial. Therefore, he suggests, that everyone does it in his own
preferred way.

We agree that the difference between sending eggs with the little- or the big-end first is
trivial, but we insist that everyone must do it in the same way, to avoid anarchy. Since
the difference is trivial we may choose either way, but a decision must be made.

At the time of this writing (2018), nearly four decades after Cohen’s missive, the state of anarchy
described by Cohen remains alive and well, with little-endian and big-endian formats commonly
found among the various microprocessors and microcontrollers still in active use.

38 CHAPTER 5. HISTORICAL REFERENCES

Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

39

40 CHAPTER 6. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

41

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

42 CHAPTER 6. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

6.1. CONCEPTUAL REASONING 43

6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

44 CHAPTER 6. QUESTIONS

6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

6.1. CONCEPTUAL REASONING 45

6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results

46 CHAPTER 6. QUESTIONS

Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???

6.1.3 First conceptual question

Challenges

• ???.

• ???.

• ???.

6.1.4 Second conceptual question

Challenges

• ???.

• ???.

• ???.

6.2. QUANTITATIVE REASONING 47

6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

48 CHAPTER 6. QUESTIONS

6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

6.2. QUANTITATIVE REASONING 49

6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

50 CHAPTER 6. QUESTIONS

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

6.2. QUANTITATIVE REASONING 51

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

52 CHAPTER 6. QUESTIONS

6.2.3 First quantitative problem

Challenges

• ???.

• ???.

• ???.

6.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.

6.3. DIAGNOSTIC REASONING 53

6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

6.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.

54 CHAPTER 6. QUESTIONS

6.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

55

56 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

57

58 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

• Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

• Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

• Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

• Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

• Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

• Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

• People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

• What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

• Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.

B.2. PROVEN STRATEGIES FOR INSTRUCTORS 59

B.2 Proven strategies for instructors

• Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

• Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

• Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

• Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

• Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for AI to critique students’ clarity of thought and of
expression, for example by employing AI as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, AI has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

• Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

• Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

• Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

• Have students build as much of their lab equipment as possible: building power sources,
building test assemblies1, and building complete working systems (no kits!). In order to provide

1In the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.

60 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

• Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

• Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

• Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

• Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

• Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

• Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

• Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.

B.3. PROVEN STRATEGIES FOR STUDENTS 61

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

• Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

• Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

• Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

• Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

• Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding2.

• Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

• Above all, recognize that learning is hard work, and that a certain level of

frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied3 effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

2On a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

62 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

B.4. DESIGN OF THESE LEARNING MODULES 63

These learning modules were expressly designed to be used in an “inverted” teaching
environment4 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic5 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity6 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

64 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

65

66 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

67

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

68 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

69

70 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

71

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

72 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

73

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

74 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

75

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

76 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Cohen, Danny, “On Holy Wars and a Plea For Peace”, IEN 137, USC/ISI, April 1, 1980.

Intel 64 and IA-32 Architectures Software Developer’s Manual, order number 325383-060US,
September 2016.

Swift, Jonathan, Gulliver’s Travels, 1726.

77

78 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

2 June 2020 – minor edits to assembly language code in the Case Tutorial chapter (e.g. adding
the # symbol before some of the include directives) and also mentioned the specific assembler I was
using under MPLABX, called MPASM.

28-29 May 2020 – worked more on the Case Tutorial chapter content, adding examples of assembly
language programming from my collection of past experiments.

27 May 2020 – document first created.

79

Index

Adding quantities to a qualitative problem, 56
Annotating diagrams, 55
April Fool’s Day, 37

Checking for exceptions, 56
Checking your work, 56
Code, computer, 65
Cohen, Danny, 37

Dimensional analysis, 55

Edwards, Tim, 66

Graph values to solve a problem, 56
Greenleaf, Cynthia, 39

How to teach with these modules, 63
Hwang, Andrew D., 67

Identify given data, 55
Identify relevant principles, 55
Intermediate results, 55
Inverted instruction, 63

Knuth, Donald, 66

Lamport, Leslie, 66
Limiting cases, 56

Maxwell, James Clerk, 35
Metacognition, 44
Moolenaar, Bram, 65
Murphy, Lynn, 39

Open-source, 65

Problem-solving: annotate diagrams, 55
Problem-solving: check for exceptions, 56
Problem-solving: checking work, 56

Problem-solving: dimensional analysis, 55
Problem-solving: graph values, 56
Problem-solving: identify given data, 55
Problem-solving: identify relevant principles, 55
Problem-solving: interpret intermediate results,

55
Problem-solving: limiting cases, 56
Problem-solving: qualitative to quantitative, 56
Problem-solving: quantitative to qualitative, 56
Problem-solving: reductio ad absurdum, 56
Problem-solving: simplify the system, 55
Problem-solving: thought experiment, 55
Problem-solving: track units of measurement, 55
Problem-solving: visually represent the system,

55
Problem-solving: work in reverse, 56

Qualitatively approaching a quantitative
problem, 56

Reading Apprenticeship, 39
Reductio ad absurdum, 56, 62, 63

Schoenbach, Ruth, 39
Scientific method, 44
Simplifying a system, 55
Socrates, 62
Socratic dialogue, 63
SPICE, 39
Stallman, Richard, 65

Thought experiment, 55
Torvalds, Linus, 65

Units of measurement, 55

Visualizing a system, 55

80

INDEX 81

Work in reverse to solve a problem, 56
WYSIWYG, 65, 66

	Introduction
	Case Tutorial
	Example: Motorola 68HC11 adding two numbers
	Example: Motorola 68HC11 blinking an LED
	Example: Motorola 68HC11 blinking two LEDs
	Example: Motorola 68HC11 blinking eight LEDs
	Example: Motorola 68HC11 counting in binary
	Example: Motorola 68HC11 analog input
	Example: Microchip PIC 16F84A bitwise OR
	Example: Microchip PIC 16F84A conditional example
	Example: Microchip PIC 16F84A motor control
	Example: Microchip PIC 12F629 energizing a LED
	Example: Microchip PIC 16F18346 blinking an LED
	Example: Intel Xeon integer addition
	Example: Intel Xeon integer subtraction
	Example: Intel Xeon integer multiplication
	Example: Intel Xeon looping infinitely
	Example: Intel Xeon looping fifteen times
	Example: Intel Xeon integer power

	Simplified Tutorial
	Full Tutorial
	Historical References
	Big-endians and Little-endians

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	First conceptual question
	Second conceptual question

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	First quantitative problem
	Second quantitative problem

	Diagnostic reasoning
	First diagnostic scenario
	Second diagnostic scenario

	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

