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Chapter 1

Introduction

1.1 Recommendations for students

The C programming language was invented in the early 1970’s by Dennis Ritchie, a seminal figure
in the world of digital computing. Despite its age, it remains a relatively powerful and widely-used
programming language even at the time of this writing (2021). In fact, one online survey in 2020
listed C as the #5 programming language based partly1 on the number of posted job descriptions for
programming jobs. However, regardless of popularity, C is a good programming language to learn
because it is relatively simple compared to others such as C++ and because it tends to produce lean
code for memory-scarce applications such as embedded systems programming (e.g. microcontrollers).

Important concepts related to C programming include machine language, source code,
compiling versus interpreting, text editor, integer versus floating-point number, formatted
text, modulus, casting, order of operations, code library, header file, linking, conditional
statement, loop, function, variable scope, argument, pointer, string, bitwise operators, and
recursion.

Computer programming is a skill born of practice, and for this reason it is strongly advised that
you start writing simple programs as soon as you can based on what you learn in this module.
All code examples shown in this module have been tested on a computer and then copied-and-
pasted to the page, which means they should all compile and run with no errors. This, in fact, is a
great starting point for beginning programmers: to copy-and-paste working code into a text editor,
compile and run it to test that it is error-free, and then begin modifying the source code to make
the program do what you wish.

Here are some good questions to ask of yourself while studying this subject:

• What does it mean to compile a C program? Specifically, what is/are the input(s) to a
compiler, and what is/are the output(s)?

• What it the definition of source code?

1Based solely on the number of open jobs requesting knowledge of languages, C was #6.
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• What is a text editor application useful for in programming?

• What is whitespace, and where does it matter in a C program?

• What, at minimum, is necessary in a C program to make the code functional?

• What are comments useful for, and how do we place comments within C programs?

• What does the modulus function do?

• What is the “flow” of program execution for any of the example programs shown? In other
words, for any given program with any given user input, can you predict exactly which
instructions will be executed, and in which order?

• How do char, int, and float data types differ from one another?

• When might we wish to use casting in a C program?

• What does the scanf instruction, and how does it contrast against the printf instruction?

• What is the difference between the = operator and the == operator?

• When must an else statement accompany an if statement?

• How does the function of a switch statement differ from that of if/else statements?

• What does the break instruction do?

• What condition(s) must be satisfied for a while loop to continue its execution?

• What condition(s) must be satisfied for a for loop to continue its execution?

• What purpose is served by a function in the C language?

• What does it mean for a function to have arguments and to return data?

• What controls the scope of a variable in C?

• How does bit-shifting relate to the operations of multiplication and division?

• How do basic logical functions in C such as AND and OR differ from bitwise operations of
AND and OR?

• What is the purpose of a mask in bitwise operations?

• For what purpose might we use the bitwise-AND operation when modifying the contents of a
register in a microcontroller?

• For what purpose might we use the bitwise-OR operation when modifying the contents of a
register in a microcontroller?

• For what purpose might we use the bitwise-XOR operation when modifying the contents of a
register in a microcontroller?
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• How may we use bitwise operations to test for the state of a single bit within a microcontroller
register?

• How may bit-shifting be used for certain operations of multiplication or division on a binary
value?

• Differentiate between the meanings of the following: x, *x, and &x
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1.2 Challenging concepts related to C programming

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Semicolons and where to (not) use them – one of the most aggravating aspects of C for
the new programmer is the use of semicolons to terminate lines of code. While annoying, this
convention is one of the ways in which C lends freedom to use whitespace. Instructions that
are more or less self-contained in one line require a terminating semicolon, while instructions
that always precede other related lines of code (e.g. if conditionals) do not.

• Bitwise logical operations – applying AND, OR, and XOR logical operations to respective
bits of binary words is not a straight-forward concept, but is made more understandable by
drawing out the binary word(s) in question and if necessary drawing small logic gates taking
inputs from those bits to generate the respective bits of the output word. Another helpful
perspective for understanding the purpose of bitwise operations is to view AND functions as
forcing a 0 output if any input is 0, and OR functions as forcing a 1 output of any input is a
1.

• Pointers – a powerful yet confusing feature of C is that of pointers in which data may be
referenced not only by variable name but also by memory location within the computer.
Compiling, running, and modifying the example programs in the “Pointers” section of the
Tutorial is a great way to learn this concept. The same is true where pointers are used in
conjunction with arrays and structures.

The best general suggestion there is for learning how to program a computer in any language is to
write simple programs in that language and keep a record of them for future reference. Programming
is not a spectator sport, so get busy typing and compiling!!
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show their own efforts compiling and running the code examples
contained in the Tutorial chapter.

• Outcome – Explore programming concepts experimentally

Assessment – For each new programming concept (e.g. at least one per Tutorial
section), write a simple program in the C language that demonstrates the principle, and
then modify that program to explore the effects of different parameter values, different
strategies of implementation, etc. Computer programming provides an excellent opportunity
for experimental learning, with the compiler serving as a virtual laboratory in which to test
ideas!

• Outcome – Combine mutually-reinforcing concepts such as programming and circuit analysis
together

Assessment – Write or modify a C program to analyze an electric circuit; e.g. pose
problems in the form of the “Using C to analyze a series resistor circuit” Quantitative
Reasoning question.

• Outcome – Independent research

Assessment – Consult Brian Kernighan’s and Dennis Ritchie’s classic book The C
Programming Language to learn how the earliest versions of C functioned, and to learn efficient
programming techniques.

Assessment – Consult The GNU C Library Reference Manual to learn how one of the
most popular C compilers (gcc) interprets C code.
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Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9
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2.1 Example: whitespace

A C compiler ignores whitespace, which means all non-character space between instructions. This
apathy toward whitespace may be illustrated by examining the following “Hello World” programs,
all of which compile with no errors and produce the exact same output:

C source code:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Program output:

Hello world!

Next, we see the exact same program re-written with no indenting or blank lines, compiles with
no errors and produces the same output:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Next we have eliminated all but one “carriage return” character, placing most of the code on a
single line of text. It still compiles without error and produces the same output as before:

#include <stdio.h>

int main (void) { printf("Hello world!\n"); return 0; }
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Finally, we have eliminated all “space” characters except those essential to defining certain special
words like int. It still compiles without error and produces the same output as before:

#include<stdio.h>

int main(void){printf("Hello world!\n");return 0;}
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2.2 Example: variable scope

#include <stdio.h>

void myfunction(float, float);

int main (void)

{

// x and y are local to main()

float x = 5.0, y = 8.0;

printf("Before calling myfunction(): x=%f and y=%f \n", x, y);

myfunction(x, y);

printf("After calling myfunction(): x=%f and y=%f \n", x, y);

return 0;

}

// x and y are local to myfunction()

void myfunction(float x, float y)

{

x = x * 22.0;

y = y * -41.0;

printf("Within myfunction(): x=%f and y=%f \n", x, y);

}

When compiled and run, we see how the multiplications within myfunction() do not affect the
values of x and y within main() even though they affect x and y within myfunction():

Program output:

Before calling myfunction(): x=5.000000 and y=8.000000

Within myfunction(): x=110.000000 and y=-328.000000

After calling myfunction(): x=5.000000 and y=8.000000
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Even if we make x and y global variables by declaring them outside of the main() function, the
fact that myfunction initializes its own local versions of x and y means those are still local in scope
to myfunction and therefore independent of the global x and y:

#include <stdio.h>

// x and y are global variables

float x = 5.0, y = 8.0;

void myfunction(float, float);

int main (void)

{

printf("Before calling myfunction(): x=%f and y=%f \n", x, y);

myfunction(x, y);

printf("After calling myfunction(): x=%f and y=%f \n", x, y);

return 0;

}

// x and y are local to myfunction()

void myfunction(float x, float y)

{

x = x * 22.0;

y = y * -41.0;

printf("Within myfunction(): x=%f and y=%f \n", x, y);

}

Program output:

Before calling myfunction(): x=5.000000 and y=8.000000

Within myfunction(): x=110.000000 and y=-328.000000

After calling myfunction(): x=5.000000 and y=8.000000
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However, if we keep x and y global in scope but do not pass variables on to myfunction, the
multiplications taking place within myfunction() retain their effect back in main():

#include <stdio.h>

// x and y are global variables

float x = 5.0, y = 8.0;

void myfunction(void);

int main (void)

{

printf("Before calling myfunction(): x=%f and y=%f \n", x, y);

myfunction();

printf("After calling myfunction(): x=%f and y=%f \n", x, y);

return 0;

}

void myfunction(void)

{

x = x * 22.0;

y = y * -41.0;

printf("Within myfunction(): x=%f and y=%f \n", x, y);

}

Program output:

Before calling myfunction(): x=5.000000 and y=8.000000

Within myfunction(): x=110.000000 and y=-328.000000

After calling myfunction(): x=110.000000 and y=-328.000000
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2.3 Example: ncurses demo program

#include <stdio.h>

#include <ncurses.h>

int

main (void)

{

initscr(); // Starts curses mode

printw("Hello World!"); // Sets up text ready to print

refresh(); // Places items on the screen

getch(); // Waits for any user keystroke

move(10, 20); // Moves cursor to y=10, x=20 position

printw ("Console lines = %i", LINES);

move(11, 20); // Moves cursor to y=11, x=20 position

printw("Console columns = %i", COLS);

refresh(); // Places items on the screen

getch(); // Waits for any user keystroke

clear(); // Clears the screen

move(0, 30);

printw("Hello World! (on a blank slate)");

refresh();

getch();

move(5, 30);

float temp1 = 78.45; // Declare and initialize two

float temp2 = 135.01; // floating-point variables

printw("1st temperature = %5.3f degrees ", temp1);

refresh();

getch();

move(5, 30); // Move BACK to y=5,x=30 position

printw("2nd temperature = %5.3f degrees ", temp2);

refresh();
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getch();

if (has_colors() == FALSE) // Test to see if terminal supports colors

{

endwin();

printf("Sorry, but colors aren’t supported in your terminal! \n");

return 1;

}

start_color(); // Starts color capability

// Color pair "0" is default: WHITE text on a BLACK background

// Defines color pair "1" as BLUE text on a WHITE background

init_pair(1, COLOR_BLUE, COLOR_WHITE);

// Defines color pair "2" as RED text on a YELLOW background

init_pair(2, COLOR_RED, COLOR_YELLOW);

attron(COLOR_PAIR (1)); // Activate BLUE/WHITE scheme

move(10, 30);

printw("2nd temperature = %5.3f degrees ", temp2);

attroff(COLOR_PAIR (1)); // De-activate BLUE/WHITE

attron(COLOR_PAIR (2)); // Activate RED/YELLOW scheme

move(15, 30);

printw("1st temperature = %5.3f degrees ", temp1);

attroff(COLOR_PAIR (2)); // De-activate RED/YELLOW

refresh();

getch();

endwin(); // Ends ncurses and returns to normal console mode

return 0;

}

This program illustrates some of the elementary features of ncurses, including how to display text
(using printw() rather than printf()), how to position and re-position the cursor (using y and x

coordinates), using refresh() to update the screen with previously-specified items, how to detect
and pause for user keystrokes, how to determine the width (columns) and height (rows) of the console
window, how to clear the screen, how to detect whether or not the terminal supports colored text,
how to define color schemes as text/background combinations, and how to activate and de-activate
those color schemes. This program also shows how to start an ncurses session (using initscr())
and how to end it (using endwin()).



Chapter 3

Tutorial

3.1 What is a programming language?

A general-purpose computer is a machine designed to operate on instructions you provide to it,
these instructions usually relating to the storage and processing of data. Computer instructions are
generally written using characters arranged according to specific rules, much like how alphabetical
characters are used to visually encode human languages such as English. Thus, a computer language
is the set of rules and conventions by which written characters may instruct a general-purpose
computer to perform tasks.

Microprocessor hardware only “understands” one type of language, and that is called machine
language. Machine language consists of binary codes representing data and actions to be taken
on data. It is cryptic and highly specific to each model of microprocessor. Almost no human
programmers write software in machine language, but rather write in some “higher-language”
language that is easier to understand. The next higher-level programming language after machine
code is assembly, consisting of alphanumeric acronyms and symbols representing binary machine
codes. Software written in assembly language must be “assembled” into equivalent machine-language
instructions before the computer is able to execute it. Like machine language, assembly is also cryptic
and highly specific to microprocessor models, and few human programmers use it.

Most programmers opt for much higher-level languages such as C which almost resemble English
words. Like assembly language, C and other programming languages cannot be directly understood
by microprocessor hardware, and must be translated into machine code before running. With C,
this translation process is called compiling and is done after the C code has been completely written.
Other languages (e.g. Python) use interpreter software to translate in real time as the code is being
typed. Whether compiled or interpreted, the final machine code that runs on the microprocessor
hardware is called executable code, while the set of characters typed by the human programmer is
called source code.

In this Tutorial you will learn the basic principles of writing source code in the C language, and
also how to use compiler software to generate executable code from your source code.

17
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3.2 Creating and running a simple C program

The basic work flow necessary to write a program in the C language and then run it on your computer
is as follows:

1. Use a text editor application to type the “source code” for your program, and save it as a file

2. Use a compiler to translate this source code file to executable code

3. Execute the code you just compiled

On the following pages you will see these three steps performed within a Linux1 console window.

1These screenshots happen to be from a personal computer running the Microsoft Windows 10 operating system,
but with “WSL” (Windows Subsystem for Linux) installed. This is a light-weight virtual machine (VM) allowing
Linux to run concurrently within Windows.
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3.2.1 Step 1: write the source code

First, we invoke the text editor nano (which is commonly found with most Linux installations) by
typing nano at the command line followed by a space and then by the name of the plain-text file we
wish to edit, and then lastly pressing the Enter key. In this case we will name the file hello.c, and
so this means typing:

nano hello.c

Immediately the console view is replaced by the interface of the nano text editor where we may
type the following code:

In order to save this new code to the file we must press Control-O (“Write Out”), or simply press
Control-X (“Exit”) to quit the text editor application. Like most editors, nano will ask the user if
they wish to save any changes made to the file before exiting.

Note how the text we write shows up in different colors. This is because nano, like all modern
text editors, recognizes the .c extension of the filename hello.c as a designation that this is a C-
language source file, and knows how to color-code key words (e.g. include, int, void, and return)
according to their purposes within the C language. As you might guess, this color-coding feature is
extremely helpful for anyone learning a new programming language, as the color of a key word will
usually change if it is not spelled correctly!
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3.2.2 Step 2: compile the source code

After exiting nano, we are ready to “compile” our source code into a form that the computer will
directly understand. We do this by typing the following command at the console’s prompt and
pressing Enter:

gcc hello.c

GCC is the name of the GNU C Compiler commonly used in Linux operating systems, and of
course hello.c is the name of our source code file just created in nano.

After finishing its work, GCC will leave us with a file named a.out in the same location as our
source file hello.c. This a.out file is executable, and when run will cause the computer to print
“Hello world!” on the console.
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3.2.3 Step 3: run the executable code

To run our code, we simply type the name of the executable file, preceded by ./ characters which
instruct the Linux operating system to look for this file in the current location:

As you can see, the words Hello world! appear on the next line following our command to run
the program.

If we wish to make changes to our program, we simply re-start the text editor by typing nano

hello.c, make our edits to the source file, save the changes and close the text editor, re-run
the compiler by typing gcc hello.c, and then re-trying our executable file by typing ./a.out

again. This cycle of editing followed by compiling followed by a test run of the compiled program is
practically universal within software development. For more complex programs we may use another
software application called a debugger to trace the execution of the compiled code in fine detail, but
for now we will focus on writing software in C simply using the edit/compile/run cycle.
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3.3 C program fundamentals

A good way to begin learning about the C language is to dissect a simple program written in C.
Here we will explain all the lines of code present in a C program intended to print the phrase “Hello
world!” to the computer console. Below we see the C source code enclosed in a box, and below that
we see the results of running this program on a personal computer. Note that this general format
will be used throughout the Tutorial, showing C source code enclosed within a box and the running
program’s output without an enclosing box:

C source code:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Program output:

Hello world!
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The first line of code in this simple program (#include <stdio.h>) instructs the preprocessor
segment of the compiler software to include the contents of a file named stdio.h along with our
source code. The great benefit of writing a computer program in a language such as C versus a
“lower level” language such as machine code or assembly is that the instructions we use within our
code tell the computer to do a lot of useful things with just a few characters. Although it may not
seem like it, there are many steps required for a computer to print the words “Hello world!” to its
screen, and a language like C hides a lot of this tedious detail from us so that we do not have to
think about it. Some of that tedious detail is contained in files like stdio.h.

Any file with a .h filename extension is known as a header file, written in the same language
as our source code (C), typically containing definitions necessary for our program to run. In the
specific case of our stdio.h header file, this contains many definitions for the compiler to follow
related to “standard input and output” which relates to text entered and displayed on a computer
console window. If it were not for the stdio.h file being included, our “Hello world!” program
would have to contain many more lines of code and would not be as easy to understand as it is now.

Programs written in C are organized into different sections called functions, which is a section
of code that is able to receive data from and send data back to other sections of code. Every C
program contains at least one function, called the main function. Here we see the “main” function’s
output data, name, and input data defined by the line int main (void). Obviously, main is the
name of the function, while less obvious is the fact that it outputs a single integer number value
(int) and accepts no input data (void) when invoked. When a program that was written in C is
first executed, the computer seeks the main() function and begins execution there. The contents of
a function are all contained between the two curly-brace symbols ({ and }).

Within the main() function we find the one and only instruction doing any visible work, which is
the printf instruction. Its odd-sounding name means that it prints formatted data to the console,
which means we have much control over how the characters appear when printed to the computer
screen. You will notice that this instruction has a semicolon (;) symbol at the very right-hand
end, which marks the end of the instruction. This may seem unnecessary until you realize that C
ignores most of the “whitespace” in the source code, which means it needs special characters to
tell the compiler where the end of each instruction is and where the next instruction begins. To
illustrate, consider this next version of the same “Hello world!” program where the printf and
return instructions exist on the same line:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n"); return 0;

}
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If C recognized whitespace as a delimiter between separate instructions, there would be no need
for semicolon characters but we would not be able to place multiple instructions in the same line
of code2. You will discover that these semicolons are extremely easy to overlook as you write your
first C programs, and that at first your most common coding error will be forgetting semicolons at
the end of every instruction. Note that the main() function required no semicolon because its last
curly-brace (}) serves the same role.

The last instruction in this simple “Hello world!” program is the return, which outputs a value
of zero before the main() function terminates. This actually serves no useful purpose in the program,
but is included only because certain versions of C expect the main() function to always output some
kind of data. If your compiler does not require the main() function to return any data, the program
may be re-written with void as the return type, as follows:

#include <stdio.h>

void main (void)

{

printf("Hello world!\n");

}

2Not all programming languages follow this philosophy. An excellent counter-example is the popular language
Python where whitespace plays a prominent role, in which carriage returns (new lines) demarcate separate instructions
and indentation fulfills the same role as curly-braces in C.
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3.4 Writing neat code

The C programming language ignores most whitespace within the source code, granting much
freedom as to how we might wish to format our code for appearance. Consider the following “Hello
world!” example:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

In this example we see each brace on its own line, a blank line separating the printf and return

instructions, and each instruction contained within the main() function indented. These formatting
features are completely irrelevant to the compiler, but serve to make the source code more easily
read and understood by human eyes just as indentation and spacing enhances the readability of any
printed text. For contrast, consider the following version of the same program, which compiles and
runs exactly the same as the first, but has been formatted a bit differently so as to occupy fewer
lines of text on the page:

#include <stdio.h>

int main (void) {

printf("Hello world!\n");

return 0;

}

Again, the indentation of the printf and return instructions serves no technical function other
than to make it visually apparent that both instructions belong to the body of the main() function.
We could have omitted this indentation such that both the printf and return instructions sit flush
with the left-hand edge of the page just like int main (void) {, but stylistically this would be
considered bad form.
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Continually adhering to “proper” text formatting is an additional cognitive burden for anyone
writing code, and so you will find software applications such as indent made to automatically
“beautify” C source code after being written. For example, this is what you would type at the
command line of your operating system to beautify your hello.c source code file:

indent hello.c

For example, I will show two versions of the same “Hello world!” program, the first hand-written
with terrible formatting and the second re-arranged by indent:

#include <stdio.h>

int main (void) {printf("Hello world!\n"); return 0;}

#include <stdio.h>

int

main (void)

{

printf ("Hello world!\n");

return 0;

}

Both of these programs compile without any warnings or errors, and result in identical executable
files following compilation. However, it should be clear to see how much more readable the second
version is, and how beneficial this automatic formatting might be when writing complicated C
programs!

As with most command-line utilities, indent has a wide range of options for specifying how it
operates. These options allow you to customize the rules it uses when re-arranging C source code,
adjusting the visual “style” of that code according to your preferences. It is left as an exercise to
the reader to research and experiment with options available within indent.
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3.5 Comments

All text-based programming languages offer a very useful feature called comments, which are nothing
more than notes inserted into the source code for the benefit of human readers. Programs written
without comments are considered non-professional, and even the author of a program will find their
own comments very useful when they must edit their code years after writing it.

The C programming language supports two styles of comments: single-line and multi-line. This
will be illustrated by example, first showing single-line comments which begin with double-slash
characters (//):

Source code with single-line comments:

#include <stdio.h> // This is a preprocessor directive

// Here is the main function!

int main (void)

{

// This is where we print "Hello world!" to the console

printf("Hello world!\n");

// Returning zero

return 0;

}

Note how single-line comments may occupy their own line in the page, or trail to the right of
an actual line of C code. When compiled, all characters to the right of the double-slash (as well
as the double-slash characters themselves) are ignored. Comments, no matter where placed, do
not influence the compilation process at all and therefore have zero effect on the executable code
produced by the compiler.
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Some comments are too lengthy to fit on a single line of the page. Consider the following example:

// "Hello world!" example program

// Part of the Modular Electronics Learning Project

// August 2021

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Rather than be forced to write multiple single-line comments, C provides us with a multi-line
commenting feature using /* to begin a block of comment text and */ to end it:

Source code with multi-line comment:

/* "Hello world!" example program

Part of the Modular Electronics Learning Project

August 2021 */

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Modern text editor applications recognize comments and shown them in a different color of text
from the rest of the C source code, making it easy for you to discern what is a comment and what
is not.



3.5. COMMENTS 29

Comments are obviously useful for annotating complicated C programs and are strongly
encouraged for all programmers, but they have another really useful function as well: temporary
cancellation of code. It is often useful when developing software to cancel one or more lines of
code temporarily so those lines have no effect, without deleting those lines entirely. Coding in any
language requires mastery of obscure syntax, and with code being so easy to mis-spell or otherwise
corrupt it is generally far better to comment out a line of code you don’t want now but may wish
to use in the future than to delete that line entirely and have to re-type it in the future when it’s
needed again.

For example, suppose we wished to test the effect of deleting the printf instruction in our simple
“Hello world!” program, knowing that it is in fact necessary and will need to be re-inserted into the
program to make it complete. Watch here how we may “comment out” that line of code and then
test the results:

#include <stdio.h>

int main (void)

{

// printf("Hello world!\n");

return 0;

}

Recall that the compiler ignores all characters to the right of the double-slash symbols, which
means now the entire printf instruction will be ignored as though it were no longer in the source
code file at all. When run, this program does nothing, which of course is what we might expect by
removing the printf instruction. However, all we need to do to make this program whole again is
simply delete the two forward-slash characters. There is no need to re-type that entire instruction,
because all we did to “remove” it was make it a comment.

Of course, this technique of “commenting out” code works with multi-line comments as well.
Surrounding a block of code with /* and */ character sequences is a very easy way to cancel all the
surrounded code to test the effect(s) of removing that code from the program.
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Comments are useful for maintaining multiple versions of code within the same source file,
allowing only one of those versions to be compiled at any time. Consider the following program
where multiple printf instructions exist but only one is seen by the compiler:

#include <stdio.h>

int main (void)

{

// printf("Hello world!\n");

printf("Hi world!\n");

// printf("Aloha world!\n");

return 0;

}

All we would need to edit in this program to make it output “Hello world!” instead of “Hi world!”
would be to remove the double-slash comment characters from the first printf line and insert some
in front of the second printf line. Of course, the “Hi/Hello world!” program is a trivial example,
but you could well imagine a much longer C program with many lines of code, using comments to
temporarily “suspend” some lines of code in favor of others with the ability to easily revert back to
previous versions of the program simply by moving a few comment slashes (//) around.
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3.6 Formatted output using printf

As we saw in the “Hello world!” program, the printf instruction is capable of printing literal text
to the computer’s console, that text being enclosed within parentheses:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

A detail not previously discussed is the \n character sequence at the end of Hello world!.
Clearly we did not see either the backslash character nor an “n” character printed to the console
when this program ran, and so these are not literal characters to be printed. Instead, the backslash
is an escape character which instructs the compiler to interpret the next character as a sort of
command rather than a letter to be literally printed. There are several such escape-character
sequences recognized by printf, and they include:

• \b = backspace

• \n = new line

• \t = horizontal tab

• \v = vertical tab

Had it not been for the backslash-n character sequence at the end of “Hello world!” our program
would have terminated leaving the cursor at the end of the line rather than on its own (new) line.
You are encouraged to try this on your own, so that the code reads printf("Hello world!"); and
see for yourself how the output looks without the benefit of the new line sequence.
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Consider the following alteration to our simple program, and the resulting output:

#include <stdio.h>

int main (void)

{

printf("Hello ");

printf("world!\n");

return 0;

}

Program output:

Hello world!

While the source code looks different than before, the program outputs the exact same text
to the console. The important lesson here is that the printf instruction precisely follows what
is commanded within its parentheses, no more and no less. The fact that we have two printf

instructions on two different lines in our source code file is of no matter – there is only one line of
text in the output because there is only one “new line” (\n) instructed.

Another capability of printf is to print characters specified by their ASCII code values. Simply
insert the escape sequence \x followed by the hexadecimal value. Consider the following program
and its output:

#include <stdio.h>

int main (void)

{

printf("The ASCII character 0x47 is the letter \x47 \n");

return 0;

}

Program output:

The ASCII character 0x47 is the letter G
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One of the most useful capabilities of the printf instruction is its ability to print numerical
values that are not literal. Consider the following program, showing one printf literally printing a
number while the next printf displays the result of a mathematical statement:

#include <stdio.h>

int main (void)

{

printf("The sum of 8 and 5 is 13\n");

printf("The sum of 8 and 5 is %i\n", 8+5);

return 0;

}

Program output:

The sum of 8 and 5 is 13

The sum of 8 and 5 is 13

The printed results look identical, but the difference is that in the first line the sum was typed
into the source code by hand while in the second line the computer actually computed the sum of
8 and 5. The %i format specifier instructs printf to place an integer number at that location in
the output, while the source of that number is specified outside of the quotation marks, after a
separating comma.
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Another capability of printf is to specify the precise numerical format of a value, including
different numeration systems. Consider the following example:

#include <stdio.h>

int main (void)

{

printf("The sum of 8 and 5 is decimal %i\n", 8+5);

printf("The sum of 8 and 5 is octal %o\n", 8+5);

printf("The sum of 8 and 5 is hexadecimal %x\n", 8+5);

return 0;

}

Program output:

The sum of 8 and 5 is decimal 13

The sum of 8 and 5 is octal 15

The sum of 8 and 5 is hexadecimal d

A listing of different format specifiers for the printf() instruction appear here:

• %i or %d = signed integer number in base-10 (decimal) format

• %u = unsigned integer number in base-10 (decimal) format

• %o = unsigned integer number in octal (base-8) format

• %x = unsigned integer number in hexadecimal (base-16) format

• %f = floating-point number in standard format

• %e = floating-point number in scientific notation format

• %g = floating-point number in terse format

• %lf = double-precision floating-point number in standard format

• %le = double-precision floating-point number in scientific notation format

• %lg = double-precision floating-point number in terse format

• %s = a string of ASCII-encoded characters
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3.7 Data types

All computers process data, digital computers doing so in the form of binary words consisting
of collections of “high” (1) and “low” (0) states easily represented as electrical voltage signals,
magnetization polarities, optical pulses, and other media. Different types of data such as numbers
and alphabetical characters require different quantities of binary “bits” to properly represent.

The C programming language is known as a strongly-typed language, which means programs
written in C must be very explicit about declaring the number of bits reserved in memory for
each binary “word” before data may be placed into those reserved memory addresses. Other, more
modern, programming languages such as Python are not this way, with the compiler or interpreter
making those bit-allocation decisions for the human programmer. More primitive programming
languages such as assembly (and machine coding) do not recognize data types at all, leaving it
completely up to the programmer to decide how bits are stored and manipulated. With C we must
declare the data type of each variable we intend to use in a program, and after that declaration
any and all manipulations of those variables proceed on the basis of their respective types. This
“strong” typing requirement may seem clumsy for beginning programmers, but there are definite
advantages of this approach, namely total control over how the computer’s memory is used as well
as potentially more efficient use of that memory. These advantages are especially pronounced in
embedded systems programming where the computer in question (often a single integrated circuit
“chip”) has very limited memory resources, which is why even to this day (2024) C remains the
dominant programming language for embedded systems.

C’s data types are referenced by pre-defined keyboards, some of the more common keywords
being listed below:

• char – intended for a single ASCII character, typically 8 bits

• int – a signed integer number, the number of bits dependent on the computer

• float – a floating-point or “real” number, typically 32 bits

• double – a double-precision floating-point or “real” number, typically 64 bits

• long double – a floating-point or “real” number, with at least as many bits3 as double

Note how the integer (int) data type does not specify a fixed number of binary bits. This means
that an int number in a C program may be comprised of 32 bits when running in a computer with
a 32-bit microprocessor, but when compiled and run on a 64-bit microprocessor that same integer
number in the C program will be 64 bits wide. Such non-specificity in C’s default integer data type
can lead to portability problems, where software written for one computer may behave differently if
compiled and run on a different computer.

3Interestingly, the long double data type is not standardized across all compilers and computer systems. It’s often
80 bits in width, compared to the 64-bit double type, but in some systems it may be as large as 128 bits!
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Precise specification of binary word size is possible in C if we include the header file stdint.h in
our code (in addition to including stdio.h) and make use of that header’s many fixed-width data
types. This is useful for applications where the size and signed/unsigned nature of the integer number
cannot be left to circumstance, for example programs that must be compiled to run on multiple
models of computer and exhibit the exact same behavior on those differing computer platforms.
Some of these fixed-width data types are listed here:

• int8 t – Signed 8-bit integer

• int16 t – Signed 16-bit integer

• int32 t – Signed 32-bit integer

• int64 t – Signed 64-bit integer

• uint8 t – Unsigned 8-bit integer

• uint16 t – Unsigned 16-bit integer

• uint32 t – Unsigned 32-bit integer

• uint64 t – Unsigned 64-bit integer

For example, a signed 16-bit integer (int16 t) has a range of −32768 to +32767 (using two’s-
complement notation) while an unsigned 16-bit integer (uint16 t) has a range of 0 to 65535. It
should be clear from all these examples that choosing the correct data type in our C programs is a
very important consideration, as each type limits the range of numerical values we might represent
with it.
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The following program demonstrates much about C data types and formatted printing of those
values. Let us examine the source code, the resulting output, and then analyze what it all means:

#include <stdio.h>

int main (void)

{

int n;

float x;

n = 37;

x = 241.53;

printf("n = %i decimal = %x hexadecimal \n", n, n);

printf("x = %f = %e = %g \n", x, x, x);

return 0;

}

Program output:

n = 37 decimal = 25 hexadecimal

x = 241.529999 = 2.415300e+02 = 241.53

The int n; and float x; instructions declare two variables in the computer’s memory, an
integer n and a floating-point x. The next two lines of code initialize them with numerical values.
After that, the printf instructions display these values in different formats.

We’ve already seen how integer values may be formatted in either decimal or hexadecimal form
by printf, but now we get to see some formatting options for floating-point values too. %f shows
the value in decimal notation while %e shows it in power-of-ten exponential (i.e. scientific) notation.
The %g option instructs printf to print the value in the most terse way possible, whether as a
plain decimal number or in scientific notation. Note also how this simple program shows us how
multiple values (or at least formats) may be printed by a single printf instruction: by placing the
identifier codes where we want them in the text and also by including as many instances of the
variable (separated by commas) as necessary after the final quotation mark.

Looking at this program’s output, it should be clear that there is an error of sorts in the printed
result. Our floating-point number value of 241.53 actually appears as 241.529999. There is no fault
in our programming, per se, but rather what we are seeing here is an intrinsic limitation of floating-
point binary representation: certain decimal values cannot be exactly represented as floating-point
binary without “repeating bits” which means we get the equivalent of a rounding error in some of
our numerical representations.
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This next sample program shows three new concepts. The first is how we may use whole words
and not just single letters as variable names, which is very useful to know because it means we may
write our C source code in ways that make more sense to any human reading it. Second, we see a
way to declare and initialize variables in single lines of code rather than using multiple lines. Third,
we see how we may specify the number of digits printed to the console using printf:

#include <stdio.h>

int main (void)

{

int count = 37;

float temp = 241.53;

printf("Count = %5i units \n", count);

printf("Count = %07i units \n", count);

printf("Temperature = %.8f degrees C \n", temp);

return 0;

}

Program output:

Count = 37 units

Count = 0000037 units

Temperature = 241.52999878 degrees C

In the first printf instruction we see how to print an integer value using exactly five characters,
padding this two-digit value with three blank spaces. In the next printf instruction we see how to
pad an integer number with leading zeroes while specifying a total number of seven digits. Lastly,
the final printf instruction specifies that our floating-point value should have exactly eight digits
to the right of the decimal point rather than the default six.
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3.8 Basic mathematical functions

C offers all the basic arithmetic functions you would expect a computer to be able to perform,
including addition, subtraction, multiplication, and division. The following program and its output
illustrate these basic arithmetic “operators” at work:

#include <stdio.h>

int main (void)

{

int a, b;

a = 7;

b = 3;

printf("Addition = %i\n", a + b);

printf("Subtraction = %i\n", a - b);

printf("Multiplication = %i\n", a * b);

printf("Division = %i\n", a / b);

return 0;

}

Program output:

Addition = 10

Subtraction = 4

Multiplication = 21

Division = 2

Note how the “Division” line shows a result of two for the operation 7÷ 3. This is because the
output is expressed as an integer value and is therefore rounded to the next lowest whole number.
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One way to have the computer represent a non-integer quotient using nothing but integer values
is to apply the modulus operator (%) which returns the remainder following division. Observe how
this modified version of the program performs:

#include <stdio.h>

int main (void)

{

int a, b;

a = 7;

b = 3;

printf("Addition = %i\n", a + b);

printf("Subtraction = %i\n", a - b);

printf("Multiplication = %i\n", a * b);

printf("Division = %i remainder %i\n", a / b, a % b);

return 0;

}

Program output:

Addition = 10

Subtraction = 4

Multiplication = 21

Division = 2 remainder 1

The “2 remainder 1” output tells us that three fits into seven twice with one left over.
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With some clever formatting in the last printf instruction we may even get the computer to
express this quotient as a mixed fraction:

#include <stdio.h>

int main (void)

{

int a, b;

a = 7;

b = 3;

printf("Addition = %i\n", a + b);

printf("Subtraction = %i\n", a - b);

printf("Multiplication = %i\n", a * b);

printf("Division = %i and %i/%i\n", a / b, a % b, b);

return 0;

}

Program output:

Addition = 10

Subtraction = 4

Multiplication = 21

Division = 2 and 1/3

That last printf instruction displays the integer quotient (rounded down to 2), then the modulus
of 7 and 3 (i.e. the remainder value of 1), and lastly the divisor (3).
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Yet another option for displaying an accurate quotient for 7 and 3 is to make use of floating-point
representation. A feature of the C programming language useful for forcing one type of numerical
value into a different variable type is called casting, and it consists of placing the desired type in
parentheses immediately to the left of the variable. In order to successfully divide the integer values
of 7 by 3, we must cast each of these variables as floating-point (instead of integer) and then perform
the division. Note how this is done in the next version of the program:

#include <stdio.h>

int main (void)

{

int a, b;

a = 7;

b = 3;

printf("Addition = %i\n", a + b);

printf("Subtraction = %i\n", a - b);

printf("Multiplication = %i\n", a * b);

printf("Division = %f\n", (float)a / (float)b);

return 0;

}

Program output:

Addition = 10

Subtraction = 4

Multiplication = 21

Division = 2.333333
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The order of operations followed by the computer when executing an arithmetic expression
coded in C is left-to-right, with multiplication and division taking precedence over addition and
subtraction. As with standard mathematical notation, parentheses take precedence over all other
arithmetic operations which means we may insert parentheses around portions of a mathematical
expression to force the computer to evaluate those portions first.

Consider the following program, illustrating the order of operations by example:

#include <stdio.h>

int main (void)

{

printf("%i\n", 3 + 5 * 6 - 2);

printf("%i\n", (3 + 5) * 6 - 2);

printf("%i\n", 3 + 5 * (6 - 2));

printf("%i\n", (3 + 5) * (6 - 2));

return 0;

}

Program output:

31

46

23

32

Each printf instruction evaluates and then displays three plus five times six minus two, but in
four different orders as described below.

The first instruction follows the standard order of operations where multiplication comes before
addition or subtraction, such that 5 × 6 is evaluated first, then 3 added and 2 subtracted to yield a
result of 31.

The second instruction uses parentheses to force 3 + 5 as the first step, followed by multiplication
(by 6) and lastly subtraction of 2. Thus, the computer first calculates a sum of 8 and then multiplies
by 6 to get 48, then subtracts 2 to yield a result of 46.

The third instruction shifts the parentheses to perform subtraction before anything else. Here it
first calculates a difference of 4 before multiplying by 5 to get 20, then lastly adding 3 to get 23.

The fourth instruction uses two sets of parentheses to force the addition and subtraction to both
occur prior to multiplication. In this case it computes a sum of 8 and a difference of 4, then multiplies
those together to yield a result of 32.
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C also supports nested parentheses where one or more sets of parentheses are enclosed within
other sets of parentheses. Consider this example:

#include <stdio.h>

int main (void)

{

printf("%i\n", ((4 + 8) / (8 - 2)) * 3);

return 0;

}

Program output:

6

The computer will always evaluate all arithmetic functions from the inner-most parentheses
outward. In this case it calculates the sum of 4 + 8 as well as the difference of 8 − 2 and then
divides those to get a quotient of 2. Only after that does it multiply by 3 to achieve a final result of
6.

In conventional mathematics notation nested parentheses are often formatted on the page such
that the outer parentheses are taller than the inner parentheses, as seen here:

(

(4 + 8)

(8− 2)

)

× 3

However, such formatting does not exist in a plain-text editing environment, and so the
programmer must keep careful track of all the parentheses to ensure they always exist in pairs
and in the correct locations. One helpful tip when managing mathematical operations with nested
parentheses is to count all the left-hand parentheses and make sure that number is equal to the
number of right-hand parentheses.

Some text editor applications will helpfully highlight the matching parenthesis whenever the
cursor rests over another one, to make it easier to see what is encompassed by that pair of parentheses.
Below we see a screenshot of my editor highlighting a pair of parentheses in blue as a result of hovering
the editor’s cursor over one of them:
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3.9 Using the C math library

In addition to basic arithmetic functions, the C programming language also offers a range of advanced
mathematical functions in the C math library. A programming “library” is a collection of files
accessible to the compiler which may be linked to the code you write. Libraries are extremely
useful4 as they allow you to write compact code using special functions pre-defined and pre-coded
within the library(ies).

Consider the following example using the pow() function available in the C math library, which
computes the power of its two arguments (e.g. pow(3,4) means 34) as a floating-point result:

#include <stdio.h>

#include <math.h>

int main (void)

{

printf("%f\n", pow(3,4));

return 0;

}

Program output:

81.000000

Two very important details must be present in order to access any mathematical functions
contained in the C math library: first, the math.h header file must be included within your source
code, as this file contains all the declarations necessary to use the library’s math functions; second,
you must instruct the compiler to include the math library itself (containing the actual instructional
code for these functions). For example, if your C source code is saved to a file named myprogram.c,
you would need to type this at your computer’s command line:

gcc myprogram.c -lm

The -lm option specified for the GCC compiler is shorthand for “math library” or more precisely,
“library, math”.

4The fact that the C programming language has been in active use for many decades means a huge repository of
functional libraries exist for the language, many of which are free and open-source which means you may incorporate
them into your own software projects and thereby leverage the labors of many other programmers. The C math
library is one of the first to be created for the language, and is included by default with every C compiler. Another
important fact about programming libraries is that they may be machine-specific and/or compiler-specific rather than
generic, so be sure to carefully read the documentation for any C library you intend to use.
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Some useful C math library functions appear in the following example program:

#include <stdio.h>

#include <math.h>

int main (void)

{

printf("The common logarithm of 1000 is %f\n", log10(1000));

printf("The natural logarithm of 55 is %f\n", log(55));

printf("e raised to the 2nd power is %f\n", exp(2));

printf("The square root of 75 is %f\n", sqrt(75));

printf("Five divided by infinity is %f\n", 5 / INFINITY);

printf("45 degrees is %f radians\n", 45 * M_PI / 180);

printf("The sine of 30 degrees is %f\n", sin(30 * M_PI / 180));

printf("The arctangent of 0.5 is %f radians or %f degrees\n",

atan(0.5), atan(0.5) * 180 / M_PI);

return 0;

}

Program output:

The common logarithm of 1000 is 3.000000

The natural logarithm of 55 is 4.007333

e raised to the 2nd power is 7.389056

The square root of 75 is 8.660254

Five divided by infinity is 0.000000

45 degrees is 0.785398 radians

The sine of 30 degrees is 0.500000

The arctangent of 0.5 is 0.463648 radians or 26.565051 degrees

Note how every one of the math library functions consists of a word (e.g. log10, exp) followed by
a set of parentheses in which one or more input value (called arguments) are placed. For functions
such as pow() having multiple arguments, a comma separates the arguments from each other.
Trigonometric functions such as sine (sin()) and arc-tangent (atan()) assume angular units of
radians rather than degrees, and so we see the conversion factor π

180
used to convert degrees into

radians and 180

π
used to convert radians into degrees. Although there are no functions in the C math

library built specifically to convert between radians and degrees, the math.h header file does contain
common mathematical constants such as π (M PI) which we see being used in this program.

Note also the INFINITY constant used within this example program, a constant provided by the
math.h header file. Floating-point data types support “infinity” as a valid value, and therefore the
math.h header file’s pre-defined INFINITY constant is usable in the context of floating-point numbers.
A practical example where INFINITY may be useful in a C program is if you are simulating an electric
circuit and need to specify the electrical resistance of an open component.
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A minor detail worthy of note in this program is how that last printf instruction is spread
over two lines of code on the page. This was done for no other reason than human-readability and
formatting on a printed page, as the compiler can understand a long single line of code quite well.
Recall that C compilers ignore most whitespace, and so the line break between degrees\n", and
atan(0.5) is of no consequence to the program’s function, but breaking up the printf instruction
at one of its comma characters makes a cleaner and easier-to-read presentation on the screen than
letting the text editor word-wrap the line at some random location.
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3.10 Complex-number operations

A deficiency in the original C language standard was a lack of support for complex-number data
types and functions. This was remedied with the “C99” version of the C programming language
standard when complex data types and functions were included in the standard math library. A
new header file, complex.h, was also introduced with C99 to define certain keywords such as the
imaginary operator (i or j, symbolized as I in C code).

#include <stdio.h>

#include <math.h>

#include <complex.h>

int main (void)

{

float complex z = 3 + (4 * I);

printf("Rectangular = %f + %fi \n", creal(z), cimag(z));

printf("Polar = %f @ %f radians \n", cabs(z), carg(z));

printf("Polar = %f @ %f degrees \n", cabs(z), carg(z) * 180 / M_PI);

return 0;

}

Note how the variable z is declared as a float complex data type rather than a typical float.
Also note the four special complex-type functions used in this program: creal() returns the real
value of the complex argument, cimag() returns the imaginary value, cabs() returns the absolute
value (i.e. polar magnitude), and carg() returns the polar angle in radians5.

As with all programs utilizing the math library, the math library must be “linked” at compilation,
as shown in the following command-line invocation of the GCC compiler:

gcc -Wall myprogram.c -lm

The -Wall option turns on all warning messages, which is a good programming practice but not
essential for compiling this program. The -lm option instructs GCC to “link” the math library to this
code, which is essential for the complex functions as well as the built-in definition for π (M PI). GCC
by default outputs an executable file named a.out which is what you must invoke at the command
line to run this program:

./a.out

5A full rotation is equivalent to 360 degrees or 2π radians. Thus, the conversion factor from radians to degrees is
360

2π
or simply 180

π
.
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This next example shows elementary arithmetic operations performed on two complex numbers
a and b, assigned with values 3+4j and −5+2j respectively. Additionally, it also shows how to use
a #define statement to make j the complex operator instead of I, the former being more customary
in electrical engineering in order to avoid confusion with the variable i or I representing electrical
current :

#include <stdio.h>

#include <math.h>

#include <complex.h>

#define j I

int main (void)

{

float complex a, b;

a = 3 + (4 * j);

b = -5 + (2 * j);

printf("a = %f + %fj \n", creal(a), cimag(a));

printf("b = %f + %fj \n\n", creal(b), cimag(b));

printf("a + b = %f + %fj \n", creal(a + b), cimag(a + b));

printf("a - b = %f + %fj \n", creal(a - b), cimag(a - b));

printf("a * b = %f + %fj \n", creal(a * b), cimag(a * b));

printf("a / b = %f + %fj \n", creal(a / b), cimag(a / b));

printf("1 / a = %f + %fj \n", creal(1 / a), cimag(1 / a));

return 0;

}

Program output:

a = 3.000000 + 4.000000j

b = -5.000000 + 2.000000j

a + b = -2.000000 + 6.000000j

a - b = 8.000000 + 2.000000j

a * b = -23.000000 + -14.000000j

a / b = -0.241379 + -0.896552j

1 / a = 0.120000 + -0.160000j
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3.11 Formatted input using scanf

We have already seen the printf instruction used many times to print formatted text to the
computer’s console display, and now we will explore the use of a complementary instruction called
scanf to receive typed input from the human user at the same computer console.

Consider the following program which prompts the user to input a number and then displays the
square root of that number:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x;

printf("Enter a positive number: ");

scanf("%f", &x);

printf("The square root of %f is %f \n", x, sqrt(x));

return 0;

}

Now, we will run this program and manually enter the number 45 when prompted by it:

Program input and output:

Enter a positive number: 45

The square root of 45.000000 is 6.708204

The syntax of the scanf instruction is remarkably similar to that of printf: a code specifying
the type of data to be input by the user (in this case, a floating-point number, %f) appears between
two sets of quotation marks, followed by a comma and the location where that value will be stored.
In this example, a floating-point variable named x has been declared at the beginning of the main()
function, and within the scanf instruction we specify x as the variable which will receive the user’s
typed numerical input.

A very important difference between variables specified in printf versus variables specified in
scanf is that with scanf we need to specify the memory location of that variable rather than just
the name of the variable. In this case, x is the name of the declared floating-point variable, and &x

is the location in the computer’s memory6 where that variable resides. Forgetting to include the &

symbol in scanf is one of the most common errors new C programmers commit when first learning
to use this instruction.

6The & character preceding a variable name is the “address of” operator in the C programming language. More
on this topic is found in the “Pointers” section of the Tutorial.
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Like printf, it is possible to reference multiple variables in scanf. Examine the following
program to see how this works:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x,y;

printf ("Enter two numbers, pressing [Enter] after each: ");

scanf ("%f %f", &x, &y);

printf ("%f raised to the %f power is %f\n", x, y, pow(x,y));

return 0;

}

Program input and output:

Enter two numbers, pressing [Enter] after each: 5

3

5.000000 raised to the 3.000000 power is 125.000000

Prior to learning about scanf, any numerical values required by our simple C programs had to
be “hard-coded” into the program itself. This meant editing the C source code and re-compiling
the program if we wished it to perform a different calculation. Now, using scanf, we may have the
user enter numerical values at run-time which makes possible more practical and useful programs
written in C.
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3.12 Conditionals

A useful capability of all computers is to respond to changing conditions rather than performing
the exact same action(s) unconditionally. In programming parlance, any code testing for a specific
condition and redirecting the flow of instruction execution accordingly is known as a conditional.
Two types of conditionals are supported in C programming: if/else and switch.

An example of an if/else conditional is shown in the following code:

#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

printf("The number %i is ", n);

if (n % 2 == 0)

printf("even\n");

else

printf("odd\n");

return 0;

}

Program input and output: (with 4 as the entered value)

Enter an integer number: 4

The number 4 is even

Program input and output: (with 5 as the entered value)

Enter an integer number: 5

The number 5 is odd

This program uses the modulus operator (%) to test whether or not the entered value is evenly
divisible by two. If so, then the number is even; otherwise, it is odd. Note the use of the double-
equals symbol (==) which in the C language means checking for equality. By contrast, a single-equals
symbol (=) of the type used in mathematical calculations means assigning a value.



3.12. CONDITIONALS 53

C provides a means for both if and else statements to trigger the execution of multiple
instructions rather than just single instructions. Consider the following modification of the previous
program, where each condition results in two printf instructions being executed:

#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

printf("The number %i is ", n);

if (n % 2 == 0)

{

printf("even\n");

printf("because there is no remainder\n");

}

else

{

printf("odd\n");

printf("because a remainder exists\n");

}

printf("following division by two.\n");

return 0;

}

Note how curly-braces are used to enclose the set of instructions associated with the if and else

conditional statements.
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Here we see the results of running this program:

Program input and output: (with 4 as the entered value)

Enter an integer number: 4

The number 4 is even

because there is no remainder

following division by two.

Program input and output: (with 5 as the entered value)

Enter an integer number: 5

The number 5 is odd

because a remainder exists

following division by two.

It is worth noting that an if statement may be used without a corresponding else. Take for
example this simplified version of the program, which responds with text if the entered value is even
but halts without announcement if the value is odd:

#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

if (n % 2 == 0)

printf("The number %i is even\n", n);

return 0;

}
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On occasions where there needs to be several different courses of action depending on the
condition, we may use multiple if statements as shown in the following program where a numerical
entry is converted into its English word-equivalent:

#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

if (n == 0)

printf("The number is zero\n");

if (n == 1)

printf("The number is one\n");

if (n == 2)

printf("The number is two\n");

if (n == 3)

printf("The number is three\n");

return 0;

}

This program will function as intended for numerical entries of 0, 1, 2, or 3, but halts without
announcement for any other entered value. A practical addition to the code would be an else

statement to cover any entries other than 0, 1, 2, or 3, but we must be careful in its use as we shall
soon see.
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#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

if (n == 0)

printf("The number is zero\n");

if (n == 1)

printf("The number is one\n");

if (n == 2)

printf("The number is two\n");

if (n == 3)

printf("The number is three\n");

else

printf("The number is something other than zero, one, two, or three\n");

return 0;

}

The else statement functions as intended for a value outside the range of 0 to 3, in this case 10:

Enter an integer number: 10

The number is something other than zero, one, two, or three

The program also works like it should for an entered value of 3:

Enter an integer number: 3

The number is three

However, it fails for entered values of 0, 1, or 2 (in this case, 1):

Enter an integer number: 1

The number is one

The number is something other than zero, one, two, or three
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Why does this program print contradicting messages only for values of 0, 1, or 2? The answer
is related to the else statement, which associates only with the preceding if statement. That is
to say, the else statement as placed in this program works perfectly in conjunction with the if

statement testing for a value of 3, but it does not “know” to refrain from execution if any of the
preceding if statements test true.

The solution to this problem is a third form of conditional statement called the else if. Examine
this modified version of the program which works correctly for all entered values:

#include <stdio.h>

int main (void)

{

int n;

printf("Enter an integer number: ");

scanf("%i", &n);

if (n == 0)

printf("The number is zero\n");

else if (n == 1)

printf("The number is one\n");

else if (n == 2)

printf("The number is two\n");

else if (n == 3)

printf("The number is three\n");

else

printf("The number is something other than zero, one, two, or three\n");

return 0;

}

This is the proper way to test for a set of three or more mutually-exclusive conditions: the first
conditional test is performed by an if statement, the last by an else statement, and all others in
between by else if statements.
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A common application of if conditionals is limiting a variable’s value, as in this program:

#include <stdio.h>

#include <math.h>

int main (void)

{

float entry;

printf("Enter a number: ");

scanf("%f", &entry);

if (entry < 0)

entry = 0;

printf("The square root of %f is %f\n", entry, sqrt(entry));

return 0;

}

Any negative entry becomes “capped” at zero before computing the square root. Alternatively:

#include <stdio.h>

#include <math.h>

int main (void)

{

float entry;

printf("Enter a number: ");

scanf("%f", &entry);

if (entry < 0)

printf("That is an illegal entry!\n"); // Admonishes the user

else // Only computes valid numbers

printf("The square root of %f is %f\n", entry, sqrt(entry));

return 0;

}
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A different type of conditional instruction offered by the C language is the switch statement,
which is useful when sets of specific conditions lead to the same consequences. Consider the following
example program, which tests a single keyboard character for its identity as either a vowel, a numeral,
or something else:

#include <stdio.h>

int main (void)

{

char key;

printf("Enter a single character: ");

scanf("%c", &key);

switch(key)

{

case ’a’:

case ’e’:

case ’i’:

case ’o’:

case ’u’:

printf("%c is a vowel\n", key);

break;

case ’0’:

case ’1’:

case ’2’:

case ’3’:

case ’4’:

case ’5’:

case ’6’:

case ’7’:

case ’8’:

case ’9’:

printf("%c is a numeral\n", key);

break;

default:

printf("%c is a consonant or a symbol\n", key);

}

return 0;

}

The break instructions are necessary to exit the switch conditional as soon as a specified
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condition is met. If you were to eliminate one of the break statements from this program, its
execution would “fall through” to the next set of case conditions and actions.

Just for comparison, let’s examine a program written using if/else statements rather than
switch/case statements to perform the same task of identifying characters:

#include <stdio.h>

int main (void)

{

char key;

printf("Enter a single character: ");

scanf("%c", &key);

if (key == ’a’ || key == ’e’ || key == ’i’ || key == ’o’ || key == ’u’)

printf("%c is a vowel\n", key);

else if (key == ’0’ || key == ’1’ || key == ’2’ || key == ’3’ || key == ’4’ ||

key == ’5’ || key == ’6’ || key == ’7’ || key == ’8’ || key == ’9’)

printf("%c is a numeral\n", key);

else

printf("%c is a consonant or a symbol\n", key);

return 0;

}

In order to have multiple conditions result in common actions using if statements, we must
string those conditions together using the logical “OR” operator (||). One could argue that this
source code is messier for a human being to read than the previous version using switch, but it’s
really a matter of personal preference on the part of the person writing the code. Suffice it to say,
switch lends itself more easily to multiple conditions having the same action, while if lends itself
more easily to one condition per action.
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3.13 Loops

Another useful capability of all computers is performing tasks in a repeated fashion. In programming
parlance, any code specifying a repeated task or tasks is known as a loop. Two types of loops are
most popular in C programming: the while loop and the for loop.

A while loop is demonstrated in this next program:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x;

while(1)

{

printf("Enter a positive number: ");

scanf("%f", &x);

printf("The square root of %f is %f \n\n", x, sqrt(x));

}

return 0;

}

When run, the program repeatedly asks us to input a positive number and then tells us the
square root of that number. Here, we see it operating with the user-input values of 4, 8, and 2.
Pressing the Control-C keys halts the program:

Program input and output:

Enter a positive number: 4

The square root of 4.000000 is 2.000000

Enter a positive number: 8

The square root of 8.000000 is 2.828427

Enter a positive number: 2

The square root of 2.000000 is 1.414214

Enter a positive number: ^C
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The while() instruction in this program contains the value of 1 within its parentheses, and
the lines of code to be “looped” are enclosed within another set of curly-brace characters ({ and
}). Note how the floating-point variable declaration lies outside of this loop, as does the return

instruction, because both of these need only be executed once. It is important that the variable x

be declared prior to the while loop which uses that variable, and it is just as important for the
return instruction to follow the while loop because the program’s main() function exits whenever
its return instruction executes.

All instructions contained within the while loop will be repeatedly executed so long as the
numerical value within the while instruction’s parentheses is non-zero. If we were to substitute
while(0) for while(1) we would find that the program does nothing: its execution skips past
all lines of code contained within the while loop’s braces and goes immediately to the return

instruction where it terminates. In other words, the instructions contained within the while loop
will be repeated while the argument is “true” in the Boolean sense of that word.

It is worth noting that a while loop may contain just a single instruction, in which case no
curly-braces are necessary to enclose it. Consider this trivial example:

#include <stdio.h>

int main (void)

{

while(1)

printf("Hello world!\n");

return 0;

}

When run, the program repeatedly prints “Hello world!” to the console until we press Control-C
to halt the program:

Program output:

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!^C
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The conditional nature of the while loop suggests a way we could modify the square-root program
to be self-terminating. Instead of having the while loop repeat forever with its constant argument
of 1, we could include a conditional statement inside the parentheses that only lets the loop continue
based on some condition controlled by the user. Consider the following example:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x;

while(x < 100)

{

printf("Enter a positive number: ");

scanf("%f", &x);

printf("The square root of %f is %f \n\n", x, sqrt(x));

}

return 0;

}

Now the program only runs if the last number entered by the user is less than one hundred:

Program input and output:

Enter a positive number: 9

The square root of 9.000000 is 3.000000

Enter a positive number: 56

The square root of 56.000000 is 7.483315

Enter a positive number: 100

The square root of 100.000000 is 10.000000

Note how the program actually calculates the square root of 100 even though that value creates
a “false” condition for the while loop, because the “truth” of that condition does not get checked
until after the user enters the value and the square root gets calculated. In other words, any entered
value greater than or equal to 100 gets processed just fine, and then only when the loop returns to
the top for another pass does the while instruction recognize the condition as no longer being met.
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The next form of loop we will study in the C programming language is the for loop. Whereas
the while loop repeatedly executes so long as a single condition is met, the for loop is a more
specific type of looping instruction designed to repeat one or more instructions a specific number
of times, using a “counting” integer variable to track the number of executions. Again, the loop’s
syntax and general structure is easiest to grasp by viewing an example:

#include <stdio.h>

int main (void)

{

int n;

for(n = 0 ; n < 5 ; ++n)

printf("Hello world!\n");

return 0;

}

When run, the program prints “Hello world!” exactly five times and then halts on its own:

Program output:

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Just prior to the for instruction we see the declaration of an integer variable named n, and then
within the for instruction’s parentheses we see that variable being initialized to a value of zero (n
= 0), incremented once per loop (++n), and checked to see if its value is less than five (n < 5). The
terms within the for instruction’s parentheses always follow the same order:

for(initialize variable ; conditional check ; adjust value of variable)

// instruction(s) to be repeated
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Like the while loop, a for loop may be used to repeat a set of instructions, in which case we
must surround that set of instructions with curly-brace characters to denote their all being part of
the same loop. Here we will modify our square-root program to use a for loop rather than a while

loop:

#include <stdio.h>

#include <math.h>

int main (void)

{

int n;

float x;

for(n = 3 ; n > 0 ; --n)

{

printf("Enter a positive number: ");

scanf("%f", &x);

printf("The square root of %f is %f \n\n", x, sqrt(x));

}

return 0;

}

Now the program only runs three times before halting on its own:

Program input and output:

Enter a positive number: 4

The square root of 4.000000 is 2.000000

Enter a positive number: 7

The square root of 7.000000 is 2.645751

Enter a positive number: 12

The square root of 12.000000 is 3.464102

Note the arbitrary decision to use a decrementing n variable within the for loop rather than an
incrementing variable. This has no relation to the rest of the program’s function, but is shown here
merely to illustrate a different configuration of for loop.
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A common use of for loops is to repeat a series of instructions where the counting variable is
not only used to limit the number of executions but is also an independent variable in one or more
mathematical functions being looped. Consider this example, where the for loop prints a table of
numbers representing powers of ten:

#include <stdio.h>

#include <math.h>

int main (void)

{

int n;

for(n = -4 ; n < 5 ; ++n)

printf("n = %i 10^n = %f \n", n, pow(10,n));

return 0;

}

Program output:

n = -4 10^n = 0.000100

n = -3 10^n = 0.001000

n = -2 10^n = 0.010000

n = -1 10^n = 0.100000

n = 0 10^n = 1.000000

n = 1 10^n = 10.000000

n = 2 10^n = 100.000000

n = 3 10^n = 1000.000000

n = 4 10^n = 10000.000000

In these prior examples we have only explored the use of for loops employing integer test
variables (n), but we are not limited to just using integers. We can in fact use other variable types
such as float within for loops. The same three-part structure within the for parentheses holds
true: (1) initialize the test variable, (2) check for a true/false condition based on that variable, and
(3) modify the value of that test variable somehow.
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3.14 Logical operators

Computer programming languages in general are useful for implementing mathematical functions of
all kinds, and a subset of that functionality includes logical functions such as AND, OR, and NOT.
Students of electronics usually encounter these concepts when beginning their studies into digital
circuits, committing certain single- and two-input logic functions to memory (both their symbols
and their corresponding truth tables):
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Logical functions are just special mathematical functions operating on variables capable only of
two values (or states) known as true (e.g. “high” or 1) and false (e.g. “low” or 0), and all computer
programming languages support them. These are known as Boolean variables, after Boolean algebra
where all values are either 1 or 0 with no other possibilities. Interestingly, the original C language
standard did not offer a special Boolean data type even though logical functions were supported in
C from the very beginning. Instead, logical functions in C simply use integer values as arguments,
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interpreting a 0 value as “false” and anything other than 0 as “true”. The C99 standard7 introduced
a bool variable type for the first time, but the logical functions themselves still treat all inputs as
either zero (false) or non-zero (true) integer values.

Logical functions have their own special operators in the C language analogous to arithmetic
operators such as addition (+), subtraction (-), etc. These include the AND operator (&&), the OR
operator (||), and the NOT operator (!), as illustrated below using standard logic function symbols:

AND OR NOT

A

B B

A
A !AA && B A || B

The following example showcases the use of logical operators and the bool data type (that data
type defined in the stdbool.h header file):

#include <stdio.h>

#include <stdbool.h>

int main (void)

{

bool a, b;

a = false;

b = true;

printf("a AND b = %i \n", a && b);

printf("a OR b = %i \n", a || b);

printf("NOT a = %i \n", !a);

return 0;

}

This example program produces the following output when compiled and executed:

a AND b = 0

a OR b = 1

NOT a = 1

7This is more officially known as ISO/IEC 9899:1999 (released in the year 1999), and was superseded by the C11
version which was released in 2011.
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Note how we may initialize our Boolean variables a and b using “true” and “false” values, but the
results of the AND, OR, and NOT functions are shown as numbers (either 1 or 0). The %i format
specifier we use in the printf() statements prints the Boolean values as integer numbers, which in
fact is how C treats all Boolean quantities. The following test program8 and its output proves this
fact, that the AND, OR, and NOT operators work just as well on standard integer values, treating
zero as “false” and any non-zero value as “true”:

#include <stdio.h>

int main (void)

{

int a, b, c;

a = 0;

b = 5;

c = -8;

printf("a AND b = %i \n", a && b);

printf("a AND c = %i \n", a && c);

printf("b AND c = %i \n", b && c);

printf("a OR b = %i \n", a || b);

printf("b OR c = %i \n", b || c);

printf("NOT c = %i \n", !c);

return 0;

}

a AND b = 0

a AND c = 0

b AND c = 1

a OR b = 1

b OR c = 1

NOT c = 0

As far as the logical operators in this program are concerned, the equivalent Boolean value of
a is “false” because it is equal to zero, while b and c are both considered “true” because they are
non-zero. The integer values of 5 and −8 are effectively “rounded down” in translation to Boolean,
and all that remains after evaluating the logical function is a 1 or 0 value.

8Note how this test program does not include the header file stdbool.h because nowhere do we need to declare or
initialize any proper Boolean variables.
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Looping and conditional statements assume Boolean arguments. A while statement, for example,
continues to repeat all code within its braces ({ and }) so long as the value within its parentheses
is logically true. Again, this translates to any non-zero integer value. In a previous section we saw
how a while loop will repeat indefinitely if its argument is equal to 1, but we could just as well have
given the while statement any value that wasn’t equal to 0, such as:

#include <stdio.h>

int main (void)

{

while (-10)

{

printf("Help me, I’m stuck in a loop! \n");

}

return 0;

}

As far as while is concerned, −10 is just as “true” as 1.

For the same reason, an if conditional may act on any integer argument because it is really just
testing for the logical “truth” of that proposition. For example:

#include <stdio.h>

int main (void)

{

int a;

printf("Enter a value for A: ");

scanf("%i", &a);

if (a)

printf("A is true \n");

else

printf("A is false \n");

return 0;

}

Running this program proves that any non-zero value entered for a is accepted as “true”.
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Relational operators such as “greater than” (>) and “less than” (<) may be modeled as electronic
comparators, outputting a Boolean “true” or “false” value based on the comparison of two non-
Boolean quantities just as comparator circuits generate a discrete (on/off) output signal based on
the comparison of two analog signals:

−

+

Comparator

x

y
y > x

−

+
Comparator

x

y
y < x

#include <stdio.h>

int main (void)

{

float x, y;

printf("Enter a value for X: ");

scanf("%f", &x);

printf("Enter a value for Y: ");

scanf("%f", &y);

if (y > x)

printf("The statement y > x is true \n");

else

printf("The statement y > x is false \n");

return 0;

}
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Combinational logic is when multiple logic functions are ganged together to form more complex
logical relationships. This topic is usually applied to physical logic gate circuits, but here we will
explore how to translate a combinational function into C code. First we will examine a four-function
combinational network complete with Boolean expressions9 written at the output of each function:

A

B

C

D

AB
AB + C

D(AB + C)

D

Next, we will re-write those Boolean functions using standard C-language logical operators:

A

B

C

D

!D

A && B
(A && B) || C

!D && ((A && B) || C)

We use parentheses to force the desired order-of-operations much the same as we would in any
regular algebraic expression where we wish certain operations to be evaluated before others.

9Recall that in Boolean algebra the OR function is equivalent to addition and the AND function is equivalent to
multiplication. Just as it is mathematical convention that multiplication is performed before addition (standard order-
of-operations), AND operations are executed before OR operations in C. The technical term for this prioritization of
certain operations over others is precedence. Parentheses, however, take precedence over everything else: expressions
within inner parentheses must always execute before expressions within higher-level parentheses.
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The following program implements this combinational function with four user-entered inputs:

#include <stdio.h>

int main (void)

{

int a, b, c, d;

printf("Enter a value for A (1=true and 0=false): ");

scanf("%i", &a);

printf("Enter a value for B (1=true and 0=false): ");

scanf("%i", &b);

printf("Enter a value for C (1=true and 0=false): ");

scanf("%i", &c);

printf("Enter a value for D (1=true and 0=false): ");

scanf("%i", &d);

if (!d && ((a && b) || c))

printf("Output is true \n");

else

printf("Output is false \n");

return 0;

}

The ability to implement combinational logic networks in C code is perhaps most useful when
we need the computer to follow a given truth table. Truth tables are convenient ways for humans to
describe how they wish a certain logic system will behave, and these are fairly simple to translate
into Boolean expressions which in turn (as we have seen) are fairly simple to translate into C code.
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Let’s see how this works on the following truth table:

A B C Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

When “true” states (1, high) represent the minority of output conditions for a combinational
function, a good strategy for translating that table into a Boolean expression is to write a product
expression for each of those “true” states and then combine them together to form a sum-of-products
expression for the entire table. This is shown below in an expanded version of that same truth table:

A B C Output Boolean expression

0 0 0 0

0 0 1 1 ABC

0 1 0 1 ABC

0 1 1 0

1 0 0 0

1 0 1 1 ABC

1 1 0 0

1 1 1 0

SOP expression = ABC +ABC +ABC

Written using standard C logical operators:

(!A && !B && C) || (!A && B && !C) || (A && !B && C)
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For truth tables where “true” outcomes are the majority instead of the minority, we obtain a
simpler Boolean description for that table’s function by writing either a product-of-sums expression
or an inverted sum-of-products:

A B C Output

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

POS expression = (A+B + C)(A+B + C)

Inverted SOP expression = ABC +ABC

Both of these Boolean expressions fully encapsulate the truth table, and indeed are
mathematically equivalent to each other10. It is mostly a matter of personal preference which
type of Boolean expression you use to represent the truth table. In my experience most students
prefer the inverted SOP because it is so similar to SOP rather than feeling “backwards” like POS11.
Next we see how each of these expressions appear in C:

(A || !B || C) && (!A || !B || !C)

!((!A && B && !C) || (A && B && C))

10DeMorgan’s Theorem may be used to “break” the inversion bars and show the equivalence, but this is left here
as an exercise for the reader because it is not germane to the topic of coding logic functions in C.

11SOP expressions are based on “1” states where we write one product term for each “1” output (row) and the
variables within each term follow “1” input states (i.e. we write an uncomplemented variable for a “1” state and a
complemented variable for a “0” state). POS expressions are based on “0” states where we write a sum for each “0”
output (row) and the variables within each sum follow “0” input states (i.e. each “0” input gets an uncomplemented
variable and each “1” state gets a complemented variable).
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3.15 Bitwise operators

As described in the previous section of this Tutorial, the C programming language supports all the
basic logical functions as “operators” acting on Boolean variables:

AND OR NOT

A

B B

A
A !AA && B A || B

The following source code and run-time output illustrates these three basic logic functions as
well as the bool data type (defined in the stdbool.h header file):

#include <stdio.h>

#include <stdbool.h>

int main (void)

{

bool a, b;

a = true;

b = false;

printf("a AND b = %i \n", a && b);

printf("a OR b = %i \n", a || b);

printf("NOT a = %i \n", !a);

return 0;

}

a AND b = 0

a OR b = 1

NOT a = 0

Combining simple logic functions to make complex combinational functions is as simple as
combining basic arithmetic operators to make complex algebraic statements, using parentheses as
grouping symbols to force any desired order-of-operations:

A

B

C

D

!D

A && B
(A && B) || C

!D && ((A && B) || C)
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However, C is not limited to applying logical functions on discrete (Boolean) variables, but is
also able to apply logical functions to individual bits in any binary word. This is called bitwise logic,
and is usually applied to integer variables. There are many practical applications of bitwise logic
in computer programming, and it finds common usage in microcontroller programming where the
logical states of input and output lines are typically represented as individual bits in 8-bit or 16-bit
registers.

For example, the Texas Instruments MSP430G2553 microcontroller uses a set of 8-bit registers
to control the eight lines of each input/output (I/O) port. If we wish to use the eight lines of port
1 as outputs to drive LEDs, we must write the binary value 0b11111111 to the P1DIR register to
set the “direction” of these eight lines to “output” (1), then we simply write whatever bit states we
wish for those eight LEDs into a register named P1OUT as shown below:
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write

write

P1DIR = 0b11111111

P1OUT = 0b01011101

It is easy in C to set all eight bits of these registers with a single instructions (each), like this:

P1DIR = 0b11111111;

P1OUT = 0b01011101;

However, if we need our program to modify just one or some of the bits in either of these 8-bit
words without altering or re-writing the others, we must use bitwise functions.
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3.15.1 Bitwise-AND

An ampersand symbol (&) designates the bitwise-AND operation in the C language, applying AND
logic to respective bits between two binary words of the same length:

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

0 0 1 1 0 0 0 0

Bitwise-AND:  A & B → C

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Example:  0b10110010 & 0b00111100 → 0b00110000

Word B is commonly referred to as a mask, and serves a role analogous to masking tape used
to mask off areas we do not wish to paint. Every bit-position occupied by a “1” in the mask will
preserve the respective bit in Word A, while every bit-position occupied by a “0” in the mask will be
“painted over” with a “0” state in the output. The key to understanding bitwise-AND masking is
to realize that any “0” state input to an AND gate guarantees a “0” output regardless of the other
input state(s). This makes the bitwise-AND function useful when we need to force individual bits
to “0” states.

Referencing our MSP430 microcontroller example, suppose we wished to force bit 6 of the P1OUT
register to a zero (logical “low”) state to turn off that one LED, but not influence any of the other
bits in that register. We could do so using the following C instruction, using a mask value with its
bit 6 cleared to a zero state (forcing it to zero) and all other bits set to one (preserving their existing
states):

P1OUT = P1OUT & 0b10111111;

A condensed version of this instruction supported in C combines the bitwise-AND operator (&)
and the assignment operator (=) into a single equivalent instruction:

P1OUT &= 0b10111111;



3.15. BITWISE OPERATORS 79

3.15.2 Bitwise-OR

A “vertical bar” symbol (|) designates the bitwise-OR operation in the C language, applying OR
logic to respective bits between two binary words of the same length:

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

1 1 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bitwise-OR:  A | B → C

Example:  0b10110010 | 0b00111100 → 0b10111110

1 0 1 1 1

As with the bitwise-AND operator, Word B is commonly referred to as a mask and serves a
similar role of forcing (“painting over”) some bits while preserving (“masking off”) others. For
bitwise-OR, every bit-position occupied by a “1” in the mask will force the respective output word
bit to a “1”, while every bit-position occupied by a “0” in the mask will be preserve Word A’s bit
state in the output. The key to understanding bitwise-OR masking is to realize that any “1” state
input to an OR gate guarantees a “1” output regardless of the other input state(s). This makes the
bitwise-OR function useful when we need to force individual bits to “1” states.

Referencing our MSP430 microcontroller example again, suppose we wished to force bits 0 and
6 of the P1OUT register to a one (logical “high”) state to turn on those two LEDs, but not influence
any of the other bits in that register. We could do so using the following C instruction, using a mask
value with its bit 0 and bit 6 set to one states (forcing them to one) and all other bits set to zero
(preserving their existing states):

P1OUT = P1OUT | 0b01000001;

A condensed version of this instruction supported in C combines the bitwise-OR operator (|)
and the assignment operator (=) into a single equivalent instruction:

P1OUT |= 0b01000001;
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3.15.3 Bitwise-XOR

A “caret” symbol (^) designates the bitwise-XOR operation in the C language, applying Exclusive-
OR logic to respective bits between two binary words of the same length:

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 1

Bitwise-XOR:  A ^ B → C

Example:  0b10110010 ^ 0b00111100 → 0b10001110

0 0

As with the bitwise-AND and bitwise-OR operators, Word B is commonly referred to as a mask.
In the case of bitwise-XOR, a “0” bit in the mask preserves that respective bit in Word A while a “1”
bit in the mask complements that respective bit in Word A. This makes the bitwise-XOR function
useful when we need to toggle individual bits from their current states to their opposite states.

Referencing our MSP430 microcontroller example again, suppose we wished to toggle the states
of bits 3 and 4 and 7 in the P1OUT register but not influence any of the other bits. We could do so
using the following C instruction, using a mask value with its bit 3 and bit 4 and bit 7 all set to a
one state (enabling toggle action) and all other bits set to zero (preserving their existing states):

P1OUT = P1OUT ^ 0b10011000;

A condensed version of this instruction supported in C combines the bitwise-XOR operator (^)
and the assignment operator (=) into a single equivalent instruction:

P1OUT ^= 0b10011000;
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An interesting and widespread application of bitwise-XOR operations is found in cryptography,
which is the science of encrypting messages to make them indecipherable to anyone but the intended
recipient, who alone is able to decrypt the message to make it readable again. In such applications
the XOR mask is referred to as a key, the bits within that key determining which bits within the
message get inverted and which do not. If you imagine a binary-encoded message n bits in length,
and a key of the same (n bits) length, that key is able to encrypt the “plaintext” message into
“cyphertext” as well as decrypt the “cyphertext” message back into “plaintext” form. The security
of this message depends on the key being securely shared between sender and recipient, just like a
padlock shared between two people is secure only if those two people are alone in possessing keys
fitting that padlock. Other bitwise-XOR-based schemes exist, such as repeating the use of a shorter
key (e.g. an eight-bit key repeatedly used for each byte of data in the message), but they are less
secure than one where the key is the same size as the message.

3.15.4 Bitwise complementation

Another useful bitwise operation provided by the C language is complementation, where we invert
(toggle) the logical state of every bit in a word. This is also known as generating the one’s complement
of the binary number value represented by that word. The “tilde” symbol (~) designates this
operation in the C language:

Word B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 01 1 1

0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 1 110 0

Word A 1 00

1

Example:  ~0b10110010 → 0b01001101

Bitwise-complement:  ~A → B

There is no “mask” word when using bitwise complementation because it very simply and direct
inverts every bit state in the given word. In other words, this operation is equivalent to bitwise-XOR
with a mask word comprised of all “1” bits.

Referencing our MSP430 microcontroller example again, suppose we wished to toggle the states
of all bits in the P1OUT register. We could do so using the following C instruction:

P1OUT = ~P1OUT;
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3.15.5 Bit-shifting

Another useful bitwise instruction shifts the positions of bits within a binary word, using either the
<< (left-shift) operator or the >> (right-shift) operator symbol as seen in these examples:

Word B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 01 1 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Word A 1 00

Example:  0b10110010 >> 1 → 0b01011001

0 1 1 11 000

0
(lost)

Bitwise-right-shift by one:  A >> 1 → B

Here we see bit 0 “lost” because there is no place for it in Word B once it’s shifted off the
right-end of Word A. On bit 7 of Word B we see that “new” bit state defaulting to “0”.

Word B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 01 1 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Word A 1 00

Bitwise-left-shift by three:  A << 3 → B

(lost) (lost) (lost)

01 100 0 0 0

0

Example:  0b10110010 << 3 → 0b10010000

As with the right-shift operation, we see here with left-shift that bits shifted off the end of the
data field are lost while new bits are filled with “0” states.

One of the more interesting applications of bit-shifting is to perform integer multiplication and
division by powers of two. Shifting a binary number’s bits to the right is tantamount to dividing it by
two, while shifting a binary number’s bits to the left is the same as multiplying it by two12 assuming
there are enough bit-places in the resulting word that we do not “lose” any of the left-shifted “1” bits.
For example, if we shift 0b00001100 (twelve) to the left one place, we get 0b00011000 (twenty-four)
which is twice as large.

If we shift bits by more than one place, we effectively multiply or divide by that power of two.
For instance, 0b00001100 (twelve) bit-shifted three places to the left yields 0b01100000 which is
ninety-six, 23 times larger than twelve.

12This is because binary is a base-two numeration system, with each place-weight having a value two times less
(right) or two times greater (left) than its adjacent place-weights. Analogously, shifting decimal digits one place to the
right divides by ten while shifting decimal digits one place to the left multiplies by ten because decimal is a base-ten
numeration system.
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Since all microprocessors offer bit-shifting instructions at the “machine” level (i.e. a dedicated
machine-language instruction just for that purpose), there is generally less translational work from
C to machine language – i.e. fewer machine-language instructions resulting from the compilation
and linking of the C source code – when bit-shifting as opposed to general multiplication and
division. This makes bit-shifting a computationally efficient method of multiplying and dividing
when the coefficient is a power of two, an especially useful property for microcontrollers with limited
processing power.
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3.15.6 Bitwise demonstration program

The following program illustrates all of these bitwise operations, taking in operands from the user13

and displaying the results in hexadecimal notation:

#include <stdio.h>

int main (void)

{

int n, mask;

printf("Enter value of first operand in hexadecimal: ");

scanf("%i", &n);

printf("Enter value of second operand (i.e. the ‘mask’) in hexadecimal: ");

scanf("%i", &mask);

printf("\n");

printf("Bitwise-AND between 0x%X and 0x%X = %X \n", n, mask, n & mask);

printf("Bitwise-OR between 0x%X and 0x%X = %X \n", n, mask, n | mask);

printf("Bitwise-XOR between 0x%X and 0x%X = %X \n", n, mask, n ^ mask);

printf("Bitwise-complement of 0x%X = 0x%X \n", n, ~n);

printf("Left-shift 0x%X by four bits = 0x%X \n", n, n << 4);

printf("Right-shift 0x%X by three bits = 0x%X \n", n, n >> 3);

return 0;

}

Compiling and executing this simple program displays the following results:

Enter value of first operand in hexadecimal: 0x57

Enter value of second operand (i.e. the ‘mask’) in hexadecimal: 0xF0

Bitwise-AND between 0x57 and 0xF0 = 50

Bitwise-OR between 0x57 and 0xF0 = F7

Bitwise-XOR between 0x57 and 0xF0 = A7

Bitwise-complement of 0x57 = 0xFFFFFFA8

Left-shift 0x57 by four bits = 0x570

Right-shift 0x57 by three bits = 0xA

To understand each of these results, write out the operands in binary format and apply the
respective bitwise operations bit-by-bit, then convert that binary result into hexadecimal. Note that

13Prefacing every numerical entry with 0x instructs the program to interpret them as hexadecimal numbers. Decimal
entries would have worked just as well, but bitwise relations are easier to comprehend in hexadecimal because each
hex character directly expands to four binary bits.
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the strange-looking result for bitwise complementation arises out of the fact that this example
was created on a computer where the default integer word size is 16 bits, and so performing
a one’s complement inversion on 0x57 (binary value 0b01010111) actually means doing so on
0b 0000 0000 0000 0000 0000 0000 0101 0111 which results in 0b 1111 1111 1111 1111 1111

1111 1010 1000 which of course is 0xFFFFFFA8.
An excellent “active learning” exercise is to compile and run this program for yourself, entering

your own operand values, predicting the bitwise results, and then using the program to test your
predictions.
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3.15.7 Testing bit states

Not only are bitwise functions useful for manipulating individual bit-states in binary words, but they
also work well to test for the presence of specific bit-states. For example, consider another MSP430
microcontroller example where we use port 1 as inputs rather than outputs. In order to prepare the
port 1’s pins to function as inputs suitable for connection to switches and pulldown resistors, we
would need the microcontroller’s program to write 0b00000000 to the P1DIR register (recall that in
the MSP430 microcontroller series a “1” state in a P1DIR register bit designates that pin to function
as an output, and so we might logically infer that a “0” designates that pin to be an input):

M
S

P
430G

2553IN
20

VSSVCC (+3.3 V)

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P2.0

P2.1

P2.2

P2.6

P2.7

TEST

RST

P1.7

P1.6

P2.5

P2.4

P2.3

+3.3V

+3.3V

+3.3V

1

01

1

1

1

0

0

write

read
P1DIR = 0b00000000

P1IN = 0b10100111

With the eight switches in the positions shown, the data readable in the P1IN register would be
0b10100111. It is easy enough to test for a particular combination of port 1 bits using a standard
equality-check within an if statement like this:

if (P1IN == 0b10100111)

// (do something here)
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However, testing one or more selected bits within an integer word is not possible using the
equality (==) relation because that result is only “true” if every bit of the word matches the test
pattern. Suppose, though, we need to test only bit 5 (corresponding to input P1.5) for a “1” state
while ignoring all the other inputs (bits) of P1IN? A practical application for such a test might
be if the switch connected to input P1.5 needs to initiate some event or sequence of events in the
microcontroller independent of the other input states, for example to serve as a “reset” for an internal
counter or timer function within the microcontroller.

Selecting just one bit out of a multi-bit word sounds like the kind of task suited for a bitwise
masking operation, and indeed it is. We may use the bitwise-AND function to “mask off” just the
bit(s) we’re interested in while setting all others to zero, the result being “true” if any of the masked
bit(s) are “1”. For example:

#include <stdio.h>

int main (void)

{

int n;

while(1)

{

printf("Enter value of the word to test: ");

scanf("%i", &n);

if (n & 0b00100000)

printf("Bit 5 is HIGH!\n");

else

printf("Bit 5 is low\n");

}

return 0;

}

The test statement n & 0b00100000 will be “true” for any values of n where bit 5 is a “1”. The
bitwise-AND operation with the mask value of 0b00100000 forces all the other bits to be zero during
the test so that only bit 5 is left to be evaluated.
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Entering hexadecimal values designed to set just one of eight bits “high” at a time:

Enter value of the word to test: 0x80

Bit 5 is low

Enter value of the word to test: 0x40

Bit 5 is low

Enter value of the word to test: 0x20

Bit 5 is HIGH!

Enter value of the word to test: 0x10

Bit 5 is low

Enter value of the word to test: 0x08

Bit 5 is low

Enter value of the word to test: 0x04

Bit 5 is low

Enter value of the word to test: 0x02

Bit 5 is low

Enter value of the word to test: 0x01

Bit 5 is low

Only when we enter 0x20 (which is equivalent to 0b00100000 in binary – with only bit 5 “high”)
is the statement n & 0b00100000 considered logically “true”. By using the bitwise-AND function
with 0b00100000 as the mask value, we force to zero all bits except for bit 5 and then the if

statement simply looks for a non-zero result as confirmation that the test is logically “true”. Note
that other input values would satisfy this “bit 5 high” condition as well, for example 0xFF, 0xA0,
0x37, etc. (i.e. any number where the #5 bit is a “1” regardless of the other bits’ states).

A popular strategy to make these bit-tests convenient is to define constants within the C program
with names reflecting the bit-positions. For example, having the following set of constants globally
defined in the program (by placing them before the main function name) means we may use BIT5

as a substitute for 0b00100000, BIT4 as a substitute for 0b00010000, etc.:

#define BIT0 0b00000000

#define BIT1 0b00000010

#define BIT2 0b00000100

#define BIT3 0b00001000

#define BIT4 0b00010000

#define BIT5 0b00100000

#define BIT6 0b01000000

#define BIT7 0b10000000



3.15. BITWISE OPERATORS 89

If we compile and run this demonstration program, it works exactly the same as the previous
version, but with an if condition that is easier to read in source form:

#include <stdio.h>

#define BIT0 0b00000000

#define BIT1 0b00000010

#define BIT2 0b00000100

#define BIT3 0b00001000

#define BIT4 0b00010000

#define BIT5 0b00100000

#define BIT6 0b01000000

#define BIT7 0b10000000

int main (void)

{

int n;

while(1)

{

printf("Enter value of the word to test: ");

scanf("%i", &n);

if (n & BIT5)

printf("Bit 5 is HIGH!\n");

else

printf("Bit 5 is low\n");

}

return 0;

}

Pre-defined constants such as these are such an aid to building self-documenting programs (i.e.
source code that other human programmers are able to read and understand easily due to how
variables and constants are named) that we often find them defined within header files specific to
the application. For example, the header files used for Texas Instruments MSP430 microcontrollers
(e.g. msp430g2553.h) contain many such constants, some generically named for bit positions as
these, and others named for unique flag bits found in special-purpose registers14.

14For example, within the MSP430G2553’s status register (SR) we find that bit 0 is the Carry bit, bit 1 is the Zero
bit, bit 2 is the Negative bit, etc. So, in that microcontroller’s header file we find the constant C defined as 0x0001, Z
defined as 0x0002, N defined as 0x0004, etc. That way, if we need to test the status of the Zero bit, for example, we
may use the expression SR & Z to tell if just that bit is “true” while disregarding the rest. This is simpler than SR &

0x0002 and even simpler than SR & BIT1.



90 CHAPTER 3. TUTORIAL

If we need the program to check whether two or more particular bits are “high”, we may do
so by adding those BIT constants together. For example, BIT1 + BIT5 results in the mask value
00100010 (i.e. bits 5 and 1 are both “high”). See how this works in the following program:

#include <stdio.h>

#define BIT0 0b00000000

#define BIT1 0b00000010

#define BIT2 0b00000100

#define BIT3 0b00001000

#define BIT4 0b00010000

#define BIT5 0b00100000

#define BIT6 0b01000000

#define BIT7 0b10000000

int main (void)

{

int n;

while(1)

{

printf("Enter value of the word to test: ");

scanf("%i", &n);

if (n & (BIT5 + BIT1))

printf("Bit 5 and/or Bit 1 are HIGH!\n");

else

printf("Neither bit is high\n");

}

return 0;

}

Enter value of the word to test: 0x20

Bit 5 and/or Bit 1 are HIGH!

Enter value of the word to test: 0x02

Bit 5 and/or Bit 1 are HIGH!

Enter value of the word to test: 0x08

Neither bit is high

Enter value of the word to test: 0xFF

Bit 5 and/or Bit 1 are HIGH!
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3.16 Functions

Large and complicated computer programs benefit from partitioning the code into separate
“modules” which may be invoked by the main portion of the program as needed. In some
programming languages this is known as a subroutine15 but in C it is known as a function. We
will explore this concept using pseudo-code examples to illustrate a certain sequence of operations:

Pseudo-code example without functions:

main()

{

// Instruction A

// Instruction B

// Instruction C

// Instruction B

// Instruction C

// Instruction B

// Instruction C

}

Program execution: A → B → C → B → C → B → C

Now, we will examine another pseudo-code program that does the exact same sequence of
operations only using a function named B and C:

Pseudo-code example using a function:

main()

{

// Instruction A

// Call B_and_C()

// Call B_and_C()

// Call B_and_C()

}

B_and_C()

{

// Instruction B

// Instruction C

}

15Literally, a routine within another routine.
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Every time a function is “called” from within main(), the computer “jumps” to that called
function and executes the code there, then resumes where it left off in the main routine.

Let’s now explore this concept using real C code. What follows is a program determining whether
or not resistors with a ±5% tolerance are within specification (without using any functions):

#include <stdio.h>

int main (void)

{

float ideal, actual, tolerance=5.0, error;

printf("Enter the resistor’s labeled value (Ohms): ");

scanf("%f", &ideal);

while(1)

{

printf("\nEnter the resistor’s measured value (Ohms): ");

scanf("%f", &actual);

error = (actual - ideal) / ideal * 100.0;

if (error > tolerance)

printf("Resistor value too high, error = %f percent\n", error);

else if (error < -tolerance)

printf("Resistor value too low, error = %f percent\n", error);

else

printf("Resistor value is within tolerance\n");

}

return 0;

}
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Now consider this re-write of the program using a function named errorcheck():

#include <stdio.h>

void errorcheck(float, float);

int main (void)

{

float ideal, actual, tolerance=5.0, error;

printf("Enter the resistor’s labeled value (Ohms): ");

scanf("%f", &ideal);

while(1)

{

printf("\nEnter the resistor’s measured value (Ohms): ");

scanf("%f", &actual);

error = (actual - ideal) / ideal * 100.0;

errorcheck(error, tolerance);

}

return 0;

}

void errorcheck(float e, float t)

{

if (e > t)

printf("Resistor value too high, error = %f percent\n", e);

else if (e < -t)

printf("Resistor value too low, error = %f percent\n", e);

else

printf("Resistor value is within tolerance\n");

}

All the printf instructions are now located within the errorcheck() function rather than within
the main() function, and are called as needed.
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Let’s analyze how the errorcheck() function works, dividing our analysis into three sections:
one for each time we see errorcheck in the source code.

The first time we encounter this new function is near the top of the source code where it is
prototyped. “Prototyping” is to a function what “declaring” is to a variable: a way of telling
the compiler to reserve an area in the computer’s memory for that entity. Later versions of the C
language permit omission of function prototypes, but it is nevertheless a good programming practice
to always prototype your custom functions.

In this prototype we can see that the function will take in two floating-point values as inputs
(called arguments) and will output (return) no value at all as indicated by void.

The second time we see errorcheck in this program is when the function is “called” at the end
of the while loop. Here, we “pass” the current values of variables error and tolerance to the
errorcheck() function as its arguments. The computer’s sequence of execution will now “jump” to
the code contained within errorcheck’s curly-braces.

Here at the end of our source code listing we find the actual function named errorcheck. Notice
how it is written much like main with the name and value types on one line and a pair of curly-braces
enclosing all lines of code comprising the function. Note how the two arguments to the errorcheck()
function are named e and t, not error and tolerance as called from within the main() function.
These variables e and t are local16 in scope to the errorcheck() function, which means they are
readable and writable only within that function, and not anywhere else in the program. Essentially,
the void errorcheck(float e, float t) line declares these two local variables and assigns them
values from error and tolerance, respectively.

We may also use functions to perform mathematical operations and return values back to the
calling function. On the next page we will see another version of this same program relegating the
calculation of error to its own function (named errorcalc()).

16We could have named these two variables identically to the calling variables error and tolerance, and they would
still be local to the errorcheck() function. This would mean, for example, that we could assign them new values
from within the errorcheck() function, and these assignments would not affect the values of error or tolerance back
within the main() function!



3.16. FUNCTIONS 95

#include <stdio.h>

void errorcheck(float, float);

float errorcalc(float, float);

int main (void)

{

float ideal, actual, tolerance=5.0, error;

printf("Enter the resistor’s labeled value (Ohms): ");

scanf("%f", &ideal);

while(1)

{

printf("\nEnter the resistor’s measured value (Ohms): ");

scanf("%f", &actual);

errorcheck(errorcalc(actual, ideal), tolerance);

}

return 0;

}

void errorcheck(float e, float t)

{

if (e > t)

printf("Resistor value too high, error = %f percent\n", e);

else if (e < -t)

printf("Resistor value too low, error = %f percent\n", e);

else

printf("Resistor value is within tolerance\n");

}

float errorcalc(float a, float i)

{

return (a - i) / i * 100.0;

}
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Each time we remove code from the main() function and place that code into its own dedicated
function, we simplify the code remaining inside of main(). This is the major purpose of using
functions: to relegate portions of code to their own domains and let the (simpler) main routine of
the program “call” those functions as needed. For this resistor tolerance-checking program the use
of functions is rather trivial, but in large programs functions make the program source code much
easier to understand and to manage as the project evolves over time.

The use of functions to partition code into modules has several advantages when writing large
and complicated programs, some of those advantages listed here:

• Writing programs consisting of functions naturally supports the problem-solving strategy of
breaking a complex problem down into manageable pieces, then solving each of those pieces
one at a time.

• When a team of programmers work together to write code for a large programming project,
it becomes possible to assign each team one or more functions which eventually will be linked
together to form a whole program. Each team need only know what values will be passed to
their function(s) and what value(s) will be returned after execution.

• Instead of one source-code file, we may write multiple source-code files – each one containing
one or more functions – which makes file management easier when developing large projects.
An example of this is shown on the next page.
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Source code file main.c

#include <stdio.h>

int primecheck(int);

int main (void)

{

int input;

printf("Enter a positive integer to check if it is prime: ");

scanf("%i", &input);

if (primecheck(input) == 0)

printf("The number %i is prime\n\n", input);

else

printf("The number %i is not prime\n\n", input);

return 0;

}

Source code file myfunction.c

#include <stdio.h>

int primecheck (int n)

{

int count, divided=0;

for (count = n - 1 ; count > 1 ; --count)

if (n % count == 0)

++divided;

return divided;

}

In order to compile these two source-code files, we must invoke GCC as follows:

gcc main.c myfunction.c
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3.17 Pointers

A powerful feature of the C programming language is that it allows us to access the addresses where
data is stored in the computer’s memory. Recall that digital memory relies on an address number
to locate the stored data within the memory array, analogous to the street address number used to
locate a postal mailbox:
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ss

0x
18Add
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re
ss

0x
1A Add
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ss

0x
1B

Data
0x3

 . . .  . . .

In this illustration, the mailbox labels are the addresses, and the letter(s) contained in each
mailbox are the data. All variables in C are stored in the computer’s memory, and as such have
addresses.

When a C program we have written declares a certain type of variable, that variable gets assigned
a memory location at run-time (i.e. when the compiled program is executed). As programmers we
generally do not get to choose which memory location this is, as the assignment process is automatic.
However, within the C program it is possible to read that assigned memory address and act upon it
in different ways.

In order to identify the address for any declared variable in a C program, we preface the variable’s
name with the “address of” operator (&). For example, if a variable happens to be named x, the
address of that variable may be found with the label &x. This use of the ampersand symbol should
look familiar to anyone who has ever used the scanf() function, as the following code example
shows (accepting a floating-point numerical value from the user and placing that value in variable
x):

scanf("%f", &x);

Now that we know what the “address-of” operator does, the scanf() instruction’s proper syntax
becomes a little less mysterious. Unlike printf() where we need to pass arguments to the function
to be printed to the screen, with scanf() we are asking this function to insert data into a variable.
It would not do any good to pass the existing value of the variable to scanf(), but it makes perfect
sense to tell scanf() where that variable resides in memory so that scanf() knows where to write
the collected data. This is analogous to telephoning a friend to send a package to your new home
address: the information you send to your friend is simply a street address, and in response your
friend sends the package to that address.
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The following program demonstrates C’s ability to read memory addresses by declaring and
initializing two integer variables with identical data (5), then printing both the variables’ values and
their respective memory addresses17:

#include <stdio.h>

int main (void)

{

int m, n;

m = n = 5;

printf("The value %i is stored at address %p\n", m, &m);

printf("The value %i is stored at address %p\n", n, &n);

return 0;

}

Program output:

The value 5 is stored at address 0xbfc7f39c

The value 5 is stored at address 0xbfc7f398

If we were to run this compiled program several times, we would find the addresses different
every time. This proves how variable addresses are allocated at run-time and are not specified by
the source code in any way. Likewise, the allocated addresses are completely independent of the
values used to initialize the variables. We could have set m and n equal to any valid integer values
and the addresses would be arbitrarily chosen at run-time all the same.

17Note the use of the %p formatting identifier for the address. This identifier instructs printf() to display a memory
address in hexadecimal format rather than a regular integer value. Also note how the addresses displayed by this
program at run-time consist of eight hexadecimal characters. Since each hex character is shorthand for four binary
bits, this means our program is running in a computing environment using 32-bit memory addressing.
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Not only does C allow us to probe the memory location (i.e. address) where any variable is
stored, but it also provides a special type of variable which may be used to store those address
values. This special variable type is called a pointer, because the value it contains “points” to the
address of another variable.

Pointer variables are declared the same as any other variable type, but with an asterisk symbol
(*) prefacing the variable’s name so that the compiler is aware of what type of variable the pointer
will be pointing to18. For example, if we wished to declare a pointer named addr for an integer-type
variable, the declaration line would read:

int *addr;

Let’s examine another short program to explore how pointers work:

#include <stdio.h>

int main (void)

{

int n;

int *pn;

pn = &n;

n = -329;

printf("n = %i \n", n);

printf("Pointer address = %p \n", pn);

printf("Value stored at address %p is %i \n", pn, *pn);

return 0;

}

Program output:

n = -329

Pointer address = 0xbfc17538

Value stored at address 0xbfc17538 is -329

18This knowledge is very important for pointer operations, because different types of variables require different
amounts of memory (e.g. char variables are 8-bit, while int variables are typically 16- or 32-bit.).
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The first two lines within this program’s main() function declare the variables used, which is to
say it instructs the computer to reserve specific locations in its memory to store these values. int n

declares an integer variable named n, and int *pn declares a pointer variable named19 pn that will
point to an integer variable’s memory address.

Next, the program initializes these two variables. First we set the pointer pn equal to the address
of n using the “address of” operator (&), and then we set the value of n equal to an arbitrary value
of -329. The order of these two initializations is irrelevant, because the address of n is fixed with
that variable’s declaration. Thus, we may set the pointer equal to n’s address at any time regardless
of n’s content.

The three printf() statements following these initializations perform the following tasks:

• Print the integer value of n

• Print the pointer’s (pn) value which is the address where n is stored in memory

• Print the value of n again, this time by de-referencing the pointer pn

In the C language, a pointer is not just useful for storing the address of another variable, but
by prepending the * operator to the pointer variable’s name we may summon the value stored at
that “pointed” address. This means practically anything possible in C by using the variable n is
also possible by using the de-referenced pointer *pn.

If you examine the pointer’s value (0xbfc17538) you will see it consists of eight hexadecimal
characters, which is equivalent to 32 bits. This is because this program was compiled and run on a
computer having a 32-bit memory address space. If the system were 64-bit we would expect to see
a 16-character hexadecimal value (address) for the pointer, which brings us to an interesting feature
of pointers: they are a special type of variable, the size of which depends on the memory space in
which the executing program operates. Also, since pointers contain memory addresses, the pointer
for a character variable (char) will be the same size as the pointer for an integer number (int) or
for a floating-point number (float), even though those different types of variables are not the same
number of bits each.

Similarly, the value of a pointer is based solely on the memory address of the variable it was
initialized with. If the value of n in our program happens to change, pn will still contain the same
address. Conversely, if we manipulate the value of pn, it will simply point to a different location in
memory without n changing value.

19There is no formal reason for naming the pointer “pn” if we intend to use it to point to the memory address where
n is stored. It’s just that pointers can be a confusing concept, and so it is good to choose a naming convention that
clearly distinguishes pointers from their respective variables while still denoting the association between them. In this
case we are prepending the letter “p” onto the variable’s name in order to designate that variable’s pointer: n is an
integer variable, and pn is variable pointing to the address where integer n resides in the computer’s memory. The
compiler, which cares not for our confusion nor for naming conventions, simply knows pn is a pointer for an integer
number because it was declared int *pn. n and pn only become associated at the following line (pn = &n;) where the
pointer pn is set equal to the address of n.
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While admittedly confusing, pointers make it possible to write very memory-efficient and elegant
code in the C language. They also expand the capability of functions in ways that are very powerful.
To understand this, it is first imperative to understand an intentional limitation of C functions:
arguments are treated on a pass-by-value basis. Recall that an “argument” to a function in C is a
constant or variable found within the parentheses immediately following the function name: e.g. if
we wrote a function named cube() to compute the cube of a number and called that function using
the statement cube(x), the value stored within variable x would be that function’s sole argument.
In C, every function receives a copy of each argument’s value to act upon, and is unaware of the
actual location of the argument in memory. To quote Brian Kernighan and Dennis Ritchie from
their book The C Programming Language:

. . . function arguments are passed by value, that is, the called function receives a
private, temporary copy of each argument, not its address. This means that the function
cannot affect the original argument in the calling function. Within a function, each
argument is in effect a local variable initialized to the value with which the function was
called. [page 71]

The alternative to pass-by-value is pass-by-reference, where the actual variable itself is passed
along to the function when listed as an argument to that function. This would give the function
full control over the passed variable, rather than just act upon whatever value that variable had
stored in it at the time the function was called. Dennis Ritchie, the inventor of C, opted to make his
language’s functions pass-by-value which is simple but in some cases limiting. One of the applications
of pointers is to circumvent this limitation: if we make a pointer one of the arguments to a function,
that function will then “know” the memory location of the “pointed” variable, and thereby be able
to edit the original variable rather than just work with a mere copy of that variable’s value.
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Consider the following program as an example of how pass-by-value works, using a simple function
designed to increment the argument by one:

#include <stdio.h>

void increment (int);

int main (void)

{

int count = 5;

printf("Value is equal to %i\n", count);

increment(count); // "Call" the increment() function,

// "passing" count as the argument

printf("Value is equal to %i\n", count);

return 0;

}

void increment (int copy)

{

copy = copy + 1;

}

Program output:

Value is equal to 5

Value is equal to 5

As you can see, the value of count is unaffected after the increment() function is called: it
begins with a value of 5 and remains at a value of 5, even though the “private, temporary” version
of it (copy) obviously gets incremented by one within the increment() function. If C happened to
operate on a pass-by-reference basis, the increment() function’s local variable copy would actually
become the variable count and thereby be able to influence its value under that alias.
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Now consider this pointer-based version of the same program, initializing a pointer variable to
the count integer’s memory address and then passing that pointer to the increment() function:

#include <stdio.h>

void increment(int *);

int main (void)

{

int count = 5;

int *point;

point = &count;

printf("Value is equal to %i\n", count);

increment(point); // "Call" the increment() function,

// "passing" point as the argument

printf("Value is equal to %i\n", count);

return 0;

}

void increment (int *copy)

{

*copy = *copy + 1;

}

Program output:

Value is equal to 5

Value is equal to 6

point, of course, contains the memory address of count, and as the argument to the increment()
function serves to pass its value (i.e. the address of count) to the “private, temporary” pointer named
copy inside of that function. Within the function, that local pointer is de-referenced so that the
incrementing function will act upon the data stored at that address (i.e. acting upon the value of
count), and so when flow returns to the main() function we find count has actually incremented.
Thus, pointers allow us to write functions acting on the argument variable(s) while still following
C’s “pass-by-value” policy for arguments.
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Another use of pointers is for referencing specific memory addresses in the computer system’s
hardware, such as memory-mapped I/O. This is where special functions provided by hardware
modules use dedicated memory locations for their operation. An example of memory-mapped
I/O appears in the next illustration, showing a partial schematic diagram for a simple 8-bit
microprocessor system and its associated “memory map”:
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In this system two “octal” D-type latch ICs provide eight input and eight output lines where
external devices (e.g. switches connected to inputs and LED indicator lamps to outputs) interface
with the computer’s eight-bit data bus. The two NAND logic gates enable one of these D-type
latches when the correct address value appears on the microprocessor’s 16-bit address bus. In this
particular system, the output latch is enabled for the address value 0x0000 while the input latch is
enabled for the address value 0x0001. Thus, the 8-bit output data word “resides” at address 0x0000
and the 8-bit input data word “resides” at address 0x0001, almost as though these 8-bit words were
ordinary data stored in RAM rather than representing real-world bit signals as they really do.

A program written in C for this computer system could use an 8-bit integer to refer to the output
data word, and another 8-bit integer to refer to the input data word, but if we simply declared two
8-bit integers the compiler would assign those integers to arbitrary locations in RAM memory. In
order to be useful as I/O data, however, we require these two integers be associated with RAM
memory addresses 0x0000 and 0x0001. Therefore, we would have to declare and initialize pointers
to these memory addresses in order to associate them with these specific addresses in memory. This
type of “low-level” access to hardware is what makes the C programming language well-suited for
embedded systems programming and other applications where the peculiarities of specific hardware
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platforms must be accommodated in code.
For example, the following two lines of C code assign pointers named pIN and pOUT to the memory

addresses of the I/O registers shown in the previous schematic diagram:

uint8_t * const pIN = (uint8_t *) 0x0001;

uint8_t * const pOUT = (uint8_t *) 0x0000;

Since each of these I/O registers is exactly eight bits in size, we use the 8-bit unsigned integer
data type uint8 t for these pointers. Note also how we cast the hexadecimal values 0x0001 and
0x0000 to this same 8-bit pointer type using (uint8 t *). The const qualifier declares the pointer
as a constant which may be read but not written to. Mind you, the I/O port each pointer points to
may vary in content, but each pointer will be properly fixed at its respective address.

Once declared and initialized as shown, the de-referenced pIN and pOUT pointers may be used to
read and write data from and to these I/O registers:

// Testing bit 0 of input port for being in a high state

if (*pIN & 0b00000001)

// (Then do something!)

// Setting bit 7 high on output port

*pOUT |= 0b10000000;

Pointers have many other uses in general-purpose programming too, but most of those require
knowledge of different types of data which we will explore in subsequent sections.
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3.18 Arrays

In mathematics we often use letters of the alphabet to represent variables and constants. However,
due to the limited number of letters in any given alphabet there are many circumstances where there
just aren’t enough of them to adequately represent all the variables and/or constants we have in
mind, or at least not enough of them to do so in a way that makes for sensible notation. For example,
when mathematically analyzing multi-resistor electrical networks we typically use the capital letter
R as the variable for resistance, but instead of using a different letter to represent each resistor’s
value we instead use subscripts to differentiate all the different resistor values from one another (e.g.
R1, R2, R3, etc.).

In the C language we also use letters of the alphabet to represent variables and constants,
and indeed we may use whole words as unique variable names (e.g. count, index, resistance).
However, C also provides a means of declaring a series of variables with the same lettered name,
the variables in each series differentiated from each other by a numerical value (enclosed in bracket
symbols) analogous to a mathematical subscript. For example, instead of R1, R2, and R3 as we
might see in a mathematical formula, in a C program we could use R[1], R[2], and R[3].

Such a series of variables is called an array. The simple program shown below declares an array
of three floating-point variables, then uses them to calculate an average:

#include <stdio.h>

int main (void)

{

float value[3];

int count;

for (count = 0 ; count < 3 ; ++count)

{

printf("Enter value number %i: ", count);

scanf("%f", &value[count]);

}

printf("Average = %f \n", (value[0] + value[1] + value[2])/3);

return 0;

}

Program output:

Enter value number 0: -32.7

Enter value number 1: 2.004

Enter value number 2: 0.321

Average = -10.125000
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As no doubt you can discern from the code listing, a three-element array is declared with the
numerical value of three within the brackets of the declaration line, but actually consists of elements
numbered 0, 1, and 2 because the element numbers always begin with zero. Just like single-variable
data types, it is possible for us to declare and initialize an array with a single instruction, as shown
in the following sample program using the same values entered by the user in the previous program:

#include <stdio.h>

int main (void)

{

float value[3] = {-32.7, 2.004, 0.321};

printf("Average = %f \n", (value[0] + value[1] + value[2])/3);

return 0;

}

These three initializing values, of course, get assigned to the value array such that:

• value[0] = -32.7

• value[1] = 2.004

• value[2] = 0.321
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Arrays aren’t just useful as a method to represent subscripted variables, although they do an
admiral job of that. One of the unique properties of arrays in C is that they always occupy sequential
memory addresses, and this allows them to be accessed very efficiently using pointers. Here is a
simple program using the %p pointer format specifier and the “address of” operator (&) within each
printf() instruction to show memory addresses for the five integer variables within this array:

#include <stdio.h>

int main (void)

{

int n[5];

printf("Address of n[0] is %p \n", &n[0]);

printf("Address of n[1] is %p \n", &n[1]);

printf("Address of n[2] is %p \n", &n[2]);

printf("Address of n[3] is %p \n", &n[3]);

printf("Address of n[4] is %p \n", &n[4]);

return 0;

}

Every time we run this program we will see different memory addresses displayed for the five
variables, but those addresses values will always be separated by the same interval of four:

Program output:

Address of n[0] is 0x7fffc64fb040

Address of n[1] is 0x7fffc64fb044

Address of n[2] is 0x7fffc64fb048

Address of n[3] is 0x7fffc64fb04c

Address of n[4] is 0x7fffc64fb050

The reason for an address interval of four is because this example program was compiled and
run on a 32-bit computer. This makes the default word size of an integer variable (int) 32 bits, or
four bytes each.
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If we modify the program to use long integers rather than normal integers for this array, we will
see that the address interval will be doubled to eight bytes (64 bits):

#include <stdio.h>

int main (void)

{

long n[5];

printf("Address of n[0] is %p \n", &n[0]);

printf("Address of n[1] is %p \n", &n[1]);

printf("Address of n[2] is %p \n", &n[2]);

printf("Address of n[3] is %p \n", &n[3]);

printf("Address of n[4] is %p \n", &n[4]);

return 0;

}

Every time we run this program we will see different memory addresses displayed for the five
variables, but those address values will always be separated by the same interval of eight:

Program output:

Address of n[0] is 0x7fff9176fa70

Address of n[1] is 0x7fff9176fa78

Address of n[2] is 0x7fff9176fa80

Address of n[3] is 0x7fff9176fa88

Address of n[4] is 0x7fff9176fa90
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If we declare an integer-type pointer variable, and then initialize that variable to the first element
of the array, we may display those values using simple pointer arithmetic:

#include <stdio.h>

int main (void)

{

int n[3] = {5, -7, 0};

int *pnt;

printf("Using subscripts:\n");

printf("Value of n[0] is %i \n", n[0]);

printf("Value of n[1] is %i \n", n[1]);

printf("Value of n[2] is %i \n", n[2]);

pnt = &n[0];

printf("\nUsing pointers:\n");

printf("Value of n[0] is %i \n", *(pnt));

printf("Value of n[1] is %i \n", *(pnt + 1));

printf("Value of n[2] is %i \n", *(pnt + 2));

return 0;

}

As you can see, the printed results are identical:

Program output:

Using subscripts:

Value of n[0] is 5

Value of n[1] is -7

Value of n[2] is 0

Using pointers:

Value of n[0] is 5

Value of n[1] is -7

Value of n[2] is 0

A very important characteristic about pointer arithmetic is that any offset we add to or subtract
from a pointer increments or decrements that pointer by however many bytes is necessary to go to
the next element of the array. As we saw previously, if our array uses 32-bit variables (e.g. int)
the address values stored in each pointer will be spaced at intervals of four bytes (32 bits), but if
we use long integers instead the address values are spaced at intervals of eight bytes (64 bits). In
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either case, though, we may use the same pointer arithmetic to increment from element to element
– i.e. pnt + 1 will always go to the next memory address appropriate to the data type. This, in
fact, is why we need to specify a data type when declaring a pointer variable, so that the C compiler
is aware of the type of variable that pointer will reference. This “type awareness” makes pointer
arithmetic much simpler than if we needed to tell a pointer exactly how many bytes to advance for
the next variable. The following program shows an example with two different types of integers:

#include <stdio.h>

int main (void)

{

int m[3] = {0, 9, 4};

int *pshort;

pshort = &m[0];

printf("Value of m[0] is %i at address %p \n", *pshort, pshort);

printf("Value of m[1] is %i at address %p \n", *(pshort + 1), pshort + 1);

printf("Value of m[2] is %i at address %p \n", *(pshort + 2), pshort + 2);

long n[3] = {5, 7, 2};

long *plong;

plong = &n[0];

printf("Value of n[0] is %li at address %p \n", *plong, plong);

printf("Value of n[1] is %li at address %p \n", *(plong + 1), plong + 1);

printf("Value of n[2] is %li at address %p \n", *(plong + 2), plong + 2);

return 0;

}

As you can see, the same pointer arithmetic is useful for retrieving the stored data despite
differences in data types and the number of bytes used in memory for each integer:

Program output:

Value of m[0] is 0 at address 0x7fff8a1cd130

Value of m[1] is 9 at address 0x7fff8a1cd134

Value of m[2] is 4 at address 0x7fff8a1cd138

Value of n[0] is 5 at address 0x7fff8a1cd110

Value of n[1] is 7 at address 0x7fff8a1cd118

Value of n[2] is 2 at address 0x7fff8a1cd120
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Another way to handle pointer arithmetic is to use increment and/or decrement operators rather
than absolute offsets added to or subtracted from the pointer. We may see these techniques at work
in the following example program, using both prefix and postfix20 operators:

#include <stdio.h>

int main (void)

{

int m[3] = {0, 1, 2};

int *pshort;

pshort = &m[1]; // Initialize pointer to middle of array (m[1])

printf("%i\n", *pshort); // Show value stored in m[1]

printf("%i\n", *(++pshort)); // Increment pointer and then show value (m[2])

printf("%i\n", *(--pshort)); // Decrement pointer and then show value (m[1])

printf("%i\n", *(pshort--)); // Show value (m[1]) and then decrement pointer

printf("%i\n", *(pshort--)); // Show value (m[0]) and then decrement pointer

return 0;

}

Program output:

1

2

1

1

0

This program deserves careful observation and reading of the comments.

20The “prefix” operator takes the form ++x and increments the value before using that incremented value for the
next operation. The “postfix” operator takes the form x++ and uses the value before incrementing it. On a humorous
note, the C++ language is a pun on the postfix increment operator, the idea being that in the C++ language we first
make use of all the basic syntax and capabilities of C and then augment it with additional features. Thus, C++ is
really an extension of the C language.
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A final and very important note about pointers and their use with arrays within the C language
is that the name of an array is actually a pointer to its first element. This means the following two
C instructions are functionally identical:

pshort = &m[0];

pshort = m; // "m" is actually a pointer to m[0]

You will often find pointers initialized in C using the latter technique, capitalizing on the fact that
an array’s name is a pointer itself. An important caveat here is that an array’s name is a constant
pointer and therefore not subject to pointer arithmetic. That is to say, we are free to increment
and decrement pshort at will, but we cannot change the value of m because it is a constant fixed at
run-time when the computer first assigns memory addresses to all the array elements.
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A very useful capability of arrays in the C language is that they may have more than one
dimension. So far all the arrays we have explored were one-dimensional, which is to say they each
had just one subscript. However, we can easily declare and use multi-subscript arrays such as in
the following example showcasing a three-by-three array storing the integer numbers 1 through 9 in
sequence:

#include <stdio.h>

int main (void)

{

int x[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

int n, m;

for (n = 0 ; n < 3 ; ++n)

{

for (m = 0 ; m < 3 ; ++m)

{

printf("%i ", x[n][m]);

}

printf("\n");

}

return 0;

}

Program output:

1 2 3

4 5 6

7 8 9
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3.19 Structures

A structure in the C programming language is a collection of variables, like an array, except that
unlike arrays which must consist of a collection of variables of exactly the same type, a structure
may encompass multiple types of variables. As a collection of multiple variables, often of mixed
type, a structure really represents a custom data type that you may create in C.

#include <stdio.h>

int main (void)

{

// Defining a new data structure type called "resistor" consisting

// of two floating-point variables and one integer variable:

struct resistor

{

float value;

float tolerance;

int stock;

};

struct resistor R1; // Declaring an instance of that data type named "R1":

// Here we initialize the elements of R1 with constant values:

R1.value = 2.7e3;

R1.tolerance = 0.05;

R1.stock = 479;

printf("We have %i resistors in stock that are ", R1.stock);

printf("%g Ohms plus or minus ", R1.value);

printf("%g percent.\n", R1.tolerance * 100.0);

return 0;

}

Program output:

We have 479 resistors in stock that are 2700 Ohms plus or minus 5 percent.

Note how the data structure’s definition is enclosed in curly-braces, and only after this definition
is the compiler ready to declare an instance of this newly-defined structure. Once declared, we access
each of the structure’s elements (value, tolerance, and stock) using a dot symbol (.) separating
the instance’s name from the element names.
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Shown here is another simple C program defining the same “resistor” data structure type and
then declaring two instances of that type:

#include <stdio.h>

int main (void)

{

struct resistor // Defining the data structure type

{

float value;

float tolerance;

int stock;

};

struct resistor R1; // Declaring an instance of that new type

struct resistor R2; // Declaring another instance of that new type

R1.stock = 479;

R2.stock = 210;

printf("We have %i more R1 resistors in stock ", R1.stock - R2.stock);

printf("than R2 resistors.\n");

return 0;

}

Program output:

We have 269 more R1 resistors in stock than R2 resistors.

Once a new data type has been defined, we may declare as many instances of that type as we wish.
Note how in this example we neither initialize nor use any of the nominal value or tolerance elements
of R1 or R2, but only the integer “stock” elements. Bear in mind that declared but uninitialized
variables, whether stand-alone or as part of a larger data structure, may contain random values and
should not be trusted for any program control functions.
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Yet another way to declare instances of structures is to add the declarations immediately at the
end of the structure definition, prior to the terminating semicolon. Below we see an example of this,
which is a modification of the previous program, declaring structures R1 and R1:

#include <stdio.h>

int main (void)

{

struct resistor

{

float value;

float tolerance;

int stock;

} R1, R2; // Declaring R1 and R2 here

R1.stock = 479;

R2.stock = 210;

printf("We have %i more R1 resistors in stock ", R1.stock - R2.stock);

printf("than R2 resistors.\n");

return 0;

}
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These C program examples using structures to store attributes of various electrical resistors
should make us wonder, is it possible to create an array of structures in case we have a great many
different resistors to catalogue? The answer to this question is yes, as shown by the following
program which creates a four-element21 array of resistors all based on the same data structure type:

#include <stdio.h>

int main (void)

{

struct resistor

{

float value;

int stock;

};

struct resistor R[4];

float sum;

R[1].value = 2.7e3;

R[1].stock = 479;

R[2].value = 1.0e3;

R[2].stock = 210;

R[3].value = 7.9e3;

R[3].stock = 1085;

sum = ((R[1].value * R[1].stock)

+ (R[2].value * R[2].stock)

+ (R[3].value * R[3].stock));

printf("If we connected all our in-stock resistors in series,\n");

printf("the total resistance would be %g Ohms.\n", sum);

return 0;

}

Program output:

If we connected all our in-stock resistors in series,

the total resistance would be 1.00748e+07 Ohms.

21This array contains structures R[0], R[1], R[2], and R[3]. As we do not normally begin labeling resistors
beginning with zero, though, this program only makes use of the last three.
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Just like normal arrays, an array of structure types may also be initialized in the same line(s) of
code used to declare. Consider this variation of the previous program:

#include <stdio.h>

int main (void)

{

struct resistor

{

float value;

int stock;

};

struct resistor R[4] = {0.0 , 0 ,

2.7e3 , 479 ,

1.0e3 , 210 ,

7.9e3 , 1085};

float sum;

sum = ((R[1].value * R[1].stock)

+ (R[2].value * R[2].stock)

+ (R[3].value * R[3].stock));

printf("If we connected all our in-stock resistors in series,\n");

printf("the total resistance would be %g Ohms.\n", sum);

return 0;

}

Program output:

If we connected all our in-stock resistors in series,

the total resistance would be 1.00748e+07 Ohms.

Note how the initialization of the R[] array has four sets of value/stock constants shown, the
first set consisting of zero and zero. This is due to the fact that any time we declare an array in C,
the range of index values always begins at [0]. Thus, the R[4] four-element array consists of R[0],
R[1], R[2], and R[3]. Even though we’re only using R[1] through R[3] later in the program, bulk
initialization of the array demands we populate R[0] as well.
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Not surprisingly, pointers may be used to reference structures in a manner similar to how they are
used to reference arrays. An interesting difference with structures is that C introduces a new “arrow”
operator (->) specifically for this purpose. Examine the following program to see four different ways
we may reference elements of a structure, using either dot operators or arrow operators:

#include <stdio.h>

int main (void)

{

struct resistor

{

float value;

int stock;

};

struct resistor R1 = {2.7e3 , 479};

struct resistor *pR1;

pR1 = &R1; // Initializing pointer pR1 to the first address of structure R1

// Accessing elements of R1 using dot operators:

printf("Resistance value = %g\n", R1.value);

printf("Number in stock = %i\n", R1.stock);

// Accessing elements of R1 using pointer and dot operators:

printf("Resistance value = %g\n", (*pR1).value);

printf("Number in stock = %i\n", (*pR1).stock);

// Accessing elements of R1 using "address-of" and arrow operators:

printf("Resistance value = %g\n", (&R1)->value);

printf("Number in stock = %i\n", (&R1)->stock);

// Accessing elements of R1 using pointer and arrow operators:

printf("Resistance value = %g\n", pR1->value);

printf("Number in stock = %i\n", pR1->stock);

return 0;

}

When run, the four different sets of printf() instructions output the same results: the resistor
value followed by the in-stock quantity.
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Just as pointers may be incremented to index different elements of an array, here pointers may
also be incremented to index different structure elements in an array of structures:

#include <stdio.h>

int main (void)

{

struct resistor

{

float value;

int stock;

};

struct resistor R[4] = {0.0 , 0 ,

2.7e3 , 479 ,

1.0e3 , 210 ,

7.9e3 , 1085};

struct resistor *ptr;

int n;

ptr = &R[0]; // Initializing pointer to the first address of structure R[0]

for (n = 0 ; n < 4 ; ++n)

{

printf("Elements of structure R[%i]:\n", n);

printf("Resistance value = %g\n", ptr->value);

printf("Number in stock = %i\n\n", ptr->stock);

++ptr;

}

return 0;

}
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Program output:

Elements of structure R[0]:

Resistance value = 0

Number in stock = 0

Elements of structure R[1]:

Resistance value = 2700

Number in stock = 479

Elements of structure R[2]:

Resistance value = 1000

Number in stock = 210

Elements of structure R[3]:

Resistance value = 7900

Number in stock = 1085
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3.20 Unions

Another custom data type in C is the union which appears quite similar in form to a structure
but serves an entirely different purpose. Rather than binding multiple variables (and often, multiple
data types) together into one data structure, the union reserves a location in the computer’s memory
large enough to hold the largest data type it contains, but allows access to all other data types under
the same union name.

In the following example program we define a union type consisting of a 16-bit unsigned integer
together with an 8-bit unsigned integer. Being a union, the compiler reserves 16 bits for it which is
large enough to hold either the 16-bit integer outright or the 8-bit integer with eight more bits of
“padding”:

#include <stdio.h>

#include <stdint.h>

int main (void)

{

union sample // Defining the union

{

uint16_t x; // 16-bit unsigned integer

uint8_t y; // 8-bit unsigned integer

};

union sample z; // Declares one instance of the union named "z"

z.x = 45; // Initializes z.x to a value of 45

printf("The value stored in X is: %i\n", z.x);

printf("The value stored in Y is: %i\n", z.y);

z.x = 1299; // Initializes z.x to a value of 1299

printf("The value stored in X is: %i\n", z.x);

printf("The value stored in Y is: %i\n", z.y);

return 0;

}
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When we run this program, we see that storing the value of 45 into the union z results in that
same value being displayed for z.x as well as for z.y. However, when we try storing the much larger
value of 1299 into the union, we see a sharp difference between the 16-bit versus 8-bit representations
of that number:

Program output:

The value stored in X is: 45

The value stored in Y is: 45

The value stored in X is: 1299

The value stored in Y is: 19

To understand what is happening at the computer’s level, we must break down each of these
quantities into their raw binary representations. The number 45 in binary is 0b101101, a 6-bit
value that easily fits into either an 8-bit or a 16-bit field. However, the number 1299 in binary is
0b10100010011, an 11-bit value that fits easily into a 16-bit field but not into an 8-bit field. If
we examine the least-significant eight bits of 0b10100010011, however, we see they form the value
19 (0b00010011). In other words, the 8-bit integer z.y simply refers to the last eight bits of the
quantity stored within this union.

This is one of the useful applications of a union in C: to view portions of a larger data type.

Another application of unions in C programming is to swap the order of bytes and words within
variables read from one computer system to another. One of the supremely annoying idiosyncrasies
of digital data formatting is that different computer system designs may store the same multi-byte
numbers in different byte orders. For example, suppose a hypothetical computer stored a 32-bit
floating-point value as four consecutive bytes in memory, which we will represent in this discussion
as ABCD. A different computer might be designed to store that same four-byte value with the byte-
pairs swapped (BADC), with 16-bit words swapped (CDAB), or both words and bytes swapped
(DCBA). The consequence of these different byte-orderings between computers is that when one
computer reads the 32-bit value from the other via a network there may be a need to perform
byte-swaps and/or word-swaps to ensure the data is properly understood.
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The following program shows how unions may be used to break down a 32-bit number into
individual bytes, and then swap and reassemble those bytes in different orders, printing out the
corresponding floating-point representations of each:

#include <stdio.h>

#include <stdint.h>

int main (void)

{

union

{

uint32_t word;

uint8_t byte[4];

} in;

union

{

uint32_t word;

uint8_t byte[4];

float real;

} out;

in.word = 0x1234CDEF;

// Maintaining the original order of the bytes (ABCD)

out.byte[0] = in.byte[0]; // A

out.byte[1] = in.byte[1]; // B

out.byte[2] = in.byte[2]; // C

out.byte[3] = in.byte[3]; // D

printf("ABCD ordered hexadecimal value is %X\n", out.word);

printf("ABCD ordered floating-point value is %f\n\n", out.real);

// Byte-swapping according to the pattern BADC

out.byte[0] = in.byte[1]; // B

out.byte[1] = in.byte[0]; // A

out.byte[2] = in.byte[3]; // D

out.byte[3] = in.byte[2]; // C

printf("BADC ordered hexadecimal value is %X\n", out.word);

printf("BADC ordered floating-point value is %f\n\n", out.real);

// Word-swapping according to the pattern CDAB

out.byte[0] = in.byte[2]; // C

out.byte[1] = in.byte[3]; // D

out.byte[2] = in.byte[0]; // A
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out.byte[3] = in.byte[1]; // B

printf("CDBA ordered hexadecimal value is %X\n", out.word);

printf("CDAB ordered floating-point value is %f\n\n", out.real);

// Byte-swapping AND word-swapping according to the pattern DCBA

out.byte[0] = in.byte[3]; // D

out.byte[1] = in.byte[2]; // C

out.byte[2] = in.byte[1]; // B

out.byte[3] = in.byte[0]; // A

printf("DCBA ordered hexadecimal value is %X\n", out.word);

printf("DCBA ordered floating-point value is %f\n\n", out.real);

return 0;

}

Program output:

ABCD ordered hexadecimal value is 1234CDEF

ABCD ordered floating-point value is 0.000000

BADC ordered hexadecimal value is 3412EFCD

BADC ordered floating-point value is 0.000000

CDBA ordered hexadecimal value is CDEF1234

CDAB ordered floating-point value is -501368448.000000

DCBA ordered hexadecimal value is EFCD3412

DCBA ordered floating-point value is -127014752317184782918557368320.000000

The ability of a union to interpret a common 32-bit field as either a single 32-bit integer, as
four 8-bit integers (bytes), or as a single 32-bit floating-point number makes the task of byte- and
word-swapping very simple and easy to understand. This program loads the given 32-bit value into
the in union, then uses a series of assignment operations to copy each of the 8-bit bytes of that
given value to different bytes of the out union, and then displays each of the out union’s values as
a 32-bit floating-point number.
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3.21 Debugging

A very powerful tool available in all modern C compiler suites is something called a debugger, which
(among many other things) allows you to monitor the operation of your program as it executes
line-by-line through the source code. In this section I will show some of the capabilities of the GNU
Debugger (known as GDB), which is the companion debugging application to the popular GCC
compiler. We will begin by viewing the source code of a very simple C program:

This screenshot shows the line-numbering option turned on in my text editor, where each line of
code is numbered and shown in yellow on the left-hand edge of the display. These yellow numbers
are not part of the source code, but merely a display feature of the text editor. Your text editor may
look slightly different than mine, but should still provide an option to automatically number each
line of code in the source file. This line numbering is very important for command-line debuggers,
as it provides a reference to let you know where it is in the program’s execution.

When compiling source code for a debugging session, a special option must be turned on to
instruct the compiler to include debugging data within the executable file. When using GCC to
compile the code, this will be the -g option:

gcc -g source.c

Without the -g option activated when compiling, the executable file will not have all the
information that the debugger software needs to track the program’s execution and relate that
to specific lines of source code at run-time.
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After compiling the source code and creating an executable file (named a.out by default when
using GCC), you start GDB by typing gdb a.out at the command line. On this and the next page
is a recording of a simple GDB debugging session conducted on this simple program:

GNU gdb (GDB) 7.5

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i486-slackware-linux".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/tony/a.out...done.

(gdb) break main

Breakpoint 1 at 0x80483f5: file junk.c, line 7.

(gdb) run

Starting program: /home/tony/a.out

Breakpoint 1, main () at junk.c:7

7 int a=3, b=4, c, d, e;

(gdb) display a

1: a = -1208299532

(gdb) display b

2: b = 134513787

(gdb) display c

3: c = -1207963660

(gdb) display d

4: d = -1208298620

(gdb) display e

5: e = -1209667219

(gdb) s

8 c = a - b;

5: e = -1209667219

4: d = -1208298620

3: c = -1207963660

2: b = 4

1: a = 3

(gdb) s

9 d = b - a;

5: e = -1209667219

4: d = -1208298620

3: c = -1

2: b = 4

1: a = 3

(gdb) s
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11 e = myfunction(a,b);

5: e = -1209667219

4: d = 1

3: c = -1

2: b = 4

1: a = 3

(gdb) s

myfunction (x=3, y=4) at junk.c:20

20 result = (5 * x) - (2 * y);

(gdb) display x

6: x = 3

(gdb) display y

7: y = 4

(gdb) display result

8: result = 134518564

(gdb) s

22 return result;

8: result = 7

7: y = 4

6: x = 3

(gdb) s

23 }

8: result = 7

7: y = 4

6: x = 3

(gdb) s

main () at junk.c:13

13 return 0;

5: e = 7

4: d = 1

3: c = -1

2: b = 4

1: a = 3

(gdb) s

14 }

5: e = 7

4: d = 1

3: c = -1

2: b = 4

1: a = 3

(gdb) s

0xb7e455a5 in __libc_start_main () from /lib/libc.so.6

(gdb) s

Single stepping until exit from function __libc_start_main,

which has no line number information.

[Inferior 1 (process 2061) exited normally]
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Let’s dissect this debugging session one command at a time.

GNU gdb (GDB) 7.5

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i486-slackware-linux".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/tony/a.out...done.

(gdb)

After start-up, the command-line prompt always begins with (gdb) to let you know you’re
“inside” of a GDB debugging session and not accessing the regular console command line. My first
typed command issued to GDB is break main which instructs GDB to insert a breakpoint into the
program which will prompt it to halt execution and await further input before proceeding with the
execution:

(gdb) break main

Breakpoint 1 at 0x80483f5: file junk.c, line 7.

Without any breakpoints set up, the program will simply run from beginning to end without
stopping. The whole point of using a debugger is to halt the program in mid-execution to examine
how it is functioning (or malfunctioning!), and so we need to specify some condition(s) for GDB to
halt execution. Note that a breakpoint may be specified in ways other than by function name as
I did here, including by line number in the source code file. Next, I enter run which tells GDB to
begin running the program:

(gdb) run

Starting program: /home/tony/a.out

Breakpoint 1, main () at junk.c:7

7 int a=3, b=4, c, d, e;

After confirming that the program is now running, GDB announces that it reaches the first
breakpoint at the main() function on line 7 of the source code. Consulting our text editor display,
we see line 7 is not the title line of the main() function, but rather the first instruction within the
main() function. Next, GDB shows the line number (7) followed by the actual source code on that
line.

At this point in time, GDB has not allowed that line to execute yet, but is merely showing you
what it will do when executed.
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Next, I issue GDB five commands, telling it to display the variables a through e in the program.
These display commands will remain active so long as the program’s execution stays within the
main() function.

(gdb) display a

1: a = -1208299532

(gdb) display b

2: b = 134513787

(gdb) display c

3: c = -1207963660

(gdb) display d

4: d = -1208298620

(gdb) display e

5: e = -1209667219

After typing in each display command, GDB responds by showing me the value of each specified
variable. Note how none of these variables have sensible values in them (yet). Variables a and b

will become initialized only after line 7 executes, which is has not yet. The other variables require
computation by other lines in the program before they are initialized. All those huge numerical
values are completely random, resulting from whatever data happened to be in those addresses of
the computer’s memory at the time the program started.
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Now we need to tell GDB what to do after it’s stopped at the first breakpoint. The option I
apply in this example is step, which may be issued in its abbreviated form s. The “step” command
tells GDB to proceed to the next line of code in the source file and stop again. Here we see three
successive “steps” in the program’s execution, and at each one we see the five displayed variable
values:

(gdb) s

8 c = a - b;

5: e = -1209667219

4: d = -1208298620

3: c = -1207963660

2: b = 4

1: a = 3

(gdb) s

9 d = b - a;

5: e = -1209667219

4: d = -1208298620

3: c = -1

2: b = 4

1: a = 3

(gdb) s

11 e = myfunction(a,b);

5: e = -1209667219

4: d = 1

3: c = -1

2: b = 4

1: a = 3

Note how one by one these variables become initialized to their proper values following the
execution of each instruction listed in the source code. Again, it is important to remember that
the source line listed prior to each set of displayed variables has not yet executed, but will execute
following the next “step” command. This is why, for example, we see c = -1207963660 listed after
the line 8 c = a - b;, and c = -1 after the next s command (while waiting to execute 9 d =

b - a;).
Single-stepping a program in this manner is the simplest way to use a debugger to examine a

program’s execution, but it is not the only way. GDB offers options to step a certain number of
times with one command, for example, as well as a similar command named next (abbreviated n)
designed to skip past certain lines in a program that are usually of less interest. As this is not a full
instruction manual for GDB, the reader is encouraged to reference official documentation for the
GDB debugger to learn more about the other options.
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Following the next step command, the program execution jumps to myfunction(). In the interest
of tracking all variable values in this program, I now22 issue three more “display” commands for the
local variables within this function:

(gdb) s

myfunction (x=3, y=4) at junk.c:20

20 result = (5 * x) - (2 * y);

(gdb) display x

6: x = 3

(gdb) display y

7: y = 4

(gdb) display result

8: result = 134518564

At this point in the program’s execution we see x and y already initialized to the proper values
by the function call (passing a and b to x and y, respectively), but result shows up with a random
value because it has not yet been initialized.

Issuing more “step” commands to proceed through myfunction():

(gdb) s

22 return result;

8: result = 7

7: y = 4

6: x = 3

(gdb) s

23 }

8: result = 7

7: y = 4

6: x = 3

Now we have reached the end of myfunction() and are awaiting return to main(). We see this
happen with the next “step” command:

(gdb) s

main () at junk.c:13

13 return 0;

5: e = 7

4: d = 1

3: c = -1

2: b = 4

1: a = 3

Finally all the program’s variables have their properly-calculated values.

22This was not an option at the start-up of GDB, because the variables x, y, and result are local to myfunction()

and thus unknown to main(). GDB only allows you to call for the display of variables it’s already aware of in the
debugging session.
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The next three step commands bring the program to its natural terminus:

(gdb) s

14 }

5: e = 7

4: d = 1

3: c = -1

2: b = 4

1: a = 3

(gdb) s

0xb7e455a5 in __libc_start_main () from /lib/libc.so.6

(gdb) s

Single stepping until exit from function __libc_start_main,

which has no line number information.

[Inferior 1 (process 2061) exited normally]
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3.22 Simple graphics using C

The official C language standard offers no built-in graphics capabilities. Unlike text functions such
as printf() which are part of C’s Standard I/O (stdio), C has no intrinsic function(s) for drawing
graphical shapes on a computer screen.

C, like all complete programming languages, is extensible which means it is possible to extend
its capabilities by writing special algorithms using standard C functions and then include those new
functions in C code libraries which may be imported into other C-based programming projects. At
a fundamental level, any programming language capable of writing data to a computer’s memory as
well as to peripheral hardware is capable of instructing that computer to do anything it is physically
capable of doing, including the generation of graphic images. A graphics library written for this
purpose simplifies the task for you, the programmer, by providing convenient functions you can call
within your code while the library handles all the detailed and confusing work of writing data to
the correct memory addresses and I/O busses. The major problem with graphics programming,
though, is that there exists no industry-wide standard for graphics hardware which means at some
level any C code written to produce arbitrary graphical images will only work with certain types of
computer hardware (and/or certain specific operating system software). What might be an easy-
to-use graphics library written for Intel x86 processors running DOS or Windows might be useless
for a Motorola-based processor running some other operating system. This problem is known as
portability, where code written for one machine and/or operating system software will not work on
another machine and/or operating system. Portability problems exist for a great many programming
tasks, but graphics programming seems especially plagued by issues of non-portability.

Some modern graphics-programming libraries such as OpenGL constitute an admirable attempt
to make graphics programming more standardized, but this cross-platform solution is both
complicated and computationally expensive. For the beginning C programmer who just wants to
paint a few simple images on a screen, the learning curve imposed by OpenGL is daunting. For the
C programmer who wishes to add graphics capability to an embedded computer system with limited
processing speed, memory, and video capability, OpenGL may not work at all.

As you no doubt have ascertained by now, this is not a comprehensive tutorial on the C
programming language. There is much about the standard, built-in features of C we simply have
not and will not explore within these pages. In keeping with this “introductory” theme, you will
doubtless be unsurprised by the fact that we will not teach you how to draw complicated graphics
using any C libraries, either. However, we will explore a couple of ways you may use C to produce
simple and relatively portable graphics for virtually any size of computer.

The first graphics technique we will introduce is a library known as ncurses, developed as a way
to vastly improve upon the plain-text capabilities of printf(). This library lets you place colored
monospaced-type text anywhere on the computer’s console, with locations specified by x and y

coordinates.
The second graphics technique is more or less cheating, by using existing software applications

to render graphics from plain-text output from a C program you write. This way, your C code
doesn’t actually have to handle any graphics rendering on its own, but merely produces a stream
of text describing how some other “back-end” application should. For certain applications such as
mathematical visualization (e.g. plotting graphs), this is perhaps the simplest and fastest way to
get the job done, and should be learned by any new student of C.
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3.22.1 Ncurses

The legacy Unix operating system was created as a multi-user operating system for mainframe
computers to serve a great many users logged in through simple “dumb” terminals capable only of
transmitting ASCII characters typed at a keyboard and displaying ASCII characters in monospaced
typeface on a monochromatic screen. These user terminals communicated with the mainframe
computer via serial networks such as RS-232, acting essentially as remote keyboards and monitors
for the single mainframe computer. As user interfaces they were well-suited to the simple printf()
and scanf() programs you’ve explored in this Tutorial, but were incapable of displaying complex
graphical images such as polygons or photographs. The display palette of a terminal was divided into
cells addressed by row and column numbers, each cell capable of displaying a single alphanumeric
character.

Some terminals had capabilities beyond the display of plain ASCII text, including the ability to
render text in different colors and to place text in arbitrary cell positions rather than always left-
to-right and top-to-bottom. These special features were triggered by sending “escape characters”
that are part of the ASCII standard, instructing the terminal how to render subsequent ASCII
alphanumeric characters on the screen. A program written to display text on such a terminal could
be written to include these escape characters in the data transmitted to the terminal, causing it to
display text in more sophisticated ways. However, since terminal capabilities beyond basic ASCII
alphanumeric text were not standardized, this meant writing non-portable code for specific models
of terminal.

A solution to this portability problem was a code library named curses, providing a set of
standardized C functions for placing and coloring text at arbitrary locations on a terminal’s screen,
as well as accepting typed user input. This was included within AT&T’s System V version of the
Unix operating system, and it greatly simplified the task of writing application programs to produce
fancy output on terminal screens. No longer did the application programmer have to master the
idiosyncratic specifications of each terminal model, but now only had to learn a few curses function
calls.

In 1993 a software developer named Thomas Dickey wrote an open-source work-alike version of
AT&T’s System V Release 4.0 curses, calling it ncurses (for “new” curses). This free version has
found its way into most Linux operating system distributions and enjoys continued support to this
day (2022).

One might be prompted to wonder, why consider a primitive character-cell based graphics library
now that we live in the 21st century? The answer to this (good) question is two-fold: (1) ncurses
is far simpler to learn than most any modern graphics library which is good news for beginning
programmers, and (2) ncurses requires far less computational power and memory usage than any
“modern” graphics programming technique which is strongly advantageous for applications running
on embedded systems where processing power, memory, and network bandwidth are often quite
limited. For example, an ncurses application running on a “host” computer may be displayed
remotely by any other computer via an ssh connection to that host, using very little network
bandwidth. An important engineering lesson resides here: so long as the underlying standards
(e.g. ASCII encoding, terminfo terminal specifications) continue to be supported, a programming
technique is not obsolete. New and sophisticated does not always mean better. Sometimes an “old”
solution is optimal for reasons such as speed, reliability, economy, etc.
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Many tutorials and references exist for the ncurses API23, and so here we will explore only a
few of the most important features and functions of ncurses.

• Your C program must include the header file ncurses.h at or near the beginning of your
source file.

• When compiling, you must link the ncurses library. For a command-line compiler such as
GCC, this means specifying -lncurses.

• An ncurses session is invoked by calling the initscr() function.

• An ncurses session is ended by calling the endwin() function.

• Use printw() to print text to the ncurses “window” rather than printf(). Otherwise, syntax
is the same.

• Position the cursor using the move() function, which takes two integer arguments. The first
argument specifies the y-axis location (i.e. the row number) while the second argument
specified the x-axis location (i.e. the column number). For example, move(5,8) moves the
cursor to row 5 and column 8. The coordinate (0, 0) resides at the upper-left corner.

• Two constants within ncurses are automatically initialized at start-up which detect the
console’s dimensions: LINES specifies the number of rows (y axis) in the display and COLS

specifies the number of columns (x axis). This is important when writing ncurses applications
for a window of unknown size, as you can use these pre-defined constants to set boundaries
for how far you may move() the cursor!

• The start color() function initiates ncurses’ ability to place colored text on the display.
Following this function call, one must define foreground/background color schemes using
the init pair() function which takes three arguments: an identifying integer number,
the foreground color, and the background color. For example, init pair(1, COLOR RED,

COLOR YELLOW) defines color scheme #1 as having red text against a yellow background.
Usually you will call init pair() multiple times to define sets of color schemes for later
use. To activate any color scheme, use the attron() function specifying which numbered
color pair you previously set up (e.g. attron(COLOR PAIR(1))) activates color scheme #1.
De-activate a currently-active color scheme using attroff() (e.g. attroff(COLOR PAIR(1)))
de-activates color pair #1 to return to the default color scheme (#0) which is white text on a
black background.

• Use clear() to clear the ncurses display of all text.

To see a working example of an ncurses demonstration program, refer to section 2.3 beginning
on page 15.

23A programming library such as ncurses written for the purpose of simplifying the creation of new software
applications typically provides special functions and data structures and constants that the applications programmer
must be aware of in order to properly use the library. Just as a computer’s user interface is a collection of software
components and conventions intended to make it easier for human beings to use a computer for practical purposes,
an applications programming interface or API is the programming library and its associated conventions intended to
make life easier for the person(s) coding a new application.
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3.22.2 Graphical back-end rendering

CSV data plotting

Many common and robust software applications have the capability of reading strings of plain-text
and translating them into graphical images. A good example of this is the comma-separated variable
(csv) format accepted by all computer spreadsheet programs for numerical data. Consider the
following csv data in plain text:

0 , 5

1 , 6

2 , 7

3 , 8

4 , 9

5 , 9

6 , 8

7 , 7

8 , 6

9 , 5

When read into any spreadsheet application, this list of ordered number pairs will populate ten
rows and two columns within the spreadsheet. Once imported into the spreadsheet application,
it is a simple matter to select that data and use it to generate a scatter plot, histogram, or other
visualization to create a two-dimensional object on the computer’s screen. Below we see this data
set read and displayed by Microsoft Excel:
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Software applications other than spreadsheets also exist to convert CSV text data into high-
quality graphs. One such example is the open-source program gnuplot.

Writing a program in C to create a csv list is simple: just use printf() instructions, and then
“redirect” your program’s output to a designated file name rather than display it to the console as
standard output. For example, if you compiled your C source code into an executable file named
a.out, you could run it and direct its output to another file named data.csv using the following
command-line instruction:

./a.out > data.csv

Alternatively, you may write your C program in such a way that it directly writes its own data
file containing comma-separated text, so that data.csv gets created (or overwritten) immediately
upon execution of a.out without any need for command-line redirection.

For plotting numerical data, writing a program in C using printf() statements to output comma-
separated variable text, and then importing that plain-text data into an existing visualization tool,
is probably the quickest and easiest solution.
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HTML for text

Another back-end technique is to write your C program to output text compatible with some markup
language such as HTML (HyperText Markup Language), as illustrated here:

#include <stdio.h>

int main (void)

{

float temp = 33.5;

printf("<html> \n");

printf("\n");

printf(" <head> \n");

printf(" <title>This is my web page</title> \n");

printf(" </head> \n");

printf("\n");

printf(" <body> \n");

printf(" <p>This is how you make a paragraph</p> \n");

printf(" <br> \n");

printf(" <p>The temperature is %f degrees</p> \n", temp);

printf(" </body> \n");

printf("\n");

printf("</html> \n");

return 0;

}

Output:

<html>

<head>

<title>This is my web page</title>

</head>

<body>

<p>This is how you make a paragraph</p>

<br>

<p>The temperature is 33.500000 degrees</p>

</body>

</html>
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When this program is run and its output redirected to a file named index.html, any web browser
application will be able to read that file and display the following page:

Of course, this is a trivial example. A more practical application might be a C program that
actually reads input from a temperature sensor to update the value of its floating-point variable
temp, and then loops continually to write and over-write HTML code to the index.html file using
file-access functions rather than command-line redirection. Either way, the point here is to show
how you may leverage the plain-text nature of a markup language such as HTML to give your C
programs a user interface far more sophisticated than the simple console.
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Inline SVG for graphic images

While HTML is a markup language originally designed to place text within a web browser
application’s display, modern web browsers also understand Scalable Vector Graphics (SVG) code
embedded in HTML source files. Like HTML, SVG is its own text-based markup language, just
designed to represent graphical objects rather than text. SVG tags specify coordinate points, colors,
linewidths, and other features necessary to draw graphical images on a web page. Unlike raster
(bitmap) images where each pixel must be specified, SVG is a vector image standard which means
the markup text specifies geometric locations and sizes, letting the web browser application draw
those images using full available screen resolution.

SVG follows the Extensible Markup Language (XML) standard, using text characters and
conventions very similar to HTML. An example of a SVG tags embedded within an HTML source
file (called inline SVG) is shown here:

Inline SVG source code to draw two circles

<html>

<body>

<svg width="200" height="150">

<circle cx="50" cy="50" r="40" stroke="blue" stroke-width="4" fill="grey"/>

<circle cx="150" cy="80" r="10" stroke="red" stroke-width="2" fill="yellow"/>

</svg>

</body>

</html>

The result when viewed on a web browser looks like this:

Since SVG images are vector and not raster, they may be scaled by magnifying or de-magnifying
the web browser’s view to any desired degree without becoming “pixelated” (i.e. edges and curves
rendered as jagged steps).
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A C program suitable for writing this inline-SVG code using printf() instructions appears
below. Note the use of ¨ wherever printf() must print a literal double-quotation mark symbol
(the “backslash” character acting as an escape to tell printf() that the very next character is to
be treated literally and not in its normal functional sense):

C code for printing inline SVG code

#include <stdio.h>

int main (void)

{

printf("<html> \n");

printf("<body> \n");

printf("<svg width=\"200\" height=\"150\"> \n");

printf(" <circle cx=\"50\" cy=\"50\" r=\"40\" stroke=\"blue\" \

stroke-width=\"4\" fill=\"grey\"/> \n");

printf(" <circle cx=\"150\" cy=\"80\" r=\"10\" stroke=\"red\" \

stroke-width=\"2\" fill=\"yellow\"/> \n");

printf("</svg> \n");

printf("</body> \n");

printf("</html> \n");

return 0;

}

Single-backslash symbols also appear at the ends of each printf() statement’s first line in order
to declare that the text continues on the next line of code. Normally C ignores whitespace which
means we may break long lines of code without any ill effect, but here since all whitespace between
the functional quotation-marks of each printf() statement matters, the single-backslash characters
are necessary.

Again, this is a trivial example showing how C may be used to generate inline-SVG source code,
which in turn may be read and displayed by web browser software. In a real application we would
likely have the C program write this SVG code directly to a file, and also have routines within the
C program to update parameters such as object dimensions and color based on variable states. For
example, if we were writing a C program for a weather station monitoring outdoor temperature, we
might have the sampled value for temperature dictate the color and/or radius of a circle (representing
the Sun).

Also, it should be realized that SVG is capable of drawing much more than colored circles! The
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reader is encouraged to find a technical reference document on SVG markup in order to learn all
the interesting graphics capability of this text-based markup standard. In addition to circles, SVG
supports polygons, lines, polylines, text embedded within images, and arbitrary drawing paths to
name a few.
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Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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4.1 Introduction to assembly language programming

Microprocessors only understand machine code – instructions and data encoded as binary values,
often written in hexadecimal “shorthand” form for better human-readability – but even in
hexadecimal these codes are non-intuitive and confusing for human programmers to manage.
Assembly code improves upon this situation by representing each machine-code instruction as an
word-abbreviation called a mnemonic. The convenience of mnemonics, though, comes at price: since
the mnemonics themselves are nonsense to the microprocessor, a special software package called an
assembler must be used to translate these mnemonics into machine code that the microprocessor
can understand. Just as microprocessors each have their own unique instruction set defining which
codes perform which functions, assembler software has its own unique “vocabulary” and “grammar”
one must abide by in order to write functioning programs. Assembly programming, therefore, is its
own language and like all languages has specific rules.

Furthermore, assembly-language lacks the strict standardization found in higher-level
programming languages such as C, C++, Java, and Python. Just as machine-code programming is
specific to the model of microprocessor, assembly-language programming rules are often specific to
the assembler software version, which in turn is often closely coupled to the microprocessor model.
It is thus impossible to write a generic tutorial on assembly programming, just as it is impossible to
write a generic tutorial on machine-code programming. What we will explore here are features of
assembly code common to most assemblers.

We will use a specific hardware application as the foundation for this lesson on assembly language
programming, in order to have a practical context for understanding what the program does and
how it works. This means the examples given here will not work with any microprocessor other
than the system described here, but that is okay. Many of the principles learned here find general
application to other systems.

Our hypothetical computer is shown below, based on a Motorola model 6502 8-bit microprocessor.
A single output port mapped to memory address 0x4000 provides the means for our program to
turn LEDs on and off, by writing bit-states to that byte located at 0x4000. Another port at address
0x0401 provides inputs, where our program may read bit-states of the byte stored there to detect
logic signals applied to those pins by external circuitry (not shown). ROM begins at address 0x8000
and extends through address 0xFFFF. RAM begins at address 0x0000 and extends through address
0x3FFF:

6502-based computer

CPU
RAM

+V

Gnd

Gnd

P0

I/O

P1
P2
P3
P4
P5
P6
P7

LEDs

Memory Map

0x0000

ROM

RAM

OUTPUT PORT

RAM

I/O

P0P1P2P3P4P5P6P7Gnd

INPUT PORT

Outputs

Inputs

0x3FFF
0x4000
0x4001

0x8000

0xFFFF
(0x4000)

(0x4001)

RAM RAM

ROM ROM

ROMROM

The 6502 provides an Accumulator register plus two general-purpose registers (named X and Y)
for temporary data storage, each one eight bits wide.
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4.1.1 Machine code to blink an LED

Suppose we wish to make the LED connected to output pin P0 on the computer blink on and off.
This means writing a 1 and then a 0 to bit 0 of the byte located at 0x4000 while clearing (making
zero) all the other bits at that address. Our program will execute the following steps:

1. Write the binary value 0b00000001 to address 0x4000

2. Toggle the least-significant bit of that byte in address 0x4000

3. Go back to second instruction and repeat indefinitely

The same steps, using instructions available in the 6502’s instruction set:

1. Load the binary value 0b00000001 into the Accumulator register

2. Store the Accumulator’s value to address 0x4000

3. Apply the Exclusive-OR function to the LSB in the Accumulator using the mask1

0b00000001.

4. Jump to the second instruction and repeat indefinitely

Researching opcodes and operand formats for the model 6502 microprocessor, we find the
following:

• The opcode for “Load Accumulator with immediate value” is 0xA9 followed by the desired
value to load (0x01)

• The opcode for “Store Accumulator value to absolute memory address” is 0x8D followed by
two bytes specifying the destination address in little-endian order (low byte first, high byte
last: 00 40 for address 0x4000)

• The opcode for “Exclusive-OR with immediate value” is 0x49 followed by the mask value
(0x01)

• The opcode for “Unconditional Jump to absolute memory address” is 0x4C followed by the
target address in little-endian order

1In programming, a mask is a set of bits intended to apply a bit-wise logical operation to bits within a larger word
of data. Here, our mask of 0b00000001 means the LSB will be XOR’d with 1 (i.e. toggled, to make it switch states
from whatever it was before to the opposite of that) while all other bits within the Accumulator’s 8-bit word will be
XOR’d with 0 (i.e. left alone).
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If we write all these opcodes and operands in order, one line per complete instruction, we get
the following hand-assembled machine code:

A9 01

8D 00 40

49 01

4C ?? ??

The question-marks are there in our code because we need to determine where our program will
begin in the computer’s ROM memory space in order to know which address we need to “jump” to
in the last instruction. Let’s assume our program starts at the very first address in ROM (0x8000)
and re-write the program showing the starting address of each line2:

8000 A9 01

8002 8D 00 40

8005 49 01

8007 4C ?? ??

Recall that the purpose of our “Jump” instruction (last line, 0x4C) was to go back to the “Store
Accumulator” instruction (0x8D) so that our recently XOR’d data will be re-written to the output
port at address 0x4000. Therefore, the address we need to jump to is 0x8002. Knowing this, we
may edit our machine code listing to include this address in the last instruction, in “little-endian”
byte order because the model 6502 microprocessor happens to be a little-endian machine:

8000 A9 01

8002 8D 00 40

8005 49 01

8007 4C 02 80

If we were to write this program to the computer’s ROM and then read it back to display in
conventional “hex dump” format, it would look like this:

8000 A9 01 8D 00 40 49 01 4C 02 80

If the ROM IC(s) in our computer are socketed and therefore easily removed for programming
by an external device, we could use a PROM programmer3 to write this short program into a
programmable ROM memory chip and then re-insert it into our computer’s board to run.

2This is beginning to resemble the common “hex dump” memory display format, except that each line of text is
limited to just one instruction

3Commercially-available PROM programming tools consist of a unit connected to a personal computer with a
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4.1.2 Assembly code to blink an LED

Now that we have seen the “hand-assembly” method of creating a simple LED-blinking program
for our 6502-based computer, let us explore how we could do the same using assembly language.
Starting with the original program specification telling us what we need the computer to do:

1. Write the binary value 0b00000001 to address 0x4000

2. Toggle the least-significant bit of that byte in address 0x4000

3. Go back to second instruction and repeat indefinitely

Next, we refer to instructions available in the 6502’s instruction set, but this time we write the
mnemonic abbreviations given in that instruction set instead of opcodes:

1. LDA value 0b00000001

2. STA to 0x4000

3. EOR mask 0b00000001

4. JMP to second instruction

We are almost done with our assembly-language program! All we need to do now is write it
using the proper syntax4 expected by our assembler software, being sure to include a directive5 to
the assembler to begin at address 0x8000.

.ORG $8000

LDA #$01

LOOP

STA $4000

EOR #$01

JMP LOOP

This program you see above is completely functioning, ready to be assembled into machine code
and written to the computer’s ROM.

zero-insertion-force (ZIF) IC socket to facilitate easy plugging and unplugging of memory ICs. Software provided
with the programmer allow you to type the hex dump data into an editor window (or into a plain-ASCII text file)
and then have that data written to the memory IC with the click of a button or a command-line instruction typed
into the personal computer. If you really desire a low-level learning experience, you can program the PROM chip by
connecting address, data, and write-enable lines to toggle switches, then toggling those switches to specify addresses,
data to be written to those addresses, and pressing the write-enable switch to “burn” that data into the chip when
you are ready. Needless to say, the latter option is the most tedious.

4We are assuming here that our assembler does not understand binary notation and expects all numerical values
to be expressed in hexadecimal instead.

5A “directive” is an instruction given not to the microprocessor, but rather to the assembler software. It tells the
assembler to translate the assembly “source” code into machine code in some particular manner.
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Optional comments help make our code easier to read:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

JMP LOOP ; Jump to the beginning of the loop

Take note of some important details of this assembly-language program:

• Order of execution is left-to-right, top-to-bottom in the same order as reading English-language
text.

• Any left-justified text (e.g. LOOP) is considered a label rather than an instruction, whether on
its own line or preceding an instruction.

• Instructions (e.g. LDA, STA, etc.) must be preceded by whitespace. The number of space or
tab characters doesn’t matter.

• Operands to those instructions (e.g. $4000, etc.) must be separated to the right of those
instructions by some whitespace as well. The number of space or tab characters doesn’t
matter. In this listing I’ve adjusted the number of spaces to make the columns neatly align.

• Any text to the right of a semicolon (;) character is considered a comment, ignored by the
assembler and not included in the machine code at all.

• Any instruction preceded by a dot (e.g. .ORG) is a directive to the assembler, telling how to
do some aspect of the translation into machine code, but not appearing in the final machine
code itself.

• Note how the Jump instruction’s target address was resolved by the assembler, with no need
for us to count address numbers to figure out where it should jump to. We simply place a
label and let the assembler figure out those details for us.

• This assembler uses a dollar-symbol ($) to denote any hexadecimal value.

• The pound symbol (#) denotes an immediate value, meaning the literal number value specified.
Otherwise, the operand value is considered to be a memory address location.

It should be noted that some of these conventions vary from assembler to assembler. For
example, some assemblers require all labels to contain a colon at the end (e.g. LOOP: rather than
LOOP). Some assemblers allow C-style hexadecimal notation (e.g. 0x4000) while others insist on
the $ character. Some assemblers allow binary notation (e.g. 0b00000001 or %00000001) while
others don’t. Some assemblers require directives be preceded by a dot (e.g. .ORG) while others
insist directives not be preceded by any character. As always when using software, refer to the
manufacturer’s documentation for details!
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4.1.3 Slowing down the blinking

If we were to actually assemble and write this program to ROM, then start the computer to initiate
program execution, we would likely find the LED blinking on and off so fast that it appeared to be
steadily lit (albeit dimmer than usual). The reason for this is the fast fetch/execute cycle time of a
typical microprocessor. A model 6502 running at a clock speed of 1 MHz would blink the LED on
and off at a rate far too quick for the human eye to see6.

In order to make the blinking rate slow enough to see, we must somehow delay the loop’s
repetition. One easy way to do this is to insert a “counting” loop inside of our program’s blinking
loop. This counting loop keeps the microprocessor occupied by doing nothing but sequentially
counting, in order to purposely waste time and thereby delay its toggling of the LED output bit.

Here is a section of assembly code using common 6502 instructions to perform this delay task by
forcing the microprocessor to count backwards from 255 (0xFF) until it reaches zero, complete with
explanatory comments:

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP to repeat

One way to incorporate this delay code into our program is to simply insert it “in-line” with the
original code between the EOR and JMP instructions, like this:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP to repeat

JMP LOOP ; Jump to the beginning of the loop

6According the the model 6502 manual,, the STA instruction requires 4 clock cycles, the EOR instruction 2 clock
cycles, and the JMP instruction 3 clock cycles. This means 9 clock cycles would be required for every pass through
the program, with two passes required for a full cycle of the LED’s blink (i.e. on and off). Dividing 1 MHz by the 18
clock cycles necessary to fully cycle the LED gives an LED blinking frequency of 55.556 kHz!
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While this solution works quite well, there is a more sophisticated way to achieve the same “loop
within a loop” structure, and that is to place the delay-time code within its own subroutine. A
“subroutine” is a section of code that stands apart from the rest, ready to be called by the main
portion of the program whenever needed.

Subroutines are particularly useful when that code must be invoked at multiple points within
the main program. Instead of copying-and-pasting the necessary code repeatedly in-line where
needed, we simply insert a “call” or “jump to subroutine” instruction where it’s needed and the
microprocessor will jump to that new address (its Program Counter being preset as needed). Then,
at the end of the subroutine we place a “return” instruction that tells the microprocessor to resume
where it left off in the main program.

The following shows a listing of the assembly code for the slow-blinking program using a
subroutine called DELAY7:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

Admittedly the use of subroutines doesn’t appear to be any better than simply inserting the
DELAY code in-line with the original program. However, if we had a need to call this subroutine
multiple times within our program, all we would need to add is another JSR DELAY instruction.
Thus, the subroutine strategy becomes more efficient than the in-line strategy proportional to how
many times that routine must execute.

7The blank line between JMP LOOP and DELAY is there for esthetic purposes only, to help our eyes see the distinction
between the main program and the subroutine. We could eliminate this blank line (or add more!) and the program
would execute just as well.
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An useful tool provided by most assemblers is a disassembly option. This takes the assembled
machine code and translates it “backwards” into assembly code, displaying the memory addresses,
machine code hex dump, and equivalent assembly side-by-side for comparison:

Address Hexdump Disassembly

---------------------------------

$8000 A9 01 LDA #$01

$8002 8D 00 40 STA $4000

$8005 49 01 EOR #$01

$8007 20 0D 00 JSR $000D

$800A 4C 02 80 JMP $8002

$800D A2 FF LDX #$FF

$800F CA DEX

$8010 E0 00 CPX #$00

$8012 D0 FB BNE $800F

$8014 60 RTS

Note how the “jump” and “branch” instructions all specify address locations in one way or
another, but not the “return instruction” at the end of the subroutine. How does the microprocessor
know which memory address to return to after completing the subroutine? The answer lies in a
feature of the microprocessor called the stack : a section of volatile memory used by the processor
to remember such things as previous Program Counter values. A jump-to-subroutine instruction
causes the current memory address value held in the Program Counter to be “pushed” onto the
stack before jumping to the subroutine’s starting memory address. A “return” instruction causes
the microprocessor to “pop” the former address value off the stack and into the Program Counter
again, so that execution resumes right where it left off8. The model 6502 processor uses a portion
of its RAM memory space for its stack (0x0100 through 0x01FF).

If you examine this disassembled code closely, you will notice something strange with the “branch-
if-not-equal” instruction: the disassembled code says BNE $800F but the machine code does not
actually contain the 0x800F address. Instead, it only contains the opcode for BNE (D0) and a byte
with a value of 0xFB. This is an example of relative addressing, where the operand to the instruction
declares not the address itself, but rather how many addresses to skip, either forward or backward.
As an eight-bit signed number, 0xFB is equal to negative five. This tells the microprocessor to
decrement its Program Counter by five to repeat the DELAY LOOP. If you count from address 0x8013
where the 0xFB operand was resides to 0x800F where the delay loop begins, you count five addresses
(inclusive). Relative addressing is more efficient than absolute addressing because we only need
one byte telling the instruction how far to jump instead of two bytes to specify a 16-bit address.
Interestingly, the disassembler opted to show us an absolute address even though that’s not really
how the 6502’s BNE instruction works.

8Stacks are analogous to a pile (stack) of paper notes. If a person is reading a book and they suddenly get told to
turn to a different chapter to read a passage there, they may write the current page number on a note and “push”
that note to the top of the stack so they won’t forget it while turning to the new passage. After reading the new
passage, the person retrieves their note from the top of the stack (i.e. “popping” it off the stack) and references it to
return to the page where they left off. This may occur more than once, and the stack will “remember” not only the
page numbers but also keep everything in the right order as the person eventually returns to their original place in
the book.
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4.1.4 Simplifying with symbols

Another technique useful for making our assembly-language programs easier to read and to maintain
is the use of symbols to represent numerical values. Consider the last version of our LED-blinking
program re-written to incorporate three symbols, defined at the very beginning of the code listing:

DTIME .EQU $FF ; Create a symbol "DTIME" for the delay time parameter

OUTPT .EQU $4000 ; Create a symbol "OUTPT" for the Output port address

LED .EQU $01 ; Create a symbol "LED" for the LED’s bit number

.ORG $8000 ; Begin at address 0x8000

LDA #LED ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA OUTPT ; Store Accumulator value to Output port

EOR #LED ; XOR the least-significant bit

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

The .EQU directive tells the assembler to treat the symbol (on the left) as an alias of the value
(on the right). This lets us use lettered symbols within our code rather than numerical values for
important parameters such as I/O addresses, delay time, etc. These symbols may be used as many
times as desired, and they will always mean the same thing (e.g. the LED symbol is used twice in
this program, and it means $01 both times).
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4.1.5 Using the stack

Previously we mentioned the microprocessor’s stack, a section of RAM used to hold data in sequential
order. Stacks may be thought of as a Last-In First-Out shift register, where data retrieved from the
stack is in reverse order of how data is placed onto the stack. The analogy of a microprocessor’s
stack being a literal stack of paper sheets is helpful here: if we pull papers from the top of the stack,
we will find their sequence is in reverse order of how we placed those sheets on the stack.

Microprocessors use their stack to manage subroutine calls, “pushing” the last Program Counter
memory address to the stack prior to jumping to the subroutine’s address, then “popping” that old
address off the stack when the subroutine completes so it knows where to resume its previous place in
the main program. This form of stack usage is automatic, being built-in to the finite state machine
sequence as part of each subroutine “call” instruction and each subroutine “return” instruction.
Interrupts also use a stack to remember where to jump back in the main program after completing
the interrupt service routine (ISR).

Certain instructions exist to make use of the stack in ways that are not necessarily related to
subroutines or interrupts, and these can be very useful. Here we will explore one such practical
use of the stack. Consider this simple “chasing LED” program using the 6502’s “Rotate Right”
instruction to shift the place of a single “1” bit in the Accumulator byte, the goal being to create a
“chasing” LED display on our computer where the light appears to repeatedly sweep along the row
of LEDs:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

JMP LOOP ; Jump to the beginning of the loop

This code is every bit as simple as our original LED-blinking program. When run, it produces
the following pattern of light (sequence shown chronologically from top to bottom):

P0P1P2P3P4P5P6P7 Accumulator value

0x01

0x00

0x80

0x40

0x20

0x10

0x08

0x04

0x02

0x01

T
im

e
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During the step where no LEDs are lit, the “1” bit resides in the Carry bit of the microprocessor’s
Status register, a special register used to store the results of certain mathematical and logical
operations.

This pattern of light is what we expect the ROR instruction to produce after the Accumulator
is initially loaded with 0x01. All is well, except for the same problem we had with our original
“blinking LED” program: the sequence runs too fast for our eyes to discern. It just looks like a blur
of eight LEDs all (dimly) lit!

We already know how to slow programs down, by inserting a counting loop that “wastes” the
microprocessor’s time, so let’s modify this program accordingly:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

However, when we run this program we get a different light sequence:

P0P1P2P3P4P5P6P7 Accumulator value

0x01

0x00

0x80

T
im

e

0xC0

0xE0

0xF0

0xF8

0xFC

0xFE

0xFF

For some reason, the “0” states rotated off the LSB-end of the byte are becoming “1” states to
fill the MSB. Recall that the ROR instruction draws from the Carry bit of the Status register to fill
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the MSB at each iteration. A reasonable hypothesis is that something other than the ROR is setting
the Carry bit.

Indeed something does act to set the Carry bit when we don’t want it to: the “compare X”
CPX instruction inside our DELAY subroutine. According to the 6502 instruction set manual, the
CPX sets the Carry bit if ever the X register’s value is equal to or greater than the value it’s being
compared against. In fact, this is how the BNE instruction knows when to branch: it checks the
Status register which is updated by all mathematical, logical, and comparison instructions. Given
the design of our time-delay subroutine where the X register begins at a large value and counts
down toward the comparison value of zero, we are guaranteed to return from that subroutine with
the Carry bit set.

This causes problems for our ROR instruction, which takes the “1” value left in the Carry bit from
the subroutine’s CPX instruction and adds it to our chasing light sequence, which we do not want.
Somehow we need the ROR to act on the Carry bit it generated, not the new Carry bit generated by
the subroutine’s CPX instruction.

Our stack ends up being a simple solution to this problem. All we need to do is “push” the
Status register’s state to the stack prior to calling the subroutine, then “pop” that old data back off
the stack and into the Status register again before the ROR instruction reads the Carry bit. In other
words, we can use the stack as temporary storage for the Status bits, and recall those bits after the
subroutine is done using the Status register for its own purposes.

All this requires is the addition of two new instructions surrounding the “jump to subroutine”:
a PHP instruction (“push processor status on stack”) prior to the jump, and PLP instruction (“pull
processor status from stack”) after the jump:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

PHP ; Push Status register to stack

JSR DELAY ; Call the DELAY subroutine

PLP ; Pop Status register off stack

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

The stack is a very useful feature of any microprocessor, but it does have its limitations. If we
push far more data onto the stack than we pop off, we can get a stack overflow where the oldest
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data gets overwritten and is lost. Also, we need to be very careful that we push from the correct
sources and pop to the correct destinations. For example, in the above program we pushed the
Status register to the stack, then immediately after that the JSR instruction pushed the Program
Counter value to the stack before going to the subroutine. When the subroutine completed, it
popped the old Program Counter value off the stack, and then immediately after that we popped
the old Status register off the stack. This works because those sources and destinations came in the
correct sequence, and so the data going on and off the stack went where it should.



4.2. ASCII CHARACTER CODES 161

4.2 ASCII character codes

ASCII characters consist of seven-bit digital words. The following table shows all 128 possible
combinations of these seven bits, from 0000000 (ASCII “NUL” character) to 1111111 (ASCII “DEL”
character). For ease of organization, this table’s columns represent the most-significant three bits of
the seven-bit word, while the table’s rows represent the least-significant four bits. For example, the
capital letter “C” would be encoded as 1000011 in the ASCII standard.

↓ LSB / MSB → 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN ( 8 H X h x

1001 HT EM ) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [ k {
1100 FF FS , < L \ l |
1101 CR GS − = M ] m }
1110 SO RS . > N ˆ n ˜

1111 SI US / ? O o DEL

It is worth noting that the ASCII codes for the Arabic numerals 0 through 9 are simply the four-
bit binary representation of those numbers preceded by 011. For example, the number six (0110)
is represented in ASCII as 0110110; the number three (0011) in ASCII as 0110011; etc. This is
useful to know, for example, if you need to program a computer to convert single decimal digits to
their corresponding ASCII codes: just take each four-bit numerical value and add forty-eight (0x30
in hexadecimal) to it.
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4.3 GCC quick reference

Here are some common options used with the GNU C Compiler, shown here with the example source
file hello.c:

gcc hello.c – this is the basic instruction for preprocessing/compiling/assembling/linking

gcc -E hello.c – stop shy of compiling the files, dumping results to the console

gcc -S hello.c – stop shy of assembling the files, leaving an assembly file named hello.s

gcc -c hello.c – stop shy of linking the files, leaving an object file named hello.o

gcc -g hello.c – include debugging data within the compiled code, that will work with the GDB

debugger application

gcc -o hello.exe hello.c – renames executable file as hello.exe

gcc -lm hello.c – links the C math library with your code after compilation

gcc file1.c file2.c file3.c – compiles multiple source-code files into one executable

gcc -Wall hello.c – shows all warnings



Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

163
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?



5.1. CONCEPTUAL REASONING 167

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Source code
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5.1.3 Writing your first C program

Write your own program in the C programming language, compile it, run it, and document the
results (i.e. the text it displays on your computer’s console). Then, answer the following questions:

• Explain what each line of your program does

• Identify the order in which each line of code gets executed when your program runs

• Explain what compilation means, and why it is necessary when programming in C

• Explain the difference between source code and executable code

You have multiple options for compiling C code on your computer, listed here in order from least
difficult to most difficult:

1. Use a cloud-based editor/compiler such as OnlineGDB, requiring nothing but web browser
software and an internet connection.

2. Install a commercial IDE (Integrated Development Environment) such as Microsoft’s Visual
Studio to your computer and use it for editing source code and for compiling executable code.

3. If you are using Microsoft Windows as your operating system, install Windows Subsystem for
Linux (WSL) and a Linux distribution along with GCC and its associated libraries which will
provide you with a Linux operating system console within a virtual machine. If you are using
a Unix-based operating system (e.g. Android, Apple OS X, ChromeOS, Linux, etc.), simply
start up a console and install GCC (if necessary), using whatever text-editor software is already
installed to write your C source code.

Challenges

• Modify your program, experimenting with using its instructions in different ways. What are
you able to determine about the usage of C instructions by these experiments?

• Intentionally (or unintentionally) place errors in your program, seeing how the compiler
generates warning or error messages helping you to identify those mistakes.
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5.1.4 Re-writing a “Hello world!” program

Edit the following program to use multiple printf instructions, each one of those instructions
printing just a single character to the computer’s console while still printing “Hello world!” as a
complete sentence:

#include <stdio.h>

int main (void)

{

printf("Hello world!\n");

return 0;

}

Also, insert at least one comment in your code explaining how it functions.

Challenges

• Edit your code so that it generates a blank line both before and after the line reading “Hello
world!”
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5.1.5 Writing a power calculation program

Write your own program in the C programming language accepting voltage and current values from
the user and displaying the corresponding power value, for any DC circuit component. Be prepared
to explain how each line of your program works!

Some helpful advice when writing a new program is to write the first version as simply as possible,
with no unnecessary features. Only after proving that the code performs its most basic function(s)
should you then invest time making the program user-friendly and professional in appearance. It is
also helpful, especially when first learning to code, to begin by copying and pasting code from some
elementary program you know functions, then modifying that program as opposed to writing one
from scratch.

For example, in this case I would recommend starting with a simple “Hello World” example
program and modify it to accept two numerical values from the user (voltage and current) and then
compute and display the calculated power value. Only after you’ve got this simple version running
well should you add other features such as prompting to instruct the user what to enter.

Challenges

• A good educational exercise in a classroom environment is to have students identify errors in
each other’s programs. The instructor can solicit examples from students (received by email)
and then display them for the entire class to examine in an anonymous format where no one
knows who wrote the errant code.

• Another good educational exercise in a classroom environment is to have students streamline
each other’s programs, condensing them into simpler forms, re-organizing for better readability,
etc. The instructor can solicit examples from students (received by email) and then display
them for the entire class to examine in an anonymous format where no one knows who wrote
the original code.
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5.1.6 Resonant frequency calculator program

Examine the following program, intended to compute the resonant frequency for a simple inductor-
capacitor (LC) network:

#include <stdio.h>

#include <math.h>

int main (void)

{

float L, C, f;

printf("Enter inductor value in milliHenrys: ");

scanf("%f", &L);

L = L / 1000; // Converts mH into H

printf("Enter capacitor value in microFarads: ");

scanf("%f", &C);

C = C / 1e6; // Converts uF into F

f = 1 / (2 * M_PI * sqrt(L * C));

printf("Resonant frequency = ");

if (f < 1e3)

printf("%f Hz\n", f);

else if (f >= 1e3 && f < 1e6)

printf("%f kHz\n", f/1000);

else if (f >= 1e6 && f < 1e9)

printf("%f MHz\n", f/1000000);

else

printf("%e Hz\n", f);

return 0;

}
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Next, trace the flow of execution (i.e. identify which instructions get executed in which order)
for the following user entries:

• L = 100 milliHenrys ; C = 47 microFarads

• L = 15 milliHenrys ; C = 0.33 microFarads

• Make up your own user-entered values resulting in a different flow of execution than either of
the above examples

Next, answer the following questions:

• Describe what resonance is.

• Identify some practical applications of resonance in AC circuits.

Challenges

• Modify this program so that it repeatedly prompts the user for new C and L values and then
computes their resonant frequency.
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5.1.7 Decibel calculator program

Examine the following ratio-to-decibel conversion program:

#include <stdio.h>

#include <math.h>

float ratio2db(float);

int main (void)

{

float gain;

printf("Enter amplifier power gain ratio: ");

scanf("%f", &gain);

printf("A power gain ratio of %f is equivalent to %f decibels.\n",

gain, ratio2db(gain));

return 0;

}

float ratio2db(float x)

{

if (x < 0)

x = -x;

return 10 * log10(x);

}

Next, answer the following questions:

• Where is the ratio2db function being prototyped?

• What purpose does the if statement serve?

• Trace the execution of this program, line by line and step by step.

Challenges

• Modify this program to accept a voltage or current gain ratio value rather than power gain
ratio value.

• Divide this program into two separate source files, then compile and demonstrate its operation.
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5.1.8 Logical-AND versus bitwise-AND

Compare and contrast the following expressions in C:

Result1 = A && B;

Result2 = A & B;

Provide an example showing how each of these expressions would be processed in a real C
program.

Challenges

• What happens when integer variables rather than Boolean variables are used in a logical-AND
expression?
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5.1.9 Driving microcontroller output bits

Write a single line of C code that will turn on the P1.1 and P1.7 LEDs without affecting any of the
other output line states (and without having to specify their current states):

M
S

P
430G

2553IN
20

VSSVCC (+3.3 V)

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P2.0

P2.1

P2.2

P2.6

P2.7

TEST

RST

P1.7

P1.6

P2.5

P2.4

P2.3

+3.3V

+3.3V

0

1

1

1

1

0 1

0

write

write

P1DIR = 0b11111111

P1OUT = 0b01011101

Then, write another single line of C code to turn off the P1.0, P1.2, and P1.3 LEDs, again
without affecting or specifying any of the other lines’ states:

Challenges

• What is the purpose of the P1DIR register in this microcontroller?
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5.1.10 Bit-rotate program

Test-run the following program, and then explain how it rotates bits using the bitwise-shift function:

#include <stdio.h>

int main (void)

{

int n = 0b11100000;

int recycle, count;

for (count = 0 ; count < 16 ; ++count)

{

recycle = n & 1;

n = n >> 1;

n |= (recycle << 7);

printf("n = %X \n", n);

}

return 0;

}

Then, modify this program so that it rotates the bits in the opposite direction.

Challenges

• Describe a practical application for bitwise rotation.
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.



5.2. QUANTITATIVE REASONING 183

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 Using C to analyze a series resistor circuit

Examine the program (written in the C language) to analyze the following DC series resistor circuit:

+ −

R1

R2 R3

R4

2k2 5k

3k3 1k

V1

"Ground"

25

#include <stdio.h>

#include <math.h>

int main (void)

{

float v1=25, r1=2.2e3, r2=3.3e3, r3=1e3, r4=5e3;

float rtotal, i, vr1, vr2, vr3, vr4;

rtotal = r1 + r2 + r3 + r4;

i = v1 / rtotal;

vr1 = i * r1;

vr2 = i * r2;

vr3 = i * r3;

vr4 = i * r4;

printf("Current = %f Amperes = %f milliAmperes\n", i, i*1000);

printf("Resistor voltages = %f %f %f %f (Volts)\n", vr1, vr2, vr3, vr4);

printf("Total resistor voltages = %f (Volts)\n", vr1 + vr2 + vr3 + vr4);

printf("Resistor powers = %f %f %f %f (Watts)\n", vr1*i, vr2*i,

vr3*i, vr4*i);

return 0;

}
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Compile and run this code, and then answer the following questions:

• Identify the order of execution for each line of code in this program (i.e. which line executes
in which order)

• Identify the data type used for all the variables in this program, and how the printf statements
properly reference this data type

• Identify how component voltages relate to each other in a series network, and how this property
is expressed in the code

• Identify how component currents relate to each other in a series network, and how this property
is expressed in the code

• Identify how component resistances relate to each other in a series network, and how this
property is expressed in the code

• Modify the code to apply Kirchhoff’s Voltage Law

• Modify the code to simulate a resistor failing shorted.

• Modify the code to simulate a resistor failing open.

Challenges

• What purpose, if any, is served by the Ground connection in this circuit?

• What is the purpose of the code lines beginning with float?

• What is the purpose of the \n symbols within the printf instructions?

• Modify the code to simulate adding a fifth resistor to this circuit.

• Modify the code to substitute a current source for the voltage source shown.

• Modify the code to calculate voltage between Ground and the negative terminal of the source.
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5.2.4 Using C to analyze a parallel resistor circuit

Examine the program (written in the C language) to analyze the following DC parallel resistor
circuit:

R2 R3

"Ground"

1k4k72k7R1 3k9 Isrc 10mR4

#include <stdio.h>

#include <math.h>

int main (void)

{

float isrc=10e-3, r1=3.9e3, r2=2.7e3, r3=4.7e3, r4=1e3;

float rtotal, v, ir1, ir2, ir3, ir4;

rtotal = 1/(1/r1 + 1/r2 + 1/r3 + 1/r4);

v = isrc * rtotal;

ir1 = v / r1;

ir2 = v / r2;

ir3 = v / r3;

ir4 = v / r4;

printf("Voltage = %f Volts\n", v);

printf("Resistor currents = %f %f %f %f (milliAmperes)\n", ir1*1e3,

ir2*1e3, ir3*1e3, ir4*1e3);

printf("Total resistor currents = %f (Amperes)\n", ir1 + ir2 + ir3 + ir4);

printf("Resistor powers = %f %f %f %f (Watts)\n", ir1*v, ir2*v,

ir3*v, ir4*v);

return 0;

}
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Compile and run this code, and then answer the following questions:

• Identify the order of execution for each line of code in this program (i.e. which line executes
in which order)

• Identify how proper mathematical order-of-operation is maintained in the line(s) of code
calculating parallel resistance

• Identify where any of the Joule’s Law calculations could have been performed differently

• Identify how component voltages relate to each other in a parallel network, and how this
property is expressed in the code

• Identify how component currents relate to each other in a parallel network, and how this
property is expressed in the code

• Identify how component resistances relate to each other in a parallel network, and how this
property is expressed in the code

• Modify the code to apply Kirchhoff’s Current Law

• Modify the code to simulate a resistor failing shorted.

• Modify the code to simulate a resistor failing open.

Challenges

• What purpose, if any, is served by the Ground connection in this circuit?

• What is the purpose of the code lines beginning with float?

• What is the purpose of the \n symbols within the printf instructions?

• Modify the code to simulate adding a fifth resistor to this circuit.

• Modify the code to substitute a voltage source for the current source shown.

• Modify the code to calculate current through either wire between resistors R3 and R4.
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5.2.5 Using C to analyze a series-parallel resistor circuit

Examine the program (written in the C language) to analyze the DC series-parallel resistor circuit
shown in schematic form on the following page:

#include <stdio.h>

#include <math.h>

int main (void)

{

float vsrc=15, r1=2700, r2=1500, r3=1200, r4=3900;

float rtotal, vr1, ir1, vr2, ir2, vr3, ir3, vr4, ir4;

float r23, r123, isrc;

r23 = r2 + r3;

r123 = 1/(1/r1 + 1/r23);

rtotal = r123 + r4;

isrc = vsrc / rtotal;

ir4 = isrc;

vr4 = ir4 * r4;

vr1 = vsrc - vr4;

ir1 = vr1 / r1;

ir2 = ir3 = vr1 / r23;

vr2 = ir2 * r2;

vr3 = ir3 * r3;

printf("Source current = %f milliAmperes\n", isrc*1000);

printf("Resistor currents = %f %f %f %f (milliAmperes)\n", ir1*1000,

ir2*1000, ir3*1000, ir4*1000);

printf("Resistor voltages = %f %f %f %f (Volts)\n", vr1, vr2, vr3, vr4);

printf("Resistor powers = %f %f %f %f (milliWatts)\n", ir1*vr1*1e3,

ir2*vr2*1e3, ir3*vr3*1e3, ir4*vr4*1e3);

return 0;

}
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+
−

R1

R2

R3

R4

Vsrc 15
2k7

3k9

1k5

1k2

Compile and run this code, and then answer the following questions:

• Explain what Ohm’s Law is, and how it is applied in the code

• Modify the line(s) of code implementing Joule’s Law so that the results are expressed in Watts
rather than in milliWatts

• Identify how various properties of series networks are applied in the code

• Identify how various properties of parallel networks are applied in the code

• Modify the code to apply Kirchhoff’s Voltage Law

• Modify the code to apply Kirchhoff’s Current Law

• Identify any lines of code whose order could be swapped without affecting the accuracy of the
final results

Challenges

• Modify the code to make this a four-resistor series circuit.

• Modify the code to make this a four-resistor parallel circuit.
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5.2.6 Using C to analyze a multi-source circuit

Examine the program (written in the C language) to analyze the multi-source circuit shown in
schematic form below the source-code listing:

#include <stdio.h>

int main (void)

{

float v1=100.0, v2 = 24.0, i1 = 3.0;

float r1 = 40.0, r2 = 12.0, r3 = 60.0, r4 = 30.0;

float vac, vbd, vcd, vc, vd, iv1;

vcd = -v2;

vc = i1 * r4;

vd = vc + v2;

iv1 = (v1 - vcd) / (r1 + r3);

vac = iv1 * r1;

vbd = -(iv1 * r3);

printf("V_A = %f Volts\n", vac + vc);

printf("V_B = %f Volts\n", vbd + vd);

printf("V_C = %f Volts\n", vc);

printf("V_D = %f Volts\n", vd);

return 0;

}

+
− +

−
100V1 V2 24

I1

3

R1

R2

R3

R4

12

30

A

B

C

D

40

60
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Compile and run this code, and then answer the following questions:

• Identify the electrical principle(s) used in the calculation vcd = -v2;

• Identify the electrical principle(s) used in the calculation vc = i1 * r4;

• Identify the electrical principle(s) used in the calculation vd = vc + v2;

• Identify the electrical principle(s) used in the calculation iv1 = (v1 - vcd) / (r1 + r3);

• Identify the electrical principle(s) used in the calculation vac = iv1 * r1;

• Identify the electrical principle(s) used in the calculation vbd = -(iv1 * r3);

• How could you modify this program to accept user-input values for V1, V2, and I1?

Challenges

• How much current flows through R2, and in which direction?

• How much current flows through V2, and in which direction?

• Which of these components function as sources, and which function as loads?
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5.2.7 Using C to calculate capacitive reactance

Examine the program (written in the C language) to calculate reactance for a capacitor given
frequency and capacitance values entered by the user at run-time:

#include <stdio.h>

#include <math.h>

int main (void)

{

float f, C;

printf("Enter frequency in Hertz: ");

scanf("%f", &f);

printf("Enter capacitance in microFarads: ");

scanf("%f", &C);

C = C / 1e6; // Converts uF to F

printf("Reactance = %f Ohms\n", 1/(2*M_PI*f*C));

return 0;

}

Compile and run this code, and then answer the following questions:

• Explain what reactance is, and how it differs from resistance

• How would this reactance value be expressed as an impedance in rectangular form?

• How would this reactance value be expressed as an impedance in polar form?

• Modify the code to calculate reactance for an inductor

Challenges

• In what ways are real capacitors more complicated than just being pure reactances in AC
circuits?
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5.2.8 Using C to analyze a series AC RLC circuit

Examine the program (written in the C language) to analyze an AC series resistor-inductor-capacitor
circuit:

#include <stdio.h>

#include <math.h>

int main (void)

{

float R, C, L, f, vsrc, xc, xl, xtotal, ztotal, i;

printf("Enter resistor value in Ohms: "); scanf("%f", &R);

printf("Enter capacitor value in microFarads: "); scanf("%f", &C);

printf("Enter inductor value in milliHenrys: "); scanf("%f", &L);

printf("Enter source frequency in Hertz: "); scanf("%f", &f);

printf("Enter source voltage in Volts: "); scanf("%f", &vsrc);

C = C * 1e-6 ; L = L * 1e-3;

xc = 1/(2 * M_PI * f * C);

xl = 2 * M_PI * f * L;

xtotal = xl - xc;

ztotal = sqrt(pow(R,2) + pow(xtotal,2));

i = vsrc / ztotal;

printf("Z_r = %f - 0j Ohms\n", R);

printf("Z_c = 0 - %fj Ohms\n", xc);

printf("Z_l = 0 + %fj Ohms\n", xl);

printf("Z total (rectangular) = %f + %fj Ohms\n", R, xtotal);

printf("Z total (polar) = %f Ohms @ %f degrees\n", ztotal,

atan((xtotal)/R)*180/M_PI);

printf("Current = %f mA\n", i * 1000);

printf("Resistor voltage = %f V\n", i * R);

printf("Capacitor voltage = %f V\n", i * xc);

printf("Inductor voltage = %f V\n", i * xl);

return 0;

}

Compile and run this code, and then answer the following questions:

• Identify how various properties of series networks are applied in the code

• Find a combination of values resulting in a condition at or near resonance
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• How is total impedance calculated in this program without using complex-number variables?

• How are metric prefixes accommodated in this program?

• How could this program be simplified to use fixed component values rather than receive input
from the user?

• Identify where proper mathematical order-of-operations are enforced by the use of parentheses

Challenges

• Suppose we run this program with values that do not achieve resonance. How could we tell
from the output of the program which way we need to adjust the source frequency to approach
resonance?
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5.2.9 Using C to analyze a parallel AC RLC circuit

Examine the program (written in the C language) to analyze an AC parallel resistor-inductor-
capacitor circuit:

#include <stdio.h>

#include <math.h>

int main (void)

{

float R, C, L, f, vsrc, ztotal, xc, xl, ir, ic, il, itotal;

printf("Enter resistor value in Ohms: "); scanf("%f", &R);

printf("Enter capacitor value in microFarads: "); scanf("%f", &C);

printf("Enter inductor value in milliHenrys: "); scanf("%f", &L);

printf("Enter source frequency in Hertz: "); scanf("%f", &f);

printf("Enter source voltage in Volts: "); scanf("%f", &vsrc);

C = C * 1e-6 ; L = L * 1e-3;

xc = 1/(2 * M_PI * f * C);

xl = 2 * M_PI * f * L;

ir = vsrc / R; ic = vsrc / xc; il = vsrc / xl;

itotal = sqrt(pow(ir,2) + pow(il - ic,2));

ztotal = vsrc / itotal;

printf("Z_r = %f - 0j Ohms\n", R);

printf("Z_c = 0 - %fj Ohms\n", xc);

printf("Z_l = 0 + %fj Ohms\n", xl);

printf("Z total (polar) = %f Ohms @ %f degrees\n", ztotal,

atan((il-ic)/ir)*180/M_PI);

printf("I total = %f mA\n", itotal * 1000);

printf("Resistor current (rectangular) = %f + 0j mA\n", ir * 1000);

printf("Capacitor current (rectangular) = 0 + %fj mA\n", ic * 1000);

printf("Inductor current (rectangular) = 0 - %fj mA\n", il * 1000);

return 0;

}

Compile and run this code, and then answer the following questions:

• Explain what “polar” and “rectangular” refer to in AC circuit calculations

• Identify how various properties of parallel networks are applied in the code
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• Find a combination of values resulting in a condition at or near resonance

• How is total impedance calculated in this program without using complex-number variables?

• Explain the purpose of the 1e-6 and 1e-3 multiplying coefficients for C and L

• How are metric prefixes accommodated in this program?

Challenges

• Suppose we run this program with values that do not achieve resonance. How could we tell
from the output of the program which way we need to adjust the source frequency to approach
resonance?
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5.2.10 Using C to analyze a series AC resistor-capacitor circuit

The following program accepts user input for resistor and capacitor values and AC voltage source
values, then proceeds to calculate voltage dropped across the resistor for different user-entered
frequencies in this series network:

#include <stdio.h>

#include <math.h>

int main (void)

{

float f, R, C, Vsrc, Xc, Ztotal, I;

printf("Enter the AC source’s value in Volts: ");

scanf("%f", &Vsrc);

printf("Enter the resistor’s value in Ohms: ");

scanf("%f", &R);

printf("Enter the capacitor’s value in Farads: ");

scanf("%f", &C);

while(1)

{

printf("\nEnter the AC source’s frequency in Hertz: ");

scanf("%f", &f);

Xc = 1 / (2 * M_PI * f * C);

Ztotal = sqrt(pow(R,2) + pow(Xc,2));

I = Vsrc / Ztotal;

printf("Resistor voltage drop = %f Volts\n", I * R);

}

return 0;

}

Explain the purpose for each line of code found within this program.

Explain in detail the foundational concepts of electric circuits applied in this program.

What type of filter network is this program simulating, and how may we tell?

How might we modify the code to simulate a different type of filter network than this?
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Challenges

• Is the math library necessary to be linked with this code during compilation? Why or why
not?
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5.2.11 Using complex numbers in C to analyze a series-parallel AC RLC

circuit

The following C program simulates a series-parallel RLC circuit powered by an AC voltage source:

#include <stdio.h>

#include <math.h>

#include <complex.h>

int main (void)

{

float R, C, L, f, Vsrc;

float complex j, Zl, Zc, Zt, It, Vl, Vc, Vr, Ic, Il, Ir;

j = I; // I prefer using "j" rather than "I"

printf("Enter resistor value in Ohms: "); scanf("%f", &R);

printf("Enter capacitor value in microFarads: "); scanf("%f", &C);

printf("Enter inductor value in milliHenrys: "); scanf("%f", &L);

printf("Enter source frequency in Hertz: "); scanf("%f", &f);

printf("Enter source voltage in Volts: "); scanf("%f", &Vsrc);

C = C * 1e-6 ; L = L * 1e-3;

Zc = 1/(2 * M_PI * f * C * j);

Zl = 2 * M_PI * f * L * j;

Zt = 1/(1/R + 1/Zc) + Zl;

It = Il = Vsrc / Zt;

Vl = It * Zl;

Vc = Vr = Vsrc - Vl;

Ic = Vc / Zc;

Ir = Vr / R;

printf("Total current = %f @ %f deg \n", cabs(It), carg(It) * 180 / M_PI);

printf("Resistor voltage = %f @ %f deg \n", cabs(Vr), carg(Vr) * 180 / M_PI);

printf("Resistor current = %f @ %f deg \n", cabs(Ir), carg(Ir) * 180 / M_PI);

printf("Capacitor voltage = %f @ %f deg \n", cabs(Vc), carg(Vc) * 180 / M_PI);

printf("Capacitor current = %f @ %f deg \n", cabs(Ic), carg(Ic) * 180 / M_PI);

printf("Inductor voltage = %f @ %f deg \n", cabs(Vl), carg(Vl) * 180 / M_PI);

printf("Inductor current = %f @ %f deg \n", cabs(Il), carg(Il) * 180 / M_PI);

return 0;

}

Examine this program, and based on the source code listing determine the topology of this RLC
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circuit: i.e. which components are in parallel, which in series, etc.

How does the use of complex numbers simplify the programming to perform all the necessary
AC calculations?

Challenges

• Is the math library necessary to be linked with this code during compilation? Why or why
not?

• Explain why some of the variables in this program are simply declared as regular floating-point,
while others must be declared as complex floating-point.
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5.2.12 Using C to plot a sine wave

Examine the program (written in the C language) to calculate reactance for a capacitor given
frequency and capacitance values entered by the user at run-time:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (10 * sin(x) + 10) ; ++n)

printf(" ");

printf("*\n");

}

return 0;

}

First, compile and run this code to examine what its output looks like.
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Next, compile and run the following program using the same for() loops as the first, but
outputting the values of x and n with each “pass” of execution through each loop rather than space
and “*” characters as before:

#include <stdio.h>

#include <math.h>

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

printf("\nx=%0.1f ; n=", x);

for (n = 0 ; n < (10 * sin(x) + 10) ; ++n)

printf("%i,", n);

}

return 0;

}

Finally, explain in your own words the flow of execution when run (i.e. which lines of code
execute in which order, and the values of both x and n throughout that execution), for the first few
“passes” through the outer for() loop, and how the original version of the program plots a sine
wave to the console using these two loops.

Challenges

• How may you edit the code to make the sine wave have a greater amplitude?

• How may you edit the code to make the sine wave have a greater frequency?

• How may you edit the code to shift the center of the sine wave?

• How may you edit the code to make more cycles appear of the sine wave?

• Estimate the RMS value of this sine wave.
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5.2.13 Geometric sequence counting program

A geometric sequence is a sequence of numbers where each successive number is a fixed-multiple of
the one preceding it. For example, a geometric sequence with a factor of 3 looks like this: 1, 3, 9,
27, 81, · · ·

Write a program that prints the first six numbers of any geometric sequence, requesting the user
to enter the starting value for the sequence and the multiplying factor (both integer values). The
following is some code to get you started:

#include <stdio.h>

int main (void)

{

int start, factor; // User-entered values

int num, count; // "num" is the sequence number that gets incremented

// "count" will control your loop

printf("Enter the starting value: ");

scanf("%i", &start);

printf("Enter the multiplication factor: ");

scanf("%i", &factor);

//

// YOUR LOOP GOES HERE!

//

return 0;

}

After you get your geometric-sequence program working well, modify it to produce an arithmetic
sequence instead, where successive values are separated by a constant difference (e.g. 1, 5, 9, 13, 17,
21).

Challenges

• Modify this program so that the user controls how many elements of the geometric sequence
get printed to the console.

• Modify the program and identify user-entered values resulting in a geometric sequence that
grows smaller rather than larger.
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5.2.14 RC time-constant calculator program

Write a program to calculate the time constant of a simple resistor-capacitor (RC) network,
requesting the user to enter the resistance value in Ohms and the capacitance value in Farads.
The following is some code to get you started:

#include <stdio.h>

int main (void)

{

float R, C;

printf("Enter the resistor’s value in Ohms: ");

scanf("%f", &R);

//

// Rest of your code goes here

//

return 0;

}

After you have a basic version of your program functional, add more code to it so that it
additionally displays “Time constant is greater than 1 minute” if indeed the calculated time constant
value is greater than one minute.

After that, “fool-proof” your program against anyone who might enter a negative value for either
resistance or capacitance so that the program does not generate a non-sensical negative value for
time constant.

Challenges

• Modify your program to display the time constant in milliseconds rather than seconds.
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5.2.15 Using C to analyze an RC charging-discharging circuit

Examine the program (written in the C language) to analyze a resistor-capacitor circuit with a
SPDT switch to make the capacitor charge or discharge:

+
−

R

C

Charge

Discharge

Vsrc

VR

VC

#include <stdio.h>

#include <math.h>

int main (void)

{

float Vsrc, R, C, tau, time;

printf("Enter value of source in Volts: ");

scanf("%f", &Vsrc);

printf("Enter value of resistor in Ohms: ");

scanf("%f", &R);

printf("Enter value of capacitor in microFarads: ");

scanf("%f", &C);

C = C / 1e6;

tau = R * C;

printf("\nCharging\n");

for (time = 0.0 ; time <= 5*tau ; time = time + (tau / 3.0))

{

printf("Time = %f sec \t",time);

printf("V_c = %f Volts \t", Vsrc * (1 - exp(-time / tau)));

printf("V_r = %f Volts \n", Vsrc * exp(-time / tau));

}

printf("\nDischarging\n");
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for (time = 0.0 ; time <= 5*tau ; time = time + (tau / 3.0))

{

printf("Time = %f sec \t",time);

printf("V_c = %f Volts \t", Vsrc * exp(-time / tau));

printf("V_r = %f Volts \n", Vsrc * exp(-time / tau));

}

return 0;

}

Compile and run this code, and then answer the following questions:

• Qualitatively predict the trajectories of the resistor and capacitor voltages starting at the time
when switch moves to the “Charge” position, assuming the capacitor begins in a zero-energy
state

• Qualitatively predict the trajectories of the resistor and capacitor voltages starting at the time
when switch moves to the “Discharge” position, assuming the capacitor began at full source
voltage

• Which components are functioning as sources and which as loads during the “Charge” period?

• Which components are functioning as sources and which as loads during the “Discharge”
period?

• Which portion(s) of the code listing determine the time increments over which the charging
and discharging analyses take place?

• Identify how to modify the program so that the charging and discharging analyses proceed up
to and including ten time constants’ worth of time.

• Identify how to modify the program so that the charging and discharging analyses each begin
at some point in time after zero.

• Identify how to modify the program so that the charging and discharging analyses halt when a
certain voltage or current value is reached, rather than halting after a certain amount of time
has passed.

Challenges

• Modify this program to calculate current in either the charge or the discharge period
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5.2.16 Writing an LR time-delay analysis program

Write a program in the C language to compute inductor voltage and resistor voltage over time after
closing the switch in the following LR circuit:

+
−

VR

VL

Switch 51 Ω

3.9 H
10 V

Be sure to write your program so that voltage values are printed from time zero to at least five
time constants’ worth of time (5τ) following switch closure.

Challenges

• Explain why it is a good problem-solving technique to analyze the circuit on your own (i.e.
“by hand” using just a calculator) before attempting to write a program that does the same.

• What would happen in a real circuit if the switch were opened after the inductor had
opportunity to fully energize (e.g. after resistor voltage had risen to equal source voltage)?
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5.2.17 Writing a cutoff frequency calculator program

Write a program in the C language to compute the cutoff frequency for a simple resistor-capacitor
(RC) or inductor-resistor (LR) filter network, either high-pass or low-pass, given component values
specified by the user. The following is some code to get you started:

#include <stdio.h>

int main (void)

{

int choice;

float R, C, L;

printf("Enter 1 for RC filter or 2 for LR filter: ");

scanf("%i", &choice);

if (choice == 1)

{

// Your code goes here

}

else

{

// Your code goes here

}

return 0;

}

Why do we not need the user to select whether their filter network will be high-pass or low-pass?

Also, identify a practical application for a filter network.

Challenges

• What is the meaning of the “cutoff frequency” for a filter network?

• Modify this program so that only one pair of printf/scanf instructions are necessary to solicit
the resistor’s value from the user.



5.2. QUANTITATIVE REASONING 209

5.2.18 Writing a low-pass filter simulation program

Write a program in the C language to compute the output signal voltage from a low-pass filter
consisting of a 20 kΩ resistor and a 3.3 nF capacitor, printing input signal frequency values and
output signal voltage values from 2000 Hz to 3000 Hz in 100 Hz increments assuming a constant AC
source voltage of 2 Volts.

Also, sketch a schematic diagram for this type of filter network.

Challenges

• A good problem-solving strategy is to analyze the filter network on your own (i.e. with just a
hand calculator) before trying to write a program to do the same. How exactly will analyzing
the circuit on your own assist you in writing software to do it automatically?

• Modify your program to analyze a high-pass filter network consisting of the same components,
differently arranged.
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5.2.19 Bitwise operation practice

Choose arbitrary values for n and mask which you may then test using the following program. Write
the binary values for both of your chosen quantities and show how each bitwise operation will work
on them, before running the program to check your answers.

#include <stdio.h>

int main (void)

{

int n, mask;

printf("Enter value of first operand: ");

scanf("%i", &n);

printf("Enter value of second operand (i.e. the ‘mask’): ");

scanf("%i", &mask);

printf("\n");

printf("Bitwise-AND between 0x%X and 0x%X = %X \n", n, mask, n & mask);

printf("Bitwise-OR between 0x%X and 0x%X = %X \n", n, mask, n | mask);

printf("Bitwise-XOR between 0x%X and 0x%X = %X \n", n, mask, n ^ mask);

printf("Bitwise-complement of 0x%X = 0x%X \n", n, ~n);

printf("Left-shift 0x%X by four bits = 0x%X \n", n, n << 4);

printf("Right-shift 0x%X by three bits = 0x%X \n", n, n >> 3);

return 0;

}

Next, modify this program to prompt the user to choose how many places to shift the bits of the
first operand (instead of having fixed bit-shifts of four and three).

Challenges

• Modify the program to multiply the first operand by four, without using the multiplication
(*) operator.
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5.2.20 XOR cryptography

Translate the following message into ASCII codes, then encrypt each of those bytes with the key 0b

0000 0110 using bitwise-XOR operations. Show what that “cyphertext” message looks like when
viewed as ASCII characters:

Hello, world!

Challenges

• ???.

• ???.

• ???.
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5.2.21 Byte-shifting algorithm

Some computer systems are designed in such a way that digital words are stored in memory and/or
communicated over serial networks in byte-swapped order, where the least-significant and most-
significant bytes of a 16-bit word appear in reverse order. For example, the number 0x1F4C might
be formatted such that the least-significant byte 4C comes first and the most-significant byte 1F

comes second.

Complete the following program, where the user will enter a 16-bit number in hexadecimal format
and then display both the user-entered value (input) and the byte-swapped value (output):

#include <stdio.h>

int main (void)

{

int input, output;

printf("Enter number: ");

scanf("%i", &input);

// Place your code here!

printf("Original value = %x \n", input);

printf("Byte-swapped value = %x \n", output);

return 0;

}

Challenges

• How would your program need to be written if the purpose was to swap the first and second
16-bit words within a 32-bit integer?
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5.2.22 Sine calculator program

Suppose a student writes the following program to calculate sine values between 0 and 90 degrees:

#include <stdio.h>

#include <math.h>

int main (void)

{

float angle;

for (angle = 0.0 ; angle <= 90.0 ; angle = angle + 10.0)

printf("Angle = %.0f \t sine(%.0f) = %1.5f\n", angle, angle, sin(angle));

return 0;

}

However, the student is disappointed in the results after compiling and running this code. Instead
of seeing the sine of the increasing angle increase from 0 to 1 as the angle progresses from 0 to 90, a
sequence of seemingly random values appears, some positive and some negative. It is then that the
student realizes that the sin() function in C assumes the use of radians rather than degrees as the
unit of angular measurement.

Modify this program to convert degrees into radians so that the sin() function will be satisfied,
and place this degree-to-radian conversion within its own function that gets called by the printf

instruction.

Challenges

• Modify this program so that it increments the angle in smaller steps.

• Modify this program to start at 90 degrees and decrement to 0 degrees.
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5.2.23 Using C arrays to analyze a resistor circuit

Suppose we need a program (written in the C language) to analyze the following circuit:

+
−

R1 R2

R3

R4

Vsrc

R5

Here is the basic outline of a program to do this, using arrays to store all the resistance, voltage,
and current values:

#include <stdio.h>

int main (void)

{

float v[6];

float i[6];

float r[6];

// Your code goes here!

return 0;

}

Your task is to make this program complete, so that in the end all resistor voltages and currents
are displayed to the user, for the following component values: Vsrc = 28 Volts, R1 = 2 Ω, R2 = 4
Ω, R3 = 6 Ω, R4 = 8 Ω, and R5 = 2 Ω.
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• Explain what Ohm’s Law is, and how it is applied in your code

• Identify how various properties of series networks are applied in your code

• Identify how various properties of parallel networks are applied in your code

Challenges

• Modify the code to apply Kirchhoff’s Voltage Law around any loop (of your choice) and prove
an algebraic sum of zero.
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5.2.24 Sine look-up table

The following program written in C for the Texas Instruments MSP430G2553 microcontroller uses
an array of “character” (eight-bit integer) values representing samples along one cycle of a sine wave
function:

C code listing

#include "msp430G2553.h"

unsigned char wave[127] = // Sine table ranging 0 to 255

{127,134,140,146,153,159,165,171,177,182,

188,194,199,204,209,214,218,223,227,230,

234,237,240,243,246,248,250,251,253,254,

255,255,255,255,254,253,252,251,249,247,

245,242,239,236,232,229,225,220,216,211,

206,201,196,191,185,180,174,168,162,156,

149,143,137,131,124,118,112,106,99,93,

87,81,75,70,64,59,54,49,44,39,

35,30,26,23,19,16,13,10,8,6,

4,3,2,1,0,0,0,0,1,2,

4,5,7,9,12,15,18,21,25,28,

32,37,41,46,51,56,61,67,73,78,

84,90,96,102,109,115,121};

void main(void)

{

unsigned int i; // Used in for() loop

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

DCOCTL = 0xE0; // Maximum DCO frequency range (DCO = 7)

BCSCTL1 = 0x0F; // Maximum basic clock frequency (RSEL = 15)

BCSCTL2 = 0x00; // Sets DCOCLK as the source for MCLK and SMCLK

P2SEL = 0x00; // Sets P2.6 + P2.7 to standard output mode

P2DIR = 0xFF; // All P2.x pins are outputs

while(1)

{

for (i = 0; i < 127; ++i)

P2OUT = wave[i];

}

}
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The purpose of this program is to drive the microcontroller’s Port 2 pins high and low in the
proper order to synthesize an analog sinusoidal signal, effectively making a sine-wave signal generator.
An R/2R resistor “ladder” network functions as a simple digital-to-analog converter to turn Port
2’s binary output values into an analog signal voltage:

M
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2553IN
20

VSSVCC (+3.3 V)
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P1.1
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−

+

R
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Explain how the array gets used in this program to “look up” the sine wave amplitude values
one at a time.

Identify where in the table of data we see the sine wave reaching its positive and negative peak
values.

Challenges

• Identify what would need to be modified in this program to alter the output frequency.

• Identify what would need to be modified in this program to provide more resolution in the
time domain, so that each step of the for() loop represented a smaller angle increment for
the sine function.
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5.2.25 Array-reversal program

The following program accepts input from the user to populate a five-element integer array, then
prints those five values in the same order:

#include <stdio.h>

int main (void)

{

int value[5], count;

for (count = 0 ; count < 5 ; ++count)

{

printf("Enter value for element %i :", count);

scanf("%i", &value[count]);

}

for (count = 0 ; count < 5 ; ++count)

{

printf("Element %i = %i\n", count, value[count]);

}

return 0;

}

Modify this program to display the entered values in reverse order from how the user entered
them.

Then, modify the program to use pointers when printing the stored values, rather than array
subscripts.

Challenges

• How could you write a program that actually swaps the array elements’ values, rather than
merely printing them in reverse order?
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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5.3.1 Find mistakes in a very simple program

Multiple errors exist in this program. Find them all, then test your corrections by seeing whether
or not your edited source code will compile and run properly:

include <stdio.h>

int main (void)

{

printf("This is a simple program/n");

printf("but it has mistakes in it.\n");

return 0

}

Challenges

• What suggestions would you offer to anyone in order to help them find such errors?
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5.3.2 Find mistakes in a millimeter conversion program

Multiple errors exist in this program, which is supposed to convert inches into millimeters. Find
them all, then test your corrections by seeing whether or not your edited source code will compile
and run properly:

#include (stdio.h)

int main (void)

{

float inches;

printf("Enter the dimension in inches: ");

scanf("%f", inches);

printf("The dimension is %f millimeters.\n", inches / 25.4);

return 0:

}

Challenges

• After fixing the errors, re-write this program to perform some other numerical conversion.

• Could we use an integer variable for inches rather than a floating-point? Why or why not?
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5.3.3 Case-sensitivity in variable names

Suppose a student is wondering whether the C programming language differentiates between upper-
and lower-case characters in variable names. For example, would value and VALUE and Value and
vALuE be considered distinct and different variables when declared, or would all those names be
treated as synonymous by the compiler?

Write a program in C to prove whether or not capitalization matters in variable names.

Challenges

• What qualities are necessary in a “test program” such as this to confirm or refute a hypothesis,
such as variable names being case-sensitive?
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5.3.4 Find mistake in a function-calling program

An error exists in this program. First, compile and run this program to see what the problem is in
its output, and then fix the error:

#include <stdio.h>

#include <math.h>

void doubler(int);

int main (void)

{

int n;

printf("Enter an integer: ");

scanf("%i", &n);

printf("The entered value is %i\n", n);

doubler(n);

printf("The doubled value is %i\n", n);

return 0;

}

void doubler(int n)

{

n = 2 * n;

}

Challenges

• A diagnostic technique is to insert printf instructions at different points in the program to
display such things as variable values. Identify where you might insert a printf instruction
within the original (faulty) code to help diagnose the problem.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,



241

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

14 January 2025 – added instructor notes.

3 September 2024 – minor edits to the “Arrays” section of the Tutorial chapter, and additions
made to instructor notes.

26-27 August 2024 – fixed a pair of errors where I showed the math library linking option before
the source-file name rather than after as it should have been. Also added a new Quantitative
Reasoning question where complex numbers are used in C to analyze a series-parallel RLC circuit
powered by an AC voltage source. Also fixed some errors in some of the instructor notes.

20-21 August 2024 – added a bullet-item to the Introduction chapter on bitwise operations. Also
corrected some omitted lines on a program’s output in the “Using the C math library” Tutorial
section. Also, minor edits made to instructor notes.

18 August 2024 – divided the Introduction chapter into three sections, one with recommendations
for students, one showing challenging concepts related to the module’s topics, and one with
recommendations for instructors with sample learning outcomes and measures.

31 May to 2 June 2024 – added a new Tutorial section on Structures, and also elaborated on
data types.

21 February 2024 – added the printf()/scanf() identifier for double-precision floating-point
variables, %lf, as well as added double as a common data type, to those respective sections of the
Tutorial chapter.

31 January 2024 – fixed a typo in the “Arrays” section of the Tutorial chapter, where I stated
“four” but really meant to say “three”. Fixed another typo in the same section courtesy of Joe
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Archer, where I said “initialized” but should have said “declared”.

26 January 2024 – minor edits to the Tutorial section on pointers, made for clarity.

16-17 January 2024 – added more questions to the Introduction chapter. Also edited some C
code to specify numerical entry in hex.

5 October 2023 – edited some source-code listings to use the word “percent” rather than an
escaped-% symbol which causes problems with some compilers.

29 August 2023 – corrected a typo in a C program comment that said “value numbers” rather
than “valid numbers”. Also commented on the use of float test variables within for loops.

23 August 2023 – added the %g formatting option to that section of the Tutorial. Also added a
reference to the INFINITY constant contained in the C math library.

27 July 2023 – added a Quantitative Reasoning question showing a C program analyzing a multi-
source DC circuit.

22-27 June 2023 – corrected an error in the Tutorial’s section on pointers where I used the word
“initialize” instead of “declare” with regard to two variables in a program. Also elaborated on the
use of pointers for hardware-specific addressing such as memory-mapped I/O, and corrected a few
mis-spellings throughout the Tutorial.

10-11 May 2023 – added some instructor notes as well as made edits to many of the Quantitative
Reasoning questions asking more programming-centric queries instead of only (or mostly) being
circuit-centric.

30 May 2022 – added explanation and programming example showing the use of multi-dimensional
arrays.

21 April 2022 – minor additions to the Introduction, and corrected a minor source code discrepancy
in the “Bitwise operators” section of the Tutorial where a line should have read “bit 5 is HIGH!”
rather than “bit 5 is high”. Also added another sentence of text to the “Bitwise operators” section
identifying other input conditions that would satisfy the “bit 5 is high” condition in the subsection
“Testing bit states”.

12 March 2022 – added more sub-questions to the “Resonant frequency calculator program”
Conceptual Reasoning question (requesting students trace the flow of program execution), as well as
added instructor notes. Ditto for the “Writing your first C program” Conceptual Reasoning question
and some of the Quantitative Reasoning questions, and for the same reason: challenging students
to identify the order in which lines of code execute. Also added some content to the Introduction
chapter.

23-24 January 2022 – added a new Tutorial section introducing graphics programming in C.
Also fixed syntax errors in some of the conditional example programs, thanks to Jacob Stormes for
identifying these.
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20 January 2022 – minor additions to the Introduction, as well as some new Challenge questions.

22 December 2021 – moved the Case Tutorial section on complex numbers to its own dedicated
section in the regular Tutorial.

13-16 December 2021 – wrote a new Tutorial section on arrays.

6 December 2021 – added a Quantitative Reasoning question on writing a byte-shifting program.

28 November - 1 December 2021 – added some content to the Tutorial section on pointers.

19 November 2021 – added some commentary on using bitwise-XOR for encryption and
decryption.

9-12 November 2021 – wrote a new Tutorial section on bitwise instructions.

7-8 November 2021 – began writing a new section on logic functions in C, and also added a list
of formatting specifiers to the section on standard output using printf().

6 October 2021 – added a new Challenge question.

2-3 September 2021 – added a new Tutorial section on using the GDB debugger.

26 August to 1 September 2021 – added content to the “Functions” section of the Tutorial,
and also added new Case Tutorial sections. Also added instructor notes and made minor error
corrections.

25 August 2021 – added instructor notes to certain questions.

1-21 August 2021 – added content to the Tutorial.

31 July 2021 – added chapters and sections to the Tutorial.

4 July 2021 – document first created.
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