
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Digital Codes

© 2019-2025 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 30 April 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3
1.2 Challenging concepts related to digital codes . 5
1.3 Recommendations for instructors . 6

2 Tutorial 7

2.1 Morse and Baudot telegraph codes . 8
2.2 EBCDIC and ASCII codes . 9
2.3 Hexdumps . 11
2.4 Unicode . 12
2.5 UTF-8 encoding examples . 13
2.6 Binary and Gray position codes . 14

3 Historical References 19

3.1 Ancient serial data communication . 20
3.2 Frank Gray’s code . 22

4 Derivations and Technical References 31

4.1 International Morse Code . 32
4.2 ASCII character codes . 33

5 Questions 35

5.1 Conceptual reasoning . 39
5.1.1 Reading outline and reflections . 40
5.1.2 Foundational concepts . 41
5.1.3 Morse-coded message . 42
5.1.4 ASCII-coded message . 42
5.1.5 Gray-binary converters . 42

5.2 Quantitative reasoning . 43
5.2.1 Miscellaneous physical constants . 44
5.2.2 Introduction to spreadsheets . 45
5.2.3 Using Python to convert between ASCII and hexadecimal 48
5.2.4 Binary and Gray rotary encoders . 49
5.2.5 Binary to Gray code conversion . 50

iii

CONTENTS 1

5.2.6 Gray code to binary conversion . 50
5.3 Diagnostic reasoning . 51

5.3.1 Failed ASCII bit . 51
5.3.2 Failed encoder photodetector . 52

A Problem-Solving Strategies 53

B Instructional philosophy 55

C Tools used 61

D Creative Commons License 65

E References 73

F Version history 75

Index 76

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

Binary data is capable of representing far more than just numbers. Combinations of 0 and 1 states are
also useful for representing alphabetical characters, machine instructions1, graphic images2, audio
recordings3, notes played by musical instruments4, video recordings5, and any other information
reducible to a finite set of states. This module explores some of the non-numerical applications of
binary data.

Important concepts related to digital codes include binary counting, how binary states are
represented in physical form, standardization of code patterns, hexadecimal representation,
code space, code point, data compression, ASCII,Unicode, EBCDIC,Gray code, encoding
of physical position, and Morse code.

A recommended strategy for better understanding codes such as ASCII is to take time to
manually interpret some of the ASCII code sequences shown in the Tutorial. This takes extra
time, but the understanding and confidence you will gain from doing so are worth it. Refer to
the ASCII table relating binary values to letters and other characters, then “decode” the ASCII
sequences you read in the hex dump examples to verify you are properly interpreting them. For
Gray code, a good strategy for understanding is to “run” the same thought experiment in your own
mind that the Tutorial describes, but with other position states, to see for yourself the purpose
and function of that code in comparison to binary. A useful instructional tool is to make yourself
some cut-out encoder wheel models using construction paper and use them as experimental tools to
explore this same concept in physical form.

1Machine instructions include “control characters” to command printers to move to different positions on a paper
page, RS274 “G-code” and “M-code” instructions to CNC machine tools commanding the machine go to different
positions and different tool speeds, microprocessor instructions telling the CPU to perform arithmetic and logical
computations, etc.

2Common digital image formats include JPEG, PNG, TIFF, and BMP.
3Common digital audio formats include MP3, Ogg Vorbis, and WAV.
4The MIDI code (Musical Instrument Digital Interface) describes such note properties as pitch, attack, duration,

decay, etc.
5Common digital video formats include MPEG, AVI, and WMV.

3

4 CHAPTER 1. INTRODUCTION

Here are some good questions to ask of yourself while studying this subject:

• What is the purpose of having digital codes at all?

• What are some historical examples of digital codes, and what do we find in popular use today?

• What information other than alphanumerical characters must a code be able to represent in
order to be practically useful?

• How do the Morse and ASCII codes differ from one another?

• How do the ASCII and EBCDIC codes differ from one another?

• Can you identify the ASCII code for any random alphanumeric character you might choose?

• How is “hexdump” useful as a computer utility for the analysis of encoded data?

• Can you translate the ASCII codes (shown in hexadecimal format) into letters from the
hexdump example for the Jack London quote?

• What is the rationale for the existence of Unicode?

• What single factor determines the code space for any particular encoding standard?

• What problem was Gray code invented to solve?

• What are some practical applications of a “hex dump” display?

• What is the meaning of “code space”?

• What is the meaning of “code point”?

• How might digitally-encoded text be compressed so that fewer bits are necessary to represent
the same body of text?

• How does a variable-width coding scheme work?

The Historical References chapter contains a fascinating vignette of a military communication
code used by ancient Greeks, as well as excerpts from Frank Gray’s patent regarding “reflected
codes” used to solve a vexing problem with early analog-to-digital converter technology.

1.2. CHALLENGING CONCEPTS RELATED TO DIGITAL CODES 5

1.2 Challenging concepts related to digital codes

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Gray versus Binary codes – binary, like all place-weighted numeration systems, assigns
different numerical “weights” to each character’s place in the number. Gray code, by contrast,
is not place-weighted although it is derived from binary by a series of Exclusive-OR (XOR)
functions.

• UTF-8 encoding – being a variable-width encoding scheme, UTF-8 requires certain starting-
bit sequences be used to designate the number of bytes that make up a single encoded character,
the remaining bits of those successive bytes making up the bits of the Unicode character. The
Tutorial section showing UTF-8 encoding examples is most helpful here to see the pattern(s).

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by the author in the
Tutorial chapter’s examples.

Chapter 2

Tutorial

Binary patterns are not just able to represent numerical values. Given a standardized code, they
may represent other types of information as well, such as alphabetical characters. The ability to
encode non-numerical data in digital form is what allows computers to manipulate and communicate
text. In the first few sections we will explore different coding schemes designed to represent written
language in digital form, and in the last section we will explore codes used to represent physical
positions.

7

8 CHAPTER 2. TUTORIAL

2.1 Morse and Baudot telegraph codes

The first long-distance communication system based on electricity as a signaling medium was the
telegraph. The discrete electrical state of the telegraph line conductor (current, or no current) might
be thought of as equivalent to the 0 and 1 states of a Boolean system. Somehow, people needed to
figure out how to represent alphanumeric characters using nothing but on/off states, and from this
need Morse Code was born.

Morse code represented letters of the alphabet, numerals (0 through 9), and some other characters
in the form of “dot” and “dash” signals. Each of these “dot” or “dash” signals represented a change
of electrical state in the line, differentiated by time duration, a “dot” being a shorter-duration state
than a “dash”. In the International Morse Code, no character requires more than five bits of data,
and some (such as the common letters E and T) require only one bit.

A table showing how International Morse code represents all characters of the English alphabet
and the numerals 0 through 9 appears here:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

International Morse Code (English letters and Arabic numerals only)

The variable bit-length of Morse code, though very efficient1 in terms of the total number of
“dots” and “dashes” required to communicate text messages, was difficult to automate in the form
of teletype machines. In answer to this technological problem, Emile Baudot invented a different code
where each and every character was five bits in length. Although this gave only 32 characters, which
is not enough to represent the 26-letter English alphabet, plus all ten numerals and punctuation
symbols, Baudot successfully addressed this problem by designating two of the characters as “shift”
characters: one called “letters” and the other called “figures.” The other 30 characters had dual
(overloaded) meanings, depending on the last “shift” character transmitted2.

1Morse code is an example of a self-compressing code, already optimized in terms of minimum bit count. Fixed-
field codes such as Baudot and the more modern ASCII tend to waste bandwidth, and may be “compressed” by
removing redundant bits.

2For example, the Baudot code 11101 meant either “Q” or “1” depending on whether the last shift character was
“letters” or “figures,” respectively. The code 01010 meant either “R” or “4”. The code 00001 meant either “T” or
a “5”. This overloading of codes is equivalent to using the “shift” key on a computer keyboard to switch between

2.2. EBCDIC AND ASCII CODES 9

2.2 EBCDIC and ASCII codes

A much more modern attempt at encoding characters useful for text representation was EBCDIC,
the “Extended Binary Coded Decimal Interchange Code” invented by IBM in 1962 for use with
their line of large (“mainframe”) computers. In EBCDIC, each character was represented by a one-
byte (eight bit) code, giving this code set 256 (28) unique characters. Not only did this provide
enough unique characters to represent all the letters of the English alphabet (lower-case and capital
letters separately!) and numerals 0 through 9, but it also provided a rich set of control characters
such as “null,” “delete,” “carriage return,” “linefeed,” and others useful for controlling the action of
electronic printers and other peripheral devices.

A number of EBCDIC codes were unused (or seldom used), though, which made it somewhat
inefficient for large data transfers. An attempt to improve this state of affairs was ASCII, the
“American Standard Code for Information Interchange” first developed in 1963 and then later
revised in 1967, both by the American National Standards Institute (ANSI). ASCII is a seven-bit
code, one bit shorter per character than EBCDIC, having only 128 unique combinations as opposed
to EBCDIC’s 256 unique combinations. The compromise made with ASCII versus EBCDIC was a
smaller set of control characters.

IBM later created their own “extended” version of ASCII, which was eight bits per character. In
this extended code set were included some non-English characters plus special graphic characters,
many of which may be placed adjacently on a paper printout or on a computer console display to
form larger graphic objects such as lines and boxes.

ASCII is by far the most popular digital code for representing English characters, even today.
Nearly every digital transmission of English text in existence employs ASCII as the character
encoding3. Nearly every text-based computer program’s source code is also stored on media using
ASCII encoding, where seven-bit codes represent alphanumeric characters comprising the program
instructions.

numbers and symbols (e.g. “5” versus “%”, or “8” versus “*”). The use of a “shift” key on a keyboard allows single
keys on the keyboard to represent multiple characters.

3Including the digital source code for this textbook!

10 CHAPTER 2. TUTORIAL

The basic seven-bit ASCII code is shown in this table, with the three most significant bits in
different columns and the four least significant bits in different rows. For example, the ASCII
representation of the upper-case letter “F” is 0b1000110, the ASCII representation of the equal sign
(=) is 0b0111101, and the ASCII representation of the lower-case letter “q” is 0b1110001.

ASCII code set

↓ LSB / MSB → 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS − = M] m }
1110 SO RS . > N ˆ n ˜

1111 SI US / ? O o DEL

The aforementioned “control characters” occupy the “000” and “001” columns of the table.
These characters, while not associated with a printed character on the page, nevertheless play roles
the other “visible” characters cannot. The “LF” character (“line feed”), for example, tells the printer
to go to the next line on the paper. The “CR” character (“carriage return”) tells the printing head
to return to the left-hand side of the paper. The “ESC” character (“escape”) does not result in a
printed character on paper, nor does it usually command a printing machine to do anything specific,
but it is often used within software as a signal to jump up one level in a menu structure, or to switch
modes.

2.3. HEXDUMPS 11

2.3 Hexdumps

An interesting and useful way to view ASCII encoding at work in digitally-encoded English sentences
is to view a text file (stored in a digital computer) as a series of hexadecimal characters called a hex
dump. The legacy Unix utility called hexdump is easy to use and will be demonstrated here.

First, we will begin with some English text, in this case a quotation by the American author
Jack London:

The proper function of man is to live, not to exist. I shall not waste my days in trying
to prolong them. I shall use my time.

Saving this text to a file on my computer called quote.txt, I then invoke hexdump with the
following command (typed on the command line of my computer’s terminal), using the option -C

to specify output in the “canonical” form where the displayed text will show the offset4 values, the
hexadecimal bytes, and also an ASCII interpretation of those bytes:

hexdump -C quote.txt

The resulting output from hexdump appears here:

00000000 54 68 65 20 70 72 6f 70 65 72 20 66 75 6e 63 74 |The proper funct|

00000010 69 6f 6e 20 6f 66 20 6d 61 6e 20 69 73 20 74 6f |ion of man is to|

00000020 20 6c 69 76 65 2c 20 6e 6f 74 20 74 6f 20 65 78 | live, not to ex|

00000030 69 73 74 2e 20 20 49 20 73 68 61 6c 6c 20 6e 6f |ist. I shall no|

00000040 74 20 77 61 73 74 65 20 6d 79 20 64 61 79 73 20 |t waste my days |

00000050 69 6e 20 74 72 79 69 6e 67 20 74 6f 20 70 72 6f |in trying to pro|

00000060 6c 6f 6e 67 20 74 68 65 6d 2e 20 20 49 20 73 68 |long them. I sh|

00000070 61 6c 6c 20 75 73 65 20 6d 79 20 74 69 6d 65 2e |all use my time.|

00000080 0a |.|

00000081

Each ASCII character requires seven bits, but since digital computers are typically organized in
bit-widths of powers-of-two (e.g. 4, 8, 16, 32, 64) we find within this text file that eight bits (one
byte) are allocated for each 7-bit ASCII character5. The left-most column of numbers in this display
shows the offset value for the start of each line. On the far right is the ASCII interpretation of each
byte. Bytes having no alphanumeric meaning appear in this field as a decimal point (.) as we see at
the very end of the file where the byte 0x0a (ASCII “linefeed” control character) appears as a dot
in the ASCII equivalent field. Note that all spaces in the text are represented by the ASCII code
0x20. A good instructional exercise is to manually interpret several bytes shown in the hex dump
using an ASCII table, verifying the meaning of each one, until one gains confidence in being able to
interpret ASCII-encoded text.

4The “offset” is simply an integer number expressing how many characters from the beginning the present character
resides. The first character, of course, has on offset of zero; the next character an offset of 1, the next character after
that an offset of 2, etc.

5This makes ASCII text files less efficient than they could be, and for this reason they are easily compressed using
data-compression algorithms to achieve smaller sizes by eliminating redundant and unused bits.

12 CHAPTER 2. TUTORIAL

2.4 Unicode

There exist many written languages whose characters cannot and are not represented by either
EBCDIC or ASCII. In in attempt to remedy this state of affairs, a new standardized code set exists
called Unicode utilizing digital words with many more bits than either ASCII or EBCDIC.

When encoding written-language characters as integer-number values, the possible range of
integer values available for character encoding is commonly referred to as the code space. Any
particular integer number within that code space is called a code point. Using ASCII as an example,
the seven bits provides a code space of one hundred and twenty-eight (27), ranging from 0x00 to
0x7F. The lower-case letter “k” (ASCII code 0b1101011 in binary or 0x6B in hexadecimal) is one
code point within that code space.

In its present version (version 12 as of the year 2019), Unicode supports a code space from 0x0

to 0x10FFFF, containing 1,114,112 individual code points. The purpose of having such a wide code
space is to have the ability (at least in principle) to encode every unique character in every written
language on Earth. Not every code point within that code space is mapped to a written-language
character. Some characters have multiple code points, for example characters that appear in more
than one language alphabet. Also, some characters may be generated by combinations of code
points (such as certain accent marks appearing in conjunction with other characters). Like ASCII
and EBCDIC, Unicode also encodes certain control characters and formatting characters with their
own code points (e.g. linefeed).

In deference to existing standards, Unicode encapsulates both ASCII and EBCDIC as sub-sets
within its defined code space. For example, the first 128 Unicode characters (0x000000 through
0x00007F) are identical to ASCII’s 128 characters (0x00 through 0x7F).

More than one way exists to package binary bits together to represent Unicode characters in
digital systems, each of these methods referred to as a Unicode Transformation Format or UTF.
The simplest method, called UTF-32, allocates 32-bit words for Unicode characters: one 32-bit word
per Unicode code point. This method is simple but inefficient because the Unicode code space only
requires 21 bits. Two other formats, UTF-16 and UTF-8, use sets of 16-bit and 8-bit digital words
to represent Unicode characters. These formats are more memory-efficient but require additional
processing to properly interpret (i.e. to “stitch together” multiple words6 to create the desired
Unicode character).

At the time of this writing (2022) UTF-8 is the predominant representation of Unicode for the
world-wide web (internet). Both UTF-8 and UTF-16 are known as variable-width encoding schemes,
meaning certain Unicode characters will be representable with fewer bits than others. Since the first
128 Unicode characters are identical to the ASCII character set, any ASCII characters represented
as UTF-8 Unicode are bit-for-bit identical to legacy 7-bit ASCII data words. Unicode characters
requiring between 8 and 11 bits are represented in UTF-8 by two bytes (16 bits). Unicode characters
requiring 12 to 16 bits result in three-byte (24-bit) UTF-8 words. Finally, Unicode characters
requiring more than 16 bits generate four-byte (32-bit) UTF-8 words.

6And, of course, when communicating such data in serial format there is the matter of big-endian versus little-
endian swapping of words!

2.5. UTF-8 ENCODING EXAMPLES 13

2.5 UTF-8 encoding examples

Practical examples are helpful for understanding UTF-8 encoding. Let’s begin by listing some
ASCII characters and their corresponding 1-byte UTF-8 words, these UTF-8 words being nothing
more than the seven-bit ASCII code with an extra 0 as “padding” in the most-significant place to
round it up to eight bits. The seven “x” placeholders shown in the single-byte UTF format are
where these ASCII bits go in the UTF-8 word:

• Single-byte UTF-8 format = 0xxxxxxx

• “E” = 0b1000101 ; UTF-8 single-byte encoding = 01000101

• “+” = 0b0101011 ; UTF-8 single-byte encoding = 00101011

• (space) = 0b0100000 ; UTF-8 single-byte encoding = 00100000

Next, we will examine some characters requiring two UTF-8 bytes. Here, the bits comprising the
Unicode character must fit into the eleven “x” placeholders shown in the double-byte UTF word:

• Double-byte UTF-8 format = 110xxxxx 10xxxxxx

• “Ω” = 0b1110001111 ; UTF-8 double-byte encoding = 11001110 10001111

• “β” = 0b1110110010 ; UTF-8 double-byte encoding = 11001110 10110010

Next, we will examine some characters requiring three UTF-8 bytes. Here, the bits comprising
the Unicode character must fit into the sixteen “x” placeholders shown in the triple-byte UTF word:

• Triple-byte UTF-8 format = 1110xxxx 10xxxxxx 10xxxxxx

• “†” = 0x2020 = 0b10000000100000 ; UTF-8 triple-byte encoding = 11100010 10000000

10100000

• “∩” = 0x22C2 = 0b10001011000010 ; UTF-8 triple-byte encoding = 1110010 10001011

10000010

Lastly, we will examine some characters requiring four UTF-8 bytes, our chosen characters
being the digits zero through nine as rendered on legacy 7-segment digital displays, the Unicode
hexadecimal words being 0x1FBF0 through 0x1FBF9, respectively. Here, the bits comprising the
Unicode character must fit into the twenty-one “x” placeholders shown in the quadruple-byte UTF
word:

• Quadruple-byte UTF-8 format = 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• 7-segment “0” = 0x1FBF0 = 0b11111101111110000 ; UTF-8 quadruple-byte encoding =
11110000 10011111 10101111 10110000

• 7-segment “1” = 0x1FBF1 = 0b11111101111110001 ; UTF-8 quadruple-byte encoding =
11110000 10011111 10101111 10110001

14 CHAPTER 2. TUTORIAL

2.6 Binary and Gray position codes

When the physical position of an object must be encoded into a series of binary states, it is possible
to use the standard binary (counting) code. For example, consider the wheel of a rotary encoder
with eight sectors, each sector identified by a unique pattern of slots cut through the wheel allowing
light to pass through. The purpose of such a device would be to represent the angular position of
a shaft by a digital value, for example the position of a machine component, or the position of a
manually-adjusted knob:

3-bit rotary encoder

LEDs

Photodiodes

Slot

The three circular rows of slots represent three bits’ worth of data, and each of the eight
identifiable positions on the wheel corresponds to a three-bit binary value. In the illustration shown
above, all three light sources and light detectors have clear view of each other through the slots, and
so the binary number 111 would be generated in this position (assuming the successful transmission
of light through the wheel corresponds to a “1” state). Clockwise rotation of this wheel into the
next sector would result in the binary count “rolling over” from 111 to 000, and further clockwise
rotation would result in the binary count incrementing: 001, 010, 011, etc.

Using standard binary encoding certainly makes sense from the perspective of interfacing a rotary
encoder to a digital circuit, because the signals generated are completely conventional and would
work directly with decoder circuits, multiplexers, and other digital networks designed to input binary
words. However, conventional binary code actually suffers from a major limitation when used to
encode the position of an object. At the threshold between successive “count” values where more
than one bit changes (for example, from 111 to 000), anything short of perfect alignment between
the slots on the encoder wheel will result in false transitional count values.

A thought experiment is helpful to picture the problem. Imagine the middle slot on the wheel
was cut slightly too far counter-clockwise, so that when the wheel is rotated just past the end of the
“seven” sector into the “zero” sector the middle photodetector continues to receive some light after
the other two detectors sense darkness. This would result in the count sequence starting at 111, then
briefly transitioning to 010 before settling on 000. Any circuit receiving this encoder’s signal would
“think” the shaft instantaneously moved from the “seven” position to the “two” position and then
once again made an instantaneous jump to the “zero” position: an impossible feat. This transient
error may or may not be significant depending on the application of the encoder, but it is none
the less wrong. Furthermore, the root cause of such a counting error is the binary coding system
itself, which demands absolute perfect physical alignment between the slots to guarantee error-free
transitions between all sectors.

A very important point to note here is that these transient counting errors, and the root need for

2.6. BINARY AND GRAY POSITION CODES 15

perfect alignment between the slots cut into the encoder wheel, really only matters at the transitions
between count values exhibiting multiple bit changes. Transitioning from 111 to 000 is the worst-
case scenario because all three slots would have to end at exactly the same angular position for a
clean 111-to-000 transition. However, going from 000 to 001 would not pose quite the same problem
if the LSB slot were slightly out of alignment: the transition to 001 might not occur at precisely the
right shaft angle, but at least there would be no completely nonsensical counts generated.

An ingenious solution to this problem is to redefine the binary combinations representing each
increment in position such that only one bit changes during each transition from one position to
the next. The inventor of this technique was a Bell Laboratories researcher named Frank Gray, and
such a code is typically referred to as Gray code in honor of his innovation. Details of his invention,
including instructions on how to determine bit sequences for a word of any bit-length, are presented
in the Historical References chapter, section 3.2 beginning on page 22.

Two rotary encoder wheels are shown in the following illustration, the slots in the left-hand wheel
representing conventional binary code and the slots in the right-hand wheel representing Gray code.
Each of the eight sectors are divided and labeled for ease of interpretation:

3-bit rotary encoder
(binary)

3-bit rotary encoder
(Gray)

000
001
010
011
100
101
110
111

001

010

011

100

101

110

111

000

001

010

011 100

101

110

111 000
000
001

010
011

100
101

110
111

Binary
sequence sequence

Gray

Unlike binary, decimal, octal, or hexadecimal, there are no definite place-weights in Gray code.
That is to say, in Gray code there is no one’s place, two’s place, four’s place, etc. as there is in
binary. The number of unique bit combinations for any Gray code is still equal to 2n (where n

is the number of bits), and there is still a definite ordering of bits from most-significant (MSB) to
least-significant (LSB) in Gray code, but the similarities end there.

Gray code finds frequent application in position-sensing systems such as rotary and linear
encoders, but it is really applicable anywhere slight alignment errors (position errors, timing errors)
between parallel bits must be tolerated.

16 CHAPTER 2. TUTORIAL

A table comparing a four-bit binary count sequence to Gray code is helpful to reveal patterns:

Quantity Binary Gray code

Zero 0000 0000

One 0001 0001

Two 0010 0011

Three 0011 0010

Four 0100 0110

Five 0101 0111

Six 0110 0101

Seven 0111 0100

Eight 1000 1100

Nine 1001 1101

Ten 1010 1111

Eleven 1011 1110

Twelve 1100 1010

Thirteen 1101 1011

Fourteen 1110 1001

Fifteen 1111 1000

If we examine the binary counting sequence from zero to fifteen you will notice how the one’s
place bit alternates back and forth between 0 and 1, while the two’s place bit does the same half
as often (e.g. 00110011 rather than 01010101). With each successive place-weight the frequency
of the bit’s alternation is halved. In Gray code, however, the least-signficant place’s bit alternates
every-other time in the sequence (at the same frequency as the binary code’s two’s place bit), with
each successive bit toward the most significant alternating at half the frequency like binary, and
with the added twist that each of these alternating-bit patterns begins half-way through the zero
states (e.g. 00111100 rather than 00001111).

2.6. BINARY AND GRAY POSITION CODES 17

Four-bit Gray code may be converted into 4-bit binary through the use of Exclusive-OR (XOR)
logic functions, as shown below:

Gray code

(MSB) (LSB)

(MSB)

Binary

(LSB)

Conversely, four-bit binary may be converted into four-bit Gray code by a slightly different
network of XOR logic functions as we see here:

Gray code (MSB) (LSB)

(MSB)Binary (LSB)

An excellent “active reading” exercise is to take any of the corresponding Gray-code and binary
code pairs shown in the previous table and see for yourself how these XOR gate networks convert
from one to the other by placing the bit-pattern of one code at the inputs and then working through
the truth table for each XOR gate to see how the output code develops.

18 CHAPTER 2. TUTORIAL

Chapter 3

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

19

20 CHAPTER 3. HISTORICAL REFERENCES

3.1 Ancient serial data communication

The representation and communication of text by discrete (on/off) signals is rooted in ancient
practice. The Greek historian Polybius described one such system in his Histories written in the
second century BCE, used to communicate information about military maneuvers. In this passage
Polybius describes the problem posed by primitive fire signals, and presents an improved method:

It is evident to all that in every matter, and especially in warfare, the power of acting at
the right time contributes very much to the success of enterprises, and fire signals are the
most efficient of all the devices that aid us to do this. For they show what has recently
occurred and what is still in the course of being done, and by means of them anyone
who cares to do so even if he is at a distance of three, four, or even more days’ journey
can be informed. So that it is always surprising how help can be brought by means of
fire messages when the situation requires it. Now in former times, as fire signals were
simple beacons, they were for the most part of little use to those who used them. It was
possible for those who had agreed to convey a signal that a fleet had arrived in Oreus,
Peparethus, or Chalcis, but when it came to some of the citizens having changed sides
or having been guilty of treachery or a massacre having taken place in town, or anything
of the kind, things that often happen, but cannot all be foreseen – and it is chiefly
unexpected occurrences which require instant consideration and help – all such matters
defied communication by fire signal. It was quite impossible to have a preconceived code
for things which there was no means of foretelling.

This is the vital matter; for how can anyone consider how to render assistance if he does
not know how many of the enemy have arrived, or where? And how can anyone be of
good cheer or the reverse, or in fact think of anything at all, if he does not understand
how many ships or how much corn has arrived from the allies?

The most recent method, devised by Cleoxenus and Democleitus and perfected by myself,
is quite definite and capable of dispatching with accuracy every kind of urgent messages,
but in practice it requires care and exact attention. It is as follows: We take the alphabet
and divide it into five parts, each consisting of five letters. Each of the two parties who
signal to each other must get ready five tablets and write one division of the alphabet
on each tablet. The dispatcher of the message will raise the first set of torches on the
left side indicating which tablet is to be consulted; i.e., one torch if it is the first, two if
it is the second, and so on. Next he will raise the second set on the right on the same
principle to indicate what letter of the tablet the receiver should write down.

Note the last sentence in the first paragraph: “It was quite impossible to have a preconceived code
for things which there was no means of foretelling.” One could, for example, imagine a fire-signal
code consisting of a few distinct patterns of torches, each one encoding a specific military event (e.g.
enemy approaching, surrender, victory, retreat, mutiny, riot, type of weapon(s) employed). However,
to be of any practical use the number of specific codes would have to be extremely large. Instead,
the code described by Polybius neatly handles this problem by leveraging another pre-existing code:
written language. This way the fire beacons need only encode characters of their alphabet, and with
those characters they could describe any military event encoded in their written language. The only
limitations then would be vocabulary and the speed at which messages could be communicated.

3.1. ANCIENT SERIAL DATA COMMUNICATION 21

This compounding of codes is very common in digital communication systems. For example,
the ASCII code is useful for encoding English alpha-numerical symbols as seven-bit binary words,
but when transmitting digital data over long distances we must devise ways to encode the bits
themselves as physical signals (e.g. pulses of voltage, current, light, sound, shifting frequencies,
etc.). For the sake of argument, we could even employ Polybius’ crude fire-torches as the “physical
layer” of encoding for an ASCII character set! Once received and decoded, the ASCII symbols could
themselves be interpreted as a code representing something other than text. The Modbus ASCII
standard is a good example of this, where multiple ASCII characters are interpreted to represent
“frames” of digital data which could be used to represent any arbitrary information, from numbers
to letters to machine instructions to measurements, etc.

22 CHAPTER 3. HISTORICAL REFERENCES

3.2 Frank Gray’s code

In 1947 a Bell Telephone Laboratories researcher named Frank Gray devised a way to improve a
particular form of digital signal communication by replacing standard binary coding with what he
called reflected binary code. This new code scheme came to be known by his last name, Gray code.

To understand Gray’s invention, one must grasp the application for which it was invented. Gray’s
employer, Bell Telephone, designed, built, and maintained long-distance telephone communication
networks across the United States. They were interested in converting audio telephone signals into
digital form suitable for transmission over long distances with little corruption from external noise
and cable attenuation. The digitization of audio telephone signals took the form of voltage pulses
following each other in rapid succession, commonly known as a serial data stream. Sets of contiguous
bits in this data stream represented individually-sampled values of the analog signal.

Gray begins his narrative on page 5 of the patent by explaining how binary coding works:

This invention relates to pulse code transmission and particularly to the coding of a
message signal in a novel code and to the decoding thereof.

In communication by pulse code transmissions the instantaneous amplitudes of a message
to be transmitted are successively sampled and each of the successive samples is
translated into a code group of on-or-off pulses. By reason of the on-or-off character
of the pulses, such a code is denoted a binary code. The number of pulse positions in
a code group is the same from group to group. With five such positions the code is
a 5-digit binary code. With seven it is a 7-digit binary code; and in general, with in
such positions it is an n-digit binary code. A code pulse group of n pulse positions may
contain any number, from 0 to n, of “on” pulses. In the conventional n-digit binary
code, the number and arrangement of pulses is in accordance with the conventional
binary number notation. Thus, for example, with three digits, the number five is written
in the conventional binary number notation as 101. Correspondingly, in the conventional
3-digit binary pulse code, the pulses occur in the time sequence P, −, P, where “P” stands
for an “on” pulse and “−” stands for an “off” pulse; i. e., a blank pulse position. [page
5]

3.2. FRANK GRAY’S CODE 23

The technology of that era for converting an analog audio signal into a series of digital pulses used
a vacuum tube called a cathode ray tube, or CRT. Many different types of CRTs were manufactured,
and they all shared the common features of an “electron gun” assembly at one far end generating
a thin beam of high-speed electrons, as well as means to bend or deflect this beam before it struck
an object at the other end of the evacuated tube. CRTs were once used for television and computer
terminal displays, but in this application functioned as a form of analog to digital converter. The first
page of Gray’s patent contains a figure showing the general construction and supporting circuitry of
the CRT:

Gray’s narrative resumes with a description of the CRT and the analog-to-digital conversion
process:

In Italian Patent 437,300, published June 30, 1948, there is described an instrument for
translating message signal samples into code pulse groups in the conventional binary
code. In brief, it comprises a cathode beam tube having a coding mask, an electron gun
for projecting an electron beam toward the mask, a collector anode for receiving electrons
which pass through the mask and deriving pulses from them, means for deflecting the
cathode beam in one direction along the mask to a location proportional to the signal
sample amplitude, and means for sweeping the beam in a perpendicular direction across
the mask between successive sample controlled deflections. As currently employed, the
mask comprises a rectangular array of apertures arranged in n columns and 2n rows,
where n is the number of digits of the code. Each aperture row corresponds to a unique
value of the signal-controlled beam deflection. The apertures of the various rows are
located in conformity with the location of the 1’s in a tabulation of successive binary
numbers, while the blank portions of the mask are located in conformity with the 0’s
in the same tabulation. Thus, when the cathode beam is deflected under control of the
signal to a particular aperture row and thereupon swept laterally along this row, a train
of current pulses may be drawn from the collector whose location on the time scale is in
accordance with the arrangement of the 1’s and 0’s in the binary number whose value is
equal to the value of the signal sample being coded. [page 5]

The use of a cathode ray tube to convert an analog voltage signal into a serial data stream is
rather ingenious1 and deserves some elaboration. The beam of electrons repeatedly sweeps across
the face of the mask in one axis by the direction of a “sawtooth” wave voltage signal applied to a

1Not only is this tube design ingenious, but it also stands as an example of just how flexible vacuum tube technology
was. Even though vacuum tubes have been made obsolete by semiconductor electronic devices for all but the most

24 CHAPTER 3. HISTORICAL REFERENCES

pair of metal plates located to either side of the beam. Another pair of plates perpendicular to the
first pair deflects the beam in the other axis, this deflection occurring at the whim of the sampled
analog signal. A sample-and-hold circuit (24 in the diagram) captures the analog signal value at
the start of the beam sweep and holds that signal voltage constant for the duration of the sweep,
so that the beam traces only straight-line paths across the mask. At the conclusion of each sweep,
the sample-and-hold circuit re-reads the analog input signal and holds it steady for the next sweep.
Holes placed in the mask allow the beam to pass through at certain points where it strikes an anode
surface (14) and registers outside the tube as a current pulse. Therefore, as the beam sweeps across
a row of the mask, an electrical pulse sequence develops at the anode corresponding to the placement
of the holes in that row of the mask.

Figure 2 (from page 2 of the patent) shows two possible mask patterns, one standard binary and
the other Gray’s “reflected binary” code:

The electron beam’s periodic sweep crosses the face of the mask in the horizontal axis (as the
masks are shown above), so that the beam “probes” one row at a time. The vertical position of the
beam on the mask is determined by the sampled analog signal. Each column of holes on the mask
represents one bit (one “digit” as described by Gray) in the binary word. For the sample masks
shown, a seven-bit binary sequence is generated for every sweep of the beam from left to right. For an

specialized applications, and for very good reasons (e.g. physical ruggedness, energy efficiency, size, service life), this
does not change the fact that this one technology was capable of so many different types of electronic functions.
The manipulation of electrons traveling through a vacuum lends itself to a wide range of applications, including
amplification, oscillation, rectification, signal modulation, visual display, optical sensing, memory, etc.

3.2. FRANK GRAY’S CODE 25

analog signal corresponding to the value 38 (shown on the figure), the beam generates the sequence
0100110 as it passes from left to right over that row of holes. Tallying each bit’s place-weight, we
get 32 + 4 + 2 = 38. A maximum-value analog signal would deflect the beam all the way to the
top row where the sequence would be 1111111 (decimal value 127). A minimum-value signal would
pull the beam all the way to the bottom to generate 0000001 (decimal value 1). Thus, the sweeping
electron beam and the mask together serve as the heart of a seven-bit analog-to-digital converter
with a serial output.

Gray’s narrative continues on page 1, describing the conventional binary coding of the mask
shown in Figure 2A. Bear in mind that Gray consistently uses the word “digit” where we would now
say “bit”:

It is a characteristic of the conventional binary number notation that a value change
of unity may be reflected in the binary number notation by a simultaneous change in
several of the digits. Thus, for example, with four digits the number seven is represented
by 0111 while the next number, eight, is represented by 1000. In the course of changing
the value by one unit, each of the four digits has been changed.

This characteristic of the conventional binary number notation is duplicated in the coding
mask of the Italian patent above referred to, and it is a consequence of the resulting
arrangement of the apertures that a wander of the beam in the course of its lateral
sweep from the correct aperture row to the row immediately above or below it, may
result in a coding error which is far greater than the beam deflection error. Various
arrangements have been suggested for reducing this coding error by constraining the
cathode beam to start its sweep at the correct row and to remain there throughout the
sweep . . . All such arrangements involve complexity of apparatus in various degrees.

Gray describes how relatively minor errors in the beam’s lateral trajectory (“wander”) could
cause the beam to graze the holes (or non-holes) of an adjacent row, possibly resulting in a large
coding error due to the fact that bit-values often change greatly from one binary integer to the next.
To use his example of seven (0111) versus eight (1000), one can imagine the beam properly deflected
to the “eight” row and beginning its left-to-right sweep, successfully passing through the first hole
of the “eight” row to create a “1” pulse at the capturing anode, but then a slight downward drift
of the beam later in that same sweep might cause it to pass through the three holes of the “seven”
row to create three more “1” pulses, the result being a serial data word of 1111 (fifteen) instead of
either 1000 (eight) or 0111 (seven). In this example, a vertical alignment “wander” of just 1 “count”
results in a digitized error of seven counts (i.e. fifteen instead of eight).

Next, Gray begins to describe how his new coding scheme is superior to conventional binary.

It is a principal object of the present invention to reduce the coding errors in a pulse
code transmission system. A more specific object is to provide a pulse code, and a
corresponding coding mask, in which the coding error is never greater than the beam
deflection error.

Another object is to simplify the manufacture of a coding mask. [page 5]

The above objects are attained in accordance with the invention by the selection of a
novel form of the binary pulse code which differs from the conventional form by virtue of

26 CHAPTER 3. HISTORICAL REFERENCES

a rearrangement of the pulses of the various pulse groups in such a way that the sequence
of “on”-pulses [page 5]

and off-pulses which form a pulse group representing a particular signal amplitude differs
in only one pulse position from the sequences representing the next lower amplitude and
next higher amplitude. The new code is no longer similar to the accepted binary number
notation. When it is embodied in a coding mask, the arrangement of the apertures of any
one row differs from that of the rows above and below it in not more than one aperture.
The resulting mask has certain valuable auxiliary properties and aspects. First, the
smallest apertures, that is to say the apertures of the various rows in the column of least
digital significance, are twice as large as the apertures of the conventional binary code
mask. This makes for ease of manufacture. Second, all of the apertures of the mask, with
the sole exception of the single aperture of greatest digital significance, are symmetrically
arranged-about a transverse center line. This permits treating the largest digit aperture
as an index of polarity only, rectifying the wave to be coded, sampling the rectified
wave, and coding the samples using only one half of the coding mask. At the price
of some increased complexity of associated apparatus, this greatly reduces the physical
dimensions of the coder tube itself. Third, for signals of normal average amplitude range,
the beam deflections seldom extend beyond the aperture of the column of second greatest
digital significance, so that in the resulting coded signal, the (n − 1)th pulse position is
nearly always filled. This uniformly filled pulse position affords a convenient source of
marker pulses for use in holding a receiver in correct synchronism with the transmitter.
[page 6]

3.2. FRANK GRAY’S CODE 27

Later in the patent (beginning on page 7) the inventor describes his process for developing a
“reflected binary” code counting sequence, and in doing so the full meaning of the word “reflected”
becomes clear:

The manner in which the primary reflected binary number system is built up will now
be explained.

First: write down the first two numbers in the 1-digit orthodox binary number system,
thus:

Zero 0

One 1

Note that the symbols differ in Only one digit. Second: below this array write its
“reflection” in a transverse axis:

Zero 0

One 1

1

0

The symbols still differ in not more than one digit. However, the first is identical with
the fourth and the second with the third.

Third: to remove this ambiguity, add a second digit to the left of each symbol, 0 for the
first two symbols and 1 for the last two, thus:

Zero 00

One 01

Two 11

Three 10

and identify the last two symbols with the numbers “two” and “three.” Each symbol is
now unique and differs from those above and below it in not more than one digit. The
array is a representation of the first four numbers in the primary 2-digit reflected binary
number system.

28 CHAPTER 3. HISTORICAL REFERENCES

The process is next repeated, giving –

First:

Zero 00

One 01

Two 11

Three 10

Second:

Zero 00

One 01

Two 11

Three 10

10

11

01

00

Third:

Zero 000

One 001

Two 011

Three 010

Four 110

Five 111

Six 101

Seven 100

[page 7]

3.2. FRANK GRAY’S CODE 29

Gray continues his exposition on this “reflected binary” coding system on page 8 of the patent
by describing alternative forms. In every case, though, the coding sequence exhibits the same
important property of exhibiting just one bit-change per step, and also the property of all bits being
symmetrical about the mid-point except the most-significant bit (MSB).

Other secondary forms of the reflected binary code may be obtained in various ways.
Vertical columns may be interchanged. For any such transposition the pattern may be
split along any horizontal division line between rows, and the lower part placed above
the upper part, to give a new pattern with the same properties as the primary one.
Again, the initial process of building up the code by reflection may be modified, giving
two alternatives for the 1-digit code, four for the 2-digit code, and so on. The four
alternatives for the 2-digit code are tabulated below. Of these the first is the primary
one discussed above, the others being variants.

Number Primary First variant Second variant Third variant

Zero 00 10 01 11

One 01 11 00 10

Two 11 01 10 00

Three 10 00 11 01

[page 8]

30 CHAPTER 3. HISTORICAL REFERENCES

Chapter 4

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

31

32 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 International Morse Code

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

International Morse Code (English letters and Arabic numerals only)

4.2. ASCII CHARACTER CODES 33

4.2 ASCII character codes

ASCII characters consist of seven-bit digital words. The following table shows all 128 possible
combinations of these seven bits, from 0000000 (ASCII “NUL” character) to 1111111 (ASCII “DEL”
character). For ease of organization, this table’s columns represent the most-significant three bits of
the seven-bit word, while the table’s rows represent the least-significant four bits. For example, the
capital letter “C” would be encoded as 1000011 in the ASCII standard.

↓ LSB / MSB → 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS − = M] m }
1110 SO RS . > N ˆ n ˜

1111 SI US / ? O o DEL

It is worth noting that the ASCII codes for the Arabic numerals 0 through 9 are simply the four-
bit binary representation of those numbers preceded by 011. For example, the number six (0110)
is represented in ASCII as 0110110; the number three (0011) in ASCII as 0110011; etc. This is
useful to know, for example, if you need to program a computer to convert single decimal digits to
their corresponding ASCII codes: just take each four-bit numerical value and add forty-eight (0x30
in hexadecimal) to it.

34 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

35

36 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

37

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

38 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 39

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

40 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 41

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Morse code

EBCDIC

ASCII

Hexadecimal

Hex dump

Unicode

Code space

Position encoding

Gray code

42 CHAPTER 5. QUESTIONS

5.1.3 Morse-coded message

Compose a sentence and translate it into Morse code for your classmates to decode.

Challenges

• Identify modern media over which a Morse-coded message might be conveyed.

5.1.4 ASCII-coded message

Compose a sentence and translate it into ASCII hexadecimal codes for your classmates to decode.

Challenges

• Compare and contrast Morse code against ASCII code communicated serially (i.e. one bit at
a time). Is either code better than the other?

5.1.5 Gray-binary converters

Design a circuit to convert four-bit binary to four-bit Gray code. Hint: it uses four XOR gates.

Next, design a circuit to convert four-bit Gray code to four-bit binary. Hint: it also uses four
XOR gates!

Challenges

• Describe in detail any design strategies you found helpful in designing the two logic circuits.

5.2. QUANTITATIVE REASONING 43

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

44 CHAPTER 5. QUESTIONS

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

5.2. QUANTITATIVE REASONING 45

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

46 CHAPTER 5. QUESTIONS

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

5.2. QUANTITATIVE REASONING 47

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

48 CHAPTER 5. QUESTIONS

5.2.3 Using Python to convert between ASCII and hexadecimal

The Python programming language provides two functions useful for converting between ASCII
characters and their corresponding numerical codes, chr() and ord(). Research how to use each of
these functions, and then demonstrate their use within a Python interpreter application.

Challenges

• Use the appropriate function to encode a short sentence into a series of hexadecimal values
corresponding to the ASCII code.

5.2. QUANTITATIVE REASONING 49

5.2.4 Binary and Gray rotary encoders

Absolute rotary encoders often use a code known as Gray code rather than binary, to represent
angular position. This code was patented by Frank Gray of Bell Labs in 1953, as a means of
reducing errors in rotary encoder output. Examine each of these encoder disks, and determine
which one is binary and which one is Gray code:

Assuming that the darkest areas on the illustration represent slots cut through the disk, and the
grey areas represent parts of the disk that are opaque, mark the “zero,” “one,” and “two” sectors
on each disk.

Challenges

• Gray code was originally named “reflected binary code” by its inventor, Frank Gray. Explain
why this label makes logical sense by appealing to the slot locations on the Gray code disk.

50 CHAPTER 5. QUESTIONS

5.2.5 Binary to Gray code conversion

Convert the following binary numbers into Gray code:

• 1001102 =

• 1100102 =

• 1010012 =

• 10101001102 =

Challenges

• Describe a practical application of Gray code, and why it might hold advantages over binary
coding.

5.2.6 Gray code to binary conversion

Convert the following binary numbers into Gray code:

• 111110Gray =

• 100001Gray =

• 101110Gray =

• 1110001111Gray =

Challenges

• Describe a practical application where a converter circuit might be necessary to convert Gray
code into binary.

5.3. DIAGNOSTIC REASONING 51

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 Failed ASCII bit

Suppose a digital communication system failed in such a way that the MSB of every ASCII code
was forced to a “0” state even when it was supposed to be a “1”. How would this fault affect the
interpretation of the received ASCII characters?

Challenges

• Identify a diagnostic test you could employ to determine that a forced-low MSB was the specific
fault.

52 CHAPTER 5. QUESTIONS

5.3.2 Failed encoder photodetector

Suppose the photodetector diode for the MSB of a four-bit rotary encoder failed so that it always
output a “0” state even when it was supposed to output a “1”. Identify how this fault would impact
the operation of a four-bit binary-coded encoder versus a four-bit Gray-coded encoder.

Challenges

• Supposing that the successful passage of light through a slot in the encoder wheel represented
a “1” state, identify a specific fault that would result in the behavior described.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

53

54 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

55

56 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

57

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

58 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

59

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

60 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

61

62 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

63

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

64 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

65

66 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

67

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

68 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

69

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

70 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

71

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

72 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Gray, Frank, US Patent 2,632,058, “Pulse Code Communication”, application filed 13 November
1947, patent granted 17 March 1953.

Kramer, Thomas R.; Proctor, Frederick M.; Messina, Elena, The NIST RS274/NGC Interpreter,
Version 3, NIST Interagency/Internal Report (NISTIR) report number 6556, National Institute of
Standards and Technology, Gaithersburg, Maryland, 17 August 2000.

Polybius, Histories, cited from pages 49-50 of Lapham’s Quarterly Volume IX, Number 1, Winter
2016, American Agora Foundation, New York, NY, 2016.

The Unicode Standard, Version 12.0 – Core Specification, The Unicode Consortium, Mountain View,
CA, 2019.

73

74 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

30 April 2025 – added some instructor notes.

4 December 2024 – corrected a typographical error in the Tutorial, courtesy of Caleb Wing.

9 November 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

28 April 2024 – divided the Tutorial chapter into more sections.

7 December 2022 – added more questions to the Introduction chapter.

8 August 2022 – identified the two Python language functions that were formerly unidentified in
the “Using Python to convert between ASCII and hexadecimal” Quantitative Reasoning question.
Also added content to the Tutorial on UTF-8 as an encoding scheme for Unicode characters.

4 May 2022 – minor additions to the Introduction, and also made a minor typo correction in the
Polybius quote (my copy said “messages” when it should have said “message”).

9 December 2021 – added Quantitative Reasoning question prompting students to use the ord()
and chr() built-in Python functions to explore ASCII codes.

9 July 2021 – replaced some TeX-style italicizing markup with LaTeX-style.

9 May 2021 – commented out or deleted empty chapters.

2 December 2020 – minor additions to the Introduction.

30 November 2020 – minor additions to the Introduction.

75

76 APPENDIX F. VERSION HISTORY

23 August 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

28 January 2020 – added Foundational Concepts to the list in the Conceptual Reasoning section.

23 December 2019 – minor edits to a question.

16 December 2019 – added some screenshots of “hex dump” output from digital files to show
ASCII encoding at work. Also updated the Tutorial on Unicode, since the text I drew from (of my
own writing years before) was somewhat out of date.

15 December 2019 – continued writing Tutorial chapter and completed the transcription of
relevant portions of Frank Gray’s patent to the Historical References chapter.

14 December 2019 – document first created.

Index

Adding quantities to a qualitative problem, 54
Annotating diagrams, 53
ASCII, 9

Baudot code, 8
Bell Telephone, 22
Big-endian, 12

Checking for exceptions, 54
Checking your work, 54
Code point, 12
Code space, 12
Code, computer, 61
Computer, mainframe, 9
Control characters, 9

Data stream, 22
Dimensional analysis, 53

EBCDIC, 9
Edwards, Tim, 62

Fire signals, 20
Frequency, 16

G code, 3
Graph values to solve a problem, 54
Gray code, 15, 22
Gray, Frank, 15, 22
Greenleaf, Cynthia, 35

Hex dump, 11
How to teach with these modules, 56
Hwang, Andrew D., 63

Identify given data, 53
Identify relevant principles, 53
Instructions for projects and experiments, 57

Intermediate results, 53
International Morse code, 8, 32
Inverted instruction, 56

Knuth, Donald, 62

Lamport, Leslie, 62
Limiting cases, 54
Little-endian, 12
London, Jack, 11

Maxwell, James Clerk, 19
Metacognition, 40
Modbus, 21
Moolenaar, Bram, 61
Morse code, 8, 32
Murphy, Lynn, 35

Open-source, 61

Polybius, Greek historian, 20
Problem-solving: annotate diagrams, 53
Problem-solving: check for exceptions, 54
Problem-solving: checking work, 54
Problem-solving: dimensional analysis, 53
Problem-solving: graph values, 54
Problem-solving: identify given data, 53
Problem-solving: identify relevant principles, 53
Problem-solving: interpret intermediate results,

53
Problem-solving: limiting cases, 54
Problem-solving: qualitative to quantitative, 54
Problem-solving: quantitative to qualitative, 54
Problem-solving: reductio ad absurdum, 54
Problem-solving: simplify the system, 53
Problem-solving: thought experiment, 14, 53
Problem-solving: track units of measurement, 53

77

78 INDEX

Problem-solving: visually represent the system,
53

Problem-solving: work in reverse, 54

Qualitatively approaching a quantitative
problem, 54

Reading Apprenticeship, 35
Reductio ad absurdum, 54–56
Reflected binary code, 22
RS274, 3

Schoenbach, Ruth, 35
Scientific method, 40
Serial digital data, 22
Simplifying a system, 53
Socrates, 55
Socratic dialogue, 56
SPICE, 35
Stallman, Richard, 61

Thought experiment, 14, 53
Torvalds, Linus, 61

Unicode transformation format, 12
Units of measurement, 53
UTF-16, 12
UTF-32, 12
UTF-8, 12

Visualizing a system, 53

Work in reverse to solve a problem, 54
WYSIWYG, 61, 62

	Introduction
	Recommendations for students
	Challenging concepts related to digital codes
	Recommendations for instructors

	Tutorial
	Morse and Baudot telegraph codes
	EBCDIC and ASCII codes
	Hexdumps
	Unicode
	UTF-8 encoding examples
	Binary and Gray position codes

	Historical References
	Ancient serial data communication
	Frank Gray's code

	Derivations and Technical References
	International Morse Code
	ASCII character codes

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Morse-coded message
	ASCII-coded message
	Gray-binary converters

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Using Python to convert between ASCII and hexadecimal
	Binary and Gray rotary encoders
	Binary to Gray code conversion
	Gray code to binary conversion

	Diagnostic reasoning
	Failed ASCII bit
	Failed encoder photodetector

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

