
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Digital Diagnostic Tools

c© 2020-2023 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 13 December 2023

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Case Tutorial 5

2.1 Diagnostic visualization tools . 6

3 Tutorial 11

3.1 Multimeters . 12
3.2 Logic probes and pulsers . 15
3.3 Breakout boxes . 17
3.4 Oscilloscopes . 18
3.5 Logic analyzers . 21
3.6 Assembled board testing . 22
3.7 JTAG . 25

4 Derivations and Technical References 29

4.1 TTL logic levels . 30
4.2 CMOS logic levels . 31
4.3 Digital pulse criteria . 32

5 Questions 35

5.1 Conceptual reasoning . 39
5.1.1 Reading outline and reflections . 40
5.1.2 Foundational concepts . 41
5.1.3 Logic pulser usage . 42
5.1.4 Reverse-engineering techniques . 43

5.2 Quantitative reasoning . 44
5.2.1 Miscellaneous physical constants . 45
5.2.2 Introduction to spreadsheets . 46
5.2.3 Simple logic probe circuit . 49
5.2.4 Pulldown resistor sizing . 50

5.3 Diagnostic reasoning . 51
5.3.1 Logic probe and pulser . 52
5.3.2 Identifying possible faults . 53
5.3.3 Input switch settings . 54

iii

CONTENTS 1

5.3.4 Logic probe limitations . 55

A Problem-Solving Strategies 57

B Instructional philosophy 59

C Tools used 65

D Creative Commons License 69

E References 77

F Version history 79

Index 80

2 CONTENTS

Chapter 1

Introduction

Diagnostic testing of digital electronic circuits requires an array of tools, each one with its own
purpose and its own limitations. This module introduces the reader to a range of tools from the
simple to the sophisticated.

Important concepts related to digital circuit diagnosis include opens versus shorts, logic

voltage levels, four-wire resistance measurement, high verus low logic states, serial data,
time-domain signal measurement, eye diagrams, soldered connections, and Design For

Testing.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to measure the electrical resistance of a
component using the Kelvin four-wire method? What hypothesis (i.e. prediction) might you
pose for that experiment, and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to measure the accepted voltage levels
for “high” and “low” states at the input of a logic gate? What hypothesis (i.e. prediction)
might you pose for that experiment, and what result(s) would either support or disprove that
hypothesis?

• How might an experiment be designed and conducted to measure the threshold voltage levels
for a Schmitt trigger logic gate? What hypothesis (i.e. prediction) might you pose for that
experiment, and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to measure the propagation delay of a
logic gate? What hypothesis (i.e. prediction) might you pose for that experiment, and what
result(s) would either support or disprove that hypothesis?

• How do DC voltage values relate to digital logic states for different types of digital circuits?

• What does a logic probe do that a multimeter cannot?

• What does a multimeter do that a logic probe cannot?

3

4 CHAPTER 1. INTRODUCTION

• How does four-wire resistance measurement work?

• How are logic pulsers used in conjunction with logic probes?

• How do ohmmeters function to sense the resistance of external devices?

• Why is resistance measurement a useful tool for discerning the integrity of electrical connections
on a printed circuit board?

• What special features are added to oscilloscopes to make them more useful for digital signal
testing?

• What does a logic analyzer do that an oscilloscope cannot?

• What does an oscilloscope do that a logic analyzer cannot?

• What does “persistence” mode do in a digital oscilloscope, and why is this useful?

• What is a “digital phosphor” oscilloscope, and what is it used for?

• What types of manufacturing defects are observable using an X-ray camera system?

• What is the basic principle of JTAG, and how does it make board testing more efficient?

• What purposes may JTAG be used for other than PCB fault diagnosis?

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

5

6 CHAPTER 2. CASE TUTORIAL

2.1 Diagnostic visualization tools

The following photographs1 show examples of diagnostic visualization tools such as infra-red
thermography and X-ray photography applied to the detection of faults on printed circuit boards
(PCBs) and within integrated circuits (ICs).

Here we see an X-ray photograph of a PCB showing two broken traces resulting from defective
board manufacturing where portions of the two traces were mistakenly etched away:

1I am indebted to the work of Brian Sharpes at Schweitzer Engineering Laboratories (SEL) for these images which
he collected over a span of fifteen years.

2.1. DIAGNOSTIC VISUALIZATION TOOLS 7

A wider view of the same PCB shows trace failures cause by physical damage to the board in
addition to those traces mal-formed at the time of manufacture:

8 CHAPTER 2. CASE TUTORIAL

This X-ray photograph shows broken lead wires inside of an IC between one of the external
terminals and two different points on the IC’s internal silicon die:

2.1. DIAGNOSTIC VISUALIZATION TOOLS 9

Another example of an internal component fault revealed by X-ray photograph is in this image
of a common-mode balun2 soldered to a PCB. These devices consist of two closely-coupled inductors
(i.e. a 1:1 transformer) designed to present a high impedance to common-mode currents along a
transmission line while presenting negligible impedance to differential currents along the same line.
Packaged as a surface-mount device (SMD), we see one broken lead wire at its left end not connecting
with the upper-left external terminal as it should:

2Also known as a current balun. The term “balun” refers to Balanced-Unbalanced, referring to a common
application of this device: namely, to convert a balanced signal into an unbalanced signal or vice-versa.

10 CHAPTER 2. CASE TUTORIAL

In the following infra-red image we see two overheated traces on a powered PCB, clearly
distinguished from the others by their brighter coloring:

Chapter 3

Tutorial

11

12 CHAPTER 3. TUTORIAL

3.1 Multimeters

A basic multimeter set to the DC voltage-sensing function will suffice as a logic-level indicator,
connecting the black lead of the meter to the digital circuit’s ground terminal and using the red lead
to probe test points. The “high” or “low” logic state of the voltage signal may then be interpreted
according to the minimum and maximum values specified for the particular logic “family”. High/low
threshold values for standard TTL and CMOS operating on a 5 Volt supply voltage are shown here:

5-Volt TTL

Logic state Guaranteed output Acceptable input Noise margin

High VOH = 2.4 Volts min. VIH = 2.0 Volts min. 2.4 − 2.0 = 0.4 Volts

Low VOL = 0.4 Volts max. VIL = 0.8 Volts max. 0.8 − 0.4 = 0.4 Volts

5-Volt CMOS

Logic state Guaranteed output Acceptable input Noise margin

High VOH = 4.44 Volts min. VIH = 3.5 Volts min. 4.44 − 3.5 = 0.94 Volts

Low VOL = 0.5 Volts max. VIL = 1.5 Volts max. 1.5 − 0.5 = 1.0 Volt

When interpreting DC voltage levels as logic states, one must use the acceptable input threshold
values (VIH and VIL) to determine how the signal will be interpreted by any receiving logic gates.

Another multimeter function useful for digital circuit diagnosis is resistance measurement, to
locate “open” or “shorted” faults interfering with digital signals. An “open” fault, of course, will
register as an abnormally high resistance while a “shorted” fault will register as an abnormally
low resistance. Such measurements, like all resistance checks, must be performed with the circuit
de-energized so as to not interfere with the multimeter’s internal source.

3.1. MULTIMETERS 13

The following photograph shows an electronics technician using an ohmmeter to check continuity
between two copper traces on a printed circuit board (PCB), looking for a “shorted” fault between
those traces:

During this particular troubleshooting session, the meter was being used to pinpoint the precise
location of the shorted fault in order to determine exactly what sort of manufacturing defect caused
it. In order to do this, the technician used special meter probes with two test leads each, with
the multimeter set for four-wire resistance measurement. This is known as the Kelvin four-wire

technique, which uses two of the wires to conduct a small excitation current (from a current source
inside the multimeter) and the other two wires to sense voltage drop across the specimen being
measured:

clip

clip

Voltmeter indication
Current source

I Rspecimen

Rspecimen =

(wire resistance
becomes irrelevant)

VM

4-wire ohmmeter

Test leads

The advantage of this four-wire technique is that test lead resistance becomes irrelevant, allowing
the user to make highly precise measurements of resistance free from errors caused by the natural

14 CHAPTER 3. TUTORIAL

resistance within the meter’s test leads. This enables measurement of extremely small1 resistance
values. In this case that sensitivity was useful to determine where along the PCB the two traces were
shorted together, as multiple resistance measurements could be taken at different pairs of points on
the PCB: the pair with the lowest resistance measurement must be closest to the shorted fault.

Common two-wire resistance measurement includes the test lead resistance along with the
specimen’s resistance value, resulting in a positive error:

Voltmeter indication
Current source

I RspecimenVM

Test leads

Rspecimen + Rleads =

2-wire ohmmeter
probe

probe

1In this particular troubleshooting session the measured resistance of the fault was a fraction of an Ohm, about
0.2 Ω.

3.2. LOGIC PROBES AND PULSERS 15

3.2 Logic probes and pulsers

Multimeters are not intended for the measurement of rapidly pulsing signals, and so are quite limited
as diagnostic tools for most digital logic circuits. An alternative to the voltmeter is a device called
a logic probe, designed to reveal the high/low state of a digital signal by means of two LEDs rather
than a numerical display of DC voltage. Signals rapidly oscillating between “high” and “low” states
will illuminate both LEDs, making the presence of pulsations evident where they may not be so
using a voltmeter.

A photograph2 of a logic probe appears below, revealing a metal-tipped probe for sensing the
logic state of a terminal, plus red and black alligator clips designed to connect to the circuit under
test for powering the probe’s internal circuitry and providing a ground reference for the sensed logic
signal:

Like many logic probes, the model shown in the photograph offers colored LEDs representing
“high” and “low” logic states, as well as audio indication in the form of a beeper. The MEM/PULSE
selector switch shows real-time logic states in the “PULSE” position but enables a latch in the
“MEM” position to capture and indicate short-duration pulses that would otherwise be too transient
to see. Such a simple tool, lacking the sophistication of a multimeter, nevertheless offers diagnostic
capability most multimeters would be unable to provide.

2This photo is courtesy of Plusea who posted it to the photo-sharing website Flickr under the Creative Commons
Attribution-only license (version 2).

16 CHAPTER 3. TUTORIAL

Logic probes, like multimeters, are passive-only test instruments. That is, they are able to
measure and display logic states, but they cannot alter logic states within a circuit. The “active”
equivalent of a logic probe is the logic pulser which closely resembles a logic probe in appearance:
typically a hand-held “pencil” shaped device with a metal probe and two clips for power. Logic
pulsers work by asserting either a “high” or “low” output state at their probe tip with current
sourcing/sinking capability great enough to “override” the output of a logic gate to force the logic
state to the desired level. In other words, a logic pulser over-powers the output transistor stage of a
logic gate to assert the desired voltage level in order to make any receiving gates connected to that
same line respond.

Normally it is considered a bad thing to have two or more digital output devices assert conflicting
logic states onto the same line, as it results in those devices “fighting” each other, one sinking current
and the other sourcing current, with the possibility of one or more of them overheating and sustaining
internal damage. Logic pulsers avoid this danger by making their over-riding pulse signals very brief.
By limiting the time duration of the over-powering pulse to several microseconds, the pulser will not
over-drive the output of any competing device long enough to cause thermal damage.

3.3. BREAKOUT BOXES 17

3.3 Breakout boxes

A special-purpose diagnostic tool called a breakout box functions as a logic probe designed for use
with serial data networks, particularly EIA/TIA-232. Sets of multi-color LEDs indicate “mark” and
“space” voltage levels on the data and control lines, enabling one to view the presence of transmitted
data as well as hardware handshaking states:

The breakout box shown in this photograph is equipped with male and female 25-pin EIA/TIA-
232 connectors, to be inserted in-line with a data cable plugging into a device’s serial port. Small
switches permit “straight-through” connections from male to female when closed, and when opened
those connections are broken. However, female headers positioned along each side of each switch
assembly provide means to make custom connections using “jumper” wires. For example, if you
wanted to use a breakout box to form a “null modem” connection where transmit and receive lines
are swapped, you would open the two switches connecting TD to TD and RD to RD, then use jumper
wires to connect TD to RD and RD to TD. A “Trap” indicator serves to latch transient states, allowing
you to see when a momentary pulse occurs that is too brief to view on a real-time LED indicator.

18 CHAPTER 3. TUTORIAL

3.4 Oscilloscopes

An oscilloscope is simply a graphical voltmeter displaying voltage amplitude on the vertical axis of
a two-dimensional display and time on the horizontal axis.

Digital phosphor oscilloscopes are special variations of digital oscilloscopes designed to mimic the
behavior of old analog CRT-based oscilloscopes where the relative brightness of the trace represented
its frequency of re-occurrence, useful when measuring a repetitive pulse signal to see if successive
pulses drift either in amplitude, timing, or both. Legacy analog oscilloscopes with phosphor-based
luminescent displays would naturally show a brighter trace where the waveform retraces the same
path multiple times, and show a dimmer trace where the waveform only occasionally follows that
path. Digital phosphor oscilloscopes mimic that legacy functionality and actually do a step further
by colorizing the frequency of re-occurrence so that the most frequently retraced paths show as a
completely different color compared to seldom-traced paths.

3.4. OSCILLOSCOPES 19

This colorized-occurrence feature is so popular that even some entry-level digital oscilloscopes
now offer it. An example is this screenshot from a Picoscope model 2204A where the colorizing
function is called persistence mode. Red indicates a frequently-traced path, while blue indicates a
seldom-traced path. The following screenshot was generated using this model of oscilloscope set to
persistence mode, measuring a square wave with a shifting frequency. Note how the waveform is
crisp and red near the center of the screen where the triggering cursor is located, but shows more blue
regions in the rising and falling edges (shifting position from the trigger point due to the waveform’s
period changing from sweep to sweep):

Digital signals in high-speed circuits appear as pulse sequences of high (1) and low (0) states when
displayed in the time domain. An alternating sequence of 1 and 0 states would be a simple square
wave, but real digital data typically doesn’t repeat such simple patterns over and over. Instead,
the pattern of high and low states often appears random without any knowledge or context of what
those pulses represent in the system at the time of measurement. As such, an oscilloscope configured
to repeatedly display a serial digital pulse stream will show something that looks like this:

These are clearly square (or trapezoidal) wave pulses that overlap enough times so that only the
high-to-low and low-to-high edges are distinct. At first, this sort of display looks useless because

20 CHAPTER 3. TUTORIAL

we really cannot discern individual high or low logic states due to the overlapping of repeated
traces. However, when displayed on a digital phosphor oscilloscope, variations in amplitude and
timing create what is commonly known as an eye diagram which is a good visual representation of
uncertainty and therefore of signal integrity. The following image of a greyscale digital phosphor
oscillograph was taken from Martin Miller’s patent “Noise Analysis To Reveal Jitter And Crosstalk’s
Effect On Signal Integrity”3 as part of his explanation of “prior art” (i.e. conventional state-of-the-
art) technology for signal integrity analysis:

As with any oscillograph of a digital pulse signal, we can easily identify such imperfections as
ringing, overshoot, undershoot, settling time, rise time, and fall time from this image. The added
benefit granted by the digital phosphor technology is being able to discern the degree of variation
in amplitude and time for successive pulses. For example, the labels 3 and 4 in Miller’s image show
the highest and lowest amplitude points captured for the “high” portion of the pulse signal over a
collection of 5 million sampled pulses, representing a peak-to-peak variance of more than one division
on the oscilloscope’s vertical axis. Similarly, one could quantify the amount of jitter in this signal
stream by measuring the width of any rising or falling edge. Identifying the amplitudes and times
of these “outlier” signals allows the user to determine worst-case limits for signal integrity in this
system4. The larger the area inside the “eye” (the “hole”), the greater the signal’s integrity.

3Miller, Martin T. US Patent 9,843,402, “Noise Analysis To Reveal Jitter And Crosstalk’s Effect On Signal
Integrity”, application 4 October 2016, patent granted 12 December 2017. This particular eye diagram results from
5 million overlaid pulses, the re-occurrence frequency represented by the density of the grey pixels.

4A helpful analogy is to picture a city intersection on a snowy day. As vehicles navigate through the intersection,
their tires leave tracks in the snow which remain long after each vehicle passes through. After much traffic has passed
through the intersection, the culmination of all tracks indicate where most vehicles have driven as well as how far
from center-lane the farthest outlying vehicle path was.

3.5. LOGIC ANALYZERS 21

3.5 Logic analyzers

A logic analyzer is to an oscilloscope what a logic probe is to a voltmeter: an instrument designed
to show voltage levels as digital logic states rather than as analog signals. Since each channel of a
logic analyzer need only show “high” or “low” rather than precisely resolve the sensed voltage as an
analog measurement, it is a simpler instrument to manufacture. This permits logic analyzers to be
built with a great many input channels, many more than what is common with an oscilloscope.

A photograph of a legacy Hewlett-Packard logic analyzer appears in this next photograph:

Like an oscilloscope, a logic analyzer displays signals as graphs in the time domain.

Mixed-signal oscilloscopes blend the capabilities of standard oscilloscopes with logic analyzers,
allowing the user to examine digital signals two different ways simultaneously on the same screen. As
with logic analyzers, the number of digital input channels is usually quite large, in order to facilitate
simultaneous monitoring of multiple bit-lines within a parallel digital bus. Triggering is usually
available on either analog or digital channels, allowing the user to synchronize the oscilloscope’s
display to any arbitrary reference waveform being measured.

22 CHAPTER 3. TUTORIAL

3.6 Assembled board testing

Electronics manufacturers must be able to quickly test their finished printed circuit boards (PCBs)
in order to check for defects at various stages of the manufacturing process, but especially prior to
device packaging and eventual sale to customers.

Modern digital circuits constructed on PCBs are often so densely-populated by integrated circuits
(ICs, or “chips”) that simple visual inspection cannot be relied upon for locating manufacturing and
assembly defects such as poor solder joints and misaligned terminals. This is especially true for
ICs where the connection terminals lie on the bottom face of the chip and are hidden from view by
the body of the integrated circuit itself. In such applications an effective means of inspecting such
hidden details is to use an X-ray camera and source of X-ray radiation to see through the board
and placed components. Such a machine is a valuable tool in a high-volume production environment
where detection of manufacturing defects must be rapid.

An example of an X-ray camera’s view of a ball grid array (BGA) style of integrated circuit
soldered to a PCB appears below:

Each dark-grey dot represents a soldered junction between a componen terminal and a copper
“pad” on the PCB. Certain types of solder defects are evident as non-uniform coloring at the affected
dot.

3.6. ASSEMBLED BOARD TESTING 23

With the appropriate power setting on the X-ray tube, it is possible to “look inside” individual
integrated circuits to see the wires connecting the pins to the silicon die inside the chip. An example
of this is shown here, where we may see the internal wiring of a DIP (dual-inline package) integrated
circuit:

The silicon die for this particular IC is invisible to the X-ray camera at this power setting, but
we may see the fine metal wires terminate around its periphery, each of those fine wires connecting
to a wider metal trace inside the IC, each trace leading to one of the pins on either side (top or
bottom edge) of the chip’s exterior.

An advanced feature of some X-ray machines is to render shades of gray as a simulated three-
dimensional (and colorized) map, where both color and “height” represent intensity on the grayscale.
The following example shows soldered connections on a BGA chip, each solder ball appearing as a
red-colored “mesa” on a simulated “landscape” of rendered grayscale image:

24 CHAPTER 3. TUTORIAL

As useful as visual and X-ray inspection may be for locating manufacturing defects, there is still
a need to electrically test assembled PCBs because some faults cannot be seen. Manually testing
densely-populated PCBs for a wide range of possible faults is impractical, and so automated tests
exist for this purpose. One such testing method is to fabricate a special board equipped with pointed-
tip metal probes designed to simultaneously contact important test points on the assembled PCB,
those probes connecting to wires which in turn terminate at some electronic device built to inject
test signals and measure responses from the PCB. This is colloquially referred to as a bed-of-nails

test, referencing the appearance of the metal probes.

A more modern and sophisticated variant of the “bed of nails” test fixture is something called a
flying probe. This uses robotically-controlled actuators to move one or more probes to different test
points on the PCB, injecting and/or measuring signals at those points according to a programmed
sequence. The high speed of modern robotic actuators accounts for the “flying” label, and they are
impressive to watch in action.

3.7. JTAG 25

3.7 JTAG

Bed-of-nails and flying probe tests are both electrically-based tests designed to ensure the integrity
of soldered connections between components and copper traces on a PCB. These legacy techniques,
however, are less useful when the spacing between adjacent pins on ICs is very small because it
becomes more difficult to accurately place the probe tips. They are completely useless for ICs such
as the Ball Grid Array (BGA) type where most of the IC terminals are sandwiched between the chip
and the PCB rather than being positioned around the periphery.

In answer to this challenge, an industry group calling itself the Joint Test Action Group formed in
the mid-1980’s with the purpose of developing a standardized method for testing PCB connections
where IC terminals were either too closely-spaced or entirely inaccessible for contact with metal
probes. Their work culminated in an IEEE standard (1149.1) in the year 1990, commonly referred
to in the industry as JTAG. This standard developed a means by which diagnostic capability could
be built into such ICs so that the chips themselves could serve as the testing fixture.

JTAG is part of a larger design philosophy known as Design For Test (DFT)5 which simply means
that the electronic product and/or its constituent components are designed to facilitate convenient
testing, not merely to fulfill their essential functions. A very simple example of “design for test”
is to intentionally place exposed test points on a PCB enabling technicians to easily make contact
with multimeter and/or oscilloscope probes, in contrast to a board design lacking such test points
which would require extra work to reliably attach test probes. JTAG extends this concept to the
pins within digital ICs, building-in testing capability to the IC itself so that the final assembly may
be more easily validated and diagnosed.

The basic concept of JTAG-compliant ICs is that these digital devices are built with extra
circuitry called boundary scan cells positioned between the IC’s external pins and the functional
circuitry of the device. Each cell is able to transparently pass digital data between its respective pin
and the digital logic, which is its normal mode of operation, or it has the ability to read or write data
to be passed along to other boundary scan cells in serial shift-register fashion for analysis outside of
the circuit board.

5This is closely related to a concept I like to call Design For Maintenance which is where a product is designed
to be easily maintained and repaired by the eventual owner or service personnel. Anyone who had had to do major
mechanical work to a modern automobile is likely familiar with designs that were not made with maintenance in
mind!

26 CHAPTER 3. TUTORIAL

To illustrate, we will examine a simplified diagram of a Field-Programmable Gate Array (FPGA)6

chip with this additional JTAG circuitry shown. Each input/output (I/O) pin of the FPGA chip
has a boundary scan cell (BSC) between it and the FPGA. All of this circuitry, of course, resides
on the same wafer of silicon inside the IC, but is shown separately here in order to represent its
function:

FPGA

TAP logic

VDD VSS

Field-Programmable Gate Array
equipped with JTAG capability

T
D

I

T
D

O

T
C

K

T
M

C

T
R

ST

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

A set of dedicated pins on the IC serve as the JTAG interface. This is called the Test Access

Port (TAP) by the IEEE 1149.1 standard, and consists of four mandatory pins and one optional pin
for controlling the boundary scan cells and intercepting pin data. These TAP pins connect to an
external testing device which will generate the necessary signals to activate the JTAG functions.

• TDI = Test Data In

• TDO = Test Data Out

• TCK = Test Clock

• TMS = Test Mode Select

• TRST = Test Reset (optional)

When performing a boundary scan, for example, serial data output by a testing device enters the
JTAG TDI pin and is clocked through the device one boundary scan cell at a time in step with the
test clock signal (TCK) which also comes from the testing device. Eventually these serial bits return
to the test device through the TDO pin.

6FPGAs are configurable logic arrays capable of implementing arbitrary logic functions. They are useful in
prototype designs where digital logic may need to be easily modified, and they also find use in systems where a
large amount of custom logic must be located in a small area on the PCB. JTAG, of course, is applicable to any

digital logic IC, but FPGAs were chosen for this example for their arbitrary nature.

3.7. JTAG 27

The purpose of a boundary scan test is to ensure proper connections between the JTAG-capable
IC and other components on the PCB its data lines connect to. Therefore, to do a proper boundary
scan test, we need multiple JTAG-capable components on the board connecting to each other. For
example, consider the following pair of interconnected FPGA devices:

FPGA

TAP logic

T
D

I

T
D

O

T
C

K

T
M

C

T
R

ST

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

FPGA

TAP logic

T
D

I

T
D

O

T
C

K

T
M

C

T
R

ST
BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

TDI

TCK

TMC

TRST

TDO

JTAG header

Printed circuit board

As you can see, the TDO pin of the left IC connects to the TDI pin of the right IC, so that the
two form a long shift register “chain” for JTAG testing data. As this test data steps through all the
boundary scan cells, it causes the respective output pins on the devices to output the bits given to
them, and causes the respective input pins to receive the data and write it to the serial data stream.
Therefore, at the end of the test some of the bits in the data stream received at the board’s TDO pin
will represent data conveyed from one device to the other over traces on the PCB connecting those
two devices together. If those data bits fail to match the sequence predicted by the testing device,
it means a connection problem exists on the PCB and it therefore fails the test.

A single “header” connector located on the PCB provides convenient access for the JTAG testing
device to connect to the board, to inject the serial test data stream, to read the received bit states
from the “scan chain” formed by those two devices, and also to control the JTAG testing sequence
(clock signal, mode signal, reset signal).

28 CHAPTER 3. TUTORIAL

In the following photograph you see a PCB connected to a personal computer running JTAG
testing software, the interface being a USB-based scanning tool that connects to the board’s JTAG
header through a ribbon-style cable. A red and black wire pair provide DC power to energize the
board’s components:

Not only is JTAG useful for performing boundary scan tests between interconnected ICs, but
its ability to read and to force data bits on individual device pins also makes JTAG a powerful
“debugging” tool to monitor the logic states inside digital components, as well as a viable means of
programming writable digital devices such as microcontrollers with on-board Flash memory.

Some manufacturers have opted to incorporate JTAG technology into products lacking the
necessary number of pins to provide the standard TAP interface (TDI, TDO, TCK, and TMS), by
adding serial data converters between an interface using fewer than four pins and an internal TAP.
An example of this is found in some of the models of Texas Instruments’ MSP430 microcontrollers,
which use a two-terminal “Spi-Bi-Wire” (SBW) interface to encode four-wire JTAG signals.

Chapter 4

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

29

30 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 TTL logic levels

Logic gates need to reliably communicate with each other, the voltage levels output by the “driving”
gate being compatible with the input voltage levels of the “receiving” gate. These specifications are
given as follows:

• VOH = minimum voltage output by a gate in the “high” (1) state

• VOL = maximum voltage output by a gate in the “low” (0) state

• VIH = minimum voltage received by a gate to be interpreted as a “high” (1) state

• VIL = maximum voltage received by a gate to be interpreted as a “low” (0) state

Classic “LS” family of TTL gate circuits using bipolar transistors operated on a 5 Volt DC power
supply, outputting at least 2.4 Volts in the “high” state and 0.4 Volts in the “low” state. The same
logic family would accept any input voltage signal greater than 2.0 Volts as a “high” and less than
0.8 Volts as a “low”. The amount of noise margin is the difference between the guaranteed output
voltage levels and the acceptable input voltage levels. Represented in table form for 5-Volt TTL
gates:

Logic state Guaranteed output Acceptable input Noise margin

High VOH = 2.4 Volts min. VIH = 2.0 Volts min. 2.4 − 2.0 = 0.4 Volts

Low VOL = 0.4 Volts max. VIL = 0.8 Volts max. 0.8 − 0.4 = 0.4 Volts

If an ordinary digital logic gate receives an input voltage signal lying somewhere between the
threshold values of VIH and VIL, its output state will be unpredictable. The gate may “assume”
either a high or a low state, or worse yet may try to process that signal in an analog fashion,
generating an output voltage level below VOH and above VOL, thus propagating the problem to the
next logic gate(s). For this reason it is very important to design logic circuits to avoid voltage levels
below VIH and above VIL.

Classic TTL logic IC part numbers begin with either 54 (military-grade) or 74 (commercial
grade), but not all 54- or 74- series ICs are of traditional TTL (bipolar transistor) design. For
example, the “HC” series of 54- and 74-numbered ICs utilize MOSFETs rather than bipolar
transistors, but are otherwise designed to be pin-for-pin compatible with classic TTL logic ICs.
These “high-speed CMOS” ICs are designed to function nearly identically to their bipolar-transistor
counterparts, but with much lower current requirements and a slightly wider power supply range (2
to 6 Volts typical). Like classic 4000-series CMOS logic ICs, this means the minimum and maximum
acceptable voltage levels for 54HC- or 74HC- series ICs “high” and “low” signals vary with supply
voltage. By contrast, since classic TTL digital logic ICs are constrained to a very narrow range of
DC power supply voltage (typically 4.75 to 5.25 Volts) their acceptable voltage levels for “high” and
“low” signals is correspondingly fixed.

4.2. CMOS LOGIC LEVELS 31

4.2 CMOS logic levels

Logic gates need to reliably communicate with each other, the voltage levels output by the “driving”
gate being compatible with the input voltage levels of the “receiving” gate. These specifications are
given as follows:

• VOH = minimum voltage output by a gate in the “high” (1) state

• VOL = maximum voltage output by a gate in the “low” (0) state

• VIH = minimum voltage received by a gate to be interpreted as a “high” (1) state

• VIL = maximum voltage received by a gate to be interpreted as a “low” (0) state

Classic “CD” family of CMOS gate circuits using complementary MOSFET transistors operating
on a 5 Volt DC power supply has much wider greater noise margins than “LS” series TTL, outputting
at least 4.44 Volts in the “high” state and 0.5 Volts in the “low” state, while accepting any input
voltage signal greater than 3.5 Volts as a “high” and less than 1.5 Volts as a “low”. Represented in
table form for 5-Volt CMOS gates:

Logic state Guaranteed output Acceptable input Noise margin

High VOH = 4.44 Volts min. VIH = 3.5 Volts min. 4.44 − 3.5 = 0.94 Volts

Low VOL = 0.5 Volts max. VIL = 1.5 Volts max. 1.5 − 0.5 = 1.0 Volt

CD-family CMOS logic was not limited to a 5 Volt DC power supply as was the LS (TTL)
bipolar family of logic gates. Typical DC power supply limits ranged from 3 Volts to 18 Volts, with
acceptable input voltage levels varying as a function of power supply voltage. Output voltage levels
for a CD-family logic gate also followed power supply voltage, typically within 0.5 Volts of the power
supply rails.

If an ordinary digital logic gate receives an input voltage signal lying somewhere between the
threshold values of VIH and VIL, its output state will be unpredictable. The gate may “assume”
either a high or a low state, or worse yet may try to process that signal in an analog fashion,
generating an output voltage level below VOH and above VOL, thus propagating the problem to the
next logic gate(s). For this reason it is very important to design logic circuits to avoid voltage levels
below VIH and above VIL.

32 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.3 Digital pulse criteria

Clock-synchronized digital logic circuits such as counters, shift registers, and microprocessors require
their input signals to be at stable states immediately before and immediately after the clock pulse
arrives. For example, the following timing diagram shows input and output states for a D-type
flip-flop circuit (positive-edge triggered), showing the effects of some signal timing violations:

Clk

Q

D Adequate set-up time

Inadequate set-up time

Low state "clocked in"
one cycle too late due
to set-up time violation

High state "clocked in"
on time

Inadequate hold time

High state "clocked in"
on time

High state not "clocked
in" at all due to hold

time violation

Datasheets for digital circuits often provide timing diagrams showing criteria related to pulse
signal timing and logic states. These diagrams don’t typically show ideal square-edged pulses, but
rather trapezoidal pulse profiles intended to exaggerate realistic features such as rise and fall times,
propagation delays, and minimum set-up/hold times. Such diagrams usually confuse students who
are accustomed to seeing square-edged pulses in their textbook timing diagrams. This technical
reference will show some typical timing diagrams and explain what they represent.

4.3. DIGITAL PULSE CRITERIA 33

For example, consider this timing diagram for a positive-edge-triggered JK flip-flop having both
its J and K inputs tied high so as to maintain the circuit in its “toggle” mode. As such we would
expect its output (Q) to change state with every rising edge of the clock pulse:

Clk

Q

trise tfall

90%

10%

VS

VS

tPLH

VS

VS

tPHL

10%

90%

tTLH tTHL

Each of the labels found in this diagram is defined as follows:

• trise = Rise time of input signal, typically measured from 10% of signal amplitude to 90% of
signal amplitude

• tfall = Fall time of input signal, typically measured from 90% of signal amplitude to 10% of
signal amplitude

• tTLH = Low-to-High transition time of output signal, typically measured from 10% of signal
amplitude to 90% of signal amplitude (the same concept as rise time, but applied to the output
signal instead of the input signal)

• tTHL = High-to-Low transition time of output signal, typically measured from 90% of signal
amplitude to 10% of signal amplitude (the same concept as fall time, but applied to the output
signal instead of the input signal)

• tPLH = Propagation delay time of output signal when switching from low to high

• tPHL = Propagation delay time of output signal when switching from high to low

• VS = Switching threshold voltage, typically defined as 50% of signal amplitude

This timing diagram shows how a digital logic circuit reacts to a single input signal, in this case
the clock pulse. Although this example happens to be for a JK flip-flop in toggle mode, the same
type of timing diagram with its exaggerated rise/fall times and propagation delays could be applied
to any digital logic gate whose output state depended solely on the state of a single input.

34 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

For synchronous digital logic circuits where input signals must coordinate with the clock pulse
signal in order to be properly accepted by the circuit, we typically find timing diagrams comparing
these input states to each other, often without showing the output(s) at all. Instead of showing us
how the digital logic circuit will react to an input signal, this sort of timing diagram shows what the
digital logic circuit expects of its multiple input signals.

The example is shown here for a positive-edge-triggered D register1 having multiple data lines
(D0 through Dn), one asynchronous2 reset line (RST), and one clock input. The arbitrary logic
levels of the multiple data lines are shown as a pair of complementary-state pulse waveforms, the
only relevant features being the timing of the data and not the particular voltage levels of the data
signals:

VS

VS

VS

RST VS VS

VS

tW
Data valid

Clk

D0 - Dn

tSU
tH

tREM

Labels shown in this diagram refer to minimum time durations the logic circuit requires for
reliable operation:

• tSU = Minimum set-up time before the arrival of the next clock pulse

• tH = Minimum hold time following the last clock pulse

• tW = Minimum width (duration) of the asynchronous reset pulse

• tREM = Minimum removal time before the arrival of the next clock pulse

Violations of any of these minimum times may result in unexpected behavior from the logic
circuit, and is an all-too-common cause of spurious errors in high-speed digital circuit designs. The
assessment of digital pulse signals with regard to reliable circuit operation is generally known as
digital signal integrity.

1In this case, a “D register” is synonymous with multiple D-type flip-flops sharing a common clock input, passing
data through from each D input to each corresponding Q output synchronously with each clock pulse.

2To review, a synchronous input depends on a clock pulse while an asynchronous input is able to affect the circuit
independent of the clock pulse.

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

35

36 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

37

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

38 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 39

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

40 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 41

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Digital signal

Logic state

Sourcing

Sinking

CMOS logic

TTL

Clocking

Open

Short

Kelvin four-wire method

Latch

Timing diagram

42 CHAPTER 5. QUESTIONS

Serial versus Parallel data

Time domain

Design For Testing

Boundary scan

Soldering

5.1.3 Logic pulser usage

A technician uses a logic pulser to force the logic state of the wire connecting two gates together:

Pulser

U1

U2

U3

Vdd

Which gate, or gates, are we testing by placing the pulser in this position? What other
instrument(s) would we have to connect to the circuit (and where?) to complete the test? Why
does the logic pulser require a ground connection to do its job in this circuit?

Challenges

• What logic state should the other input of the NAND gate need to be in for this test to give
a conclusive result? Explain why.

5.1. CONCEPTUAL REASONING 43

5.1.4 Reverse-engineering techniques

A variety of sophisticated tools exist for manufacturers to examine details inside of the integrated
circuits of their competitors, in an effort to copy intellectual property and/or to document
vulnerabilities. Once an IC has been “decapsulated” to expose its silicon die to inspection, the
following techniques may be employed to read and write digital logic states:

• Emission microscopy (observing light emitted by transistor junctions)

• Laser light manipulation of bit states

• “Nanoprobing” signal lines

Explain how each of these techniques works.

Challenges

• Describe one practical example where a highly skilled group of engineers and technicians might
be motivated to employ such techniques.

44 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

5.2. QUANTITATIVE REASONING 45

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

46 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

5.2. QUANTITATIVE REASONING 47

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

48 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

5.2. QUANTITATIVE REASONING 49

5.2.3 Simple logic probe circuit

A logic probe is a very useful tool for working with digital logic circuits. It indicates “high” and “low”
logic states by means of LEDs, giving visual indication only if the voltage levels are appropriate for
each state. The following schematic diagram shows a logic probe circuit built using comparators

which are integrated circuit elements designed to compare two analog voltage signals (each with
reference to ground) and drive its output pin either “high” or “low” depending on which of the
sensed input voltages is larger:

Test probe

Logic probe circuit
To +V

To Gnd

−

+

−

+

"High"

"Low"

1/4 LM339

1/4 LM339

3

12

TP1

TP2

Identify the purpose of the two potentiometers in this circuit.

When this logic probe circuit is connected to the VCC and VEE power supply terminals of a
powered TTL circuit, what voltage levels should test points TP1 and TP2 be adjusted to, in order
for the probe to properly indicate “high” and “low” TTL logic states?

When this logic probe circuit is connected to the VDD and VSS power supply terminals of a
powered CMOS circuit operating on a 5 Volt DC power supply, what voltage levels should test
points TP1 and TP2 be adjusted to, in order for the probe to properly indicate “high” and “low”
CMOS logic states?

Challenges

• Write a formula for calculating appropriate current-limiting resistor sizes for the two LEDs in
this circuit, given the value of +V and the LED forward voltage and current values.

• The logic probe circuit shown is minimal in component count. To make a more practical and
reliable probe, one would probably want to have reverse-polarity protection (in case someone

50 CHAPTER 5. QUESTIONS

were to accidently connect the probe backward across the power supply) as well as decoupling
for immunity against electrical noise. Add whatever necessary components you think there
should be in this circuit to provide these features.

5.2.4 Pulldown resistor sizing

In the following schematic diagram, the pulldown resistor sizes are not shown:

Output

VDD

VDD

A

B

C

R1 R2

R3

U1
U2

Supposing these logic gates are both CMOS in design, what would be acceptable resistor values
to use?

Now supposing these logic gates are both TTL in design, what would be acceptable resistor
values to use?

Be sure to reference CMOS and TTL logic gate datasheets (showing internal schematics of each
gate type) in formulating your answers!

Challenges

• Identify a good diagnostic instrument to tell whether an installed pulldown resistor is properly
sized.

5.3. DIAGNOSTIC REASONING 51

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

52 CHAPTER 5. QUESTIONS

5.3.1 Logic probe and pulser

A technician decides to check a suspect three-input AND gate using a logic pulser. She touches the
logic pulser to each input of the AND gate, while looking for a pulsing signal at the output with a
logic probe:

TP1

TP2

TP3

TP4

. . .

. . .

. . .

. . .

Pulser

Lo
gi

c
pr

ob
e

Vdd
Vdd

No matter which input test point (TP1, TP2, or TP3) she pulses, though, the output test point
(TP4) always reads low. Does this prove the AND gate to be defective? Explain why or why not.

Challenges

• Suppose this were an OR gate rather than an AND gate. Would the same test result be
conclusive or inconclusive?

5.3. DIAGNOSTIC REASONING 53

5.3.2 Identifying possible faults

The output of the following gate circuit is always high, no matter what states the input switches
are in. Assume that CMOS logic gates are being used here:

Output

VDD

A

B

C

R1 R2

R3

U1

U2

U3

Identify which of these possibilities could account for the output always being high:

• Output of U1 stuck in a high state

• Output of U2 stuck in a high state

• R1 failed open

• R2 failed shorted

• R3 failed shorted

• Switch A failed open

• Switch B failed shorted

• Switch C failed shorted

Challenges

• Identify other possible faults not shown on this list.

54 CHAPTER 5. QUESTIONS

5.3.3 Input switch settings

The following gate circuit has a problem:

Output

VDD

VDD

A

B

C

R1 R2

R3

U1
U2

R4

When tested, it is found that the circuit does not respond in the same manner as its (ideal) truth
table predicts. Here is a comparison of the ideal and actual truth tables, as predicted and tested:

A B C Output (ideal) Output (actual)

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

The first thing a good electronics technician would do, of course, is set up either a voltmeter or
a logic probe and begin testing for logic levels in the circuit to see what is wrong. However, the
settings of the input switches are very important as part of the diagnosis. Based on the design of
the circuit, and the truth table results shown, in what states (open or closed) would you first set
the input switches, and then what logic level would you first test with the logic probe or voltmeter?

Based on the truth table data, what do you suspect is the fault?

Challenges

5.3. DIAGNOSTIC REASONING 55

• Suppose you were asked to troubleshoot a simple electric lamp circuit using only a voltmeter.
The problem is, the lamp does not energize when the switch is closed. Would it be best to
take voltage measurements with the switch on or off?

5.3.4 Logic probe limitations

Logic probes are useful tools for troubleshooting digital logic gate circuits, but they certainly have
limitations. For instance, in this simple circuit, a logic probe will give correct “high” and “low”
readings at test point 1 (TP1), but it will always read “low” (even when the LED is on) at test
point 2 (TP2):

VDD

TP1

TP2

Now, obviously the output of the gate is “high” when the LED is on, otherwise it would not
illuminate. Why then does a logic probe fail to indicate a high logic state at TP2?

Challenges

• ???.

• ???.

• ???.

56 CHAPTER 5. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

57

58 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

59

60 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

61

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

62 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

63

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

64 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

65

66 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

67

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

68 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

69

70 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

71

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

72 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

73

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

74 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

75

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

76 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

“Guide to embedded security”, document SWPB020D, Texas Instruments Incorporated, Dallas, TX,
2019.

“JTAG Tutorial”, Corelis Incorporated, Cerritos, CA.

Miller, Martin T. US Patent 9,843,402, “Noise Analysis To Reveal Jitter And Crosstalk’s Effect On
Signal Integrity”, application 4 October 2016, patent granted 12 December 2017.

“MSP430 Programming With the JTAG Interface”, document SLAU320AI, Texas Instruments
Incorporated, Dallas, TX, 2020.

“RSR Logic Probes and Pulsers” datasheet, part number 01LP610, Electronix Express.

“Understanding Data Eye Diagram Methodology for Analyzing High Speed Digital Signals”
Application Note AND9075/D revision 1, ON Semiconductor, Semiconductor Components Industries
LLC, Denver, CO, June 2015.

“What is JTAG? – and how can I make use of it?”, Cambridge, UK.

77

78 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

13 December 2023 – added more rigor to the Quantitative Reasoning question “Pulldown resistor
sizing”. Also added some more instructor notes in answers to other questions.

29 November 2023 – minor edits to the Tutorial.

28 April 2023 – added illustration and comments about two-wire resistance measurement as a
contrast to four-wire.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

23 July 2022 – added a Case Tutorial chapter, with a section showing examples of diagnostic
visualization tools for circuit diagnosis.

26 April 2022 – added more questions to the Introduction chapter.

1 December 2021 – corrected a typo (CMNOS should have been CMOS) in the “Simple logic
probe circuit” Quantitative Reasoning question.

9 May 2021 – commented out or deleted empty chapters.

8 April 2021 – edited image 4044 to comment more explicitly on the irrelevance of wire resistance.

1 December 2020 – added commentary about comparators to the “Simple logic probe circuit”
question, as well as minor additions to the Tutorial.

13-14 September 2020 – added more content to the Tutorial chapter.

79

80 APPENDIX F. VERSION HISTORY

30 August 2020 – document first created.

Index

Adding quantities to a qualitative problem, 58
Annotating diagrams, 57
Asynchronous, 34

Ball grid array, 22
Balun, 9
Bed-of-nails test, 24
BGA, 22
Boundary scan cell, 25
Breakout box, 17

Chain, JTAG, 27
Checking for exceptions, 58
Checking your work, 58
CMOS, 31
CMOS digital logic, 12
Code, computer, 65
Common-mode balun, 9
Current balun, 9

Design For Test, 25
DFT, 25
Digital phosphor oscilloscope, 18
Digital signal integrity, 34
Dimensional analysis, 57
DPO, 18

Edwards, Tim, 66
Eye diagram, 20

Fall time, 33
Family, logic gate, 30, 31

Graph values to solve a problem, 58
Greenleaf, Cynthia, 35

Hold time, 32
How to teach with these modules, 60

Hwang, Andrew D., 67

IC, 6
Identify given data, 57
Identify relevant principles, 57
IEEE standard 1149.1, 25
Instructions for projects and experiments, 61
Integrated circuit, 6
Integrity, signal, 34
Intermediate results, 57
Inverted instruction, 60

Joint Test Action Group, 25
JTAG, 25
JTAG chain, 27

Kelvin four-wire method, 13
Knuth, Donald, 66

Lamport, Leslie, 66
Limiting cases, 58
Logic analyzer, 21
Logic gate family, 30, 31
Logic level, 12
Logic probe, 15

Margin, noise, 30, 31
Metacognition, 40
Miller, Martin, 20
Mixed-signal oscilloscope, 21
Moolenaar, Bram, 65
MSO, 21
Multimeter, 12
Murphy, Lynn, 35

Noise margin, 30, 31

Open-source, 65

81

82 INDEX

Oscilloscope, 18
Oscilloscope, digital phosphor, 18
Oscilloscope, mixed-signal, 21

PCB, 6
Persistence mode, 19
Positive edge triggering, 33
Power supply rail, 31
Printed circuit board, 6
Problem-solving: annotate diagrams, 57
Problem-solving: check for exceptions, 58
Problem-solving: checking work, 58
Problem-solving: dimensional analysis, 57
Problem-solving: graph values, 58
Problem-solving: identify given data, 57
Problem-solving: identify relevant principles, 57
Problem-solving: interpret intermediate results,

57
Problem-solving: limiting cases, 58
Problem-solving: qualitative to quantitative, 58
Problem-solving: quantitative to qualitative, 58
Problem-solving: reductio ad absurdum, 58
Problem-solving: simplify the system, 57
Problem-solving: thought experiment, 57
Problem-solving: track units of measurement, 57
Problem-solving: visually represent the system,

57
Problem-solving: work in reverse, 58
Propagation delay, 33

Qualitatively approaching a quantitative
problem, 58

Rail, power supply, 31
Reading Apprenticeship, 35
Reductio ad absurdum, 58–60
Register, 34
Rise time, 33

SBW, 28
Schoenbach, Ruth, 35
Scientific method, 40
Set-up time, 32
Signal integrity, 34
Simplifying a system, 57
SMD, 9

Socrates, 59
Socratic dialogue, 60
Spi-Bi-Wire, 28
SPICE, 35
Stallman, Richard, 65
Surface mount device, 9
Synchronous, 34

TAP, 26
Test Access Port, JTAG, 26
Thought experiment, 57
Time domain, 21
Toggle mode, 33
Torvalds, Linus, 65
Transition time, 33
TTL, 30
TTL digital logic, 12

Units of measurement, 57

Visualizing a system, 57

Work in reverse to solve a problem, 58
WYSIWYG, 65, 66

	Introduction
	Case Tutorial
	Diagnostic visualization tools

	Tutorial
	Multimeters
	Logic probes and pulsers
	Breakout boxes
	Oscilloscopes
	Logic analyzers
	Assembled board testing
	JTAG

	Derivations and Technical References
	TTL logic levels
	CMOS logic levels
	Digital pulse criteria

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Logic pulser usage
	Reverse-engineering techniques

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Simple logic probe circuit
	Pulldown resistor sizing

	Diagnostic reasoning
	Logic probe and pulser
	Identifying possible faults
	Input switch settings
	Logic probe limitations

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

