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CHAPTER 1. INTRODUCTION



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: field probing inside a PC

AC electric and magnetic fields may be qualitatively measured on printed circuit boards (PCBs)
using special probes called near-field probes. These probes usually have BNC- or SMA-style coaxial
cable connectors suitable for connection to the input of an oscilloscope or a spectrum analyzer.

E-field probes sense electric fields with respect to ground, and consist of a metallic electrode
coated in plastic (to avoid direct contact with circuit conductors) with a connector appropriate to
the input of an oscilloscope or a spectrum analyzer. E-field probes tend to be omnidirectional in
their sensing.

H-field probes sense magnetic fields created by current-carrying conductors, and consist of
conductive loops (also insulated to avoid direct contact with circuit conductors) generating small
AC voltages when exposed to AC magnetic fields. H-field probes tend to be planar in their sensing,
which means they are maximally sensitive to magnetic fields caused by current through conductors
parallel to the plane of the probe’s loop(s) and minimally sensitive to magnetic fields perpendicular
to that.

This first set of images shows the signal spectrum (left) and photograph (right) of an E-field
probe held near a pair of wires connecting to a video processing PCB inside of a personal computer,
picking up a spread of frequencies centered around 260 kHz:

Next we see the same E-field probe held over the hub of a cooling fan motor, intercepting the
electric field from a square-wave voltage signal with a fundamental frequency of approximately 27
kHz as well as its associated odd harmonics:
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Switching to an H-field probe, the following two examples illustrate the polarization of this probe.
In the first set of images we see the spectrum detected by placing the probe with its loop parallel to
the current-carrying trace on the PC’s motherboard, detecting a cluster of signals centered around
4.25 MHz with maximum sensitivity because parallel conductors ensure mutually perpendicularity
with the magnetic field lines:

In the second image set we see the cluster of frequencies all but gone with the probe loop rotated
to be perpendicular with the offending PCB trace. The pulsed current still flows through the PCB
trace, but because the probe’s loop is now perpendicular to that trace it means the magnetic field
lines are now parallel to the probe loop, and therefore induction (from that signal) no longer occurs:
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2.2 Example: SDR as a probe analyzer

A spectrum analyzer is an ideal instrument to display signals intercepted by E-field and H-field
probes, but spectrum analyzers are typically quite expensive. While even inexpensive digital
oscilloscopes come equipped with Fast Fourier Transform (FFT) capability to display signal spectra,
the bandwidth of an entry-level oscilloscope may be insufficient to reliably show frequencies of
interest in near-field probing.

However, a viable alternative exists for affordable near-field probing, and that is the use of a
Software-Defined Radio (SDR) receiver unit. An SDR receiver, paired with appropriate software to
display the spectrum of any received signals, works quite well as a broadband spectrum analyzer,
especially when precise measurement of signal amplitude is unimportant. When probing for electric
and/or magnetic fields, we care about the frequencies of the intercepted signals and their relative
amplitudes, but are generally uninterested in determining precisely how strong each signal is because
the signal strength varies so much depending on how we hold the probe.

The first image here is of an AirSpy brand SDR receiving a signal from an E-field probe:

AIRSPY SDR# Studio v1.0.0.1810 - AIRSPY HF+ Dual / Discovery

LB R - X D) 134.000 4 «

AIRSPY SDR# Studio v1.0.0.1810 - AIRSPY HF+ Dual / Discovery

H 4 - # ‘)) 64700 4r « Step: 12.5 kHz

Both spectra were detected outside the case of an uninterruptible power supply (UPS) unit for
a personal computer.
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2.3 Example: measuring signal rates of change

Capacitors and inductors relate voltage to current by rates of change. For a capacitor, the amount
of current is proportional to how quickly voltage across that capacitor either rises or falls over time
(I=c %). For an inductor, the amount of voltage is proportional to how quickly current through
that inductor rises or falls over time (V = L4L).

For example, a 330 microFarad capacitor experiencing a voltage increasing at a rate of 45 Volts
per second will pass 14.85 milliAmperes. If the voltage happens to decrease at an equivalent rate
(i.e. 9% = —45 Volts per second) then the 14.85 milliAmpere current will reverse direction through
the capacitor compared to how it flowed with the increasing voltage.

Similarly, a 100 milliHenry inductor experiencing a current increasing at a rate of 5 Amperes per
second will induce a voltage of 500 milliVolts. If the current happens to decrease an an equivalent

dI

rate (i.e. 4 = —5 Amperes per second) then the 500 milliVolt voltage induced across the inductor

will reverse polarity from what it was during the period of increasing current.

Not only are rates-of-change important in determining how energy-storing devices such as
capacitors and inductors will respond in circuits, but rates-of-change are also important for
determining how parasitic capacitances and inductances will affect intended circuit behavior.
Parasitic capacitance exists between any two conducting surfaces separated by an electrically
insulating medium, and parasitic inductance exists along any length of conductor. This means
any rate-of-change of voltage over time between two separated conductors will cause some amount
of current to “pass” between them, and that any rate-of-change of current over time through any
single conductor will cause some amount of voltage to drop across its length. In many circuits these
parasitic effects are negligible, but in circuits experiencing extremely fast rates of change for voltage
and/or current the effects can be significant or even severe.

Oscilloscopes are ideal for performing empirical measurements of voltage rates-of-change, and of
current rates-of-change given the proper accessories'. Some skill is required to do this, though, and
here we will explore practical examples to show how it is done.

For any signal plotted in the time domain, where the horizontal axis of the plot is expressed in
units of seconds, milliseconds, microseconds, etc., the signal’s rate of change at any given point will
be the slope or pitch of the waveform, mathematically defined as its rise over run. A great aid to
discerning slope at any location on a waveform is to sketch a straight line visually matching the
wave’s slope at that point, then use locations along that straight line to more easily discern how far
it rises (or falls) over some “run” of time. We call this straight line a tangent line.

1For example, a current probe converting a sensed current into a voltage the oscilloscope may directly sense, or
a shunt resistor placed in the circuit developing an oscilloscope-measurable voltage drop for any current passing
through.
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Here we see an example of a waveform with sloping sections. In the first image we see a specific

location on the waveform where we wish to measure voltage rate-of-change (%):

\

T

Slope at this point?

/ _/

Next we see a tangent line drawn to match the slope of the waveform at the specified location,
with convenient points for fall/run measurements taken on that line against the oscilloscope grid’s
major divisions. In this example, the oscilloscope’s vertical sensitivity has been set for 0.5 Volts per
division, and the horizontal timebase for 0.2 milliseconds per division:

Run = 8 div * 0.2 ms/div
Run = 1.6 milliseconds

Fall = -2 div *

T

Slope at this point = -625 Volts/second

/ ‘/

As we can see, the tangent line falls 2 vertical divisions (—1 Volt) over a timespan of 8 horizontal
divisions (1.6 milliseconds), yielding a % quotient of —625 Volts per second, which may also be
expressed as —0.625 Volts per millisecond. The negative sign is important, as it distinguishes this
particular rate-of-change as falling rather than rising over time.
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Such rate-of-change measurements are necessarily approximate, as they require us to visually
gauge where a tangent line may be overlaid on the waveform’s oscillograph, and also to visually assess
the slope of that tangent line using the grid provided on the instrument’s display screen. However,
in most applications extremely precise rate-of-changes are not necessary, and such techniques suffice
quite well.

Below is another example of a waveform with sloping sections, the oscilloscope configured for
500 milliVolts per division on the vertical axis and 5 milliseconds per division on the horizontal:

Approximating the slope for each rising section of this wave, we count one division of rise over
2.8 divisions of run, or 500 milliVolts rise over 14 milliseconds of run. This is a rate-of-rise of +35.7
Volts per second.

Approximating the slope for each falling section of this wave, we count one division of fall over
1.4 divisions of run, or —500 milliVolts fall over 7 milliseconds of run. This is a rate-of-fall of —71.4
Volts per second.

If these rates-of-change appear suspiciously large compared to the actual amplitude of the
waveform, which barely crests over +1 Volt on the oscillograph, bear in mind that we are calculating
rates of change for voltage and not absolute values of voltage itself. This is analogous to the
distinction between speed and distance: traveling at a rate of 30 kilometers per hour does not
necessarily mean you will travel 30 kilometers, as the actual distance traveled depends on how long
that speed is sustained. A voltage rising at a rate of 35.7 Volts per second would indeed rise 35.7
Volts if given a full second to do so, but since each rising/falling portion of this waveform is so short
in duration the actual amount of rise or fall in each case is only one-half of one Volt. It is therefore
perfectly appropriate to consider any % value as being the speed at which a voltage increases or
decreases over time, distinct from the actual value of that voltage at any particular moment in time.



12 CHAPTER 2. CASE TUTORIAL

Here we see another oscillograph, this one zoomed into the rising edge of a square wave. For this
measurement the oscilloscope was configured for 20 milliVolts per division of vertical sensitivity and
a timebase of 250 nanoseconds per division on the horizontal:

Tek Run: 200MS/s ET Sample
]

Duty Cycle
i | W o

Negative
Duty Cycle

~more—
20f7

Remove

The tangent line overlaid on this screenshot for the purpose of measuring the pulse edge’s rate-of-
change rises approximately 4 vertical divisions over a run of 1 division, which is 80 milliVolts of rise
over 250 nanoseconds of run. The pulse edge’s rate-of-change, therefore, is approximately +320,000
Volts per second, or +320 Volts per millisecond, or +0.32 Volts per microsecond (all equivalent
expressions of 4¥).
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Tutorial
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3.1 Electric versus magnetic fields

An electric field exists wherever voltage exists (i.e. wherever an imbalance exists between positive
and negative electrical charges), parallel to the axis of that voltage. A magnetic field exists wherever
an electric charge moves, perpendicular to the axis of that charge’s motion. These fields may be
represented as lines or curves in an illustration:

Metal plate

+
wire,

<
QD
«Q
2
'Cj Hletctrlic|Fiel =
(_—_L":
Battery o

wire _

Metal plate

These two types of fields differ from each other in multiple ways. Electric fields terminate at
conductors having opposite voltage polarity, while magnetic fields “loop” around current-carrying
conductors and have no termination points at all. Electric field strength is proportional to the
magnitude of the wvoltage, while magnetic field strength is proportional to the magnitude of the
current.

Fields are often defined and quantified in terms of the amount of force they exert on matter. This
is true for gravitational, electric, and magnetic fields alike. Gravitational fields (g) act on mass (m)
to produce force (F). Electric fields (E) act on electric charges (Q) to produce force (F'). Magnetic
fields (B) act on moving charges (charge @ with velocity v) to produce force (F'):

Gravitational field (g)

Metal plate

Current

asg (M

v

e (F

wire

\ Y Y Y Y Y Y
Earth
F=mg F=QE F=QvxB

Electric and magnetic fields alike are natural consequences of voltage and current, respectively.
These fields are found everywhere in energized electric circuits, but are generally weak enough that
we do not notice their forces.
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3.2 Capacitance

Capacitance may be defined as the ability to store energy within an electric field as the result
of an applied voltage. Although electrical components called capacitors' exist to exploit this
phenomenon, any pair of electrically conductive surfaces separated by a layer of electrical insulation
(called a dielectric) will exhibit capacitance, the amount of capacitance directly proportional to the
overlapping area of the conductive surfaces (in square meters), directly proportional to the dielectric
permittivity? (e) of the dielectric material, and inversely proportional to the separation distance
between the conductors (in meters):

Less C More C
Area _|_ _|_
S
Permittivity _|_ _|_ A
) — Cc= —
air or lass, micay d
vacuum er, etc.

(d)

a5

Distance _|_
_l_

The mathematical relationship between voltage, current, and capacitance (i.e. the “Ohm’s Law”
for capacitance) is quite different than Ohm’s Law for resistance, because it relates the magnitude
of current to the rate of change over time of voltage:

Where,

I = Current through capacitor, in Amperes

C' = Capacitance, in Farads

% = Rate-of-change of voltage across the capacitance over time, in Volts per second

One way to conceptualize this rate-of-change is to think of it as being the speed of the voltage.
For example, if a voltage steadily rises from 150 Volts to 152 Volts over a period of half a second,
the % would be:

dvV 152 — 150

o 05 = +4 Volts per second

1 An obsolete term for capacitor is condensor or condenser.

2Permittivity, simply defined, is a measure of how effective a dielectric substance is at electrostatically storing
energy for any given electric field strength. It may be measured in absolute terms, expressed in units of Farads per
meter, or it may be expressed as a ratio relative to the permittivity of a perfect vacuum.
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3.3 Inductance

Inductance may be defined as the ability to store energy within a magnetic field as the result of
a current. Although electrical components called inductors® exist to exploit this phenomenon, any
conductor will exhibit inductance. Inductors are generally constructed with wire formed into a coil or
loop, the amount of inductance directly proportional to the cross-sectional area enclosed by the coil,
directly proportional to the square of the number of turns of wire in that coil, directly proportional
to the magnetic permeability® (1) of any material enclosed by the coil, and inversely proportional
to the axial length of the coil (in meters):

Less L More L

o | - | -

Permeability AN?
ol Dy | W | oo

air or iron or
vacuum steel

<o - | —m—
T&r)ns J(IIIII)L W

The mathematical relationship between voltage, current, and inductance (i.e. the “Ohm’s Law”
for inductance) is quite different than Ohm’s Law for resistance, because it relates the magnitude of
voltage to the rate of change over time of current:

dal
V= LE
Where,
V' = Voltage across inductor, in Volts
L = Inductance, in Henrys

% = Rate-of-change of current through the inductor over time, in Amperes per second

One way to conceptualize this rate-of-change is to think of it as being the speed of the current.
For example, if a current steadily falls from 10 milliAmperes to 7 milliAmperes over a period of 2
microseconds, the % would be:

Al (7% 1073) — (10 x 1073)
dt 2 x 106
3Also referred to as reactors in high-power electrical circuits, and sometimes as chokes in electronic circuits.
4Permeability, simply defined, is a measure of how effective a substance is at magnetically storing energy for any

given amount of magnetomotive force (MMF). It may be measured in absolute terms, expressed in units of Henrys
per meter, or it may be expressed as a ratio relative to the permeability of a perfect vacuum.

= —1500 Amperes per second
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3.4 Electromagnetic induction

When an electric current passes through a conductor, the motion of those drifting charge carriers
produces a magnetic field, and we call this phenomenon electromagnetism. A complementary
phenomenon is electromagnetic induction, where magnetism may produce a voltage. Induction
happens when a conductor experiences a perpendicular magnetic field varying in strength over time.
This is how generators are constructed: by moving coils of wire past a stationary magnetic field, or
vice-versa. The amount of voltage induced across the coil is proportional to the number of turns of
wire in that coil and to the magnetic field’s rate-of-change over time. This mathematical relationship
is expressed in Faraday’s Law of Electromagnetic Induction:

do
V=N o
Where,
V' = Induced voltage across the coil, in Volts
N = Number of “turns” or “wraps” in the coil
%’ = Rate-of-change of magnetic flux®, in Webers per second
Electromagnetic induction is proportional to the rate at which a magnetic field strengthens or
weakens perpendicular to a conductive coil. This means a voltmeter connected to a wire coil will
register nothing when a nearby magnet is stationary, but will register voltage every time the magnet
moves (either toward the coil or away from it):

Motion
(Stationary) (Stationary) (Stationary)
N S N S
coll magnet coll magnet
(no voltage) voltage!

5Magnetic flux is related to magnetic field strength by cross-sectional area, with B = 2 Thus, it is valid to think
of magnetic field strength as the degree to which magnetic flux is concentrated into an area. This holds true for the
units of measurement used to express each: the unit of the Tesla used for magnetic field strength (B) is equivalent to
Webers of flux per square meter.
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Mutual induction is when a time-varying current through one conductor produces a time-varying
magnetic field, which in turn induces voltage in an adjacent conductor:

coil

Induced AC voltage

We may quantify this effect by labeling it Ly; (mutual inductance)

Ly = ky/LiLo
Where,
Lj; = Mutual inductance, in Henrys
L1 = Inductance of first coil, in Henrys
L = Inductance of second coil, in Henrys
k = Coeflicient of coupling between the two coils

The coupling coefficient (k) is a unitless value ranging from 0 to 1, inclusive. If £ = 1 it means
100% of the magnetic field produced by the energized coil “links” properly to the other coil; if
k = 0 it means none of the magnetism of one coil links to the second coil. This coupling factor k is
not only related to how close the two coils lie near each other, but also their relative orientations.
Remember that the magnetic field produced by a conductor will have its lines of flux perpendicular
to that current, and that induction requires the varying magnetic field to also be perpendicular to
the conductor experiencing induction. Therefore, the mutual inductance is greatest when the two
conductors lie parallel to each other, and will be least when the two conductors are perpendicular:

Conductors parallel to each other Conductors perpendicular to each other
changing | —_
L J L J
T T
voltage no voltage

changing | l
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3.5 Signal coupling

If conductors lie too close to one another, AC or pulsing DC electrical signals may “couple” from
one to the other(s). This can be especially detrimental to signal integrity when the coupling occurs
between AC power conductors and low-voltage signal wiring, but it may also occur between sets of
signal wires or between sets of traces on a printed circuit board (PCB). Terms commonly used to
describe such “crosstalk” is to call the conductor generating the interference the aggressor and the
conductor receiving the interference the victim.

Two mechanisms of electrical “coupling” exist: inductive and capacitive. Both are capable of
“coupling” signals from one conductor to another, and they usually exist in tandem.

e Inductance is a property intrinsic to any conductor, whereby energy is stored in the magnetic
field formed by current through the wire. Mutual inductance existing between parallel wires
forms another “bridge” whereby an AC current through one wire is able to induce an AC
voltage along the length of another wire. Specifically, the amount of voltage induced across
the length of the victim conductor is proportional to the mutual inductance between the
victim and aggressor conductors as well as the rate-of-change of current through the aggressor
conductor.

e Capacitance is a property intrinsic to any pair of conductors separated by a dielectric (an
insulating substance), whereby energy is stored in the electric field formed by voltage between
the wires. The natural capacitance existing between mutually insulated wires forms a “bridge”
for AC signals to cross between those wires. Specifically, the amount of current induced in
the victim conductor is proportional to the capacitance and to the rate-of-change of voltage
between the victim and aggressor conductors.

Magnetic (inductive) coupling Electric (capacitive) coupling

Varying current in one conductor causes Varying potential on one conductor causes
voltage to appear across another conductor current to appear through load connected to
another conductor
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The fundamental “Ohm’s Law” formulae for inductance® and capacitance is central to the
phenomenon of signal coupling between conductors:

dl dav

V=L 7 I=C 7
This is why signals “couple” more effectively between aggressor and victim conductors at higher
frequency than at lower frequency. All other factors being equal, a greater frequency means the
signal’s waveform will have steeper rise and fall rates (% for voltages, % for currents), which in

turn results in greater influence from one conductor to the other.

An example of how ‘Z—‘t/ may be estimated for a captured sawtooth-shaped voltage waveform
appears in this next photograph, the annotations overlaid on the photograph after it was captured

on camera from the display of an oscilloscope:

Here the yellow line follows the downward slope of the voltage waveform, while the red lines mark
a time interval along that slope and the blue lines mark the voltage fall over that time interval. With
the values shown here, —10 milliVolts of fall over 5 milliseconds of time, the estimated %/ for this
signal’s downward slope is —2 Volts per second.

Interestingly, the downward “glitch” seen near the lower-right area of this oscillograph exhibits
much larger rates-of-change than the relatively gentle slopes. Even though the vertical height of this
transient is not very large, its extremely short timespan means its leading edge will have a large
negative slope (—%Y) and its trailing edge will have a large positive slope (Jr%/)’ possibly hundreds

dt
or even thousands of Volts per second each.

6For the particular case of coupling between conductors, the inductive “Ohm’s Law” formula could be written

dlaggressor
dt

more precisely as Vyictim = Las , with L s representing mutual inductance.
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3.6 Electric field probing

In order to measure the electric field emanating from a conductor, whether a free wire or a trace on

a printed circuit board (PCB), we need to establish a coupling capacitance between that conductor
and one lead of a test instrument:

Electric field probing

Varying potential on the conductor causes
current to appear through the oscilloscope's
input impedance, creating a measurable
voltage signal

do,
|=¢ —E
dt
Ti=cav Qv
v Stoscope o R%
1

The ball-shaped electrode in the illustration is commonly referred to as an E-field probe” because
its purpose is to sense AC electric fields. Such probes are commonly used to locate sources of electric
field emissions on the surface of a printed circuit board, moving the probe’s tip to different locations
on the PCB until the strongest offending signal is displayed on the test instrument.

"In physics, E is often used to symbolize the strength of the electric field in units of Volts per meter.
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A ball-tipped E-field probe is designed to sense ground-referenced electric fields and is completely
insensitive to orientation, but some E-field probes utilize a dipole construction for differential field
measurement. Orientation definitely matters in this case:

Differential electric field probing

---- ’ Varying potential between the conductors causes
23,7 currentto appear through the oscilloscope's
_~__3w  inputimpedance, creating a measurable
/_~—7m  voltage signal
—————————— 3 do
bbb = =—E
----- ) dt

_____ K c%

Oscilloscope or
spectrum analyzer R

Different sizes of E-field probes exist. The larger the ball-shaped electrode, the more sensitive the
probe will be to electric fields because the larger electrode intercepts more lines of electric flux than
a smaller electrode. However, smaller-electrode E-field probes are superior for pinpointing exactly
where an aggressor wire, trace, or component terminal is located in a circuit. Common practice is to
start using a large-tip probe to locate the general area of the aggressor, then switch to a smaller-tip
probe to pinpoint the exact location.

F [
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3.7 Magnetic field probing

In order to measure the magnetic field emanating from a conductor, whether a free wire or a trace
on a printed circuit board (PCB), we need to establish a mutual inductance between that conductor
and a test instrument:

Magnetic field probing

do
V=k=2B
. dt
scilloscope or
spectrum analyzer R % dl
V=1L, -2
dt
v Tt e Varying current in the conductor causes
N ) voltage to appear across the loop, creating
N e a measurable signal at the oscilloscope

The wire loop in the illustration is commonly referred to as an H-field probe® because its purpose
is to sense AC magnetic fields. Such probes are commonly used to locate sources of magnetic
field emissions on the surface of a printed circuit board, moving the loop to different locations
and in different directions on the PCB until the strongest offending signal is displayed on the test
instrument.

Like differential (dipole) E-field probes, the orientation of an H-field probe matters greatly. This
is because the loop conductor must be parallel to the aggressor conductor in order for the aggressor’s
magnetic field to properly couple with the probe. Placing the probe’s loop plane perpendicular to
the aggressor conductor will result in little or no signal coupling.

8In physics, H is often used to symbolize magnetic field force in units of Amperes per meter.
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Different sizes of H-field probes exist. The larger the loop diameter, the more sensitive the probe
will be to magnetic fields because the larger loop will intercept more lines of magnetic flux than
a smaller loop. However, smaller-loop H-field probes are superior for pinpointing exactly where
an aggressor wire, trace, or component terminal is located in a circuit. Common practice is to
start using a large-loop probe to locate the general area of the aggressor (being sure to try different
orientations for each area tested), then switch to a smaller-loop probe to pinpoint the exact location.

r -
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The following photographs show proper (left) and improper (right) ways to hold an H-field probe
to ensure coupling with the conductor (here, a black wire):

F 4

| -3

Strategically positioning an H-field probe above a printed circuit board is key to distinguishing
the magnetic field emissions of different traces on that board. When the probe’s loop is rotated for
maximum signal, you then look for traces running parallel to the probe’s loop to identify possible
aggressors.
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Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

27



28 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 Electric field quantities

A useful definition of electric field (E) is in terms of the force (F') exerted on an electric charge (Q)
influenced by that field:
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F=QE
Where,
F = Force exerted on the charge (Newtons)
Q = Charge quantity (Coulombs')
E = Electric field (Newtons per Coulomb)

The small “arrow” symbols above the variables for force and electric field in the equation denote
those variables as vector quantities, having both magnitude and direction. Charge is a scalar quantity
having only magnitude but no direction, and as a scalar quantity when multiplied by the electric
field vector it simply magnifies the magnitude but does not alter the direction. Therefore, the force
and electric field vectors always point in the same direction.

Alternatively electric field may be defined in terms of the voltage between the end-points and
the distance separating them, in which case we may express the electric field in units of Volts per
meter as an alternative to Newtons per Coulomb:

j
d

This measurement of electric field strength is very important for quantifying the breakdown of
electrical insulators: the point at which the electric field becomes so powerful that otherwise immobile
charges within the insulating substance are torn free to constitute a current and that substance is
no longer an insulator. For rating the dielectric strength of insulating materials, we often see electric
fields expressed in units of kilo Volts per millimeter rather than Volts per meter just to make the
numerical quantities easier to manage (1 kV/mm = 1 million V/m).

1One Coulomb of electric charge is equal to 6.2415 x 1018 electrons.
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The vector arrows shown in the previous illustration representing the electric field between two
metal plates actually represent electric flur (®Pg). The electric field (E) is related to electric flux by
area (A), the field being a measurement of how densely-packed those flux lines are per unit area:

E:

| &

Where,
E = Electric field, or electric flux density (Newtons per Coulomb)
& = Electric flux (Newton-meter squared per Coulomb)
A = Area over which flux is distributed (square meters)

The mere presence of an unbalanced electric charge at any point in space is sufficient to generate
lines of electric flux, the total magnitude of that flux predicted by the following equation:

Where,

& = Electric flux (Newton-meter squared per Coulomb)

@ = Charge quantity (Coulombs)

€ = Electric permittivity of the surrounding space (Coulombs squared per Newton-meter squared,
approximately 8.85 x 10712 for empty space)

By convention, these flux vectors point away from positive charges and point toward negative
charges, their direction indicating force exerted on any positively-charged particle influenced by that
field?. As the equation states, the amount of flux depends on how much charge exists at each particle
as well as the permittivity of the surrounding space:

N %

TN N

For example, identical charges suspended in a vacuum versus in a substance such as oil will
have different amounts of flux associated with them as a result of oil and vacuum having different
permittivity values. Perfectly empty space has the least amount of permittivity, which means
anything else (gas, liquid, or solid matter) has greater e which acts to diminish the amount of
electric flux surrounding any charged particle. Superconducting materials have infinite permittivity,
which means they forbid the existence of any electric field inside their bulk.

2Conversely, the flux vectors point exactly opposite the direction of force applied to any negatively-charged particle
within that field. This makes sense of the aphorism that like charges repel and opposite charges attract. If you consider
the two charges shown in this illustration, the positive charge will be pulled in the direction of the flux vectors pointing
toward the negative charge, as the negative charge will also be pulled opposite the direction of the flux vectors pointing
away from the positive charge (i.e. the negative charge will be pulled toward the positive charge) — thus the positive
and negative charges feel mutual attraction.
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4.2 Magnetic field quantities

A useful definition of magnetic field (B) is in terms of the force (F, called the Lorentz force) exerted
on a moving electric charge (Q) influenced by that field:
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Where,
F = Force exerted on the charge (Newtons)
Q = Charge quantity (Coulombs?®)
¥ = Velocity of moving charge (meters per second)
B = Magnetic field (Tesla, Webers per square meter, or Newtons per Ampere-meter)

The small “arrow” symbols above the variables for force and velocity and magnetic field in the
equation denote those variables as vector quantities, having both magnitude and direction. Charge is
a scalar quantity having only magnitude but no direction, and as a scalar quantity when multiplied
by the velocity vector it simply magnifies the magnitude but does not alter the direction. The
“cross-product” (x) is a specific form of vector multiplication, and it results in a product at right
angles to the vector directions of both terms. Therefore, the force and velocity and electric field
vectors never all point in the same direction.

30ne Coulomb of electric charge is equal to 6.2415 x 1018 electrons.
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Vector cross-products conveniently relate to the fingers of the right hand, which is where the
“right-hand rule” originates:

General "right-hand rule" "Right-hand rule" specific
for vector cross-products to the Lorentz force
C A F \

YV oy /

C=AxB ﬁzQVX§

When holding the index finger, middle finger, and thumb of your right hand perpendicular to
each other, your index finger points in the direction of the velocity vector (¢), your middle finger in
the direction of the magnetic field vector (E), and your thumb in the direction of the force vector
(ﬁ) A simple mnemonic I use to remember these relationships of fingers to vectors is that the
Index finger points in the direction of current® (I), the Middle finger points in the direction of the
magnetic field (B), and the Thumb points in the direction of the thrust (i.e. force) acting upon
the moving charge.

The Lorentz force’s effect on electrically-charged particles in motion has many applications, from
redirecting the paths of charged-particle beams in particle accelerator machines, to bending the
trajectory of electron beams in a cathode-ray tube (CRT), to forcing electrons to travel in spiral or
circular trajectories inside of magnetron (microwave oscillator) tubes. An illustration of a positively-
charged particle curving perpendicular to a magnetic field appears here:
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4Some textbooks speak of a “left-hand rule” which is intended to make sense of electric charge motion (current) in
terms of electron flow. As we know, electrons are the only real mobile charge carriers within metal conductors, and
so technically “electron flow” notation is most physically accurate when describing the motion of electric charges in
metallic circuits. However, the right-hand rule is a mathematical definition for vector cross products, the concept of
the cross product arising in the late 18th century when electrical science was still in its infancy. Early explorers of
electricity used the established mathematical tools of their time and applied it to their work with electric currents and
magnetism. At that time, charge carriers in metal wires were assumed to be “positive” and this is how the motion of
positively-charged carriers became associated with the first vector of the cross-product. As a result of this assumption
which was later proven false, we have two different conventions for denoting the motion of electricity: electron-flow
which is physically accurate (for metal wires, at least), and conventional flow which is mathematically accurate. This,
perhaps more than any other reason, is why educational programs designed for mathematically rigorous fields (e.g.
electrical engineering) exclusively use conventional flow notation rather than electron flow notation to denote the
direction of current.
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If the moving charge in question is not a single charged particle but rather part an electric
current passing through a conductor parallel to the first, both conductors will experience a mutually-
attracting force given by the following equation:
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Where,
F = Force exerted on both conductors (Newtons)
I = Current (Amperes)
I'= Length of wire (meters)
B = Magnetic field (Tesla, or Webers per square meter, or Newtons per Ampere-meter)

The point-charge Lorentz force equation and the two-conductor Lorentz force equation are not
that different from one another. Dimensional analysis validates this: the Lorentz force on a moving
charge uses that charge quantity (Coulombs) multiplied by the point-charge’s velocity in meters per
second to give Coulomb-meters per second for the first term:

ar- 2] - |2

S S

The Lorentz force on a current-carrying conductor uses the current (Amperes, which is Coulombs
per second) multiplied by length in meters, for the same composite units of Coulomb-meters per

second:
- (g2

This dimensional equivalence makes conceptual sense as well: an electrically-charged particle
moving through empty space is an electric current in its own right, and an electric current flowing
through a conductor is just a collection of charged particles moving through space (just not empty
space). In either case, the basis for the Lorentz force remains the same: the moving charge(s) create
their own magnetic field, which reacts with the magnetic field of the original current-carrying wire
to produce forces acting on both.

If the two currents flow in the same direction, their mutual forces attract. If the two currents
flow in opposite directions, their mutual forces repel. This is the basis of electric motors: causing
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mechanical motion by electro-magnetic attraction and repulsion. It also represents an interesting
contrast with electric fields:

With electric fields, opposite charges attract and like charges repel.
With magnetic fields, opposite poles attract and like poles repel.
With parallel currents, opposite directions repel and like directions attract®.

Two parallel current-carrying conductors of length | and separated by a distance d will generate
a mutual force proportional to both their currents:
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5That is, assuming it’s like charges moving in these directions! If the charges in question are opposite each other —
for example electrons in one circuit and holes in another — then like directions will repel and opposite directions will
attract!
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The circular loops surrounding the current-carrying conductors in the previous illustrations
represent the magnetic lines of flux (®p) surrounding each of those conductors. The magnetic
field (B) is related to magnetic flux by area (A), the field being a measurement of how densely-
packed those flux lines are per unit area. For this reason, magnetic field (B) is more properly known
as magnetic flur density:

)
B == 7_?
A
Where,
B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-
meter)

®p = Magnetic flux (Webers)
A = Area over which flux is distributed (square meters)

An older unit of measurement for magnetic flux density B is the Gauss which is much smaller
than a Tesla, with one Tesla equivalent to 10,000 Gauss. To put things into perspective, the Earth’s
natural magnetic field has a strength of approximately one-half of one Gauss®.

Magnetic field strength is an inverse function of distance from any current-carrying wire, and
also depends on the magnetic permeability of the space adjacent to the wire:

_ M
" 2nd
Where,
B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-
meter)

p = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 47 x 10~7 for
empty space)

I = Current (Amperes)

d = Distance from conductor (meters)

6Using the online Magnetic Field Calculator application provided by NOAA (the National Oceanic and
Atmospheric Administration) at https://ngdc.noaa.gov/geomag/calculators/magcalc. shtml#igrfwmm, applying the
World Magnetic Model WMM modeling algorithm for years 2019-2024, the total magnetic field strength at my home
is 53,584.4 nano-Tesla (53,584.4 nT or 0.535844 Gauss), and presently (May 2020) decaying at a rate of —104.1 nT
per year.
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The relation of magnetic flux to current through a conductor follows a similar equation:

BAI
¢ = 2nd
Where,
® = Magnetic flux (Webers)
i = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 47 x 10~7 for
empty space)
A = Area over which flux is distributed (square meters)
I = Current (Amperes)
d = Distance from conductor (meters)

As this equation makes clear, the amount of magnetic flux surrounding a current-carrying
conductor depends not only on the amount of current, but also on the sampled area, the distance from
the wire, and also the surrounding material. Most” substances (gas, liquid, solid) have permeability
values greater than that of empty space, and so this means magnetic flux is usually enhanced by the
presence of matter around the current-carrying conductor.

The total magnetic flux enclosed by a circular wire loop follows a similar equation:

mulr
*=73
Where,
® = Magnetic flux (Webers)
u = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 47 x 1077 for
empty space)
I = Current (Amperes)
r = Radius of circular loop (meters)

"Interestingly, superconducting materials forbid magnetic fields inside of their bulk, and so the permeability value
of any superconductor must be zero!
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A common form of electromagnet known as a solenoid takes the form of a wire coil wrapped
in such a way as to form a long® cylinder, often wrapped around a plastic frame, and often with a
ferromagnetic material such as iron in the center:

Solenoid

)

The amount of magnetic flux, and the flux density, within the interior of a current-carrying
solenoid are given by the following formulae:
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Where,

® = Magnetic flux (Webers)

B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-
meter)

u = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 47 x 1077 for
empty space)

N = Number of turns of wire in the coil

A = Cross-sectional area of solenoid coil (square meters)

I = Current (Amperes)

I = Length of solenoid coil (meters)

These formulae have interesting implications for solenoid design. Note how a shorter (i.e. smaller
length 1) solenoid identical in all other respects will generate a stronger magnetic field for a given
current. Note also how the flux density (B) remains constant with increasing cross-sectional area
(A) if all other factors are equal, and that this necessarily means a greater amount of total magnetic
flux (@) for a greater area A.

8These magnetic field formulae apply perfectly to a solenoid coil that is closely-packed (i.e. each turn adjacent to
the next) and infinitely long. Therefore, they only approximate real solenoid behavior. This fact may be understood
by performing a thought experiment where we decrease the solenoid coil’s length to zero, in which case the formulae
predict an infinite amount of magnetism for any amount of current at all, which of course cannot be true.
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Another common form of electromagnet known as a toroid is really just a solenoid bent in a
circle so that its two ends meet” cylinder, often wrapped around a plastic frame, and often with a
ferromagnetic material such as iron in the center. Toroids have the unusual property of containing
their magnetic flux lines extremely well, unlike solenoids, wires, and simple coils which all radiate
magnetic fields. They find application as energy-storage devices, or as electromagnets suitable for
applying magnetic fields to specimens placed inside the toroid’s cross-section:

Toroid

The amount of magnetic flux, and the flux density, within the interior of a current-carrying toroid
are identical to that within an otherwise identical otherwise identical solenoid having a length (1)
equal to the toroid’s circumference:

_ uNAI
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Where,

& = Magnetic flux (Webers)

B = Magpnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-
meter)

p = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 47 x 10~7 for
empty space)

N = Number of turns of wire in the coil

A = Cross-sectional area of toroid (square meters)

I = Current (Amperes)

I = Circumference of toroid (meters)

If we wish to substitute toroid radius (r) for circumferential length (1), the formulae become the
following:

_ uNAI B_uNI
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9 Again, the magnetic field formulae are only accurate for a toroidal coil that is closely-packed (i.e. each turn
adjacent to the next) and infinitely long, and therefore only approximate real toroid behavior. This fact may be
understood by performing an equivalent thought experiment as before where we decrease the toroid’s circumference
to zero and absurdly end up with infinite magnetism for a finite current.



38 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Many applications of electromagnetism involve conductive coils wrapped around some form of
ferromagnetic core material, the purpose of that core being to provide a higher-permeability pathway
for the magnetic flux than would exist otherwise through air, and the purpose of the wire coil being
to intensify the amount of magnetism developed by the electric current beyond what would be
possible with a straight current-carrying wire. These magnetic cores typically form a closed loop,
or magnetic circwit for the lines of magnetic flux to naturally form a closed path. A simple example
appears here:

iron core

wire coill

| |

The amount of magnetic flux (®) present in the magnetic “circuit” formed by the iron core
depends on many factors. First and foremost is the amount of electric current (in Amperes) passing
through the wire coil and the number of turns that coil makes around the iron core. The product
of this current and the number of turns is called the magnetomotive force or mmf of the magnetic
circuit, analogous to “electromotive force” or “emf” often used as a synonym for voltage in an electric
circuit. Not surprisingly, the standard metric unit of measurement for magnetomotive force is the
Ampere-turn.

However, magnetomotive force alone does not fully describe the current’s effect on magnetism
within the iron core. The total length of the magnetic circuit is also an important factor, since
a longer path distributes that magnetomotive force over a greater distance. The quotient of
magnetomotive force and magnetic circuit length is called magnetic field intensity, symbolized by
the variable H and expressed in units of Ampere-turns per meter.

_)-e
S

Magnetic permeability (u) relates magnetic field intensity (H) to the magnetic flux density (B)
within the core material, such that a greater permeability will result in higher flux density for any
given amount of field intensity. Permeability is a property of the core material and not its geometry,

mathematically defined as the ratio of flux density to field intensity: u = %

Magnetic reluctance (R) relates magnetomotive force (mmf) to magnetic flux (®), and is related

not only to the core material’s permeability but also its geometry. It is mathematically defined as

the ratio of magnetomotive force to magnetic flux: & = mef
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If all this seems confusing, you are in good company. Not only are there many magnetic variables,
some related to physical geometry and others not, but there are two different sets of metric units
appropriate for expressing each! The older units were based on the centimeter-gram-second (CGS)
version of the metric system, while the newer units are based on the meter-kilogram-second or SI
(Systeme International) version of the metric system.

Quantity Symbol ST unit CGS unit
Magnetomotive force mmf Ampere-turn (A-t) Gilbert (Gb)
Flux 0] Weber (Wb) Maxwell (Mx)
Field intensity H Ampere-turns per meter (A-t/m) Oersted (Oe)
Flux density B Tesla (T) Gauss (G)
Permeability W Tesla-meters per Gauss per
Ampere-turn (T-m/A-t) Oersted (G/Oe)
Reluctance R Ampere-turns per Gilberts per
Weber (A-t/Wb) Maxwell (G/Mx)

Magnetomotive force (mmf) and magnetic flux (®) may be thought of as the “raw” measures
of magnetism, with Ampere-turns and Webers being their respective SI metric units. Reluctance
() is the ratio of the two for any given magnetic circuit with known dimensions and core material.
Simply put, reluctance tells you how many Ampere-turns of magnetomotive force will be necessary
to create one Weber of magnetic flux in a given space.

Magnetic field intensity (H) and magnetic flux density (B) may be thought of as the “normalized”
measures of magnetism, with Ampere-turns per meter and Tesla being their respective SI metric
units. H and B relate to mmf and flux by the physical dimensions of the magnetic circuit (length
and cross-sectional area, respectively). Permeability is the ratio of the two for any given magnetic
core material. Simply put, permeability tells you how many Tesla of magnetic field (i.e. flux density,
or Webers of flux per square meter or cross-sectional core area) you will obtain for one Ampere-turn
per meter of magnetic field intensity applied to a given core material.

Conversion between the newer SI and the older CGS metric units are as follows:

Quantity Conversion equivalence
. _ 471' .

Magnetomotive force (mmf) 1 Ampere-turn = 75 Gilberts

Magnetic flux (®) 1 Weber = 10% Maxwells
Magnetic field intensity (H) 1 Ampere-turn/meter = 21 Oersteds

Magnetic flux density (B) 1 Tesla = 10* Gauss
Permeability (u) 1 Tesla-meter/Ampere-turn = 14(—;7 Gauss/Oersteds
Reluctance () 1 Ampere-turn/Weber = 2% Gilberts/Maxwell
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4.3 Near-field versus far-field regions

An electric field exists wherever voltage exists (i.e. wherever an imbalance exists between positive
and negative electrical charges), parallel to the axis of that voltage. A magnetic field exists wherever
an electric charge moves, perpendicular to the axis of that charge’s motion. These phenomena exist
for DC (direct) as well as AC (alternating) electricity, and are shown in the two following illustrations:
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Electric and magnetic fields, however, are not simply manifestations of voltage and current,
respectively. Mathematical discoveries made by the Scottish physicist James Clerk Maxwell (and
later simplified by Oliver Heaviside) also relate electric fields and magnetic fields directly to each
other. Consider two'? of Maxwell’s equations shown below:
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The first equation describes how an electric field (E) is created by a varying magnetic flux (%),
which is otherwise known as Faraday’s Law of Electromagnetic Induction. This is the law exploited
in the function of electro-mechanical generators whereby coils of wire are subjected to changing
magnetic fields, creating voltage between the coils’ end-points. The negative sign in this equation
is an embodiment of Lenz’s Law, which states that any current resulting from the induced voltage
will produce its own magnetic field opposing the first magnetic field’s direction of change.

The second equation shown here describes two different ways to produce a magnetic field (B)
One way is to use a moving stream of electric charges known as a current (I), a fact also known
as Ampére’s Law. This is the law exploited in the function of electromagnets, where we produce a
magnetic field by connecting a coil of wire to an electrical source. The second way is to vary an electric

flux (%) in empty space with surrounding magnetic permeability g and electric permittivity eq.

10Maxwell’s equations of electromagnetism are typically presented as a set of four. Here we only list two of these,
as the other two are not relevant to electromagnetic waves in particular.
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Maxwell’s equations suggest that in pulsed DC and AC circuits, where the resulting electric
and/or magnetic fields vary over time (%) rather than holding steady, those time-varying fields
will mutually support one another over space and time. That is, a varying electric field will
eventually produce a varying magnetic field, and vice-versa, those fields propagating one another as
an electromagnetic wave radiating away from the circuit through space at the speed of light'!.

At close range, immediately adjacent to the circuit conductors, electric and magnetic fields are
strictly functions of those conductors’ voltages and currents, respectively. These fields’ shapes follow
the basic forms shown in the previous illustrations: magnetic field lines circling current-carrying
conductors and electric field lines stretching between conductive surfaces. We generally refer to this
region of space around an energized circuit as the near-field region, where electric and magnetic
fields are distinct from one another in form and in relative magnitude.

At farther distances from the energized circuit, the electric and magnetic fields are found in pairs
oscillating at right angles to one another in space, forming a single electromagnetic wave radiating
away from the source circuit spherically in all directions. This form of wave is a direct consequence
of Maxwell’s equations describing how the rate-of-change of one field creates the other field, and
vice-versa. Below we see a crude representation of an electromagnetic wave, with an electric E field,
a magnetic H field, and the vector of propagation S called the Poynting vector:

Electromagnetic wave
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This region where the electric and magnetic fields exist as coupled pairs comprising a well-formed
wave is referred to as the far-field region. In this region the electric and magnetic fields are always

perpendicular to one another and their relative magnitudes are in a fixed proportion governed by
the permeability and permittivity of free space.

The demarcation between near- and far-field regions depends on the physical dimensions of the
radiating circuit as well as the wavelength of the signal (), wavelength being calculated by dividing
the speed of light (2.9979 x 10® meters per second in empty space) by the signal frequency in
Hertz. There is no simple rule for predicting where the near-field region ends and the far-field region
begins, and in fact there is a gradual morphing of one to the other, but one may reliably consider
any distance from the circuit in excess of multiple wavelengths to be far-field.

H1n fact, this is precisely what light is: an electromagnetic wave of exceptionally high frequency, well beyond the
frequency range of contemporary electric circuits.
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The following list compares and contrasts several near-field versus far-field characteristics:

e In the near-field region electric and magnetic field strengths depend greatly on the geometry of
the energized circuit’s conductors as well as on the specific voltage and current levels existing
at each location. In the far-field region, however, the electric and magnetic field strengths are
always in fixed proportion to one another.

e Far-field effects may be ignored for low-frequency AC circuits because these circuits’
wavelengths are so long. At 60 Hz, for example, the wavelength is nearly 5 million meters.
If we consider the far-field region of a circuit to begin at least multiple wavelengths from the
source, this puts the far-field region of a 60 Hz circuit at least one-quarter of the Earth’s
circumference away from the circuit in question!

e In the near-field region the proportionality between electric and magnetic field strengths is a
function of circuit impedance: high-impedance circuits will have stronger electric fields than
magnetic fields, and low-impedance circuits will have stronger magnetic fields than electric
fields, all other factors being equal. This is due to Ohm’s Law establishing the relationship
between voltage and current (Z = %), and how electric fields originate in a circuit from
potential differences while magnetic fields originate in a circuit from currents. In the far-field
region, however, where the electric and magnetic fields exist only through mutual support, their
strengths are always in the same (fixed) proportion defined as the characteristic impedance of
free space which is approximately 377 Ohms. This value is equal to the square root of the

ratio of magnetic permeability to electric permittivity for free space (Zy = ’:—8) because these

parameters of space dictate just how strongly a varying electric field creates a magnetic field.

e The relationship between field strength and physical distance from the circuit is a very complex
one within the near-field region, as this depends greatly on the geometry of the circuit
conductors. In the far-field region, however, we find the Inverse-Square Law always holds
true: as distance from the circuit increases, electromagnetic wave strength simply and reliably
diminishes with the square of that distance as if the wave were radiating away in a spherical
fashion from a point-source'?. For example, if we double the distance from the radiating circuit
(from a point in the far-field region to another point in the far-field region twice as far away in
empty space), the power conveyed by the electromagnetic radiation will always be four times
less. Tripling the far-field distance always weakens the wave’s power by a factor of nine. This
is simply because the area over which the radiated energy spreads increases with the square
of the distance from any point-source, viewing that point-source as the center of a sphere.

e In the far-field region every radiating circuit has a definite radiation pattern where the strength
of the radiated electromagnetic wave as a function of the angle from the geometric centerline
follows a consistent pattern regardless of distance. This is a very important feature of antennas,
where different antenna designs feature unique far-field radiation patterns. By contrast, in the
near-field region of an antenna the radiation pattern varies significantly with distance.

12 A “point source” is a hypothetical point in space having no height nor width nor depth (i.e. it has zero physical
dimensions) that emits radiation. Point-sources are a theoretical concept only. Real sources have spatial dimensions
which makes their near-field strength/distance relationships complex, but the farther away you get from them the
more their radiative behavior approaches that of a theoretical point-source.
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e The spatial polarization of the electromagnetic wave (i.e. the orientation of its perpendicular
electric and magnetic fields) is always well-defined in the far-field region but often ill-defined in
the near-field region. This means, among other things, that two or more antennas will exchange
electromagnetic energy efficiently only if they are appropriately oriented to one another over
far-field distances, but may exchange energy fairly well regardless of orientation over near-field
distances.

e Any “gain” specifications for an antenna structure apply only to apparent gains in signal power
over the far-field range, because they refer to the degree to which an antenna focuses its energy
in one direction more than another (i.e. its directionality), implying a distance over which the
electromagnetic wave has become well-formed and the antenna’s radiation pattern is reliably
established. At near-field distances these “gain” figures are meaningless.
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4.4 'The Poynting vector

We know that electric fields (E) are always associated with a voltage (V'), and magnetic fields (field
strength B and field force H) with a current (I). Specifically, electric field strength is the quotient
of voltage and distance between two points which is why electric fields are measured in units of
Volts per meter. Similarly, magnetic field force around a straight current-carrying conductor is the
quotient of current and circumference of the circular magnetic path (equal to 27 times the distance
from the conductor) which is why magnetic field force is measured in units of Amperes per meter.

From Joule’s Law we know that the rate of energy transfer (called power) whenever there is
simultaneous voltage and current (P = V'I). It stands to reason, then, that just as voltage multiplied
by current yields power, an electric field multiplied by a magnetic field must similarly express power
transferred by those two fields through space. That is, if P = VI, then the product of F and H
should yield a power intensity which we shall label S:

P=VI [Watts] = [Volts][Amperes]

S=FH [Watts/meter’] = [Volts/meter][Amperes/meter]

Notice how the Joule’s Law equation P = VI involves scalar quantities, while the S = FH
equation necessarily involves spatial dimensions of distance (meters) and area (square meters). This
is because both electric and magnetic fields are vector quantities having both magnitude and spatial
direction. Power intensity (S) is the measure of how much power is flowing per square meter of area
in open space. As it so happens, power intensity in Watts per square meter relates to electric and
magnetic fields by the right-hand rule of vector cross-products, the vector expression of that power
intensity being called the Poynting vector (§) after its formulator, the English physicist John H.
Poynting:

General "right-hand rule” "Right-hand rule" specific
for vector cross-products to the Poynting vector
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Poynting’s contribution to the science of electromagnetism was expressing energy conservation
and energy transfer in terms of electric and magnetic fields. That is, the electric and magnetic fields
associated with any electrical source result in a flow of energy away from that source through space,
and the electric and magnetic fields associated with any load result in a flow of energy toward that
load through space. The direction of the Poynting vector shows the direction of that energy flow,
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and the Poynting vector magnitude shows how many Watts of power flow per square meter of space.

This should be a rather startling conclusion to anyone familiar with voltage, current, and power
in simple DC circuits. Beginning students of electricity regard energy transfer in simple circuits as
the gain and loss of potential energy in mobile electric charges, those charges gaining energy as they
pass through a source and losing energy as they pass through a load:

charge carrier drift
|

Charge carriers Charge carriers
gaining energy o o losing energy
(] (]
Source | = 7"+ +°e> -|Load
(] ° ° (]
° . °
Energy moving

from source to load

| é——

charge carrier drift

Though this model is conceptually correct, so is Poynting’s model of energy flowing through
space. In fact, if we re-draw this simple circuit illustration showing the electric and magnetic field
vectors between the two wires, we can see the Poynting vector expressing that flow of energy from
source to load'?:

0/0/0/0/0/0/0/00/0/0/0/0/0/0/0/0/0/0
C/0/0/0,0/0/0/0/0/0/0/0/0/00/00/0C;
(0[0/00/0/0/0/0/0/0/0/0/0/0,0,0,0,00}

T

Source Load

®
m
X XXX XXX
X X XXX XX
X XXX XXX
X X XXX XX
X XXX XXX
X X XXX XX
X XXX XXX
X X XXX XX
X XXX XXX
X X XXX XX
X XXX XXX

vV

(0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0C]
(0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0C]
(0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,00C]

13Holding your right hand such that your index finger points downward (E) and your middle finger into the page
(H), your thumb will point to the right () from source to load.
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If we examine the source and load separately using the right-hand rule, we see how the Poynting
vector in each case shows the proper direction of energy transfer:

I

7| A 7| A

@+ +X X+ +@®

GD—»- -_>X X_)- :@

E |E E |E

I

Poynting vectors Poynting vectors
exit a source enter a load

It is well-worth your time to apply the right-hand rule to each of the four Poynting vectors shown
above, to familiarize yourself with the use of this tool as a means to determine vector cross-product
directions. For example, to the left of the source we see the electric field vector pointing down which
means your index finger should point downward as well. The magnetic field vector on that side is
coming out of the page (middle finger pointing toward you), and holding your right hand in that
manner points your thumb to the left.
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For simple DC circuits and circuit elements, Poynting’s theory of power transfer may seem like a
mere curiosity. It fails to explain anything we could not already explain using the model of potential
energy gained and lost by mobile charge carriers, and it requires contortions of your right hand to
properly align all the vectors. However, in some applications such as radio where energy radiates
away from structures called antennas in the form of electromagnetic waves (oscillating electric and
magnetic fields), Poynting’s theory is the only suitable explanation for power transfer because there
are no wires to convey mobile electric charges from source (transmitting antenna) to load (receiving
antenna). Below we see a simplified representation of an electromagnetic wave consisting of two
oscillating fields (shown here as an electric field oscillating vertically and a magnetic field oscillating
horizontally), and if you use the right-hand rule in each half-cycle you will find that the Poynting
vector consistently points in the same direction at the speed of light:

Electromagnetic wave

E

Il

H

=
e S
E
Based on the direction of the Poynting vector we see in this illustration, the source (transmitting
antenna) would be located somewhere above and to the left of the drawn wave. There is no definite
location for a load, as electromagnetic waves spread out in all directions away from the source. Our
simple illustration merely shows a “cross-section” of a wave radiating cylindrically away from the
transmitting antenna. The real electromagnetic wave (of which this illustration shows just a portion)
would have an electric field resembling ripples on a pond oscillating vertically while radiating away in
all horizontal directions from a single point, and have a magnetic field resembling a set of concentric
circles oscillating rotationally in the horizontal plane while also radiating in all directions from that
same point.
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Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

49
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GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

o Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.
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GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.
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Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?
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5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel
free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

’ Conservation of Energy

’Simpliﬁcation as a problem-solving strategy‘

’Thought experiments as a problem-solving strategy‘

’ Limiting cases as a problem-solving Strategy‘

’ Annotating diagrams as a problem-solving strategy‘

’Interpreting intermediate results as a problem-solving strategy

’ Graphing as a problem-solving strategy

’ Converting a qualitative problem into a quantitative problem‘

’ Converting a quantitative problem into a qualitative problem‘

’Working “backwards” to validate calculated results‘
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’Reductio ad absurdum

’Re—drawing schematics as a problem-solving strategy

’ Cut-and-try problem-solving strateg)ﬂ

’ Algebraic substitution

5.1.3 First conceptual question

o 777.
o 777.

o 777.

5.1.4 Second conceptual question

o 777.
o 777.

o 777.
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5.1.5 Applying foundational concepts to 777

Identify which foundational concept(s) apply to each of the declarations shown below regarding the
following circuit. If a declaration is true, then identify it as such and note which concept supports
that declaration; if a declaration is false, then identify it as such and note which concept is violated
by that declaration:

(Under development)

o 777
o 777
o 777

o 777

Here is a list of foundational concepts for your reference: Conservation of Energy,
Conservation of Electric Charge, behavior of sources vs. loads, Ohm’s Law, Joule’s Law,
effects of open faults, effect of shorted faults, properties of series networks, properties
of parallel networks, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law. More than one of
these concepts may apply to a declaration, and some concepts may not apply to any listed declaration
at all. Also, feel free to include foundational concepts not listed here.

o 777,
o 777,

o 777,

5.1.6 Explaining the meaning of calculations

o 777,
o 777,

o 777,
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
erTors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

4

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.



5.2. QUANTITATIVE REASONING 59

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (uo) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space () = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46.9 Ki |l ometers
Ti me el apsed 1.18 Hour s
Aver age speed =Bl / B2 km' h

G |WI|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common” arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4°2) - (4*B3%*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4°2) - (4*B3+*B5))) / (2+*B3)
3 a= 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_ —b*y
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4°2) - (4*B3+*B5))
2 X_2 - (-B4 - c1) / c2 |=2*B3

3 a = 9

4 b = 5

5 c = )

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 First quantitative problem

o 777.
o 777.

o 777.

5.2.4 Second quantitative problem

o 777.
o 777.

o 777.
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

o 777,
o 777,

o 777.
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5.3.2 Second diagnostic scenario

o 777.
o 777.

o 777.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.




Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment' where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic’> dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Fveryone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers — the goal is to practice the articulation and
defense of one’s own reasoning.

No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

e No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

e You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

e Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

e A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

e Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

e Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied? effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge® one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5 Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.



81

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

19 February 2024 — added a new section to the Technical References chapter on near-field versus
far-field effects.

14 November 2023 — added a new Case Tutorial section on empirically determining signal rates
of change.

19 December 2021 — added Case Tutorial section showing the use of an SDR as a spectrum
analyzer for E-field and H-field probing.

3 December 2021 — document first created.
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Vector cross-product, 31, 44
Vector, Poynting, 41
Victim, 19

Visualizing a system, 67
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Wave, electromagnetic, 41

Weber, 17, 34

WMM, 34
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