
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Elementary Filter Circuits

c© 2018-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 23 February 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.



ii



Contents

1 Introduction 3

2 Case Tutorial 5

2.1 Example: filter network testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Example: RC filter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example: HVDC harmonic filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Tutorial 15

3.1 Phasor analysis review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Signal separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Reactive filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Bode plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 LC resonant filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Roll-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Mechanical-electrical filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Summary of filter types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Filtering complex signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 Output-limited filter networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Historical References 41

4.1 Wave screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Vibrating-reed meters as spectrum analyzers . . . . . . . . . . . . . . . . . . . . . . 44

5 Derivations and Technical References 47

5.1 Decibels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 IEC standard component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Complex-number arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Negating complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Adding complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Subtracting complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.4 Multiplying complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.5 Dividing complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.6 Reciprocating complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.7 Calculator tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



iv CONTENTS

5.4 Capacitor parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1 Model of a real capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Parasitic resistance in capacitors . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.3 Parasitic inductance in capacitors . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.4 Other parasitic effects in capacitors . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Inductor parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Model of a real inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Parasitic resistance in inductors . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Parasitic capacitance in inductors . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.4 Other parasitic effects in inductors . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Programming References 71

6.1 Programming in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Programming in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Modeling low-pass filters using C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 Discrete Fourier Transform algorithm in C++ . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 DFT of a square wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.2 DFT of a sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.3 DFT of a delta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.4 DFT of two sine waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.5 DFT of an amplitude-modulated sine wave . . . . . . . . . . . . . . . . . . . 101
6.4.6 DFT of a full-rectified sine wave . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Spectrum analyzer in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.1 Spectrum of a square wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.2 Spectrum of a sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.3 Spectrum of a sine wave product . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.4 Spectrum of an impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Questions 109

7.1 Conceptual reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.1 Reading outline and reflections . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1.2 Foundational concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.3 Explaining the meaning of calculations . . . . . . . . . . . . . . . . . . . . . . 117
7.1.4 Bode plots and bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.5 Identifying filter types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.1.6 Identifying (more) filter types . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.7 Filter truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.8 Tweeter enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.9 Woofer enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.10 AM radio tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.11 Output jack on analog VOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1.12 Filter block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.1.13 Identifying (even more) filter types . . . . . . . . . . . . . . . . . . . . . . . . 130
7.1.14 Roll-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1.15 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.16 Power line carrier communications . . . . . . . . . . . . . . . . . . . . . . . . 133



CONTENTS 1

7.1.17 Square wave to sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.1.18 Simple harmonic analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.19 Two resonant circuits of identical frequency . . . . . . . . . . . . . . . . . . . 136

7.2 Quantitative reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.1 Miscellaneous physical constants . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.2 Introduction to spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.3 Practice: complex number calculations . . . . . . . . . . . . . . . . . . . . . . 142
7.2.4 Frequency response of an RC network . . . . . . . . . . . . . . . . . . . . . . 145
7.2.5 Filter type and cutoff identifications . . . . . . . . . . . . . . . . . . . . . . . 146
7.2.6 Designing simple RC low-pass and high-pass filters . . . . . . . . . . . . . . . 147
7.2.7 Designing filters using IEC standard component values . . . . . . . . . . . . . 148
7.2.8 Resonant filter type and cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.9 Deriving a formula for Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.10 Using C to analyze a filter network . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3 Diagnostic reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Incorrect voltage calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.2 Component failures in a second-order filter circuit . . . . . . . . . . . . . . . 153
7.3.3 Partially failed inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Problem-Solving Strategies 155

B Instructional philosophy 157

C Tools used 163

D Creative Commons License 167

E References 175

F Version history 177

Index 179



2 CONTENTS



Chapter 1

Introduction

Many practical electrical and electronic circuit applications are characterized by a combination of
signals which must be separated from one another. Radio communication works by broadcasting
electromagnetic waves at high frequency, and all these broadcasts must be distinguished from one
another by their set frequencies. Sensors used to measure physical variables such as temperature
and position and convert them into electrical signals may suffer from interference by noise (i.e.
random disturbances to the voltage or current signal) picked up from surrounding circuitry or
mechanisms, and that noise must somehow be screened from the received signal in order to accurately
interpret the sensor’s measurement. Precision AC-to-DC power supply circuits must have their
outputs conditioned to screen out any unwanted “ripple” or other AC disturbances in the otherwise
continuous (DC) power sent to sensitive loads.

A filter circuit is one designed to perform any of these tasks, discriminating one signal from
another based on frequency. A broad range of filter circuit designs exist, and their analysis can
be quite mathematically complex. This tutorial seeks to introduce the topic in as general terms as
possible, using as little math as possible for the sake of building a strong conceptual understanding
of the subject.

Important concepts related to filters include capacitive reactance, inductive reactance,
effects of opens versus shorts, voltage divider networks, cutoff frequency, parasitic properties,
resonance, Bode plots, quality factor, roll-off, decibels, crystals, fundamental frequency,
and harmonic frequency.

A problem-solving technique applied throughout the text is limiting cases, where we consider
the behavior of a circuit at some extreme condition(s). In this case, the variable we take to these
limiting cases is frequency of an AC signal, and we examine the reactance values of capacitors and
inductors at those extreme frequency values. Like all limiting-case examples, this tends to simplify
the circuit being analyzed, and in so doing provides us with a description of how the circuit will
respond to smaller (less-extreme) changes in frequency.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to prove the existence of harmonic
frequencies within a non-sinusoidal waveform? What hypothesis (i.e. prediction) might you

3



4 CHAPTER 1. INTRODUCTION

pose for that experiment, and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to gather enough data to sketch a Bode
plot for a filter network having unknown characteristics? What hypothesis (i.e. prediction)
might you pose for that experiment, and what result(s) would either support or disprove that
hypothesis?

• How might an experiment be designed and conducted to measure the input impedance of a
filter network? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

• In what form do inductors store energy?

• In what form do capacitors store energy?

• How does the problem-solving technique of “limiting cases” help us understand filter networks?

• What are some practical applications of filter networks?

• How is “cutoff frequency” defined for a filter network?

• Why are capacitors usually favored over inductors for creating filter networks?

• What is “resonance” and how does it manifest in both electrical and mechanical systems?

• How does a Bode plot differ from an oscillograph?

• When might we prefer a filter network with a high quality factor?

• When might we prefer a filter network with a low quality factor?

• What does “roll-off” mean for a filter network?

• What does the phrase “brick wall” mean for the response of an ideal filter network?

• What advantage(s) do quartz crystals bring to filter networks?

• How does filtering affect the frequency-domain spectrum of an AC signal?

• How may filtering be used to re-shape the time-domain shape of an AC signal?



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

5



6 CHAPTER 2. CASE TUTORIAL

2.1 Example: filter network testing

A simple test arrangement for any passive filter network is to energize its input using a function
generator while measuring its output using an oscilloscope. Here we see a diagram of a low-pass
resistor-capacitor filter network set up for testing:

Vin Vout
R

C

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

A

B

Ideally, you could use an AC voltmeter to measure both Vin and Vout, but most affordable
voltmeters have rather limited accuracy over wide ranges in AC frequency, and so an oscilloscope is
a more suitable voltage-measuring instrument for this application.

As you manually set the function generator to output sine-wave AC voltages at different
frequencies, the oscilloscope will register sine-wave voltage signals at those same frequencies but
at different amplitudes. Note how channel A of the oscilloscope measures Vin at the filter’s input
terminals, while channel B measures the filter’s Vout. The filter network attenuates the signal, which
explains why Vout (channel B) has less amplitude than Vin (channel A).

This attenuation factor varies with frequency: for a low-pass filter such as the one being tested
here, the output signal weakens with respect to the input signal as frequency rises. If we were testing
a high-pass filter instead (just swap the positions of R and C in the circuit diagram!) the Vout signal
would grow in strength (approaching Vin) with increasing frequency. Using the oscilloscope as a
two-channel AC voltmeter, you can gather Vin and Vout data at different frequencies to plot their
ratios. Tracking the value of the ratio Vout

Vin
at different frequencies will show us the characteristic

behavior of this filter network.



2.1. EXAMPLE: FILTER NETWORK TESTING 7

Here is an example of data collected from such a filter network where R is 4.7 kΩ and C is
0.01 µF. From these values we expect the filter to “cut off” at approximately 3386 Hz following the
formula fcutoff = 1

2πRC
:

Frequency Vin (measured) Vout (measured) Vout

Vin
(calculated)

1000 Hz 3.00 VAC 2.88 VAC 0.96

1500 Hz 3.00 VAC 2.74 VAC 0.91

2000 Hz 3.00 VAC 2.58 VAC 0.86

2500 Hz 3.00 VAC 2.41 VAC 0.80

3000 Hz 3.00 VAC 2.25 VAC 0.75

3500 Hz 3.00 VAC 2.09 VAC 0.70

4000 Hz 3.00 VAC 1.94 VAC 0.65

4500 Hz 3.00 VAC 1.80 VAC 0.60

5000 Hz 3.00 VAC 1.68 VAC 0.56

5500 Hz 3.00 VAC 1.57 VAC 0.52

Plotting these Vout

Vin
ratio and frequency values on a graph yields a Bode plot :

Frequency (Hz)

Vout / Vin

ratio

fcutoff

0.707

0.0

0.5

1.0

0 1k 2k 3k 4k 5k 6k

Pass-band Stop-band
f < fcutoff f > fcutoff

Cutoff frequency is commonly known to be that signal frequency at which the filter network’s
attenuation is 70.7% (expressed as a ratio). The more fundamental definition, though, is that cutoff
frequency is the half-power point where the output signal’s power is exactly one-half that of the



8 CHAPTER 2. CASE TUTORIAL

input signal’s. Since for any fixed load resistance, voltage is proportional to the square root of power

(V =
√

P
R

), a power attenuation of one-half is equivalent to a voltage attenuation of
√

1
2 , which is

where we get the 70.7% value from (0.70711).
If we convert the “half-power” figure into a decibel value, we see that the “cutoff” point for a

filter network is equivalent to a power attenuation of approximately −3 decibels:

10 log (0.5) = −3.01 dB



2.1. EXAMPLE: FILTER NETWORK TESTING 9

If the function generator you are using does not output a “clean” sinusoidal waveform,
experimental determination of input and output voltages will be complicated by the fact that the
shape of the output waveform will not exactly match the shape of the input waveform. This is
because any non-sinusoidal waveform is actually composed of multiple sinusoids superimposed on
each other, and the filter network you’re testing will attenuate all of these harmonic frequencies to
different degrees, effectively changing the shape of the output waveform.

One solution to this problem, assuming you cannot obtain a better-quality signal generator, is
to use the spectrum-analyzer function on a digital oscilloscope1 to measure the input and output
voltage spectra. By comparing the respective heights of same-frequency peaks in the input and
output spectra, you can easily compute Vout

Vin
ratios. Additionally, if the input waveform is “impure”

you will have several pairs of peaks to compare against each other with each frequency setting of
the function generator, which will make your testing faster!

For example, the spectrum display shown below (channel A is input, channel B is output) shows
a 1 kHz square-wave signal passed through this same filter network, with the same Vout

Vin
ratios as

obtained by sweeping a sinusoidal signal and taking several measurements every 500 Hz:

1 kHz 5 kHz3 kHz

1 V

2 V

3 V
A = 3 V

B = 2.88 V

A = 1 V
B = 0.75 V

A = 0.6 V

B = 0.336 V

The peak heights of the input signal (3 Volts, 1 Volt, 0.6 Volts) is simply the result of the Fourier
series for a square wave and has nothing to do with the filter network:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

What the filter is responsible for is the attenuation of the output signal (channel B), and from
the three pairs of peaks in this spectrum display we see the same amplitude ratios as shown in the
previous table (2.88

3 = attenuation of 0.96 at 1 kHz, 0.75
1 = attenuation of 0.75 at 3 kHz, 0.336

0.6 =
attenuation of 0.56 at 5 kHz).

1At the time of this writing (2021) decent-quality spectrum analysis in the audio-frequency range is actually
less expensive than decent-quality sinusoidal function generators! Even the least expensive hobbyist-grade digital
oscilloscopes come with powerful FFT capability, but similarly-graded function generators struggle to output clean
sine waves.



10 CHAPTER 2. CASE TUTORIAL

2.2 Example: RC filter design

Suppose we require a low-pass filter with a cutoff frequency of 5 kHz. On hand we have two different
capacitors we might use, a 2.2 nanoFarad (2.2 nF) and a 0.01 microFarad (0.01 µF), as well as a
wide range of resistors2. First, it is a good idea to sketch the general form of a resistor-capacitor
(RC) low-pass filter:

Vin Vout

Since we want this to be a low-pass filter, and we know that a capacitor’s reactance decreases
as frequency rises (XC = 1

2πfC
), it makes sense to place the capacitor in parallel with the output

terminals so that as its reactance approaches zero with increasing frequency it will “short out” the
output signal and cause it to grow weaker.

An ideal low-pass filter will fully pass any input signal through to its output terminals below
the specified cutoff frequency while completely blocking any signal(s) above that cutoff frequency.
However, ideal filter networks do not exist. Real filter networks gradually attenuate signals past
a specified frequency value, and so “cutoff” must be defined in terms of some amount of signal
passing through the filter. In the case of a simple RC filter such as this, cutoff frequency is given
by the formula fc = 1

2πRC
, but there is actually a more fundamental principle defining this point.

For simple reactive filters (whether resistor-capacitor or resistor-inductor) the “cutoff” point is that
frequency at which reactance equals resistance (f = fc when X = R). In fact, this is where the
formula fc = 1

2πRC
comes from: if we set resistance (R) equal to capacitive reactance (XC) and

then solve for frequency f , we get fc = 1
2πRC

. This exact same principle is true for simple inductor-
resistor filter networks as well: setting R = 2πfL and then solving for frequency yields a cutoff
frequency of fc = R

2πL
.

Calculating capacitive reactance at 5 kHz yields 14468.6 Ohms for the 2.2 nF capacitor and
3183.10 Ohms for the 0.01 µF capacitor. This means we may make an RC low-pass filter either
by connecting a 14468.6 Ohm resistance3 to the 2.2 nF capacitor, or by connecting a 3183.10 Ohm
resistance to the 0.01 µF capacitor.

2This is a common state of affairs: resistors tend to be more commonly available in a wider range of values than
capacitors, and so it makes more sense to choose resistance values to work with a given capacitance value than
vice-versa.

3It’s impossible to locate a single resistor having this particular resistance value, so our actual circuit will use
either a series-parallel network of resistors to achieve 14468.6 Ohms and/or a potentiometer (rheostat) that could be
precisely adjusted to this value. Alternatively, if our cutoff frequency specification didn’t demand high accuracy, we
could perhaps use the closest standard resistor value (in this case, 15 kiloOhms) instead.



2.2. EXAMPLE: RC FILTER DESIGN 11

Both solutions are shown by the following schematics:

Vin Vout Vin Vout

14468.6 Ω

2.2 nF 0.01 µF

3183.10 Ω

fc = 5 kHz

Each of these filter networks is low-pass, and each of them has the exact same cutoff frequency
value of 5 kHz. They differ in one important regard, though, and that is the amount of impedance
they present to the signal source at their respective input terminals. If we consider each filter
network on its own with no load connected, we may calculate input impedance as the simple series
combination of R and XC , summing their respective impedance vectors in right-triangle form. Recall
that resistance is an impedance with a phase angle of zero, while capacitive reactance is an impedance
with a phase angle of negative 90 degrees:

Vin Vout Vin Vout

14468.6 Ω

2.2 nF 0.01 µF

3183.10 Ω

3183.10 ∠  0o

3183.10 + j0

3183.10 ∠  -90o

0 - j3183.104501.6 ∠  -45o

3183.10 - j3183.10

Zin = 4501.6 Ω

14468.6 ∠  0o

14468.6 + j0

14468.6 ∠  -90o

0 - j14468.620461.7 ∠  -45o

14468.6 - j14468.6

f = 5 kHz f = 5 kHz

Zin = 20461.7 Ω

Input impedance matters to whatever electrical source is sending the AC signal to the filter
network. If a filter network’s impedance is too low for its source, it will cause the source’s signal
voltage to “sag” (weaken) and possibly even distort the waveform from its proper shape. Conversely,
some signal sources require a certain amount of minimum impedance to present a proper amount of
load, and so it may be detrimental for a filter network’s impedance to be too high. In this example,
though, we were not given any specified input impedance – as far as we know, the choice between
these two filter designs is entirely arbitrary.



12 CHAPTER 2. CASE TUTORIAL

By contrast, had we been given an acceptable range of input impedance for our filter design such
as “Zin must be within the range of 3 kΩ to 8 kΩ”, we could tell that of these two designs only
the one with the 0.01 µF capacitor with its input impedance value of 4501.6 Ω would work for this
application.

Armed with an acceptable input impedance range, we may actually compute a range of possible R
and C values for building a filter network with a 5 kHz cutoff frequency. Knowing that the Z−R−X
vector diagram will always form a 45o angle at cutoff, we may use trigonometric functions to calculate
the R and XC values for minimum and maximum Zin:

At Zin = 3 kΩ:

R = XC = (3000 Ω) sin(45o) = 2121.3 Ω

C =
1

2π(5000 Hz)(2121.3 Ω)
= 15.005 nF

At Zin = 8 kΩ:

R = XC = (8000 Ω) sin(45o) = 5656.9 Ω

C =
1

2π(5000 Hz)(5656.9 Ω)
= 5.6270 nF

Finding any available capacitor between the values of 5.6270 nF and 15.005 nF, and then
combining that capacitor with a resistor whose resistance is equal to that capacitor’s reactance
at the cutoff frequency of 5 kHz, will yield a filter network having the correct cutoff frequency and
an acceptable input impedance for the application.



2.3. EXAMPLE: HVDC HARMONIC FILTERS 13

2.3 Example: HVDC harmonic filters

Some large-scale electric power grids benefit from transmission of power via DC rather than AC.
Alternating current (AC) came to dominate power grid technology because AC induction motors
and generators were simpler and much more reliable than DC brush-type motors and generators, and
also because transformers allowed reliable and efficient transformation between different levels of
voltage and current than possible with DC. However, modern semiconductor device technology now
permits reliable and efficient conversion from AC to DC and also from DC to AC. Such technology,
when applied to high-voltage DC transmission of electric power, is commonly referred to by the
acronym HVDC, which stands for High Voltage Direct Current.

One challenge of semiconductor-based AC/DC conversion, though, is the creation of harmonic
frequencies in power network voltages and currents. These harmonics, if not attenuated, create
problems ranging from excessive component heating to electromagnetic interference with other
systems, and so must be mitigated through the use of filter networks installed at HVDC substation
facilities.

In the following single-line diagram we see the layout of a very large4 AC-to-DC converter system
where three-phase AC power at a fundamental frequency of 60 Hz gets rectified to DC using a twelve-
pulse semiconductor rectifier network. “Twelve-pulse” simply means that for every one cycle of the
60 Hz AC there will be twelve distinct pulses applied to the DC bus. This unavoidably creates a
strong 12th harmonic, or 720 Hz, on the DC side of the system. However, other harmonics result
from semiconductor switching, including strong 11th and 13th harmonics on the AC side of an
HVDC system, which is why we see multiple filters represented in this single-line diagram:

Each filter appears in this diagram as a grey-colored box with the harmonic numbers represented
within. For example, the left-most grey box with “DT 11/13” written inside is a filter network
designed to attenuate the 11th and 13th harmonics. Immediately to the right of that filter network
is another (“DT 24/36”) designed to attenuate the 24th and 36th harmonics. Another to the right of
that one marked “DT 11/25” attenuates the 11th and 25th harmonics. These three filter networks
exist on the AC side of the converter system operating at a nominal system voltage of 500 kiloVolts.
On the DC (right-hand) side of this converter system we see another pair of filter networks: one
filtering out the 2nd and the 12th harmonics, and another one filtering the 6th and 24th harmonics.

These harmonic numbers all relate to the AC side’s fundamental frequency of 60 Hz, and the
particular harmonics generated in this HVDC converter system are a function of the number of

4This particular HVDC converter facility has a full-power rating in excess of 3000 MegaWatts!



14 CHAPTER 2. CASE TUTORIAL

switching elements in the converter and the pattern in which they are switched. This system happens
to use a twelve pulse thyristor array to convert AC to DC (or vice-versa), which means that for every
one cycle of the 60 Hz AC power there are twelve distinct DC output pulses. Every one of the filtered
harmonics bears a mathematical relationship to the twelve-pulse converter’s topology and thyristor
firing pattern.



Chapter 3

Tutorial

15



16 CHAPTER 3. TUTORIAL

3.1 Phasor analysis review

When analyzing any AC circuit, it is not enough to simply quantify every voltage and current in
terms of amplitude (e.g. how many Volts or Amperes) as we do in DC circuits. Instead, we must
consider both the amplitude of each signal as well as the amount of phase shift separating them.
A mathematically elegant way of accomplishing both is to use complex numbers which may be
expressed either in rectangular form (e.g. a + jb) or polar form (e.g. m 6 θ). When we use complex
numbers to represent any AC circuit quantity, we call that value a phasor.

An illustrative example is how we characterize the impedance of passive components. Resistors
function by dissipating energy in the form of heat, with voltage and current waveforms being perfectly
in-phase. Inductors and capacitors, however, function by absorbing and releasing energy rather than
dissipating, and as such we find voltage and current waveforms shifted by one-quarter of a cycle (i.e.
90o) for each, voltage leading current for an inductor and voltage lagging current for a capacitor:

time
P P

V

I

V I

R
V

I I

V
L

time
P

VI

I

V

time

C

ZR = R ∠  0o ZL = XL ∠  +90o ZC = XC ∠  -90o

V leads I by 90 degreesV and I are in-phase V lags I by 90 degrees

ZR = R + j0 ZL = 0 + jXL ZC = 0 - jXC

Graphical expressions of complex-number resistance and reactance values are called phasor
diagrams. Three such diagrams illustrate the difference between a 50 Ω resistor versus an inductor
having 50 Ω of reactance and a capacitor also having 50 Ω of reactance. Each has 50 Ohms of
impedance, but each of these impedances has a different phase angle defined by the phase shift
between the component’s voltage and current:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠  0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠  -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠  90o

ZL = 0 + j50 Ω



3.1. PHASOR ANALYSIS REVIEW 17

The ratio of voltage to current in a DC network is resistance (R = V
I
), and in an AC circuit where

phase shifts exist is impedance (Z = V
I
). Both are measured in unit of the Ohm (Ω). The ratio

of current to voltage is the reciprocal of these quantities: for DC networks we call it conductance
(G = I

V
) and for AC it is known as admittance (Y = I

V
). We measure both in the unit of Siemens1

(S).

Some examples2 of component impedances and admittances are shown here:

• A 570 Ω resistor at any frequency will have the following impedance and admittance values:

Z = 570 Ω 6 0o (polar form) = 570 + j0 Ω (rectangular form)

Y = 0.0017544 S 6 0o (polar form) = 0.0017544 + j0 S (rectangular form)

• A 3.5 H inductor at a frequency of 120 Hz will have the following impedance and admittance
values:

Z = 2.639 kΩ 6 +90o (polar form) = 0 + j2.639 kΩ (rectangular form)

Y = 0.00037894 S 6 −90o (polar form) = 0 − j0.00037894 S (rectangular form)

• A 0.01 µF capacitor at a frequency of 3 kHz will have the following impedance and admittance
values:

Z = 5.305 kΩ 6 −90o (polar form) = 0 − j5.305 kΩ (rectangular form)

Y = 0.00018850 S 6 90o (polar form) = 0 + j0.00018850 S (rectangular form)

The utility of phasor representation in AC circuits is that with all signal and component values
expressed in phasor form we find most of the foundational principles learned for DC circuit analysis
still apply in AC circuits. Quantities that add in series DC networks (e.g. voltage V , resistance
R) add as phasor quantities in AC networks (e.g. voltage V , impedance Z); additive quantities
in parallel DC networks (e.g. current I, conductance G) add as phasor quantities in AC networks
(e.g. current I, admittance Y ). With phasor quantities, Ohm’s Law, Kirchhoff’s Voltage Law, and
Kirchhoff’s Current Law still hold true in AC networks just as they do for DC.

1Prior to the adoption of German engineer Werner von Siemens’ surname as the unit of measurement for
conductance and admittance, the unit of the Mho served quite well. This, of course, was a sort of pun on the
spelling of Ohm, since “mho” is “ohm” spelled backwards, intended to represent the fact that the reciprocal of any
Ohm value yields a value in Mhos.

2Try calculating these impedance and admittance values from the given component values, to check your
understanding. This is a good learning strategy to apply when reading any mathematical text: work through the
presented examples on your own to see if you achieve the same results! Please note that when you apply either the
XL = 2πfL formula or the XC = 1

2πfC
formula using your calculator to compute reactance, the result will only be a

reactance value and not a (complex) impedance value. In order to attach the desired phase angle to your computed
reactance value, you will have to perform the additional step of multiplying that reactance by a unit phasor which is
nothing more than the quantity of 1 with the correct phase angle. For example, a capacitive reactance of 5.305 kΩ
would be multiplied by 1 6

−90o to yield a capacitive impedance of 5.305 kΩ 6
−90o.



18 CHAPTER 3. TUTORIAL

It is equally valid to express any phasor quantity in either polar or rectangular form. However,
unless we have access to an electronic calculator capable of performing complex-number arithmetic,
we find certain arithmetic operations much easier to perform with one notation more than the
other. Specifically, addition and subtraction are simplest when phasors are in rectangular form,
while multiplication and division are simplest when phasors are in polar form.

Addition of rectangular-form complex numbers consists simply of adding their real components
together to find the real component of the sum, and doing the same with the imaginary components.
Expressing this algebraically, (a + jb) + (x + jy) = (a + x) + j(b + y). Subtraction follows much the
same pattern: (a + jb) − (x + jy) = (a − x) + j(b − y).

Here are some practical examples of rectangular-form phasor arithmetic where the calculations
are simple enough to perform without a calculator:

ZR = 7 + j0 Ω

ZC = 0 - j5 Ω

ZL = 0 + j4 Ω

Zseries = 7 - j1 Ω

YR = 3 + j0 S

YL = 0 - j1 Ω

Yparallel = 3 + j4 S

YC = 0 + j5 S

Series impedances Parallel admittances

Multiplication of polar-form complex numbers consists simply of multiplying their magnitudes
together to find the magnitude of the product, and adding the angles to find the angle of the product.
Expressing this algebraically, (a6 b) × (x6 y) = (a × x)6 (b + y). Division follows a similar pattern:
(a6 b) ÷ (x6 y) = (a ÷ x)6 (b − y).

Here are some practical examples of polar-form phasor arithmetic where the calculations are
simple enough to perform without a calculator:

3 R

R

4:1 voltage divider

24 V ∠  -71o

6 V ∠  -71o

6 A ∠  30o

2 Ω ∠  -17o

12 V ∠  13o

Voltage drop across an impedance



3.1. PHASOR ANALYSIS REVIEW 19

When analyzing AC circuits without the use of a complex-number calculator, we invariably
must convert between rectangular and polar forms in order to prepare the phasor values for
addition/subtraction or multiplication/division, respectively. Both conversions are most easily
understood in terms of a right triangle, seeing the rectangular form’s real and imaginary components
as the adjacent and opposite sides, and the polar form’s magnitude and angle as the hypotenuse:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Converting rectangular (x + jy) into polar (A6 θ):

A =
√

x2 + y2 θ = arctan
y

x

Converting polar (A6 θ) into rectangular (x + jy):

x = A cos θ y = A sin θ

Some cautionary notes are in order here. First, I highly recommend storing all computed values
in your calculator’s memory rather than re-entering them manually, because you will find even slight
rounding errors tend to become exaggerated with trigonometric functions. Second, when computing
the phase angle (θ) from real and imaginary quantities (x and jy) be careful to verify the angle
against your qualitative expectations. For example, 5 + j5 = 7.0716 45o and −5− j5 = 7.0716 225o,
but you’ll find arctan −5

−5 yields the same result (45o) as arctan 5
5 because −5

−5 = 5
5 . To put it simply,

the arc-tangent function does not “know” whether the phasor exists in the first or in the third
quadrant of the complex plane.

Here are some rectangular and polar equivalents, useful for practice as you master these concepts:

20 − j11 = 22.836 − 28.81o 11.49 + j9.642 = 156 40o

−10 + j2 = 10.206 168.7o − 11.82 − j2.084 = 126 − 170o



20 CHAPTER 3. TUTORIAL

3.2 Signal separation

Separating thoroughly-mixed materials can be rather difficult. Liquid solutions such as saltwater or
colloidal suspensions such as dairy milk, for example, require significant investments of energy to
separate into their constituent compounds. One method for performing such separation is to pass
the liquid solution through a filter with pores sized appropriately3 to strain out some components
from the rest.

Electrical signals of differing frequency, once mixed together, are generally much easier to separate
than mixtures of matter. Any circuit designed to perform this task of separating one or more signals
from the rest is called a filter as well, and for the same reason: a filter allows some components to
pass through while blocking others.

Most people are quite familiar with a simple example of electrical filtering in music reproduction
systems: the treble and bass controls on a typical audio amplifier serve to boost or attenuate tones of
a certain frequency range from the complex mixture of frequencies that is music. “Treble” controls
affect high-frequency components of the music (e.g. cymbals, violin, flute) while “bass” controls
affect low-frequency components of the music (e.g. kick drum, tuba, bass guitar). Turning either
of these controls to their minimum settings filter out those frequency ranges to make them less
prominent in the final mix you hear. A more sophisticated device called an equalizer allows the
listener to control the relative volumes of narrower frequency ranges in order to customize the range
of frequencies heard.

3Reverse osmosis is an example of a type of filtration suitable for separating salt and other minerals from water.



3.3. REACTIVE FILTERING 21

3.3 Reactive filtering

A filter circuit must discriminate one signal from another on the sole basis of frequency. In order
to build a circuit that performs this task, we must use electrical components whose characteristics
vary with frequency. Fortunately, we already know of two classes of electrical component responding
to frequency: capacitors and inductors. Capacitors store and release energy electrostatically as a
function of voltage, while inductors store and release energy electromagnetically as a function of
current. When subjected to AC, the alternate storage and release of energy in these components has
the effect of impeding changes in voltage or current, and this manifests as a value in Ohms called
reactance (X). The fundamental difference between resistance and reactance is that while resistance
“spends” energy, reactance “borrows” and “returns” energy. Either way, though, a component
impeding electricity may be used to attenuate an electrical signal, and reactive components impede
electrical signals differently according to their frequency.

Capacitive reactance opposes changes in voltage; the greater the frequency, the less opposition.
Inductors are just the opposite, opposing changes in current with greater frequency equating to more
opposition. Two formulae expressing the number of Ohms of reactance for these components are
shown here:

XL = 2πfL XC =
1

2πfC

Where,
XL = Reactance of the inductance (Ohms)
f = Frequency of the waveforms (Hertz, or cycles per second)
L = Inductance (Henrys)
XC = Reactance of the capacitance (Ohms)
C = Capacitance (Farads)

AC circuit calculations in general tend to be math-intensive, and filter circuit analysis even more
so. For this tutorial we will rely heavily on a problem-solving technique called limiting cases, where
we simplify a quantitative problem into a qualitative problem by considering the effects of some
parameter taken to extreme limits. The simplifying power of this technique will become rather
obvious by example.



22 CHAPTER 3. TUTORIAL

Consider the response of an inductor to limiting cases of frequency: zero frequency (DC) and
infinitely4 high frequency (AC). According to the inductive reactance formula XL = 2πfL an
inductor will mimic a short-circuit when energized by DC (i.e. XL = 0 when f = 0) but will
mimic an open-circuit when energized by AC of infinitely high frequency (i.e. XL = ∞ when f =
∞). Capacitors are just the opposite (i.e. XC = ∞ when f = 0 ; XC = 0 when f = ∞).

If we need to determine the response of a reactive circuit as frequency decreases, we may take the
limiting case of a frequency decrease (all the way to zero) by replacing all inductors with shorts and
all capacitors with opens. Likewise, to determine circuit response as frequency increases, we may
take the limiting case of a frequency increase (all the way to infinity) by replacing all inductors with
opens and all capacitors with shorts. Opening or shorting components in a circuit generally simplifies
that circuit, hence the problem-solving value of the “limiting cases” technique when applied to the
frequency response of filter circuits.

f = 0 f = ∞L

C
inductor acts as short inductor acts as open

capacitor acts as shortcapacitor acts as open

The following two circuits are both called low-pass filters for reasons which will soon become
clear. You may think of them as frequency-dependent voltage divider networks:

Vout

Vin

L

R Vout

Vin

R

C

Low-pass filter circuits

4Infinity simply refers to a quantity that is larger than anything imaginable. As I like to tell my students, infinity

is bigger than big, huger than huge.



3.3. REACTIVE FILTERING 23

To see how these circuits respond as frequency decreases, we will analyze them in the limiting-case
condition of zero frequency (DC):

Vout

Vin

L

R Vout

Vin

R

C

+
−

+
−

Short

Open

Vout = Vin Vout = Vin

f = 0 f = 0

Next, we will check their response as frequency increases by analyzing them in the limiting-case
condition of infinite frequency:

Vout

Vin

L

R Vout

Vin

R

C Short

Open

f = ∞ f = ∞

Vout = 0 Vout = 0

Both circuits exhibit the same fundamental behavior under these limiting-case conditions: they
fully pass the input signal to the output terminals when frequency is zero, but fully block the input
signal when frequency is infinitely high. This is why these circuits are called low-pass filters. Such
filter circuits would be useful for passing DC power while blocking AC noise picked up along lengths
of cable, or for accentuating bass tones over treble tones in an audio system.

Remember that these are limiting-case analyses, and so these conclusions of full signal versus
zero signal at the output terminals only apply to the extremes of zero and infinite frequency. For any
non-zero, finite frequency value the output voltage will lie somewhere between zero and full input
voltage.



24 CHAPTER 3. TUTORIAL

The exact opposite type of filter circuit may be constructed simply by swapping the positions of
the two components. Once again, we will analyze each circuit under the two limiting-case conditions
of zero and infinite signal frequency:

Vout

Vin

L

R

Vout

Vin

R

C

High-pass filter circuits

First, considering the limiting-case condition of zero frequency (DC):

Vout

Vin

L

R

Vout

Vin

R

C

+
−

+
−

Short

Open

f = 0 f = 0

Vout = 0 Vout = 0

Next, considering the limiting-case condition of infinite frequency:

Vout

Vin

L

R

Vout

Vin

R

C Short

Open
f = ∞ f = ∞

Vout = Vin Vout = Vin

Once again we see how both circuits exhibit the same fundamental behavior under these limiting-
case conditions: they fully pass the input signal to the output terminals when frequency is infinitely
high, but fully block the input signal when frequency is zero. This is why these circuits are called
high-pass filters. Such filter circuits would be useful for accentuating treble tones over bass tones in
an audio system, or for separating AC signals intentionally superimposed on DC power wiring.



3.4. BODE PLOTS 25

3.4 Bode plots

If we compute the output voltage of any filter circuit and plot that as a function of frequency,
we obtain what is known as a Bode plot. The following plots, generated using NGSPICE circuit
simulation software, show the frequency response of a low-pass filter and of a high-pass filter, each
one comprised of a 10 kΩ resistor and a 0.22 µF capacitor powered by a 1 Volt AC source with a
frequency sweeping from 1 Hz to 1000 Hz:

R1

C1 R2

C2

1

0

2 3V1

10 kΩ

0.22 µF 10 kΩ

0.22 µF

* Low-pass R1 and C1, out = node 2
* High-pass R2 and C2, out = node 3
v1 1 0 ac 1
r1 1 2 10000
c1 2 0 0.22e-6
r2 3 0 10000
c2 1 3 0.22e-6
.ac dec 10 1 1k
.plot ac vm(2) vm(3)
.end frequency

1 10 100 10^3 10^4

Hz

0.00

0.20

0.40

0.60

0.80

1.00

V vm(2)vm(3)

You will note that both of these demonstration filter networks use capacitors rather than
inductors as the reactive element. The reason for this is that inductors tend to have worse parasitic
properties such as wire resistance and turn-to-turn capacitance than capacitors: capacitors are
simply purer reactive components than inductors and for this reason behave closer to ideal.

Note how the output signal for the low-pass filter (node 2 / node 0 voltage) reaches a peak of
nearly 1 Volt and a low point of just less than 0.1 Volt, while the high-pass filter’s output signal
(node 3 / node 0 voltage) begins at a non-zero value and almost reaches 1 Volt at its high point.
Neither filter circuit ever perfectly passes or blocks the signal.

Despite the imperfections of real filter circuits, it is useful to rate them as having a certain cutoff
frequency so we will be able to practically apply them to real applications. Accepted convention
for cutoff frequency is that frequency resulting in the output signal having half the power (i.e. −3

dB power attenuation) of the input signal, corresponding to an output voltage
√

2
2 of the input

voltage. This happens to be the point at which the two simple filter circuits’ output values cross
when overlaid on the same Bode plot. Closely examining the Bode plot, we see this happens to be
approximately 72 Hz. For simple RC and LR filters having only two components, cutoff frequency
is that point at which X = R in the circuit. For an RC circuit where XC = 1

2πfC
, cutoff frequency

may be calculated as fc = 1
2πRC

, which yields 72.3 Hz for the filters shown above. For an LR circuit

where XL = 2πfL, cutoff frequency may be calculated as fc = R
2πL

.



26 CHAPTER 3. TUTORIAL

The following Bode plots show the response of real and ideal filter networks, both low-pass (left)
and high-pass (right). An ideal low-pass filter passes all signals below the cutoff frequency and
completely blocks all signals above the cutoff frequency, as shown by the dashed red lines in the
left-hand image. However, a real low-pass filter has a curved response as shown by the blue trace
in the left-hand image. We see the same ideal/real contrast for high-pass filters in the right-hand
Bode plot:

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

Low-pass filter High-pass filter

Ideal filter
response

Real filter
response

Ideal filter
response

Real filter
response

fcutoff fcutoff

Passband Stopband PassbandStopband

-3 dB -3 dB

Cutoff frequency divides the spectrum into two frequency bands: the passband (representing all
signal frequency values able to make it through the filter network), and the stopband (representing
all frequencies blocked by the filter network). Ideal filter response is easy to understand, with the
step-response Bode plot representing a “brick wall” through which no inappropriate signal may pass.
In this case, cutoff frequency is a clear and unambiguous threshold marking the transition between
passband and stopband. Real filters, however, cannot muster this idealized “brick wall” response,
and so the transition between passband and stopband is necessarily gradual. This means we must
define cutoff frequency at some arbitrary point between 100% signal passage and 0% signal passage.
Historically this has been defined as the frequency at which the signal attenuates by −3 dB (i.e.

output voltage is
√

2
2 of input voltage). As previously mentioned, this happens to be the frequency

value where X = R in a simple two-component reactive-resistive filter network.



3.5. LC RESONANT FILTERS 27

3.5 LC resonant filters

If we combine capacitors and inductors together in the same circuit to form resonant networks, we
may create another class of filter circuit5 capable of passing or blocking a specific range of frequencies
not bound by zero or infinity:

Vout

Vin

L

R

Vout

Vin

RC

Band-pass filter circuit Band-stop filter circuit

L C

The band-pass and band-stop filter circuits shown here exploit the phenomenon of parallel
resonance between a capacitor and an inductor, where their combined impedance approaches infinity
at their resonant frequency predicted by the formula fr = 1

2π
√

LC
.

Vin

R1

L1 C1 3.3 µF

10 kΩ

10 H
10 kΩ

10 H 3.3 µF

1

2
3

0

* Band-pass R1, C1, and L1 ; out = node 2
* Band-stop R2, C2, and L2 ; out = node 3
v1 1 0 ac 1
r1 1 2 10000
c1 2 0 3.3e-6
l1 2 0 10
r2 3 0 10000
c2 1 3 3.3e-6
l2 1 3 10
.ac dec 100 1 1k
.plot ac vm(2) vm(3)
.end

L2 C2

R2

frequency

1 10 100 10^3

Hz

0.00

0.20

0.40

0.60

0.80

1.00

V vm(2)vm(3)

Note how each of these filter circuits “peaks” at the resonant frequency of 27.7 Hz predicted by
the combination of a 10 Henry inductor and a 3.3 microFarad capacitor. The band-pass filter nearly
outputs 100% of the signal at this frequency, and the band-stop filter nearly outputs 0% at this
same frequency. Band-pass filters are useful for applications such as selecting one radio broadcast

5Parallel resonance is not the only means of creating a band-type filter. We may also use series resonance, as well
as use combinations of non-resonant high- and low-pass filter networks to form either band-pass or band-stop filters.



28 CHAPTER 3. TUTORIAL

signal out of a myriad of other signals in the same area. Band-stop filters (sometimes called notch
filters) are useful for blocking noise of known frequency (e.g. 60 Hz AC power line interference)
while passing all other signal frequencies.

Note also how the output signals for these two filters cross at the same amplitude: approximately

70.7% of Vin (i.e.
√

2
2 Vin) which is the conventionally-accepted definition of cutoff frequency. With

band style filters, each circuit has two cutoff points: a low cutoff and a high cutoff. For the band-
pass filter, any frequency between these two cutoff values is within the passband of the filter; for the
band-stop filter, any frequency between the two cutoff values is within the stopband.

Vout

fc(low) fc(high)

Pass band

Vout

fc(low) fc(high)

Stop band

Band-pass filter Bode plot

fcenter fcenter

100%

70.7%

100%

70.7%

0% 0%

Band-stop filter Bode plot

Not all band-pass and band-stop filters exhibit the same bandwidth (i.e. the difference between
the high and low cutoff frequencies) – some filters provide a narrower bandwidth than others,
which may be useful in applications where the filter must precisely discriminate a narrow range of
frequencies over all the rest. The narrowness, or selectivity of a band-type filter may be quantified as
a quality factor (Q), expressed as the ratio of center frequency to bandwidth as given by the formula
Q = fcenter

fc(high)−fc(low)
. This quality factor is a function of the amount of resistance in the filter circuit:

resonant filter circuits with little resistance have high quality factors and narrow bandwidths; filter
circuits with much resistance have low quality factors and wide bandwidths.



3.6. ROLL-OFF 29

3.6 Roll-off

Selectivity is closely related to another concept in filter circuits called roll-off. The “roll-off” for
any filter circuit is the steepness of its Bode plot as the circuit transitions from the passband to
the stopband of its frequency range. If you compare the SPICE-generated Bode plots for the RC
high-pass and low-pass networks (left, below) versus the SPICE-generated Bode plots for the two LC
resonant filters (right, below), you will notice how much steeper the LC filters’ plots are compared
to the RC filters’ plots:

frequency

1 10 100 10^3 10^4

Hz

0.00

0.20

0.40

0.60

0.80

1.00

V vm(2)vm(3)

frequency

1 10 100 10^3

Hz

0.00

0.20

0.40

0.60

0.80

1.00

V vm(2)vm(3)

Despite the fact that the RC and LC filter networks are all performing different filtering functions,
it is still fair to compare their roll-off rates as a measure of how sharply they “cut off” unwanted
signal frequencies. When plotted on a graph with logarithmic axis scales (e.g. decibels6 for signal
strength, octaves or decades for frequency7) these slopes have a mostly-linear profile, and therefore
roll-off is specified in units of dB per octave or dB per decade.

Steeper roll-off may be obtained from a filter network by adding filter stages. For example, a
low-pass filter having a roll-off of 20 dB/decade staged with an identical filter having the same roll-off
rate yields a low-pass filter with an aggregate roll-off of 40 dB/decade. It is also possible to steepen
the roll-off of a filter by using complementary reactive elements, for example a low-pass filter design
using a series L and parallel C instead of a series R and parallel C.

Generally speaking, more aggressive roll-off comes at the expense of a “flat” response in the
filter’s passband: that is to say, efforts to steepen roll-off usually result in “weird” behavior in the
filter’s passband, often with peaks and valleys rather than a flat response throughout. However, in
some cases it is more important to have a filter that cuts off sharply than a filter with a uniform
response to all signal frequencies within the desired band.

6A decibel (dB) is a logarithmic measure of a power ratio, defined as dB = 10 log P1
P2

. A decibel figure of 0 dB

represents a power ratio of 1, while +10 dB represents a power ratio of 10 and −10 dB a power ratio of 1

10
Furthermore,

+20 dB represents a power ratio of 100 and −20 dB represents a power ratio of 1

100
.

7An octave is a doubling of frequency, while a decade is a ten-fold change in frequency. For example, one octave
away from 1 kHz would be 500 Hz (lower) and 2 kHz (higher), while one decade away from 1 kHz would be 100 Hz
(lower) and 10 kHz (higher).



30 CHAPTER 3. TUTORIAL

3.7 Mechanical-electrical filters

Resonance is a general principle useful for filtering, but it is not limited to combinations of electrical
inductance and capacitance. Mechanical resonance can be exploited for filtering purposes, and one
interesting example of this is an electronic component called a quartz crystal. Quartz is a compound
exhibiting piezoelectricity, which means a quartz crystal generates voltage when physically stressed,
and will experience physical strain (displacement) with an applied voltage. A suitably cut quartz
crystal, like any physical object possessing both mass and elasticity, has a fundamental resonant
frequency at which it will sustain vibrations. Owing to the piezoelectric nature of quartz crystals,
this mechanical resonance translates into electrical resonance: by attaching metal electrodes to the
surface of the crystal, it behaves much like an LC circuit with a fixed resonant frequency.

Quartz crystals exhibit high selectivity (e.g. high roll-off rates between passbands and stopbands)
and their resonant frequencies are extremely stable over time, which makes them well suited for
precision filters and oscillator circuits. By cutting the crystal small enough, the resonant frequency
may be set in the megahertz (MHz) range, making them suitable for radio-frequency circuits and
extremely precise clock circuits.

A similar technology called Surface Acoustic Wave (SAW) filtering works by inducing and
detecting mechanical vibrations on the surface of a piezoelectric material by using a micro-machined
network of metal electrodes called IDTs (Inter-Digital Transducers) attached to the material’s surface
at two locations. AC voltage applied between one set of electrodes induces surface waves in the
material, which are received by another set of metal electrodes where those surface waves generate
an AC voltage signal:

Surface wave

Vin
Vout

λ λ

metal

metal

metal

metal

piezoelectric crystal

Surface Acoustic Wave (SAW) filter
Input IDT Output IDT

SAW filters naturally act as band-pass filters, where the ratio Vout

Vin
reaches its maximum value

at one particular frequency. That frequency depends on the spacing between the metal “fingers”
of each IDT, where that distance needs to equal the wavelength (λ) of the acoustic wave through
the piezoelectric material8. SAW filters are highly selective, and for high frequencies they may be
manufactured in very compact packages, which makes them well-suited for radio receiver circuit

8Since these vibrations are mechanical in nature, they travel through the crystal at that material’s speed of sound.
Therefore, the wavelength of these acoustic waves is much shorter than the wavelength of that same signal if it took
the form of an electromagnetic wave traveling through space or along a cable at the speed of light. Typical speeds
of sound through SAW substrate materials ranges from about 3,100 meters/second to about 4,800 meters/second; by
contrast, the speed of light through vacuum or air is about 300,000,000 meters/second (nearly 105 times faster).



3.7. MECHANICAL-ELECTRICAL FILTERS 31

applications. These devices replaced LC filter networks used in television receivers as early as the
1980’s.

The fact that a SAW filter’s pass frequency is defined primarily by the inter-electrode spacing
rather than by the bulk properties of the substrate material makes possible the construction of wide-
band filter networks. One easy-to-understand method of achieving this goal is to construct each IDT
in a “fan” shape so that a range of electrode spacings (wavelengths, λ) exist within the same device:

Surface wave

Vin
Vout

piezoelectric crystal

Wide-band SAW filter

metal

metal

metal

metal

λ1

λ2 λ2

λ1

Vout

f = 1/λ

Vout

Narrow-band SAW response Wide-band SAW response

f = 1/λ2 f = 1/λ1

In the example shown here, the SAW filter has a passband extending from 1
λ2

to 1
λ1

. Again,
this capability makes SAW filters ideal for certain radio communication applications where the
communications happen over a range of different signal frequencies.

Another interesting property of SAW networks is that the time delay between input and output
signals is a function of the physical distance between the input and output IDTs. This makes them
useful as delay lines in addition to being band-pass filters. A “delay line” does exactly what its
name suggests: delays the arrival of a signal from input to output on the SAW device, acting in
essence as a very long transmission line. However, unlike a transmission line where the signal travels
as an electromagnetic wave at the speed of light, the wave in a SAW travels at the (much slower!)



32 CHAPTER 3. TUTORIAL

speed of sound through the piezoelectric material. This slower wave velocity means the distance
between IDTs may be thousands of times shorter than the necessary length of a transmission line
to implement the same delay time.



3.8. SUMMARY OF FILTER TYPES 33

3.8 Summary of filter types

To summarize, any elementary filter circuit may be classified as one of four types, based on the
range of frequencies it is designed to pass. In the following Bode plots we see the ideal “brick wall9”
response of each filter type (dashed red) overlaid on more realistic filter response curves (bold blue):

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

Low-pass filter High-pass filter

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

Band-pass filter Band-stop filter

Ideal filter
response

Real filter
response

Ideal filter
response

Real filter
response

Real filter
response

Ideal filter
response

Ideal filter
response

Real filter
response

Cutoff frequency is defined as that frequency value at which the signal is reduced to
√

2
2 of its full

strength, based on the output signal magnitude of a simple RC or LR filter network when X = R.
Any frequency resulting in an output signal stronger than this is within the filter’s passband, with
all other frequencies lying in the filter’s stopband. Roll-off is the rate at which a filter’s cutoff
changes with frequency, essentially the “steepness” of its Bode plot. Filters with high roll-off are
more selective, but typically that increase in selectivity is realized only by unequal passage of signals
at slightly different frequencies within the filter’s “passband” (i.e. a passband response that is not
flat). An ideal filter has a perfectly flat passband and infinite roll-off.

9This rather colorful description of ideal filter response evokes the image of an impenetrable wall completely
stopping the passage of certain signal frequencies.



34 CHAPTER 3. TUTORIAL

3.9 Filtering complex signals

As mentioned at the beginning of this tutorial, filters are typically used to selectively screen certain
frequencies from complex AC signals possessing a mixture of different frequencies. Thus, it is useful
to view filtered and unfiltered signals in the frequency domain to understand the effects of filter
networks on complex signals.

In a sense Bode plots are already frequency-domain graphs, since their horizontal axes express
frequency. However, a Bode plot shows the response of a filter network to all frequencies, rather
than being a measurement of a particular signal. Below is a SPICE simulation10 showing a simple
high-pass RC filter network with its input signal (consisting of an equal blend of 100 Hz, 200 Hz, and
300 Hz sinusoidal voltages, shown on the left) and its output signal (consisting of a filtered blend of
100 Hz, 200 Hz, and 300 Hz peaks, shown on the right):

frequency

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

kHz

0.0

100.0

200.0

300.0

400.0

500.0

600.0

mUnits mag(v(3))

R1 1k

0µ79

C1

0

1

2

3 4

0

V1

V2

V3
1 V

300 Hz

200 Hz

100 Hz

1 V

1 V

* HP filter spectrum comparison
v1 1 0 sin(0 1 100 0 0)
v2 2 1 sin(0 1 200 0 0)
v3 3 2 sin(0 1 300 0 0)
c1 3 4 0.79e-6
r1 4 0 1e3
.tran 0.5m 200m
.plot tran v(1)
.end frequency

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

kHz

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

mUnits mag(v(4))

As you can see, the input signal spectrum measured between node 3 and ground consists of three
equal-amplitude peaks, one at 100 Hz, one at 200 Hz, and another at 300 Hz. The filter circuit
consists of one 0.79 µF capacitor and one 1 kΩ resistor, giving a cutoff frequency of 201.46 Hz. The
output signal spectrum measured between node 4 and ground consists of three peaks as well, but
of differing amplitude owing to the filter’s high-pass characteristic: much more of the 300 Hz peak
passes through the filter than either the 200 Hz or 100 Hz peaks.

Also evident from this simulation is the fact that “cutoff” for a filter circuit is a somewhat
misleading term. One might expect a high-pass filter with fc = 201.46 Hz to completely cut off all
frequencies below 201.46 Hz, but as we can see from the output signal spectrum this is not the case.
Remember that “cutoff” is defined for practical filter networks as the point at which a signal of that

10The sequence of NGSPICE commands used to generate these spectra (after reading netlist file with the source

command and “running” the simulation with the run command) are as follows: linearize v(1) ; fft v(1) ; plot

mag(v(1)). Parameters in the transient analysis line (“tran”) of the SPICE netlist define the resolution and domain
of the FFT analysis: interval time (in this case, 0.5 milliseconds) adjusts the FFT domain, with smaller intervals
resulting in a wider span of frequencies showing on the horizontal axis; and ending time (in this case, 200 milliseconds)
determining the resolution of the FFT plot, with longer time resulting in finer resolution. In fact, when simulated
with an ending time value of 1 second, the peaks were all so thin as to be barely viewable on the plots! I had to
reduce the total transient analysis time to 200 milliseconds in order to make the peaks appear a bit wider at their
bases and therefore easier to see on the plots. Remember that a signal consisting of three perfect sinusoids will have
a spectrum consisting of three vertical lines as peaks.



3.9. FILTERING COMPLEX SIGNALS 35

frequency becomes attenuated to 70.7% of its original amplitude. Perfect filtration does not exist,
either in fluid systems or electrical systems.

One of the fundamental principles of waves is that every wave, regardless of shape, is
mathematically equivalent to a series of sinusoids. We call these sinusoids harmonics, and for
periodic waves they are integer-multiples of the wave’s fundamental frequency. Square waves are a
textbook example of this principle: a perfect square wave is the sum of an infinite series of odd-
harmonic sine waves11. If we pass a non-sinusoidal wave through a filter, some of its harmonics
will be attenuated more than others, resulting in a re-shaping of the waveform. This concept is
illustrated by the following SPICE simulation, showing the harmonic spectrum of a square wave
before (left) and after (right) passing through a low-pass filter:

frequency

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

kHz

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

mUnits mag(v(1))

R1

1k

0µ79C1

0

1

0

V1 100 Hz
1 V

2

* LP filtering of a square wave
v1 1 0 pulse(-1 1 0
+ 1n 1n 4.999m 10m)
r1 1 2 1e3
c1 2 0 0.79e-6
.tran 0.5m 200m
.plot tran v(1)
.end frequency

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

kHz

0.0

100.0

200.0

300.0

400.0

500.0

600.0

mUnits mag(v(2))

The wave’s new shape is clearly evident when we compare the input and output signals in the
time domain:

time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

ms

-1.0

-0.5

0.0

0.5

1.0

V v(1)

R1

1k

0µ79C1

0

1

0

V1 100 Hz
1 V

2

* LP filtering of a square wave
v1 1 0 pulse(-1 1 0
+ 1n 1n 4.999m 10m)
r1 1 2 1e3
c1 2 0 0.79e-6
.tran 0.5m 20m
.plot tran v(1)
.end time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

ms

-1.0

-0.5

0.0

0.5

1.0

V v(2)

Note how the output waveform appears much more rounded than a square wave due to the
higher-order harmonics being screened out by the filter network. This raises an interesting question:
can we re-shape a square wave into a sine wave by filtering out all harmonics but the fundamental?

11Square wave = sin ωt + 1

3
sin 3ωt + 1

5
sin 5ωt + 1

7
sin 7ωt + · · · + 1

n
sin nωt, where ω is the fundamental frequency

of the square wave in radians per second, assuming sine values calculated from radians rather than degrees.



36 CHAPTER 3. TUTORIAL

Of course, a perfect low-pass filter would be required to completely eliminate all but the first
harmonic from a square wave, and as we know perfect filters do not exist. However, we may approach
perfection by using a filter circuit with more elements in it12, to achieve a steeper roll-off:

time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

ms

-1.0

-0.5

0.0

0.5

1.0

V v(1)

R1

0µ79C1

0

1

0

V1 100 Hz
1 V

2

0µ79

0

3 4

0µ79

0

R2 R3

C2 C3

500 500 500

* LP filtering of a square wave
v1 1 0 pulse(-1 1 0
+ 1n 1n 4.999m 10m)
r1 1 2 500
c1 2 0 0.79e-6
r2 2 3 500
c2 3 0 0.79e-6
r3 3 4 500
c3 4 0 0.79e-6
.tran 0.5m 20m
.plot tran v(4)
.end time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

ms

-1.0

-0.5

0.0

0.5

1.0

V v(4)

As we can see in the right-hand oscillograph, the wave-shape is beginning to appear more like a
sine wave with the added filter stages.

In summary, we have seen how combinations of resistance, capacitance, and/or inductance
function as frequency-dependent voltage dividers, and in so doing have the ability to selectively
pass or attenuate signals of differing frequency. We have seen how simple filter circuits may be
characterized as having a cutoff frequency defined as the frequency at which an incident signal
becomes attenuated to 70.7% of its original amplitude. Furthermore, we have explored the use of
Bode plots to describe the behavior of a filter over a range of frequencies, and discussed the concept
of roll-off which describes how “sharply” a filter cuts off unwanted frequencies.

Practical applications for filters include signal separation and wave-shaping. The former refers to
the separation of signals we do not wish to belong together, for example when filtering out “noise”
that is combined with some signal of interest. The latter refers to the altering of a non-sinusoidal
signal’s harmonic composition, for example to alter the signal’s wave-shape as viewed in the time
domain.

12Multi-stage filter design is an extremely complicated topic, and this particular filter network represents a fairly
crude way to achieve steeper roll-off. Usually one would design a low-pass filter network employing both capacitive
and inductive elements rather than simply add more RC stages. The astute reader will note different resistor values
used in this filter than before, to help account for the “loading” each successive stage places on the previous stage.
Suffice to say, this multi-stage filter is a proof-of-concept circuit rather than a practical example of how to achieve
“sharper” low-pass filtering.



3.10. OUTPUT-LIMITED FILTER NETWORKS 37

3.10 Output-limited filter networks

An interesting variation on the theme of simple resistance-reactance filter networks is one where we
intentionally install an extra resistor in order to limit the output signal either to some maximum
value less than source’s voltage or to some minimum value greater than zero:

Standard low-pass Low-limited low-pass High-limited low-pass

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Our familiar problem-solving technique of limiting cases works just as well to explore the behavior
of these limited filter networks as they do on the standard low-pass network: at very low frequencies
the capacitor will function as an open, and at very high frequencies the capacitor will act like a short.
For the low-limited low-pass filter this means full output at DC and a resistively voltage-divided
output at infinite frequency; for the high-limited low-pass filter it means a resistively voltage-divided
output at DC and zero output at infinite frequency.



38 CHAPTER 3. TUTORIAL

Of course, the same general principle extends to inductor-based low-pass filters as well:

Standard low-pass Low-limited low-pass High-limited low-pass

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

At very low frequencies the inductor will act as a short, and at very high frequencies as an
open. For the low-limited low-pass filter this means full output at DC and a resistively voltage-
divided output at infinite frequency. For the high-limited low-pass filter this means a resistively
voltage-divided output at DC and zero output at infinite frequency.



3.10. OUTPUT-LIMITED FILTER NETWORKS 39

High-pass filter networks may also be constructed in similar manner by strategically adding a
second resistor:

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Standard high-pass Low-limited high-pass High-limited high-pass

And, of course, inductor-based versions of these same output-limited high-pass circuits exist as
well:

f

Vout

Vin

f

Vout

Vin

f

Vout

Vin

Standard high-pass Low-limited high-pass High-limited high-pass

In every one of these output-limited filter networks, the output limiting is accomplished by the
added resistor limiting the extremes to which the reactive component’s effective impedance may
reach. That additional resistor either prevents the reactive component from completely shorting or
completely opening two nodes in the network, and in doing so either limits the output voltage from



40 CHAPTER 3. TUTORIAL

ever attaining full source voltage (high-limited) or limits the output voltage from ever decreasing to
zero (low-limited).

Output-limited filter networks are frequently used in electronic systems employing negative
feedback, where a signal-boosting system (called an amplifier) re-directs part of the boosted output
signal back around to the amplifier’s input as a means of improving certain performance criteria such
as stability. Often a filter network is placed within this feedback “loop” to favor some frequencies
over others, but if some of those un-favored frequencies are completely cut off by the filter the system
may become unstable for those excluded frequencies.

Here is a visual example of an amplifier system using negative feedback with standard high-pass
filtering in the feedback loop:

Amplifier

Output

Input 1

Input 2

Weak signal in

Boosted signal out

Feedback loop

High-pass filter

Unfortunately, this feedback system will cause trouble for the amplifier because it completely
blocks all DC (zero-frequency) signals from being fed back to Input 2. This will mean that the
amplifier cannot naturally stabilize itself for DC signals using negative feedback as it can for AC
signals. The solution is to modify the filter network to have a low-limited characteristic so that at
least some of the DC signals are able to reach Input 2:

Amplifier

Output

Input 1

Input 2

Weak signal in

Boosted signal out

Feedback loop

High-pass filter
(modified)



Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

41



42 CHAPTER 4. HISTORICAL REFERENCES

4.1 Wave screens

Charles Proteus Steinmetz was an electrical engineer employed for many years by the General Electric
Company in New York. He was widely recognized as a genius in this field, and did much to elevate
the mathematical rigor of electrical engineering. In his book Theory and Calculation of Electric
Circuits first published in 1917 he describes the use of capacitance and inductance to form filtering
circuits which he referred to as wave screens useful for separating alternating and direct current
components of any pulsating electrical signal:

78. By “wave screens” the separation of pulsating currents into their alternating and
their continuous component, or the separation of complex alternating currents – and
thus voltages – into their constituent harmonics can be accomplished, and inversely, the
combination of alternating and continuous currents or voltages into resultant complex
alternating or pulsating currents.

The simplest arrangement of such a wave screen for separating, or combining, alternating
and continuous currents into pulsating ones, is the combination, in shunt with each
other, of a capacity, C, and an inductance, L, as shown in Fig. 75. If, then, a
pulsating voltage, e, is impressed upon the system, the pulsating current, i, produced by
it divides, as the continuous component can not pass through the condenser, C, and the
alternating component is barred by the inductance, L, the more completely, the higher
this inductance. Thus the current, i1, in the apparatus, A, is a true alternating current,
while the current, i0, in the apparatus, C, is a slightly pulsating direct current. [page

156]

In this illustration A and C each represent electrical ammeters registering current through their
respective branches of the parallel (“shunt”) network.



4.1. WAVE SCREENS 43

On the next page, Steinmetz describes the use of series LC resonance to form band-pass filters
useful for separating various harmonic1 frequencies from a complex AC signal:

Wave screens based on resonance for a definite frequency by series connection of capacity
and inductance, can be used to separate the current of this frequency from a complex
current or voltage wave, such as those given in Figs. 56 to 63, and thus can be used for
the separation of complex waves into their components, by “harmonic analysis.”

Thus in Fig. 76, if the successive capacities and inductances are chosen such that

2πfL1 =
1

2πfC1
,

6πfL3 =
1

6πfC3
,

10πfL5 =
1

10πfC5
,

2nπfLn =
1

2πfnCn

where f = frequency of the fundamental wave. [page 180]

Steinmetz’s conception of multiple band-pass filter networks tuned to resonate with respective
harmonics of a known fundamental frequency, each one connected to its own ammeter to register
the strength of each harmonic, is analogous to obsolete vibrating-reed frequency meters with their
multiple reeds tuned to different frequencies.

1As mathematically proven by Fourier, any periodic wave of any shape whatsoever is mathematically equivalent to
the sum of a set of sinusoidal waves having frequency values equal to whole-numbered multiples of the fundamental
frequency of the complex wave. For example, a complex-shaped waveform having a frequency of 45 Hz may consist
of a 45 Hz “fundamental” sinusoid (the first harmonic) plus other sinusoidal waves of specific amplitudes having
frequencies of 90 Hz (the second harmonic), 135 Hz (the third harmonic), 180 Hz (the fourth harmonic), etc.



44 CHAPTER 4. HISTORICAL REFERENCES

4.2 Vibrating-reed meters as spectrum analyzers

An obsolete technology for measuring the frequency of AC electric power is the vibrating-reed
frequency meter. This meter consisted of a set of metal reeds made of spring-steel, each reed
cut to a different length, and all of them excited by the magnetic field from an electromagnet coil
energized by the AC line voltage to be measured. The illustration on the left shows the internal
construction of the meter with its metal reed array and coil, while the illustration on the right shows
what the meter looks like when energized by 60 Hz AC:

shaken by magnetic
field from the coil

Sheet-metal reeds AC line voltage
applied to coil

Frequency Meter

120 Volts AC

6058565452 62 64 66 68
Hz

If the AC line frequency is 60 Hz, the reed tuned to resonate at that frequency will vibrate at
the greatest amplitude, making the end of that reed appear “taller” as it rapidly shakes up and
down. All the other reeds vibrate as well, but none as strongly as the reed resonating with the line
frequency. A photograph of a real vibrating-reed frequency meter appears here, connected to an AC
generator outputting approximately 59.5 Hz:



4.2. VIBRATING-REED METERS AS SPECTRUM ANALYZERS 45

As crude a measuring instrument as a vibrating-reed frequency meter is, it actually functions as
a sort of spectrum analyzer. A pure sinusoidal AC voltage has but a single frequency in its spectrum,
and the moving reed ends reveal the outline of this spectrum: a single peak at the line frequency.
If we were to connect a pair of AC generators in series and run them at different speeds to form a
superposition of two sinusoidal voltages, we would see two reeds vibrate strongly on the face of such
a frequency meter: two peaks in the spectrum, one for each generator’s output:

shaken by magnetic
field from the coil

Sheet-metal reeds 66 Hz

58 Hz

Frequency Meter

120 Volts AC

6058565452 62 64 66 68
Hz

For readers familiar with filter networks, a good way to model each of the metal reeds in such a
meter is as a mechanical band-pass filter. Each reed has its own resonant frequency dictated by its
mass, length, and elasticity. Adjusting the length of each reed is the simplest way to “tune” each
of the reeds to the desired resonant frequency, which is why each reed in a meter such as this has a
different length.



46 CHAPTER 4. HISTORICAL REFERENCES



Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

47



48 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1 Decibels

One of the mathematical tools popularly used to gauge increases and decreases of electrical power
is the common logarithm, expressed as a measurement unit called the decibel. The basic idea of
decibels is to express a ratio of two electrical power quantities in logarithmic terms. Every time you
see the unit of “decibel” you can think: this is an expression of how much greater (or how much
smaller) one power is to another. The only question is which two powers are being compared.

Electronic amplifiers are a type of electrical system where comparisons of power are useful.
Students of electronics learn to compare the output power of an amplifier against the input power
as a unitless ratio, called a gain. Take for example an electronic amplifier with a signal input of 40
milliWatts and a signal output of 18.4 Watts:

DC power supply

Signal Pin Signal Pout

40 mW 18.4 W

Gain = 
Pout

Pin

= 
18.4 W

40 mW
= 460

Amplifier

An alternative way to express the gain of this amplifier is to do so using the unit of the Bel,
defined as the common logarithm of the gain ratio:

log

(

Pout

Pin

)

= log

(

18.4 W

40 mW

)

= 2.66276 B

When you see an amplifier gain expressed in the unit of “Bel”, it’s really just a way of saying
“The output signal coming from this amplifier is x powers of ten greater than the input signal.” An
amplifier exhibiting a gain of 1 Bel outputs 10 times as much power as the input signal. An amplifier
with a gain of 2 Bels boosts the input signal by a factor of 100. The amplifier shown above, with a
gain of 2.66276 Bels, boosts the input signal 460-fold.

At some point in technological history it was decided that the “Bel” (B) was too large and
cumbersome, and so it became common to express powers in fractions of a Bel instead: the deciBel
(1 dB = 1

10 of a Bel). Therefore, this is the form of formula you will commonly see for expressing
electrical signal power gains or losses:

dB = 10 log

(

Pout

Pin

)

The gain of our hypothetical electronic amplifier, therefore, would be more commonly expressed
as 26.6276 dB rather than 2.66276 B, although either expression is technically valid1.

1It is interesting to note that although the “Bel” is a metric unit, it is seldom if ever used without the metric prefix



5.1. DECIBELS 49

An operation students often struggle with is converting a decibel figure back into a ratio, since
the concept of logarithms seems to be universally perplexing. Here I will demonstrate how to
algebraically manipulate the decibel formula to solve for the power ratio given a dB figure.

First, we will begin with the decibel formula as given, solving for a value in decibels given a
power ratio:

dB = 10 log(Ratio)

If we wish to solve for the ratio, we must “undo” all the mathematical operations surrounding
that variable. One way to determine how to do this is to reverse the order of operations we would
follow if we knew the ratio and were solving for the dB value. After calculating the ratio, we would
then take the logarithm of that value, and then multiply that logarithm by 10: start with the ratio,
then take the logarithm, then multiply last. To un-do these operations and solve for the ratio, we
must un-do each of these operations in reverse order. First, we must un-do the multiplication (by
dividing by 10):

dB

10
=

10 log(Ratio)

10

dB

10
= log(Ratio)

Next, we must un-do the logarithm function by applying its mathematical inverse to both sides
of the formula – making each expression a power of 10:

10
dB
10 = 10log(Ratio)

10
dB
10 = Ratio

To test our algebra, we can take the previous decibel value for our hypothetical amplifier and
see if this new formula yields the original gain ratio:

Ratio = 10
26.6276 dB

10

Ratio = 102.66276 B

Ratio = 460

Sure enough, we arrive at the correct gain ratio of 460, starting with the decibel gain figure of
26.6276 dB.

“deci” ( 1

10
). One could express powers in microbels, megabels, or any other metric prefix desired, but it is never done

in industry: only the decibel is used.



50 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

We may also use decibels to express power losses in addition to power gains. There are many
practical applications of this in signaling systems, both electronic and optical. One such application
is filtering, where a “filter” circuit screens out certain components of the signal while letting others
pass through (e.g. the bass or treble control for an audio system). Another application is attenuation,
where the entirety of a signal is reduced in magnitude (e.g. the volume control for an audio system).

We will explore yet another application of signal power reduction as a case study for decibels:
cable loss. Cables designed to convey signals over long distances are not perfect conduits of energy,
as some of the signal’s energy is inevitably lost along the way. This is true for different types of
signals, electrical and optical being two popular examples. In the following illustration we see a
signal cable losing power along its length2, such that the power out is less than the power in:

Signal Pin Signal Pout

40 mW

Gain = 
Pout

Pin

= 
40 mW

=

37 mW

37 mW
0.925

Cable

10 log

(

Pout

Pin

)

= 10 log

(

37 mW

40 mW

)

= −0.3386 dB

Contrasting this result against the previous result (with the amplifier) we see a very important
property of decibel figures: any power gain is expressed as a positive decibel value, while any power
loss is expressed as a negative decibel value. Any component outputting the exact same power as it
takes in will exhibit a “gain” value of 0 dB (equivalent to a gain ratio of 1).

Remember that Bels and decibels are nothing more than logarithmic expressions of “greater
than” and “less than”. Positive values represent powers that are greater while negative values
represent powers that are lesser. Zero Bel or decibel values represent no change (neither gain nor
loss) in power.

A couple of simple decibel values are useful to remember for approximations, where you need to
quickly estimate decibel values from power ratios (or vice-versa). Each addition or subtraction of
10 dB exactly represents a 10-fold multiplication or division of power ratio: e.g. +20 dB represents
a power ratio gain of 10 × 10 = 100, whereas −30 dB represents a power ratio reduction of 1

10 × 1
10

× 1
10 = 1

1000 . Each addition or subtraction of 3 dB approximately represents a 2-fold multiplication
or division or power ratio: e.g. +6 dB is approximately equal to a power ratio gain of 2 × 2 = 4,
whereas −12 dB is approximately equal to a power ratio reduction of 1

2 × 1
2 × 1

2 × 1
2 = 1

16 . We
may combine ± 10 dB and ± 3 dB increments to come up with ratios that are products of 10 and
2: e.g. +26 dB is approximately equal to a power ratio gain of 10 × 10 × 2 × 2 = 400.

2For high-frequency signals such as those used in radio communications, the dominant mode of energy dissipation
is dielectric heating, where the AC electric field between the cable conductors excites the molecules of the conductor
insulation. This energy loss manifests as heat, which explains why there is less signal energy present at the load end
of the cable than is input at the source end of the cable. For DC and low-frequency AC circuits the dominant mode
of energy dissipation is cable conductor resistance, which is typically very small.



5.1. DECIBELS 51

Observe what happens if we combine a “gain” component with a “loss” component and calculate
the overall power out versus power in:

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio) Loss = -0.3386 dB

18.4 W

17.02 W

Gain = 26.6276 dB

Loss = 0.925 (ratio)

Amplifier
Cable

The overall gain of this amplifier and cable system expressed as a ratio is equal to the product
of the individual component gain/loss ratios. That is, the gain ratio of the amplifier multiplied by
the loss ratio of the cable yields the overall power ratio for the system:

Overall gain =
17.02 W

40 mW
= (460)(0.925) = 425.5

The overall gain may be alternatively expressed as a decibel figure, in which case it is equal to
the sum of the individual component decibel values. That is, the decibel gain of the amplifier added
to the decibel loss of the cable yields the overall decibel figure for the system:

Overall gain = 10 log

(

17.02 W

40 mW

)

= 26.6276 dB + (−0.3386 dB) = 26.2890 dB

It is often useful to be able to estimate decibel values from power ratios and vice-versa. If we
take the gain ratio of this amplifier and cable system (425.5) and round it down to 400, we may
easily express this gain ratio as an expanded product of 10 and 2:

425.5 ≈ 400 = (10) × (10) × (2) × (2)

Knowing that every 10-fold multiplication of power ratio is an addition of +10 dB, and that
every 2-fold multiplication of power is an addition of +3 dB, we may express the expanded product
as a sum of decibel values:

(10) × (10) × (2) × (2) = (10 dB) + (10 dB) + (3 dB) + (3 dB) = 26 dB

Therefore, our power ratio of 425.5 is approximately equal to +26 decibels.



52 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

Decibels always represent comparisons of power, but that comparison need not always be
Pout/Pin for a system component. We may also use decibels to express an amount of power compared
to some standard reference. If, for example, we wished to express the input power to our hypothetical
amplifier (40 milliWatts) using decibels, we could do so by comparing 40 mW against a standard
“reference” power of exactly 1 milliWatt. The resulting decibel figure would be written as “dBm”
in honor of the 1 milliWatt reference:

Pin = 10 log

(

40 mW

1 mW

)

= 16.0206 dBm

The unit of “dBm” literally means the amount of dB “greater than” 1 milliWatt. In this case,
our input signal of 40 milliWatts is 16.0206 dB greater than a standard reference power of exactly
1 milliWatt. The output power of that amplifier (18.4 Watts) may be expressed in dBm as well:

Pout = 10 log

(

18.4 W

1 mW

)

= 42.6482 dBm

A signal power of 18.4 Watts is 42.6482 dB greater than a standard reference power of exactly 1
milliWatt, and so it has a decibel value of 42.6482 dBm.

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio)

18.4 W

Gain = 26.6276 dB

16.0206 dBm 42.6482 dBm

Amplifier

Notice how the output and input powers expressed in dBm relate to the power gain of the
amplifier. Taking the input power and simply adding the amplifier’s gain factor yields the amplifier’s
output power in dBm:

Pin(dB) + Pgain(dB) = Pout(dB)

16.0206 dBm + 26.6276 dB = 42.6482 dBm

An electronic signal that begins 16.0206 dB greater than 1 milliWatt, when boosted by an
amplifier gain of 26.6276 dB, will become 42.6482 dB greater than the original reference power of 1
milliWatt.



5.1. DECIBELS 53

We may alternatively express all powers in this hypothetical amplifier in reference to a 1-Watt
standard power, with the resulting power expressed in units of “dBW” (decibels greater than 1
Watt):

Pin = 10 log

(

40 mW

1 W

)

= −13.9794 dBW

Pout = 10 log

(

18.4 W

1 W

)

= 12.6482 dBW

DC power supply

Signal Pin

40 mW
Signal Pout

Gain = 460 (ratio)

18.4 W

Gain = 26.6276 dB

-13.9794 dBW 12.6482 dBW

Amplifier

Note how the input power of 40 milliWatts equates to a negative dBW figure because 40
milliWatts is less than the 1 Watt reference, and how the output power of 18.4 Watts equates
to a positive dBW figure because 18.4 Watts is more than the 1 Watt reference. A positive dB
figure means “more than” while a negative dB figure means “less than.”

Note also how the output and input powers expressed in dBW still relate to the power gain of
the amplifier by simple addition, just as they did when previously expressed in units of dBm. Taking
the input power in units of dBW and simply adding the amplifier’s gain factor yields the amplifier’s
output power in dBW:

Pin(dB) + Pgain(dB) = Pout(dB)

−13.9794 dBW + 26.6276 dB = 12.6482 dBW

An electronic signal that begins 13.9794 dB less than 1 Watt, when boosted by an amplifier gain
of 26.6276 dB, will become 12.6482 dB greater than the original reference power of 1 Watt.



54 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

This is one of the major benefits of using decibels to express powers: we may very easily calculate
power gains and losses by summing a string of dB figures, each dB figure representing the power
gain or power loss of a different system component. Normally, any compounding of ratios involves
multiplication and/or division of those ratios, but with decibels we may simply add and subtract.
One of the interesting mathematical properties of logarithms is that they “transform3” one type of
problem into a simpler type: in this case, a problem of multiplying ratios into a (simpler) problem
of adding decibel figures.

For example, we may express the power dissipated along a cable in terms of decibels per foot;
the longer the cable, of course, the more power will be lost this way, all other factors being equal.
For example, a radio-frequency signal cable having a loss figure of −0.15 decibels per foot at a signal
frequency of 2.4 GHz will suffer −15 dB over 100 feet, and −150 dB over 1000 feet. To illustrate
how decibels may be used to calculate power delivered to a load in such a system, accounting for
various gains and losses along the way using decibel figures:

AC line
power

Cable loss = -0.17 dB/ft

Cable loss = -0.17 dB/ft

Length = 6 feet

Length = 20 feet

Gain = 45 dBPower output = 21.8 dBm

21.8 dBm + (-0.17 dB/ft)(6 ft) + 45 dB + (-0.17 dB/ft)(20 ft)
21.8 dBm - 1.02 dB + 45 dB - 3.4 dB

Oscillator Amplifier

Power delivered to the load = 62.38 dBm

Load

A similar application of decibels is found in multi-stage amplifier circuits, where one stage
amplifies a signal to be fed into a successive stage to be amplified more. The power gains of
these stages, each expressed as a ratio, multiply to make the over-all amplifier’s power gain (ratio).
The power gains of those same stages, each expressed as a decibel figure, add to make the over-all
amplifier’s power gain (dB):

+V

Stage 1 Stage 2 Stage 3

3In fact, logarithms are one of the simplest examples of a transform function, converting one type of mathematical
problem into another type. Other examples of mathematical transform functions used in engineering include the
Fourier transform (converting a time-domain function into a frequency-domain function) and the Laplace transform

(converting a differential equation into an algebraic equation).



5.1. DECIBELS 55

Another common application of decibels is to express ratios of voltage and/or current rather
than power. However, since the unit of the Bel has been defined as an expression of a power ratio,
we cannot simply substitute V or I for P in any of the formulae we’ve seen so far.

Suppose an amplifier has a voltage gain of 2 (i.e. Vout is twice as large as Vin), and we would like
to express this gain in decibels. Since decibels are intended to express power gain and not voltage
gain, we must figure out how much power gain is equivalent to a voltage gain of two. Obviously,
voltage and power are fundamentally different quantities, but if we imagine ourselves connecting a
fixed load resistance to the input signal, and then to the output signal, we will realize that load’s
power dissipation will be more than double when energized by a voltage twice as large. Joule’s Law
is helpful to determine the exact ratio of power dissipation:

P =
V 2

R

Doubling voltage for any given load resistance results in power quadrupling because power is
proportional to the square of the voltage applied to a fixed resistance. Using this as the basis for
applying decibels to a voltage ratio. Knowing that Joule’s Law also declares power is proportional
to the square of the current applied to a fixed resistance (P = I2R) means this same mathematical
relationship will apply to current gains and reductions as well as voltage gains and reductions:

dB = 10 log

(

Pout

Pin

)

= 10 log

(

Vout

Vin

)2

= 10 log

(

Iout

Iin

)2

An algebraic identity of logarithms is that the logarithm of any quantity raised to a power is
equal to that power multiplied by the logarithm of the quantity. Expressed in general terms:

log xy = y log x

Therefore, we may simplify the decibel formula for voltage gain by removing the “2” power and
making it a multiplier:

10 log

(

Vout

Vin

)2

= (2)(10) log

(

Vout

Vin

)

= 20 log

(

Vout

Vin

)

10 log

(

Iout

Iin

)2

= (2)(10) log

(

Iout

Iin

)

= 20 log

(

Iout

Iin

)

Thus, we may use decibels to express voltage or current ratios if we simply substitute 20 instead
of 10 as the multiplier.



56 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

We can see the practicality of using decibels to represent something other than electrical
power by examining this analog meter face, belonging to a Simpson model 260 VOM (Volt-Ohm-
Milliammeter). Note the bottom scale on this meter’s face, calibrated in decibels (DB):

Pay attention to the note on decibels written in the lower-left corner of the meter face, where 0
dB is defined as 0.001 Watt dissipated by 600 Ohms. The fact that 0 dB is defined as 1 milliWatt
means it should (properly) be labeled dBm rather than dB4. A load resistance value is necessary
as part of this definition for dB because this meter cannot measure power directly but must infer
signal power from measurements of AC voltage. Without a specific load resistance, there is no clear
relation between voltage and power. 600 Ohms is an old telecommunications standard for audio-
frequency AC signals, and continues to be used today for voltage-based decibel measurements of
audio-frequency AC signals.

The meter as shown is connected to nothing at all, and so registers 0 Volts AC. This, of course,
corresponds to zero power, and it has no corresponding decibel value because the logarithm of zero
is mathematically undefined5. Practically, it means −∞ dB, which is why the needle at the 0 Volt
position “falls off” the left-hand end of the dB scale.

Close inspection of the dB scale on this meter face reveals another interesting property of decibels,
and that is the nonlinear nature of the dB scale. This contrasts starkly against all the voltage and
current scales on this meter face which are linear. This nonlinearity is a fundamental property of
decibels because it is based on the logarithm function which is nonlinear.

4Such mis-labeling is not that uncommon in the profession, the expectation being that the technician or engineer
working with the instrument ought to be familiar enough with the concept of decibels to know when dB really means
dBm, or dBW, etc.

5Your electronic calculator will complain if you attempt to take the logarithm of zero!



5.1. DECIBELS 57

Now, we will explore what is necessary to make this meter register 0 dBm (i.e. 1 milliWatt) with
an applied AC voltage. 1 milliWatt of power dissipated by 600 Ohms is equivalent to:

V =
√

PR =
√

(0.001)(600) = 0.7746 Volts

Setting the VOM to the 2.5 VAC range and applying just enough AC voltage to bring the needle
to the 0 dB mark allows us to verify that this is indeed equivalent to just under 0.8 Volts (read on
the 2.5 VAC scale):

In the lower-right corner of the meter face we see some notes regarding correction values for
decibel measurements when using different AC voltage ranges. The dB scale is read directly when
the meter is set on the 2.5 VAC range. When set on the 10 VAC range (i.e. a range four times as
great), the meter’s needle will experience a deflection one-fourth as much as when set to the 2.5 VAC
range, and therefore it will point to a lesser (or even negative) value on the dB scale. Converting a
voltage ratio of 0.25 into a decibel figure shows us how much less the needle will register on the dB
scale when the voltage range is quadrupled:

20 log

(

2.5

10

)

= −12.04 dB

Therefore, when using the 10 VAC range instead of the 2.5 VAC range, one must add 12 dB
to the reading. Likewise, we may prove each of the printed correction factors for the alternative
voltage-measurement ranges listed (50 Volt AC range and 250 Volt AC range):

20 log

(

2.5

50

)

= −26.02 dB

20 log

(

2.5

250

)

= −40.0 dB



58 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.2 IEC standard component values

Components such as resistors, inductors, and capacitors are manufactured in several standard values,
described by IEC standard 60063. Rather than having a single series of standard values, the IEC
publishes lists called E series based on the number of unique values spanning a single decade (i.e. a
10:1 range).

The shortest of these series, called E3 contains just three values: 10, 22, and 47. The next series
is called E6 with six unique values: 10, 15, 22, 33, 47, and 68. These values represent significant
values for components, meaning the decimal point may be freely moved to create values spanning
multiple decades. For example, “33” simply means one can expect to find components manufactured
in values of 33, 3.3, 0.33, and 0.033 as well as 330, 3.3 k, 33 k, etc.

Although this may seem like a strange standard for component manufacturers to follow, there
is a compelling logic to it. The terms of each series are closer-spaced at the low end than at the
high end, and this allows for series and/or parallel combinations of components to achieve most any
desired value. For example, in the E6 series we only have values with the significant figures 10, 15,
22, 33, 47, and 68, but this doesn’t mean we are limited to total values with these significant figures.
For example, if we needed 80 Ohms of resistance we could connect a 33 Ohm and 47 Ohm resistor
together in series. 50 Ohms could be made from two 68 Ohm resistors in parallel (making 34 Ohms)
plus a 15 Ohm and 1 Ohm resistor in series.

On the next page is a table showing the four most common E-series specified by IEC standard
60063.



5.2. IEC STANDARD COMPONENT VALUES 59

E3 E6 E12 E24

10 10 10 10

11

12 12

13

15 15 15

16

18 18

20

22 22 22 22

24

27 27

30

33 33 33

36

39 39

43

47 47 47 47

51

56 56

62

68 68 68

75

82 82

91

E48, E96, and E192 series are also found in the IEC 60063 standard, used for components with
tighter tolerance ratings than typical.



60 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.3 Complex-number arithmetic

Complex numbers are very useful in AC circuit analysis because each one has the ability to represent
both a magnitude and a phase shift between that quantity and some other reference quantity. Despite
the existence of electronic calculators and computer software capable of performing arithmetic on
complex-number quantities, there are still times when we must perform some calculation on these
quantities “by hand”. This technical reference reviews the basic arithmetic operations on complex
numbers, complete with examples.

Recall that complex numbers may be represented in either rectangular or polar form, rectangular
being a quantity with both a “real” and an “imaginary” component, and polar being a quantity
with a magnitude and an angle. Graphically, these two forms relate to the sides of a right triangle:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Rectangular form: x + jy (where j =
√
−1)

Polar form: M 6 θ

To convert from rectangular form to polar form, M =
√

x2 + y2 and θ = arctan y
x

To convert from polar form to rectangular form, x = M cos θ and y = M sin θ

As we will see, addition and subtraction is easiest to do with rectangular-form notation while
multiplication and division is easiest to do with polar-form notation. Thus, circuit analysis
doing “long-hand” complex-number arithmetic often involves conversions back and forth between
rectangular and polar forms in order to set up the quantities before applying Ohm’s Law, Kirchhoff’s
Laws, etc. This can be tedious, and it is also prone to rounding errors. The reader is advised to store
all intermediate results in their calculator’s memory and recall when needed, rather than re-type
quantities and thereby incur rounding errors due to truncation.



5.3. COMPLEX-NUMBER ARITHMETIC 61

5.3.1 Negating complex numbers

The sign of a complex number may be reversed just as easily in rectangular form as in polar form.
Rectangular-form negation consists of multiplying −1 through to both the real and imaginary terms.
Polar-form negation consists solely of adding 180 degrees to the angle, or alternatively, by reversing
the sign of the magnitude and leaving the angle alone.

Example: reverse the sign of 5 − j4

−(5 − j4)

−5 + j4

Example: reverse the sign of 66 30o

−(66 30o)

66 210o = 66 − 150o = −66 30o

5.3.2 Adding complex numbers

Complex numbers are most easily added in rectangular form: simply add the real portions and then
add the imaginary portions.

Example: add 5 − j4 to −1 − j3

(5 − j4) + (−1 − j3)

(5 + (−1)) + (−j4 + (−j3))

4 − j7

5.3.3 Subtracting complex numbers

Complex numbers are most easily subtracted in rectangular form: simply subtract the real portions
and then subtract the imaginary portions.

Example: subtract 5 − j4 from −1 − j3

(−1 − j3) − (5 − j4)

(−1 − (5)) + (−j3 − (−j4))

−6 + j1



62 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.3.4 Multiplying complex numbers

Complex numbers are most easily multiplied in polar form: simply multiply the magnitudes and
add the angles.

Example: multiply 66 30o by 26 − 10o

(66 30o) × (26 − 10o)

(6 × 2)6 (30o + (−10o))

126 20o

Multiplication of rectangular-form complex numbers less straight-forward then with polar-form
numbers, and resembles multiplication of algebraic polynomials:

Example: multiply 5 − j4 by −1 − j3

(5 − j4) × (−1 − j3)

(5 × (−1)) + (5 × (−j3)) + (−j4 × (−1)) + (−j4 × (−j3))

(−5) + (−j15) + (j4) + (j212)

(−5) + (−j15) + (j4) + ((−1)12)

(−5) + (−j15) + (j4) + (−12)

−17 − j11

5.3.5 Dividing complex numbers

Complex numbers are most easily divided in polar form: simply divide the magnitudes and subtract
the angles.

Example: divide 66 30o by 26 − 10o

66 30o

26 − 10o

6

2
6 (30o − (−10o))

36 40o



5.3. COMPLEX-NUMBER ARITHMETIC 63

5.3.6 Reciprocating complex numbers

Reciprocation is division into one, and so complex numbers are reciprocated most easily in polar
form just as division is best performed in polar form: simply reciprocate the magnitude and negate
the angle.

Example: reciprocate 2 6 − 10o

1

26 − 10o

1

2
6 − (−10o)

0.56 10o

5.3.7 Calculator tips

Here is some advice when using calculators to do complex-number arithmetic:

• When manually entering a complex-number value, enclose that value in parentheses. Some
calculators struggle to properly perform order-of-operations with complex numbers. For
example, some calculators will interpret 456 30o×5 as 45 6 (30o×5) to give 456 150o when what
was really intended was (456 30o) × 5 = 2256 30o. Also, note that the practice of highlighting
previous results in a multi-line display and then “pasting” those results into a new calculation
may suffer similar problems.

• Never re-enter a non-round computed result, but instead save that to a memory location
and then recall from memory when needed for further calculations. You will find that
rounding errors compound aggressively in complex-number arithmetic, and so the general good
habit of using memory locations becomes a near-necessity with these calculations. Another
important benefit to using memory locations is the avoidance of the order-of-operations
problem mentioned previously: when recalling a complex-number value from memory and
then placing that variable name (e.g. x) into subsequent calculations, the calculator treats the
memory variable as a complete number rather than incorrectly operating on only one of its
parts.



64 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.4 Capacitor parasitics

5.4.1 Model of a real capacitor

An ideal capacitor exhibits only capacitance, with no inductance, resistance, or other characteristics
to interfere. Real capacitors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real capacitors:

LseriesRseries

Rleakage

Cideal

Rsoak1Csoak1

Rsoak2Csoak2

Capacitor model

In addition to the capacitance the capacitor is supposed to exhibit (Cideal), the capacitor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
inductance (Lseries), and additional energy storage in the form of soakage (also known as dielectric
absorption) whereby the dielectric substance itself absorbs and releases energy after relatively long
periods of time compared to the main (ideal) capacitance.

Some of these parasitic effects – such as leakage resistance and soakage – affect the capacitor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and pulsed
applications. For example, the effective series capacitor-inductor combination formed by Cideal and
Lseries will cause resonance to occur at a particular AC frequency, resulting in much less reactance
at that frequency than what would be predicted by the capacitive reactance formula XC = 1

2πfC
.

Next we will explore common mechanisms for each of these effects.



5.4. CAPACITOR PARASITICS 65

5.4.2 Parasitic resistance in capacitors

Wire resistance, of course, plays a part in this parasitic effect, but this is generally very small due to
the short conductor lengths we typically see with capacitors. More significant is dielectric losses –
energy dissipation caused by the stressing and relaxation of dipoles within the dielectric material –
which act like resistance because energy ends up leaving the component (in the form of heat) and not
returning to the circuit. Electrolytic capacitors have an additional source of parasitic resistance, in
the form of the electrolytic gel substance used to make electrical contact from the metal-foil “plate”
to the surface of the dielectric layer.

Another form of parasitic resistance within a capacitor behaves like a resistor connected in parallel
with the ideal capacitance (Rleakage), resulting from the dielectric not being a perfectly insulating
medium. This parasitic characteristic results in a small current passing through the capacitor even
when the voltage across the capacitor is steady (i.e. dV

dt
is zero).

5.4.3 Parasitic inductance in capacitors

Any time a magnetic field forms around a current-carrying conductor, energy is stored in that
magnetic field. We call this magnetic-based energy-storing capability inductance, and of course
all capacitors must have some inductance due to the wire leads serving as connection points to
the capacitor’s metal plates. Much of a capacitor’s parasitic inductance may be minimized by
maintaining short lead lengths as it attaches to a printed-circuit board.

Parasitic inductance is a problem for capacitors in AC applications because inductive reactance
(XL) tends to cancel out capacitive reactance (XC). If we plot the impedance of a capacitor as a
function of frequency, we would expect an ideal capacitor to manifest a straight-line descent on a
logarithmic plot. However, what we see is that at a certain frequency the series parasitic inductance
resonates with the capacitance leaving only parasitic resistance (ESR), and then past that frequency
the inductive effects overshadow the capacitance:

f

Z

ZC(ideal)

ZC(real)

ESR



66 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.4.4 Other parasitic effects in capacitors

Soakage is an interesting effect resulting from dipole relaxation within the dielectric material itself,
and may be modeled (as shown) by a series of resistor-capacitor subnetworks. This effect is especially
prominent in aluminum electrolytic capacitors, and may be easily demonstrated by discharging a
capacitor (by briefly connecting a shorting wire across the capacitor’s terminals) and then monitoring
the capacitor’s DC voltage slowly “recover” with no connection to an external source.



5.5. INDUCTOR PARASITICS 67

5.5 Inductor parasitics

5.5.1 Model of a real inductor

An ideal inductor exhibits only inductance, with no capacitance, resistance, or other characteristics
to interfere. Real inductors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real inductors:

Rseries Lideal

Cparallel

Inductor model

Lmutual

In addition to the inductance the inductor is supposed to exhibit (Lideal), the inductor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
capacitance (Cparallel), and mutual inductance (Lmutual) with nearby wires and components.

Some of these parasitic effects – such as equivalent series resistance – affect the inductor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and
pulsed applications. For example, the effective inductor-capacitor “tank circuit” formed by Lideal and
Cparallel will cause resonance to occur at a particular AC frequency, resulting in much more reactance
at that frequency than what would be predicted by the inductive reactance formula XL = 2πfL.

Next we will explore common mechanisms for each of these effects.



68 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.5.2 Parasitic resistance in inductors

Wire resistance plays a dominant role in this parasitic effect due to the typically long lengths of wire
necessary to wind the coil that forms most inductors. Wire resistance is not the only dissipative
mechanism at work, though. Other losses include magnetic hysteresis of the iron core material as well
as eddy currents induced in the iron core. An “eddy” current is a circulating electric current induced
within the iron core of an inductor, made possible by the fact that iron is an electrically-conductive
material as well as being ferromagnetic. These circulating currents do no useful work, and dissipate
energy in the form of heating the iron. They may be minimized by forming the iron core from pieces
of iron that are electrically insulated from one another, e.g. forming the iron core from laminated
sheets or powdered particles of iron where each sheet or particle is electrically insulated from the
next by a layer of non-conductive material on its outer surface.

The series resistance of an inductor is always frequency-dependent. In DC conditions (i.e.
frequency of zero Hertz) there will be the basic wire resistance of the coil at play. As frequency
increases from zero, however, both the magnetic core losses from hysteresis and eddy currents also
increase which add to the DC resistance to form a larger ESR. At extremely high frequencies the
skin effect6 further adds to the inductor’s ESR.

6At high frequencies, electric current travels more toward the outer surface of a conductor rather than through the
conductor’s entire cross-section, effectively decreasing the conductor’s cross-sectional area (gauge) as frequency rises.



5.5. INDUCTOR PARASITICS 69

5.5.3 Parasitic capacitance in inductors

Any time an electric field forms between two conductors, energy is stored in that electric field. We
call this electric-based energy-storing capability capacitance, and of course all inductors must have
some capacitance due to the insulating media between wire leads as well as between adjacent turns
of wire within the coil (and between the wire turns and the iron core).

Parasitic capacitance is a problem for inductors in AC applications because capacitive reactance
(XC) tends to cancel out inductive reactance (XL). If we plot the impedance of an inductor as
a function of frequency, we would expect an ideal inductor to manifest a straight-line ascent on
a logarithmic plot. However, what we see is that at a certain frequency the parallel parasitic
capacitance resonates with the inductance to create a nearly-infinite impedance, and then past that
frequency the capacitive effects overshadow the inductance:

f

Z

ESR

ZL(ideal)

ZL(real)

Precious little may be done to eliminate parasitic capacitance within any inductor, whereas
parasitic inductance is fairly easy to minimize within a capacitor. This explains why when faced with
an equivalent choice between a circuit design using capacitors and a circuit design using inductors,
capacitors nearly always win. Simply put, it is easier to make a nearly-ideal capacitor than it is to
make a nearly-ideal inductor.

This also explains why the self-resonant frequency of most inductors is much lower than the
self-resonant frequency of most capacitors: all other factors being equal, an inductor will have more
parasitic capacitance in it than an equivalent capacitor will have parasitic inductance within it,
making the LC product greater for the inductor than for the capacitor.

5.5.4 Other parasitic effects in inductors

Mutual inductance occurs whenever adjacent conductors’ magnetic fields link with one another,
which is difficult to avoid especially in physically dense circuit layouts. This parasitic effect may
be minimized by proper placement of inductive components (e.g. keeping them spaced as far apart
from each other as possible, orienting their axes perpendicular to each other rather than parallel)
as well as by core designs with strong magnetic field containment (e.g. toroidal cores contain their
magnetic fields better than rectangular cores).



70 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES



Chapter 6

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

71



72 CHAPTER 6. PROGRAMMING REFERENCES

6.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.



6.1. PROGRAMMING IN C++ 73

Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x

or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.



74 CHAPTER 6. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.



6.1. PROGRAMMING IN C++ 75

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.



76 CHAPTER 6. PROGRAMMING REFERENCES

6.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.



6.2. PROGRAMMING IN PYTHON 77

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.



78 CHAPTER 6. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.



6.2. PROGRAMMING IN PYTHON 79

assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.



80 CHAPTER 6. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.



6.3. MODELING LOW-PASS FILTERS USING C++ 81

6.3 Modeling low-pass filters using C++

Modeling an RC low-pass filter circuit at a single frequency is very simple in the C++ language, as
the following source code reveals:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float f, Vsrc, R1, C1, XC, Ztotal, I;

Vsrc = 10.0;

R1 = 1.5e3;

C1 = 0.33e-6;

f = 400.0;

cout << "+---Vsrc----R1--+---C1---+ " << endl;

cout << "| | | " << endl;

cout << "| * Out *--+ " << endl;

cout << "| | " << endl;

cout << "+------------------------+ " << endl;

XC = 1 / (2 * M_PI * f * C1);

Ztotal = sqrt(pow(R1,2) + pow(XC,2));

I = Vsrc/Ztotal;

cout << "V_out = " << I * XC << " Volts" << endl;

return 0;

}

This particular program simplifies the mathematics as much as possible, using only real numbers
(rather than complex numbers) for all its calculations. Capacitive reactance is computed using the
formula XC = 1

2πfC1
, and then total series impedance is computed using the Pythagorean theorem

Ztotal =
√

R2
1 + X2

C . After those calculations, the program computes circuit current using Ohm’s
Law (I = Vsrc

Ztotal
) and displays output voltage as the product of current and capacitive reactance

again using Ohm’s Law (Vout = IXC).



82 CHAPTER 6. PROGRAMMING REFERENCES

When compiled and run, the program produces the following output:

+---Vsrc----R1--+---C1---+

| | |

| * Out *--+

| |

+------------------------+

V_out = 6.26505 Volts

Analyzing the source code, we will explore how the program accomplishes the task of modeling
a simple RC low-pass filter. Along the way we will discuss the following programming principles:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Variable types (float), names, and declarations

• Variable assignment/initialization (=)

• Printing text output (cout, <<, endl)

• Basic arithmetic (+, -, *, /)

• Arithmetic functions (pow, sqrt) and arguments

• Accepting user input (cin, >>)

• Loops (while, for)

• Comparison (<=)

• Redirection of console output to a file

As with most text-based computer programming languages, C and C++ alike are evaluated from
left to right, top to bottom, much the same as reading an English-language document.

The first three lines of code instruct the C++ compiler software how to interpret the rest of the
program. The two #include lines tell it to read the iostream and cmath header files (installed on
the computer as part of the compiler software), inside of which reside all the detailed definitions
of C++ instructions such as cout and sqrt. The namespace line instructs the compiler to use
the standard (std) definitions of instruction names. None of these lines of code are particularly
important to our understanding of the filter circuit simulation proper, but they address low-level
details necessary for our program to compile and function.

All of our filter simulation code is indented (for esthetics only), appearing after the opening
brace symbol ({) and before the closing brace symbol (}). These “curly-brace” symbols define the



6.3. MODELING LOW-PASS FILTERS USING C++ 83

boundaries of the main function which marks the starting point of execution for any C or C++
program. The int main (void) line labels the function as being main, as accepting no input
variables (void), and declares it will return an integer number (int) upon completion. Again, these
details are not particularly important to our immediate task of modeling a filter circuit, but they
are necessary for any properly-formed C or C++ program.

Arriving at our filter-specific code, we first encounter the float line which declares several
floating-point variables. These are places in the computer’s memory which will hold decimal-point
numerical values (i.e. non-integers). As you can see, valid variable names in C++ include single
letters (e.g. f and I) as well as letter-number combinations (e.g. R1 and C1), and “words” (e.g. Vsrc
and Ztotal). No spaces are allowed in variable names, as C and C++ interpret space characters as
delimiters separating different entities.

Independent lines of executable code must be terminated by a semicolon character in C and
C++ alike. This is analogous to a period at the end of an English sentence, signifying the end of a
sentence. Languages such as C and C++ ignore “whitespace” in the source code file, and so must
be explicitly told when one line of code ends and another line begins7.

The next four lines of code assign numerical values to some of the variables. The “equals” symbol
(=) has a slightly different meaning in C and C++ than in mathematics. In general math notation,
this symbol expresses equality between the entities on either side of it. In C/C++, a single equals
symbol denotes an action for the computer to take, meaning the variable on the left will be set equal
to the value on the right. In general mathematics, f = 400.0 means the same thing as 400.0 = f ,
but in C/C++ the latter statement would be nonsense, for the computer cannot assign a value to
the constant 400.

Note how C++ accepts power-of-ten notation (e.g. 0.33e-6 means 0.33 × 10−6).

Next, we see several cout lines, the purpose of which is to print text to the computer’s display
console. Anything enclosed within quotation marks will be printed verbatim by cout. At the end of
each cout line we see another character included in the print action, endl: this forces cout to print
an end-of-line character so that our displayed text does not appear as one run-on sentence.

It should be noted that these cout lines are not strictly necessary to simulate a filter circuit. All
they do for the user is print a crude rendering of the filter circuit to give some context to what the
rest of the program is doing.

After this we see three lines of code where the mathematical computations take place. Basic
arithmetic operations are simple enough to represent in C/C++: addition (+), subtraction (-),
multiplication (*), and division (/), and parentheses work as grouping symbols just as they do in
conventional math notation. What might appear strange here to anyone familiar with mathematical
notation is the use of two types of C++ math functions: square root (sqrt) and powers (pow). In
a mathematical formula we would see these two operations denoted using symbology such as

√
and x2, but these symbols do not exist in plain-text typesetting and so C++ requires a different

7It is valid in C and C++ to “stack” separate lines of code in one actual line within the text file, so long as the
semicolons remain intact. For example, the four lines initializing Vsrc, R1, C1, and f with values could be written in
the text editor as a single line: Vsrc = 10.0; R1 = 1.5e3; C1 = 0.33e-6; f = 400.0;. It is typical to find C/C++
source code written not just for function, but for readability so that human beings analyzing the code will have an
easier time understanding what it is supposed to do.



84 CHAPTER 6. PROGRAMMING REFERENCES

method of description. The solution is to use functions as we typically see in higher mathematics
(e.g. f(x)).

For example, to raise R1 and XC to the second power (i.e. square), we use the pow function that
is part of the basic C/C++ math library. So, R2

1 is represented as pow(R1,2) and X2
C is represented

as pow(XC,2). The terms contained within each functions’ parentheses are called arguments to the
function. In the case of the pow function, the first argument is the variable to be raised to a power
and the second argument is the power we are raising that variable to.

For the square root operation, we use the sqrt function which expects a single argument.
For example, if we wished to take the square root of 9 we would write it as

√
9 using standard

mathematical notation but we would code it as sqrt(9) in C or C++.

The last cout line in this program prints some explanatory text to the console, sandwiching
a numerical display of output voltage. Note how the text to be printed verbatim is enclosed in
quotation marks, but the mathematical expression I * XC is not because we want that expression’s
value to be printed and not “I * XC” literally. As usual, an endl is printed at the end to terminate
the line on the console display.

Finally, we have a return statement providing a numerical value (in this case, zero) as promised
at the conclusion of the main function. Again, this is not strictly necessary for our filter simulation
to function, but it is a good programming practice. When we begin writing our own functions in
C++ this concept will become very important!



6.3. MODELING LOW-PASS FILTERS USING C++ 85

This filter-modeling program is very simple, and could be made much more useful than it
presently is. One practical change would be to make it so the user can enter their own filter
circuit parameters at run-time, instead of having those parameters “hard-coded” into the source
code where only the programmer has access to alter them.

C++ provides an instruction called cin for this purpose, and it works in similar fashion to cout.
Note how these are applied in the following edit to the program:

#include <iostream>

#include <math.h>

using namespace std;

int main (void)

{

float f, Vsrc, R1, C1, XC, Ztotal, I;

cout << "Source voltage (Volts) = ";

cin >> Vsrc;

cout << "Resistor value (Ohms) = ";

cin >> R1;

cout << "Capacitor value (Farads) = ";

cin >> C1;

cout << "Frequency (Hz) = ";

cin >> f;

cout << "+---Vsrc----R1--+---C1---+ " << endl;

cout << "| | | " << endl;

cout << "| * Out *--+ " << endl;

cout << "| | " << endl;

cout << "+------------------------+ " << endl;

XC = 1 / (2 * M_PI * f * C1);

Ztotal = sqrt(pow(R1,2) + pow(XC,2));

I = Vsrc/Ztotal;

cout << "V_out = " << I * XC << " Volts" << endl;

return 0;

}



86 CHAPTER 6. PROGRAMMING REFERENCES

When we run this program, it prompts us for source voltage value, resistor value, capacitor value,
and frequency before displaying the diagram and calculating output voltage. In this case, I entered
45.2 Volts, 12 kΩ (entered as 12000), 0.01 µF (entered as 0.01e-6), and 2.5 kHz (entered as 2.5e3):

Source voltage (Volts) = 45.2

Resistor value (Ohms) = 12000

Capacitor value (Farads) = 0.01e-6

Frequency (Hz) = 2.5e3

+---Vsrc----R1--+---C1---+

| | |

| * Out *--+

| |

+------------------------+

V_out = 21.183 Volts

Re-running the program gives us fresh opportunity to enter parameters. One practical use of
this feature is to test the same filter circuit at different frequency values. Here I have re-run the
program, changing only the frequency from 2.5 kHz to 3 kHz:

Source voltage (Volts) = 45.2

Resistor value (Ohms) = 12000

Capacitor value (Farads) = 0.01e-6

Frequency (Hz) = 3e3

+---Vsrc----R1--+---C1---+

| | |

| * Out *--+

| |

+------------------------+

V_out = 18.2764 Volts

As expected for a low-pass filter, the output voltage decreases as frequency increases. This
prompts another idea for a useful feature. Why not re-code the program to prompt just once for
the circuit component values (source voltage, resistance, capacitance) and then have it repeatedly
prompt us for different frequency values? That way we could analyze how any one filter would
respond to a multitude of frequency values without having to re-enter everything each time.

In C and C++, the while instruction causes portions of a program to “loop” (i.e. repeatedly
execute). The basic structure of a while loop looks like this:

while (1)

{

// Code to be executed

// repeatedly . . .

}



6.3. MODELING LOW-PASS FILTERS USING C++ 87

The while loop’s argument is evaluated as either “true” (1) or “false” (0) – if true, the code
enclosed within the while loop’s brace symbols repeatedly executes; if not the computer skips past
the while loop entirely and executes whatever code comes after it.

Examine the following code to see how the while instruction provides this “looping” feature:

#include <iostream>

#include <math.h>

using namespace std;

int main (void)

{

float f, Vsrc, R1, C1, XC, Ztotal, I;

cout << "Source voltage (Volts) = ";

cin >> Vsrc;

cout << "Resistor value (Ohms) = ";

cin >> R1;

cout << "Capacitor value (Farads) = ";

cin >> C1;

cout << "+---Vsrc----R1--+---C1---+ " << endl;

cout << "| | | " << endl;

cout << "| * Out *--+ " << endl;

cout << "| | " << endl;

cout << "+------------------------+ " << endl;

while(1)

{

cout << "Frequency (Hz) = ";

cin >> f;

XC = 1 / (2 * M_PI * f * C1);

Ztotal = sqrt(pow(R1,2) + pow(XC,2));

I = Vsrc/Ztotal;

cout << "V_out = " << I * XC << " Volts" << endl;

}

return 0;

}

Note how the cout and cin lines related to the user prompts for frequency have been moved
after (i.e. below) the cout lines printing the circuit diagram, and how the last lines of code (all



88 CHAPTER 6. PROGRAMMING REFERENCES

except the return statement) have been placed inside a while loop. Those “looped” code lines are
all indented purely for ease of reading, as C++ does not care about whitespace.

The following screen-capture shows an example of this program simulating the same filter circuit
as last time, but for six different frequency values from 2.5 kHz to 5 kHz:

Source voltage (Volts) = 45.2

Resistor value (Ohms) = 12000

Capacitor value (Farads) = 0.01e-6

+---Vsrc----R1--+---C1---+

| | |

| * Out *--+

| |

+------------------------+

Frequency (Hz) = 2.5e3

V_out = 21.183 Volts

Frequency (Hz) = 3e3

V_out = 18.2764 Volts

Frequency (Hz) = 3.5e3

V_out = 16.0167 Volts

Frequency (Hz) = 4e3

V_out = 14.2255 Volts

Frequency (Hz) = 4.5e3

V_out = 12.7784 Volts

Frequency (Hz) = 5e3

V_out = 11.5889 Volts

Since this while loop’s condition is always true, the program must be externally interrupted.
When running programs in console mode, the conventional way to do this is to simultaneously press
the “Control” and “C” buttons on the keyboard. The <Ctrl-C> sequence issues an interrupt signal
to the program in order to halt execution.

Yet another improvement we could make to this program is to have it calculate a sequence of test
frequencies given a user-entered range. For example, instead of requiring the user to enter frequency
value after frequency value, we could simply prompt the user for a “starting” frequency, an “ending”
frequency, and a frequency interval value, and have the computer do the rest.

A different type of programming loop we could use for this purpose is the for loop, as an
alternative to the while loop. The basic form of this instruction is shown here:

for (start ; during ; change)

{

// Code to be executed

// repeatedly . . .

}



6.3. MODELING LOW-PASS FILTERS USING C++ 89

Examine the following code to see how this for loop functions:

#include <iostream>

#include <math.h>

using namespace std;

int main (void)

{

float f, f_start, f_end, f_step, Vsrc, R1, C1, XC, Ztotal, I;

cout << "Source voltage (Volts) = ";

cin >> Vsrc;

cout << "Resistor value (Ohms) = ";

cin >> R1;

cout << "Capacitor value (Farads) = ";

cin >> C1;

cout << "+---Vsrc----R1--+---C1---+ " << endl;

cout << "| | | " << endl;

cout << "| * Out *--+ " << endl;

cout << "| | " << endl;

cout << "+------------------------+ " << endl;

cout << "Starting frequency (Hz) = ";

cin >> f_start;

cout << "Ending frequency (Hz) = ";

cin >> f_end;

cout << "Frequency step interval (Hz) = ";

cin >> f_step;

cout << "Frequency , V_out" << endl;

for (f = f_start ; f <= f_end ; f = f + f_step)

{

XC = 1 / (2 * M_PI * f * C1);

Ztotal = sqrt(pow(R1,2) + pow(XC,2));

I = Vsrc/Ztotal;

cout << f << " , " << I * XC << endl;

}

return 0;

}



90 CHAPTER 6. PROGRAMMING REFERENCES

Running this program with the same component values and a user-entered frequency range of 1
kHz to 5 kHz in 500 Hz steps:

Source voltage (Volts) = 45.2

Resistor value (Ohms) = 12000

Capacitor value (Farads) = 0.01e-6

+---Vsrc----R1--+---C1---+

| | |

| * Out *--+

| |

+------------------------+

Starting frequency (Hz) = 1000

Ending frequency (Hz) = 5000

Frequency step interval (Hz) = 500

Frequency , V_out

1000 , 36.0909

1500 , 29.9403

2000 , 24.9805

2500 , 21.183

3000 , 18.2764

3500 , 16.0167

4000 , 14.2255

4500 , 12.7784

5000 , 11.5889

Examining this program’s source code, we see three new floating-point variables added to the
declaration near the top of the code listing: f start, f end, and f step. Recall that spaces are
not allowed in C/C++ variable names, and in order to make these variable names more readable
to human beings we use underscore characters to separate what would ordinarily be single-letter
variable names and subscripts (e.g. fend is written as f end in C++).

The for statement deserves some explanation as well. Within its parentheses are three
arguments, telling for what the value of frequency (f) should start out at, what condition of f

must be met for the loop to repeat, and how much f should increment with every iteration of the
loop. In our case, f needs to begin at the user-entered value of f start; the loop should repeat so
long as f is less than or equal to the user-entered value of f end; and with each pass through the
loop we need to increment f by the user-entered value of f step.

With the addition of the for loop we have also modified the formatting of the last cout

instruction. Now, that final cout instruction prints the frequency and voltage values separated
by a comma. A newly-added cout instruction just prior to the for loop prints a text “header” with
Frequency and Vout also separated by a comma. These changes serve a new purpose, that being
to make the program’s printed output compatible with the standard comma-separated-value format
(.csv) of modern spreadsheet software applications. After running this program, the user will be
able to copy-and-paste these columns of numbers into a spreadsheet for easy graphing.



6.3. MODELING LOW-PASS FILTERS USING C++ 91

The following screenshot shows Microsoft Excel graphing this same filter data output8 by our
C++ program:

8A relatively easy way to do this is to run the C++ program from a console, using the redirection symbol (>).
For example, if we saved our source code file under the name filter.cpp and then entered g++ -o filter.exe

filter.cpp at the command-line interface to compile it, the resulting executable file would be named filter.exe. If
we simply type ./filter.exe and press Enter, the program will run as usual. If, however we type ./filter.exe >

graph.csv and press Enter, the program will run “silently” with all of its printed text output redirected into a file
named graph.csv instead of to the console for us to see. Alternatively, we can use the pipe (|) and tee commands
to send the program’s text output both to the console (for viewing) and to a file of our own choosing for spreadsheet
import: ./filter.exe | tee graph.csv. Then, starting Microsoft Excel, we can tell it to read graph.csv as a
comma-separated-value file. Once read by Excel, those two columns of numbers may be selected (using your mouse)
and linked to a “scatter plot” style of chart for graphical presentation.



92 CHAPTER 6. PROGRAMMING REFERENCES

Spreadsheets aren’t the only software applications capable of plotting numerical data from a text
file. Taking the same comma-delimited text from the output of our C++ program and feeding that
data in to an open-source software application called gnuplot using the following commands9:

gnuplot instruction code:

set datafile separator ","

set style line 1 lw 2 lc rgb "red"

plot ’graph.csv’ using 1:2 with lines ls 1

 10

 15

 20

 25

 30

 35

 40

 1000  1500  2000  2500  3000  3500  4000  4500  5000

’graph.csv’ using 1:2

9These commands may be entered interactively at the gnuplot prompt or saved to a text file (e.g. format.txt)
and invoked at the operating system command line (e.g. gnuplot -p format.txt).



6.4. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 93

6.4 Discrete Fourier Transform algorithm in C++

The following page of C++ code is the main() function for a Discrete Fourier Transform algorithm.
As written, this C++ program simulates a square wave and computes the DC average value as well
as the first nine harmonics of this wave, although the f(x) function code could be re-written to
generate any test waveform desired.

A DFT algorithm requires no calculus, only simple trigonometric functions (sine and cosine) and
basic arithmetic (multiplication and addition, squares and square roots). The basic idea of it is
simple enough: multiply the instantaneous values of the test waveform by the corresponding values
of a sinusoid at some harmonic of the test frequency, and sum all of those values over one period of
the test waveform. If the sum adds up to zero (or nearly) zero, then that harmonic does not exist
in the test waveform. The magnitude of this sum indicates how strong the harmonic is in the test
waveform.

Even the mathematical foundation of the DFT is simple, and requires no calculus. It is based on
trigonometric identities, specifically those involving the product (multiplication) of sine and/or cosine
terms. When two sinusoids of differing frequency are multiplied together, the result is two completely
different sinusoids: one having a frequency equal to the sum of the two original frequencies, and
the other having a frequency equal to the difference of the two original frequencies. The basic
trigonometric identity is shown here:

cos x cos y =
cos(x − y) + cos(x + y)

2

Next, is the version of this using ωx and ωy to represent the two waves’ frequencies:

cos(ωxt) cos(ωyt) =
cos(ωxt − ωyt) + cos(ωxt + ωyt)

2

If the sinusoids being multiplied happen to have the same frequency and be in-phase with each
other, the result is a second harmonic and a DC (constant) value (i.e. one sinusoid having a frequency
of 2ω and the other having a frequency of zero). So, in order to test a waveform for the presence of a
particular harmonic, we multiply it by that other harmonic and see if the resulting product contains
DC. How do we test a wave for DC? We sum up all its instantaneous values and see if the result is
anything other than zero!

Any practical DFT needs to be just a bit more sophisticated, though, because we must account
for phase. We obtain a DC-containing product only if the frequencies and phases match. If we
happen to multiply a wave by another that’s exactly 90o out of phase, we don’t get any DC. To
account for phase shift, then, what we do is compute two products and two sums: one based on a
sine wave and the other based on a cosine wave (i.e. 90o apart from each other, so at least one of
these two sums will show a match) and then tally their respective sums by the Pythagorean theorem:
√

x2 + y2. The rationale for using sine and cosine waves is the same as representing an AC phasor
quantity in rectangular form: the sum based on cosines represents the real component of the phasor
while the sum based on sines represents the imaginary component.

√

x2 + y2 simply computes the
polar-form magnitude of these sinusoids’ sums.



94 CHAPTER 6. PROGRAMMING REFERENCES

#include <iostream>

#include <math.h>

using namespace std;

float f(int x);

int main(void)

{

int sample, harmonic;

float sinsum, cossum, polarsum[10];

for (harmonic = 1; harmonic < 10; ++harmonic)

{

sinsum = 0;

cossum = 0;

for (sample = 0; sample < 128; ++sample)

{

sinsum = sinsum + (f(sample) * (sin(sample*harmonic*2*M_PI/128)));

cossum = cossum + (f(sample) * (cos(sample*harmonic*2*M_PI/128)));

}

polarsum[harmonic] = sqrt(pow(cossum, 2) + pow(sinsum, 2));

cout << "Harmonic = " << harmonic << " -- Normalized weight = "

<< fixed << polarsum[harmonic] / polarsum[1] << endl;

}

return 0;

}

float f(int x)

{

if (x < 64)

return 1.0;

else

return -1.0;

}



6.4. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 95

What follows is an explanation of how this DFT algorithm’s code works.

• The include and namespace directives instruct the compiler to be prepared for functions of
text printing (iostream) and for mathematics (math.h).

• The next line (float f(int x);) is a function prototype for a C++ function named f. This
function purposely resembles the standard mathematical function form f(x) because it is where
the code will reside for the waveform to be analyzed. The input to this function will be an
integer number, and the output will be a floating-point number (i.e. capable of fractional
values, unlike an integer). The domain of our function happens to be 0 to 127, in whole-
numbered steps. The range of our function can be anything representable by a floating-point
number. The actual code for this function may appear later in the file (as is the case in this
example), or it may even reside in its own source file to be linked to the main program at
compilation time.

• Inside the main() function we first declare several variables, both integer and floating-point.
All mathematical functions are computed over 128 samples, numbered 0 through 127. During
each of these samples, we compute the value of our test waveform (f(x)) and multiply it by
the corresponding value of a sine wave and of a cosine wave, each at some harmonic frequency
of the test waveform. The inner for() loop computes these products, and also a running
total of each (sinsum and cossum). After each completion of the inner for() loop, we use
the Pythagorean Theorem to combine the sine- and cosine-sums so that we get a complete
summation (polarsum) for that harmonic, saving each one in an array polarsum[], with
polarsum[1] being the basis for normalizing the values of all others. We then print that
summed value. The outer for() loop repeats this process for harmonics 1 through 9.

• Our test waveform is generated within its own subroutine, called a function in C and C++
alike. Here is where we insert code to generate whatever waveform we wish to analyze. In this
particular example, it is a square wave with a peak value of 1. The algorithm for creating this
square wave is extremely simple: for x values from 0 to 63 the wave is at +1, and for x values
from 64 to 127 the wave is at −1. Since the domain of x happens to be 0 to 127 (as called by
the main() program) this produces one symmetrical cycle of a square wave.

Locating the f(x) function within its own section of C++ code allows for easy modification
of that function in the future, without modifying the main() program. This is generally a good
programming practice: to make your code modular so that individual sections of it may be separately
edited (and even reside in separate source files!). Doing this makes it easier for teams of programmers
to develop projects together, and also makes it easier for code to be re-used in other projects.



96 CHAPTER 6. PROGRAMMING REFERENCES

6.4.1 DFT of a square wave

When the example code previously shown is compiled and run, the result is the following text output:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.000000

Harmonic = 3 -- Normalized weight = 0.333601

Harmonic = 4 -- Normalized weight = 0.000000

Harmonic = 5 -- Normalized weight = 0.200483

Harmonic = 6 -- Normalized weight = 0.000000

Harmonic = 7 -- Normalized weight = 0.143548

Harmonic = 8 -- Normalized weight = 0.000000

Harmonic = 9 -- Normalized weight = 0.112009

This program assumes the first harmonic’s amplitude is the “norm” by which all other harmonics
are scaled. Therefore, the first harmonic always shows up as having a normalized weight of 1, with
all other harmonic values shown proportionate to that norm.

Fourier theory predicts that a square wave with a 50% duty cycle will only contain odd harmonics
(in agreement with our symmetry rule), the relative amplitudes of those harmonics diminishing
by a factor of 1

n
where n is the harmonic number. Therefore, if the first harmonic is normalized

to an amplitude of 1, then the third harmonic will have an amplitude of 1
3 , the fifth harmonic an

amplitude of 1
5 , etc.:

vsquare =
4

π
Vm

(

sin ωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

)

• 1st harmonic = 1
1 = 1

• 3rd harmonic = 1
3 ≈ 0.3333

• 5th harmonic = 1
5 = 0.2000

• 7th harmonic = 1
7 ≈ 0.1429

• 9th harmonic = 1
9 ≈ 0.1111

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

By modifying just the code within the f(x) function we may compute the harmonic content of
different wave-shapes. The next several examples will show the modified f(x) function code and
the resulting output of this DFT algorithm.



6.4. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 97

6.4.2 DFT of a sine wave

First, we will re-code f(x) to generate a simple sine wave. The argument x passed to this function
is an integer number starting at zero and incrementing to 127, representing a sequence of samples
spanning one period of the fundamental frequency, and so some scaling arithmetic is necessary to
convert this domain into a value in radians from 0 to 2π suitable for the sin() function:

float f(int x) // Sine wave function

{

return sin(2 * M_PI * x / 128.0);

}

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.000000

Harmonic = 3 -- Normalized weight = 0.000000

Harmonic = 4 -- Normalized weight = 0.000000

Harmonic = 5 -- Normalized weight = 0.000000

Harmonic = 6 -- Normalized weight = 0.000000

Harmonic = 7 -- Normalized weight = 0.000000

Harmonic = 8 -- Normalized weight = 0.000000

Harmonic = 9 -- Normalized weight = 0.000000

Not surprisingly, the result is a strong first harmonic and no other harmonics. Also, we get the
same results if we replace the sine function with a cosine function in f(x): in either case, a plain
sinusoid only has one harmonic component, and that is the first harmonic.



98 CHAPTER 6. PROGRAMMING REFERENCES

6.4.3 DFT of a delta function

As another test of our DFT algorithm, we will re-code f(x) to output a delta function, which is
nothing more than the briefest of impulses. A delta function consists of a “spike”10 at time zero
followed (and preceded) by values of zero:

float f(int x) // Delta impulse function

{

if (x == 0)

return 1.0;

else

return 0.0;

}

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 1.000000

Harmonic = 3 -- Normalized weight = 1.000000

Harmonic = 4 -- Normalized weight = 1.000000

Harmonic = 5 -- Normalized weight = 1.000000

Harmonic = 6 -- Normalized weight = 1.000000

Harmonic = 7 -- Normalized weight = 1.000000

Harmonic = 8 -- Normalized weight = 1.000000

Harmonic = 9 -- Normalized weight = 1.000000

The result is all harmonics at equal strength, which is what the Fourier transform predicts for a
delta function: a constant-valued function in the frequency domain. In other words, an infinitesimally
brief impulse is equivalent to a superposition of all frequencies.

This is a good example of our steepness rule in action: a delta function consists of nothing but
steepness, being a “spike” up and down over the briefest possible time interval. As such, it contains
all frequencies, which of course includes the nine harmonic frequencies shown.

If we consider carefully how the DFT algorithm works, it becomes evident why this must be
so, and precisely how every frequency’s value must have the same normalized value. The very first
sample (sample = 0) is the only one where the delta function is not zero, and therefore this will be
the only sample where any of the sums tallied in the program accumulate any value. Furthermore,
the only sums accumulating value during this sample must be the cosine sums because the sine
function is zero at an angle of zero, while cosine is one at an angle of zero. Therefore, every cosine
function multiplied by the delta impulse function will increment its sum by one. This must include
every cosine of every conceivable frequency and not just the select harmonics tested by our DFT
algorithm. Therefore, based on the criteria of the DFT algorithm, a delta function must contain all
cosine terms, of every frequency.

10A true Dirac delta function actually consists of an infinite-magnitude spike with zero width, but having an
enclosed area equal to unity. We cannot emulate that in procedural code, but we may approximate it!



6.4. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 99

In practice there is no such thing as a real delta impulse function. A function consisting of a pulse
of infinitesimal width defies physical implementation, but nevertheless is useful as a theoretical tool,
and serves as a limit for very brief (real) pulses. The practical lesson to learn here is that the spectra
of real pulse signals approaches uniformity as the width of the pulse approaches zero – i.e. the briefer
the pulse duration, the wider the spread of constituent frequencies. This means any circuitry tasked
with amplifying, attenuating, or otherwise processing this pulse signal must contend with a broad
span of frequencies, and failure to properly process all of the frequencies within that pulse signal
invariably corrupts the pulse in some way.



100 CHAPTER 6. PROGRAMMING REFERENCES

6.4.4 DFT of two sine waves

Next, we will try modifying f(x) to generate a superposition of two sine waves, one at 5× our
assumed fundamental frequency, and another at 8× the fundamental:

float f(int x) // Dual sine waves

{

return sin(5 * 2 * M_PI * x / 128.0)

+ sin(8 * 2 * M_PI * x / 128.0);

}

From this we would expect a harmonic spectrum consisting of a 5th harmonic and 8th harmonic,
and nothing else. What we obtain looks strange at first, though:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 3.847159

Harmonic = 3 -- Normalized weight = 4.564931

Harmonic = 4 -- Normalized weight = 5.773269

Harmonic = 5 -- Normalized weight = 159252960.000000

Harmonic = 6 -- Normalized weight = 4.397245

Harmonic = 7 -- Normalized weight = 2.756398

Harmonic = 8 -- Normalized weight = 159252960.000000

Harmonic = 9 -- Normalized weight = 1.914945

The amplitudes of the 5th and 8th harmonics are enormous, while the others are meager by
comparison. Remember, though, that our DFT algorithm normalizes all harmonic amplitudes to
that of the first harmonic, which in this particular case should be virtually nonexistent. Therefore,
the first harmonic registers with a weight of 1, the 5th and 8th with very large weights, and the
others about as small as the first harmonic (in comparison with the 5th and 8th). So, even with the
crude nature of this algorithm, we get a spectral response that makes sense for the test waveform.

This is a good example of our superposition rule, where the spectrum of two superimposed
waves is the superposition of those waves’ spectra. The 5th harmonic wave consisted of a single peak
in its “spectrum” as did the 8th harmonic wave. When these two waves were added in their time
domains, the result is a spectrum consisting of those two frequency peaks, no more and no less.



6.4. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 101

6.4.5 DFT of an amplitude-modulated sine wave

Next, we will re-code f(x) to generate an amplitude-modulated waveform: the product of a sine
wave at 2× the assumed fundamental and another sine wave at 5× the fundamental.

float f(int x) // Mixed sine waves (AM)

{

return sin(2 * 2 * M_PI * x / 128.0)

* sin(5 * 2 * M_PI * x / 128.0);

}

Modulation theory predicts that “mixing” two sinusoids in this manner will result in two
completely new frequencies: one being the sum of the two mixed frequencies, and the other being
the difference of the two mixed frequencies. So, for one sine wave oscillating at 2ω and another at
5ω, we would expect one sinusoid at (5 + 2)ω and another at (5 − 2)ω.

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.077597

Harmonic = 3 -- Normalized weight = 17697600.000000

Harmonic = 4 -- Normalized weight = 0.180189

Harmonic = 5 -- Normalized weight = 0.128424

Harmonic = 6 -- Normalized weight = 0.152171

Harmonic = 7 -- Normalized weight = 17697598.000000

Harmonic = 8 -- Normalized weight = 0.150321

Harmonic = 9 -- Normalized weight = 0.557960

True to form, the result is a pair of harmonics in the spectrum, a 3rd harmonic and a 7th
harmonic.

This is an excellent example of our non-linear systems rule: when signals pass through
non-linear systems, new frequencies arise. Multiplication of two independent signals is definitely
nonlinear, as doubling both signals’ amplitudes does not result in a doubled output amplitude. What
came into this system was a 2nd and 5th harmonic, but what left was a 3rd and 7th harmonic.



102 CHAPTER 6. PROGRAMMING REFERENCES

6.4.6 DFT of a full-rectified sine wave

Next, we will re-code f(x) to generate the first half (i.e. positive half) of a sine wave. This is all we
need to simulate a full-wave rectified sinusoid since all other half-periods of that wave will identical
to the first. To represent this in code, we just take the same line used for the sine wave and eliminate
the 2 multiplier. In other words, instead of calculating sin

(

2πx
128

)

we compute sin
(

πx
128

)

:

float f(int x) // Full-rectified sine wave

{

return sin(M_PI * x / 128.0);

}

The result is shown here:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.200121

Harmonic = 3 -- Normalized weight = 0.085852

Harmonic = 4 -- Normalized weight = 0.047763

Harmonic = 5 -- Normalized weight = 0.030450

Harmonic = 6 -- Normalized weight = 0.021127

Harmonic = 7 -- Normalized weight = 0.015534

Harmonic = 8 -- Normalized weight = 0.011915

Harmonic = 9 -- Normalized weight = 0.009439

Fourier theory predicts the relative amplitudes of each harmonic for a full-rectified sine wave
diminish by a factor of 1

4n2−1 where n is the harmonic number. Therefore, if the first harmonic has

an amplitude of 1
3 , then the second harmonic will have an amplitude of 1

15 , the third harmonic an
amplitude of 1

35 , etc. If we normalize all the amplitudes to that of the first harmonic, the relative
amplitudes will be as follows:

• 1st harmonic = 3
3 = 1

• 2nd harmonic = 3
15 = 1

5 = 0.200

• 3rd harmonic = 3
35 ≈ 0.0857

• 4th harmonic = 3
63 = 1

21 ≈ 0.0476

• 5th harmonic = 3
99 = 1

33 ≈ 0.0303

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

This is a good example of our symmetry rule. A rectified sine wave does not have the same
shape when inverted, and so we know it must contain even-numbered harmonics. Contrast this
against symmetrical waveforms such as the square wave from the original code example, generating
a spectrum consisting only of odd-numbered harmonics.



6.5. SPECTRUM ANALYZER IN C++ 103

6.5 Spectrum analyzer in C++

This program builds on the foundation of the Discrete Fourier Transform (DFT) from the previous
section, but instead of displaying only the normalized harmonic amplitudes this program outputs
a comma-separated value (CSV) file that may be plotted using any spreadsheet application (e.g.
Microsoft Excel) or mathematical visualizing application (e.g. gnuplot).

I happened to use gnuplot to generate the spectra. My gnuplot script is as follows, saved to a
file named script.txt:

set datafile separator ","

set xrange [0:10.0]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1

All C++ programs were compiled using g++ and run with text output redirected to a file named
data.csv using the following command-line instructions:

g++ main.cpp ; ./a.out > data.csv

Then, after the comma-separated value file was populated with data from the C++ program’s
execution, I run gnuplot using the following command:

gnuplot -p script.txt



104 CHAPTER 6. PROGRAMMING REFERENCES

#include <iostream>

#include <math.h>

using namespace std;

#define MAX 4096

#define CYCLES 10

float f(int x);

int main(void)

{

int sample;

float iharm, sinsum, cossum, polarsum;

for (iharm = 0.0; iharm < 10.0; iharm = iharm + 0.1)

{

sinsum = 0;

cossum = 0;

for (sample = 0; sample < MAX; ++sample)

{

sinsum = sinsum + (f(sample) * (sin(CYCLES*sample*iharm*2*M_PI/MAX)));

cossum = cossum + (f(sample) * (cos(CYCLES*sample*iharm*2*M_PI/MAX)));

}

polarsum = sqrt(pow(cossum, 2) + pow(sinsum, 2));

cout << iharm << " , " << polarsum << endl;

}

return 0;

}

float f(int x)

{

// (return value of function to be analyzed here)

}



6.5. SPECTRUM ANALYZER IN C++ 105

6.5.1 Spectrum of a square wave

float f(int x) // Square wave

{

if ((x % (MAX / CYCLES)) < (0.5 * MAX / CYCLES))

return 1.0;

else

return -1.0;

}

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  2  4  6  8  10

’data.csv’ using 1:2



106 CHAPTER 6. PROGRAMMING REFERENCES

6.5.2 Spectrum of a sine wave

float f(int x) // Sine wave

{

return sin(CYCLES*x*2*M_PI/MAX);

}

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10

’data.csv’ using 1:2



6.5. SPECTRUM ANALYZER IN C++ 107

6.5.3 Spectrum of a sine wave product

float f(int x) // Product of f and 1.5f sine waves

{

return sin(CYCLES*x*2*M_PI/MAX) * sin(CYCLES*1.5*x*2*M_PI/MAX);

}

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10

’data.csv’ using 1:2

Note the two peaks at 0.5f and 2.5f : frequencies representing the difference and sum,
respectively, of the original sinusoids.



108 CHAPTER 6. PROGRAMMING REFERENCES

6.5.4 Spectrum of an impulse

float f(int x) // Unity impulse function at x = 0

{

if (x == 0)

return 1;

else

return 0;

}

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10

’data.csv’ using 1:2

Note how the impulse is equivalent to a spectrum consisting of all frequencies. Since the
amplitude of the spectrum is much less than in previous examples, I used a different y-axis range in
gnuplot than in the other simulations:

set datafile separator ","

set xrange [0:10.0]

set yrange [0:1.5]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1



Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

109



110 CHAPTER 7. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.



111

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.



112 CHAPTER 7. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?



7.1. CONCEPTUAL REASONING 113

7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.



114 CHAPTER 7. QUESTIONS

7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.



7.1. CONCEPTUAL REASONING 115

7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Capacitance

Inductance

Reactance

Limiting cases as a problem-solving strategy

Open

Short

Voltage divider

Bode plot

Cutoff

Passband



116 CHAPTER 7. QUESTIONS

Stopband

Bandwidth

Roll-off

Frequency domain

Sinusoidal decomposition (i.e. Fourier’s Theorem)

Time domain



7.1. CONCEPTUAL REASONING 117

7.1.3 Explaining the meaning of calculations

An unfortunate tendency among beginning students in any quantitative discipline is to perform
calculations without regard for the real-world meanings of the values, and also to follow mathematical
formulae without considering the general principles embodied in each. To ignore concepts while
performing calculations is a serious error for a variety of reasons, not the least of which being an
increased likelihood of computing results that turn out to be nonsense.

In the spirit of honoring concepts, I present to you a quantitative problem where all the
calculations have been done for you, but all variable labels, units, and other identifying data have
been stripped away. Your task is to assign proper meaning to each of the numbers, identifying the
correct unit of measurement in each case, explaining the significance of each value by describing
where it “fits” into the circuit being analyzed, and identifying the general principle employed at
each step.

Here is the schematic diagram of the circuit:

R1

R2

390 Ω

Vsource

130 Ω

6 V @ 60 Hz

1.2 H

L1

C1 3.3 µF

Here are all the calculations performed in order from first to last:

1. 1
(2π60)(3.3×10−6) = 803.82

2. (2π60)(1.2) = 452.39

3. 1
1

130 6 0o
+ 1

452.39 6 90o

= 124.94 6 16.03o

4. 124.94 6 16.03o + 390 6 0o + 803.82 6 − 90o = 923.05 6 − 56.45o

5. 6 6 0o

923.05 6 −56.45o
= 6.500 × 10−3 6 56.45o

6. (6.500 × 10−3 6 56.45o)(390 6 0o) = 2.535 6 56.45o

7. (6.500 × 10−3 6 56.45o)(803.82 6 − 90o) = 5.225 6 − 33.55o

8. (6.500 × 10−3 6 56.45o)(124.94 6 16.03o) = 0.8122 6 72.49o



118 CHAPTER 7. QUESTIONS

9. 2.535 6 56.45o + 5.225 6 − 33.55o + 0.8122 6 72.49o = 6 6 0o

10. 0.8122 6 72.49o

130 6 0o
= 6.247 × 10−3 6 72.49o

11. 0.8122 6 72.49o

452.39 6 90o
= 1.795 × 10−3 6 − 17.51o

12. 6.247 × 10−3 6 72.49o + 1.795 × 10−3 6 − 17.51o = 6.500 × 10−3 6 56.45o

13. cos−56.45o = 0.5526

14. (6)(6.500 × 10−3) = 39.00 × 10−3

15. (39.00 × 10−3)(cos−56.45o) = 21.55 × 10−3

16. (39.00 × 10−3)(sin−56.45o) = 32.51 × 10−3

17.
√

(21.55 × 10−3)2 + (32.51 × 10−3)2 = 39.00 × 10−3

Explain what each value means in the circuit, identify its unit of measurement, and identify the
general principle used to compute it!

Challenges

• Explain how you can check your own thinking as you solve quantitative problems, to avoid the
dilemma of just “crunching numbers” to get an answer.

• Do you see any alternative paths to a solution, involving specific calculations not shown above?



7.1. CONCEPTUAL REASONING 119

7.1.4 Bode plots and bandwidths

Plot the typical frequency responses of four different filter circuits, showing signal output (amplitude)
on the vertical axis and frequency on the horizontal axis:

f

Vout

f

Vout

f

Vout

f

Vout

Low-pass High-pass

Band-pass Band-stop

Also, identify and label the bandwidth of the filter circuit on each plot.

Challenges

• Why is the 70.7% signal amplitude point considered the definition of cutoff frequency for a
filter? Where does this odd number come from?



120 CHAPTER 7. QUESTIONS

7.1.5 Identifying filter types

Examine the following schematic diagrams of filter networks, and classify the purpose of each as
either low-pass, high-pass, band-pass, or band-stop:

VinVout Vin Vout

Vin Vout VinVout

For each case, explain the reasoning behind your classification of filter type.

Challenges

• An applicable problem-solving strategy for a qualitative problem such as this is to convert it
into a quantitative problem. Describe how you could apply this strategy here, and explain how
that strategy could help you classify each filter type.

• After identifying each filter classification, propose a modification to the network that would
alter it to be another type of filter.

• After identifying each filter classification, identify a change you could make to its component
value(s) to increase its characteristic frequency.

• Describe a procedure by which you could empirically determine the classification of a filter
circuit, assuming you had no access to its schematic diagram nor to its internal construction.

• Describe a procedure by which you could empirically determine the cutoff frequency(ies)
of a filter circuit, assuming you had no access to its schematic diagram nor to its internal
construction.



7.1. CONCEPTUAL REASONING 121

7.1.6 Identifying (more) filter types

Examine the following schematic diagrams of filter networks, and classify the purpose of each as
either low-pass, high-pass, band-pass, or band-stop:

Vin Vout Vin Vout

Vin Vout Vin Vout

VinVoutVout Vin

For each case, explain the reasoning behind your classification of filter type.

Challenges

• An applicable problem-solving strategy for a qualitative problem such as this is to convert it
into a quantitative problem. Describe how you could apply this strategy here, and explain how
that strategy could help you classify each filter type.

• After identifying each filter classification, propose a modification to the network that would
alter it to be another type of filter.

• After identifying each filter classification, identify a change you could make to its component
value(s) to increase its characteristic frequency.

• For any band-type filter shown here, identify a change you could make to its component value(s)
to increase its quality factor without altering its center frequency.



122 CHAPTER 7. QUESTIONS

• Describe a procedure by which you could empirically determine the classification of a filter
circuit, assuming you had no access to its schematic diagram nor to its internal construction.

• Describe a procedure by which you could empirically determine the cutoff frequency(ies)
of a filter circuit, assuming you had no access to its schematic diagram nor to its internal
construction.

• Which of these filter networks appear designed with balanced signals in mind?

7.1.7 Filter truth table

Elementary filter networks fall into one of four basic types: low-pass, high-pass, band-pass, and band-
stop. Each of these may be related to “limiting case” conditions of low and high frequency. If we
consider these limiting cases and draw the possibilities as a truth table similar to how we characterize
digital logic functions, we see the four possibilities map to four combinations of passing/blocking for
those limit cases:

f = 0 Hz f = ∞ Hz Filter type

Block Block

Block Pass

Pass Block

Pass Pass

Complete this truth table.

Challenges

• Explain why the “limiting cases” problem-solving strategy is such a powerful tool for analyzing
filter circuits.



7.1. CONCEPTUAL REASONING 123

7.1.8 Tweeter enhancement

Suppose you were installing a high-power stereo system in your car, and you wanted to build a
simple filter for the “tweeter” (high-frequency) speakers so that no bass (low-frequency) power is
wasted in these speakers. Modify the schematic diagram below with a filter circuit of your choice:

Amplifier

left right

"Woofer" "Woofer"

"Tweeter" "Tweeter"

Challenges

• Explain how you would determine the correct sizing of the additional component(s).



124 CHAPTER 7. QUESTIONS

7.1.9 Woofer enhancement

Suppose a friend wanted to install filter networks in the “woofer” section of their stereo system,
to prevent high-frequency power from being wasted in speakers incapable of reproducing those
frequencies. To this end, your friend installs the following resistor-capacitor networks:

Amplifier

left right

"Woofer" "Woofer"

"Tweeter" "Tweeter"

Filter Filter

After examining this schematic, you see that your friend has the right idea in mind, but
implemented it incorrectly. These filter circuits would indeed block high-frequency signals from
getting to the woofers, but they would not actually accomplish the stated goal of minimizing wasted
power.

What would you recommend to your friend in lieu of this circuit design?

Challenges

• Explain how you would determine the correct sizing of the new component(s).



7.1. CONCEPTUAL REASONING 125

7.1.10 AM radio tuner

The following schematic shows the workings of a simple AM radio receiver, with transistor amplifier:

Headphones

"Tank circuit"

Antenna

The “tank circuit” formed of a parallel-connected inductor and capacitor network performs a
very important filtering function in this circuit. Describe what this filtering function is.

Challenges

• Wow might a variable capacitor be constructed, to suit the needs of a circuit such as this? Note
that the capacitance range for a tuning capacitor such as this is typically in the pico-Farad
range.

• If we happen to be listening to a station broadcasting at 1000 kHz and we want to change to
a station broadcasting at 1150 kHz, what do we have to alter in the circuit?



126 CHAPTER 7. QUESTIONS

7.1.11 Output jack on analog VOMs

A VOM (Volt-Ohm-Milliammeter) is the analog equivalent of a digital multimeter (DMM), and was
once4 the test instrument of choice for electrical/electronic technicians and engineers. A example of
a high-quality VOM (the Simpson model 260) is shown in the following photograph:

A sensitive moving-coil analog meter mechanism provides visual indication of the measured
quantity: the stronger the signal, the farther toward the right the pointer (needle) moves. Multiple
measurement ranges are achieved by placing precision “multiplier” resistors in series with this
sensitive analog meter: the more resistance in series with the meter coil, the greater the voltage
necessary to drive the pointer full-scale to the right.

Most of the measurements made with such an instrument are with the red and black test leads
plugged into the Common (-) and (+) jacks on the VOM’s face. However, certain specialized
functions and ranges require that the red test lead (and sometimes the black test lead as well)
be plugged into other jacks5.

4It is worth noting that VOMs are still manufactured at the time of this writing. The Simpson Electric Company,
for example, still manufactures several VOM models in the year 2019. While this may seem anachronistic, there is a lot
to be said in defense of using a high-quality VOM in the 21st century. VOMs require no battery to measure voltage or
current, and an analog meter needle still surpasses digital displays for being able to visually indicate transient pulses.

5For example, to use this VOM to measure currents upward of 10 Amperes, the red and black test leads would
need to be plugged into the +10A and -10A jacks, respectively, and the selector switch turned to the 10 mA/Amperes

position.



7.1. CONCEPTUAL REASONING 127

One such specialized function is called Output, and is represented by its own dedicated jack
on the VOM face, into which the red test lead is plugged. This function is so named because it
is generally used when testing the output of an audio amplifier. A description of this function is
quoted from page 17 of the Simpson 270 Series 5 VOM instruction manual:

Measuring the AC component of an Output Voltage where both AC and DC voltage
levels exist is sometimes necessary. This occurs primarily in amplifier circuits. The
270 has a 0.1 mfd, 400 volt capacitor in series with the OUTPUT jack. The capacitor
blocks the DC component of the current in the test circuit, but allows the AC or desired
component to pass on to the indicating instrument circuit. The blocking capacitor may
alter the AC response at low frequencies but is usually ignored at audio frequencies.

Explain how the 0.1 µF capacitor performs a filtering function within this VOM. Specifically,
what type of filter network does the capacitor form when connected to the rest of the meter circuitry?

Also, explain how the presence of this “blocking” capacitor may affect the meter’s response at
low frequencies. Do you think it will make the meter register falsely low at low frequencies, or falsely
high? Explain your reasoning.

This altered low-frequency AC meter response is not uniform for all AC voltage measurement
ranges. The error is greatest when the meter is placed in its most sensitive voltage range (0-2.5 Volts)
and is least when the meter is placed in its least sensitive voltage range (0-250 Volts). Explain why
this is.

Challenges

• The Output function as described filters out DC from a mixed AC-DC signal, so that just the
AC portion may be measured. Devise a means for doing the opposite: filtering out AC from
a mixed AC-DC signal so that just the DC portion may be measured.



128 CHAPTER 7. QUESTIONS

7.1.12 Filter block diagrams

A common way of representing complex electronic systems is the block diagram, where specific
functional sections of a system are outlined as squares or rectangles, each with a certain purpose
and each having input(s) and output(s). For an example, here is a block diagram of an analog
(“Cathode Ray”) oscilloscope, or CRO :

Block diagram of Cathode-Ray Oscilloscope

Cathode-ray tube

Y

XSweep 
circuits

Trigger
circuits

Preamp
Input

Block diagrams may also be helpful in representing and understanding filter circuits. Consider
these symbols, for instance:

Which of these represents a low-pass filter, and which represents a high-pass filter? Explain your
reasoning.



7.1. CONCEPTUAL REASONING 129

Also, identify the new filter functions created by the compounding of low- and high-pass filter
“blocks”:

Sketch your own block diagrams to show these new filter functions (each function as a single
block diagram).

Challenges

• Describe how you could apply the problem-solving technique of a “thought experiment” to the
identification of these filtering functions.



130 CHAPTER 7. QUESTIONS

7.1.13 Identifying (even more) filter types

Examine the following schematic diagrams of filter networks, and classify the purpose of each as
either low-pass, high-pass, band-pass, or band-stop:

VinVout Vin Vout

Vin Vout Vin Vout

VinVout

For each case, explain the reasoning behind your classification of filter type.

Challenges

• An applicable problem-solving strategy for a qualitative problem such as this is to convert it
into a quantitative problem. Describe how you could apply this strategy here, and explain how
that strategy could help you classify each filter type.

• After identifying each filter classification, propose a modification to the network that would
alter it to be another type of filter.

• After identifying each filter classification, identify a change you could make to its component
value(s) to increase its characteristic frequency.



7.1. CONCEPTUAL REASONING 131

• For any band-type filter shown here, identify a change you could make to its component value(s)
to increase its quality factor without altering its center frequency.

• Describe a procedure by which you could empirically determine the classification of a filter
circuit, assuming you had no access to its schematic diagram nor to its internal construction.

• Describe a procedure by which you could empirically determine the cutoff frequency(ies)
of a filter circuit, assuming you had no access to its schematic diagram nor to its internal
construction.

7.1.14 Roll-off

Real filters never exhibit perfect “square-edge” Bode plot responses. A typical low-pass filter circuit,
for example, might have a frequency response that looks like this:

fcutoff

101 102 103 104 105

Frequency (Hz)

0 dB

-3 dB

-6 dB

-9 dB

-12 dB

-15 dB

Signal
output

What does the term roll-off refer to, in the context of filter circuits and Bode plots? Why would
this parameter be important to a technician or engineer?

Challenges

• Describe a scenario where a filter circuit needs to have a steep roll-off characteristic.



132 CHAPTER 7. QUESTIONS

7.1.15 White noise

A white noise source is a special type of AC signal voltage source which outputs a broad band of
frequencies (“noise”) with a constant amplitude across its rated range. Determine what the display
of a spectrum analyzer would show if directly connected to a white noise source, and also if connected
to a low-pass filter fed by a white noise source:

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

Spectrum analyzer display

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 2 3 4 5 6 7 8 9 10

Spectrum analyzer display

LP filter

White
noise

source

White
noise

source

Challenges

• How does a spectrum analyzer differ from an oscilloscope?



7.1. CONCEPTUAL REASONING 133

7.1.16 Power line carrier communications

An interesting technology dating back at least as far as the 1940’s, but which is still of interest today
is power line carrier : the ability to communicate information as well as electrical power over power
line conductors. Hard-wired electronic data communication consists of high-frequency, low voltage
AC signals, while electrical power is low-frequency, high-voltage AC. For rather obvious reasons, it
is important to be able to separate these two types of AC voltage quantities from entering the wrong
equipment (especially the high-voltage AC power from reaching sensitive electronic communications
circuitry).

Here is a simplified diagram of a power-line carrier system:

3-phase power lines

"Line trap" "Line trap"

Coupling
capacitor

Coupling
capacitor

Transmitter Receiver

Transformer
secondaries

Transformer
primaries

Power generating
station

Substation /
distribution

filters filters

The communications transmitter is shown in simplified form as an AC voltage source, while the
receiver is shown as a resistor. Though each of these components is much more complex than what is
suggested by these symbols, the purpose here is to show the transmitter as a source of high-frequency
AC, and the receiver as a load of high-frequency AC.

Trace the complete circuit for the high-frequency AC signal generated by the “Transmitter”
in the diagram. How many power line conductors are being used in this communications circuit?
Explain how the combination of “line trap” LC networks and “coupling” capacitors ensure the
communications equipment never becomes exposed to high-voltage electrical power carried by the
power lines, and visa-versa.

Challenges

• Trace the path of line-frequency (50 Hz or 60 Hz) load current in this system, identifying
which component of the line trap filters (L or C) is more important to the passage of power



134 CHAPTER 7. QUESTIONS

to the load. Remember that the line trap filters are tuned to resonate at the frequency of the
communication signal (50-150 kHz is typical).

7.1.17 Square wave to sine wave

A clever way to produce sine waves is to pass the output of a square-wave oscillator through a
low-pass filter circuit:

Square-wave
oscillator LP filter

Explain how this works.

Then, explain how a band-pass filter might be used in place of the low-pass filter to do much the
same.

Challenges

• Does this LP filter have strict roll-off requirements? Why or why not?

• Would this BP filter have strict quality factor requirements? Why or why not?



7.1. CONCEPTUAL REASONING 135

7.1.18 Simple harmonic analyzer

A crude measurement circuit for harmonic content of a signal uses a notch filter tuned to the
fundamental frequency of the signal being measured. Examine the following circuit and then explain
how you think it would work:

V
Voltmeter
(calibrated

in dB)

Cal

Test

Cal

Test

Notch
filter

Test
signal
source

Challenges

• Propose a circuit design to fulfill this notch filter function.



136 CHAPTER 7. QUESTIONS

7.1.19 Two resonant circuits of identical frequency

Shown here are two frequency response plots (known as Bode plots) for a pair of series resonant
circuits having the same resonant frequency. The “output” is voltage measured across the resistor
of each circuit:

Frequency

Output
(normalized)

Vout Vout

100 mH1 µF

220 Ω 220 Ω

1 H0.1 µF

Determine which plot is associated with which circuit, and explain your answer.

Challenges

• What kind of instrument(s) would you use to plot the response of a real resonant circuit in a
lab environment? Would an oscilloscope be helpful with this task? Why or why not?



7.2. QUANTITATIVE REASONING 137

7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases6” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely7 on an answer key!

6In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

7This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.



138 CHAPTER 7. QUESTIONS

7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.



7.2. QUANTITATIVE REASONING 139

7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables8 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

8Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.



140 CHAPTER 7. QUESTIONS

Common9 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure10 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots11 of the polynomial 9x2 +5x−2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

9Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

10Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

11Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.



7.2. QUANTITATIVE REASONING 141

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary12 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

12My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.



142 CHAPTER 7. QUESTIONS

7.2.3 Practice: complex number calculations

These complex-number arithmetic problems are presented to you, complete with answers (shown in
bold), for the purpose of practice, since nearly all AC circuit calculations will need to be performed
using complex numbers. Use these practice calculations to check your ability either to perform
these calculations “by hand” (using trigonometric functions) or your ability to use your calculator’s
complex-number functionality.

Note: electronic hand calculators and computer-based calculation programs use the proper
mathematical notation i to represent imaginary numbers rather than j. The letter j is used in
electrical engineering work in order to avoid confusion with i being misinterpreted as “current”.
Also note that calculators and software programs usually default to radians for angle measurement
rather than degrees, and will have to be configured (or converted) for degrees in order to handle the
polar-form complex quantities shown here. Check the “mode” options of your hand calculator to
ensure angles are in the correct unit and also that it will display in either rectangular or polar.

Addition and subtraction:

(5 + j6) + (2 − j1) = 7 + j5

(10 − j8) + (4 − j3) = 14 − j11

(−3 + j0) + (9 − j12) = 6 − j12

(3 + j5) − (0 − j9) = 3 + j14

(25 − j84) − (4 − j3) = 21 − j81

(−1500 + j40) + (299 − j128) = −1201 − j88

(256 15o) + (106 74o) = 31.356 30.87o

(10006 43o) + (12006 − 20o) = 1878.76 8.311o

(5226 71o) − (856 30o) = 461.236 77.94o

Multiplication and division:

(256 15o) × (126 10o) = 3006 25o

(16 25o) × (5006 − 30o) = 5006 − 5o

(5226 71o) × (336 9o) = 172266 80o

10 6 −80o

1 6 0o
= 106 − 80o

25 6 120o

3.5 6 −55o
= 7.1426 175o

−66 6 67o

8 6 −42o
= 8.256 − 71o

(3 + j5) × (2 − j1) = 11 + j7

(10 − j8) × (4 − j3) = 16 − j62

(3+j4)
(12−j2) = 0.1892 + j0.3649



7.2. QUANTITATIVE REASONING 143

Reciprocation:

1
(15 6 60o)

= 0.06676 − 60o

1
(750 6 −38o)

= 0.001336 38o

1
(10+j3) = 0.0917 − j0.0275

1
1

156 45o
+ 1

926 −25o

= 14.066 36.74o

1
1

12006 73o
+ 1

5746 21o

= 425.76 37.23o

1
1

23k 6 −67o
+ 1

10k 6 −81o

= 7.013k 6 − 76.77o

1
1

1106 −34o
+ 1

806 19o
+ 1

706 10

= 29.896 2.513o

1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 5.531k 6 37.86o

1
1

5126 34o
+ 1

1k 6 −25o
+ 1

9426 −20
+ 1

2.2k 6 44o

= 256.46 9.181o



144 CHAPTER 7. QUESTIONS

Sign reversal:

−(456 70o) = 456 − 110o

−(906 − 20o) = 906 160o

−(5 + j8) = −5 − j8

−(−3 + j9) = 3 − j9

−(10 − j15) = −10 + j15

Practical suggestions for using your calculator to perform these operations:

• Surround each complex-number quantity with parentheses when setting up arithmetic
operations; e.g., (3 + j5) * (4 - j2) instead of 3 + j5 * 4 - j2. This habit will
guarantee your calculator executes the desired order of operations rather than assert its own.
For instance, in the example given here the calculator may choose to multiply j5 by 4 and
then add on 3 and −j2 since multiplication typically precedes addition, if the two complex
numbers are not encapsulated in their own sets of parentheses.

• Store all calculated results in memory and then recall from memory when re-using those values,
rather than re-entering previously-calculated values by hand or sampling previously-calculated
values from the multi-line display. Manually re-entering values invites rounding errors and
keystroke errors in all cases, and I’ve found certain calculators (I’m looking at you, TI !) fail to
properly enter complex-number values when sampled from their multi-line displays. Getting
in the habit of using your calculator’s memory locations is an all-around good habit that will
serve you very well!



7.2. QUANTITATIVE REASONING 145

7.2.4 Frequency response of an RC network

Calculate and plot Vout for the following source frequencies:

10 V Vout

47n

10k

• f = 0 Hz ; Vout =

• f = 100 Hz ; Vout =

• f = 200 Hz ; Vout =

• f = 300 Hz ; Vout =

• f = 400 Hz ; Vout =

• f = 500 Hz ; Vout =

• f = ∞ Hz ; Vout =

If we consider the 10 Volt AC source to be the “input” signal for this network, would you say that
it passes low-frequency signals better than high-frequency signals, vice-versa, or passes all frequencies
equally well?

Challenges

• Properly re-draw the schematic without using a ground symbol.



146 CHAPTER 7. QUESTIONS

7.2.5 Filter type and cutoff identifications

Identify the type of filter for each RC network shown below, calculate the cutoff frequency of each,
and distinguish the input terminals from the output terminals:

15k

1k5

0µ1

33n

4k7

0µ22

Identify the type of filter for each LR network shown below, calculate the cutoff frequency of
each, and distinguish the input terminals from the output terminals:

30m55m

100m

2k2

10k7k9

Challenges

• What do the different symbol styles represent?

• Why don’t any the the specified component values appear with decimal points?

• What happens to fc as C is made larger, and why?

• What happens to fc as L is made larger, and why?

• What happens to fc as R is made larger, and why?



7.2. QUANTITATIVE REASONING 147

7.2.6 Designing simple RC low-pass and high-pass filters

For each of the following example applications, design a suitable low-pass or high-pass filter circuit,
each circuit using nothing but a single resistor and a single capacitor:

Example #1

Design a simple low-pass filter using a 0.01 µF capacitor and a resistor of your own choosing, to
have a cutoff frequency of 3.5 kHz.

Example #2

Design a simple high-pass filter using a 10 kΩ resistor and a capacitor of your own choosing, to
have a cutoff frequency of 1.1 kHz.

Example #3

Design a simple high-pass filter using a 3.3 nF capacitor and a resistor of your own choosing, to
have a cutoff frequency of 9.4 kHz.

Example #4

Design a simple low-pass filter using a 4.7 kΩ resistor and a capacitor of your own choosing, to
have a cutoff frequency of 800 Hz.

Challenges

• What, exactly, does “cutoff frequency” mean for a low-pass or a high-pass filter circuit?

• Design a switchable filter circuit where a toggle switch’s position determines whether the circuit
will be a low-pass or a high-pass filter.



148 CHAPTER 7. QUESTIONS

7.2.7 Designing filters using IEC standard component values

Sketch schematic diagrams and select components to build a low-pass filter and a high-pass filter
using only IEC-60063 (E12) component values, making sure the cutoff frequency of your filter is
within ± 5% of the requested value in each case. Be sure your filter manifests an input impedance
somewhere between 5 kΩ and 50 kΩ at cutoff:

• Low-pass filter with f−3dB of 400 kHz

• High-pass filter with f−3dB of 25 kHz

Identify a practical strategy for selecting component values based on the limited E12-series
offerings.

Challenges

• What, exactly, does “cutoff frequency” mean for a low-pass or a high-pass filter circuit?

• Design a switchable filter circuit where a toggle switch’s position determines whether the circuit
will be a low-pass or a high-pass filter.

7.2.8 Resonant filter type and cutoff

Calculate the resonant frequency, bandwidth, and half-power points of the following filter circuit:

Source
Load

10n

100

55m

Challenges

• How would a decrease in the Q (“quality factor”) of the circuit affect the bandwidth, or would
it at all?

• Identify how to vary the Q of this filter circuit without affecting its resonant frequency.



7.2. QUANTITATIVE REASONING 149

7.2.9 Deriving a formula for Q

The Q factor of a series inductive circuit is given by the following equation:

Q =
XL

Rseries

Likewise, we know that inductive reactance may be found by the following equation:

XL = 2πfL

We also know that the resonant frequency of a series LC circuit is given by this equation:

fr =
1

2π
√

LC

Through algebraic substitution, write an equation that gives the Q factor of a series resonant LC
circuit exclusively in terms of L, C, and R, without reference to reactance (X) or frequency (f).

Challenges

• What is the practical significance of Q for a filter circuit?



150 CHAPTER 7. QUESTIONS

7.2.10 Using C to analyze a filter network

The following computer program (written in the C language) analyzes a simple reactive filter network
at a single frequency:

#include <stdio.h>

#include <math.h>

int main (void)

{

float Vsrc = 100E-3;

float R = 3.3E3;

float C = 1E-9;

float f = 40E3;

float X, Z, I, Vout;

X = 1/(2 * M_PI * f * C);

Z = sqrt(pow(R,2) + pow(X,2));

I = Vsrc / Z;

Vout = I * R;

printf("Output voltage = %f at %f Hz\n", Vout, f);

return 0;

}

Identify the meaning of each line of code pertaining to a filter network, identifying the
foundational concept applied in each, as well as the proper unit of measurement for each result.

Next, answer the following questions:

• Sketch a schematic diagram representing the filter network simulated by this program.

• Identify what characteristic this filter exhibits (e.g. low-pass, high-pass, etc.).

• Modify the program to perform a “frequency sweep” from 30 kHz to 100 kHz in 10 kHz
increments.

• Modify the program to simulate a different characteristic of filter.

Challenges

• ???



7.3. DIAGNOSTIC REASONING 151

7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.



152 CHAPTER 7. QUESTIONS

7.3.1 Incorrect voltage calculation

A student measures voltage drops in an AC circuit using two AC voltmeters and arrives at the
following measurements:

COMA

V

V A

A
OFF

COMA

V

V A

A
OFF

Knowing that voltages add in series circuits, the student sums 7.24 Volts and 8.50 Volts to arrive
at 15.74 Volts. However, this result is incorrect. Explain what the student did wrong, and then
calculate the proper series-total voltage in this circuit.

Challenges

• Calculate a set of possible values for the capacitor and resistor that would generate these same
voltage drops in a real circuit. Hint: you must also decide on a value of frequency for the
power source.



7.3. DIAGNOSTIC REASONING 153

7.3.2 Component failures in a second-order filter circuit

Predict how the operation of this second-order passive filter circuit will be affected as a result of the
following faults. Consider each fault independently (i.e. one at a time, no coincidental faults):

C1 C2

R1 R2Input Output

• Capacitor C1 fails open:

• Resistor R1 fails open:

• Resistor R2 fails open:

• Solder bridge (short) across resistor R2:

For each of these conditions, explain why the resulting effects will occur.

Challenges

• An applicable problem-solving strategy for a qualitative problem such as this is to convert it
into a quantitative problem. Describe how you could apply this strategy here, and explain how
that strategy could help you classify each filter type.

7.3.3 Partially failed inductor

Suppose a few turns of wire within the inductor in this filter circuit suddenly became short-circuited,
so that the inductor effectively has fewer turns of wire than it did before:

C1L1

Source Load
Short

What type of filter is this (e.g. LP, HP, BP, BS), and what sort of effect would this fault have
on the filtering action of this circuit?

Challenges

• What would happen to the Q of this filter circuit as a result of the fault within the inductor?



154 CHAPTER 7. QUESTIONS



Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

155



156 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.



Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

157



158 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).



159

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.



160 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.



161

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.



162 APPENDIX B. INSTRUCTIONAL PHILOSOPHY



Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

163



164 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



165

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.



166 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.



Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

167



168 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.



169

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;



170 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,



171

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully



172 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.



173

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.



174 APPENDIX D. CREATIVE COMMONS LICENSE



Appendix E

References

The ARRL Antenna Book, Eleventh Edition, The American Radio Relay League, Inc., Newington,
CT, 1968.

Bible, Steven, “Crystal Oscillator Basics and Crystal Selection for rfPICTM and PICmicro Devices”,
Application Note AN826, Microchip Technology Inc., 2002.

Industrial Electronics Reference Book, Fourth Printing, John Wiley & Sons, June 1953.

“Introduction to SAW Filter Theory & Design Techniques” whitepaper, document 102020ED, API
Technologies Corporation, 2018.

Kay, Art and Green, Tim, Analog Engineer’s Pocket Reference, Fifth Edition, document SLYW038C,
Texas Instruments, Dallas, TX, 2019.

Ruppel, Clemens C.W. and Reindl, Leonhard, “SAW Devices for Spread Spectrum Applications”,
Proceedings of ISSSTA’95 International Symposium on Spread Spectrum Techniques and
Applications, pages 713-719, Volume 2, 1996.
“SAW Products”, document number SAW-05-18, Microsemi Corporation, 2018.

“Simpson 270 Series 5 Volt-Ohm-Milliammeter INSTRUCTION MANUAL”, part number 06-
111642, edition 15, Simpson Electric Company, Lac du Flambeau, WI, July 2017.

Steinmetz, Charles Proteus, Theory and Calculation of Electric Circuits, First Edition, Sixth
Impression, McGraw-Hill Book Company, Inc., New York, 1917.

175



176 APPENDIX E. REFERENCES



Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

23 February 2024 – added more content to the “Square wave to sine wave” Conceptual Reasoning
question.

31 January 2024 – fixed a typographical error in image 5496 showing interposed digits in the total
impedance value, courtesy of Gavin Koppel. Also made some minor edits to text formatting in that
section to improve clarity.

19 October 2023 – added a new Tutorial section on output-limited filter networks.

13 May 2023 – added Case Tutorial section on harmonic filters in HVDC substations.

22 February 2023 – added more questions to the Introduction chapter.

28-29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

18 July 2022 – typographical error correction in the Introduction chapter, courtesy of Caleb Colby.

11 July 2022 – minor edit to image 5532 and image 5583 to make them more suitable for examples
in non-filter-related tutorials.

18 May 2022 – placed the “Practice: complex number calculations” questions into its own file
(case complexpractice.latex) so it may be shared amongst multiple modules.

2 March 2022 – minor edits to two equations in the “Example: RC filter design” Case Tutorial
chapter, to include units of Hz and Ω in the formulae.

17 January 2022 – minor edits to the “Identifying (more) filter types” Conceptual Reasoning

177



178 APPENDIX F. VERSION HISTORY

question.

26-27 December 2021 – added new Quantitative Reasoning question on filter design using IEC-
60063 (E24) standard values, and also edited the Tutorial to elaborate on the definition of cutoff
frequency. Also elaborated on passbands and stopbands, and corrected an error in the log-axis Bode
plots where cutoff was not happening at the −3 dB attenuation point.

22-24 December 2021 – added review 16 as an introduction to the Tutorial, also added more
section titles and questions.

18 November 2021 – added Discrete Fourier Transform and Spectrum Analyzer C++
programming examples to the Programming References chapter.

24 October 2021 – added comment about “brick wall” idealized filter response.

14 October 2021 – minor edits to that new Case Tutorial section showing how to manually test
and plot the response of a low-pass RC filter network.

29 September 2021 – added a new Case Tutorial section showing how to manually test and plot
the response of a low-pass RC filter network.

13 September 2021 – added another reference in the Tutorial to the effect that X = R at cutoff
frequency for a simple (i.e. single-pole) RC or LR filter.

10 June 2021 – divided Tutorial into sections, and added content regarding SAW filters.

8 May 2021 – commented out or deleted empty chapters.

23 February 2021 – minor edits to the Tutorial, including the addition of “ideal” versus “real”
filter Bode plot responses shown in image 3460.

12 November 2020 – added instructor notes to some of the Questions.

26 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

15 September 2020 – added more instructor notes to the “Deriving a formula for Q” Quantitative
reasoning question.

15 August 2020 – added alternative filter block diagrams to the “Filter Block Diagrams”
Conceptual question.

17 April 2020 – added gnuplot label on code to distinguish it as gnuplot code and not C++.

16 April 2020 – added new Conceptual Reasoning question on filter types as a truth table.

15 April 2020 – minor edits.



179

19 March 2020 – edited one series-resonant filter to be parallel-resonant instead in the “Identifying
(more) filter types” Conceptual Reasoning problem.

12 March 2020 – added another Conceptual Reasoning problem.

9 March 2020 – added more pages to the tutorial about the effects of filtering in the frequency
domain, and how filters may be used for wave-shaping.

4 March 2020 – corrected typographical error on the definition of cutoff frequency (I said it was
0.707% of the input, but I should have said 70.7% of the input).

31 January 2020 – added roll-off as a concept in the Tutorial.

5 January 2020 – added bullet-list of relevant programming principles to the Programming
References section.

3 January 2020 – added Programming References chapter, with a section showing how to model
simple filter Bode plots using C++.

17 December 2019 – added Technical Reference on the topic of decibels.

27 November 2019 – added some questions.

16 June 2019 – minor edits to diagnostic questions, replacing “no multiple faults” with “no
coincidental faults”.

10 June 2019 – minor edits.

6 June 2019 – Added inductor-resistor filtering networks to “Filter type and cutoff identifications”
question.

29 May 2019 – Added questions.

28 May 2019 – converted Simplified Tutorial into Tutorial, since there is no Full Tutorial written
(yet). Also, added questions.

20 May 2019 – changed “Amps” to “Amperes”.

3 February 2019 – added conceptual question about Output jack on analog Volt-Ohm-
Milliammeters, which uses filtering to block the DC component of a mixed AC-DC voltage signal.

5 November 2018 – retitled Historical References section(s) so as to not be redundant to the
“Historical References” chapter.

September 2018 – renamed “Derivations and Technical References” chapter to “Historical
References”.

August 2018 – document first created.



Index

Q, quality factor, 28

Adding quantities to a qualitative problem, 156
Admittance, 17
Annotating diagrams, 155
Audio equalizer, 20

Band-pass filter, 27
Band-stop filter, 27
Bass, 20
Bel, 48
Bode plot, 25, 34
Brick wall filter response, 33

C++, 72
Capacitive reactance, 81
Capacitor, 21
Checking for exceptions, 156
Checking your work, 156
Code, computer, 163
Common logarithm, 48
Compiler, C++, 72
Complex arithmetic, “by hand”, 60
Complex number, 60
Component values, IEC standard, 58
Computer programming, 71
Conductance, 17
Crystal, 30
Ctrl-C key sequence, 88
Cutoff frequency, 25, 26, 28, 35

dB, 48
dBm, 52
dBW, 53
Decade, 29
Decibel, 29, 48
Delay line, 32
Delta impulse function, 98

DFT, 93
Dimensional analysis, 155
Dirac delta function, 98
Discrete Fourier Transform, 93

Eddy current, 68
Edwards, Tim, 164
Equalizer, audio, 20
Equivalent Series Resistance, 64, 67
ESR, 64, 67
Excel, Microsoft, 91

Filter, 20
Fourier transform, 54
Frequency domain, 34
Frequency meter, vibrating reed, 44

Gain, amplifier, 48
gnuplot, 92
Graph values to solve a problem, 156
Greenleaf, Cynthia, 109

High-pass filter, 24
How to teach with these modules, 158
HVDC, 13
Hwang, Andrew D., 165

Identify given data, 155
Identify relevant principles, 155
IEC 60063 standard, 58
IEC standard component values, 58
Impedance, 81
Impulse function, 98
Inductor, 21
Instructions for projects and experiments, 159
Intermediate results, 155
Interpreter, Python, 76
Inverted instruction, 158

180



INDEX 181

Java, 73
Joule’s Law, 55

Kirchhoff’s Current Law, 17
Kirchhoff’s Voltage Law, 17
Knuth, Donald, 164

Lamport, Leslie, 164
Laplace transform, 54
Light, speed of, 31
Limiting cases, 3, 21, 37, 156
Logarithm, common, 48
Low-pass filter, 22

Maxwell, James Clerk, 41
Metacognition, 114
Mho, 17
Microsoft Excel, 91
Moolenaar, Bram, 163
Murphy, Lynn, 109

Netlist, 34
NGSPICE software, 25
Noise, 3, 28
Notch filter, 28

Octave, 29
Ohm, 17
Ohm’s Law, 17, 81
Open, 22
Open-source, 163

Parallel resonance, 27
Parasitic effect, 64, 67
Passband, 26, 28
Phasor, 16
Phasor diagram, 16
Piezoelectricity, 30
Polar form, 60
Problem-solving: annotate diagrams, 155
Problem-solving: check for exceptions, 156
Problem-solving: checking work, 156
Problem-solving: dimensional analysis, 155
Problem-solving: graph values, 156
Problem-solving: identify given data, 155
Problem-solving: identify relevant principles, 155

Problem-solving: interpret intermediate results,
155

Problem-solving: limiting cases, 3, 21, 37, 156
Problem-solving: qualitative to quantitative, 156
Problem-solving: quantitative to qualitative, 156
Problem-solving: reductio ad absurdum, 156
Problem-solving: simplify the system, 155
Problem-solving: thought experiment, 155
Problem-solving: track units of measurement,

155
Problem-solving: visually represent the system,

155
Problem-solving: work in reverse, 156
Programming, computer, 71
Pythagorean theorem, 81, 93
Python, 76

Qualitatively approaching a quantitative
problem, 156

Quality factor, 28
Quartz crystal, 30

Radio, 3, 28
Reactance, 21
Reactance, capacitive, 81
Reading Apprenticeship, 109
Rectangular form, 60
Reductio ad absurdum, 156–158
Resonance, 27
Roll-off, 29, 131

SAW filter, 30
Schoenbach, Ruth, 109
Scientific method, 114
Short, 22
Siemens, 17
Siemens, Werner von, 17
Simplifying a system, 155
Soakage, capacitor, 64, 66
Socrates, 157
Socratic dialogue, 158
Sound, speed of, 31
Source code, 72
SPICE, 34, 109
Spreadsheet, 91
Stallman, Richard, 163



182 INDEX

Standard component values, IEC, 58
Stopband, 26, 28
Surface acoustic wave (SAW), 30

Tank circuit, 67
Thought experiment, 155
Time domain, 35
Torvalds, Linus, 163
Transform function, 54
Treble, 20
Twelve-pulse conversion, 14

Unit phasor, 17
Units of measurement, 155

Vibrating reed frequency meter, 44
Visualizing a system, 155
Voltage divider, 22
VOM, 126

Wavelength, 31
Whitespace, C++, 72, 73
Whitespace, Python, 79
Work in reverse to solve a problem, 156
WYSIWYG, 163, 164


	Introduction
	Case Tutorial
	Example: filter network testing
	Example: RC filter design
	Example: HVDC harmonic filters

	Tutorial
	Phasor analysis review
	Signal separation
	Reactive filtering
	Bode plots
	LC resonant filters
	Roll-off
	Mechanical-electrical filters
	Summary of filter types
	Filtering complex signals
	Output-limited filter networks

	Historical References
	Wave screens
	Vibrating-reed meters as spectrum analyzers

	Derivations and Technical References
	Decibels
	IEC standard component values
	Complex-number arithmetic
	Negating complex numbers
	Adding complex numbers
	Subtracting complex numbers
	Multiplying complex numbers
	Dividing complex numbers
	Reciprocating complex numbers
	Calculator tips

	Capacitor parasitics
	Model of a real capacitor
	Parasitic resistance in capacitors
	Parasitic inductance in capacitors
	Other parasitic effects in capacitors

	Inductor parasitics
	Model of a real inductor
	Parasitic resistance in inductors
	Parasitic capacitance in inductors
	Other parasitic effects in inductors


	Programming References
	Programming in C++
	Programming in Python
	Modeling low-pass filters using C++
	Discrete Fourier Transform algorithm in C++
	DFT of a square wave
	DFT of a sine wave
	DFT of a delta function
	DFT of two sine waves
	DFT of an amplitude-modulated sine wave
	DFT of a full-rectified sine wave

	Spectrum analyzer in C++
	Spectrum of a square wave
	Spectrum of a sine wave
	Spectrum of a sine wave product
	Spectrum of an impulse


	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Explaining the meaning of calculations
	Bode plots and bandwidths
	Identifying filter types
	Identifying (more) filter types
	Filter truth table
	Tweeter enhancement
	Woofer enhancement
	AM radio tuner
	Output jack on analog VOMs
	Filter block diagrams
	Identifying (even more) filter types
	Roll-off
	White noise
	Power line carrier communications
	Square wave to sine wave
	Simple harmonic analyzer
	Two resonant circuits of identical frequency

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Practice: complex number calculations
	Frequency response of an RC network
	Filter type and cutoff identifications
	Designing simple RC low-pass and high-pass filters
	Designing filters using IEC standard component values
	Resonant filter type and cutoff
	Deriving a formula for Q
	Using C to analyze a filter network

	Diagnostic reasoning
	Incorrect voltage calculation
	Component failures in a second-order filter circuit
	Partially failed inductor


	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

