
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Programmable Logic ICs

c© 2023-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 30 January 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Tutorial 5
2.1 Programmable versus fixed logic . 6
2.2 Logic function review . 7
2.3 Multiplexers as logic . 10
2.4 Memory as logic . 12
2.5 Sum-of-Product logic expressions . 13
2.6 AND-OR programmable logic . 15
2.7 Field-Programmable Gate Arrays . 23
2.8 Hardware description languages . 25

3 Historical References 29
3.1 PAL patent . 30
3.2 FPGA patent . 37

4 Questions 45
4.1 Conceptual reasoning . 49

4.1.1 Reading outline and reflections . 50
4.1.2 Foundational concepts . 51
4.1.3 Multiplexer-based logic functions . 53
4.1.4 Two multiplexers creating a logic function . 57
4.1.5 Explaining the meaning of code . 59

4.2 Quantitative reasoning . 61
4.2.1 Miscellaneous physical constants . 62
4.2.2 Introduction to spreadsheets . 63
4.2.3 First quantitative problem . 66
4.2.4 Second quantitative problem . 66
4.2.5 ??? simulation program . 66

4.3 Diagnostic reasoning . 67
4.3.1 First diagnostic scenario . 67
4.3.2 Second diagnostic scenario . 68

A Problem-Solving Strategies 69

iii

CONTENTS 1

B Instructional philosophy 71

C Tools used 77

D Creative Commons License 81

E References 89

F Version history 91

Index 91

2 CONTENTS

Chapter 1

Introduction

Logic gates form the foundation of digital electronic circuits, and when these essential “building
blocks” are interconnected to form more complex combinational and multivibrator (i.e. latching)
networks we may use them to construct all manner of useful digital systems including binary
arithmetic modules, memory devices, digital communication networks, and digital computers.
Programmable logic devices are built in such a way that the interconnections between logic gates
are determined by the end-user, and in many cases may be re-wired again and again as desired to
create new digital functions.

Programmable logic shares many similarities with microprocessor-based systems, but they are
different in many important ways as well. Microprocessors consist of fixed networks of logic
gates, designed to read and execute instructions held in memory – the program executed by any
microprocessor consists of these instructions directing the fixed-logic networks. Programmable logic,
on the other hand, is where the logic gates are not fixed to one another at all, but may have their
inputs and outputs redirected as desired after manufacture – in other words, the “program” inserted
into a programmable logic device literally re-wires the gates to each other, after which those gates
act directly on any data fed to them.

Applications for programmable logic are every bit as expansive as for microprocessors, but each
has its own strengths. Microprocessors, given their instruction-centric design, excel at carrying
out sequential and/or repetitive tasks. Programmable logic devices, given their connection-centric
design, excel at tasks requiring many logic elements to act in parallel, even independently of each
other.

Important concepts related to programmable logic include gates, flip-flops, memory,
addresses, data, Boolean algebra, SOP expressions, look-up tables, fuses, antifuses,
volatile versus non-volatile memory, state machine, register, tri-state logic, RTL, and
hardware description languages.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to explore the concept of fuse-
programmable logic? For example, what kind of simple circuit could you fabricate using fuses

3

4 CHAPTER 1. INTRODUCTION

to form disruptible connections between components, such that blowing certain fuses and not
others would form specific logic functions?

• What are some practical applications of programmable logic ICs?

• What are some of the different ways in which we may create easily re-configurable digital logic
networks?

• How may we translate a truth table into a Boolean SOP expression?

• How may we translate a truth table into a Boolean Negative-SOP expression?

• What factor(s) determine whether an SOP or a Negative-SOP expression would be more
efficient in describing a given truth table?

• What is the difference between behavioral versus structural HDL code?

• What is a testbench in HDL and what is it useful for?

• How do CPLDs and FPGAs differ from one another?

• What is an ASIC, and how does this technology differ from CPLDs and FPGAs?

• Why are Hardware Description Languages useful for configuring programmable ICs?

Chapter 2

Tutorial

5

6 CHAPTER 2. TUTORIAL

2.1 Programmable versus fixed logic

If a collection of logic gates, multivibrators (e.g. flip-flops), registers, and other digital logic elements
are needed to construct a practical digital system, the designer has several options available to them.
The first and most obvious of these is to interconnect a set of digital integrated circuit (IC) elements
together on a printed circuit board (PCB), but this approach suffers from low density: i.e. most logic
packages only have a few gates, flip-flops, or registers on a single IC, thus requiring a great many
of them together on a rather large PCB to create any complex digital system. Another approach is
to place all the necessary logic elements onto just a few high-density ICs, preferably on a single IC,
but if the digital system in question is unique it will require custom ICs to be fabricated. As one
might guess, building a custom integrated circuit from nothing is a highly complex and expensive.
Some IC manufacturers offer Application-Specific Integrated Circuit (ASIC) fabrication as a service
to multiple customers, but even with this economy of scale it is quite expensive.

A practical alternative to designing and manufacturing customized hardware is to utilize digital
components that are programmable in one way or another. In other words, if we create digital devices
whose function may be specified after the time of manufacture by the writing of binary bit-states
to memory elements within that device, we enable the creation of customized digital systems that
don’t require massive PCB layouts or one-of-a-kind ICs. A microprocessor is one such device, coupled
together with memory circuits to retain this programming data. Microprocessors read programmed
instructions from memory and then execute those instructions one step at a time. This is a versatile
solution, but far slower than custom hardware because every function must be comprised of multiple
steps carried out in sequence at finite speed.

A completely different type of programmable digital device is the focus of this Tutorial: a digital
IC whose post-manufacture programming actually re-wires its internal circuitry to form the desired
functions. In contrast to a microprocessor whose internal wiring is fixed, the type of digital IC we’re
about to explore contains a very large collection of logic gates as possibly other elements as well
such as flip-flops and registers, whose interconnections are determined by the user of that device
some time after manufacture. The principal advantage of this “programmed wiring” approach is
that the programmed functions are free to operate simultaneously rather than to be restricted to
one-step-at-a-time algorithms the way a microprocessor must do. In summary, microprocessors are
fundamentally sequential devices whereas these programmable logic ICs are capable of concurrent
operations. Whereas a microprocessor’s ability to implement a digital function is principally limited
by memory and by time, a programmable logic IC’s ability to implement any function is principally
limited by the number of logic elements it contains and the number of data lines it has inside to
potentially connect those elements together in custom configurations.

Programmable IC technology is newer than that of microprocessors, exists in a diversity of
forms lacking standardized nomenclature, with its programming generally considered to be more
sophisticated and difficult to learn than that of microprocessors. To begin our exploration of this
powerful technology, we will begin with a review of basic logic functions and then explore different
ways of implementing those functions besides elementary logic gate circuits. Then, we will explore
some of the modern forms of programmable logic ICs as well as the programming languages used to
configure them.

2.2. LOGIC FUNCTION REVIEW 7

2.2 Logic function review

Digital logic is the realm of “discrete” quantities having only two possible values, or “states”: 1 and
0. From this simple idea springs forth the concept of logical functions where specific combinations
of input signal states result in pre-defined output states. Several fundamental logic functions are
shown in the following illustration, each function accompanied by a truth table declaring the output
state for each possible combination of input states, as well as a Boolean algebra expression describing
the function mathematically:

1

0

0

0

0

1

1 1

1

1

1

A B Out

1

0

0

0

0

1

1 1 1

A B Out

0

0

0

Out
A

B B

A
Out

OR function AND function

0

1

0

0

0

0

1

1 1

1

A B Out

1

0

0

0

0

1

1 1

A B Out

0

Out
A

B B

A
Out

NOR function

0

0

0

NAND function

1

1

1

0 1

A Out

01

A Out

NOT function

1

0

0

0

0

1

1 1

A B Out

0

B

A

1

1

Out

Exclusive-OR function

0

Out = A + B Out = A B

Out = A

Out = A + B Out = A B Out = A B + A B

Although the use of arithmetic (e.g. A+B for the OR function, AB for the AND function) may
seem strange, it makes sense when you consider the limited values each discrete variable has. If each
variable may only be a 0 or a 1, it makes sense, for example, that an AND function whose output is
1 only if all inputs are 1 is equivalent to multiplication, where the product is 1 only if all multiplied
values are 1. Likewise, addition makes sense for the OR function up until 1 + 1 = 1, and even that
makes sense once you realize there is no such thing as a value of “two” in the Boolean numbering
system. An overhead bar symbol represents logical inversion or complementation, which flips the
value to its opposite. Thus, A means the opposite1 logical state of A, and A + B (NOR) represents
a function with output states exactly opposite of A + B (OR).

All of the two-input logic functions previously shown, with the exception of the Exclusive-OR
(also called XOR), are available in versions having more than two inputs. A four-input OR function,
for example, would have an expanded truth table with sixteen (24) rows, only the first of which
has a 0 output state (with all four inputs in their 0 states); and a Boolean equivalent expression of
Out = A + B + C + D.

Electrical logic circuits use discrete voltage signals to represent 0 and 1 logical states. Typically,
a “high” voltage value (at or near the positive power supply rail voltage with respect to ground)
represents 1 and a “low” voltage value (at or near ground potential) represents 0. Logical functions
take the form of transistor or relay networks in digital circuits, transistor-based logic circuit elements
being called gates and relay-based logic being called relay ladder logic.

The NOT function, for example, may be constructed using bipolar junction transistors and
packaged in an integrated circuit (IC), or alternatively it could manifest as an interconnection of
electromechanical relays. Four diagrams below show how the NOT function may be implemented
using either solid-state or relay technology, two of these diagrams use standard electronic schematic

1When spoken, one generally says “A-bar” or “not-A” to represent the complement of A.

8 CHAPTER 2. TUTORIAL

diagram symbols, while the other two use special symbols made for the purpose of simplifying digital
diagrams:

VCC

VEE

A

Out

Load

+
−Vsupply

+
−Vsupply

Load
VCC

VEE

A Out

Semiconductor NOT function schematic diagram

Semiconductor NOT function gate diagram

Relay NOT function schematic diagram

+
−Vsupply Load

Relay NOT function ladder diagram

+ −

Load

CR1

CR1

NOT function symbol

A Out

Boolean statement
Out = A

Bipolar logic
gate IC

Semiconductor technologies other than bipolar junction transistors (BJTs) may alternatively be
used. A type of logic gate called CMOS using complementary N-channel and P-channel MOSFETs
is also quite popular.

Basic logical functions such as AND and OR may be implemented using electromechanical relays
just as they can using transistors. AND and OR functions in particular have direct relation to series
and parallel contact connections, respectively. Please note that electrical power supply connections
are typically omitted from these diagrams for simplicity, but are shown here in order to present a
complete view of all required connections to make these logic systems functional:

2.2. LOGIC FUNCTION REVIEW 9

1

0

0

0

0

1

1 1 1

A B Out

Out
A

B

0

A

B

Out

CR1

CR2

CR1 CR2

AND function

0

0
Series relay contacts
fulfill the AND logic function

+ −Voltage source

+V

1

0

0

0

0

1

1 1

1

1

1

A B Out

Out
A

B

OR function

0

A

B

Out

fulfill the OR logic function

CR1

CR2

CR1

CR2

+ −

Voltage source

Parallel relay contacts

+V

It is important to closely study the conventions of each diagram style, where we find similar
or even identical symbols used to represent different things. A small circle, for example, refers to
a terminal on an integrated circuit (IC) package, whereas on a gate diagram an identical circle
represents logical negation (inversion, or complementation). A larger circle drawn as a component
in a ladder diagram represents the coil of an electromechanical relay.

10 CHAPTER 2. TUTORIAL

2.3 Multiplexers as logic

One way to implement an arbitrary and re-configurable logic function is to use a multiplexer to
“steer” arbitrary logic states to an output terminal at the command of a multi-bit code. If we
consider the “select” lines to be the input lines of a logic function, and the single mux output line
to be the output line of that same logic function, the mux input lines serve as connection points for
“programmable” output states. Consider these simple examples:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

3-input AND function

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

3-input NOR function

As we apply all possible high/low combinations to the three “select” input lines (S2, S1, and S0)
of these multiplexers, those binary values select one input channel at a time (e.g. when S2 is low and
S1 is low, and S0 is low, the mux selects the logic state applied to input terminal 0 to be “steered”
to the output terminal.

The toggle switches connected to the multiplexer’s input lines thus serve to program the desired
logic function. Simply by setting these switches to different positions, we may specify any 3-input
logic function desired.

2.3. MULTIPLEXERS AS LOGIC 11

To show just how arbitrary the logic function may be when implemented by a multiplexer,
consider the following example. Here we see a truth table not adhering to any canonical logic
function such as AND or NOR, but nevertheless implemented just as easily as any other logic
function using the same multiplexer IC we saw in the two prior examples. The output states for
each row of the truth table are “programmed” by the settings of the eight toggle switches connected
to the multiplexer’s input channel terminals:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

S2 S1 S0 Output

0

1

0 0

0

0

0

1

1

1

0

1

0

1

1

0

0

1

0 1

1

1 1

1

1

1 1

0 0

0

0

0

A simple thought experiment works well to explore how this circuit functions. Just imagine
setting the three “select” input lines to various high (1) and low (0) states, one combination at a
time, and see for yourself which input channel the mux selects for each combination. Remember
that the three “select” input line states constitute bits of a three-bit binary number, the value of
that number determining which input channel gets “steered” to the output:

• S2 = 0 S1 = 0 S0 = 0 Output = 0 because channel 0’s toggle switch is closed

• S2 = 0 S1 = 0 S0 = 1 Output = 1 because channel 1’s toggle switch is open

• S2 = 0 S1 = 1 S0 = 0 Output = 0 because channel 2’s toggle switch is closed

• S2 = 0 S1 = 1 S0 = 1 Output = 1 because channel 3’s toggle switch is open

• S2 = 1 S1 = 0 S0 = 0 Output = 1 because channel 4’s toggle switch is open

• S2 = 1 S1 = 0 S0 = 1 Output = 0 because channel 5’s toggle switch is closed

• S2 = 1 S1 = 1 S0 = 0 Output = 0 because channel 6’s toggle switch is closed

• S2 = 1 S1 = 1 S0 = 1 Output = 1 because channel 7’s toggle switch is open

12 CHAPTER 2. TUTORIAL

2.4 Memory as logic

Another way to implement an arbitrary and re-configurable logic function is to use a programmable
memory IC to generate the desired output state(s) at the command of a multi-bit code sent to the
memory IC’s address lines. Here we consider the “address” lines of the memory IC to be the input
lines of a logic function and the “data” lines of that same memory IC to be the output lines of that
same logic function. This is also known as a look-up table or LUT because the address word “looks
up” whatever data word is stored in each memory location of the IC.

Consider the example of a simple 16 × 4 memory IC with four address lines and four data lines,
programmed with the look-up table data shown in the following “hex dump” to implement both
four-input AND as well as four-input OR functions:

A0

A1

A2

A3

D0

D1

D3

D2

16 × 4
memory

CE

(not used)

(not used)

OR output
AND output

AND/OR inputs

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3

According to this look-up table, the output pin D0 will be in a “high” for any address but
0b0000, which is to say that output goes “high” whenever any input (address line) is “high”. This
same table shows the next output pin (D1) going to a “high” state only when all four of the input
(address) lines are “high”, representing a four-input AND function.

One of the strengths of a look-up table is that it may be programmed to represent any arbitrary
logical function, not just canonical functions such as AND, OR, NAND, NOR, XOR, etc. If the
memory array is a mask-type ROM then it means the look-up table must be programmed at the time
of manufacture, which is ideal for mass-production applications where a great many logic devices
must be produced, all having the exact same (fixed) functionality. If the memory array is EPROM
in nature, then the IC leaves the manufacturer in a “blank” state ready to be programmed by the
customer. Static RAM memory arrays are also suitable as look-up tables, and have the distinct
advantage of being re-programmed on the fly, but must be initialized with the look-up table data
upon every power-up cycle because their data is non-volatile.

2.5. SUM-OF-PRODUCT LOGIC EXPRESSIONS 13

2.5 Sum-of-Product logic expressions

Any combinational logic function represented in truth-table form may be constructed of primitive
logic gate types such as AND and OR using Boolean algebra sum-of-products (SOP) expressions.
Take for example the following three-input logical function:

A B C Output

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

The output of this function is “high” (1) if ever A is low and B is high and C is low (010), or
if ever A is low and B is high and C is high (011), or if ever A is high and B is low and C is low
(100). The use of and and or verbiage is intentional here, as the point is to emphasize how each
unique combination of A, B, and C logical states may be decoded using the AND function, and how
the over-all summation of these combinations is really just an OR function. In Boolean algebra we
represent the AND function as multiplication, and the OR function as addition, which means we
may represent this logic function algebraically represented as follows:

ABC + ABC + AB C

From here, it is a simple matter to sketch a combinational logic network of AND and OR gates
to implement this truth table’s function:

A

B

C

A BCAB C

14 CHAPTER 2. TUTORIAL

For functions having a greater number of “high” (1) output states than “low” (0) output
states, we may efficiently apply the negative-sum-of-products strategy whereby we identify every
unique combination of input states resulting in a low output, decode those states using AND
(multiplication), and then sum them together using NOR (inverted addition). For example:

A B C Output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

A BC + ABC + ABC

A

B

C

A BCAB C

It should be noted that this same logical function could have been implemented using standard
SOP form with AND gates feeding into a single OR gate (rather than into a single NOR gate), but
doing so would have required five three-input AND gates rather than just three because the truth
table contains five rows with “high” output states. The NOR-based approach is nothing more than a
more gate-efficient method when the function in question has more “high” than “low” output states.

The fact that any combinational logic function whatsoever may be formed by simply combining
primitive AND and OR gates (or NOR gates) suggests we might be able to create universal logic
functions by simply connecting a large array of AND and OR gates together in the right manner.
This fact is the basic concept behind simple programmable logic ICs, which we will explore next.

2.6. AND-OR PROGRAMMABLE LOGIC 15

2.6 AND-OR programmable logic

A “simple” programmable logic IC is one containing an array of inverter and AND gates as well as
either OR or NOR gates that are interconnectable in such a way as to implement arbitrary Boolean
SOP expressions. What makes such an IC programmable is that these interconnections may be
determined after the time of manufacture.

For many years circuit designers have had the option of purchasing Application-Specific Integrated
Circuits, commonly referred to as ASICs, for custom digital logic needs. An ASIC consists of a
completely custom IC, either outright produced by a single manufacturer large enough to operate
its own semiconductor fabrication facilities or by a silicon foundry catering to highly knowledgeable
customers producing their own designs. However, as one might guess ASICs are generally quite
expensive because they are essentially bespoke (custom-designed) silicon chips. As such, ASICs only
make sense when the application absolutely demands the most efficient use of silicon for a particular
task, where unusual combinations of signals must be merged on the same IC2, or the nature of the
application demands a high level of secrecy3 about the circuit’s internal design, etc. For most other
end-uses requiring custom digital functions, it makes more sense to use some form of integrated
circuit containing a large array of gates that may be user-configured into networks rather than
engineer and manufacture a novel IC design.

Programmable logic ICs were invented for just this purpose: to provide user-configurable digital
logic functions in compact IC form. Many different types of programmable logic ICs have been
invented and are currently available for use in digital design work, and several popular acronyms
have been made to describe them including:

• PLA = Programmable Logic Array

• PAL = Programmable Array Logic

• GAL = Generic Array Logic

• PLD = Programmable Logic Device

Unfortunately, the definitions of these acronyms are not always consistent across manufacturers or
in technical literature. For example, PLD (Programmable Logic Device) may be used to generically
describe any digital logic IC that is user-programmable, or it may refer to a very specific category
of programmable IC. Distinctions ostensibly made by these different acronyms are often blurred in
practice as manufacturers update their product lines with more and better features while retaining
legacy descriptors.

One of the most practical distinctions between different types of programmable logic ICs is
whether or not they are one-time programmable (OTP) versus re-programmable. The earliest
programmable devices utilized miniature semiconductor fuses or anti-fuses4 to form connections

2For example, an IC that must process both digital and analog signals on one silicon die, not corresponding to any
commonly-available mixed-signal IC.

3Consider ICs to be used in military hardware, where the design details could represent a security threat if reverse-
engineered by any hostile party. It is not impossible to de-encapsulate an integrated circuit and study its internal design
using tools such as scanning electron microscopes, but such tasks are far from easy. Certainly, reverse-engineering a
digital system built from standardized ICs whose inner functions are already well-documented would be much easier!

4One popular way to create an anti-fuse on a silicon die is to form a special MOSFET with an insulating metal-oxide
layer intended to break down and become conductive with sufficient voltage applied across it.

16 CHAPTER 2. TUTORIAL

between the outputs of some gates and the inputs of others, making them programmable just once.
After a fuse has been blown, it cannot be re-formed again; after an anti-fuse has been shorted, it
cannot be opened again. Re-programmable devices, by contrast, use floating-gate MOSFETs or
static RAM arrays to store the interconnection bits, and so may be configured and re-configured
many times – a valuable feature for prototyping as well as firmware-upgradable products.

We may explore the concept of one-time programmable (OTP) logic using passive networks of
diodes and resistors to form AND and OR functions, each of these primitive elements shown in the
following schematics:

Input

Input

Input

Output

+V

Passive AND gate

Input

Input

Input

Output

Passive OR gate

Rpullup

Rpulldown

The passive AND gate outputs a “high” signal only if none of the inputs are “low”. If one or more
inputs go to the “low” (grounded) state, the output will assume a potential just one forward-voltage
drop removed from zero. For example, operating on a 5 Volt DC source voltage, a “high” logic level
will be +5 Volts to ground while a “low” logic level will be approximately 0.7 Volts to ground if
standard silicon PN junction diodes are used.

Similarly, the passive OR gate outputs a “high” signal if one or more of its inputs are “high”,
and in that state the high-level output will be 0.7 Volts less than +V. The only way for the OR
network to output a “low” signal is if every one of its inputs is “low”, in which case the low-level
output will be zero Volts to ground.

Adding digital buffer gates to the input and output lines makes both of these gate circuits
practical in the sense that their inputs will not electrically load down any gates driving them and
they will be better able to source and sink current to any loads connected to their outputs.

2.6. AND-OR PROGRAMMABLE LOGIC 17

Shown here is an eight-input, four-output programmable logic array using passive diode-resistor
networks. In the form shown the circuit is unprogrammed, and needs to have diodes removed (i.e.
blown open as fuses) in order to leave only the intended connections in the AND and OR networks:

+V

A B C D E F G H W X Y Z
Inputs

1 kΩ
(each)

100 kΩ
(each)

Outputs

Passive AND network

P
assive O

R
 netw

ork

The 1 kiloOhm pullup resistors provide a default “high” state to each of the horizontal lines unless
and until one or more of the input buffers drive it “low” by sinking current through an intact diode.
The 100 kiloOhm pulldown resistors provide a default “low” state on each of the vertical output lines
unless and until one or more of the horizontal lines drive it “high” by sourcing current through an
intact diode. Vastly disparate resistance values were chosen for these pullup and pulldown resistors
in order to ensure a minimal voltage-divider effect when one of the pullup resistors needs to assert
a “high” state on one or more of the output lines connected to pulldown resistors. Even with the 1
kΩ and 100 kΩ values specified in this design, the typical “high” state output voltage would be 4.25
Volts assuming a +5 Volt DC source and standard 0.7 Volt forward-drop silicon diodes.

18 CHAPTER 2. TUTORIAL

As an example of this circuit’s use, consider the diode connections necessary to fulfill the following
Boolean SOP expressions:

W = ABCD + ABCD + CH

X = EF + EF

Y = CGH + C G H + AD

Z = AC + EFGH + BDE + DG

+V

A B C D E F G H W X Y Z
Inputs

1 kΩ
(each)

100 kΩ
(each)

Outputs

ABCD

ABCD

CH

EF

EF

CGH

CGH

AD

AC

EFGH

BDE

DG

Having twelve horizontal lines means this logic array has a maximum total of twelve Boolean
products for all of its output functions, and in this particular example we used all twelve of them:
three for the W function, two for the X function, three for the Y function, and four for the Z

function.
This particular form of programmable logic, where both the AND functions as well as the OR

functions are programmable, is generally known as a Programmable Logic Array or PLA.

2.6. AND-OR PROGRAMMABLE LOGIC 19

One of the disadvantages of utilizing both configurable AND arrays and configurable OR (or
NOR) arrays to form PLA devices was the relatively large size of the silicon die necessary to
implement all the fuse or anti-fuse links connecting input lines to AND gates and AND gate outputs
to OR gate inputs, respectively. Engineers working at Monolithic Memories Incorporated designed
and patented a simpler form of programmable logic IC in the late 1970’s using permanently-connected
OR gates and programmable AND gates to reduce the amount of die area needed for fuse/anti-fuse
links. The reduction in space more than made up for the reduced flexibility of the logic because
it allowed a greater number of gates to occupy the silicon die. A schematic from their patent (US
Patent number 4,124,899) shows one possible realization of the concept:

This schematic omits all the links connecting input lines to the AND gates for simplicity.

It is common to refer to this form of programmable logic IC as a Programmable Array Logic
device or PAL, in order to differentiate it from the PLA with its programmable OR as well as
programmable AND networks.

20 CHAPTER 2. TUTORIAL

The inventors of the PAL also cited the possibility of connecting flip-flops to the OR/NOR
gate outputs to allow for synchronous control of data flow through the device, as well as controlled
feedback of output signals back to AND gate inputs to permit the construction of state-based logic
such as finite state machines (FSM). The general concept is shown in this partial schematic diagram
showing one of the device’s OR gates passing data through a D-type flip-flop, the output of which
becomes another set of complemented input signals accessible to any of the AND gates in the device:

In this diagram, the D-type flip-flop’s (79) Q output is accessible at one of the IC’s output
pins (12) whenever the tri-state buffer (82) is enabled by the E line, but is always available as an
additional set of potential AND gate inputs (34). Moreover, every OR gate is potentially equipped
with a flip-flop to recycle its output back to the AND array’s input lines (specifically, the group
of vertical lines labeled feedback and I/O) so that each SOP expression is able to incorporate the
output state of other SOP expressions in the device.

This signal feedback makes possible all kinds of interesting state-based logic functionality such as
sequencers, counters, etc. For example, imagine one of these programmable devices being configured
such that one product term on each of the OR gates contained variables driven by the preceding
OR gate’s registered output. Programmed correctly, it would mean each OR gate could generate a
“high” output only when the preceding gate’s output went high and other input conditions specified
in the product term were met, thus creating a set of discrete states advancing one to the next only
when the right conditions were met.

2.6. AND-OR PROGRAMMABLE LOGIC 21

In the mid-1980’s engineers at Lattice Semiconductor Corporation designed and patented yet
another variation on the theme of programmable AND and OR networks introducing two innovations:
the use of floating-gate MOSFETs as programmable links for the AND gate input array as well as a
standardized logical module called an Output Logic Macro Cell (OLMC) following each of the OR
gate outputs with multiplexers for signal routing and flip-flops for “registered” (i.e. synchronous)
gating of signals through the device. The use of floating-gate MOSFETs made possible non-
volatile re-programming of the device, rather than relying on fuses or anti-fuses which could only be
programmed once. A simplified diagram for each OLMC appears below:

This one OLMC contains a single OR gate constituting the sum of an SOP expression. Each
of the product terms for this SOP expression comes from AND gates outside of the OLMC, those
AND gate output lines represented by the label 125 in the diagram.

Each of the multiplexers (“MUX”) as well as the Exclusive-OR (XOR) gate are controlled by
digital bits contained in a register called the architecture control word. The multiplexer selection bits
act to select specified signal sources for the OLMC logic. For example, MUX 124i in this diagram
is controlled by architecture control bits AC0 and AC1, causing the feedback signal (124j) to either
be the flip-flop’s (124g) Q output, the I/O pin’s state (P19), the output of the previous OLMC, or
constantly “low” (ground potential) as determined by the end-user. The XOR gate (124h) takes
the OR gate’s (124a) output signal and either passes it through unchanged (default) or inverts it to
emulate a NOR gate (if the other XOR input is made “high” rather than “low”).

This basic design of programmable logic IC became known as the Generic Array Logic or
GAL and remains popular to this day (2023).

22 CHAPTER 2. TUTORIAL

Modern variations on the theme of AND-OR programmable logic include the so-called Complex
Programmable Logic Device or CPLD which is nothing more than a multitude of PLA- or PAL-
style AND-OR gate networks and macrocell modules associated with one or more busses providing
flexible interconnection options between I/O pins and these internal structures. For example, a
typical CPLD may have a global bus consisting of lines connected to the external I/O pins and to
macrocell flip-flop outputs as well as separate regional busses acting as feedback networks for specific
clusters of macrocells. In a typical CPLD every input pin is available to every macrocell, but each
macrocell has its own dedicated output pin.

Modern CPLDs are re-programmable, and their memory elements are typically non-volatile.
Once a CPLD has been programmed, it is ready to operate immediately upon every power-up,
behaving identically to an equivalent set of gates and flip-flops hard-wired together. Being re-
programmable, though, means that “wiring” may be easily changed if desired, making CPLDs
excellent for prototype design work as well as end-use applications amenable to revision with firmware
updates.

2.7. FIELD-PROGRAMMABLE GATE ARRAYS 23

2.7 Field-Programmable Gate Arrays

In the mid-1980’s a new company named Xilinx was launched with its flagship product being a new
type of programmable logic IC that came to be known as a Field-Programmable Gate Array
or FPGA. In contrast to prior programmable logic ICs using vast arrays of AND and OR gates to
implement Boolean SOP expressions, the FPGA utilized simpler logic elements consisting of just a
few gates and flip-flops with a much more complex “fabric” of interconnecting bus lines to support
the creation of complex logic functions. Static RAM memory elements programmed with look-up
tables replaced AND-OR gate networks with fusible or programmable interconnects to form arbitrary
combinational logic functions.

An important distinction between FPGAs and prior programmable logic IC technologies is the
extensive use of volatile memory elements in the former versus non-volatile storage in the latter
(whether fuses or antifuses in one-time programmable PLAs and PALs or floating-gate MOSFETs
in later devices). This difference means CPLDs and similar devices are ready to operate immediately
upon power-up, but FPGAs must first be booted (i.e. initialized with configuration data) by either
on-board flash memory storage or from some external device with its own non-volatile store of
configuration data. However, the advantage of using volatile memory within the FPGA means those
memory elements may be made much smaller – and therefore any given size of silicon die may contain
more of them – than comparable technology based on non-volatile memory elements.

An FPGA contains a multitude5 of configurable logic blocks (CLBs), sometimes called
configurable logic elements (CLEs) or logic cells (LCs) or logic array blocks (LABs) rather than
macrocells as customary for CPLDs. Sometimes the term “configurable” is dropped entirely since
it is well-understood that these logic blocks must be configurable to be useful within an FPGA,
shortening acronyms such as CLE and CLB to LE and LB, respectively. Just to be confusing,
some manufacturers refer to these logic blocks, or to specific sections within each block, as slices.
In any case, FPGA logic blocks typically contain at least one look-up table (LUT), one flip-flop,
one binary adder, and multiplexers or “pass” transistors necessary to steer signals in particular
directions between these basic elements. As FPGA technology evolves, we find more specialized
function blocks included on the same silicon die, including dedicated network interface circuits,
random-access memory arrays, specialized digital math units such as multipliers or dividers, and
digital signal processing (DSP) circuits such as digital filters that would otherwise require chaining
together large numbers of logic blocks that could be used more efficiently for other tasks.

No standard presently exists for the internal workings of FPGA logic blocks, each manufacturer
offering their own unique configurations and capabilities.

5At the time of this writing (2023), one may purchase FPGAs with over half a million of these logic blocks on a
single IC!

24 CHAPTER 2. TUTORIAL

An illustration from the first patent (United States patent number 4,870,302 by Ross Freeman of
Xilinx Incorporated) for an FPGA shows the basic concept of surrounding a multitude of relatively
simple logic blocks (logic elements, or L.E.’s as referenced by Freeman’s patent) with a “fabric” of
interconnecting bus lines to form a useful array of digital logic suitable for implementing a wide
range of functions:

Note the interesting symbols Freeman used to show “interchanges” between some of the bus
lines, many of which had the capability not only to join certain lines together but also to re-route
or even sever some of them if desired.

2.8. HARDWARE DESCRIPTION LANGUAGES 25

2.8 Hardware description languages

Simple programmable ICs based on configurable AND-OR gate networks are possible to directly
program at the level of gate interconnections, determining which connections to make (or break)
in order to form the desired Boolean expressions, as the device structures are relatively simple. In
a similar manner, simple microprocessor systems are programmable at the “machine code level”
of binary 1’s and 0’s by anyone with access to the IC’s instruction set, opcode list, and a map of
available registers. However, programming either a programmable logic IC or a microprocessor at
such a low level of abstraction quickly becomes impractically confusing and error-prone for mere
mortals. For extremely dense devices such as modern CPLDs and FPGAs the task of “bare metal”
programming becomes flatly impossible for any human being to manage, just as it is impossibly
complex for any human to write a program with modern features in machine code for any processor
IC.

For microprocessor programming the solution to this problem is the use of a “higher-level”
programming language such as C, C++, or Python which is more easily understood by human
beings, that becomes translated into the microprocessor’s native “machine code” language by a piece
of software (running on a different computer) called a compiler or an interpreter. Compilers and
interpreters make the task of writing effective programs simpler by allowing the human programmer
to focus on “big-picture” concepts and tasks instead of getting bogged down by attention to trivial
details. Compilers and interpreters also make it possible for a program written in one language
to execute on different microprocessor hardware, that compiler/interpreter software translating the
high-level instructions into each microprocessor’s unique and specific machine-code dialect.

With programmable logic ICs such as CPLDs and FPGAs the problem and the solution is much
the same: let some piece of software determine all the detailed interconnections necessary to configure
the IC to do the desired task, while letting the human designer focus on high-level concerns. In order
to do this, there needs to be some intermediate form of language through which the human designer
can express to that software what it is they intend the IC to do, and then that software must be
aware of the IC’s specific capabilities and architecture in order to accurately translate the designer’s
wishes into a set of physical interconnections that will yield the intended result(s). In the world of
programmable logic ICs, this is generically known as a Hardware Description Language or HDL.

Procedural programming languages such as C, C++, or Python fundamentally describe a series
of steps for a computer to follow (i.e an algorithm), but for many digital systems it makes more sense
to describe the network as a concurrent set of inputs, outputs, and logical functions. Concurrent
code may appear strange6 to anyone familiar with procedural (algorithmic) code because concurrent
code describes multiple functions happening simultaneously, while procedural code describes one
action happening at a time. One of the complexities of hardware description languages is that they
may support programming at multiple levels of abstraction: for example, it may be possible to
describe a digital network in algorithmic terms or in concurrent terms, all using the same language!

6Readers familiar with this collection of instructional modules have no doubt seen examples of SPICE netlists

used to simulate electrical networks. This is another example of a concurrent programming language, where the code
describes the configuration of a system where many things happen simultaneously.

26 CHAPTER 2. TUTORIAL

Modern HDL programming usually focuses on one of two competing languages: VHDL or Verilog.
Here we will explore both of these hardware description languages as they might apply to a trivial
case of modeling a single OR gate at the Register Transfer Level (RTL) of abstraction:

A

B
Q

VHDL code example for a single OR gate (RTL abstraction)

library IEEE;

use IEEE.STD_Logic_1164.all;

entity MyGate is

port(A, B: in std_logic;

Q: out std_logic);

end;

architecture implement of MyGate is

begin

Q <= A or B;

end;

Verilog code example for a single OR gate (RTL abstraction)

module MyGate(A, B, Q);

input A, B;

output Q;

assign Q = A | B;

endmodule

As we can see from these two examples, VHDL defines the inputs and outputs of a digital function
as an entity and the input/output behavior of that function as an architecture. Verilog lumps the
two together into a single module. Other subtle differences distinguish these two languages from
each other as well.

HDL languages such as VHDL and Verilog support hardware description at multiple levels of
abstraction. The examples shown above are both at the Register Transfer Level, but it’s also possible
to use either language to describe the intended digital network’s behavior in more procedural terms
(where is it easiest for the computer to simulate) as well as in lower-level terms where actual wire
connections between elements are specified. HDL code specifying signal or wire connections between

2.8. HARDWARE DESCRIPTION LANGUAGES 27

individual logic elements is often referred to as structural code, as contrasted against behavioral
code such as RTL and higher abstraction levels where the HDL merely states the intended output
conditions for given inputs.

The process of converting behavioral HDL code into bit-states to instruct a CPLD or FPGA
which interconnections to make requires multiple steps, analogous to the compiling and linking steps
required to convert a procedural programming language such as C into something a microprocessor
may directly execute:

• Synthesis – here the RTL code gets converted into a netlist describing which logical elements
must connect to each other to form a functional network

• Mapping, placing, routing – here the netlist is mapped to actual elements and signal bus
routes available on the particular target CPLD/FPGA device, usually done with software from
the IC vendor

• Bitfile generation – here the software writes a device-specific binary file with all the
configuration date necessary to select the necessary logical elements as well as designate specific
signal routes to take between those elements on the target CPLD/FPGA device

A powerful feature of both the VHDL and Verilog hardware description languages is their ability
to simulate encoded digital logic in order to verify the correctness of that code prior to writing it to
a programmable IC. This is really an essential utility for any complex digital system design where
so much can go wrong. In both VHDL and Verilog languages the portions of code used to apply
simulated input conditions and monitor output states for correctness are called testbenches.

28 CHAPTER 2. TUTORIAL

Chapter 3

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

29

30 CHAPTER 3. HISTORICAL REFERENCES

3.1 PAL patent

John Birkner and Hua-Thye Chua of Monolithic Memories Incorporated filed a United States patent
(number 4,124,899) for a programmable array logic (PAL) IC in May of 1977, which gives a lucid
description of how programmable AND/OR networks function. Their specific innovation, of a
programmable array of AND gates feeding in to fixed rather than programmable OR or NOR arrays,
is what we now generically refer to as a PAL type of programmable logic IC, but the lessons we may
draw from this patent apply to a wide range of programmable logic technologies.

The patent’s “Background of the invention” section serves well as a brief history of programmable
logic technologies at that time:

Fusable links used in bipolar PROMS (Programmable Read-Only Memories) have given
the digital systems designer the ability to “write on silicon.” In little more than a few
seconds, an algorithm, a process, or a boolean transfer function can be permanently
provided in the regular structure of an integrated circuit (IC) read only memory.

PROMs are useful for many purposes including microprogram stores for high
speed processors and controllers, non-volatile program stores for minicomputers and
microprocessors, and high speed character generation and look up tables.

More recently, programmable integrated circuits have been extended to logic circuit
arrays. These are sometimes referred to as PLAs (Programmable Logic Arrays) and
FPLAs (Field Programmable Logic Arrays). FPLAs, in contrast to earlier mask-
programmable circuits, can be programmed away from the place they are manufactured.
Any problems in a programmed design that are discovered can be corrected simply by
programming a new FPLA and discarding the old one. If the particular application has
high enough volumes to cost justify it, a mask can be designed subsequently so that
mask-programmable arrays can be made.

PLAs are used in the implementation of random logic networks, data routing, code
converters, instruction decoders, state sequences, and a variety of other functions. For
a general discussion of PLAs and FPLAs, reference is made to Electronic Design, Vol.
18, Sept. 1, 1976, “PLAs or µPs? At Times They Compete, and At Other Times They
Cooperate”, pp. 24-30.

Existing FPLAs comprise an array of logical AND and OR gates which can be
programmed for a specific function. Each output function is the sum (logical OR) of
selected products (logical ANDs) where each product is the product of selected polarities
of selected inputs.

FPLAs can be programmed so that (1) any input line can be connected to any AND gate
input and (2) any of the products (ANDs) can be summed by any of the OR gates. This
is accomplished by providing a programmable array or matrix (1) between the circuit
inputs and the AND gate inputs and (2) between the output of the AND gates and the
inputs of the OR gates, respectively. The FPLA is then programmed by blowing or not
blowing the fusible links connecting the conductors of the two arrays much the same way
as PROMs are programmed. Examples of such FPLAs are Signetic Models 82S100 and
82S101.

3.1. PAL PATENT 31

Existing FPLAs as described above, while useful in many applications, have certain
disadvantages. First, the size of the IC chip is quite large, due to the use of two
programmable arrays per FPLA. This means lower yields, greater costs, and larger IC
packages.

Secondly, the flexibility of such FPLAs is limited. They are limited as to the number
of inputs, speed, and perhaps most importantly, architecture. Existing FPLAs are very
limited in terms of the logical and arithmetical operations they can perform. [page 15]

In their “Summary of the invention” section of the patent, the authors proceed to describe what
sets their particular design apart from prior-art designs:

In accordance with the present invention, an improved FPLA, hereinafter referred to as
a programmable array logic (PAL), comprises a single programmable array or matrix
of circuit inputs and the inputs to a plurality of AND gates (product terms). Outputs
from subgroups of AND gates, in turn, are nonprogrammably connected as inputs to
individual, specified OR gates (sum of the products).

By making the AND gate inputs programmable, i.e. selectable by the designer, while
having the OR gate inputs nonprogrammable, some design flexibility is sacrificed.
However, the reduction in IC chip size for the PAL more than makes up for the slight
reduction in flexibility. Smaller chip size means greater yields and hence lower costs.
Smaller chip size also means that more convenient packaging can be used. For example,
a package size of approximately 300 mils wide by wide by 1000 mils long with 20 pins is
easily accomplished. This compares with the 600 mils by 1400 mils package size, and 28
pins, for existing FPLAs of comparable circuit components and function. [page 15]

32 CHAPTER 3. HISTORICAL REFERENCES

Figures 5A and 5B show a simple combinational logic example of two AND gates feeding into
a single OR gate to form a two-term sum-of-products (SOP) function. Figure 5A shows this
combinational circuit using standard gate notation while figure 5B shows it as implemented in a
fuse-programmed PAL. “X” symbols shown in figure 5B designate locations where fuse links have
been intentionally “blown” to disconnect certain inputs from certain AND gates:

Device 58 is a dual-output logical buffer providing both inverted and non-inverted versions of the
input signal to a set of bus lines within the PAL device. Every input to the PAL IC passes through
a buffer such as this, in order to provide both inverted and non-inverted versions of the input signal
to the AND arrays as desired. Connections to those bus lines are by default, and may be severed by
intentionally blowing fusible links between the buffer outputs and the respective bus lines. At each
junction where a programming fuse has been blown, the disconnected input is designed to default
to the logical “high” state so that its respective AND gate may still function on the states of the
other (still-connected) inputs.

Devices 38 and 39 are both four-input AND gates, the four inputs shown as a single bus line for
simplicity. As figure 5B shows, AND gate 38 has inputs connecting only to I1 and I2 while AND
gate 39 has inputs connecting only to I1 and I2. Both AND gate outputs connect in a fixed (i.e.
non-programmable) manner to the single OR gate labeled 60. This combinational function happens
to emulate an Exclusive-OR (XOR) gate.

3.1. PAL PATENT 33

Any practical PAL device would of course contain AND arrays accepting far more than two
programmable inputs. In figure 6B of the patent the inventors provide an example of an un-
programmed 20-pin IC supporting 10 inputs and 8 outputs:

A variant of this design using NOR gates rather than OR gates is shown in figure 6A, useful for
implementing negative-sum-of-products expressions:

To clarify, each of the PALs shown here are capable of implementing eight independent SOP or
Negative-SOP expressions, each of those expressions having two terms and as many as ten inputs.

34 CHAPTER 3. HISTORICAL REFERENCES

A variation on this theme mixes two-term and four-term SOP expressions on the same PAL:

Here, OR gates 61 and 66 provide the four-term SOP functions, output on pins 18 and 13,
respectively. The other outputs are all two-term SOP functions.

The inventors of this PAL extend functionality beyond combinational logic by adding latching
logic to their device in the form of flip-flops which they call registers. Continuing the “Summary of
the invention” section of the patent:

In accordance with another aspect of the present invention, PALs are provided having
greater design and operational flexibility than existing FPLAs. This is accomplished
through improved architectural design.

One improved architectural feature is the use of registered outputs with feedback.
Registers are provided at OR gate outputs which allows temporary storage of the OR
gate outputs. Additionally, a feedback path from each such register to the AND gate
array is provided. This combination forms a state sequencer which can be programmed
to execute elementary sequences such as count up, count down, shift, skip, and branch.
[page 15]

3.1. PAL PATENT 35

One possible implementation of “registered” outputs within a PAL is shown in figure 10D:

In this version we see D-type flip-flops following every one of the eight-input OR gates, the Q

outputs of those flip-flops passing through a tri-state buffer to the output pins, while the Q outputs

36 CHAPTER 3. HISTORICAL REFERENCES

feed back to the AND array input bus where they may be enabled (i.e. fuses left intact) as state
variables for state-based logic or disabled (i.e. fuses blown) to retain purely combinational logic
functionality.

3.2. FPGA PATENT 37

3.2 FPGA patent

Ross Freeman of Xilinx Incorporated filed a United States patent (number 4,870,302) for a
programmable IC having both configurable logic elements and configurable interconnects between
those logic elements, which later became known as a Field-Programmable Gate Array or
FPGA. Like PALs the preceded this invention, the FPGA features re-programmable MOSFET
elements allowing its configuration to be changed many times after manufacture.

At the heart of Freeman’s invention was the configurable logic element, or simply logic element
(also known as configurable logic blocks or CLBs in later FPGA designs), shown here as Figure 2 of
his patent:

This illustration mixes standard logic-gate symbols with generic MOSFET symbols (e.g. devices
29a, 29b, 29c, and 29d) to show a network that may be configured with dedicated configuration
control bits to perform various functions.

Freeman briefly outlines existing PLA and PAL technology in the “Prior Art” section of his
patent description, then follows with a summary of how his invention differs:

2. Prior Art

Gate arrays are well known in the prior art. Typically a gate array is produced by
interconnecting a plurality of active devices in a base array in any one of a number
of ways to achieve a desired logic function. As gate arrays become more complex, the
simulation of the logic to be achieved from a given interconnection of the active devices
in the base array becomes more difficult and is typically carried out using a computer
program. The layout of the actual interconnections for the active devices in the base
array to yield a finished gate array is then derived using a computer aided design program
of a type well known in the art. The process of designing such a structure is complex
and reasonably expensive requiring the use of logic simulation and verification programs
and semiconductor device layout programs. Accordingly, a need exists for an alternative
approach which significantly simplifies the obtaining of a given logic function from a base
array.

SUMMARY

In accordance with this invention, I provide a structure which I denote as a configurable
logic array which allows changing the configuration of the finished integrated circuit from

38 CHAPTER 3. HISTORICAL REFERENCES

time-to-time (even when the integrated circuit is installed in a system) to provide any one
of a plurality of logical functions from the same integrated circuit. In accordance with
my invention, by providing a number of “configurable logical elements” (also referred
to herein as “logic elements”) in the base array, a new type of integrated circuit is
achieved which is capable of being configured to provide any one of a plurality of logic
functions depending upon the tasks which the system of which it is a part is called upon
to perform. By “configurable logical element” I mean a combination of devices which are
capable of being electrically interconnected by switches operated in response to control
bits to perform any one of a plurality of logical functions. [page 18]

Freeman does not limit the contents of the IC’s configurable logic elements to just those shown
in figure 2, however. Later in the patent he describes how figure 2 is merely one possible form of
logic element and that other forms may be devised containing such devices as three-input gates, SR
latches, D-type flip-flops, static RAM look-up tables, etc. Freeman offers a standard four-by-four
row-and-column matrix of storage elements as a static RAM for implementing look-up tables (in
Figure 3A, not shown here), and then proposes alternative to standard column and row decoders
used in static RAM networks by using an array of MOSFETs useful for selecting one of sixteen
pre-configured bits using a four-bit selection word (ABCD):

3.2. FPGA PATENT 39

In order to make these relatively simple logic elements truly useful, they must be interconnectable
to form larger digital networks. In figure 4A Freeman illustrates an array of configurable logic
elements surrounded by interconnection busses:

Freeman describes how these interconnections function:

FIGS. 4A illustrates an embodiment of a configurable logic array of this invention
containing nine configurable logical elements. As shown in FIG. 4A, nine logical elements
are placed on an integrated circuit chip together with interconnects and variable switches
for connecting various leads to other leads. Each of logic elements 40-1 through 40-9
represents a collection of circuitry such as that shown in FIG. 2 or some similar structure
capable of being configured as described above with respect to FIG. 2 to perform any
one of a number of logic functions. To program the circuitry, selected signals of a logic
element such as shown in FIG. 2 are applied to input leads of the configurable logic
element identified as configuration control input leads from a source such as the RAM
of FIG. 3A or 3B described above thereby to generate a desired logical function in each
of the logic elements. In FIG. 4A, no specific I/O pad has been identified as an input
lead for applying the configuration control signals to the logic elements. However, any
particular I/O pad can be selected for this purpose. The configuration control bits
can be input into the configurable logic array of FIG. 4A either in series or in parallel
depending upon design considerations. Input of configuration control bits is described
later in conjunction with FIGS. 5, 8A, and 8B. In addition, another I/O pad will be
used on input clock signals to clock the logic elements both for the shifting in of the
configuration control signals to each configurable logic element and for controlling the
operation of each logic element during the functioning of the integrated circuit chip in
its intended manner. The combination of logic elements 40-1 through 40-9 as configured

40 CHAPTER 3. HISTORICAL REFERENCES

by the configuration control bits plus the interconnect structure of FIG. 4A yields the
desired logical output for the Configurable Logic Array. FIG. 4B illustrates the meaning
of the interconnect symbols used in FIG. 4A.

In order to express the complexity of interconnection options, Freeman provides legends to
interpret some of his custom symbols shown in figure 4A:

As the legend shows, there are far more options than simply “connected” versus “not connected”,
permitting connections to be made or broken between the busses and logic elements as well as
between bus lines at intersections.

3.2. FPGA PATENT 41

Some of these “interchanges” deserve further elaboration, which Freeman provides in figure 7B:

For each interchange, Freeman cites the number of transistors necessary to implement the
intended interconnection options, from one transistor (1 T) in figure 7B-2 to twenty transistors
(20 T) in figure 7B-7.

42 CHAPTER 3. HISTORICAL REFERENCES

These configurable interchanges must be implemented using actual transistors on the IC, and
to describe how this may be done Freeman provides some schematics showing generic MOSFETs
arranged in bridge-like configurations to make or break connections between bus lines. Take for
example the following illustration showing six MOSFETs controlling one intersection between a
vertical bus line and a horizontal bus line, symbolized by a circle around an intersection of bus lines
shown (previously) in figure 7B-3:

For example, to make the vertical bus line complete and the horizontal bus line complete, but
not form a connection between the two complete lines, one would activate “pass” transistors 5 and
6 while leaving all the other MOSFETs off. If, by contrast, one wished to make these two lines
complete but also electrically common to each other, “pass” transistors 1, 2, 3, and 4 would need to
be turned on while the states of transistors 5 and 6 could be either on or off.

3.2. FPGA PATENT 43

For more complex interchanges involving two vertical and two horizontal bus lines, many more
transistors are needed to provide a rich array of interconnection options. In the following figure
Freeman shows such an interchange, using circled numbers to indicate which of the bus lines lie at
either end of a “pass” transistor (the actual MOSFETs not shown for simplicity):

Here there are eight bus lines terminating at the interchange, labeled 1 through 8. The twenty
pass transistors positioned at various locations are shown simply as line-segments in this illustration,
each of those transistors drain and source terminals terminating at two of the eight bus lines.

44 CHAPTER 3. HISTORICAL REFERENCES

Just some of the interconnection patterns possible with such an interchange are shown in figures
9E, 9F, and 9G:

Chapter 4

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

45

46 CHAPTER 4. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

47

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

48 CHAPTER 4. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

4.1. CONCEPTUAL REASONING 49

4.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

50 CHAPTER 4. QUESTIONS

4.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

4.1. CONCEPTUAL REASONING 51

4.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Truth table

Boolean algebra

Logic function

Logic state

AND function

OR function

NOT function

NAND function

NOR function

XOR function

Logic gate

Pullup/pulldown resistor

52 CHAPTER 4. QUESTIONS

Passive AND gate

Passive OR gate

Multiplexing

Bus

Latch

Register

Flip-flop

Bistable

SR latch

D latch

JK flip-flop

Source code

Thought experiments as a problem-solving strategy

4.1. CONCEPTUAL REASONING 53

4.1.3 Multiplexer-based logic functions

Example #1 – three-input NAND function

Determine the necessary toggle switch states to make this multiplexer implement a three-input
NAND function:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

54 CHAPTER 4. QUESTIONS

Example #2 – three-input NOR function

Determine the necessary toggle switch states to make this multiplexer implement a three-input
NOR function:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

4.1. CONCEPTUAL REASONING 55

Example #3 – two-input OR function

Determine the necessary toggle switch states to make this multiplexer implement a two-input
OR function where lines S1 and S0 are the two inputs and line S2 is in an unknown state:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

56 CHAPTER 4. QUESTIONS

Example #4 – two-input AND function

Determine the necessary toggle switch states to make this multiplexer implement a two-input
AND function where lines S2 and S1 are the two inputs and line S0 is in an unknown state:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer Output

Inputs

+V

Pullup resistors

Challenges

• How might multiple 8-line multiplexers be combined to implement a four-input logic function?

4.1. CONCEPTUAL REASONING 57

4.1.4 Two multiplexers creating a logic function

Show how to connect these two 8-line multiplexers to form a programmable 4-input combinational
logic function:

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer

Inputs

+V

Pullup resistors

S0S1S2

0

1

2

3

4

5

6

7

Multiplexer

+V

Pullup resistors

58 CHAPTER 4. QUESTIONS

Challenges

• How is the creation of larger memory banks from multiple memory ICs similar to this challenge?

4.1. CONCEPTUAL REASONING 59

4.1.5 Explaining the meaning of code

Shown below is a source-code listing of a computer program written in the C language simulating a
look-up table suitable for implementing any arbitrary truth table. Explain the purpose of each line
of code:

Code listing:

#include <stdio.h>

int main (void)

{

int lookup[8] = {0,0,0,0,1,0,1,0};

int A, B, C, word;

while(1)

{

word = 0;

printf("Enter logic state for input A: ");

scanf("%i", &A);

printf("Enter logic state for input B: ");

scanf("%i", &B);

printf("Enter logic state for input C: ");

scanf("%i", &C);

if (A)

word = word + 4;

if (B)

word = word + 2;

if (C)

word = word + 1;

printf("Output state = %i\n\n", lookup[word]);

}

return 0;

}

Also, edit this program to make the look-up table implement a three-input OR function.

60 CHAPTER 4. QUESTIONS

Challenges

• Which of the three input bits (A, B, C) are the least significant and most significant?

• How could this program be altered to implement a four-input look-up table?

4.2. QUANTITATIVE REASONING 61

4.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

62 CHAPTER 4. QUESTIONS

4.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

4.2. QUANTITATIVE REASONING 63

4.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

64 CHAPTER 4. QUESTIONS

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

4.2. QUANTITATIVE REASONING 65

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

66 CHAPTER 4. QUESTIONS

4.2.3 First quantitative problem

Challenges

• ???.

• ???.

• ???.

4.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.

4.2.5 ??? simulation program

Write a text-based computer program (e.g. C, C++, Python) to calculate ???

Challenges

• ???.

• ???.

• ???.

4.3. DIAGNOSTIC REASONING 67

4.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

4.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.

68 CHAPTER 4. QUESTIONS

4.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

69

70 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

71

72 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

73

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

74 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

75

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

76 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

77

78 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

79

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

80 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

81

82 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

83

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

84 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

85

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

86 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

87

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

88 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

“A Brief Introduction to VHDL and Verilog Hardware Description Languages (HDLs)”,
RealDigital.com, accessed online 4 January 2024.

Ashenden, Peter J., The VHDL Cookbook, First Edition, University of Adelaide department of
computer science, South Australia, 1990.

Ashenden, Peter J., VHDL Tutorial, Elsevier Science, 2004.

Birkner, John M. and Chua, Hua-Thye, US Patent 4,124,899, “Programmable Array Logic Circuit”,
application 23 May 1977, patent granted 7 November 1978.

Brown, Stephen and Rose, Jonathan, “Architecture of FPGAs and CPLDs: A Tutorial”, University
of Toronto.

Cyliax, Ingo, “The FPGA Tour”, Circuit Cellar magazine, November 1999.

Freeman, Ross H., US Patent 4,870,302, “Configurable Electrical Circuit Having Configurable
Logic Elements and Configurable Interconnects”, application 19 February 1988, patent granted 26
September 1989.

Han, Jin-Woo; Moon, Dong-Il; and Meyyappan, M., “One Time Programmable Antifuse Memory
Based on Bulk Junctionless Transistor”, Universities Space Research Association, Columbia,
Maryland, 19 June 2018.

IEEE Standard for Verilog Hardware Description Language, IEEE Std 1364-2005, IEEE Computer
Society, sponsored by the Design Automation Standards Committee, Institute of Electrical and
Electronic Engineers Incorporated, New York, NY, 7 April 2006.

IEEE Standard for VHDL Language Reference Manual, Design Automation Standards Committee,
Institute of Electrical and Electronic Engineers Incorporated, New York, NY, 5 September 2019.

Smith, Douglas J., “VHDL & Verilog Compared & Contrasted – Plus Modeled Example Written in

89

90 APPENDIX E. REFERENCES

VHDL, Verilog and C”, VeriBest Incorporated, Huntsville, AL.

Turner, John E. and Rutledge, David L., US Patent 4,761,768, “Programmable Logic Device”,
application 4 March 1985, patent granted 2 August 1988.

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

30 January 2024 – corrected some typographical errors, courtesy of Joe Archer and Daniel Wing.
Also added an introductory section to the Tutorial contrasting programmable logic ICs against other
programmable technologies such as microprocessors.

27 December 2023 through 4 January 2024 – added more content to the Tutorial chapter
regarding hardware description languages.

23-26 November 2023 – added more content to the Tutorial and Introduction chapters.

25 October 2023 – document first created.

91

Index

Abstraction, programming, 26
Ada, 26
Adding quantities to a qualitative problem, 70
AND function, 7
Annotating diagrams, 69
Anti-fuse, 16
Application-specific integrated circuit, 6, 15
Architecture, VHDL, 26
ASIC, 6, 15

Behavioral HDL code, 27
Bipolar, 8
Boolean algebra, 7, 13

C programming language, 25
C++ programming language, 25
Checking for exceptions, 70
Checking your work, 70
CLB, 23
CLE, 23
CMOS, 8
Code, computer, 77
Compiler software, 25
Concurrent programming, 6, 25
Configurable logic block, 23
Configurable logic element, 23
CPLD, 22

Dimensional analysis, 69
Discrete, 7

Edwards, Tim, 78
Entity, VHDL, 26

Fabric, FPGA, 23, 24
Finite state machine, 20
Firmware, 16, 22
Foundry, silicon, 15

FSM, 20
Fuse, semiconductor, 16

GAL, 15, 21
Graph values to solve a problem, 70
Greenleaf, Cynthia, 45

Hardware description language, 25
HDL, 25
HDL simulation, 27
How to teach with these modules, 72
Hwang, Andrew D., 79

Identify given data, 69
Identify relevant principles, 69
Instructions for projects and experiments, 73
Intermediate results, 69
Interpreter software, 25
Inverted instruction, 72

Knuth, Donald, 78

LAB, 23
Lamport, Leslie, 78
Limiting cases, 70
Logic array block, 23
Logic function, 7
Logic level, 7
Logic state, 7
Look-up table, 12, 23, 38
LUT, 12

Maxwell, James Clerk, 29
Metacognition, 50
Microprocessor, 6
Module, Verilog, 26
Moolenaar, Bram, 77
Murphy, Lynn, 45

92

INDEX 93

NAND function, 7
Netlist, SPICE, 25
NOR function, 7
NOT function, 7

Open-source, 77
OR function, 7
OTP, 16

PAL, 15, 19
PLA, 15, 18
PLD, 15
Power supply rail, 7
Problem-solving: annotate diagrams, 69
Problem-solving: check for exceptions, 70
Problem-solving: checking work, 70
Problem-solving: dimensional analysis, 69
Problem-solving: graph values, 70
Problem-solving: identify given data, 69
Problem-solving: identify relevant principles, 69
Problem-solving: interpret intermediate results,

69
Problem-solving: limiting cases, 70
Problem-solving: qualitative to quantitative, 70
Problem-solving: quantitative to qualitative, 70
Problem-solving: reductio ad absurdum, 70
Problem-solving: simplify the system, 69
Problem-solving: thought experiment, 69
Problem-solving: track units of measurement, 69
Problem-solving: visually represent the system,

69
Problem-solving: work in reverse, 70
Procedural programming, 25
Python programming language, 25

Qualitatively approaching a quantitative
problem, 70

Rail, power supply, 7
Reading Apprenticeship, 45
Reductio ad absurdum, 70–72
Register Transfer Level, 26
RTL, 26

Schoenbach, Ruth, 45
Scientific method, 50
Signal, discrete, 7

Silicon foundry, 15
Simplifying a system, 69
Simulation, HDL, 27
Slice, 23
Socrates, 71
Socratic dialogue, 72
SOP, 13
SPICE, 25, 45
Stallman, Richard, 77
State-based logic, 20
Structural HDL code, 27
Sum of products, 13

Testbench, HDL, 27
Thought experiment, 69
Torvalds, Linus, 77
Truth table, 7

Units of measurement, 69

Verilog, 26
VHDL, 26
Visualizing a system, 69

Work in reverse to solve a problem, 70
WYSIWYG, 77, 78

XOR function, 7

	Introduction
	Tutorial
	Programmable versus fixed logic
	Logic function review
	Multiplexers as logic
	Memory as logic
	Sum-of-Product logic expressions
	AND-OR programmable logic
	Field-Programmable Gate Arrays
	Hardware description languages

	Historical References
	PAL patent
	FPGA patent

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Multiplexer-based logic functions
	Two multiplexers creating a logic function
	Explaining the meaning of code

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	First quantitative problem
	Second quantitative problem
	??? simulation program

	Diagnostic reasoning
	First diagnostic scenario
	Second diagnostic scenario

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

