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Chapter 1

Introduction

The consideration and analysis of electrical signals from the perspective of the frequency domain

is one of the more important principles in the study of AC circuits, particularly electronic
communication systems. Instead of considering signals as voltage or current values varying in
amplitude over a span of time, we now also consider these same signals as voltage or current values
varying in amplitude over a span of frequency. One of the interesting consequences of considering
signals from the perspective of frequency rather than time is that it allows us to equate signals of
arbitrary wave-shape in terms of perfect sinusoids (sine-wave-shaped signals).

Important concepts related to the frequency domain include spectra, light color as it relates to
frequency, oscilloscopes and oscillographs, mathematical sine and cosine functions, Fourier’s

Theorem, fundamental frequency, harmonic frequency, superposition of waveforms, linearity,
noise and noise floor, and signal distortion.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to prove the existence of harmonic
frequencies within a non-sinusoidal waveform, without the benefit of a spectrum analyzer?
What hypothesis (i.e. prediction) might you pose for that experiment, and what result(s)
would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to prove the existence or non-existence
of certain harmonic frequencies within a specific non-sinusoidal waveform? What hypothesis
(i.e. prediction) might you pose for that experiment, and what result(s) would either support
or disprove that hypothesis?

• What does a transparent prism do to light?

• What is “monochromatic” light, and how does it differ from “white” light?

• What is meant by the term “decomposition” as it applies to light or to electrical signals?

• How do we define “frequency” for any signal?

• What does a spectrum analyzer do that an oscilloscope does not do?

3



4 CHAPTER 1. INTRODUCTION

• How do sinusoidal signals of different frequency appear on an oscilloscope?

• How do sinusoidal signals of different frequency appear on an spectrum analyzer?

• What is a harmonic frequency, and how does it relate to the fundamental frequency?

• What does it mean to say that a waveform is “equivalent” to a harmonic series?

• What are some practical examples of periodic signals?

• What are some practical examples of non-periodic signals?

• What practical applications exist for frequency-domain analysis of signals?

• Which harmonics are present, and how strong for each, in a pure sine-wave signal?

• Which harmonics are present, and how strong for each, in a square-wave signal?

• Which harmonics are present, and how strong for each, in a triangle-wave signal?

• Which harmonics are present, and how strong for each, in a sawtooth-wave signal?

• What factor determines the harmonic content of a pulse signal?

• What type of signal contains all frequencies?

• What type of signal contains no harmonics at all except for the fundamental?

• How does the steepness of a waveform’s rise and fall times relate to its harmonic content?

• How does the symmetry of waveform above versus below its centerline relate to its harmonic
content?

• How may a waveform’s harmonic content may be analyzed using filter networks?

• How may a waveform’s harmonic content may be analyzed using a mixer and a voltage-
controlled oscillator?

• How may a waveform’s harmonic content may be analyzed using a simple computer algorithm?



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?
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2.1 Example: sine versus non-sine AC sources

Students learning to analyze RLC networks powered by AC voltage sources typically rely on
expensive signal generators to produce the pure sine-wave AC excitation voltage necessary for
voltmeter measurements to closely match predictions. However, robust triangle-wave oscillator
circuits are much less complicated to design and build than sine-wave oscillator circuits, so if students
wish to build their own signal generators for these introductory AC experiments it is good to know
that triangle-wave excitation yields results very close to sine-wave excitation.

A simple and versatile signal generator circuit appears below, outputting triangle, square, and
PWM (pulse-width-modulated) signals. The first image is the schematic diagram, followed by a
PCB layout:
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Here are some test results on simple RC networks:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

2k

0µ15

R1

C1
1 kHz

Connected to the RC network, frequency was measured using a Fluke model 87-III multimeter
and adjusted to 1 kHz, and then total voltage measured across the series R1 ↔ C1 combination as
233.0 mVAC.

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 205.7 mVAC 205.8 mVAC

VC1 109.3 mVAC 109.2 mVAC

Testing a slightly more complex circuit at a frequency of 300 Hz, the loaded voltage output of
the oscillator being 231.6 mVAC this time:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

0µ15

R1

C1
300 Hz

C2 1µ1k

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 23.7 mVAC 27.43 mVAC

VC1 207.5 mVAC 207.0 mVAC

VC2 23.7 mVAC 27.43 mVAC

In both applications, the greatest error between measured voltage and predicted voltage as a
percentage of total voltage was in the second circuit across R1||C1 (23.7 milliVolts rather than 27.43
milliVolts), and this is only −1.61% of the source voltage which is considerably less than the ± 5%
tolerance of the resistor and capacitors!
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If we compare the Fourier series for a sine wave and a triangle wave (both having unity peak values
and a frequency of ω) we see that the first harmonic of the triangle wave function is identical to the
sine wave, and that all the other harmonics in the triangle wave are significantly smaller-amplitude
than the fundamental:

Sine wave

cos ωt

Triangle wave

cos ωt +
1

9
cos 3ωt +

1

25
cos 5ωt +

1

49
cos 7ωt + · · · + 1

n2
cos nωt

This tells us any deviations between the measured (triangle-wave) and predicted (sine-wave)
voltage values are likely to be minimal, the third harmonic being only 11.1% of the fundamental’s
amplitude, the fifth harmonic being only 4% of the fundamental’s amplitude, etc. The effects of
higher-order harmonics are truly negligible due to their vastly smaller amplitudes as well as due to
the fact that most digital multimeters suffer “cut off” in the audio-frequency range and therefore
cannot measure signal components in the tens of thousands of Hertz.

With access to a digital oscilloscope having FFT capability1 to show precise voltage values for
each harmonic of a measured waveform, we have an even better solution for obtaining voltage
measurements in agreement with predicted values when not using perfectly sinusoidal signal
generators. Since the oscilloscope’s FFT algorithm separates and displays each of the sinusoidal
harmonics apart from one another in any non-sinusoidal waveform, if we simply pay attention to the
magnitudes of a common harmonic frequency within each voltage measurement we will essentially
take circuit measurements on purely sinusoidal voltages of the same frequency. For example, we
could measure the fundamental (i.e. the first harmonic)2 amplitude of source voltage, then the
fundamental amplitudes of each of the other components’ voltages, and check to see that these
measured voltage values match well with our predictions at that frequency. This technique, in
effect, lets us measure the effects of a purely sinusoidal signal even when the real signal is not
sinusoidal at all, by taking measurements only on a common harmonic of the measured voltages!

1At the time of this writing (2022) some inexpensive oscilloscopes may be found with rather poor FFT resolution,
resulting in wide spectral peaks with uncertain height (voltage) values. You know you are working with a sufficiently
precise instrument when the harmonic peaks show as thin lines rather than exaggerated bell-curves.

2There is no particular reason why we might choose the first harmonic over any of the others, other than the fact
that with triangle and square waves this fundamental will be vastly stronger than any of the other harmonics.



2.1. EXAMPLE: SINE VERSUS NON-SINE AC SOURCES 9

This testing technique deserves some elaboration, and so we shall explore it by example. Consider
the following test circuit where a signal generator configured to output a square-wave AC signal at
1000 Hz energizes a simple RC network consisting of a 4.7 kΩ resistor and a 0.01 µF capacitor:

R
C A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

1 kHz

4.7 kΩ

0.01 µF

We know from Fourier analysis that a square wave is actually equivalent to a sine wave at the
same fundamental frequency added to another sine wave one-third the amplitude at three times that
frequency (3rd harmonic) added to another sine wave one-fifth the amplitude of the fundamental
at five times that frequency (5th harmonic), and so on. If we examine the frequency-domain plots
of the signal generator’s output (channel A) versus the capacitor’s voltage drop (channel B), we see
the circuit’s response to pure sine waves at each of those frequencies:

1 kHz 5 kHz3 kHz

1 V

2 V

3 V
A = 3 V

B = 2.88 V

A = 1 V
B = 0.75 V

A = 0.6 V

B = 0.336 V

The relative peak heights of the channel A signal (3 Volts, 1 Volt, 0.6 Volts) are simply the result
of the Fourier series for a square wave and has nothing to do with the RC network. The ratios
between peak heights of channel A and channel B at each harmonic frequency, however, are unique
to the 4.7 kΩ and 0.01 µF RC network because those voltage pairs represent the attenuation of this
particular network at each of those sinusoidal frequencies.
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If we mathematically analyze this same RC network for each of the square wave’s harmonic
amplitudes and frequencies used in the test circuit, we should obtain results verifiable by using the
oscilloscope in FFT mode:

1 kHz

4.7 kΩ

0.01 µF
3 V

1 V
3 kHz

0.6 V
5 kHz

0.01 µF

4.7 kΩ

0.01 µF

4.7 kΩ

0.8497 V ∠  73.55o

2.877 V ∠  -16.45o

0.6631 V ∠  48.46o

0.7485 V ∠  -41.54o

0.3365 V ∠  -55.89o

0.4968 V ∠  34.11o

For students with access to oscilloscopes having fine-resolution FFT capability, this not only
means it is unnecessary to secure a signal generator with pure sinusoidal output, but it also means
the ability to energize any AC circuit with any waveshape and test its response at multiple sinusoidal
frequencies simultaneously !
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2.2 Example: SDR spectrum displays

A modern technology for monitoring radio transmissions is something called Software-Defined Radio

or SDR. This is a radio receiver circuit that connects to a digital computer, sending that computer a
fairly raw stream of data representing signals received by the antenna, and leaving it up to software
algorithms in that computer to de-modulate and otherwise de-code those signals to reveal intelligible
information. One of the prominent features of SDR is its ability to display the spectrum of received
radio signals, both as a frequency-domain plot and something called a waterfall display.

A screenshot of SDR software showing both the frequency-domain plot and waterfall display
is appears below. The frequency-domain plot has a vertical axis calibrated in dBFS (decibels of
full-scale) and a horizontal axis calibrated in Hertz. The waterfall plot is immediately below the
frequency-domain plot, and is currently a background of blue with some lighter-colored vertical
stripes. It shares the same horizontal scale as the frequency-domain plot (Hertz) but its vertical axis
is a slow-moving time scale and signal intensity is represented by color :

In this screenshot we see the SDR software centered on a signal peak representing a local NOAA3

weather broadcast transmitter at a frequency of 162.55 MHz. Like all frequency spectrum plots,
signal amplitude is shown by the height of the plot, in this case the carrier frequency signal measuring
just above −90 dBFS. The red vertical line and blue-grey color band overlaid on the frequency-
domain plot show the SDR software’s center (tuning) frequency and the bandwidth of its digital
filter for selecting this particular station. The waterfall display shows a colorized representation of
signal amplitude, that colorize plot slowly “falling” down over a period of about 20 seconds from
the top of the waterfall display to the bottom. This is why the middle stripe of color appears to be
broken: the “breaks” represent periods where there is no audio signal and the NOAA transmitter

3In the United States, this is the National Oceanic and Atmospheric Administration, a federal agency tasked with
ongoing study and reporting of terrestrial and aquatic conditions on Earth. Among its many functions is to provide
regular weather reports and forecasts as part of its National Weather Service, this particular radio transmitter being
one of those services.
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outputs only a single carrier frequency at 162.55 MHz; the wider colored sections represent periods
where speech occurred and the transmitter’s signal occupied a wider slice of the frequency domain.

For this screenshot an extremely short antenna was connected to the input connector of the
SDR unit, and as a result all signals were fairly weak. This included the noise floor, shown in the
frequency-domain plot at about −120 dBFS and represented in the waterfall display as a solid blue
background.

In this next screenshot I show the same SDR radio unit with SDR software locked into the same
NOAA radio transmitter at 162.55 MHz. However, this time I touched the short antenna wire with
my fingers, using my body as an antenna to capture more signal for the receiver to process. As
a result we see all signals on the spectrum become stronger, with the noise floor moving up to
approximately −110 dBFS:

Correspondingly, the waterfall display is uniformly brighter than before, that brightness
representing increased signal strength across the displayed spectrum. Not only is the background a
lighter shade of blue (with speckles representing peaks of random noise from the noise floor), but
the NOAA station’s signal is trending toward yellow and red.

In both examples we also see an audio spectrum display at the bottom of the SDR software
display, representing the audio signal’s frequency spectrum resulting from demodulation of the radio
station’s RF (radio-frequency) signal. As you can see, this audio spectrum extends from 0 Hz to 4
kHz, which is wide enough for typical human speech.
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In this next screenshot we see an interesting phenomenon recorded by the SDR’s waterfall display,
a series of lighter-blue horizontal lines every so often:

Recall that the coloring of a waterfall display represents signal strength, with dark representing
weak signal (or noise floor) and light representing strong signal. This is why the four peaks on the
spectrum display correspond to four matching light-colored vertical lines on the waterfall display:
the slowly-scrolling waterfall display results in each of these peaks tracing its own light-colored line
on the waterfall. What doesn’t seem to match the spectrum display, however, are the multiple
horizontal lighter-blue lines we see on the waterfall display. These represent brief moments in time
where the entire “noise floor” elevated to a higher signal-strength level. What could cause that to
happen?

The answer to this question is a series of lightning strikes happening at that time. Bolts of
lightning, of course, are short-duration impulses of high electrical energy. Since each lightning
bolt’s time duration is extremely brief, each lightning bolt is a nearly-perfect delta impulse function

which is mathematically equivalent to a broad range of simultaneous frequencies. The SDR receiver
displays each of these broadband noise bursts for what it is, resulting in a record of horizontal lines
in the waterfall display.
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Chapter 3

Simplified Tutorial

A great deal of electricity and electronics centers around waves: oscillations of some quantity, usually
a voltage or a current, over time. Waves are at the very heart of alternating current (AC) circuits
where both voltage and current rise and fall over time, never settling to a stable value. Many forms
of information such as human speech, music, and serial digital data similarly take the form of waves
in electronic circuits, the oscillating voltage and/or current quantities representing that information.
Moreover, a vast range of physical phenomena beyond the scope of electric or electronic circuits take
the form of waves, including tidal fluctuations, weather patterns, machine vibrations, and even light.

One way to represent a wave is to plot its changing value over time in the form of a graph. An
example is shown here, taken from a microphone recording of a tuning fork vibrating after being
physically struck:

We often refer to this particular wave-shape as being a sine wave because it follows the same
pattern as the trigonometric “sine” function. Cosine waves also have this same shape, the only
difference between a cosine wave and a sine wave being a shift in phase of 90 degrees or π

2 radians.
If all we mean to describe is this particular shape of wave, we may use the word sinusoidal which
means “like a sine wave”.

15
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Many natural phenomena oscillate in purely sinusoidal patterns. The voltage and current output
by an AC generator when its shaft rotates is naturally sinusoidal. However, most oscillations found
in the world are not sinusoidal but instead follow more complex patterns. Here is an example of a
non-sinusoidal sound wave as recorded from a reed instrument called a melodica:

As you can see, the sound waves produced by a melodica rise and fall over time, but they do not
do so in the same smooth, simple pattern we saw with the tuning fork.

Sinusoidal waves are relatively simple to quantify mathematically, and when we analyze circuits
energized by sinusoidal voltages and currents the mathematical calculations are fairly straight-
forward. However, if we must analyze a circuit energized by voltages and currents following a
more complicated wave-shape, the formulae used for analyzing sinusoidal-energized circuits don’t
work.

The French mathematician Jean Baptiste Joseph Fourier made a remarkable discovery (publicized
in 1807) when he deduced that any wave-shape, no matter how complicated, is actually equivalent to
a series of simple sinusoidal waveforms all added together. This is now known as Fourier’s Theorem,
and its important to us in analyzing circuits lies in the fact that any oscillating voltage or current
is representable as a sum of sine and/or cosine waves at specific magnitudes and frequencies.

Let’s pause for a moment to appreciate the significance of Fourier’s Theorem. Not only does
Fourier’s Theorem tell us that we may synthesize any wave-shape we might want by adding together
a collection of sinusoidal waves at just the right frequencies and magnitudes, but it also tells us any
wave-shape we might encounter may be decomposed into a collection of sinusoidal waves. That is
to say, the equivalence between a non-sinusoidal wave and a specific summation of sinusoidal waves
works both ways – the two things are fully indistinguishable from each other. Fourier’s Theorem
in essence tells us that every wave-shape imaginable has a “recipe” where the only ingredients are
plain sine and cosine waves.

To express this fact using the musical examples of the tuning fork and the melodica seen
previously, this means it’s theoretically possible to mimic the sound of a melodica by simultaneously
striking the right combination of tuning forks, each fork tuned to a particular frequency and each
fork struck with a particular amount of force following the appropriate “recipe”! I say that this
is theoretically possible because to actually synthesize the sound of a melodica using tuning forks
would require an entire orchestra of tuning forks with very unusual frequency specifications and
ultra-precise striking forces – a difficult feat to achieve in practice.
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Various mathematical techniques exist to determine precisely which sine/cosine wave magnitudes
and frequencies comprise any sampled wave-shape. This topic is far too detailed and complex to
discuss in this Simplified Tutorial, but suffice it to say that instruments exist for this purpose called
spectrum analyzers1. The graphic display of a spectrum analyzer does not show the amplitude of
the wave over time as an oscilloscope does, but rather shows each sinusoidal frequency as a peak in
the graph, the horizontal location of each peak corresponding to the frequency of that sinusoid and
the vertical height of each peak representing that sinusoidal wave’s magnitude.

Below we see a pair of graphs representing the sound waves generated by a struck tuning fork.
On the left is the time-domain graph displayed by an oscilloscope, and on the right is the frequency-

domain graph displayed by a spectrum analyzer:

Note how the left-hand graph shows the oscillating sound wave plotted over time with the graph’s
horizontal axis (it’s “domain”) labeled in units of milliseconds, and note how the right-hand graph
shows a single peak located at 440 Hz with the horizontal axis labeled in units of Hertz (Hz). Both
of these graphs describe the sound produced by this tuning fork, but they describe it in different
ways: one as a plot of sound pressure as a function of time, and the other as a plot of sound pressure
as a function of frequency.

Only one peak exists in the tuning fork’s frequency spectrum because its time-domain function
is a pure and simple sinusoid. To use the “recipe” analogy again, the tuning fork’s sonic recipe
contains only one ingredient.

1Most modern digital oscilloscopes also offer spectrum-analysis capability, which is especially useful because this
means one may plot both the time-domain and frequency-domain graphs on the same instrument!
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If we examine the melodica’s tone in both the time (left) and frequency (right) domains, we see
the following results:

We’ve seen the time-domain (oscillograph) plot already as an example of a “complex” waveform
contrasted against that of the tuning fork’s, but the frequency-domain (spectrum analysis) is new
to us. Note how the latter contains multiple peaks, each of them representing a different sinusoidal
frequency comprising the complex sound of the melodica. Also, note how all of these peaks are
equally spaced from each other which tells us their frequencies are whole-numbered multiples of the
lowest frequency (in this case, 440 Hz, same as the tuning fork). Those peaks in the frequency
domain (spectrum) plot tell us the “recipe” for the melodica’s tone, consisting of multiple sinusoidal
“ingredients” at specific frequencies and intensities.

As with the tuning fork’s time-domain and frequency-domain plots, what we see above are just
two different ways of representing the same sound made by the melodica.

Fourier’s Theorem doesn’t just tell us that any wave-shape is equivalent to a summation of sine
and/or cosine waves, but also states that any periodic (i.e. repeating) wave-shape consists solely
of sine/cosine waves having frequencies that are integer-multiple to each other, called harmonic

frequencies2. The lowest of these harmonic frequencies is called the fundamental frequency, or
also the first harmonic frequency. In this particular case of the melodica’s tone, the fundamental
frequency happens to be 440 Hz, so the harmonic frequencies must be:

• 1st harmonic (fundamental) = 440 Hz

• 2nd harmonic = 880 Hz

• 3rd harmonic = 1320 Hz

• 4th harmonic = 1760 Hz

• 5th harmonic = 2200 Hz

• etc . . .

2Alternatively, these harmonic frequencies may be called “fundamental” and “overtones”. Confusingly, the first
overtone is the second harmonic, the second overtone the third harmonic, etc. In acoustic and musical studies the
overtones are sometimes called partials.
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Many practical applications exist for representing oscillating quantities in the frequency domain
rather than (or in conjunction with) the more familiar time domain:

• As alluded earlier, the mathematics of sinusoidal AC voltages and currents is fairly simple, so
if we happen to know the Fourier “recipe” for a more complex AC voltage or current wave
that tells us how many harmonics there are, what their frequencies are, and how large (Volts
or Amperes) each one’s magnitude is, we may analyze any circuit’s response to that complex
AC voltage or current simply by repeated analysis of each harmonic’s effect on the circuit.

• A frequency-domain plot of a waveform offers a very clear and easy-to-understand way of
detecting distortion in the wave. For example, if the wave-shape is supposed to be perfectly
sinusoidal, then its frequency should only contain a single peak. However, if that supposedly
perfect sinusoid is in fact distorted at all, we will plainly see this distortion as additional
harmonics in the spectrum. Mild amounts of distortion are surprisingly difficult to visually
detect in a time-domain oscillograph plot of a (mostly) sinusoidal wave.

• Frequency-domain plots also make it easier for us to spot certain informative features of a
waveform that would be difficult or impossible to identify in the time domain. For example,
being able to pinpoint noise present in a waveform, being able to discern the presence of
intelligible information amidst competing signals, etc.

Returning to the “recipe” analogy again, frequency-domain instruments such as spectrum
analyzers allow us to un-do a fully cooked or baked dish into its constituent ingredients to see
what it’s made of, and this can be a very powerful diagnostic tool.
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Chapter 4

Full Tutorial

4.1 Composition of light

An optical prism is a transparent structure, usually made of clear plastic or glass, designed to bend
light beams. When a beam of white light passes through a prism, it splits into beams of differing
color called a spectrum:

White light

Prism

Red
Orange
Yellow
Green
Blue
Violet

Color spectrum

If the light beam introduced to the prism is purely white, the resulting spectrum will consist of
colors all having equal intensity as shown in the above illustration. We could say that white light
consists of all those colors mixed together in equal proportion.

21
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Furthermore, we may demonstrate how white light may be reproduced from a full spectrum by
using a second prism, demonstrating that the process of separating white light into its constituent
colors is reversible:

White light White light

Prisms

If the incident light beam is not pure-white, the resulting spectrum will exhibit colors with
differing intensities, as shown in the following illustration:

Prism

Red

Orange

Yellow

Green
Blue
Violet

Color spectrum
Non-white light

We could say that this non-white light consists of a blend of colors, but not an equally-

proportionate blend. Some colors are more strongly represented than others within a non-white
light beam.



4.1. COMPOSITION OF LIGHT 23

If the incident light is monochromatic (i.e. consists of just a single color), it will not split into a
spectrum of colors when passing through a prism, but instead will emerge as a single beam of that
same color, as shown in this next illustration:

Prism

RedRed light
(no spectrum)

In order to understand what is happening here, we need to realize that light is a form of
electromagnetic radiation consisting of oscillating electric and magnetic fields rippling through space.
A beam of monochromatic light such as the red light shown above consists of electromagnetic
oscillations of a single frequency. Beams of similarly monochromatic light of different color
fundamentally differ in the frequency of these oscillations: red light representing the lowest frequency
within the visible light spectrum and violet light representing the highest. Prisms work by refracting

(i.e. bending) light beams according to their frequency, with higher-frequency light beams refracting
at greater angles than lower-frequency light beams.

White light, which consists of a blend of many different light-wave frequencies, separates into
bands of color because each of those colors represents one of the frequencies present in the white-light
mix, each of them refracted at a different angle passing through the prism according to its frequency.
However, a beam of monochromatic light such as the red light beam shown above only possesses
one frequency, and so there is no blend to separate: the beam refracts but does not change color or
separate into other colors.

Light is therefore, quite literally, more than meets the eye. While some colors of light consist
only of one frequency, others are in fact composites of multiple frequencies which may be separated
and analyzed using a prism. As we shall soon see, however, the pure-versus-blended character of
oscillating waves is not limited to light. There are, in fact, many types of oscillating phenomena
that may consist of mixtures of different frequencies, separable into multiple “pure” frequencies.
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4.2 Fourier’s Theorem

This principle, of some waves being comprised of simpler waves of different frequency (and
sometimes) differing intensity, is not limited to light. The exact same principle extends to all
manner of waves including mechanical vibrations, sound waves, and AC electrical signals, and is
often called Fourier’s Theorem in honor of the French mathematician Jean Baptiste Joseph Fourier
who developed it:

Fourier’s Theorem

Any wave-shape, no matter how complicated, is equivalent to a sum of purely

sinusoidal waveforms.

For simple sinusoidal (i.e. monochromatic) waves, that sum contains just one term: a pure
sinusoid. For non-sinusoidal waves, that sum consists of multiple sinusoidal waves of differing
frequency and usually of differing amplitude as well. In some cases, the sum consists of an infinite

series of sinusoidal waves. The important point to understand here is that any wave that is not a
pure sinusoid itself is actually equivalent to a set of pure sinusoids added together. Although the
process of determining what those exact sinusoids are (amplitude, frequency, and phase shift relative
to each other) can be quite complex, we know for a fact that this equivalence is real in all cases.

If the wave in question happens to be periodic – that is, it repeats itself identically over some
interval of time known as its fundamental period – then the sinusoidal frequencies comprising that
wave will all have frequencies that are whole-number multiples of the frequency associated with that
period. For example, if a waveform of any shape precisely repeats itself 100 times per second, then
the only sinusoidal frequencies that may possibly be found in that wave will be whole-numbered
multiples of 100 Hz: i.e. 100 Hz, 200 Hz, 300 Hz, 400 Hz, etc., and we refer to these as harmonic

frequencies. The first harmonic (100 Hz in this example) is called the wave’s fundamental frequency.

Of course, it’s possible for a wave-shape to be such that it contains some harmonics but not
all possible harmonics. For example, a perfect square wave with a 50% duty cycle happens to
contain only odd harmonics and no even; e.g. a 100 Hz square wave consists of a 100 Hz sinusoid
superimposed with sinusoids at 300 Hz, 500 Hz, 700 Hz, etc. all with amplitudes diminishing as
a function of the reciprocal of the harmonic number. The following network shows how we could
“build” a 100 Hz square wave by series-connecting an infinite number of sinusoidal AC voltage
sources tuned to harmonic multiples of 100 Hz and with appropriately diminishing amplitudes:

100 Hz

1 V 1/3 V

300 Hz

1/5 V

500 Hz

. . .

1/7 V

700 Hz

1/n V

100n Hz

100 Hz square wave

Periodic waves of different shape contain either different sets of harmonic frequencies, and/or
different amplitudes for each. This is a very non-intuitive yet powerful concept, that the essential
“recipe” for constructing any shape of wave varies only in which harmonics we include and how much
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of each. Conversely, we may regard any shape of wave as equivalent to a series of sinusoids at those
appropriate frequencies and amplitudes. This is important because sinusoids are mathematically
“simple” to analyze, which means any complicated wave-shape may be analyzed as a composite of
simpler waves. To use the color analogy again, we may construct any color of light we might wish
simply by combining the correct proportions of red, green, and/or blue (the so-called “RGB” color
model), and conversely we may regard any arbitrary color as being the superposition of a certain
amount of red light, a certain amount of green light, and a certain amount of blue light.

4.3 Fourier series

Fourier’s Theorem states that any waveform is equivalent to a sum, or superposition, of sinusoidal
waveforms. Expressing this more precisely for any given waveform requires a series of cosine and/or
sine terms added together in what is referred to as a Fourier series:

In a Fourier series we have individual terms representing each harmonic contained in the
waveform, with amplitude coefficients (a) for each. One such expression of a generic Fourier series
is seen here:

a0+(a1 cos ωt+b1 sinωt)+(a2 cos 2ωt+b2 sin 2ωt)+(a3 cos 3ωt+b3 sin 3ωt)+· · · (an cos nωt+bn sin nωt)

Where,
a = Peak amplitude (for each harmonic), any unit
ω = Frequency (for each harmonic), in radians per second
t = Time, in seconds

In any Fourier series a0 is the DC component of the waveform (i.e. the “zeroth” harmonic) while
(a1 cos ωt + b1 sin ωt) are a cosine and sine function-pair representing the first harmonic (i.e. the
fundamental). Other harmonics have their own amplitude coefficients and frequencies, the above
formula ending with the nth harmonic which may be arbitrary or even infinite in order.

For example, below we see the Fourier series for a perfect square wave, which happens to be
infinite:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

This mathematical series may be thought of as a “recipe” for building a square wave. It tells us
that if you take a sine wave of any given frequency, then add to that another sine wave one-third as
tall at three times the frequency, then add to that another sine wave one-fifth as tall as the original
at five times the frequency, and so on to infinity, you will get a perfect square wave. Note the absence
of any cosine terms, as well as the absence of a DC (a0) term. The generic form of the Fourier series
seen earlier contains all possible terms for any type of waveform, and so we should not be surprised
if the Fourier series for any particular wave-shape may be missing some of these.
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The cosine-sine form of the Fourier series first introduced in this section is not the only way to
generically represent a Fourier series. All a Fourier series needs to do is represent the amplitude and
phase angle of each harmonic term, and a cosine-sine function pair is just one valid method of doing
so1. An alternative Fourier series could be written using nothing but sine terms with phase offsets
for each harmonic:

A0 + A1 sin(ωt + θ1) + A2 sin(2ωt + θ2) + A3 sin(3ωt + θ3) + · · ·An sin(nωt + θn)

Where,
A = Peak amplitude (for each harmonic), any unit
ω = Frequency (for each harmonic), in radians per second
t = Time, in seconds
θ = Phase shift (for each harmonic), in radians

It’s even possible to write Fourier series using exponential notation, based on Euler’s Relation
where ejx = cos x + j sinx:

A0 + A1e
j(ωt+θ1) + A2e

j(2ωt+θ2) + A3e
j(3ωt+θ3) + · · ·Anej(nωt+θn)

Where,
A = Peak amplitude (for each harmonic), any unit
j = Imaginary operator =

√
−1

ω = Frequency (for each harmonic), in radians per second
t = Time, in seconds
θ = Phase shift (for each harmonic), in radians

Regardless of how we might choose to write a Fourier series, the basic principle at work is
Fourier’s Theorem – that we may synthesize any arbitrary waveform by summing together enough
sinusoidal waves at different amplitudes, frequencies, and phase shifts. Any mathematical expression
of sinusoidal functions necessary to synthesize a particular wave-shape is called the Fourier series,
constituting a “recipe” for building that particular wave-shape.

1If we view a right-triangle’s hypotenuse as being the vector sum of its adjacent (sine) and opposite (cosine) vectors,
it should be clear that we may represent any vector length and angle simply by summing the appropriate cosine and
sine terms.
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4.4 Building a square wave from sine waves

Fourier’s Theorem – the claim that any non-sinusoidal waveform is equivalent to a series of
superimposed sinusoidal waves – is a difficult one to accept. Even some of Jean Baptiste Joseph
Fourier’s mathematical contemporaries were skeptical. This skepticism is especially understandable
when we consider wave-shapes such as square waves, which by definition have sharp-edged shapes in
the time domain. It seems quite baffling that any wave-shape with square corners might somehow
be comprised of smooth-shaped waves added together over time.

What follows in this section is not a proof of Fourier’s central claim, but merely an illustration
of how we can indeed produce a sharp-edged wave simply by superimposing sinusoidal waves. To do
this, we will follow the Fourier Series for a square wave, which is an infinite series of sine waves added
together, these sine waves’ frequencies being integer-multiples of the square wave’s fundamental
frequency, and their magnitudes following a carefully prescribed proportionality. Please note that
the particular mathematical “recipe” we are about to follow works specifically to create square waves,
and that a different “recipe” (i.e. different harmonic numbers and/or different magnitudes of these
harmonics) will result in some wave-shape other than a square wave.

First, we will begin with a blue-colored plot of one sine wave over a domain of 0 to 360 degrees,
oscillating between peak values of +1 and −1:
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Next, we will plot that same blue-colored sine wave as well as another blue-colored sine wave at
three times’ higher frequency and one-third magnitude, and plot their sum in red:
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Here, the low-frequency blue sine wave is the fundamental or first harmonic, while the high-
frequency blue sine wave is the third harmonic due to its three-times higher frequency. The fact
that we chose to make this third harmonic have one-third the magnitude of the fundamental is
because we are following the Fourier Series (i.e. the “recipe”) for a square wave which calls for each
successive harmonic to be proportionately smaller in magnitude:

sinωt +
1

3
sin 3ωt + · · · + 1

n
sinnωt

We will continue to plot and sum odd-numbered harmonics, each one at a proportionately-reduced
magnitude, in order to show how the accumulation of these harmonics at the ratios specified by this
particular Fourier Series “recipe” end up producing an approximation of a square wave.
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Next, we will plot that same blue-colored sine wave as well as another blue-colored sine wave at
three times’ higher frequency and one-third magnitude as well as another blue-colored sine wave at
five times’ higher frequency and one-fifth magnitude, and plot their sum in red:
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At this point, the red-colored waveform is described by the following mathematical series, with
first, third, and fifth terms of the ideal square-wave Fourier Series:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt
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Next, we will add a seventh harmonic to the plot:
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At this point, the red-colored waveform is described by the following mathematical series, with
first, third, fifth, and seventh terms of the ideal square-wave Fourier Series:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt



4.4. BUILDING A SQUARE WAVE FROM SINE WAVES 31

Next, we will add a ninth harmonic to the plot:
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At this point, the red-colored waveform is described by the following mathematical series, with
first, third, fifth, seventh, and ninth terms of the ideal square-wave Fourier Series:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt +

1

9
sin 9ωt

By now hopefully the pattern is clear to see: with each successive odd-numbered harmonic added
to the sum, the superposition of these sine waves comes closer and closer to resembling a true square
wave. For all future simulations I will plot only the sum (in red) so as to avoid the clutter that
would otherwise result from all the sinusoids plotted on top of each other.
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Here we see the sum of all odd-numbered harmonics up to the fifteenth, following the same
inverse-proportional magnitude pattern as before:
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Harmonic series simulated:
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Here we see the sum of all odd-numbered harmonics up to the ninety-ninth, following the same
inverse-proportional magnitude pattern as before:
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Here we see the sum of all odd-numbered harmonics up to the 999th, following the same inverse-
proportional magnitude pattern as before:
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Here we see the sum of all odd-numbered harmonics up to the 9999th, following the same inverse-
proportional magnitude pattern as before:
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As you can see, it is indeed possible to very closely simulate a perfect square wave by summing
together a long series of sine waves having just the right harmonic frequencies and magnitudes.
However, it is important to understand that the Fourier Series for a square wave is not merely a
“recipe” for synthesizing a square wave from a multitude of sinusoidal wave sources, but is really
a mathematical equivalence between these two things. In other words, it is equally true that any
square-wave oscillation actually contains all those sinusoidal frequencies within it even though the
creation of that square-wave oscillation may have had nothing to do with sinusoidal causes.

For example, if we were to built a digital electronic oscillator circuit producing an voltage
signal pulsing in a square-wave manner, the final output stage of this circuit being a simple pair of
transistors alternately turning on and off, and use this oscillator’s output signal to energize some
other network of components, that network of components would react to the square-wave voltage
in precisely the same manner as it would if energized by a multitude of sine-wave voltage sources
(at the frequencies and magnitudes prescribed by the square-wave Fourier Series) all wired together
in series! In other words, that network could not “tell the difference” between the infinite array of
sine-wave voltage sources versus the simple square-wave digital oscillator – the Fourier Series for a
square wave being mathematically the same thing as the real square wave.
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This equivalence between one wave-shape and a collection of sinusoidal waves can have profound
consequences in electronics. One of these consequences is radio interference caused by high-frequency
digital switching circuits. Imagine if you will a digital circuit operating with a square-wave oscillator
frequency of 40 MHz. If this circuit is energized outside of a shielded metal enclosure, there will be
some inevitable radiation of electromagnetic waves from the circuit into the surrounding space.
This radiation can cause interference with nearby radio-communication systems which also use
electromagnetic waves to transmit and receive information. Obviously, if a nearby radio system
were designed to operate using 40 MHz signals, the emissions from this digital circuit with its 40
MHz oscillator signal could interfere with those radio communications. However, the fact that the
digital circuit’s oscillator produces a square wave means the radiated signal is actually equivalent to
40 MHz, 120 MHz, 200 MHz, 280 MHz, 360 MHz, and higher (odd-harmonic) sinusoidal frequencies
being broadcast simultaneously, potentially interfering with any radio communication system(s)
operating at any of those frequencies! This means a signal such as a square wave with its abundance
of harmonics poses a more severe threat of radio interference than, say, a pure sine wave oscillator
operating at 40 MHz.
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4.5 Building a triangle wave from cosine waves

The Fourier Series for a triangle wave is different from that of a square wave. Square waves consist
of an infinite sum of sine waves at odd harmonics, each harmonic’s magnitude being 1

n
of the

fundamental’s:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

Triangle waves, by contrast, are also an infinite sum of odd harmonics, but these are cosine waves
rather than sine waves, and the magnitude ratios are different. Instead of each successive harmonic
having a magnitude of 1

n
compared to the fundamental, the ratio is 1

n2 . This, in essence, constitutes
a different “recipe” for a non-sinusoidal wave, but still comprised of the same basic “ingredients”
(i.e. sinusoidal waves at harmonic frequencies) as the square wave:

cos ωt +
1

9
cos 3ωt +

1

25
cos 5ωt +

1

49
cos 7ωt + · · · + 1

n2
cos nωt

As with the square wave synthesis example in the previous section, we will build up this new
waveform harmonic by harmonic. Here we see the fundamental (i.e. first harmonic) plotted on its
own:
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Harmonic series simulated:

cos ωt
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Next we see the first and third harmonics in blue as separate cosine waves, as well as their sum
shown in red:
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Here we have the first, third, and fifth harmonics plotted as separate cosine waves in blue, as
well as their summation shown in red:
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Adding the seventh harmonic to the mix, we see the individual harmonics plotted in blue along
with the sum plotted in red:
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Continuing our progression with the addition of the ninth harmonic:
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With every additional odd harmonic (proportioned according to the inverse-square of the
harmonic number), the summation waveform clearly takes on the shape of a triangle wave. Extending
the series of odd-harmonic cosine terms all the way to the 99th sharpens this approximation until it
appears nearly perfect to our visual inspection:
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4.6 Building a sawtooth wave from sine waves

Sawtooth waves are asymmetrical about the time axis, requiring even-numbered as well as odd-
numbered harmonics in the Fourier Series for this wave-shape. Here we see the infinite Fourier
Series for a sawtooth wave:

sinωt +
1

2
sin 2ωt +

1

3
sin 3ωt +

1

4
sin 4ωt + · · · + 1

n
sin nωt

To begin our harmonic-by-harmonic synthesis of a sawtooth wave, we will start as we did for
the square wave synthesis: a blue-colored plot of one sine wave over a domain of 0 to 360 degrees,
oscillating between peak values of +1 and −1:
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Next we will add the second harmonic at one-half the magnitude of the fundamental, showing
the first and second harmonic sine waves in blue with the summation in red:
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Next we will add the third harmonic at one-third the magnitude of the fundamental, showing
the first three harmonic sine waves in blue with the summation in red:
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Adding the fourth harmonic:
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Adding the fifth harmonic:
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It should be clear by now the evolutionary progression of this wave-shape, gradually becoming
more linear in its downward slope and more vertical in its upward.
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Plotting the summation of all harmonics through the 99th, omitting the individual (blue-colored)
harmonic sine waves from the plot:
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Plotting the summation of all harmonics through the 999th:
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4.7 Building a pulse wave from cosine waves

A rectangular-shaped pulse waveform with a duty cycle (D) other than 50% is commonly referred to
as a pulse wave. Plain square waves are just special cases of pulse waves. Pulse waves consist of an
infinite sum of cosine waves at both even and odd harmonics, each harmonic’s magnitude being 1

n

of the fundamental’s multiplied by another term that is a sine function of the duty cycle (sin(nπD))
where nπD is in radians rather than degrees:

sin(πD) cos(ωt) +
1

2
sin(2πD) cos(2ωt) +

1

3
sin(3πD) cos(3ωt) + · · · + 1

n
sin(nπD) cos(nωt)

As with the wave synthesis examples in the previous sections, we will build up a pulse waveform
harmonic by harmonic. For this example we will set the duty cycle to 25% (D = 0.25). Here we see
the fundamental (i.e. first harmonic) plotted on its own:
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Next we see the first and second harmonics in blue as separate cosine waves, as well as their sum
shown in red:
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Next we see the first, second, and third harmonics in blue as separate cosine waves, as well as
their sum shown in red:
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Adding the fourth harmonic to the others is rather non-eventful, because the fourth harmonic’s
sine term becomes sin(4 × 0.25π) which is the sine of π radians, equal to zero. Thus, the fourth
harmonic for this D = 0.25 pulse waveform happens to be a flat line, contributing nothing to the
sum (red wave):
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Showing the fourth harmonic with its magnitude of zero:
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Plotting the summation of all harmonics through the 99th, omitting the individual (blue-colored)
harmonic cosine waves from the plot:
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Plotting the summation of all harmonics through the 999th, omitting the individual (blue-
colored) harmonic cosine waves from the plot:
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The 25% duty cycle is fairly clear to see in this plot, with the wave’s period being 360 degrees
and the “on” or “high” duration being 90 degrees in total (from 0 to approximately 45 degrees, and
again from approximately 315 to 360 degrees).
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4.8 Time vs. frequency in circuits

With AC electrical signals we are able to view the shape of waves using an instrument called an
oscilloscope, displaying voltage as a time-domain graph with voltage on the vertical axis and time
on the horizontal. Here is a small collection of oscillographs generated using the circuit-simulation
software NGSPICE, each accompanied by a schematic diagram and the “netlist” source code defining
the circuit and the analysis for the software:
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* Sine wave simulation
v1 1 0 sin(0 1 100 0 0)
rload 1 0 5000
.tran 0.5m 20m
.plot tran v(1)
.end time
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* Sine wave simulation
v1 1 0 sin(0 1 500 0 0)
rload 1 0 5000
.tran 0.1m 20m
.plot tran v(1)
.end time
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* Square wave simulation
v1 1 0 pulse(-1 1 0 
+ 1n 1n 4.999m 10m)
rload 1 0 5000
.tran 0.1m 20m
.plot tran v(1)
.end time

tran3: * square wave simulation
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The first two waves are sinusoidal, which means they have the same shape as a sine (or cosine)
wave. The third wave is definitely not sinusoidal, and is commonly known as a square wave.

By the phrase time-domain we mean to say that these signals are expressed as amplitudes in
relation to time. Mathematically they would be some function with time as the independent variable,
for example f(t) = A sin ωt for the sine waves where A is the peak amplitude and ω is the frequency
in radians per second, or f(t) = A sin 2πft where f is the frequency in cycles per second (Hz).
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Spectrum analyzers, in contrast to oscilloscopes, display voltage as a frequency-domain graph,
where voltage is the vertical axis and frequency is the horizontal. A spectrum analyzer is to an
electrical signal as a prism is to a beam of light: each device separates a superposition of frequencies
to make each component frequency clearly visible. We will explore the signal spectrum as it would be
displayed by a spectrum analyzer for each of the previous four signals, once again using NGSPICE2

to simulate the circuit and the measuring instrument.

First we will explore the slow sine wave, defined in the SPICE simulation as having a peak value
of 1 Volt and a frequency of 100 Hz. Note how the spectrum for this signal consists of a single peak
located at the 0.1 kHz mark on the frequency axis:
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* Sine wave simulation
v1 1 0 sin(0 1 100 0 0)
rload 1 0 5000
.tran 0.5m 20m
.plot tran v(1)
.end time
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This is analogous to a prism refracting a beam of monochromatic light: the resulting spectrum
consists of a narrow beam (peak) at one color (one frequency). In other words, this signal is a “pure”
sinusoid at 100 Hz.

Prism

RedRed light
(no spectrum)

2In order to obtain crisp spectra, the transient analysis parameters of the NGSPICE netlists had to be modified from
the values used to give each time-domain plot (oscillograph). Each spectrum was plotted using transient parameters of
0.5 millisecond intervals and an analysis period of 150 milliseconds (i.e. .tran 0.5m 150m). The sequence of NGSPICE
commands used to generate these spectra (after reading netlist file with the source command and “running” the
simulation with the run command) are as follows: linearize v(1) ; fft v(1) ; plot mag(v(1)).
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Next we will explore the faster sine wave, defined in our simulation as having a peak amplitude
of 1 Volt and a frequency of 500 Hz. Note how once again the spectrum consists of a single peak,
this time shifted horizontally to align with the 0.5 kHz mark rather than the 0.1 kHz mark as before:
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* Sine wave simulation
v1 1 0 sin(0 1 500 0 0)
rload 1 0 5000
.tran 0.1m 20m
.plot tran v(1)
.end time
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Once again the single spectrum peak is analogous to a prism refracting a beam of monochromatic
light, having a color (frequency) different than before. Whereas the prism would refract this new
monochromatic color by a new angle, the spectrum analyzer shows the peak located at a new place
along the frequency-domain axis.
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Our spectrum becomes more interesting, though, once the signal waveshape deviates from that
of a sinusoid. Here, we see our simulated square wave (1 Volt peak, 100 Hz frequency) producing
spectrum of several peaks rather than one peak:
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* Square wave simulation
v1 1 0 pulse(-1 1 0 
+ 1n 1n 4.999m 10m)
rload 1 0 5000
.tran 0.1m 20m
.plot tran v(1)
.end time

tran3: * square wave simulation
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Examining the oscillograph, we see how the period of the square wave is 10 milliseconds. This
reveals its fundamental frequency to be 100 Hz (f = 1

t
). The spectrum analysis does show a peak

at 100 Hz, but it also shows peaks at 300 Hz, 500 Hz, 700 Hz, and 900 Hz. These integer-multiples
of 100 Hz are called harmonics, with the fundamental (100 Hz) being the first harmonic, 300 Hz
being the 3rd harmonic, 500 Hz being the 5th harmonic, and so on. This result is analogous to a
prism splitting up a light beam into several distinct beams, each one having its own angle and color
(frequency), with the higher-frequency colors being weaker than the others.

An oscilloscope and a spectrum analyzer reveal different perspectives of the same thing. In this
case, a square wave electrical signal is a voltage that switches from one extreme value to the other at
regular intervals over time, but that same signal also is a superposition of sinusoidal voltage waves
at different frequencies and amplitudes. It is imperative to understand that a spectrum analyzer
does not alter the wave at all, any more than a prism modifies a beam of light: both instruments
merely give us a “disassembled” view of what always existed inside the waveform. A waveform is an
amplitude varying over time, and it is a series of sinusoidal waves superimposed upon one another.

While the mathematical principles linking time-domain and frequency-domain representations
(f(t) and f(ω), respectively) are quite complex3, it is possible to articulate several rules describing
the relationship between time- and frequency-domains that do not require advanced mathematics
to apply to practical scenarios. Additionally, some of the practical methods developed to display a
frequency-domain spectrum from a time-domain signal are actually easier to understand than the
underlying mathematics, much the same as a glass prism is easier to apprehend and use than the
mathematics of light waves!

3Jean Baptiste Joseph Fourier actually developed this mathematical technique for modeling the flow of heat through
solid materials based on sinusoidal functions.
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4.9 Time-frequency relationships

The following rules describe some of the relationships between time-domain and frequency-domain
representation of waves, beginning with our previous statement that all waves are equivalent to
combinations of sinusoids. No attempt will be made here to derive or to prove any of these rules in
this tutorial, though they may all be confirmed by experiment:

• Equivalence: Any wave-shape, no matter how complicated, is equivalent to a sum of purely
sinusoidal waveforms. The number of terms in this sum range from one to infinite.

→ A pure sinusoid with constant period has, by definition, just one frequency. It is a
“sum” of exactly one sinusoidal waveform.

→ Any waveform that is not a perfect sinusoid contains multiple frequencies; i.e. it is
exactly equivalent to a sum of perfect sinusoids.

• Periodic waves: Any periodic waveform (i.e. a waveform that repeats itself over time) is
equivalent to a sum of cosine and sine waves, the frequency of each being a harmonic (i.e. an
integer multiple) of the wave’s fundamental frequency, and each with its own amplitude. This
sum may also include a DC term.

• Non-periodic waves: Any non-periodic waveform is equivalent to a sum of sinusoids with
frequencies not limited to just integer multiples of the harmonic, and may also contain a
DC term. These non-integer frequencies are called interharmonics, and may exist as specific
frequencies or as a continuous band covering a range of frequency.

• Superposition: Any superposition of waveforms, no matter how complicated, will result in
a superposition of those waveforms’ spectra: the whole is equal to the sum of its parts.

• Linear systems: Any signal passing through a linear4 system will emerge with the same
frequencies in its spectrum, although amplitudes and/or phase shifts may differ.

• Non-linear systems: Any signal passing through a nonlinear system will emerge containing
new frequencies, and also a different wave-shape as viewed in the time domain.

• Steepness: Wave-shapes with shorter rise- and fall-times (i.e. steeper edges) in the time
domain have more high-frequency components than wave-shapes with more gradual profiles,
all other factors being equal.

→ Limit case: A pulse of infinitesimal width in the time domain contains all frequencies
– its frequency-domain spectrum is a flat, horizontal line.

→ Limit case: An unchanging (DC) signal’s frequency-domain spectrum is a single peak
at 0 Hz.

• Symmetry: If a signal viewed in the time domain has a wave-shape that is symmetrical about
its centerline – that is to say, if the shape of the wave is identical when inverted – then its
spectrum will only contain odd harmonics.

4A “linear” system is one with a constant ratio of output to input. A resistor is a good example of a linear
component, as its resistance R is a constant ratio between voltage V and current I: doubling the current through a
resistor results in double the voltage drop. A semiconductor diode is a good example of a nonlinear component, where
the voltage drop does not double in response to a doubling of current.
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4.10 Applications for frequency-domain analysis

Now that we realize some of the relationships between time-domain and frequency-domain
representations of waveforms, we should explore some practical applications:

Application – Extracting frequency-domain information from time-domain measurements:
Computer algorithms exist to derive the frequency spectrum from any given signal sampled in
its time domain. The most popular of these is the Fast Fourier Transform (abbreviated FFT ), so
named because it computes a spectrum with a remarkable economy of calculations. In fact, the
spectrum plots shown earlier in this tutorial were created using an FFT algorithm in the SPICE
circuit simulation software.

Application – Linear circuit analysis by Superposition Theorem: Recall the Superposition Theorem
as first learned with DC circuits. The purpose of this Theorem was to simplify the analysis of a
multi-source circuit by considering just one source at a time, knowing that for any linear network the
results would be the superposition (i.e. algebraic sum) of the individual sources’ effects. Now that
we know any non-sinusoidal signal is a superposition of sinusoids, we may do the same: analyze any
linear network one harmonic at a time and sum the results of all harmonics’ effects on the circuit.
This strategy allows us to use the same mathematical tools (e.g. phasors) learned for analyzing
simple AC circuits.

Application – Manually identifying signals within noise: A signal waveform combined with
extraneous waveforms (i.e. “noise” from our perspective) may be difficult if not impossible to visually
discern from a time-domain oscillograph, but will be much easier to identify within a frequency-
domain spectrum plot. Furthermore, the spectrum display helps us determine the noise frequencies,
and therefore useful filtering strategies for mitigating that noise.

Application – Manually identifying distortion: Linear circuits are not supposed to distort the wave-
shape of an AC signal passed through, so if there is any distortion present we would do well to know
of it. Small amounts of distortion imposed on a “smooth” test wave-shape such as a sinusoid5 may
be difficult if not impossible to identify, much less quantify from a time-domain display. However,
distortion is impossible to ignore in a frequency-domain display because it consists of new frequencies

(i.e. peaks in the spectrum where none existed before), and the height of those new peaks reveals
exactly how much distortion exists.

Application – Diagnosing power-control circuits: Electronic power-control circuits minimize
resistive energy loss (dissipation) by switching their transistors and/or thyristors between extreme
states of cutoff (fully off) and saturation (fully on). This results in current and voltage waveforms
with fast rise- and fall-times, which we now know is equivalent to a rich spectrum of harmonic
frequencies. The magnitudes and frequencies of these harmonics serve as indicators of switching
behavior. For example, if a power control circuit operating on AC is designed to symmetrically
“chop” the AC waveform, we would expect only odd-numbered harmonics. The presence of any

5This is why a common practice for identifying distortion in electronic circuits using only time-domain instruments
is to use square-wave test signals rather than sinusoidal test signals. Simply put, it is easier to visually discern
distortion in a square wave because the wave’s features will no longer be square and plumb. This technique is limited,
though, as some forms of distortion such as “crossover distortion” are much more challenging to discern than others
due to the fast rise and fall times of square waves.
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even-numbered harmonics in the spectrum indicate a lack of symmetry in the waveform, which
could mean a problem in one-half of the power control circuit.

A practical parameter of real-world spectrum analysis is random noise. These are variations in
the measured signal (voltage or current) lacking any distinct frequency, and as such it appears at the
bottom of the spectrum display as a “jagged” or “fuzzy” baseline rather than the clean and straight
lines one obtains from a computer-simulated spectrum plot.

The following illustrations show ideal (left) and real (right) displays of a spectrum showing
fundamental and harmonic frequencies:
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Realistic spectrum display

Any signals with peaks at or below the top of this “noise floor” of the display are swamped by
the noise and cannot be measured. A screenshot of a spectrum analyzer measuring the output of
a signal generator set to 2 kHz (sinusoidal wave) clearly shows the signal’s peak amidst the noise
floor:

When measuring a live signal, the individual negative peaks within this noise floor randomly
come and go. It is not a static display, but an ever-shifting array of noise.
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4.11 Filter-based Fourier analysis

As useful as it may be for us to know that any wave-shape is mathematically equivalent to a
superposition of sinusoidal waves at different frequencies and amplitudes, it is even more useful
to be able to analyze a given waveform to determine exactly what those sinusoidal frequencies and
amplitudes are. This is called Fourier analysis, and its mathematical foundations are quite complex.
The integral calculus necessary to even begin to approach this topic is well beyond the scope of this
text, but fortunately there are analog electronic methods for determining the harmonic content of
real AC electrical signals requiring no calculus to comprehend.

Perhaps the simplest method for analyzing an arbitrary AC signal is to construct a circuit with
several band-pass filter networks, each one tuned to a different harmonic frequency of the known
fundamental. This approach only works when the fundamental frequency is a fixed and known
quantity, but for certain practical applications such as AC power systems where the fundamental
frequency never varies (typically 50 Hz or 60 Hz depending on the geographic location) it is practical.

The following illustration comes from Charles Proteus Steinmetz’s 1917 text Theory and

Calculation of Electric Circuits, where he refers to each of the LC networks as a wave screen:

Each of the series LC networks is a band-pass filter allowing current through to a dedicated
AC ammeter. Upon connecting this network’s bottom two terminals to an appropriate source of
power-line AC voltage, we would see the first ammeter (A1) register the strongest value while the
other ammeters register lesser amounts of current. That first ammeter’s filter network (C1 and L1)
of course is tuned to the power system’s fundamental frequency, such that only the fundamental
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component of the AC waveform powers ammeter A1. The next filter network (C3 and L3) have values
chosen to pass only the third harmonic of the system’s fundamental frequency, so that ammeter
A3 measures only how much 3rd harmonic there is in the signal. All the other filter networks are
similarly tuned to odd-numbered harmonics. One could expand this circuit to include even-numbered
harmonic filters with more ammeters, but generally in power systems we find distortions to the AC
generators’ waveforms are symmetrical in the positive and negative half-cycles, and so the major
harmonics of concern are all odd.

Steinmetz’s “wave-screen” harmonic analyzer is simple and easy-to-understand but limited in
that it only works for AC systems of a known and fixed fundamental frequency. We will need
different analytical techniques in order to construct a more general harmonic analyzer.

One alternative using similar technology employs variable inductors and/or capacitors along with
a single ammeter so that the band-pass filter may be manually tuned across a range of frequencies
while carefully noting those frequencies where the ammeter’s reading peaks:

Ammeter

Vinput

This instrument has the advantage of being infinitely adjustable for analysis of harmonics covering
a range of fundamental frequencies, the limits of that range bound by the variable L and C component
adjustment ranges and by the ammeter’s frequency range (i.e. bandwidth). However, it requires
patience and skill to operate, unable to provide simultaneous measurements of harmonics the way
the multi-filter analyzer can.
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One improvement to this technique is to use an electrically-tuned6 filter driven by a ramping
voltage waveform, using that ramping signal to drive the horizontal axis of an oscilloscope (set to
“X-Y” mode7) while the filtered signal amplitude is “detected” (i.e. rectified and peak-captured)
and used to drive the oscilloscope’s vertical axis. We see how such a spectrum analyzer system could
be constructed in block-diagram form:
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Swept-tuning spectrum analyzer

As the ramp generator’s signal voltage increases over time, the filter’s center frequency increases
(selecting higher-frequency harmonics contained within the input) while the oscilloscope’s trace
sweeps from left to right. Whatever makes it through the band-pass filter at any given time is
“detected” and converted into a positive DC voltage to drive the oscilloscope’s trace upwards. The
result is that a complete spectrum is repeatedly traced on the oscilloscope screen. Essentially, this
swept-tuning analyzer does automatically what the manually-tuned band-pass filter did manually,
with much faster results such that the peaks on the displayed spectrum appear to be simultaneous
to any human viewer if the ramp signal’s frequency is sufficiently high.

6Several techniques exist to make a filter network electrically tunable. This could be done mechanically, using
a servo motor to turn the shaft of a variable inductor or capacitor. It could be accomplished through the use of a
varactor diode whose capacitance changes with applied voltage.

7In this mode, the oscilloscope’s horizontal (x) axis is driven by an external voltage rather than being swept by its
own internal ramp signal, thus allowing the external ramp signal generator shown here to control the trace’s horizontal
position while the “detected” filter-output signal drives the vertical.
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4.12 Mixer-based Fourier analysis

Another analog electronic method for analyzing waveforms’ harmonic content utilizes signal

multiplication. As it so happens, when we multiply two sinusoidal waveforms together in real time,
the result is a pair of new sinusoidal waveforms: one having a frequency equal to the sum of the
two multiplied-signal frequencies and another having a frequency equal to the difference between
the two multiplied-signal frequencies. For example, if we multiplied a 10 kHz sinusoid by a 12 kHz
sinusoid, the output would be a superposition of a 2 kHz sinusoid and a 22 kHz sinusoid:

f(x,y) = xy

Multiplier
Signal x

Signal y
Output

(contains sidebands)

(pure sinusoid)

(pure sinusoid)

freq

freq

These two sinusoids are known as sidebands, because they appear “off to either side” of the
greater input frequency when viewed in the frequency domain (e.g. a lower sideband 10 kHz below
the 12 kHz peak and an upper sideband 10 kHz above the 12 kHz peak). This phenomenon is
generally known as heterodyning, and it occurs whenever signals “mix” together within a non-linear
network. A purely multiplicative circuit is nonlinear, but so are many others, and any circuit using
any form of non-linear characteristic to heterodyne two or more signals is generally known as a
mixer.

Mixers are typically represented in block-diagram form by a circle with an “X” symbol inside,
referencing the multiplicative characteristic necessary for heterodyning. Most mixer circuits are not
purely multiplicative, which means their output signals usually include other frequencies in addition
to the two sidebands of interest. The signal mixed with the input is commonly referred to as the
local oscillator, or LO :

fLO

fin

Mixer

fout = fLO ± fin + (other signals)

As we shall soon see, the presence or absence of these other frequencies are of no concern to us
when we use a mixer for Fourier analysis.
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Imagine passing two sinusoidal signals of precisely equal frequency into a mixer (i.e. fin = fLO).
The two sideband frequencies output by that mixer will of course be the sum and difference
frequencies, and in this case the result will be an upper sideband frequency of 2f (fin + fLO)
and a lower sideband frequency of zero (fin − fLO). What a frequency value of “zero” means is
that the lower sideband will be DC rather than AC. This is remarkable because it only occurs
when two signals of equal frequency pass through a mixer. If the mixer’s two signals differ at all
in frequency there will be no DC present in the mixer’s output because both sidebands will have
non-zero frequency values.

If we monitor the output of a mixer using an instrument that only responds to DC signals, we
may use that mixer to “probe” for the presence of particular frequencies within a complex signal.
Consider for example a complex waveform having a fundamental frequency of 15 kHz along with
all the even- and odd-numbered harmonics (e.g. 30 kHz, 45 kHz, 60 kHz, etc.), and passing this
complex signal to the input of a mixer circuit. Then, imagine connecting a variable-frequency
sinusoidal oscillator to the LO port of that same mixer circuit. Our DC-only sensing instrument
will register when our variable oscillator reaches 15 kHz, and then again when the variable oscillator
is dialed up to 30 kHz, then again at 45 kHz, etc. In other words, if we “sweep” the LO frequency
across a range while monitoring the mixer’s output DC, we will see DC signals only when the LO
matches some harmonic present in the complex signal.

A block diagram of a manually-swept spectrum analyzer appears here, its operation similar to
that of the manually-tuned LC filter and ammeter circuit shown in the previous section:

Mixer

Signal
input

LP filter
DC meter

Variable
frequency
oscillator

To operate this circuit, you would carefully monitor the DC meter’s indication while gradually
“sweeping” the variable oscillator’s frequency, noting those frequency values where the DC meter
gives a positive indication. Those will be the frequencies of every harmonic present in the input signal
(i.e. the nω values in the Fourier series equation), starting with the first harmonic or fundamental
frequency. The magnitude of the meter’s indication at each of these points represents the amplitude
of each harmonic (i.e. the A coefficient values in the Fourier series):

A0 + A1 sin(ωt + θ1) + A2 sin(2ωt + θ2) + A3 sin(3ωt + θ3) + · · ·An sin(nωt + θn)
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Just like the swept-tuning spectrum analyzer discussed earlier, we may similarly automate
this mixer-based technique to display the resulting spectrum on an oscilloscope screen with that
oscilloscope set to the “X-Y” mode as before. This time, in addition to sweeping the oscilloscope’s
trace from left to right, our ramp signal generator will also drive a voltage-controlled oscillator (VCO)
which outputs an AC signal whose frequency value is proportional to that controlling voltage, which
will then drive the mixer’s local oscillator (LO) port. The low-pass filter’s output will directly drive
the oscilloscope’s vertical input:
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As the ramp signal generator’s voltage ramps up from minimum to maximum, the VCO’s output
frequency will proportionately ramp from low frequency to high frequency as the oscilloscope’s trace
simultaneously moves from left to right on the screen. If the VCO frequency happens to match any
harmonic frequency (including the fundamental) contained in the input signal, the mixer will output
a DC voltage which passes through the low-pass filter to simultaneously drive the oscilloscope’s trace
upwards on the screen. However, if the VCO’s frequency does not match any frequency contained
in the input signal, then the mixer’s output will be strictly AC (i.e. no DC) and the low-pass filter
outputs little or nothing to the oscilloscope’s y axis. Thus we end up with an image on the screen
consisting of a peak at every horizontal point corresponding to a harmonic frequency contained in
the input signal, and minimal height for the rest of the domain. If the ramp generator repeats itself
at a fast enough rate, this spectrum display will appear continuously on the oscilloscope’s screen as
it re-traces the same shape over and over again.
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4.13 Fourier analysis of a square wave

As we saw in the previous section, the mixer-based Fourier analysis technique involves multiplying
the sample waveform by a pure sinusoid in real time (i.e. simultaneously), then analyzing the
resulting product waveform for the presence of an average DC value to determine whether the
frequency represented in that pure sinusoid is contained within the sample waveform. Now we will
take this same strategy and manually apply it to the analysis of a square wave.

Square waves are very well-understood from a frequency-domain perspective, consisting of
a fundamental component plus all odd harmonics at inversely-proportional amplitudes following
Fourier series shown below, where ω is frequency in radians per second and t is time in seconds:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

For example, a square wave having a fundamental frequency of 20 kHz will consist of a sine wave
at 20 kHz added to a sine wave 1

3 the amplitude at 60 kHz added to a sine wave 1
5 the amplitude

at 100 kHz, and so on to infinity. What we will now do is actually multiply a square wave by sine
waves of different frequencies to prove to ourselves visually that the Fourier series as written for a
square wave is true.
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First we will consider multiplying a square wave by a sine wave having exactly the same
(fundamental) frequency:
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’data.csv’ using 1:2
’data.csv’ using 1:3

This square wave’s value oscillates between +1 and −1, which means for the first half of its cycle
the product of square times sine wave will be identical to the first half of the sine wave, but for
the second half of the cycle the product will be the inverse (negative) of the sine wave. The result
is what appears to be a fully-rectified sine wave, with both of its half-cycles positive rather than
alternating positive and negative:
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’data.csv’ using 1:4

In order to determine whether or not an average DC value exists in this product, all we need to
do is assess whether the average area encompassed by the wave (i.e. between the wave’s curve and
the horizontal centerline) has a net value or whether the positive areas completely cancel out the
negative areas. It should be clearly evident in this case that a net positive value does exist because
the product waveform never goes negative at all. The existence of an average DC value proves the
square wave contains this particular sine wave’s frequency.
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Next we will increase the frequency of the sine wave to be twice that of the square wave’s
fundamental. This will be our test for a second harmonic within the square wave:
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As before, when the square wave is in its +1 portion, the product will be an exact replica of the
sine wave. When the square wave drops to a value of −1, the product will be an inverted version of
the sine wave:
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Looking carefully at this product waveform reveals four peaks of equal area, two positive and
two negative. This means there is no average DC value to the product waveform, and therefore the
sine wave signal used to generate it is not present within the square wave signal. Simply stated, a
square wave contains no second harmonic.
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Next we will increase the frequency of the sine wave to be three times that of the square wave’s
fundamental. This will be our test for a third harmonic within the square wave, the input signals
shown first and the product shown next:
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This time we see six peaks of equal area, four positive and two negative. The two negative peaks’
areas cancel out two of the four positive peaks’ areas, leaving a net positive value for the product
waveform’s enclosed area (i.e. it contains DC), proving a third harmonic exists within the square
wave. Moreover, we have enough information here to quantify how strong this third harmonic is
compared to the fundamental. Recall that in the first harmonic (fundamental) test we obtained a
product waveform consisting solely of two positive peaks. In this test we also have a net area equal
to two positive peaks, but each of these peaks is only one-third as wide (but equal height) as each
peak seen in the first-harmonic test. This means the average DC value of this product waveform is
just one-third as much as that of the product waveform created for the fundamental test.

What we have proven so far are the first two terms of the Fourier series for a square wave, namely
that the third harmonic has just one-third the amplitude of the first harmonic (fundamental):

sinωt +
1

3
sin 3ωt + · · ·
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Next we will increase the frequency of the sine wave to be four times that of the square wave’s
fundamental. This will be our test for a fourth harmonic within the square wave, the input signals
shown first and the product shown next:
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As with the second harmonic test, we see an equal number of positive and negative peaks. This
means zero average DC value, and therefore the square wave does not contain a fourth harmonic.

If we think carefully about the results so far, it should be evident that no even-numbered harmonic
will exist within the square wave because within each half-cycle of the square wave there will always
fit a whole number of even-harmonic sine wave cycles. The areas enclosed by the product waveform’s
peaks during the first half-cycle of the square wave will all cancel because every positive peak is
matched by an identical negative peak, and the same will be true during the square wave’s second
half-cycle as well. The fact that the sine wave gets inverted during the second half-cycle is of no
consequence to the net area value, so long as a whole number of sine wave cycles fit within each
half-cycle of the square wave.

This means it is pointless to test for a sixth, eighth, tenth, or further even-numbered harmonic.
All their net areas in the product waveform are guaranteed to be zero, meaning the square wave
does not contain any even-numbered harmonics.
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Next we will increase the frequency of the sine wave to be five times that of the square wave’s
fundamental. This will be our test for a fifth harmonic within the square wave, the input signals
shown first and the product shown next:
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Here we see a net positive area enclosed by the product waveform: six positive peaks and
four negative peaks. This leaves a net of two positive peaks, each of those peaks enclosing an
area just one-fifth of the peaks seen in the product waveform for the first-harmonic (fundamental)
test. Therefore, the square wave’s fifth harmonic has an amplitude just one-fifth as much as its
fundamental, completing another term in the Fourier series:

sinωt +
1

3
sin 3ωt +

1

5
sin 5ωt + · · ·

We could continue this process for all the other odd-numbered harmonics, but this is not necessary
once you recognize the pattern. With each subsequent odd-numbered harmonic test, we find an
average DC value within the product diminishing in inverse proportion to its harmonic number, and
this series extends to infinity because there must always be some amount of DC after multiplication
by any odd-numbered harmonic.
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4.14 Phase-shifted Fourier terms

The examples we just saw for the 1st, 2nd, 3rd, 4th, and 5th harmonic tests of a square wave should
make a compelling case for how Fourier analysis works for any real signal, but there is an important
caveat regarding the phase relationship between the mixer’s sampled waveform (input signal) and
the sinusoid (Local Oscillator). Let’s explore this by calculating the product of the same square wave
and a cosine wave of identical frequency, first the input signals and then the product waveform:
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Here we see equal positive and negative areas for the product waveform, which means no DC
average value and therefore no presence of this harmonic within the square wave. At first this may
sound like a contradiction, because we clearly saw a strong net positive area in the product waveform
when we used a sine wave instead of a cosine wave at the fundamental frequency, proving that a
first harmonic does exist within a square wave. The fact that we find no DC average now proves
that the phase-shift of the sinusoidal test signal (i.e. the Local Oscillator, or LO, signal) in relation
to the sampled waveform actually matters. As such, we may miss the presence of a harmonic in the
sampled waveform if we happen to choose a LO test signal having the wrong phase shift.



76 CHAPTER 4. FULL TUTORIAL

Exploring this phase-shift concept a little more, we will re-run the signal multiplication using a
test signal phase-shifted by 45o instead of 0o (sine) or 90o (cosine):
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Here, the product waveform definitely has a greater positive area than negative area, which
means a net average DC value exists, albeit not as strong as when we used a plain sine wave as the
LO test signal.

If we think about this carefully, we can generalize that a plain sine wave multiplied by a square
wave must give us the strongest positive net area (and therefore the strongest average DC value)
for the product waveform, but that this area diminishes as the phase shift approaches 90o. We may
even propose using an inverted sine wave as the LO test signal (i.e. 180o phase shift), in which case
the product waveform would have an entirely negative net area. The average DC value we get out
of the multiplication function varies from full positive to full negative if that harmonic exists in the
sample waveform depending on the phase angle of the LO signal we happen to choose for the test.

What is happening here is that the harmonic itself we are trying to find within the sampled
waveform has a definite phase angle in relation to that sampled waveform, and that we obtain a
maximum positive DC value from the product waveform only when our LO test signal matches the
phase of that harmonic. We cannot simply assume every harmonic will reveal itself by using sine
waves for the LO signal in every test.
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This is why the generic Fourier series contains a phase-shift value (θ) for each harmonic as well
as an amplitude (A) and a frequency value (nω), because sometimes harmonics require a certain
amount of phase shift to properly synthesize the whole waveform:

A0 + A1 sin(ωt + θ1) + A2 sin(2ωt + θ2) + A3 sin(3ωt + θ3) + · · ·An sin(nωt + θn)

Recall that a more verbose form of the generic Fourier series shows each harmonic as being the
sum of a cosine term and a sine term, each with a common frequency value but having independent
amplitudes (a and b respectively):

a0+(a1 cos ωt+b1 sinωt)+(a2 cos 2ωt+b2 sin 2ωt)+(a3 cos 3ωt+b3 sin 3ωt)+· · · (an cos nωt+bn sin nωt)

We have already seen the mathematical basis for this equivalence in the form of complex numbers
used in the phasor representation of AC quantities: we may represent a sinusoid at any given
frequency in terms of its amplitude and phase angle (A6 θ) as a “polar” quantity, or in terms of
its real and imaginary values (a + jb) as a “rectangular” quantity. The phase-shift version of the
Fourier series is the “polar” representation of each harmonic, while the cosine-sine version of the
Fourier series is the “rectangular” representation of each harmonic. Both forms are perfectly valid.

When analyzing a sampled waveform using the cut-and-try method of multiplying that
waveform’s values by corresponding values of a sinusoid as we did for the square wave, it would
not be practical for us to try finding each harmonic’s maximum product by trying every conceivable
phase shift value until we determine which phase angle gives us the greatest average DC value in
the product. However, performing a two-step test where we multiply by the cosine at that harmonic
frequency, then again multiplying by the sine at that harmonic frequency, is manageable while
providing us with all the information we need to determine the Fourier series. In other words, it
makes more sense for us to analyze a sample waveform using the “rectangular” approach of the
cosine-sine Fourier series form than the “polar” approach of the phase-angle Fourier series form.
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4.15 A digital Fourier transform algorithm

Modern electronic test equipment is largely digital in nature rather than analog, but we may apply
the same fundamental principle of mixer-based Fourier analysis – namely, multiplying a sampled
waveform by “test” sinusoids of different frequencies and looking for an average DC value in the
product – in the form of a digital computer program with similar results. In this section we will
experiment with such an algorithm coded in the C programming language.

We will assume our algorithm obtains its waveform data from sampling an actual measured
signal over time, those sampled values stored in a data structure known as an array. An “array”
in the C language is a set of variables indexed by a subscript value, resembling subscripts used in
mathematical formulae to distinguish related variables from each other. For example, if we refer to
our sampled signal as x, then its instantaneous value at time zero would be x0, its value at sample
one would be x1, its value at sample two would be x2, and so on. In C, we would declare an array
named x and then reference each of its elements as x[0], x[1], x[2], etc.

Next, our algorithm must examine the values stored in this array, and multiply each of them by
the values of a cosine function and a sine function at angles corresponding to those sample times.
If one cycle of the sampled waveform requires 100 samples, then both the cosine and sine functions
must complete one cycle in exactly 100 increments as well. An easy way to determine if there is an
average DC value to these products is to compute a running total over all samples: if all the positive
values cancel out all the negative values, the final sum will be zero; otherwise there will be some
un-canceled value representing the amount of DC present in the product.
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The following C program does all of this and more. In this example, we have encoded a square
wave function as one hundred sample values all stored in the array x[] as double-precision floating-
point quantities:

#include <stdio.h>

#include <math.h>

int main (void)

{

double x[100] = {0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0};

int sample;

double cosavg, sinavg;

cosavg = sinavg = 0.0;

for (sample = 0 ; sample < 100 ; ++sample)

{

cosavg = cosavg + (x[sample] * cos(2 * M_PI * sample / 100));

sinavg = sinavg + (x[sample] * sin(2 * M_PI * sample / 100));

}

printf("DC average value of cosine product = %f\n", cosavg / 100);

printf("DC average value of sine product = %f\n", sinavg / 100);

return 0;

}

The cosine and sine products and their running totals are computed within the for() loop, and
then afterward those totals are divided by the number of samples (100) to obtain an average value
for each. Note how the angular argument for the cos() and sin() functions are scaled such that
100 samples is equal to 2π radians, so that both trigonometric functions experience exactly one cycle
over the total run of samples.

If we compile and run this code, we find it gives us a cosine average of zero and a sine average of
0.636410. Since the cosine and sine functions cover one cycle in the span of 100 samples, this means
we are testing for the first harmonic (fundamental) within the sampled square wave.
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A minor modification to this code allows us to re-analyze the sampled square wave for different
harmonics. Here, we edit the cosavg and sinavg lines within the for() loop to detect a third

harmonic:

#include <stdio.h>

#include <math.h>

int main (void)

{

double x[100] = {0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0};

int sample;

double cosavg, sinavg;

cosavg = sinavg = 0.0;

for (sample = 0 ; sample < 100 ; ++sample)

{

cosavg = cosavg + (x[sample] * cos(3 * 2 * M_PI * sample / 100));

sinavg = sinavg + (x[sample] * sin(3 * 2 * M_PI * sample / 100));

}

printf("DC average value of cosine product = %f\n", cosavg / 100);

printf("DC average value of sine product = %f\n", sinavg / 100);

return 0;

}

Now the cos() and sin() functions both cover three cycles over the 100-sample period of the
square wave, thanks to the 3 multiplier inserted in those two lines of code.

When we compile and run this code, the results indicate a cosine product average of zero and a
sine product average of 0.211578. This stands to reason, as the ratio 0.211578

0.636410 is very nearly equal to
1
3 . Recall that the third harmonic of a perfect square wave has an amplitude exactly one-third that
of the fundamental.

Testing for other harmonics is as simple as editing the leading coefficient inside the parentheses
of the cos() and sin() functions. Testing an entirely different waveform is as simple as substituting
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different values into the x array. Many other additions to this simple program are possible, a few of
them listed here:

• Add code to re-test the sampled waveform for all harmonics within a certain range (instead of
just one at a time).

• Add code to take the resulting cosavg and sinavg values and use them to compute a phasor
magnitude and angle so we could write a Fourier series in “polar” form.

• Add code to take the computed harmonic amplitudes and normalize them to the first harmonic
so that the fundamental always has an amplitude of 1, with all the other harmonics’ amplitude
coefficients being ratios of the fundamental’s.

• Instead of having the number of signal samples (and the number of for() loop iterations, and
the averaging divisor) fixed at 100, make that factor its own constant in the program. This
will make it simpler to analyze waveforms recorded over different numbers of samples: just
edit that constant value rather than having to make six different edits in the existing code.
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Chapter 5

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism

written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.
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5.1 Wave screens

Charles Proteus Steinmetz was an electrical engineer employed for many years by the General Electric
Company in New York. He was widely recognized as a genius in this field, and did much to elevate
the mathematical rigor of electrical engineering. In his book Theory and Calculation of Electric

Circuits first published in 1917 he describes the use of capacitance and inductance to form filtering
circuits which he referred to as wave screens useful for separating alternating and direct current
components of any pulsating electrical signal:

78. By “wave screens” the separation of pulsating currents into their alternating and
their continuous component, or the separation of complex alternating currents – and
thus voltages – into their constituent harmonics can be accomplished, and inversely, the
combination of alternating and continuous currents or voltages into resultant complex
alternating or pulsating currents.

The simplest arrangement of such a wave screen for separating, or combining, alternating
and continuous currents into pulsating ones, is the combination, in shunt with each
other, of a capacity, C, and an inductance, L, as shown in Fig. 75. If, then, a
pulsating voltage, e, is impressed upon the system, the pulsating current, i, produced by
it divides, as the continuous component can not pass through the condenser, C, and the
alternating component is barred by the inductance, L, the more completely, the higher
this inductance. Thus the current, i1, in the apparatus, A, is a true alternating current,
while the current, i0, in the apparatus, C, is a slightly pulsating direct current. [page

156]

In this illustration A and C each represent electrical ammeters registering current through their
respective branches of the parallel (“shunt”) network.
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On the next page, Steinmetz describes the use of series LC resonance to form band-pass filters
useful for separating various harmonic1 frequencies from a complex AC signal:

Wave screens based on resonance for a definite frequency by series connection of capacity
and inductance, can be used to separate the current of this frequency from a complex
current or voltage wave, such as those given in Figs. 56 to 63, and thus can be used for
the separation of complex waves into their components, by “harmonic analysis.”

Thus in Fig. 76, if the successive capacities and inductances are chosen such that

2πfL1 =
1

2πfC1
,

6πfL3 =
1

6πfC3
,

10πfL5 =
1

10πfC5
,

2nπfLn =
1

2πfnCn

where f = frequency of the fundamental wave. [page 180]

Steinmetz’s conception of multiple band-pass filter networks tuned to resonate with respective
harmonics of a known fundamental frequency, each one connected to its own ammeter to register
the strength of each harmonic, is analogous to obsolete vibrating-reed frequency meters with their
multiple reeds tuned to different frequencies.

1As mathematically proven by Fourier, any periodic wave of any shape whatsoever is mathematically equivalent to
the sum of a set of sinusoidal waves having frequency values equal to whole-numbered multiples of the fundamental
frequency of the complex wave. For example, a complex-shaped waveform having a frequency of 45 Hz may consist
of a 45 Hz “fundamental” sinusoid (the first harmonic) plus other sinusoidal waves of specific amplitudes having
frequencies of 90 Hz (the second harmonic), 135 Hz (the third harmonic), 180 Hz (the fourth harmonic), etc.
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5.2 Vibrating-reed meters as spectrum analyzers

An obsolete technology for measuring the frequency of AC electric power is the vibrating-reed

frequency meter. This meter consisted of a set of metal reeds made of spring-steel, each reed
cut to a different length, and all of them excited by the magnetic field from an electromagnet coil
energized by the AC line voltage to be measured. The illustration on the left shows the internal
construction of the meter with its metal reed array and coil, while the illustration on the right shows
what the meter looks like when energized by 60 Hz AC:

shaken by magnetic
field from the coil

Sheet-metal reeds AC line voltage
applied to coil

Frequency Meter

120 Volts AC

6058565452 62 64 66 68
Hz

If the AC line frequency is 60 Hz, the reed tuned to resonate at that frequency will vibrate at
the greatest amplitude, making the end of that reed appear “taller” as it rapidly shakes up and
down. All the other reeds vibrate as well, but none as strongly as the reed resonating with the line
frequency. A photograph of a real vibrating-reed frequency meter appears here, connected to an AC
generator outputting approximately 59.5 Hz:
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As crude a measuring instrument as a vibrating-reed frequency meter is, it actually functions as
a sort of spectrum analyzer. A pure sinusoidal AC voltage has but a single frequency in its spectrum,
and the moving reed ends reveal the outline of this spectrum: a single peak at the line frequency.
If we were to connect a pair of AC generators in series and run them at different speeds to form a
superposition of two sinusoidal voltages, we would see two reeds vibrate strongly on the face of such
a frequency meter: two peaks in the spectrum, one for each generator’s output:

shaken by magnetic
field from the coil

Sheet-metal reeds 66 Hz

58 Hz

Frequency Meter

120 Volts AC

6058565452 62 64 66 68
Hz

For readers familiar with filter networks, a good way to model each of the metal reeds in such a
meter is as a mechanical band-pass filter. Each reed has its own resonant frequency dictated by its
mass, length, and elasticity. Adjusting the length of each reed is the simplest way to “tune” each
of the reeds to the desired resonant frequency, which is why each reed in a meter such as this has a
different length.
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5.3 Wireless versus cable-based telephony

John Ambrose Fleming was a scientific researcher and prolific writer on electricity and early
electronics, including communication systems. In his 1910 book The Principles of Electric Wave

Telegraphy and Telephony Fleming discusses the limitations of communicating speech signals over
long distances via wire cable, compared to transmitting them through space2. Note the reference
to Fourier’s equivalence between the waveform of an “articulate sound” and that of pure sinusoids,
and how this perspective is used to explain the distorting effects of long wire cables.

Although, therefore, wireless telephony has not attained the range reached by wireless
telegraphy, nevertheless there is evidence that it has been conducted over distances of
200 miles or so with considerable success. One feature of importance in connection with
radiotelephony is that there is no distortion of the wave form with distance. In ordinary
telephony with wires, this distortion, which is specially marked in the case of circuits
having large capacity, such as submarine cables, and the distorting power of the circuit
impose a very serious limit upon the range of telephony. Briefly speaking, the reason for
this is as follows:

If we have a conductor with resistance R per unit of length, capacity C per unit of
length, inductance L per unit of length, and dielectric conductance K per unit of length,
then from the fundamental equations for the propagation of electrical disturbance along
such a circuit (see Chap. IV., 1), it can be shown that the velocity of propagation
of a periodic electric disturbance along the cable is a function of the frequency, the
greater the frequency the less being the velocity of propagation. When articulate
speech is being made against a telephone diaphragm, we have already seen that the
wave form representing that articulate sound is a complex single valued curve, which in
accordance with the theorem of Fourier can be analyzed into the sum of a number of
simple constituent sine curves of different amplitudes differing in phase. These different
harmonic constituents are propagated through the cable with different velocities and
attenuated at different rates, so that when they are synthesized at the other end by the
receiving telephone and the ear, the wave form which is reproduced is not an exact copy
of the sound originally transmitted. In other words, we may say that the received sound
is [page 863]

a caricature of the sound made in the transmitting microphone. If the distortion is not
too great, the ear at the receiving telephone is able to reconstruct or guess the sound
at the other end creating it, just as we can recognize the original in a caricature of the
human face if the caricaturing is confined within certain limits. Or to use another simile,
in ordinary handwriting probably no single letter is quite correctly formed. If, however,
the departure from perfect correctness is not too great, practice enables us to guess the
word which is signified. The ear is therefore in this way able to recognize as a certain
articulate sound, a sound which is not precisely like it. If, however, the distortion of the

2In Fleming’s time it was widely believed that empty space was not empty at all, but in fact was filled with
a mysterious substance called aether. The reasoning was that since electromagnetic radiation possessed wave-like
characteristics, these waves required a substance to travel through just as waves in the ocean require water as their
medium. The aether theory of electromagnetic waves was later disproved, but for the context of this discussion its
accuracy is irrelevant.
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wave form has proceeded beyond certain limits, the ear is no longer able to recognize the
origin of the sound heard. Hence a serious limit is imposed upon telephony through the
ordinary submarine cable.

It can be shown from the theory of such a cable, that if the relation between the four
constant quantities R, L, C, and K is such that if R

L
= K

C
then the cable will possess no

distortion. In most ordinary cables the inductance is too small to fulfil this relation, but
by the addition of inductance coils inserted at certain regular intervals in the cable, Pupin
has been able to improve considerably telephonic speech through cables and long aerial
lines. Such a cable is called a loaded cable. In the case, however, of wave transmission
through the aether there is no distortion, because electromagnetic waves of all wave
lengths travel through the aether at precisely the same speed, namely with the velocity
of light. Accordingly, whatever may be the wave form of the wave which leaves the
transmitting antenna, it will always preserve that same wave form although it may be
attenuated or weakened by the diffusion of the energy over a large area. [page 864]
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5.4 Reciprocating engine balance shafts

Reciprocating (i.e. piston-based) internal combustion engines naturally vibrate. With so many metal
components moving to and fro, it is nearly impossible to build such an engine that runs perfectly
smooth. This is especially true of inline-four-cylinder engines.

A simple technique for mitigating vibration in any rotating machine is to intentionally place
counterweights on one or more of its rotating shafts, such that the vibration produced by this
off-center weight will cancel the machine’s natural vibration. This technique is limited, though,
as a counterweight placed on a rotating shaft generates a purely sinusoidal vibration – that is, a
vibration at the fundamental frequency of that shaft’s rotation – and therefore may only cancel
out the portion of the machine’s vibration spectrum matching that particular frequency. An engine
producing a complicated spectrum of vibrational frequencies cannot be “counterbalanced” with a
single counterweight of any size in any location.

As mentioned, four-cylinder-inline engines are well-known for their strong vibration spectra,
particularly for possessing a strong second harmonic vibration to the main crankshaft’s rotation. The
only way to counterbalance this particular frequency is to place a counterweight on a shaft spinning
exactly twice as fast as the engine’s crankshaft. Unfortunately, there is no normal component in an
internal combustion engine designed to spin twice as fast as the crankshaft. An engine’s camshaft

spins at half the speed of the crankshaft, but that would do no good here.
Some four-cylinder-inline engines, therefore, are built with special second harmonic

counterbalance units. A photograph of the rotating crankshaft and counterbalance assembly from
an antique four-cylinder engine appears here, courtesy of H. Thornton Rutter’s book Modern Motors

– Their Construction, Management and Control Volume I published in 1922:

This engine’s crankshaft is shown with pistons and connecting rods attached and aligned
vertically (up from the crankshaft). No engine block hides our view of this assembly. The
counterbalance drive shaft is labeled B, and spins at twice the crankshaft’s speed by virtue of its
small drive sprocket Z. Two counterweights (X) reside on gears C and D driven by shaft B. These
two counterweights rotate in opposite directions in order to control the plane of their vibration:
strictly vertical and not horizontal.



Chapter 6

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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6.1 Timbre

The concept of musical pitch is the same as the fundamental frequency of that tone. It may be
measured in cycles per second (Hertz), or as musicians do by referring to letters (A through G).
However, different instruments playing tones having the same pitch nevertheless sound quite different
from each other. No one would ever mistake a piano for a violin or for a guitar even at precisely the
same pitch (fundamental frequency). So then, why do different instruments sound dissimilar even
at the same pitch?

Frequency-domain analysis is very helpful in answering this question. For the purposes of this
exercise we will focus on one particular pitch produced by three different instruments. The pitch will
be 440 Hertz (A4 in scientific pitch notation). To begin, we will measure1 the acoustic vibrations
produced by a tuning fork tuned to this pitch, both in time-domain (left) and frequency-domain
(right) formats:

In the time domain the tuning fork’s signal looks like a clean sinusoid. In the frequency domain
this same signal appears as a solitary peak at 440 Hz2, with some transient noise present to the left
of this peak. This agrees well with theory, as a pure sinusoid should consist of just one peak in the
frequency domain. If we listen to the tone of a tuning fork, we will notice it is rather simple and
uninteresting.

1The software used to generate these oscillograph and spectrum plots is SigGen which is a Javascript application
running within a web browser. Paul Lutus is the author of this software, with the version shown here being 1.7,
copyright 2015.

2Note the frequency scale on this display, which is linear from 0 Hz (far left) to 4401.33 Hz (far right) over ten
divisions, making each division worth 440.133 Hz. This is as close as I could adjust the software’s display to a 4400
Hz range.
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Next we will analyze the sound produced by a reed instrument, in this case a melodica playing
the same pitch (440 Hz, A4):

Here we see a much more complicated wave-shape in the time domain, albeit with the same
period (approximately 3.5 divisions on the oscillograph’s horizontal axis, or 2.273 milliseconds).
The frequency domain plot is also much more complicated than the tuning fork’s with harmonics
every 440 Hz across the analyzer’s display (once again ignoring the transient noise to the left of the
first-harmonic or fundamental peak).

After this we will analyze the sound produced by a string instrument, in this case a bowed psaltery

playing the same pitch (440 Hz, A4):

Once again we see a complex wave-shape in the time domain as well as a strong mix of harmonic
frequencies in the frequency domain, despite the fundamental frequency still being the same (440
Hz, with a period of approximately 3.5 horizontal divisions) as with the other samples.

It is this mixture of harmonic frequencies, and their strengths relative to each other, that makes
each instrument’s “voice” unique. The proper musical term for this distinction is timbre, alternatively
referred to as the tone quality or tone color. That last descriptor fits well with the Tutorial’s analogy
of light frequencies being mixed in different proportions to produce different colors.
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It is even possible to adjust the timbre of an instrument by playing it differently. Wind
instruments such as flutes and trumpets may be driven with stronger flows of air to produce
harmonics that are not present when driven softly. Bowed-string instruments may similarly be
driven with varying degrees of bow pressure and speed to produce variations in tone quality. One
of the marks of an accomplished musician is to be able to reproduce the unique timbres of their
instruments on demand.

An elementary example of this is the lowly tuning fork, the spectrum displays of one tuning fork
(A4 = 440 Hz) shown side-by-side. The left image shows the sound produced by the tuning fork
after being lightly tapped. The image on the right shows the result of striking the tuning fork with
greater force:

In addition to greater levels of noise picked up by the analyzer’s microphone, as well as a stronger
(taller) fundamental peak, we also see a second harmonic peak at 880 Hz due to more complex
vibrational modes along the tines of the tuning fork generated by greater striking force.
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6.2 Fourier series for common waveforms

The following Fourier series show the harmonic terms only: each fractional coefficient preceding
its respective trigonometric function indicates the relative amplitude of each harmonic, while each
integer coefficient of ωt indicates the harmonic number. ω is simply frequency in radians per second,
and t of course is time. For example, 1

9 cos 3ωt describes the third harmonic in the triangle-wave
Fourier series, where that harmonic (having a frequency three times the wave’s fundamental) is only
one-ninth as intense.

An important omission in these series is the DC offset, which is somewhat arbitrary and has
no effect whatsoever on the shape of the oscillating wave. The goal here is to simply show which
sinusoids must be pieced together to form common waveshapes.

6.2.1 Square wave

Square waves consist of an infinite sum of odd harmonics, each harmonic’s amplitude being 1
n

of the
fundamental’s. Note how all the sinusoids are sine functions. This series will produce a square wave
with a peak magnitude of exactly one (1):

4

π

(

sin ωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

)

6.2.2 Triangle wave

Triangle waves consist of an infinite sum of odd harmonics, each harmonic’s amplitude being 1
n2

of the fundamental’s. Note how all the sinusoids are cosine functions. This series will produce a
triangle wave with a peak magnitude of exactly one (1):

8

π2

(

cos ωt +
1

9
cos 3ωt +

1

25
cos 5ωt +

1

49
cos 7ωt + · · · + 1

n2
cos nωt

)

6.2.3 Sawtooth wave

Sawtooth waves are asymmetric about their centerlines, which means they contain even harmonics.
In this case, both even and odd harmonics exist in this series, each harmonic’s amplitude being
1
n

of the fundamental’s. Note how all the sinusoids are sine functions. This series will produce a
sawtooth wave with a peak-to-peak magnitude of exactly one (1):

1

π

(

sin ωt +
1

2
sin 2ωt +

1

3
sin 3ωt +

1

4
sin 4ωt + · · · + 1

n
sin nωt

)
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6.2.4 Pulse wave

A “square” wave with a duty cycle (D) other than 50% is commonly referred to as a pulse wave,
and will consist of both odd and even harmonics, each harmonic’s amplitude being 1

n
sin(nπD) of

the fundamental’s, where nπD is an angle in radians rather than degrees. Note how all the sinusoids
are cosine functions, with the sine functions merely serving as coefficients for the magnitude of their
respective cosine terms: in other words, each of the sine functions in this series merely sets the peak
amplitude of each harmonic, while each of the cosine functions actually creates the sinusoidal shape
of each harmonic. This series will produce a square wave with a peak magnitude of exactly one (1):

4

π

(

sin(πD) cos(ωt) +
1

2
sin(2πD) cos(2ωt) +

1

3
sin(3πD) cos(3ωt) + · · · + 1

n
sin(nπD) cos(nωt)

)

Note that if you set the duty cycle D to 50% (i.e. D = 0.5) then this Fourier Series becomes
identical to that of the typical square wave. Another way of saying this is to state that a
symmetrical square wave is a special case of the pulse waveform. For the first (fundamental)
harmonic, sin(π × 0.5) = sin

(

pi
2

)

= 1; for the second harmonic, sin(2 × π × 0.5) = sin (π) = 0;
etc.

Setting the duty cycle to either 0% or 100% sets all the sine terms to zero, the sine of 0 radians
being equal to zero as well as the sine of π radians (or any integer-multiple of π) being equal to
zero. The result, of course, will be no waveform at all because every (cosine) harmonic term will
have a coefficient of zero. These are other special cases of the pulse waveform, showing how a
pulse waveform with a duty cycle of 0% or with a duty cycle of 100% contains no alternating (AC)
component at all.



Chapter 7

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.
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7.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments

to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point

variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x

or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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7.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.



7.2. PROGRAMMING IN PYTHON 103

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.
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7.3 Simple plotting of sinusoidal waves using C++

Like the vast majority of computer programming languages, C and C++ offer an extensive library
of mathematical functions ready-made for use in programs of your own design. Here we will examine
a C++ program written to calculate the instantaneous values of a sine wave over one full period:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

C++ lacks a standard library of graphics functions for plotting curves and other mathematical
shapes to the computer’s screen, and so this program instead uses standard console characters to
do the same. In this particular case it plots blank space characters and star characters (*) to the
console in order to mimic a pixel-based graphical display.

This program is deceptively terse. From the small number of lines of code it doesn’t look very
complicated, but there is a lot going on here. We will explore the operation of this program in
stages, first by examining its console output (on the following page), and then analyzing its lines of
code.
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The result is a somewhat crude, but functional image of a sine wave plotted with amplitude on
the horizontal axis and angle on the vertical axis:
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float and int), names, and declarations

• Variable assignment/initialization (=)

• Comparison (==)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

• Comments (//)

• Custom functions: prototyping, return values, arguments

Looking at the source code listing, we see the obligatory7 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have two variables declared, two for instructions, and two cout

statements. Variable x is a floating-point variable, intended to store the angle values we will send to
the sine function. Variable n is an integer variable, capable only of counting in whole-number steps.
A for loop instructs the computer to repeat some operation multiple times, the number of repeats
determined by the value of some variable within the for instruction’s parentheses.

7The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using advanced mathematical functions such as sine.
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Our first for instruction bases its repeats on the value of x, beginning by initializing it to a value
of zero and then incrementing it in steps of 0.2 so long as x is less than or equal to 2π. This for

loop has its own set of “curly-brace” symbols enclosing multiple lines of code, again with those lines
indented to make it visually clear they belong within the for loop.

Within this outer for loop lies another for instruction, with its repeats based on the value of
our integer variable n. Unlike the outer for loop which has brace symbols ({}) enclosing multiple
lines of code, the inner for loop has no braces of its own because only one line of code belongs
to it (a cout instruction printing blank spaces to the console, found immediately below the for

statement and indented to make its ownership visually clear). This inner for instruction’s repeats
continue so long as n remains less than the value of 40 sin(x) + 40, incrementing from 0 upwards in
whole-number steps (this is what ++n means in the C and C++ languages: to increment an integer
variable by a single-step). Below that is another cout instruction, this one printing a star character
to the console (*).

It may not be clear to the reader how these two for instructions work together to create a
sinusoidal pattern of characters on the computer’s console display, and so we will spend some more
time dissecting the code. A useful problem-solving strategy for understanding this program is to
simplify the system. In this case we will replace all lines of code within the outer for loop with a
single cout instruction printing values of x and sin(x). This will generate a listing of these variables’
values, which as we know governs the two for loops’ behavior. Once we see these numerical values,
it will become easier to grasp what the for loops and their associated cout instructions are trying
to achieve.
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Rather than delete the original lines of code, which would require re-typing them at some point
in the future, we will apply a common programming “trick” of commenting out those lines we don’t
want to be executed. In C and C++, and double-forward-slash (//) marks the beginning of an inline
comment, with all characters to the right of the double-slashes ignored by the compiler. They will
still be in the source code, readable to any human eyes, but will be absent from the program as far
as the computer is concerned. Then, when we’re ready to reinstate these code lines again, all we
need to do is delete the comment symbols:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << sin(x) << endl;

}

return 0;

}

Re-compiling the modified code and re-running it produces the following results:

0 0

0.2 0.198669

0.4 0.389418

0.6 0.564642

0.8 0.717356

1 0.841471

1.2 0.932039

1.4 0.98545

1.6 0.999574

1.8 0.973848

2 0.909297

2.2 0.808496

2.4 0.675463



112 CHAPTER 7. PROGRAMMING REFERENCES

2.6 0.515501

2.8 0.334988

3 0.14112

3.2 -0.0583747

3.4 -0.255542

3.6 -0.442521

3.8 -0.611858

4 -0.756803

4.2 -0.871576

4.4 -0.951602

4.6 -0.993691

4.8 -0.996165

5 -0.958924

5.2 -0.883455

5.4 -0.772765

5.6 -0.631267

5.8 -0.464603

6 -0.279417

6.2 -0.083091

Not surprisingly, we see the variable x increment from zero to 6.2 (approximately 2π) in steps of
0.2. The sine of this angle value evolves from 0 to very nearly +1, back (almost) to zero as x goes
past π, very nearly equaling −1, and finally returning close to zero. This is what we would expect of
the trigonometric sine function with its angle expressed in radians rather than degrees (2π radians
being equal to 360 degrees, a full circle).

This experiment proves to us what x and sin(x) are doing in the program, but to more clearly
see how the inner for loop functions it would be helpful to print the value of 40 * sin(x) + 40

since this is the actual value checked by the inner for loop as it increments n from zero upward.
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Modifying the code once more for another experiment:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << 40 * sin(x) + 40 << endl;

}

return 0;

}

Re-compiling this new code and running it reveals much larger values in the second number
column:

0 40

0.2 47.9468

0.4 55.5767

0.6 62.5857

0.8 68.6942

1 73.6588

1.2 77.2816

1.4 79.418

1.6 79.9829

1.8 78.9539

2 76.3719

2.2 72.3399

2.4 67.0185

2.6 60.62

2.8 53.3995

3 45.6448

3.2 37.665

3.4 29.7783
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3.6 22.2992

3.8 15.5257

4 9.72789

4.2 5.13696

4.4 1.93592

4.6 0.252361

4.8 0.153415

5 1.64302

5.2 4.6618

5.4 9.0894

5.6 14.7493

5.8 21.4159

6 28.8233

6.2 36.6764

Instead of progressing from zero to (nearly) +1 to (nearly) zero to (nearly) −1 and back again
to (nearly) zero, this time the right-hand column of numbers begins at 40, progresses to a value of
(nearly) 80, then back past 40 and (nearly) to zero, then finishes nearly at 40 again. What the 40

* sin(x) + 40 arithmetic8 does is “scale” and “shift” the basic sine function to have a peak value
of 40 and a center value of 40 as well.

8You may recognize this as the common slope-intercept form of a linear equation, y = mx + b. In this case, 40 is
the slope (m) and 40 also happens to be the intercept (b).
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Now that we clearly recognize the range of 40 * sin(x) + 40, we may remove the comments
from our code and analyze the inner for loop:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

Each time the outer for loop increments the value of x, the inner for loop calculates the value
of 40 sin(x) + 40 and repeats the cout << " " instruction that many times9 to print that same
number of blank spaces on the console. After printing that string of blank spaces, the second cout

statement prints a star character (*) and finishes the line with an endl character (a carriage-return
marking the end of a line and the beginning of a new line on the console’s display). The outer for
loop then increments x again and the process repeats.

Therefore, the outer for loop produces one new line of text on the console per iteration, while the
inner for loop produces one new blank space on that line per iteration. This makes the placement
of each star character (*) proportional to the value of sin(x), the result being a “sideways” plot of
a sine wave on the console.

The scaling of the sine function to produce a range from 0 to +80 rather than −1 to +1 was
intentionally chosen to fit the standard 80-column width of traditional character-based computer
consoles. Modern computer operating systems usually provide terminal windows emulating
traditional consoles, but with font options for resizing characters to yield more or less than 80
columns spanning the console’s width.

9The value of 40 sin(x) + 40 will be a floating-point (i.e. non-round) value, while n is an integer variable and can
therefore only accept whole-numbered (and negative) values. This is not a problem in C++, as the compiler is smart
enough to cause the floating-point value to become truncated to an integer value before assigning it to n.
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Students more accustomed to applied trigonometry than pure mathematics may bristle at the
assumed unit of radians used by C++ when computing the sine function, but this is actually quite
common for computer-based calculations. Even most electronic hand calculators assume radians
unless and until the user sets the degree mode.

We can modify this code have the variable x in degrees rather than radians, simply by multiplying
x by the conversion factor π

180 .

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < (40 * sin(x * (M_PI / 180)) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

This is a good illustration of how mathematical operations may be “nested” within sets of
parentheses, in the same way we do so when writing regular formulae:

40 sin
[

x
( π

180

)]

+ 40

An extremely important computer programming concept we may apply at this juncture, though
by no means necessary for this simple program, is to include our own custom function to calculate
the scaled sine value with its degrees-to-radians conversion. The idea of a programming “function” is
a separate listing of code lying outside of the main function which may be invoked at any time within
the main function. Some legacy programming languages such as FORTRAN and Pascal referred to
these as subroutines.
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Consider the following version of the sine-plotting program with a custom function called
sinecalc:

#include <iostream>

#include <cmath>

using namespace std;

float sinecalc (float);

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < sinecalc(x) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

float sinecalc (float degrees)

{

float radians;

radians = degrees * M_PI / 180;

return 40 * sin (radians) + 40;

}

Note in particular these three alterations made to the code:

• The inclusion of a line before the main function prototyping our custom function, declaring it
will accept a single floating-point value and return a floating-point value.

• The inner for statement is much simpler than before without all the inline arithmetic. Now
it simply “calls” the sinecalc function every time it needs to compute the sine of x.

• Past the end of the main function is where our new sinecalc function resides. Like the main

function itself, it begins with a line stating it will accept a single floating-point variable (named
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degrees) and will return a floating-point value. Also like the main function, it has its own set
of curly-brace symbols ({ }) to enclose its lines of code.

Within the sinecalc function we see an declaration of another variable named radians, an
arithmetic statement performing the degrees-to-radians conversion, and finally a return statement
where the scaled sine value is computed. This returned value is what the for statement “sees” after
calling the sinecalc function.

The path of a program’s execution is no longer simply left-to-right and top-to-bottom once we
start using our own functions like this. Now the execution path jumps from one line to another and
then returns back where it left off. This new pattern of execution may seem strange and confusing,
but it actually makes larger programs easier to manage and design. By encapsulating a particular
algorithm (i.e. a set of instructions and procedures) in its own segment of code separate from the
main function, we make the main function’s code more compact and easier to understand. It is even
possible to save these functions’ code in separate source files so that different human programmers
can work on pieces of the whole program separately as a team10.

10For example, we could save all the main function’s code (including the directive lines) to a file named main.cpp,
then do the same with the sinecalc function’s code (also including the necessary directive lines) in a file named
sine.cpp. The command we would then use to compile and link these two code sets together into an executable
named plot.exe would be g++ -o plot.exe main.cpp sine.cpp.
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As previously mentioned, C++ lacks a standard library of graphics functions for plotting curves
and other mathematical shapes to the computer’s screen, which is why we opted to use standard

console characters to do the same. If a truly graphic output is desired for our waveform plot, there
are relatively simple alternatives. One is to write the C++ source code to output data as numerical
values displayed in columns, one column of numbers representing independent (x) values and the
other column representing dependent (y) values, with each column separated by a comma character
(,) as a delimiter. Here is the re-written program and its text output:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x, y;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

y = sin(x);

cout << x << "," << y << endl;

}

return 0;

}

0,0

0.2,0.198669

0.4,0.389418

0.6,0.564642

0.8,0.717356

1,0.841471

1.2,0.932039

1.4,0.98545

1.6,0.999574

1.8,0.973848

2,0.909297

2.2,0.808496

2.4,0.675463

2.6,0.515501

2.8,0.334988

3,0.14112

3.2,-0.0583747

3.4,-0.255542

3.6,-0.442521



120 CHAPTER 7. PROGRAMMING REFERENCES

3.8,-0.611858

4,-0.756803

4.2,-0.871576

4.4,-0.951602

4.6,-0.993691

4.8,-0.996165

5,-0.958924

5.2,-0.883455

5.4,-0.772765

5.6,-0.631267

5.8,-0.464603

6,-0.279417

6.2,-0.083091

We may save this text output to its own file (e.g. data.csv)11 and then import that file into
a graphing program such as a spreadsheet (e.g. Microsoft Excel). Spreadsheet software is designed
to accept comma-separated variable (csv) data and automatically organize the values into columns
and rows. Since spreadsheet software is so readily available, this is an easy option to visualize any
C++ program’s data without having to write C++ code directly generating graphic images.

11A relatively easy way to do this is to run the C++ program from a console, using the redirection symbol (>).
For example, if we saved our source code file under the name sinewave.cpp and then entered g++ -o sinewave.exe

sinewave.cpp at the command-line interface to compile it, the resulting executable file would be named sinewave.exe.
If we simply type ./sinewave.exe and press Enter, the program will run as usual. If, however we type ./sinewave.exe
> data.csv and press Enter, the program will run “silently” with all of its printed text output redirected into a file
named data.csv instead of to the console for us to see.
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Spreadsheets are not the only data-visualizing tools available, though. One such alternative is
the open-source software application called gnuplot. The following example shows how gnuplot

may be instructed12 to read a comma-separated variable file (data.csv) and plot that data to the
computer’s screen:

gnuplot script:

set datafile separator ","

set xrange [0:6.2]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

’data.csv’ using 1:2

12These commands may be entered interactively at the gnuplot prompt or saved to a text file (e.g. format.txt,
called a script) and invoked at the operating system command line (e.g. gnuplot -p format.txt).
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7.4 Plotting two sinusoidal waves with phase angles using
C++

Here we will examine a C++ program written to take input from the user and generate comma-
separated value lists for two sinusoidal waveforms which may be plotted using graphical visualization
software such as a spreadsheet or gnuplot:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float va, vb, pa, pb, f, period, t;

cout << "Enter peak amplitude of voltage A" << endl;

cin >> va;

cout << "Enter phase angle of voltage A" << endl;

cin >> pa;

cout << "Enter peak amplitude of voltage B" << endl;

cin >> vb;

cout << "Enter phase angle of voltage B" << endl;

cin >> pb;

cout << "Enter frequency for both sources" << endl;

cin >> f;

period = 1/f;

for (t = 0 ; t <= (2 * period) ; t = t + (period/100))

{

cout << t << " , " ;

cout << va * sin((t * f + (pa/360)) * 2 * M_PI) << " , ";

cout << vb * sin((t * f + (pb/360)) * 2 * M_PI) << endl;

}

return 0;

}
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float), names, and declarations

• Variable assignment/initialization (cin)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

Looking at the source code listing, we see the obligatory13 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have seven variables declared, all of them floating-point (float)
variables. Several cout statements print text to the screen while cin statements receive typed input
from the user to initialize the values of five of those variables. Variable t represents time, and is
stepped in value from zero to two full periods of the waveforms within the for loop. Within the curly-
brace symbols of the for loop we have a set of cout instructions which print the comma-separated
value data to the computer’s console.

The sine functions are computed within these last cout instructions. The product of time and
frequency (seconds times cycles per second) yields a result in cycles. Phase shift was entered in
degrees, so division by 360 is necessary to case phase shift into cycles because there are 360 degrees
per cycle. The sine function, like all trigonometric functions in computer programming, requires an
input in units of radians which explains the purpose of the 2π multiplier, there being 2π radians per
cycle.

13The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using the sine function.
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Here is a sample run of this program where waveform A is 10 Volts (peak) at an angle of 0 degrees
and waveform B is 5 Volts (peak) with a leading phase shift of 30 degrees, both at a frequency of
60 Hz:

Enter peak amplitude of voltage A 10

Enter phase angle of voltage A 0

Enter peak amplitude of voltage B 5

Enter phase angle of voltage B 30

Enter frequency for both sources 60

0 , 0 , 2.5

0.000166667 , 0.627905 , 2.76696

0.000333333 , 1.25333 , 3.023

0.0005 , 1.87381 , 3.2671

0.000666667 , 2.4869 , 3.49832

0.000833333 , 3.09017 , 3.71572

0.001 , 3.68125 , 3.91847

0.00116667 , 4.25779 , 4.10575

0.00133333 , 4.81754 , 4.27682

The comma-separated value list has been shortened for the sake of brevity (from approximately
200 lines of data). When copied to a plain-text file named data.csv and read by a data visualization
program (in this case, gnuplot), the two sinusoids with their differing amplitudes and 30 degree
phase shift are clear to see. Setting the visualization tool to show four minor divisions in between
every major division mimics the graticule of a traditional oscilloscope:

-10

-5

 0

 5

 10

 0  0.005  0.01  0.015  0.02  0.025  0.03

’data.csv’ using 1:2
’data.csv’ using 1:3
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Any data visualization tool capable of reading a comma-separated value data file is fine for this
purpose, and a spreadsheet such as Microsoft Excel is probably the simplest one to use. My favorite
happens to be gnuplot, and the script I used to make the previous plot is as follows:

set datafile separator ","

set xrange [0:0.034]

set style line 1 lw 2 lc rgb "red"

set style line 2 lw 2 lc rgb "green"

set style line 3 lw 0.25 lc rgb "grey"

set style line 4 lw 0.5 lc rgb "blue"

set mxtics 5

set mytics 5

set grid xtics mxtics ls 4, ls 3

set grid ytics mytics ls 4, ls 3

plot ’data.csv’ using 1:2 with lines ls 1, ’data.csv’ using 1:3 with lines ls 2

A simple way to copy the comma-separated value data into the data.csv file when running the
compiled C++ program is to use the tee operator available on the command-line interface of the
computer’s operating system. Assuming our compiled C++ program is named phaseplot.exe, the
command-line instruction would look something like the following:

phaseplot.exe | tee data.csv

This records all text – including the prompts for the user’s input as well as the entries – into the
data.csv which must be deleted prior to reading by the spreadsheet or other visualization software.
However, some may find the deletion of those few lines easier than the copying-and-pasting of 200+
lines of data to a file.
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7.5 Plotting harmonic series using C++

Building on the success of the C++ program from the previous section, we may extend the program’s
capability to plotting harmonic series (i.e. a sum of sinusoids having integer-multiple frequencies of
the fundamental).

#include <iostream>

#include <cmath>

using namespace std;

float sinecalc (float);

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < (sinecalc(x) + (sinecalc(3.0*x) / 3.0)

+ (sinecalc(5.0*x) / 5.0) + (sinecalc(7.0*x) / 7.0)

+ (sinecalc(9.0*x) / 9.0) + (sinecalc(11.0*x) / 11.0)

+ 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

float sinecalc (float degrees)

{

float radians;

radians = degrees * M_PI / 180;

return 40 * sin (radians);

}

Note the very long for statement, lengthy because the waveform calculation term consists of
the fundamental, 3rd harmonic, 5th harmonic, 7th harmonic, 9th harmonic, and 11th harmonic
added together, each harmonic with an amplitude reduced by the same factor. This is the recipe for
synthesizing a square wave.



7.5. PLOTTING HARMONIC SERIES USING C++ 127

When we compile and run this program, we obtain a wave-shape that somewhat resembles a
square wave:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

The lengthy for statement in this program stands as an excellent example of how C++ ignores
whitespace in the source code. Portions of the for statement are written on successive lines of the
source file, but the compiler still interprets those fragments as one long line of code.

A subtle yet important adaptation made to this program from its previous (single sine-wave)
version is to move the +40 offset quantity from the sinecalc function to the for statement in the
main function. If this offset value were left in the sinecalc function, every harmonic would add its
own +40 offset to the series, the result being that our simple console-based plotting function would
quickly run off the page when it tried to print the star symbols (*) representing the composite wave.
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It is possible to achieve a more perfect square wave by including more harmonics in our series,
because the theoretical Fourier series for a square wave is infinitely long. However, the way our
program is presently designed we would have to lengthen the for statement even further with
additional sinecalc terms to model this. At some point our source code is going to become
impractically large.

Computers are very good at executing repeated tasks, it should be possible to add code to our
program instructing it to repeatedly adding more harmonic terms to the series according to a formula
rather than us typing in each term by hand in the source code. One possible solution is shown on the
following pages, consisting of the main function as well as one more function in addition to sinecalc

(called squareseries):

#include <iostream>

#include <cmath>

using namespace std;

float sinecalc (float);

float squareseries (float,int);

int main (void)

{

float x;

int n, odds;

cout << "How many odd harmonics do you wish to add to the fundamental? ";

cin >> odds;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < (squareseries(x,odds) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

float sinecalc (float degrees)

{

float radians;

radians = degrees * M_PI / 180;

return 40 * sin (radians);
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}

float squareseries (float angle, int harmonics)

{

int n;

float sum;

sum = 0.0;

for (n = 0 ; n <= harmonics ; ++n)

sum = sum + (sinecalc((2 * n + 1) * angle) / (2 * n + 1));

return sum;

}

This new function squareseries returns a floating-point value just like sinecalc, but it accepts
two variables as arguments: one of them floating-point and the other an integer. The floating-point
argument to squareseries is the angle value sent to it by the main function’s inner for loop, while
the integer argument tells it how many odd-numbered harmonics to add to the fundamental.

With three functions in total (main, sinecalc, and squareseries), we learn some important
facts about C/C++ functions:

• All functions should be prototyped, as shown before the main function listing.

• Functions get to rename the values passed on to them, as we see in the case of squareseries:
when called within main its two arguments come from the variables x and odds, but when
executing it knows these two values by variable-names local to the squareseries function
(angle and harmonics).

• Identically-named functions within different functions are distinct from each other. For
example, n used within the main function counts the number of blank spaces to print to the
console, while n used within the squareseries function sets the coefficient for each harmonic.

• Functions can call other functions! Note how squareseries is called from within main, and
in turn squareseries repeatedly calls sinecalc.
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To test this program, we will first run it with the same number of harmonics in the series as
before (harmonics 1, 3, 5, 7, 9, and 11 represent the fundamental plus five additional harmonics):

How many odd harmonics do you wish to add to the fundamental? 5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

True to form, we obtain the same square-ish looking wave as before. This is good evidence that
our new program is working as it should.
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Now let’s re-run the program using a much larger harmonic series, with fifteen harmonic terms
beyond the fundamental:

How many odd harmonics do you wish to add to the fundamental? 15

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

This waveform looks much closer in shape to a true square wave!
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Do we dare try more harmonic terms? Lets!

How many odd harmonics do you wish to add to the fundamental? 50

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
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Do I even need to ask?

How many odd harmonics do you wish to add to the fundamental? 100

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

At 100 harmonics past the fundamental (i.e. including all odd-numbered harmonics through the
201st), the waveform is so close to being a perfect square wave that the resolution of our crude
text-character plot cannot show the imperfections.
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7.6 Discrete Fourier Transform algorithm in C++

The following page of C++ code is the main() function for a Discrete Fourier Transform algorithm.
As written, this C++ program simulates a square wave and computes the DC average value as well
as the first nine harmonics of this wave, although the f(x) function code could be re-written to
generate any test waveform desired.

A DFT algorithm requires no calculus, only simple trigonometric functions (sine and cosine) and
basic arithmetic (multiplication and addition, squares and square roots). The basic idea of it is
simple enough: multiply the instantaneous values of the test waveform by the corresponding values
of a sinusoid at some harmonic of the test frequency, and sum all of those values over one period of
the test waveform. If the sum adds up to zero (or nearly) zero, then that harmonic does not exist
in the test waveform. The magnitude of this sum indicates how strong the harmonic is in the test
waveform.

Even the mathematical foundation of the DFT is simple, and requires no calculus. It is based on
trigonometric identities, specifically those involving the product (multiplication) of sine and/or cosine
terms. When two sinusoids of differing frequency are multiplied together, the result is two completely
different sinusoids: one having a frequency equal to the sum of the two original frequencies, and
the other having a frequency equal to the difference of the two original frequencies. The basic
trigonometric identity is shown here:

cos x cos y =
cos(x − y) + cos(x + y)

2

Next, is the version of this using ωx and ωy to represent the two waves’ frequencies:

cos(ωxt) cos(ωyt) =
cos(ωxt − ωyt) + cos(ωxt + ωyt)

2

If the sinusoids being multiplied happen to have the same frequency and be in-phase with each
other, the result is a second harmonic and a DC (constant) value (i.e. one sinusoid having a frequency
of 2ω and the other having a frequency of zero). So, in order to test a waveform for the presence of a
particular harmonic, we multiply it by that other harmonic and see if the resulting product contains
DC. How do we test a wave for DC? We sum up all its instantaneous values and see if the result is
anything other than zero!

Any practical DFT needs to be just a bit more sophisticated, though, because we must account
for phase. We obtain a DC-containing product only if the frequencies and phases match. If we
happen to multiply a wave by another that’s exactly 90o out of phase, we don’t get any DC. To
account for phase shift, then, what we do is compute two products and two sums: one based on a
sine wave and the other based on a cosine wave (i.e. 90o apart from each other, so at least one of
these two sums will show a match) and then tally their respective sums by the Pythagorean theorem:
√

x2 + y2. The rationale for using sine and cosine waves is the same as representing an AC phasor
quantity in rectangular form: the sum based on cosines represents the real component of the phasor
while the sum based on sines represents the imaginary component.

√

x2 + y2 simply computes the
polar-form magnitude of these sinusoids’ sums.
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#include <iostream>

#include <math.h>

using namespace std;

float f(int x);

int main(void)

{

int sample, harmonic;

float sinsum, cossum, polarsum[10];

for (harmonic = 1; harmonic < 10; ++harmonic)

{

sinsum = 0;

cossum = 0;

for (sample = 0; sample < 128; ++sample)

{

sinsum = sinsum + (f(sample) * (sin(sample*harmonic*2*M_PI/128)));

cossum = cossum + (f(sample) * (cos(sample*harmonic*2*M_PI/128)));

}

polarsum[harmonic] = sqrt(pow(cossum, 2) + pow(sinsum, 2));

cout << "Harmonic = " << harmonic << " -- Normalized weight = "

<< fixed << polarsum[harmonic] / polarsum[1] << endl;

}

return 0;

}

float f(int x)

{

if (x < 64)

return 1.0;

else

return -1.0;

}
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What follows is an explanation of how this DFT algorithm’s code works.

• The include and namespace directives instruct the compiler to be prepared for functions of
text printing (iostream) and for mathematics (math.h).

• The next line (float f(int x);) is a function prototype for a C++ function named f. This
function purposely resembles the standard mathematical function form f(x) because it is where
the code will reside for the waveform to be analyzed. The input to this function will be an
integer number, and the output will be a floating-point number (i.e. capable of fractional
values, unlike an integer). The domain of our function happens to be 0 to 127, in whole-
numbered steps. The range of our function can be anything representable by a floating-point
number. The actual code for this function may appear later in the file (as is the case in this
example), or it may even reside in its own source file to be linked to the main program at
compilation time.

• Inside the main() function we first declare several variables, both integer and floating-point.
All mathematical functions are computed over 128 samples, numbered 0 through 127. During
each of these samples, we compute the value of our test waveform (f(x)) and multiply it by
the corresponding value of a sine wave and of a cosine wave, each at some harmonic frequency
of the test waveform. The inner for() loop computes these products, and also a running
total of each (sinsum and cossum). After each completion of the inner for() loop, we use
the Pythagorean Theorem to combine the sine- and cosine-sums so that we get a complete
summation (polarsum) for that harmonic, saving each one in an array polarsum[], with
polarsum[1] being the basis for normalizing the values of all others. We then print that
summed value. The outer for() loop repeats this process for harmonics 1 through 9.

• Our test waveform is generated within its own subroutine, called a function in C and C++
alike. Here is where we insert code to generate whatever waveform we wish to analyze. In this
particular example, it is a square wave with a peak value of 1. The algorithm for creating this
square wave is extremely simple: for x values from 0 to 63 the wave is at +1, and for x values
from 64 to 127 the wave is at −1. Since the domain of x happens to be 0 to 127 (as called by
the main() program) this produces one symmetrical cycle of a square wave.

Locating the f(x) function within its own section of C++ code allows for easy modification
of that function in the future, without modifying the main() program. This is generally a good
programming practice: to make your code modular so that individual sections of it may be separately
edited (and even reside in separate source files!). Doing this makes it easier for teams of programmers
to develop projects together, and also makes it easier for code to be re-used in other projects.
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7.6.1 DFT of a square wave

When the example code previously shown is compiled and run, the result is the following text output:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.000000

Harmonic = 3 -- Normalized weight = 0.333601

Harmonic = 4 -- Normalized weight = 0.000000

Harmonic = 5 -- Normalized weight = 0.200483

Harmonic = 6 -- Normalized weight = 0.000000

Harmonic = 7 -- Normalized weight = 0.143548

Harmonic = 8 -- Normalized weight = 0.000000

Harmonic = 9 -- Normalized weight = 0.112009

This program assumes the first harmonic’s amplitude is the “norm” by which all other harmonics
are scaled. Therefore, the first harmonic always shows up as having a normalized weight of 1, with
all other harmonic values shown proportionate to that norm.

Fourier theory predicts that a square wave with a 50% duty cycle will only contain odd harmonics
(in agreement with our symmetry rule), the relative amplitudes of those harmonics diminishing
by a factor of 1

n
where n is the harmonic number. Therefore, if the first harmonic is normalized

to an amplitude of 1, then the third harmonic will have an amplitude of 1
3 , the fifth harmonic an

amplitude of 1
5 , etc.:

vsquare =
4

π
Vm

(

sin ωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

)

• 1st harmonic = 1
1 = 1

• 3rd harmonic = 1
3 ≈ 0.3333

• 5th harmonic = 1
5 = 0.2000

• 7th harmonic = 1
7 ≈ 0.1429

• 9th harmonic = 1
9 ≈ 0.1111

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

By modifying just the code within the f(x) function we may compute the harmonic content of
different wave-shapes. The next several examples will show the modified f(x) function code and
the resulting output of this DFT algorithm.



138 CHAPTER 7. PROGRAMMING REFERENCES

7.6.2 DFT of a sine wave

First, we will re-code f(x) to generate a simple sine wave. The argument x passed to this function
is an integer number starting at zero and incrementing to 127, representing a sequence of samples
spanning one period of the fundamental frequency, and so some scaling arithmetic is necessary to
convert this domain into a value in radians from 0 to 2π suitable for the sin() function:

float f(int x) // Sine wave function

{

return sin(2 * M_PI * x / 128.0);

}

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.000000

Harmonic = 3 -- Normalized weight = 0.000000

Harmonic = 4 -- Normalized weight = 0.000000

Harmonic = 5 -- Normalized weight = 0.000000

Harmonic = 6 -- Normalized weight = 0.000000

Harmonic = 7 -- Normalized weight = 0.000000

Harmonic = 8 -- Normalized weight = 0.000000

Harmonic = 9 -- Normalized weight = 0.000000

Not surprisingly, the result is a strong first harmonic and no other harmonics. Also, we get the
same results if we replace the sine function with a cosine function in f(x): in either case, a plain
sinusoid only has one harmonic component, and that is the first harmonic.
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7.6.3 DFT of a delta function

As another test of our DFT algorithm, we will re-code f(x) to output a delta function, which is
nothing more than the briefest of impulses. A delta function consists of a “spike”14 at time zero
followed (and preceded) by values of zero:

float f(int x) // Delta impulse function

{

if (x == 0)

return 1.0;

else

return 0.0;

}

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 1.000000

Harmonic = 3 -- Normalized weight = 1.000000

Harmonic = 4 -- Normalized weight = 1.000000

Harmonic = 5 -- Normalized weight = 1.000000

Harmonic = 6 -- Normalized weight = 1.000000

Harmonic = 7 -- Normalized weight = 1.000000

Harmonic = 8 -- Normalized weight = 1.000000

Harmonic = 9 -- Normalized weight = 1.000000

The result is all harmonics at equal strength, which is what the Fourier transform predicts for a
delta function: a constant-valued function in the frequency domain. In other words, an infinitesimally
brief impulse is equivalent to a superposition of all frequencies.

This is a good example of our steepness rule in action: a delta function consists of nothing but
steepness, being a “spike” up and down over the briefest possible time interval. As such, it contains
all frequencies, which of course includes the nine harmonic frequencies shown.

If we consider carefully how the DFT algorithm works, it becomes evident why this must be
so, and precisely how every frequency’s value must have the same normalized value. The very first
sample (sample = 0) is the only one where the delta function is not zero, and therefore this will be
the only sample where any of the sums tallied in the program accumulate any value. Furthermore,
the only sums accumulating value during this sample must be the cosine sums because the sine
function is zero at an angle of zero, while cosine is one at an angle of zero. Therefore, every cosine
function multiplied by the delta impulse function will increment its sum by one. This must include
every cosine of every conceivable frequency and not just the select harmonics tested by our DFT
algorithm. Therefore, based on the criteria of the DFT algorithm, a delta function must contain all

cosine terms, of every frequency.

14A true Dirac delta function actually consists of an infinite-magnitude spike with zero width, but having an
enclosed area equal to unity. We cannot emulate that in procedural code, but we may approximate it!
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In practice there is no such thing as a real delta impulse function. A function consisting of a pulse
of infinitesimal width defies physical implementation, but nevertheless is useful as a theoretical tool,
and serves as a limit for very brief (real) pulses. The practical lesson to learn here is that the spectra
of real pulse signals approaches uniformity as the width of the pulse approaches zero – i.e. the briefer
the pulse duration, the wider the spread of constituent frequencies. This means any circuitry tasked
with amplifying, attenuating, or otherwise processing this pulse signal must contend with a broad
span of frequencies, and failure to properly process all of the frequencies within that pulse signal
invariably corrupts the pulse in some way.
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7.6.4 DFT of two sine waves

Next, we will try modifying f(x) to generate a superposition of two sine waves, one at 5× our
assumed fundamental frequency, and another at 8× the fundamental:

float f(int x) // Dual sine waves

{

return sin(5 * 2 * M_PI * x / 128.0)

+ sin(8 * 2 * M_PI * x / 128.0);

}

From this we would expect a harmonic spectrum consisting of a 5th harmonic and 8th harmonic,
and nothing else. What we obtain looks strange at first, though:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 3.847159

Harmonic = 3 -- Normalized weight = 4.564931

Harmonic = 4 -- Normalized weight = 5.773269

Harmonic = 5 -- Normalized weight = 159252960.000000

Harmonic = 6 -- Normalized weight = 4.397245

Harmonic = 7 -- Normalized weight = 2.756398

Harmonic = 8 -- Normalized weight = 159252960.000000

Harmonic = 9 -- Normalized weight = 1.914945

The amplitudes of the 5th and 8th harmonics are enormous, while the others are meager by
comparison. Remember, though, that our DFT algorithm normalizes all harmonic amplitudes to
that of the first harmonic, which in this particular case should be virtually nonexistent. Therefore,
the first harmonic registers with a weight of 1, the 5th and 8th with very large weights, and the
others about as small as the first harmonic (in comparison with the 5th and 8th). So, even with the
crude nature of this algorithm, we get a spectral response that makes sense for the test waveform.

This is a good example of our superposition rule, where the spectrum of two superimposed
waves is the superposition of those waves’ spectra. The 5th harmonic wave consisted of a single peak
in its “spectrum” as did the 8th harmonic wave. When these two waves were added in their time
domains, the result is a spectrum consisting of those two frequency peaks, no more and no less.
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7.6.5 DFT of an amplitude-modulated sine wave

Next, we will re-code f(x) to generate an amplitude-modulated waveform: the product of a sine
wave at 2× the assumed fundamental and another sine wave at 5× the fundamental.

float f(int x) // Mixed sine waves (AM)

{

return sin(2 * 2 * M_PI * x / 128.0)

* sin(5 * 2 * M_PI * x / 128.0);

}

Modulation theory predicts that “mixing” two sinusoids in this manner will result in two
completely new frequencies: one being the sum of the two mixed frequencies, and the other being
the difference of the two mixed frequencies. So, for one sine wave oscillating at 2ω and another at
5ω, we would expect one sinusoid at (5 + 2)ω and another at (5 − 2)ω.

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.077597

Harmonic = 3 -- Normalized weight = 17697600.000000

Harmonic = 4 -- Normalized weight = 0.180189

Harmonic = 5 -- Normalized weight = 0.128424

Harmonic = 6 -- Normalized weight = 0.152171

Harmonic = 7 -- Normalized weight = 17697598.000000

Harmonic = 8 -- Normalized weight = 0.150321

Harmonic = 9 -- Normalized weight = 0.557960

True to form, the result is a pair of harmonics in the spectrum, a 3rd harmonic and a 7th
harmonic.

This is an excellent example of our non-linear systems rule: when signals pass through
non-linear systems, new frequencies arise. Multiplication of two independent signals is definitely
nonlinear, as doubling both signals’ amplitudes does not result in a doubled output amplitude. What
came into this system was a 2nd and 5th harmonic, but what left was a 3rd and 7th harmonic.
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7.6.6 DFT of a full-rectified sine wave

Next, we will re-code f(x) to generate the first half (i.e. positive half) of a sine wave. This is all we
need to simulate a full-wave rectified sinusoid since all other half-periods of that wave will identical
to the first. To represent this in code, we just take the same line used for the sine wave and eliminate
the 2 multiplier. In other words, instead of calculating sin

(

2πx
128

)

we compute sin
(

πx
128

)

:

float f(int x) // Full-rectified sine wave

{

return sin(M_PI * x / 128.0);

}

The result is shown here:

Harmonic = 1 -- Normalized weight = 1.000000

Harmonic = 2 -- Normalized weight = 0.200121

Harmonic = 3 -- Normalized weight = 0.085852

Harmonic = 4 -- Normalized weight = 0.047763

Harmonic = 5 -- Normalized weight = 0.030450

Harmonic = 6 -- Normalized weight = 0.021127

Harmonic = 7 -- Normalized weight = 0.015534

Harmonic = 8 -- Normalized weight = 0.011915

Harmonic = 9 -- Normalized weight = 0.009439

Fourier theory predicts the relative amplitudes of each harmonic for a full-rectified sine wave
diminish by a factor of 1

4n2−1 where n is the harmonic number. Therefore, if the first harmonic has

an amplitude of 1
3 , then the second harmonic will have an amplitude of 1

15 , the third harmonic an
amplitude of 1

35 , etc. If we normalize all the amplitudes to that of the first harmonic, the relative
amplitudes will be as follows:

• 1st harmonic = 3
3 = 1

• 2nd harmonic = 3
15 = 1

5 = 0.200

• 3rd harmonic = 3
35 ≈ 0.0857

• 4th harmonic = 3
63 = 1

21 ≈ 0.0476

• 5th harmonic = 3
99 = 1

33 ≈ 0.0303

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

This is a good example of our symmetry rule. A rectified sine wave does not have the same
shape when inverted, and so we know it must contain even-numbered harmonics. Contrast this
against symmetrical waveforms such as the square wave from the original code example, generating
a spectrum consisting only of odd-numbered harmonics.
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7.7 Spectrum analyzer in C++

This program builds on the foundation of the Discrete Fourier Transform (DFT) from the previous
section, but instead of displaying only the normalized harmonic amplitudes this program outputs
a comma-separated value (CSV) file that may be plotted using any spreadsheet application (e.g.
Microsoft Excel) or mathematical visualizing application (e.g. gnuplot).

I happened to use gnuplot to generate the spectra. My gnuplot script is as follows, saved to a
file named script.txt:

set datafile separator ","

set xrange [0:10.0]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1

All C++ programs were compiled using g++ and run with text output redirected to a file named
data.csv using the following command-line instructions:

g++ main.cpp ; ./a.out > data.csv

Then, after the comma-separated value file was populated with data from the C++ program’s
execution, I run gnuplot using the following command:

gnuplot -p script.txt
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#include <iostream>

#include <math.h>

using namespace std;

#define MAX 4096

#define CYCLES 10

float f(int x);

int main(void)

{

int sample;

float iharm, sinsum, cossum, polarsum;

for (iharm = 0.0; iharm < 10.0; iharm = iharm + 0.1)

{

sinsum = 0;

cossum = 0;

for (sample = 0; sample < MAX; ++sample)

{

sinsum = sinsum + (f(sample) * (sin(CYCLES*sample*iharm*2*M_PI/MAX)));

cossum = cossum + (f(sample) * (cos(CYCLES*sample*iharm*2*M_PI/MAX)));

}

polarsum = sqrt(pow(cossum, 2) + pow(sinsum, 2));

cout << iharm << " , " << polarsum << endl;

}

return 0;

}

float f(int x)

{

// (return value of function to be analyzed here)

}
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7.7.1 Spectrum of a square wave

float f(int x) // Square wave

{

if ((x % (MAX / CYCLES)) < (0.5 * MAX / CYCLES))

return 1.0;

else

return -1.0;

}

 0

 500

 1000
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 0  2  4  6  8  10

’data.csv’ using 1:2
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7.7.2 Spectrum of a sine wave

float f(int x) // Sine wave

{

return sin(CYCLES*x*2*M_PI/MAX);

}

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10

’data.csv’ using 1:2
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7.7.3 Spectrum of a sine wave product

float f(int x) // Product of f and 1.5f sine waves

{

return sin(CYCLES*x*2*M_PI/MAX) * sin(CYCLES*1.5*x*2*M_PI/MAX);

}

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10

’data.csv’ using 1:2

Note the two peaks at 0.5f and 2.5f : frequencies representing the difference and sum,
respectively, of the original sinusoids.
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7.7.4 Spectrum of an impulse

float f(int x) // Unity impulse function at x = 0

{

if (x == 0)

return 1;

else

return 0;

}

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10

’data.csv’ using 1:2

Note how the impulse is equivalent to a spectrum consisting of all frequencies. Since the
amplitude of the spectrum is much less than in previous examples, I used a different y-axis range in
gnuplot than in the other simulations:

set datafile separator ","

set xrange [0:10.0]

set yrange [0:1.5]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1
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Chapter 8

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

151
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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8.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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8.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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8.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Light

Sinusoidal decomposition (i.e. Fourier’s Theorem)

Time domain

Frequency domain

Periodic

Fundamental frequency

Harmonic frequency

Interharmonic frequency

Linearity

Fourier series

Fourier Transform
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8.1.3 Combining AC signals

The following circuit combines three AC voltage signals into one, to be measured by an oscilloscope:

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

Hz

FUNCTION GENERATOR
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trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

350

1.3k

2.1k

First, draw a schematic diagram of this circuit, to make it easier to analyze.

Next, determine whether these three combined AC voltage signals irrevocably affect one another,
or if you think it may be possible to separate them into their three original forms.

Last, suppose the combiner circuit contains capacitors and inductors rather than resistors? Would
the result be the same? Why or why not?

Challenges

• Describe an electrical technique for separating different AC sinusoids that happened to be
combined together.

• When electrical “noise” couples to a circuit via parasitic capacitance and/or inductance, can
that noise be separated from the true circuit signal, or is the circuit’s signal irrevocably tainted
by that noise?.
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8.1.4 Synthesis of a square wave

An interesting phenomenon arises when we take the odd-numbered harmonics of a given frequency
and add them together at certain diminishing ratios of the fundamental’s amplitude. For instance,
consider the following harmonic series:

(1 Volt at 100 Hz) + (1/3 Volt at 300 Hz) + (1/5 Volt at 500 Hz) + (1/7 Volt at 700 Hz) + . . .

1st harmoni

1st + 3rd

1st + 3rd + 5th 1st + 3rd + 5th + 7th
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The following graph shows the composite wave of all odd-numbered harmonics up to the 13th
together, following the same pattern of diminishing amplitudes:

1st + 3rd + 5th + 7th + 9th + 11th + 13th

If we take this progression even further, you can see that the sum of these harmonics begins to
appear more like a square wave:

All odd-numbered harmonis up to the 35th

This mathematical equivalence between a square wave and the weighted sum of all odd-numbered
harmonics is very useful in analyzing AC circuits where square-wave signals are present. From the
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perspective of AC circuit analysis based on sinusoidal waveforms, how would you describe the way
an AC circuit “views” a square wave?

Challenges

• Explain how this equivalence between a square wave and a particular series of sine waves is a
practical example of the Superposition Theorem at work.

8.1.5 LR circuit energized by a square-wave source

The Fourier series is much more than a mathematical abstraction. The mathematical equivalence
between any periodic waveform and a series of sinusoidal waveforms can be a powerful analytical
tool for the electronic engineer and technician alike.

Explain how knowing the Fourier series for a particular non-sinusoidal waveform simplifies the
analysis of an AC circuit. For example, how would our knowledge of a square wave’s Fourier series
help in the analysis of this circuit?

L

Rload

Challenges

• Explain how the Superposition Theorem relates to this problem.
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8.1.6 Amplifier test

Suppose an amplifier circuit is connected to a sine-wave signal generator, and a spectrum analyzer
used to measure both the input and the output signals of the amplifier:
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Interpret the two graphical displays and explain why the output signal has more “peaks” than
the input. What is this difference telling us about the amplifier’s performance?

Challenges

• The spectrum shown in this example is devoid of a noise floor. Identify what a “noise floor”
is and what it would look like on the spectrum display.

• For those familiar with amplifier circuit design and analysis, identify any specific amplifier
problems or component faults that might account for these additional peaks appearing in the
output spectrum.
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8.1.7 AC line power test

An electronics technician connects the input of a spectrum analyzer to the secondary winding of an
AC power transformer, plugged into a power receptacle. She sets the spectrum analyzer to show 60
Hz as the fundamental frequency, expecting to see the following display:
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Instead, however, the spectrum analyzer shows more than just a single peak at the fundamental:
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Explain what this pattern means, in practical terms. Why is this power system’s harmonic
signature different from what the technician expected to see?

Challenges

• Suppose it was determined that the electronic load to be powered by this AC line could not
tolerate this poor degree of power quality. Explain how we could “condition” this AC power
to be suitable for our load.
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8.1.8 DC to sunlight

An expression sometimes heard among RF (radio-frequency) engineers and technicians is “DC to

sunlight” as in the following quote:

“The model ABC-1234 spectrum analyzer handles signals ranging from DC to sunlight.”

Explain what this phrase means.

Challenges

• ???.

• ???.

• ???.
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8.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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8.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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8.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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8.2.3 Harmonics of 60 Hz

What is a harmonic frequency? If a particular electronic system (such as an AC power system) has
a fundamental frequency of 60 Hz, calculate the frequencies of the following harmonics:

• 1st harmonic =

• 2nd harmonic =

• 3rd harmonic =

• 4th harmonic =

• 5th harmonic =

• 6th harmonic =

Challenges

• In a 60 Hz power system, what might cause harmonics to exist?

8.2.4 Plotting a musical chord

A musical chord is a mixture of three or more audible pitches. On an oscilloscope, it would appear
to be a very complex waveform, very non-sinusoidal.

Use a graphing calculator, a computer spreadsheet, or some other computer-based plotting tool
to graph the sum of the following three frequencies, comprising a C major chord:

• 261.63 Hz (middle “C”)

• 329.63 Hz (“E”)

• 392.00 Hz (“G”)

Challenges

• Describe the “envelope” of this combined signal. What shape does the outer-most boundary
of the composite wave take, and why do you suppose this happens?
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8.2.5 Trigonometric formula

Explain the meaning of the following mathematical formula:

f(t) = A0 + (A1 sin ωt) + (B1 cos ωt) + (A2 sin 2ωt) + (B2 cos 2ωt) + . . .

Challenges

• What sort of waveform might this formula not relate to?

8.2.6 Fourier series for a square wave

The Fourier series for a square wave is as follows:

vsquare =
4

π
Vm

(

sin ωt +
1

3
sin 3ωt +

1

5
sin 5ωt +

1

7
sin 7ωt + · · · + 1

n
sin nωt

)

Where,
Vm = Peak amplitude of square wave in Volts
ω = Angular velocity of square wave in radians per second
t = Time in seconds
n = An odd integer

Draw the electrical schematic diagram showing multiple sinusoidal AC voltage sources connected
together to form an approximate 10 Volt (peak), 200 Hz square wave. Limit yourself to the first four
harmonics, labeling each sinusoidal voltage source with its own RMS voltage value and frequency.

Challenges

• To be honest, a four-harmonic equivalent circuit generates a rather poor approximation of a
square wave. Explain how to improve it.

• Express the individual voltage source values in Volts peak rather than Volts RMS.
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8.2.7 Another Fourier series

Suppose a non-sinusoidal voltage source is represented by the following Fourier series:

v(t) = 23.2 + 30 sin(377t) + 15.5 sin
(

1131t +
π

2

)

+ 2.7 sin

(

1508t − 9π

2

)

Where,
Vm = Peak amplitude of square wave in Volts
ω = Angular velocity of square wave in radians per second
t = Time in seconds

Knowing the Fourier series of this voltage allows us to represent the same voltage source as a set
of series-connected voltage sources, each with its own (sinusoidal) frequency. Draw the equivalent
schematic in this manner, labeling each voltage source with its RMS voltage value, frequency (in
Hz), and phase angle:

Challenges

• Express the individual voltage source values in Volts peak rather than Volts RMS.
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8.2.8 Resistor powered by a square-wave source

Calculate the power dissipated by a 25 Ω resistor, when powered by a square-wave with a symmetrical
amplitude of 100 Volts (peak) and a frequency of 2 kHz:

25 Ω

+100 V

-100 V

Calculating resistor power becomes a much more complex task if we place a capacitor in series
with it, though:

25 Ω

+100 V

-100 V

0.22 µF

Explain why this is.
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Finally, explain how this computer program is able to approximate resistor power in this
resistor-capacitor circuit, identifying any foundational concepts of electric circuits and of computer
programming you see applied:

#include <stdio.h>

#include <math.h>

float harmcalc(int);

int main (void)

{

int harmonic, max;

float pr = 0;

printf("Enter the highest harmonic number to analyze: ");

scanf("%i", &max);

for (harmonic = 1 ; harmonic <= max ; ++harmonic)

if (harmonic % 2 == 1)

pr = pr + harmcalc(harmonic);

printf("Resistor power for harmonics 1-%i = %f Watts\n", max, pr);

return 0;

}

float harmcalc(int n)

{

float vsrc = 100.0, r = 25.0, c = 0.22e-6, ff = 2e3, vh, fh, xc, vr;

vh = (4 / M_PI) * (sqrt(2) / 2) * vsrc / n;

fh = ff * n;

xc = 1 / (2 * M_PI * fh * c);

vr = vh * (r / sqrt(pow(r,2) + pow(xc,2)));

return pow(vr,2) / r;

}

Challenges

• Modify the code so that we calculate the resistor’s power dissipation with no capacitor
connected in series.
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• Calculate the RMS value of this square wave.

• Calculate the peak value of a sine wave that would result in the same power dissipation for
the purely resistive circuit.
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8.2.9 AC line harmonic analyzer

Explain how the following power-line harmonic analyzer circuit works:

AC input
(60 Hz fundamental)

V

L1 C1

L2 C2

L3 C3

L4 C4

L5 C5

R1

R2

R3

R4

R5

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1st

2nd
3rd

4th

5th

Voltmeter

Harmonic # L# value C# value

1st 20 to 22 H 0.33 µF

2nd 11 to 12 H 0.15 µF

3rd 5 to 6 H 0.15 µF

4th 1.5 to 2.5 H 0.22 µF

5th 1 to 1.5 H 0.27 µF

If we applied a purely sinusoidal 60 Hz AC input voltage to this analyzer, how would the voltmeter
readings compare between the five switch positions?

If we applied a 60 Hz square AC input voltage to this analyzer, how would the voltmeter readings
compare between the five switch positions?

Challenges
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• Calculate the exact inductance values necessary for precise tuning of the five LC filters, for
the first five harmonics of a 60 Hz waveform.

• The voltmeter in this circuit would not have to be a true-RMS meter. It could simply be an
average-responding (RMS-calibrated) voltmeter and it would work the same. Explain why.

• Should the filter networks have high-Q values or low-Q values?
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8.2.10 Even versus odd harmonics

Note the effect of adding the second harmonic of a waveform to the fundamental, and compare that
effect with adding the third harmonic of a waveform to the fundamental:

1st + 2nd

⇒

Sum

1st + 3rd

⇒

Sum



8.2. QUANTITATIVE REASONING 179

Now compare the sums of a fundamental with its fourth harmonic, versus with its fifth harmonic:

1st + 4th

⇒

Sum

1st + 5th

⇒

Sum
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And again for the 1st + 6th, versus the 1st + 7th harmonics:

1st + 6th

⇒

Sum

1st + 7th

⇒

Sum

Examine these sets of harmonic sums, and indicate the trend you see with regard to harmonic
number and symmetry of the final (Sum) waveforms. Specifically, how does the addition of an even

harmonic compare to the addition of an odd harmonic, in terms of final waveshape?

Challenges

• Identify a practical application of this knowledge.
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8.2.11 Multi-harmonic analyzer

Take the following C program and modify it so as to calculate the 1st, 2nd, 3rd, 4th, and 5th
harmonics of the sampled waveform (stored in array x):

#include <stdio.h>

#include <math.h>

int main (void)

{

double x[100] = {0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,

-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0};

int sample;

double cosavg, sinavg;

cosavg = sinavg = 0.0;

for (sample = 0 ; sample < 100 ; ++sample)

{

cosavg = cosavg + (x[sample] * cos(2 * M_PI * sample / 100));

sinavg = sinavg + (x[sample] * sin(2 * M_PI * sample / 100));

}

printf("DC average value of cosine product = %f\n", cosavg / 100);

printf("DC average value of sine product = %f\n", sinavg / 100);

return 0;

}

Then, take the results of your edited code and show that the harmonic amplitudes match the
amplitude coefficients of the Fourier series for a square wave.

Challenges

• Suppose the waveform was sampled at twice the rate as the one in this example, so that one
full cycle spanned 200 samples instead of 100 samples. What would need to change in this
program to accommodate the additional data?



182 CHAPTER 8. QUESTIONS

8.2.12 Fourier analysis of a triangle wave

Write (or modify) a computer program to analyze a sampled waveform representing a triangle wave,
and determine its harmonic content.

Challenges

• Does the number of samples in one cycle of the input waveform matter to our analysis?
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8.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

8.3.1 Harmonics produced by inductive components

Under certain conditions, harmonics may be produced in AC power systems by inductors and
transformers. How is this possible, as these devices are normally considered to be linear?

Challenges

• Does the core material for the inductor or transformer matter?

• Can a given inductor or transformer be operated in such a way as to reduce the production of
harmonics? If so, how?
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8.3.2 Discerning even/odd harmonics from the time domain

By visual inspection, determine which of the following periodic waveforms displayed in the time
domain contain even-numbered harmonics:

A

E

B C

D F

G H I

Here are some hints to get you started: waveforms A, E, and G contain no even-numbered
harmonics; waveforms B, C, and D contain even-numbered harmonics.

J K L

M N O

P Q R
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Challenges

• Identify a practical application of being able to discern even/odd harmonics from time-domain
plots.

• One of these waveforms contains just one harmonic – identify which one.

• One of these waveforms contains all frequencies – identify which one.

• Waveforms K and L look very similar, but their harmonic spectra are quite different. Which
of these is symmetrical about the centerline and which of these isn’t?
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8.3.3 Testing the purity of a sine wave

Suppose a student is developing a sine-wave oscillator circuit and wants to test its output signal to
determine whether or not the waveform is acceptably “pure” (i.e. is a true sinusoidal shape).

One way to test the output of this oscillator circuit is by using a spectrum analyzer. Explain
how one would interpret the spectrum display given by this instrument to test the purity of the
oscillator’s waveform.

Assuming the student is on a restricted budget and only has access to an oscilloscope (with no
provision for FFT analysis), one could examine the waveform to see that its shape was not grossly
distorted, but this would not be a very sensitive test for distortion. The difference between the
waveshape of a pure sinusoid and one with just a few percent of harmonic distortion is imperceptible
by plain inspection of its time-domain oscillograph.

However, all hope is not lost. The following filter circuit will help reveal whether or not the
oscillator’s output is a pure sine wave:

A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

C

ROscillator

Explain how this oscilloscope-based test will work. What results would you expect if the oscillator
output is pure? What results would you expect if its output contains harmonics?

Challenges

• What type of filter network is this?

• Does the cutoff frequency of this filter circuit matter? Why or why not?
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8.3.4 Faulty spectrum analyzer design

Suppose someone tried building their own manually-tuned spectrum analyzer, shown in block-
diagram form here:

Mixer

Signal
input

LP filter
DC meter

Variable
frequency
oscillator

However, they made a mistake. Instead of a low-pass filter, they installed a high-pass filter.
What effect would this have on the operation of the analyzer?

Challenges

• What is the proper block-diagram symbol for this incorrect filter type?
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

189
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

11 March 2024 – edited image 5852 to show X-Y mode being used on the oscilloscope, and also
added more explanatory text on this oscilloscope mode.

3-4 March 2024 – edits to some instructor notes, as well as corrected a couple of mis-statements
about the harmonic amplitudes of a pulse waveform (not being simply 1

n
).

27 February 2024 – added more questions to the Introduction chapter.

23 February 2024 – typo correction courtesy of David Mitchell, where I had one of the harmonics
for a triangle wave listed as the sine function rather than cosine as it should have been.

5 October 2023 – minor edits to the Full Tutorial text.

27-28 July 2023 – fixed a typographical error in the Full Tutorial section on synthesizing a triangle
wave, where the final Fourier series had incorrect coefficients on the third- and fifth-harmonic terms.

16 July 2023 – converted the Tutorial chapter into a Full Tutorial, and added a Simplified Tutorial
chapter.

26 May 2023 – modified the “Resistor powered by a square-wave source” Quantitative Reasoning
question to include a coding challenge.

24-26 February 2023 – added magnitude coefficients to the Fourier Series shown for square,
triangle, and sawtooth waves in the “Fourier series for common waveforms” section of the Technical
References chapter. Also, added another section to the Tutorial showing the synthesis of a pulse
wave from cosine waves.
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18 February 2023 – added another section to the Tutorial showing the synthesis of a sawtooth
wave from sine waves.

16 February 2023 – added some clarifying text in the Tutorial, and added two new sections to
it showing the synthesis of square and triangle waves from odd-harmonic sine and cosine waves,
respectively.

28-29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

12 July 2022 – minor additions to the Case Tutorial section on sine wave versus non-sine wave
signal sources when experimenting with AC networks.

24 May 2022 – minor additions to the Tutorial, discussing harmonics. Also added some minor
details to the Technical Reference section on common Fourier series to better describe the meaning
of the coefficients.

3 March 2022 – added more Challenge questions.

3-4 January 2022 – added new section on digital Fourier transforms, as well as new content
explaining Fourier series in more detail. Also added some questions.

2 January 2022 – added new content on manually analyzing a square wave.

31 December 2021 – added new sections on analog Fourier analysis techniques.

22 December 2021 – divided Tutorial into sections.

18 November 2021 – placed Discrete Fourier Transform and Spectrum Analyzer C++
programming references into their own files, sharing them with the Elementary Filters module.

3 November 2021 – explicitly stated Fourier’s Theorem.

29 September 2021 – added SDR screenshot showing lightning strikes producing broad-spectrum
radio interference.

3 June 2021 – added Case Tutorial section discussing the use of triangle-wave AC sources versus
sine-wave AC sources to power simple RLC networks.

8 May 2021 – commented out or deleted empty chapters.

26 April 2021 – minor additions to the “DFT of a square wave” subsection of the “Programming
References” chapter, showing tabulated values for a square wave’s harmonic amplitudes to compare
against the DFT algorithm’s printed values.

16 April 2021 – added a Case Tutorial chapter.

18 March 2021 – corrected one instance of “volts” that should have been capitalized “Volts”.
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8 March 2021 – added “DC to sunlight” Conceptual question.

2 March 2021 – minor edit to the “Discerning even/odd harmonics from the time domain”
Diagnostic question.

6 January 2021 – added an impulse function simulation to the “Spectrum Analyzer in C++”
Programming References section.

6 October 2020 – converted the Simplified Tutorial chapter into (just) a Tutorial chapter, and
made some edits to the text as well.

29 September 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions. Also
made some minor edits to the Simplified Tutorial.

7 August 2020 – added a Programming Reference section using C++ to plot the continuous
spectrum of any arbitrary function.

30 April 2020 – added a Diagnostic Reasoning question on discerning imperfect sine waves using
a high-pass filter network and an oscilloscope.

29 April 2020 – added more common Fourier series to that Technical Reference section, and placed
each one in its own subsection.

28 April 2020 – added screenshot of spectrum analyzer display showing noise floor, and edited the
“Ideal” spectrum display shown in the Tutorial.

27 April 2020 – added another Technical Reference section, this one showing Fourier series for
some common functions.

20 April 2020 – added a Programming Reference section using C++ to plot two sinusoidal
waveforms with their own phase shifts.

15 April 2020 – minor edits to instructor notes, and edited two of the waveform images in the
“Discerning even/odd harmonics from the time domain” Diagnostic Reasoning problem. Also added
more content to the Tutorial talking about noise floors.

3 February 2020 – minor edit to one of the Foundational Concept titles.

29 January 2020 – added Foundational Concepts to the list in the Conceptual Reasoning section.

5 January 2020 – added bullet-list of relevant programming principles to the Programming
References section.

4 January 2020 – added Programming References chapter, with section on plotting simple sine
waves to the console.

2 January 2020 – removed from from C++ code execution output, to clearly distinguish it from
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the source code listing which is still framed.

15 December 2019 – added reference to the IEEE Tutorial on Harmonics Modeling and Simulation,
and also the term interharmonic within the Simplified Tutorial.

1 December 2019 – added more explanatory text on the Discrete Fourier Transform algorithm
(coded in C++).

29 November 2019 – added Technical Reference on Discrete Fourier Transform algorithm (coded
in C++).

27 November 2019 – continued adding questions.

27 November 2019 – continued writing Simplified Tutorial, added Historical References on
vibrating-reed frequency meters and “wave screens”, and added multiple questions, and added source
code in the Technical Reference chapter for a Discrete Fourier Transform (DFT) algorithm.

25 November 2019 – continued writing Simplified Tutorial.

24 November 2019 – began writing Tutorial.

23 November 2019 – added a few Questions.

18 November 2019 – rough document first created.
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