
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Human-Machine Interfaces

© 2025 by Tony R. Kuphaldt – under the terms and conditions of the Creative
Commons Attribution 4.0 International Public License

Last update = 28 July 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Case Tutorial 5

2.1 Example: NAND function in a PLC . 6
2.2 Example: simple PLC comparisons . 8

3 Tutorial 11

3.1 Review of basic PLC functionality . 11
3.2 Human-Machine Interface function . 20
3.3 Tag name databases . 23
3.4 Advanced HMI functionality . 26
3.5 Discrete (Boolean) tag programming . 26
3.6 Integer tag programming . 27
3.7 Floating-point (real) tag programming . 27
3.8 ASCII string tag programming . 27
3.9 Ergonomic design practices . 27

4 Derivations and Technical References 29

4.1 Feature comparisons between PLC models . 30
4.1.1 Viewing live values . 30
4.1.2 Forcing live values . 31
4.1.3 Special “system” values . 31
4.1.4 Free-running clock pulses . 32
4.1.5 Standard counter instructions . 32
4.1.6 High-speed counter instructions . 32
4.1.7 Timer instructions . 32
4.1.8 ASCII text message instructions . 33
4.1.9 Analog signal scaling . 33

4.2 Legacy Allen-Bradley memory maps and I/O addressing 34

5 Questions 41

5.1 Conceptual reasoning . 45
5.1.1 Reading outline and reflections . 46
5.1.2 Foundational concepts . 47

iii

CONTENTS 1

5.1.3 First conceptual question . 48
5.1.4 Second conceptual question . 48
5.1.5 Applying foundational concepts to ??? . 49
5.1.6 Explaining the meaning of calculations . 50
5.1.7 Explaining the meaning of code . 51

5.2 Quantitative reasoning . 52
5.2.1 Miscellaneous physical constants . 53
5.2.2 Introduction to spreadsheets . 54
5.2.3 First quantitative problem . 57
5.2.4 Second quantitative problem . 57
5.2.5 ??? simulation program . 57

5.3 Diagnostic reasoning . 58
5.3.1 First diagnostic scenario . 58
5.3.2 Second diagnostic scenario . 59

6 Projects and Experiments 61

6.1 Recommended practices . 61
6.1.1 Safety first! . 62
6.1.2 Other helpful tips . 64
6.1.3 Terminal blocks for circuit construction . 65
6.1.4 Conducting experiments . 68
6.1.5 Constructing projects . 72

6.2 Experiment: (first experiment) . 73
6.3 Project: (first project) . 74

A Problem-Solving Strategies 75

B Instructional philosophy 77

B.1 First principles of learning . 78
B.2 Proven strategies for instructors . 79
B.3 Proven strategies for students . 81
B.4 Design of these learning modules . 82

C Tools used 85

D Creative Commons License 89

E References 97

F Version history 99

Index 99

2 CONTENTS

Chapter 1

Introduction

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

5

6 CHAPTER 2. CASE TUTORIAL

2.1 Example: NAND function in a PLC

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A unpressed
Switch B unpressed

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 0
IN2 = 0

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A unpressed
Switch B pressed

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 1
IN2 = 0

2.1. EXAMPLE: NAND FUNCTION IN A PLC 7

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

Switch A pressed
Switch B unpressed

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 0
IN2 = 1

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A pressed
Switch B pressed

PLC bit states:

OUT3 = 0
C1 = 1
IN5 = 1
IN2 = 1

8 CHAPTER 2. CASE TUTORIAL

2.2 Example: simple PLC comparisons

The following illustration shows wiring and a sample relay ladder logic (RLL) program for an Allen-
Bradley MicroLogix 1000 PLC:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

I:0

0 1

I:0 O:0

0

END

Allen-Bradley

MicroLogix
1000

Note how Allen-Bradley I/O is labeled in the program: input bits designated by the letter I and
output bits designated by the letter O.

In order to energize the LED, the switch connected to input terminal 0 must be off (open) and
the switch connected to input terminal 1 must be on (closed).

2.2. EXAMPLE: SIMPLE PLC COMPARISONS 9

The following illustration shows wiring and a sample relay ladder logic (RLL) program for a
Siemens Simatic S7-200 PLC:

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

END

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

I0.0

I0.1

Q0.0

Note how Siemens I/O is labeled in the program: input bits designated by the letter I and output
bits designated by the letter Q.

In order to energize the LED, either the switch connected to input terminal 0.0 must be on
(closed) or the switch connected to input terminal 0.1 must be off (open).

10 CHAPTER 2. CASE TUTORIAL

The following illustration shows wiring and a sample relay ladder logic (RLL) program for a
Koyo CLICK PLC:

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

END

24 VDC

RS-485

LG

C1

X1

AD1V

AD1I

AD2V

AD2I

ACOM

DA1V

DA1I

DA2V

DA2I

CLICK

X2

X3

X4

C2

Y1

Y2

Y3

Y4

+V

C0-02DD1-D

Koyo

PWR

RUN

ERR

TX1

RX1

TX2

RX2

RUN

STOP

PORT 1

PORT 2

TX3

RX3

PORT 3

0 24V

X1 X2

X1X2

Y1

Note how Koyo I/O is labeled in the program: input bits designated by the letter X and output
bits designated by the letter Y.

In order to energize the LED, at least one of the following conditions must be met:

• X1 switch turned on (closed) and X2 switch turned off (open)

• X2 switch turned on (closed) and X1 switch turned off (open)

Either the switch connected to input terminal 0.0 must be on (closed) or the switch connected
to input terminal 0.1 must be off (open).

Chapter 3

Tutorial

3.1 Review of basic PLC functionality

A Programmable Logic Controller, or PLC, is a general-purpose industrial computer designed to be
easily programmed by end-user maintenance and engineering personnel for specific control functions.
PLCs have input and output channels (often hosted on removable “I/O cards”) intended to connect
to field sensor and control devices such as proximity switches, pushbuttons, solenoids, lamps, sirens,
etc. The user-written program instructs the PLC how to energize its outputs in accordance with
input conditions.

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

ProcessorPower
supply

L1

Gnd

L2/N

IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Monolithic PLC

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

Individual cards may be
removed and replaced

All I/O is fixed in one PLC unit

Modular ("rack-based") PLC

PLCs were originally invented as a replacement for hard-wired relay control systems, and a
popular PLC programming language called Ladder Diagram was invented to allow personnel familiar
with relay ladder logic diagrams to write PLC programs performing the same discrete (on/off)
functions as control relays. With a PLC, the discrete functionality for any system could be altered
merely by editing the Ladder Diagram program rather than by re-wiring connections between
physical relays.

11

12 CHAPTER 3. TUTORIAL

The following diagram shows a PLC separated into three sections: (1) a discrete input card, (2)
the program space in the processor’s memory, and (3) a discrete output card :

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Inputs IN0 through IN3 are connected to a pushbutton switch, temperature switch, pressure
switch, and limit switch, respectively. Outputs OUT0 through OUT3 connect to an indicator lamp,
electric heater, solenoid coil, and electromechanical relay coil, respectively. The input card triggers1

bits in the PLC’s memory to switch from 0 to 1 when each respective input is electrically energized,
and another set of bits in the PLC’s memory control TRIACs inside the output card to turn on when
1 and off when 0. However, with no program installed in the processor, this PLC will not actually
do anything. As the switch contacts open and close, the only thing the PLC will do is represent
their discrete states by the bits IN0 through IN3 (0 = de-energized and 1 = energized).

1Not shown in this simplified diagram are the optotransistors coupled to the LEDs inside the input card, translating
each LED’s state to a discrete logic level at the transistor to be interpreted by the PLC’s digital processor. Likewise,
another set of LEDs driven by the processor’s outputs couple to the opto-TRIACs in the output card. Optical isolation
of all I/O points is standard design practice for industrial PLCs.

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 13

This next diagram shows the same PLC, but this time with a very simple Ladder Diagram
program running in the processor, and with stimuli applied to some of the switches:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1 OUT3

IN2 OUT0

=1

Pressed
=1

=0

=0

=0

Inputs IN0 and IN1 are energized by their closed switches (pushbutton and temperature),
triggering those bits to “1” states in the PLC’s memory. The Ladder Diagram program consists
of two virtual “contact” instructions and two virtual “coil” instructions, the contact instructions
controlled by input bits IN1 and IN2 and the coil instructions controlling output bits OUT3 and OUT0.
Contact instruction IN1 “connects” (virtually) to coil instruction OUT3, contact IN2 connecting to
coil OUT0 similarly. Colored highlighting shows the “virtual electricity” status of these instructions,
as though they were relays being energized with real electricity. Contact instruction IN1 is colored
because it is a “normally-open” that is being stimulated into its closed state by its “1” bit status.
Contact instruction IN2 is also normally-open, but since its bit is “0” it remains uncolored, and
so is the coil it’s connected to. The end-result of this program is that the relay’s state follows the
temperature switch, and the lamp’s state follows the pressure switch.

14 CHAPTER 3. TUTORIAL

Things get more complex when we begin adding normally-closed contact instructions to the
program. Consider this next diagram, with updated stimuli and an expanded Ladder Diagram
program for the PLC to follow:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1 OUT3

IN2 OUT0

=1

=0

=0

=0

IN2

Unpressed
=0

IN0 OUT1

The first two rungs of the program are unchanged, as are the temperature and pressure switch
statuses, and so outputs OUT3 and OUT0 do precisely what they did before. A new rung has been
added to the program, with contact instructions linked to bits IN2 and IN0, and the pushbutton
switch is no longer being pressed. Both bits IN0 and IN2 are currently “0” and so their respective
contact instructions are both in their “normal” (i.e. resting) states. The normally-closed contact
instruction IN2 is colored because it is “closed” but the OUT1 coil in that rung is uncolored because
the normally-open contact instruction IN0 is uncolored and therefore blocks virtual electricity from
reaching that coil.

Practically any logic function may be made simply by drawing virtual contact and coil
instructions controlling the flow of “virtual electricity”. We could describe the above program
in Boolean terms: OUT0 = IN2; OUT1 = (IN2)(IN0) ; OUT2 = 0 ; OUT3 = IN1.

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 15

This next diagram shows the same PLC with a completely re-written program. The program
is now written so that the solenoid coil will energize if the limit switch makes contact, or if the
temperature is below 110o and the pushbutton is pressed, or if the pressure rises above 30 kPa and
the pushbutton is unpressed:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1

IN2

=0

=0

=0

Unpressed
=0

IN0

OUT2IN3

IN0

=0

All switch stimuli are the same as before, resulting in a “0” state for bit OUT2 and a
correspondingly de-energized solenoid. It should be clear to see how this program implements the
intended AND and OR functionality by means of series-connected and parallel-connected contact
instructions, respectively, with inversion (i.e. the NOT function) implemented by normally-closed
rather than normally-open contact instructions.

16 CHAPTER 3. TUTORIAL

The logical chain of causality from input to output on a PLC is very important to understand,
and will be represented here by a sequence of numbered statements:

1. Energization of input channels controls input bit states (no current = 0 and current = 1)

2. Bit states control the resting/actuated status of contact instructions (0 = resting and 1 =
actuated)

3. The resting/actuated status of a contact instruction, combined with its “normal” type
determines virtual conductivity (open = uncolored and closed = colored)

4. Continuous color on a rung activates that rung’s coil instruction

5. The coil’s status controls output bits (uncolored = 0 and colored = 1)

6. Output bits control energization of output channels (0 = off and 1 = on)

All PLCs follow this chain of logic precisely, and this same causality must be mentally tracked in
order to successfully analyze a Ladder Diagram program in a PLC. The most confusing part of this
for new students seems to be the relationship of contact instructions to real-world switch inputs.
Many students have an unfortunate tendency to want to directly2 associate real-world switch status
with Ladder Diagram color, and/or to believe that the “normal” status of a Ladder Diagram contact
instruction must always match the “normal” status of the real-world switch. These and other such
misconceptions are rooted in the same error, namely not deliberately following the chain of causation
from beginning to end (i.e. input energization → input bit state → contact instruction actuation →
color based on normal type and bit state → coil color → output bit state → output energization).

2For a normally-open contact instruction, this association is direct. However, for a normally-closed contact
instruction it is inverted!

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 17

Being fully-fledged digital computers in their own right, PLCs are not limited to executing simple
Boolean functions represented by “virtual relay” contacts and coils. Other digital functions include
counters and timers. An example of a counter program is shown here:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

IN2

IN0

IN3

CTUDUp
Count

up/down

Down

Reset

OUT1

Preset =
14

The CTUD instruction is an up/down counter receiving three discrete inputs and generating one
discrete output. The program is written so that this counter instruction’s count value will increment
(i.e. count up) once for every closure of the limit switch, decrement (i.e. count down) once for every
closure of the pushbutton switch, and reset to zero if the pressure falls below 30 kPa. The output
signal (“wired” to coil OUT1) energizes the heating element if this count value reaches or exceeds the
“preset” value of 14.

18 CHAPTER 3. TUTORIAL

Next we see an example PLC program showcasing two timing instructions, an on-delay timer
and an off-delay timer:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

OUT1

Preset =

TON
On-delay

EN

Preset =

EN TOF
Off-delay

9 sec

5 sec

OUT0IN1

IN2

When the pressure exceeds 30 kPa and closes the pressure switch connected to input IN2, the TON
timer instruction begins counting. After 5 seconds of continuous activation, output OUT1 activates to
energize the heating element. When the pressure falls below 30 kPa, the heating element immediately
de-energizes.

When the temperature exceeds 110o and closes the temperature switch connected to input IN1,
the TOF timer instruction immediately activates its output (OUT0) to energize the indicator lamp.
When the temperature cools down below 110o, the off-delay timer begins timing and does not de-
energize the indicator lamp until 9 seconds after the temperature switch has opened.

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 19

Both the utility and versatility of programmable logic controllers should be evident in this brief
tutorial. These are digital computers, fully programmable by the end-user in a simple instructional
language, designed to implement discrete logic functions, counting functions, timing functions, and
a whole host of other useful operations for the purpose of controlling electrically-based systems.
Originally designed to replace hard-wired electromechanical relay control circuits, PLCs are designed
to mimic the functionality of relays while providing superior reliability and reconfigurability.

PLCs are not limited to contact, coil, counter, and timer instructions, either. A typical PLC
literally offers dozens of instruction types in its set, which may be applied and combined in
nearly limitless fashion. Other types of PLC programming instructions include latch instructions
(offering bistable “set” and “reset” capability), one-shot instructions (outputting an active state
for exactly one “scan” of the PLC’s program every time the input transitions from inactive to
active), sequencers (controlling a pre-determined sequence of discrete states based on a count
value), arithmetic instructions (e.g. addition, subtraction, multiplication, division, etc.), comparison
instructions (comparing two numerical values and generating a discrete signal indicating equality,
inequality, etc.), data communication instructions (sending and receiving digital messages over a
communications network), and clock/calendar functions (tracking time and date).

One advantage of PLCs over relay circuitry which may not be evident at first inspection is the
fact that the number of virtual “contacts” and “coils” and other instructions is limited only by
how much memory the PLC’s processor has. The example programs shown on the previous pages
were extremely short, but a real PLC program may be dozens of pages long! Electromechanical
control and timing relays are, of course, limited in the number of physical switch contacts each one
offers, which in turn limits how elaborate the control system may be. For the sake of illustration,
a PLC with a single discrete input (say, IN0 wired to a pushbutton switch) may contain a program
with hundreds of virtual contacts labeled IN0 triggering all kinds of logical, counting, and timing
functions.

20 CHAPTER 3. TUTORIAL

3.2 Human-Machine Interface function

Programmable logic controllers are built to input various signal types (discrete, analog), execute
control algorithms on those signals, and then output signals in response to control processes. By
itself, a PLC generally lacks the capability of displaying those signal values and algorithm variables
to human operators. A technician or engineer with access to a personal computer and the requisite
software for editing the PLC’s program may connect to the PLC and view the program’s status
“online” to monitor signal values and variable states, but this is not a practical way for operations
personnel to monitor what the PLC is doing on a regular basis. In order for operators to monitor and
adjust parameters inside the PLC’s memory, we need a different sort of interface allowing certain
variables to be read and written without compromising the integrity of the PLC by exposing too
much information or allowing any unqualified person to alter the program itself.

One solution to this problem is a dedicated computer display programmed to provide selective
access to certain variable’s in the PLC’s memory, generally referred to as Human3-Machine Interface,
or HMI.

HMIs may take the form of general-purpose (“personal”) computers running special graphic
software to interface with a PLC, or as special-purpose computers designed to be mounted in sheet
metal panel fronts to perform no task but the operator-PLC interface. This first photograph shows
an example of an ordinary personal computer (PC) with HMI software running on it:

The display shown here happens to be for monitoring a vacuum swing adsorption (VSA) process
for purifying oxygen extracted from ambient air. Somewhere, a PLC (or collection of PLCs) is
monitoring and controlling this VSA process, with the HMI software acting as a “window” into the
PLC’s memory to display pertinent variables in an easy-to-interpret form for operations personnel.
The personal computer running this HMI software connects to the PLC(s) via digital network cables
such as Ethernet.

3An older term for an operator interface panel was the “Man-Machine Interface” or “MMI.” However, this fell out
of favor due to its sexist tone.

3.2. HUMAN-MACHINE INTERFACE FUNCTION 21

This next photograph shows an example of a special-purpose HMI panel designed and built
expressly to be used in industrial operating environments:

These HMI panels are really nothing more than “hardened4” personal computers built ruggedly
and in a compact format to facilitate their use in industrial environments. Most industrial HMI
panels come equipped with touch-sensitive screens, allowing operators to press their fingertips on
displayed objects to change screens, view details on portions of the process, etc.

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

To switches

To analog sensors

To on/off control elements

Inputs

Inputs

Outputs

PLC

Network cable
HMI writes to PLC

HMI reads from PLC

HMI

Push
to

Start

Push
to

Stop

EnableDisable

Motor speed

74.8%

Technicians and/or engineers program HMI displays to read and write data via a digital network
to one or more PLCs. Graphical objects arrayed on the display screen of an HMI often mimic
real-world indicators and switches, in order to provide a familiar interface for operations personnel.

4Industrial computers typically lack moving parts such as cooling fans and hard drives with rotating disks in order
to achieve significantly greater operating lifespans and reliability. The lack of cooling fans, especially for a computer
which may very well be installed in an environment much hotter than most homes or offices, generally means slower-
speed microprocessors (to generate less heat) and passive cooling systems with heat sinks large enough that forced-air
cooling becomes unnecessary.

22 CHAPTER 3. TUTORIAL

A “pushbutton” object on the face of an HMI panel, for example, would be configured to write one
bit of data to the PLC, in a manner similar to a real-world switch writing one bit of data to the
PLC’s input register.

3.3. TAG NAME DATABASES 23

3.3 Tag name databases

Modern HMI panels and software are almost exclusively tag-based, with each graphic object on the
screen associated with at least one data tag name, which in turn is associated to data points (bits, or
words) in the PLC by way of a tag name database file resident in the HMI. Graphic objects on the
HMI screen either accept (read) data from the PLC to present useful information to the operator,
send (write) data to the PLC from operator input, or both. The task of programming an HMI unit
consists of building a tag name database and then drawing screens to illustrate the process to as
good a level of detail as operators will need to run it.

An example screenshot of a tag name database table for a modern HMI is shown here:

The tag name database is accessed and edited using the same software to create graphic images
in the HMI. In this particular example you can see several tag names (e.g. START PUSHBUTTON,
MOTOR RUN TIMER, ERROR MESSAGE, MOTOR SPEED) associated with data points within the PLC’s
memory (in this example, the PLC addresses are shown in Modbus register format). In many
cases the tag name editor will be able to display corresponding PLC memory points in the same
manner as they appear in the PLC programming editor software (e.g. I:5/10, SM0.4, C11, etc.).

An important detail to note in this tag name database display is the read/write attributes of
each tag. Note in particular how four of the tags shown are read-only : this means the HMI only has
permission to read the values of those four tags from the PLC’s memory, and not to write (alter)
those values. The reason for this in the case of these four tags is that those tags refer to PLC
input data points. The START PUSHBUTTON tag, for instance, refers to a discrete input in the PLC
energized by a real pushbutton switch. As such, this data point gets its state from the energization
of the discrete input terminal. If the HMI were to be given write permission for this data point,
there would likely be a conflict. Suppose input terminal on the PLC were energized (setting the
START PUSHBUTTON bit to a “1” state) and the HMI simultaneously attempted to write a “0” state
to the same tag. One of these two data sources would win, and other would lose, possibly resulting
in unexpected behavior from the PLC program. For this reason, data points in the PLC linked to

24 CHAPTER 3. TUTORIAL

real-world inputs should always be limited as “read-only” permission in the HMI’s database, so the
HMI cannot possibly generate a conflict.

The potential for data conflict also exists for some of the other points in the database, however.
A good example of this is the MOTOR RUN bit, which is the bit within the PLC program telling
the real-world motor to run. Presumably, this bit gets its data from a coil in the PLC’s Ladder
Diagram program. However, since it also appears in the HMI database with read/write permission,
the potential exists for the HMI to over-write (i.e. conflict) that same bit in the PLC’s memory.
Suppose someone programmed a toggling “pushbutton” screen object in the HMI linked to this tag:
pushing this virtual “button” on the HMI screen would attempt to set the bit (1), and pushing it
again would attempt to reset the bit (0). If this same bit is being written to by a coil in the PLC’s
program, however, there exists the distinct possibility that the HMI’s “pushbutton” object and the
PLC’s coil will conflict, one trying to tell the bit to be a “0” while the other tries to tell that bit to
be a “1”. This situation is quite similar to the problem experienced when multiple coils in a Ladder
Diagram program are addressed to the same bit.

The general rule to follow here is never allow more than one element to write to any data point.
In my experience teaching PLC and HMI programming, this is one of the more common errors
students make when first learning to program HMIs: they will try to have both the HMI and the
PLC writing to the same memory locations, with weird results.

One of the lessons you will learn when programming large, complex systems is that it is very
beneficial to define all the necessary tag names before beginning to lay out graphics in an HMI.
The same goes for PLC programming: it makes the whole project go faster with less confusion if
you take the time to define all the necessary I/O points (and tag names, if the PLC programming
software supports tag names in the programming environment) before you begin to create any code
specifying how those inputs and outputs will relate to each other.

Maintaining a consistent convention for tag names is important, too. For example, you may
wish to begin the tag name of every hard-wired I/O point as either INPUT or OUTPUT (e.g.
INPUT PRESSURE SWITCH HIGH, OUTPUT SHAKER MOTOR RUN, etc.). The reason for maintaining a
strict naming convention is not obvious at first, since the whole point of tag names is to give
the programmer the freedom to assign arbitrary names to data points in the system. However,
you will find that most tag name editors list the tags in alphabetical order, which means a naming
convention organized in this way will present all the input tags contiguously (adjacent) in the list,
all the output tags contiguously in the list, and so on.

3.3. TAG NAME DATABASES 25

Another way to leverage the alphabetical listing of tag names to your advantage is to begin each
tag name with a word describing its association to a major piece of equipment. Take for instance
this example of a chemical fluid processing system with several data points5 defined in a PLC control
system and displayed in an HMI:

TT

TT

TT

TT

FT

Reactor

Heat
exchanger

Reactor_feed_flow

Reactor_feed_temp

Reactor_jacket_valve

Reactor_bed_temp

Exchanger_preheat_valve

Exchanger_effluent_temp_out

Exchanger_preheat_temp_in

Exchanger_effluent_pump

Exchanger_preheat_pump

5Each circle with “TT” written inside is a temperature transmitter, which is the industrial instrumentation term
for a temperature sensor. The “FT” circle is a flow transmitter, reporting the rate of flow of fluid through that pipe.

26 CHAPTER 3. TUTORIAL

If we list all these tags in alphabetical order, the association is immediately obvious:

• Exchanger effluent pump

• Exchanger effluent temp out

• Exchanger preheat pump

• Exchanger preheat temp in

• Exchanger preheat valve

• Reactor bed temp

• Reactor feed flow

• Reactor feed temp

• Reactor jacket valve

As you can see from this tag name list, all the tags directly associated with the heat exchanger are
located in one contiguous group, and all the tags directly associated with the reactor are located in
the next contiguous group. In this way, judicious naming of tags serves to group them in hierarchical
fashion, making them easy for the programmer to locate at any future time in the tag name database.

You will note that all the tag names shown here lack space characters between words (e.g. instead
of “Reactor bed temp”, a tag name should use hyphens or underscore marks as spacing characters:
“Reactor bed temp”), since spaces are generally assumed by computer programming languages to
be delimiters (separators between different variable names).

3.4 Advanced HMI functionality

Like programmable logic controllers themselves, the capabilities of HMIs have been steadily
increasing while their price decreases. Modern HMIs support graphic trending, data archival,
advanced alarming, and even web server ability allowing other computers to easily access certain
data over wide-area networks. The ability of HMIs to log data over long periods of time relieves the
PLC of having to do this task, which is very memory-intensive. This way, the PLC merely “serves”
current data to the HMI, and the HMI is able to keep a record of current and past data using its
vastly larger memory reserves6.

Some modern HMI panels even have a PLC built inside the unit, providing control and monitoring
in the same device. Such panels provide terminal strip connection points for discrete and even analog
I/O, allowing all control and interface functions to be located in a single panel-mount unit.

3.5 Discrete (Boolean) tag programming

6If the HMI is based on a personal computer platform (e.g. Rockwell RSView, Wonderware, FIX/Intellution
software), it may even be equipped with a hard disk drive for enormous amounts of historical data storage.

3.6. INTEGER TAG PROGRAMMING 27

3.6 Integer tag programming

3.7 Floating-point (real) tag programming

3.8 ASCII string tag programming

3.9 Ergonomic design practices

28 CHAPTER 3. TUTORIAL

Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

29

30 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 Feature comparisons between PLC models

In most cases, similarities are far greater for different models of PLC than differences. However,
differences do exist, and it is worth exploring the differences in basic features offered by an array of
PLC models.

4.1.1 Viewing live values

• Allen-Bradley Logix 5000: the Controller Tags folder (typically on the left-hand pane of the
programming window set) lists all the tag names defined for the PLC project, allowing you to
view the real-time status of them all. Discrete inputs do not have specific input channel tag
names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) lists all the data files within that PLC’s memory.
Opening a data file window allows you to view the real-time status of these data points.
Discrete inputs are the I file addresses (e.g. I:0/2, I:3/5, etc.). The letter “I” represents
“input,” the first number represents the slot in which the input card is plugged, and the last
number represents the bit within that data element (a 16-bit word) corresponding to the input
card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory. Discrete inputs are the
I memory addresses (e.g. I0.1, I1.5, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Data View window allows the user to
custom-configure a table showing the real-time values of multiple addresses within the PLC’s
memory. Discrete inputs are the X memory addresses (e.g. X1, X2, etc.).

4.1. FEATURE COMPARISONS BETWEEN PLC MODELS 31

4.1.2 Forcing live values

• Allen-Bradley Logix 5000: forces may be applied to specific tag names by right-clicking on the
tag (in the program listing) and selecting the “Monitor” option. Discrete outputs do not have
specific output channel tag names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Force Files listing (typically on the left-
hand pane of the programming window set) lists those data files within the PLC’s memory
liable to forcing by the user. Opening a force file window allows you to view and set the
real-time status of these bits. Discrete outputs are the O file addresses (e.g. O:0/7, O:6/2,
etc.). The letter “O” represents “output,” the first number represents the slot in which the
output card is plugged, and the last number represents the bit within that data element (a
16-bit word) corresponding to the output card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory, and enabling the user to
force the values of those addresses. Discrete outputs are the Q memory addresses (e.g. Q0.4,
Q1.2, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Override View window allows the
user to force variables within the PLC’s memory. Discrete outputs are the Y memory addresses
(e.g. Y1, Y2, etc.).

4.1.3 Special “system” values

Every PLC has special registers holding data relevant to its operation, such as error flags, processor
scan time, etc.

• Allen-Bradley Logix 5000: various “system” values are accessed via GSV (Get System Value)
and SSV (Save System Value) instructions.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) shows file number 2 as the “Status” file, in which
you will find various system-related bits and registers.

• Siemens S7-200: the Special Memory registers contain various system-related bits and registers.
These are the SM memory addresses (e.g. SM0.1, SMB8, SMW22, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Special registers contain various
system-related bits and registers. These are the SP memory addresses (e.g. SP1, SP2, SP3,
etc.) in the DirectLogic PLC series, and the SC and SD memory addresses in the CLICK PLC
series.

32 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1.4 Free-running clock pulses

• Allen-Bradley SLC 500: status bit S:4/0 is a free-running clock pulse with a period of 20
milliseconds, which may be used to clock a counter instruction up to 50 to make a 1-second
pulse (because 50 times 20 ms = 1000 ms = 1 second).

• Siemens S7-200: Special Memory bit SM0.5 is a free-running clock pulse with a period of 1
second.

• Koyo (Automation Direct) DirectLogic: Special relay SP4 is a free-running clock pulse with a
period of 1 second.

4.1.5 Standard counter instructions

• Allen-Bradley Logix 5000: CTU count-up, CTD count-down, and CTUD count-up/down
instructions.

• Allen-Bradley SLC 500: CTU and CTD instructions.

• Siemens S7-200: CTU count-up, CTD count-down, and CTUD count-up/down instructions.

• Koyo (Automation Direct) DirectLogic: UDC counter instruction.

4.1.6 High-speed counter instructions

• Allen-Bradley SLC 500: HSU high-speed count-up instruction.

• Siemens S7-200: HSC high-speed counter instruction, used in conjunction with the HDEF high-
speed counter definition instruction.

4.1.7 Timer instructions

• Allen-Bradley Logix 5000: TOF off-delay timer, TON on-delay timer, RTO retentive on-delay
timer, TOFR off-delay timer with reset, TONR on-delay timer with reset, and RTOR retentive
on-delay timer with reset instructions.

• Allen-Bradley SLC 500: TOF off-delay timer, TON on-delay timer, and RTO retentive on-delay
timer instructions.

• Siemens S7-200: TOF off-delay timer, TON on-delay timer, and TONR retentive on-delay timer
instructions.

4.1. FEATURE COMPARISONS BETWEEN PLC MODELS 33

4.1.8 ASCII text message instructions

• Allen-Bradley Logix 5000: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Allen-Bradley SLC 500: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Siemens S7-200: the “Transmit” instruction (XMT) is useful for this task when used in Freeport
mode.

• Koyo (Automation Direct) DirectLogic: the “Print Message” instruction (PRINT) is useful for
this task.

4.1.9 Analog signal scaling

• Allen-Bradley Logix 5000: the I/O configuration menu (specifically, the Module Properties
window) allows you to directly and easily scale analog input signal ranges into any arbitrary
numerical range desired. Floating-point (“REAL”) format is standard, but integer format may
be chosen for faster processing of the analog signal.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: raw analog input values are 16-bit signed
integers. The SCL and SCP instructions are custom-made for scaling these raw integer ADC
count values into ranges of your choosing.

• Siemens S7-200: raw analog input values are 16-bit signed integers. Interestingly, the S7-200
PLC provides built-in potentiometers assigned to special word registers (SMB28 and SMB29)
with an 8-bit (0-255 count) range. These values may be used for any suitable purpose,
including combination with the raw analog input register values in order to provide mechanical
calibration adjustments for the analog input(s).

• Koyo (Automation Direct) DirectLogic: you must use standard math instructions (e.g. ADD,
MUL) to implement a y = mx+ b linear equation for scaling purposes.

• Koyo (Automation Direct) CLICK: the I/O configuration menu allows you to directly and
easily scale analog input signal ranges into any arbitrary numerical range desired.

34 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.2 Legacy Allen-Bradley memory maps and I/O addressing

A wise PLC programmer once told me that the first thing any aspiring programmer should learn
about the PLC they intend to program is how the digital memory of that PLC is organized.
This is sage advice for any programmer, especially on systems where memory is limited, and/or
where I/O has a fixed association with certain locations in the system’s memory. Virtually every
microprocessor-based control system comes with a published memory map showing the organization
of its limited memory: how much is available for certain functions, which addresses are linked to
which I/O points, how different locations in memory are to be referenced by the programmer.

Discrete input and output channels on a PLC correspond to individual bits in the PLC’s
memory array. Similarly, analog input and output channels on a PLC correspond to multi-bit
words (contiguous blocks of bits) in the PLC’s memory. The association between I/O points
and memory locations is by no means standardized between different PLC manufacturers, or even
between different PLC models designed by the same manufacturer. This makes it difficult to write
a general tutorial on PLC addressing, and so my ultimate advice is to consult the engineering
references for the PLC system you intend to program.

The most common brand of PLC in use in the United States at the time of this writing (2019)
is Allen-Bradley (Rockwell), and a great many of these Allen-Bradley PLCs still in service happen
to use a unique form of I/O addressing1 students tend to find confusing.

1The most modern Allen-Bradley PLCs have all but done away with fixed-location I/O addressing, opting instead
for tag name based I/O addressing. However, enough legacy Allen-Bradley PLC systems still exist in industry to
warrant coverage of these addressing conventions.

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 35

The following table shows a partial memory map for an Allen-Bradley SLC 500 PLC2:

File number File type Logical address range

0 Output image O:0 to O:30

1 Input image I:0 to I:30

2 Status S:0 to S:n

3 Binary B3:0 to B3:255

4 Timers T4:0 to T4:255

5 Counters C5:0 to C5:255

6 Control R6:0 to R6:255

7 Integer N7:0 to N7:255

8 Floating-point F8:0 to F8:255

9 Network x9:0 to x9:255

10 through 255 User defined x10:0 to x255:255

Note that Allen-Bradley’s use of the word “file” differs from personal computer parlance. In
the SLC 500 controller, a “file” is a block of random-access memory used to store a particular
type of data. By contrast, a “file” in a personal computer is a contiguous collection of data bits
with collective meaning (e.g. a word processing file or a spreadsheet file), usually stored on the
computer’s hard disk drive. Within each of the Allen-Bradley PLC’s “files” are multiple “elements,”
each element consisting of a set of bits (8, 16, 24, or 32) representing data. Elements are addressed
by number following the colon after the file designator, and individual bits within each element
addressed by a number following a slash mark. For example, the first bit (bit 0) of the second
element in file 3 (Binary) would be addressed as B3:2/0.

In Allen-Bradley PLCs such as the SLC 500 and PLC-5 models, files 0, 1, and 2 are exclusively
reserved for discrete outputs, discrete inputs, and status bits, respectively. Thus, the letter
designators O, I, and S (file types) are redundant to the numbers 0, 1, and 2 (file numbers). Other
file types such as B (binary), T (timers), C (counters), and others have their own default file numbers
(3, 4, and 5, respectively), but may also be used in some of the user-defined file numbers (10 and
above). For example, file 7 in an Allen-Bradley controller is reserved for data of the “integer” type
(N), but integer data may also be stored in any file numbered 10 or greater at the user’s discretion.
Thus, file numbers and file type letters for data types other than output (O), input (I), and status
(S) always appear together. You would not typically see an integer word addressed as N:30 (integer
word 30 in the PLC’s memory) for example, but rather as N7:30 (integer word 30 in file 7 of the
PLC’s memory) to distinguish it from other integer word 30’s that may exist in other files of the
PLC’s memory.

2Also called the data table, this map shows the addressing of memory areas reserved for programs entered by
the user. Other areas of memory exist within the SLC 500 processor, but these other areas are inaccessible to the
technician writing PLC programs.

36 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

This file-based addressing notation bears further explanation. When an address appears in a
PLC program, special characters are used to separate (or “delimit”) different fields from each other.
The general scheme for Allen-Bradley SLC 500 PLCs is shown here:

File type
(letter)

File separator
(colon)

Word separator
(point)

Element
number

Bit separator
(slash)

Word Bit
number number

File
number

Not all file types need to distinguish individual words and bits. Integer files (N), for example,
consist of one 16-bit word for each element. For instance, N7:5 would be the 16-bit integer word
number five held in file seven. A discrete input file type (I), though, needs to be addressed as
individual bits because each separate I/O point refers to a single bit. Thus, I:3/7 would be bit
number seven residing in input element three. The “slash” symbol is necessary when addressing
discrete I/O bits because we do not wish to refer to all sixteen bits in a word when we just mean a
single input or output point on the PLC. Integer numbers, by contrast, are collections of 16 bits each
in the SLC 500 memory map, and so are usually addressed as entire words rather than bit-by-bit3.

Certain file types such as timers are more complex. Each timer “element4” consists of two
different 16-bit words (one for the timer’s accumulated value, the other for the timer’s target value)
in addition to no less than three bits declaring the status of the timer (an “Enabled” bit, a “Timing”
bit, and a “Done” bit). Thus, we must make use of both the decimal-point and slash separator
symbols when referring to data within a timer. Suppose we declared a timer in our PLC program
with the address T4:2, which would be timer number two contained in timer file four. If we wished
to address that timer’s current value, we would do so as T4:2.ACC (the “Accumulator” word of timer
number two in file four). The “Done” bit of that same timer would be addressed as T4:2/DN (the
“Done” bit of timer number two in file four)5.

3This is not to say one cannot specify a particular bit in an otherwise whole word. In fact, this is one of the
powerful advantages of Allen-Bradley’s addressing scheme: it gives you the ability to precisely specify portions of
data, even if that data is not generally intended to be portioned into smaller pieces!

4Programmers familiar with languages such as C and C++ might refer to an Allen-Bradley “element” as a data

structure, each type with a set configuration of words and/or bits.
5Referencing the Allen-Bradley engineering literature, we see that the accumulator word may alternatively be

addressed by number rather than by mnemonic, T4:2.2 (word 2 being the accumulator word in the timer data
structure), and that the “done” bit may be alternatively addressed as T4:2.0/13 (bit number 13 in word 0 of the
timer’s data structure). The mnemonics provided by Allen-Bradley are certainly less confusing than referencing word
and bit numbers for particular aspects of a timer’s function!

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 37

A hallmark of the SLC 500’s addressing scheme common to many legacy PLC systems is that
the address labels for input and output bits explicitly reference the physical locations of the I/O
channels. For instance, if an 8-channel discrete input card were plugged into slot 4 of an Allen-
Bradley SLC 500 PLC, and you wished to specify the second bit (bit 1 out of a 0 to 7 range), you
would address it with the following label: I:4/1. Addressing the seventh bit (bit number 6) on a
discrete output card plugged into slot 3 would require the label O:3/6. In either case, the numerical
structure of that label tells you exactly where the real-world input signal connects to the PLC.

To illustrate the relationship between physical I/O and bits in the PLC’s memory, consider this
example of an Allen-Bradley SLC 500 PLC, showing one of its discrete input channels energized
(the switch being used as a “Start” switch for an electric motor):

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

SLC 500 4-slot chassis

Slot 0 Slot 1 Slot 2 Slot 3

+
−

24 VDC
power
supply

(pressed)

Input bit I:1/3
inside the PLC’s
memory is "set"

0 10 0 0 0 0 00 0 0 00 0 0 0

Input image element for slot 1

B
it 0

B
it 1

B
it 2

B
it 3

B
it 4

B
it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

"Start"

Output

VDC1

VDC1

VDC2

VDC2

COM1

COM1

COM2

COM2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

38 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

If an input or output card possesses more than 16 bits – as in the case of the 32-bit discrete
output card shown in slot 3 of the example SLC 500 rack – the addressing scheme further subdivides
each element into words and bits (each “word” being 16 bits in length). Thus, the address for bit
number 27 of a 32-bit input module plugged into slot 3 would be I:3.1/11 (since bit 27 is equivalent
to bit 11 of word 1 – word 0 addressing bits 0 through 15 and word 1 addressing bits 16 through
31):

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

SLC 500 4-slot chassis

Slot 0 Slot 1 Slot 2 Slot 3

+
−

24 VDC
power
supply

inside the PLC’s
memory is "set"

0 0 0 0 0 0 00 0 0 00 0 0 0

B
it 0

B
it 1

B
it 2

B
it 3

B
it 4

B
it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

Output

VDC1

VDC1

VDC2

VDC2

COM1

COM1

COM2

COM2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Output bit O:3.1/11

Output image element for slot 3

1
0

0 0 0 0 0 0 0 0 0 0 00 0 0 0Word 1

Word 0

Lamp

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 39

A close-up photograph of a 32-bit DC input card for an Allen-Bradley SLC 500 PLC system
shows this multi-word addressing:

The first sixteen input points on this card (the left-hand LED group numbered 0 through 15) are
addressed I:X.0/0 through I:X.0/15, with “X” referring to the slot number the card is plugged into.
The next sixteen input points (the right-hand LED group numbered 16 through 31) are addressed
I:X.1/0 through I:X.1/15.

Legacy PLC systems typically reference each one of the I/O channels by labels such as “I:1/3”
(or equivalent6) indicating the actual location of the input channel terminal on the PLC unit. The
IEC 61131-3 programming standard refers to this channel-based addressing of I/O data points as
direct addressing. A synonym for direct addressing is absolute addressing.

Addressing I/O bits directly by their card, slot, and/or terminal labels may seem simple and
elegant, but it becomes very cumbersome for large PLC systems and complex programs. Every time
a technician or programmer views the program, they must “translate” each of these I/O labels to
some real-world device (e.g. “Input I:1/3 is actually the Start pushbutton for the middle tank
mixer motor”) in order to understand the function of that bit. A later effort to enhance the clarity
of PLC programming was the concept of addressing variables in a PLC’s memory by arbitrary
names rather than fixed codes. The IEC 61131-3 programming standard refers to this as symbolic
addressing in contrast to “direct” (channel-based) addressing, allowing programmers arbitrarily

6Some systems such as the Texas Instruments 505 series used “X” labels to indicate discrete input channels and
“Y” labels to indicate discrete output channels (e.g. input X9 and output Y14). This same labeling convention is still
used by Koyo in its DirectLogic and “CLICK” PLC models. Siemens continues a similar tradition of I/O addressing
by using the letter “I” to indicate discrete inputs and the letter “Q” to indicate discrete outputs (e.g. input channel
I0.5 and output Q4.1).

40 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

name I/O channels in ways that are meaningful to the system as a whole. To use our simple
motor “Start” switch example, it is now possible for the programmer to designate input I:1/3 (an
example of a direct address) as “Motor start switch” (an example of a symbolic address) within
the program, thus greatly enhancing the readability of the PLC program. Initial implementations
of this concept maintained direct addresses for I/O data points, with symbolic names appearing as
supplements to the absolute addresses.

The modern trend in PLC addressing is to avoid the use of direct addresses such as I:1/3

altogether, so they do not appear anywhere in the programming code. The Allen-Bradley “Logix”
series of programmable logic controllers is the most prominent example of this new convention
at the time of this writing. Each I/O point, regardless of type or physical location, is assigned
a tag name which is meaningful in a real-world sense, and these tag names (or symbols as they
are alternatively called) are referenced to absolute I/O channel locations by a database file. An
important requirement of tag names is that they contain no space characters between words (e.g.
instead of “Motor start switch”, a tag name should use hyphens or underscore marks as spacing
characters: “Motor start switch”), since spaces are generally assumed by computer programming
languages to be delimiters (separators between different variables).

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

41

42 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

43

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

44 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 45

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

46 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 47

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results

48 CHAPTER 5. QUESTIONS

Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???

5.1.3 First conceptual question

Challenges

• ???.

• ???.

• ???.

5.1.4 Second conceptual question

Challenges

• ???.

• ???.

• ???.

5.1. CONCEPTUAL REASONING 49

5.1.5 Applying foundational concepts to ???

Identify which foundational concept(s) apply to each of the declarations shown below regarding the
following circuit. If a declaration is true, then identify it as such and note which concept supports
that declaration; if a declaration is false, then identify it as such and note which concept is violated
by that declaration:

(Under development)

• ???

• ???

• ???

• ???

Here is a list of foundational concepts for your reference: Conservation of Energy,
Conservation of Electric Charge, behavior of sources vs. loads, Ohm’s Law, Joule’s Law,
effects of open faults, effect of shorted faults, properties of series networks, properties
of parallel networks, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law. More than one of
these concepts may apply to a declaration, and some concepts may not apply to any listed declaration
at all. Also, feel free to include foundational concepts not listed here.

Challenges

• ???.

• ???.

• ???.

50 CHAPTER 5. QUESTIONS

5.1.6 Explaining the meaning of calculations

Below is a quantitative problem where all the calculations have been performed for you, but all
variable labels, units, and other identifying data are unrevealed. Assign proper meaning to each
of the numerical values, identify the correct unit of measurement for each value as well as any
appropriate metric prefix(es), explain the significance of each value by describing where it “fits” into
the circuit being analyzed, and identify the general principle employed at each step:

Schematic diagram of the ??? circuit:

(Under development)

Calculations performed in order from first to last:

1. x+ y = z

2. x+ y = z

3. x+ y = z

4. x+ y = z

5. x+ y = z

6. x+ y = z

Challenges

• ???.

• ???.

• ???.

5.1. CONCEPTUAL REASONING 51

5.1.7 Explaining the meaning of code

Shown below is a schematic diagram for a ??? circuit, and after that a source-code listing of a
computer program written in the ??? language simulating that circuit. Explain the purpose of each
line of code relating to the circuit being simulated, identify the correct unit of measurement for
each computed value, and identify all foundational concepts of electric circuits (e.g. Ohm’s Law,
Kirchhoff’s Laws, etc.) employed in the program:

Schematic diagram of the ??? circuit:

(Under development)

Code listing:

#include <stdio.h>

int main (void)

{

return 0;

}

Challenges

• ???.

• ???.

• ???.

52 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

5.2. QUANTITATIVE REASONING 53

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

54 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

5.2. QUANTITATIVE REASONING 55

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

56 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

5.2. QUANTITATIVE REASONING 57

5.2.3 First quantitative problem

Challenges

• ???.

• ???.

• ???.

5.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.

5.2.5 ??? simulation program

Write a text-based computer program (e.g. C, C++, Python) to calculate ???

Challenges

• ???.

• ???.

• ???.

58 CHAPTER 5. QUESTIONS

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.

5.3. DIAGNOSTIC REASONING 59

5.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.

60 CHAPTER 5. QUESTIONS

Chapter 6

Projects and Experiments

The following project and experiment descriptions outline things you can build to help you
understand circuits. With any real-world project or experiment there exists the potential for physical
harm. Electricity can be very dangerous in certain circumstances, and you should follow proper safety
precautions at all times!

6.1 Recommended practices

This section outlines some recommended practices for all circuits you design and construct.

61

62 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.1 Safety first!

Electricity, when passed through the human body, causes uncomfortable sensations and in large
enough measures1 will cause muscles to involuntarily contract. The overriding of your nervous
system by the passage of electrical current through your body is particularly dangerous in regard
to your heart, which is a vital muscle. Very large amounts of current can produce serious internal
burns in addition to all the other effects.

Cardio-pulmonary resuscitation (CPR) is the standard first-aid for any victim of electrical shock.
This is a very good skill to acquire if you intend to work with others on dangerous electrical circuits.
You should never perform tests or work on such circuits unless someone else is present who is
proficient in CPR.

As a general rule, any voltage in excess of 30 Volts poses a definitive electric shock hazard, because
beyond this level human skin does not have enough resistance to safely limit current through the
body. “Live” work of any kind with circuits over 30 volts should be avoided, and if unavoidable
should only be done using electrically insulated tools and other protective equipment (e.g. insulating
shoes and gloves). If you are unsure of the hazards, or feel unsafe at any time, stop all work and
distance yourself from the circuit!

A policy I strongly recommend for students learning about electricity is to never come into
electrical contact2 with an energized conductor, no matter what the circuit’s voltage3 level! Enforcing
this policy may seem ridiculous when the circuit in question is powered by a single battery smaller
than the palm of your hand, but it is precisely this instilled habit which will save a person from
bodily harm when working with more dangerous circuits. Experience has taught me that students
who learn early on to be careless with safe circuits have a tendency to be careless later with dangerous
circuits!

In addition to the electrical hazards of shock and burns, the construction of projects and running
of experiments often poses other hazards such as working with hand and power tools, potential

1Professor Charles Dalziel published a research paper in 1961 called “The Deleterious Effects of Electric Shock”
detailing the results of electric shock experiments with both human and animal subjects. The threshold of perception
for human subjects holding a conductor in their hand was in the range of 1 milliampere of current (less than this
for alternating current, and generally less for female subjects than for male). Loss of muscular control was exhibited
by half of Dalziel’s subjects at less than 10 milliamperes alternating current. Extreme pain, difficulty breathing,
and loss of all muscular control occurred for over 99% of his subjects at direct currents less than 100 milliamperes
and alternating currents less than 30 milliamperes. In summary, it doesn’t require much electric current to induce
painful and even life-threatening effects in the human body! Your first and best protection against electric shock is
maintaining an insulating barrier between your body and the circuit in question, such that current from that circuit
will be unable to flow through your body.

2By “electrical contact” I mean either directly touching an energized conductor with any part of your body, or
indirectly touching it through a conductive tool. The only physical contact you should ever make with an energized
conductor is via an electrically insulated tool, for example a screwdriver with an electrically insulated handle, or an
insulated test probe for some instrument.

3Another reason for consistently enforcing this policy, even on low-voltage circuits, is due to the dangers that even
some low-voltage circuits harbor. A single 12 Volt automobile battery, for example, can cause a surprising amount of
damage if short-circuited simply due to the high current levels (i.e. very low internal resistance) it is capable of, even
though the voltage level is too low to cause a shock through the skin. Mechanics wearing metal rings, for example,
are at risk from severe burns if their rings happen to short-circuit such a battery! Furthermore, even when working on
circuits that are simply too low-power (low voltage and low current) to cause any bodily harm, touching them while
energized can pose a threat to the circuit components themselves. In summary, it generally wise (and always a good
habit to build) to “power down” any circuit before making contact between it and your body.

6.1. RECOMMENDED PRACTICES 63

contact with high temperatures, potential chemical exposure, etc. You should never proceed with a
project or experiment if you are unaware of proper tool use or lack basic protective measures (e.g.
personal protective equipment such as safety glasses) against such hazards.

Some other safety-related practices should be followed as well:

• All power conductors extending outward from the project must be firmly strain-relieved (e.g.
“cord grips” used on line power cords), so that an accidental tug or drop will not compromise
circuit integrity.

• All electrical connections must be sound and appropriately made (e.g. soldered wire joints
rather than twisted-and-taped; terminal blocks rather than solderless breadboards for high-
current or high-voltage circuits). Use “touch-safe” terminal connections with recessed metal
parts to minimize risk of accidental contact.

• Always provide overcurrent protection in any circuit you build. Always. This may be in the
form of a fuse, a circuit breaker, and/or an electronically current-limited power supply.

• Always ensure circuit conductors are rated for more current than the overcurrent protection
limit. Always. A fuse does no good if the wire or printed circuit board trace will “blow” before
it does!

• Always bond metal enclosures to Earth ground for any line-powered circuit. Always. Ensuring
an equipotential state between the enclosure and Earth by making the enclosure electrically
common with Earth ground ensures no electric shock can occur simply by one’s body bridging
between the Earth and the enclosure.

• Avoid building a high-energy circuit when a low-energy circuit will suffice. For example,
I always recommend beginning students power their first DC resistor circuits using small
batteries rather than with line-powered DC power supplies. The intrinsic energy limitations
of a dry-cell battery make accidents highly unlikely.

• Use line power receptacles that are GFCI (Ground Fault Current Interrupting) to help avoid
electric shock from making accidental contact with a “hot” line conductor.

• Always wear eye protection when working with tools or live systems having the potential to
eject material into the air. Examples of such activities include soldering, drilling, grinding,
cutting, wire stripping, working on or near energized circuits, etc.

• Always use a step-stool or stepladder to reach high places. Never stand on something not
designed to support a human load.

• When in doubt, ask an expert. If anything even seems remotely unsafe to you, do not proceed
without consulting a trusted person fully knowledgeable in electrical safety.

64 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.2 Other helpful tips

Experience has shown the following practices to be very helpful, especially when students make their
own component selections, to ensure the circuits will be well-behaved:

• Avoid resistor values less than 1 kΩ or greater than 100 kΩ, unless such values are definitely
necessary4. Resistances below 1 kΩ may draw excessive current if directly connected to
a voltage source of significant magnitude, and may also complicate the task of accurately
measuring current since any ammeter’s non-zero resistance inserted in series with a low-value
circuit resistor will significantly alter the total resistance and thereby skew the measurement.
Resistances above 100 kΩ may complicate the task of measuring voltage since any voltmeter’s
finite resistance connected in parallel with a high-value circuit resistor will significantly alter
the total resistance and thereby skew the measurement. Similarly, AC circuit impedance values
should be between 1 kΩ and 100 kΩ, and for all the same reasons.

• Ensure all electrical connections are low-resistance and physically rugged. For this reason, one
should avoid compression splices (e.g. “butt” connectors), solderless breadboards5, and wires
that are simply twisted together.

• Build your circuit with testing in mind. For example, provide convenient connection points
for test equipment (e.g. multimeters, oscilloscopes, signal generators, logic probes).

• Design permanent projects with maintenance in mind. The more convenient you make
maintenance tasks, the more likely they will get done.

• Always document and save your work. Circuits lacking schematic diagrams are more
difficult to troubleshoot than documented circuits. Similarly, circuit construction is simpler
when a schematic diagram precedes construction. Experimental results are easier to interpret
when comprehensively recorded. Consider modern videorecording technology for this purpose
where appropriate.

• Record your steps when troubleshooting. Talk to yourself when solving problems. These
simple steps clarify thought and simplify identification of errors.

4An example of a necessary resistor value much less than 1 kΩ is a shunt resistor used to produce a small voltage
drop for the purpose of sensing current in a circuit. Such shunt resistors must be low-value in order not to impose
an undue load on the rest of the circuit. An example of a necessary resistor value much greater than 100 kΩ is an
electrostatic drain resistor used to dissipate stored electric charges from body capacitance for the sake of preventing
damage to sensitive semiconductor components, while also preventing a path for current that could be dangerous to
the person (i.e. shock).

5Admittedly, solderless breadboards are very useful for constructing complex electronic circuits with many
components, especially DIP-style integrated circuits (ICs), but they tend to give trouble with connection integrity after
frequent use. An alternative for projects using low counts of ICs is to solder IC sockets into prototype printed circuit
boards (PCBs) and run wires from the soldered pins of the IC sockets to terminal blocks where reliable temporary
connections may be made.

6.1. RECOMMENDED PRACTICES 65

6.1.3 Terminal blocks for circuit construction

Terminal blocks are the standard means for making electric circuit connections in industrial systems.
They are also quite useful as a learning tool, and so I highly recommend their use in lieu of
solderless breadboards6. Terminal blocks provide highly reliable connections capable of withstanding
significant voltage and current magnitudes, and they force the builder to think very carefully about
component layout which is an important mental practice. Terminal blocks that mount on standard
35 mm DIN rail7 are made in a wide range of types and sizes, some with built-in disconnecting
switches, some with built-in components such as rectifying diodes and fuseholders, all of which
facilitate practical circuit construction.

I recommend every student of electricity build their own terminal block array for use in
constructing experimental circuits, consisting of several terminal blocks where each block has at
least 4 connection points all electrically common to each other8 and at least one terminal block
that is a fuse holder for overcurrent protection. A pair of anchoring blocks hold all terminal blocks
securely on the DIN rail, preventing them from sliding off the rail. Each of the terminals should
bear a number, starting from 0. An example is shown in the following photograph and illustration:

Fuse

Anchor block

Anchor block

DIN rail end

DIN rail end

Fuseholder block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block

Electrically common
points shown in blue

(typical for all terminal blocks)

1

5
4

6
7
8
9
10

4-terminal block0

2

11
12

3

Screwless terminal blocks (using internal spring clips to clamp wire and component lead ends) are
preferred over screw-based terminal blocks, as they reduce assembly and disassembly time, and also
minimize repetitive wrist stress from twisting screwdrivers. Some screwless terminal blocks require
the use of a special tool to release the spring clip, while others provide buttons9 for this task which
may be pressed using the tip of any suitable tool.

6Solderless breadboard are preferable for complicated electronic circuits with multiple integrated “chip”
components, but for simpler circuits I find terminal blocks much more practical. An alternative to solderless
breadboards for “chip” circuits is to solder chip sockets onto a PCB and then use wires to connect the socket pins to
terminal blocks. This also accommodates surface-mount components, which solderless breadboards do not.

7DIN rail is a metal rail designed to serve as a mounting point for a wide range of electrical and electronic devices
such as terminal blocks, fuses, circuit breakers, relay sockets, power supplies, data acquisition hardware, etc.

8Sometimes referred to as equipotential, same-potential, or potential distribution terminal blocks.
9The small orange-colored squares seen in the above photograph are buttons for this purpose, and may be actuated

by pressing with any tool of suitable size.

66 CHAPTER 6. PROJECTS AND EXPERIMENTS

The following example shows how such a terminal block array might be used to construct a
series-parallel resistor circuit consisting of four resistors and a battery:

Fuse1

5
4

6
7
8
9
10

0

2

11
12

3 +
-

Pictorial diagramSchematic diagram

R1

R2

R3

R4

Fuse

R1

R2

R3

R4

6 V

6 V

2.2 kΩ

3.3 kΩ

4.7 kΩ

7.1 kΩ

7.1 kΩ

2.2 kΩ

3.3 kΩ

4.7 kΩ

Numbering on the terminal blocks provides a very natural translation to SPICE10 netlists, where
component connections are identified by terminal number:

* Series-parallel resistor circuit

v1 1 0 dc 6

r1 2 5 7100

r2 5 8 2200

r3 2 8 3300

r4 8 11 4700

rjmp1 1 2 0.01

rjmp2 0 11 0.01

.op

.end

Note the use of “jumper” resistances rjmp1 and rjmp2 to describe the wire connections between
terminals 1 and 2 and between terminals 0 and 11, respectively. Being resistances, SPICE requires
a resistance value for each, and here we see they have both been set to an arbitrarily low value of
0.01 Ohm realistic for short pieces of wire.

Listing all components and wires along with their numbered terminals happens to be a useful
documentation method for any circuit built on terminal blocks, independent of SPICE. Such a
“wiring sequence” may be thought of as a non-graphical description of an electric circuit, and is
exceptionally easy to follow.

10SPICE is computer software designed to analyze electrical and electronic circuits. Circuits are described for the
computer in the form of netlists which are text files listing each component type, connection node numbers, and
component values.

6.1. RECOMMENDED PRACTICES 67

An example of a more elaborate terminal block array is shown in the following photograph,
with terminal blocks and “ice-cube” style electromechanical relays mounted to DIN rail, which is
turn mounted to a perforated subpanel11. This “terminal block board” hosts an array of thirty five
undedicated terminal block sections, four SPDT toggle switches, four DPDT “ice-cube” relays, a
step-down control power transformer, bridge rectifier and filtering capacitor, and several fuses for
overcurrent protection:

Four plastic-bottomed “feet” support the subpanel above the benchtop surface, and an unused
section of DIN rail stands ready to accept other components. Safety features include electrical
bonding of the AC line power cord’s ground to the metal subpanel (and all metal DIN rails),
mechanical strain relief for the power cord to isolate any cord tension from wire connections,
clear plastic finger guards covering the transformer’s screw terminals, as well as fused overcurrent
protection for the 120 Volt AC line power and the transformer’s 12 Volt AC output. The perforated
holes happen to be on 1

4
inch centers with a diameter suitable for tapping with 6-32 machine screw

threads, their presence making it very easy to attach other sections of DIN rail, printed circuit boards,
or specialized electrical components directly to the grounded metal subpanel. Such a “terminal block
board” is an inexpensive12 yet highly flexible means to construct physically robust circuits using
industrial wiring practices.

11An electrical subpanel is a thin metal plate intended for mounting inside an electrical enclosure. Components are
attached to the subpanel, and the subpanel in turn bolts inside the enclosure. Subpanels allow circuit construction
outside the confines of the enclosure, which speeds assembly. In this particular usage there is no enclosure, as the
subpanel is intended to be used as an open platform for the convenient construction of circuits on a benchtop by
students. In essence, this is a modern version of the traditional breadboard which was literally a wooden board such
as might be used for cutting loaves of bread, but which early electrical and electronic hobbyists used as platforms for
the construction of circuits.

12At the time of this writing (2019) the cost to build this board is approximately $250 US dollars.

68 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.4 Conducting experiments

An experiment is an exploratory act, a test performed for the purpose of assessing some proposition
or principle. Experiments are the foundation of the scientific method, a process by which careful
observation helps guard against errors of speculation. All good experiments begin with an hypothesis,
defined by the American Heritage Dictionary of the English Language as:

An assertion subject to verification or proof, as (a) A proposition stated as a basis for
argument or reasoning. (b) A premise from which a conclusion is drawn. (c) A conjecture
that accounts, within a theory or ideational framework, for a set of facts and that can
be used as a basis for further investigation.

Stated plainly, an hypothesis is an educated guess about cause and effect. The correctness of this
initial guess matters little, because any well-designed experiment will reveal the truth of the matter.
In fact, incorrect hypotheses are often the most valuable because the experiments they engender
lead us to surprising discoveries. One of the beautiful aspects of science is that it is more focused
on the process of learning than about the status of being correct13. In order for an hypothesis to be
valid, it must be testable14, which means it must be a claim possible to refute given the right data.
Hypotheses impossible to critique are useless.

Once an hypothesis has been formulated, an experiment must be designed to test that hypothesis.
A well-designed experiment requires careful regulation of all relevant variables, both for personal
safety and for prompting the hypothesized results. If the effects of one particular variable are to
be tested, the experiment must be run multiple times with different values of (only) that particular
variable. The experiment set up with the “baseline” variable set is called the control, while the
experiment set up with different value(s) is called the test or experimental.

For some hypotheses a viable alternative to a physical experiment is a computer-simulated
experiment or even a thought experiment. Simulations performed on a computer test the hypothesis
against the physical laws encoded within the computer simulation software, and are particularly
useful for students learning new principles for which simulation software is readily available15.

13Science is more about clarifying our view of the universe through a systematic process of error detection than it is
about proving oneself to be right. Some scientists may happen to have large egos – and this may have more to do with
the ways in which large-scale scientific research is funded than anything else – but scientific method itself is devoid
of ego, and if embraced as a practical philosophy is quite an effective stimulant for humility. Within the education
system, scientific method is particularly valuable for helping students break free of the crippling fear of being wrong.
So much emphasis is placed in formal education on assessing correct retention of facts that many students are fearful
of saying or doing anything that might be perceived as a mistake, and of course making mistakes (i.e. having one’s
hypotheses disproven by experiment) is an indispensable tool for learning. Introducing science in the classroom – real

science characterized by individuals forming actual hypotheses and testing those hypotheses by experiment – helps
students become self-directed learners.

14This is the principle of falsifiability: that a scientific statement has value only insofar as it is liable to disproof
given the requisite experimental evidence. Any claim that is unfalsifiable – that is, a claim which can never be
disproven by any evidence whatsoever – could be completely wrong and we could never know it.

15A very pertinent example of this is learning how to analyze electric circuits using simulation software such as
SPICE. A typical experimental cycle would proceed as follows: (1) Find or invent a circuit to analyze; (2) Apply
your analytical knowledge to that circuit, predicting all voltages, currents, powers, etc. relevant to the concepts you
are striving to master; (3) Run a simulation on that circuit, collecting “data” from the computer when complete; (4)
Evaluate whether or not your hypotheses (i.e. predicted voltages, currents, etc.) agree with the computer-generated
results; (5) If so, your analyses are (provisionally) correct – if not, examine your analyses and the computer simulation
again to determine the source of error; (6) Repeat this process as many times as necessary until you achieve mastery.

6.1. RECOMMENDED PRACTICES 69

Thought experiments are useful for detecting inconsistencies within your own understanding of
some subject, rather than testing your understanding against physical reality.

Here are some general guidelines for conducting experiments:

• The clearer and more specific the hypothesis, the better. Vague or unfalsifiable hypotheses
are useless because they will fit any experimental results, and therefore the experiment cannot
teach you anything about the hypothesis.

• Collect as much data (i.e. information, measurements, sensory experiences) generated by an
experiment as is practical. This includes the time and date of the experiment, too!

• Never discard or modify data gathered from an experiment. If you have reason to believe the
data is unreliable, write notes to that effect, but never throw away data just because you think
it is untrustworthy. It is quite possible that even “bad” data holds useful information, and
that someone else may be able to uncover its value even if you do not.

• Prioritize quantitative data over qualitative data wherever practical. Quantitative data is more
specific than qualitative, less prone to subjective interpretation on the part of the experimenter,
and amenable to an arsenal of analytical methods (e.g. statistics).

• Guard against your own bias(es) by making your experimental results available to others. This
allows other people to scrutinize your experimental design and collected data, for the purpose
of detecting and correcting errors you may have missed. Document your experiment such that
others may independently replicate it.

• Always be looking for sources of error. No physical measurement is perfect, and so it is
impossible to achieve exact values for any variable. Quantify the amount of uncertainty (i.e.
the “tolerance” of errors) whenever possible, and be sure your hypothesis does not depend on
precision better than this!

• Always remember that scientific confirmation is provisional – no number of “successful”
experiments will prove an hypothesis true for all time, but a single experiment can disprove
it. Put into simpler terms, truth is elusive but error is within reach.

• Remember that scientific method is about learning, first and foremost. An unfortunate
consequence of scientific triumph in modern society is that science is often viewed by non-
practitioners as an unerring source of truth, when in fact science is an ongoing process of
challenging existing ideas to probe for errors and oversights. This is why it is perfectly
acceptable to have a failed hypothesis, and why the only truly failed experiment is one where
nothing was learned.

70 CHAPTER 6. PROJECTS AND EXPERIMENTS

The following is an example of a well-planned and executed experiment, in this case a physical
experiment demonstrating Ohm’s Law.

Planning Time/Date = 09:30 on 12 February 2019

HYPOTHESIS: the current through any resistor should be exactly proportional

to the voltage impressed across it.

PROCEDURE: connect a resistor rated 1 k Ohm and 1/4 Watt to a variable-voltage

DC power supply. Use an ammeter in series to measure resistor current and

a voltmeter in parallel to measure resistor voltage.

RISKS AND MITIGATION: excessive power dissipation may harm the resistor and/

or pose a burn hazard, while excessive voltage poses an electric shock hazard.

30 Volts is a safe maximum voltage for laboratory practices, and according to

Joule’s Law a 1000 Ohm resistor will dissipate 0.25 Watts at 15.81 Volts

(P = V^2 / R), so I will remain below 15 Volts just to be safe.

Experiment Time/Date = 10:15 on 12 February 2019

DATA COLLECTED:

(Voltage) (Current) (Voltage) (Current)

0.000 V = 0.000 mA 8.100 = 7.812 mA

2.700 V = 2.603 mA 10.00 V = 9.643 mA

5.400 V = 5.206 mA 14.00 V = 13.49 mA

Analysis Time/Date = 10:57 on 12 February 2019

ANALYSIS: current definitely increases with voltage, and although I expected

exactly one milliAmpere per Volt the actual current was usually less than

that. The voltage/current ratios ranged from a low of 1036.87 (at 8.1 Volts)

to a high of 1037.81 (at 14 Volts), but this represents a variance of only

-0.0365% to +0.0541% from the average, indicating a very consistent

proportionality -- results consistent with Ohm’s Law.

ERROR SOURCES: one major source of error is the resistor’s value itself. I

did not measure it, but simply assumed color bands of brown-black-red meant

exactly 1000 Ohms. Based on the data I think the true resistance is closer

to 1037 Ohms. Another possible explanation is multimeter calibration error.

However, neither explains the small positive and negative variances from the

average. This might be due to electrical noise, a good test being to repeat

the same experiment to see if the variances are the same or different. Noise

should generate slightly different results every time.

6.1. RECOMMENDED PRACTICES 71

The following is an example of a well-planned and executed virtual experiment, in this case
demonstrating Ohm’s Law using a computer (SPICE) simulation.

Planning Time/Date = 12:32 on 14 February 2019

HYPOTHESIS: for any given resistor, the current through that resistor should be

exactly proportional to the voltage impressed across it.

PROCEDURE: write a SPICE netlist with a single DC voltage source and single

1000 Ohm resistor, then use NGSPICE version 26 to perform a "sweep" analysis

from 0 Volts to 25 Volts in 5 Volt increments.

* SPICE circuit

v1 1 0 dc

r1 1 0 1000

.dc v1 0 25 5

.print dc v(1) i(v1)

.end

RISKS AND MITIGATION: none.

DATA COLLECTED:

DC transfer characteristic Thu Feb 14 13:05:08 2019

Index v-sweep v(1) v1#branch

0 0.000000e+00 0.000000e+00 0.000000e+00

1 5.000000e+00 5.000000e+00 -5.00000e-03

2 1.000000e+01 1.000000e+01 -1.00000e-02

3 1.500000e+01 1.500000e+01 -1.50000e-02

4 2.000000e+01 2.000000e+01 -2.00000e-02

5 2.500000e+01 2.500000e+01 -2.50000e-02

Analysis Time/Date = 13:06 on 14 February 2019

ANALYSIS: perfect agreement between data and hypothesis -- current is precisely

1/1000 of the applied voltage for all values. Anything other than perfect

agreement would have probably meant my netlist was incorrect. The negative

current values surprised me, but it seems this is just how SPICE interprets

normal current through a DC voltage source.

ERROR SOURCES: none.

72 CHAPTER 6. PROJECTS AND EXPERIMENTS

As gratuitous as it may seem to perform experiments on a physical law as well-established as
Ohm’s Law, even the examples listed previously demonstrate opportunity for real learning. In
the physical experiment example, the student should identify and explain why their data does not
perfectly agree with the hypothesis, and this leads them naturally to consider sources of error. In
the computer-simulated experiment, the student is struck by SPICE’s convention of denoting regular
current through a DC voltage source as being negative in sign, and this is also useful knowledge for
future simulations. Scientific experiments are most interesting when things do not go as planned!

Aside from verifying well-established physical laws, simple experiments are extremely useful as
educational tools for a wide range of purposes, including:

• Component familiarization (e.g. Which terminals of this switch connect to the NO versus NC
contacts?)

• System testing (e.g. How heavy of a load can my AC-DC power supply source before the
semiconductor components reach their thermal limits?)

• Learning programming languages (e.g. Let’s try to set up an “up” counter function in this
PLC!)

Above all, the priority here is to inculcate the habit of hypothesizing, running experiments, and
analyzing the results. This experimental cycle not only serves as an excellent method for self-directed
learning, but it also works exceptionally well for troubleshooting faults in complex systems, and for
these reasons should be a part of every technician’s and every engineer’s education.

6.1.5 Constructing projects

Designing, constructing, and testing projects is a very effective means of practical education. Within
a formal educational setting, projects are generally chosen (or at least vetted) by an instructor
to ensure they may be reasonably completed within the allotted time of a course or program of
study, and that they sufficiently challenge the student to learn certain important principles. In a
self-directed environment, projects are just as useful as a learning tool but there is some risk of
unwittingly choosing a project beyond one’s abilities, which can lead to frustration.

Here are some general guidelines for managing projects:

• Define your goal(s) before beginning a project: what do you wish to achieve in building it?
What, exactly, should the completed project do?

• Analyze your project prior to construction. Document it in appropriate forms (e.g. schematic
diagrams), predict its functionality, anticipate all associated risks. In other words, plan ahead.

• Set a reasonable budget for your project, and stay within it.

• Identify any deadlines, and set reasonable goals to meet those deadlines.

• Beware of scope creep: the tendency to modify the project’s goals before it is complete.

• Document your progress! An easy way to do this is to use photography or videography: take
photos and/or videos of your project as it progresses. Document failures as well as successes,
because both are equally valuable from the perspective of learning.

6.2. EXPERIMENT: (FIRST EXPERIMENT) 73

6.2 Experiment: (first experiment)

Conduct an experiment to . . .

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.
√

Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• ???.

• ???.

74 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.3 Project: (first project)

This is a description of the project!

PROJECT CHECKLIST:

• Prior to construction:
√

Prototype diagram(s) and description of project scope.
√

Risk assessment/mitigation plan.
√

Timeline and action plan.

• During construction:
√

Safe work habits (e.g. no contact made with energized circuit at any time).
√

Correct equipment usage according to manufacturer’s recommendations.
√

Timeline and action plan amended as necessary.
√

Maintain the originally-planned project scope (i.e. avoid adding features!).

• After completion:
√

All functions tested against original plan.
√

Full, accurate, and appropriate documentation of all project details.
√

Complete bill of materials.
√

Written summary of lessons learned.

Challenges

• ???.

• ???.

• ???.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

75

76 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

77

78 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

• Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

• Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

• Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

• Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

• Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

• Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

• People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

• What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

• Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.

B.2. PROVEN STRATEGIES FOR INSTRUCTORS 79

B.2 Proven strategies for instructors

• Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

• Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

• Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

• Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

• Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for AI to critique students’ clarity of thought and of
expression, for example by employing AI as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, AI has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

• Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

• Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

• Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

• Have students build as much of their lab equipment as possible: building power sources,
building test assemblies1, and building complete working systems (no kits!). In order to provide

1In the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.

80 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

• Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

• Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

• Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

• Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

• Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

• Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

• Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.

B.3. PROVEN STRATEGIES FOR STUDENTS 81

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

• Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

• Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

• Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

• Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

• Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding2.

• Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

• Above all, recognize that learning is hard work, and that a certain level of

frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied3 effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

2On a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

82 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

B.4. DESIGN OF THESE LEARNING MODULES 83

These learning modules were expressly designed to be used in an “inverted” teaching
environment4 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic5 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity6 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

84 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

85

86 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

87

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

88 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

89

90 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

91

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

92 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

93

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

94 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

95

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

96 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

97

98 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

28 July 2025 – document first created.

99

Index

Absolute addressing, 39
Adding quantities to a qualitative problem, 76
Annotating diagrams, 75

Breadboard, solderless, 64, 65
Breadboard, traditional, 67

Card, I/O, 11
Cardio-Pulmonary Resuscitation, 62
Checking for exceptions, 76
Checking your work, 76
Code, computer, 85
CPR, 62

Dalziel, Charles, 62
Dimensional analysis, 75
DIN rail, 65
DIP, 64
Direct addressing, 39

Edwards, Tim, 86
Electric shock, 62
Electrically common points, 63
Enclosure, electrical, 67
Equipotential points, 63, 65
Experiment, 68
Experimental guidelines, 69

FIX/Intellution HMI software, 26

Graph values to solve a problem, 76
Greenleaf, Cynthia, 41

HMI panel, 20
How to teach with these modules, 83
Human-Machine Interface panel, 20
Hwang, Andrew D., 87

I/O, 11

IC, 64
Identify given data, 75
Identify relevant principles, 75
Intermediate results, 75
Inverted instruction, 83

Knuth, Donald, 86

Ladder Diagram, 11
Lamport, Leslie, 86
Limiting cases, 76

Memory map, 35
Metacognition, 46
Moolenaar, Bram, 85
Murphy, Lynn, 41

One-shot, 19
Open-source, 85

PLC, 11
Potential distribution, 65
Problem-solving: annotate diagrams, 75
Problem-solving: check for exceptions, 76
Problem-solving: checking work, 76
Problem-solving: dimensional analysis, 75
Problem-solving: graph values, 76
Problem-solving: identify given data, 75
Problem-solving: identify relevant principles, 75
Problem-solving: interpret intermediate results,

75
Problem-solving: limiting cases, 76
Problem-solving: qualitative to quantitative, 76
Problem-solving: quantitative to qualitative, 76
Problem-solving: reductio ad absurdum, 76
Problem-solving: simplify the system, 75
Problem-solving: thought experiment, 69, 75
Problem-solving: track units of measurement, 75

100

INDEX 101

Problem-solving: visually represent the system,
75

Problem-solving: work in reverse, 76
Programmable Logic Controller, 11
Project management guidelines, 72

Qualitatively approaching a quantitative
problem, 76

Reading Apprenticeship, 41
Reductio ad absurdum, 76, 82, 83
Relay ladder logic, 11
RSView HMI software, Rockwell, 26

Safety, electrical, 62
Schoenbach, Ruth, 41
Scientific method, 46, 68
Scope creep, 72
Shunt resistor, 64
Simplifying a system, 75
Socrates, 82
Socratic dialogue, 83
Solderless breadboard, 64, 65
SPICE, 41, 69
SPICE netlist, 66
Stallman, Richard, 85
Subpanel, 67
Surface mount, 65
Symbol, 40
Symbolic addressing, 40

Tag name, 23, 40
Tag name, naming conventions for, 24
Terminal block, 63–67
Thought experiment, 69, 75
Torvalds, Linus, 85

Units of measurement, 75

Visualizing a system, 75

Wiring sequence, 66
Wonderware HMI software, 26
Work in reverse to solve a problem, 76
WYSIWYG, 85, 86

	Introduction
	Case Tutorial
	Example: NAND function in a PLC
	Example: simple PLC comparisons

	Tutorial
	Review of basic PLC functionality
	Human-Machine Interface function
	Tag name databases
	Advanced HMI functionality
	Discrete (Boolean) tag programming
	Integer tag programming
	Floating-point (real) tag programming
	ASCII string tag programming
	Ergonomic design practices

	Derivations and Technical References
	Feature comparisons between PLC models
	Viewing live values
	Forcing live values
	Special ``system'' values
	Free-running clock pulses
	Standard counter instructions
	High-speed counter instructions
	Timer instructions
	ASCII text message instructions
	Analog signal scaling

	Legacy Allen-Bradley memory maps and I/O addressing

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	First conceptual question
	Second conceptual question
	Applying foundational concepts to ???
	Explaining the meaning of calculations
	Explaining the meaning of code

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	First quantitative problem
	Second quantitative problem
	??? simulation program

	Diagnostic reasoning
	First diagnostic scenario
	Second diagnostic scenario

	Projects and Experiments
	Recommended practices
	Safety first!
	Other helpful tips
	Terminal blocks for circuit construction
	Conducting experiments
	Constructing projects

	Experiment: (first experiment)
	Project: (first project)

	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

