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Chapter 2

Tutorial

Instrumentation is the science of automated measurement and control. Applications of this science
abound in modern research, industry, and everyday living. From automobile engine control
systems to home thermostats to aircraft autopilots to the manufacture of pharmaceutical drugs,
automation surrounds us. This Tutorial explores some of the fundamental principles of industrial
instrumentation, and also shows how we are able to implement automated control of physical
processes through the use of negative feedback.

The first requirement for any automated system is measurement. If we can’t measure something,
it is really pointless to try to control it. This “something” usually takes one of the following forms
in industry:

• Fluid pressure

• Fluid flow rate

• The temperature of an object

• Fluid volume stored in a vessel

• Chemical concentration

• Machine position, motion, or acceleration

• Physical dimension(s) of an object

• Count (inventory) of objects

• Electrical voltage, current, or resistance

Once we measure the quantity we are interested in, we usually transmit a signal representing
this quantity to an indicating or computing device where either human or automated action then
takes place. If the controlling action is automated, the computer sends a signal to a final controlling
device which then influences the quantity being measured.

5
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This final control device usually takes one of the following forms:

• Control valve (for throttling the flow rate of a fluid)

• Electric motor

• Electric heater

Both the measurement device and the final control device connect to some physical system which
we call the process. To show this as a general block diagram:

Measuring
device

Final control
device

Controller

The Process

Senses

Decides

Influences

Reacts

The common home thermostat is an example of a measurement and control system, with the
home’s internal air temperature being the “process” under control. In this example, the thermostat
usually serves two functions: sensing and control, while the home’s heater adds heat to the home
to increase temperature, and/or the home’s air conditioner extracts heat from the home to decrease
temperature. The job of this control system is to maintain air temperature at some comfortable
level, with the heater or air conditioner taking action to correct temperature if it strays too far from
the desired value (called the setpoint).

Most automated control systems employ a general strategy of negative feedback to maintain their
process variable(s) at setpoint. This term – negative feedback – simply refers to the fact that the
control system works to counter-act any undesired changes in the process variable. In the case of
a room thermostat system, negative feedback means that any undesired fall in temperature will
be counter-acted by the system infusing more heat into the room; similarly, any undesired rise in
temperature will be met by a reduction in added heat, or in some systems the activation of an “air
conditioner” to remove heat from the room. In any case, the control system reacts in the opposite
direction to the undesired change.
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2.1 Terms and definitions

Industrial measurement and control systems have their own unique terms and standards, which is
the primary focus of this lesson. Here are some common instrumentation terms and their definitions:

Process – The physical system we are attempting to control or measure. Examples: water filtration
system, molten metal casting system, steam boiler, oil refinery unit, power generation unit.

Process Variable, or PV – The specific quantity we are measuring in a process. Examples:
pressure, level, temperature, flow, electrical conductivity, pH, position, speed, vibration.

Setpoint, or SP – The value at which we desire the process variable to be maintained at. In other
words, the “target” value for the process variable.

Primary Sensing Element, or PSE – A device directly sensing the process variable and translating
that sensed quantity into an analog representation (electrical voltage, current, resistance; mechanical
force, motion, etc.). Examples: thermocouple, thermistor, bourdon tube, microphone, potentiometer,
electrochemical cell, accelerometer.

Transducer – A device converting one standardized instrumentation signal into another
standardized instrumentation signal, and/or performing some sort of processing on that signal.
Often referred to as a converter and sometimes as a “relay.” Examples: I/P converter (converts 4-
20 mA electric signal into 3-15 PSI pneumatic signal), P/I converter (converts 3-15 PSI pneumatic
signal into 4-20 mA electric signal), square-root extractor (calculates the square root of the input
signal).

Note: in general science parlance, a “transducer” is any device converting one form of energy
into another, such as a microphone or a thermocouple. In industrial instrumentation, however, we
generally use “primary sensing element” to describe this concept and reserve the word “transducer”
to specifically refer to a conversion device for standardized instrumentation signals.

Transmitter – A device translating the signal produced by a primary sensing element (PSE) into
a standardized instrumentation signal such as 3-15 PSI air pressure, 4-20 mA DC electric current,
Fieldbus digital signal packet, etc., which may then be conveyed to an indicating device, a controlling
device, or both.

Lower- and Upper-range values, abbreviated LRV and URV, respectively – the values of
process measurement deemed to be 0% and 100% of a transmitter’s calibrated range. For example,
if a temperature transmitter is calibrated to measure a range of temperature starting at 300 degrees
Celsius and ending at 500 degrees Celsius, its LRV would be 300 oC and its URV would be 500 oC.

Zero and Span – alternative descriptions to LRV and URV for the 0% and 100% points of
an instrument’s calibrated range. “Zero” refers to the beginning-point of an instrument’s range
(equivalent to LRV), while “span” refers to the width of its range (URV − LRV). For example, if
a temperature transmitter is calibrated to measure a range of temperature starting at 300 degrees
Celsius and ending at 500 degrees Celsius, its zero would be 300 oC and its span would be 200 oC.

Controller – A device receiving a process variable (PV) signal from a primary sensing element
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(PSE) or transmitter, comparing that signal to the desired value (called the setpoint) for that
process variable, and calculating an appropriate output signal value to be sent to a final control
element (FCE) such as an electric motor or control valve.

Final Control Element, or FCE – A device receiving the signal output by a controller to directly
influence the process. Examples: variable-speed electric motor, control valve, electric heater.

Manipulated Variable, or MV – The quantity in a process we adjust or otherwise manipulate in
order to influence the process variable (PV). Also used to describe the output signal generated by
a controller; i.e. the signal commanding (“manipulating”) the final control element to influence the
process.

Load – any uncontrolled factor affecting the process variable’s value. Example: a window opening
in a room letting warm air out and cold air in, affecting that room’s temperature in such a way that
that thermostatic heating system must compensate to maintain the room’s temperature at setpoint.

Automatic mode – When the controller generates an output signal based on the relationship of
process variable (PV) to the setpoint (SP).

Manual mode – When the controller’s decision-making ability is bypassed to let a human operator
directly determine the output signal sent to the final control element.

Loop – This widely-used term unfortunately has multiple meanings. In one sense it refers to the
complete electrical circuit comprising a 4-20 mA analog measurement or control signal. In another
sense it refers to the circular flow of information in any negative feedback regulation system.
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2.2 Control system examples

Now we will explore some practical examples of measurement and control systems to give concrete
application to these fundamental concepts. Each of the following example systems are quite
commonplace in industry, using standard terminology, signal types, and each of them employing
a control strategy of negative feedback to regulate some process variable at or near a desired setpoint
value.

2.2.1 Example: boiler water level control system

Steam boilers are very common in industry, principally because steam power is so useful. Common
uses for steam in industry include doing mechanical work (e.g. a steam engine moving some sort
of machine), heating, producing vacuums (through the use of “steam ejectors”), and augmenting
chemical processes (e.g. reforming of natural gas into hydrogen and carbon dioxide).

The process of converting water into steam is quite simple: heat up the water until it boils.
Anyone who has ever boiled a pot of water for cooking knows how this process works. Making steam
continuously, however, is a little more complicated. An important variable to measure and control
in a continuous boiler is the level of water in the “steam drum” (the upper vessel in a water-tube
boiler). In order to safely and efficiently produce a continuous flow of steam, we must ensure the
steam drum never runs too low on water, or too high. If there is not enough water in the drum, the
water tubes may run dry and burn through from the heat of the fire. If there is too much water in
the drum, liquid water may be carried along with the flow of steam, causing problems downstream.
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In this next illustration, you can see the essential elements of a water level control system,
showing transmitter, controller, and control valve:

PVSP
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LT

Riser
tubes

Downcomer
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Steam 

Steam drum

Mud drum

Exhaust stack

Bur
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r
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Level
Indicating

Steam drum water level control
system for an industrial boiler

water
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measurement

signal

3-15 PSI

signal
control

pipe

pipe

The first instrument in this control system is the level transmitter, or “LT”. The purpose of this
device is to sense the water level in the steam drum and report (“transmit”) that measurement to
the controller in the form of a signal. In this case, the type of signal is pneumatic: a variable air
pressure sent through metal or plastic tubes. The greater the water level in the drum, the more air
pressure output by the level transmitter. Since the transmitter is pneumatic, it must be supplied
with a source of clean, compressed air on which to operate. This is the meaning of the “A.S.” tube
(Air Supply) entering the top of the transmitter.

This pneumatic signal is sent to the next instrument in the control system, the level indicating
controller, or “LIC”. The purpose of this instrument is to compare the level transmitter’s signal
against a setpoint value entered by a human operator representing the desired water level in the
steam drum. The controller then generates an output signal telling the control valve to either
introduce more or less water into the boiler to maintain the steam drum water level at setpoint. As
with the transmitter, the controller in this system is pneumatic, operating entirely on compressed
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air. This means the output of the controller is also a variable air pressure signal, just like the
signal output by the level transmitter. Naturally, the controller requires a constant supply of clean,
compressed air on which to run, which explains the “A.S.” (Air Supply) tube connecting to it.

The last instrument in this control system is the control valve, operated directly by the air
pressure signal output by the controller. Its purpose is to influence the flow rate of water into the
boiler, “throttling” the water flow more or less as determined by controller. This particular type of
control valve uses a large diaphragm and a large spring to move the valve further open with more
signal pressure and further closed with less signal pressure.

When the controller is placed in the “automatic” mode, it will move the control valve to whatever
position necessary to maintain a constant steam drum water level. The phrase “whatever position
necessary” suggests the relationship between the controller output signal, the process variable signal
(PV), and the setpoint (SP) is complex. If the controller senses a water level above setpoint, it will
close off the valve as far as necessary to decrease the water level down to setpoint. Conversely, if the
controller senses a water level below setpoint, it will open up the valve as far as necessary to raise
the water level up to setpoint. This is negative feedback in action.

What this means in a practical sense is that the controller’s output signal (equating to valve
position) in automatic mode is just as much a function of process load (i.e. how much steam is
being used from the boiler) as it is a function of setpoint (i.e. where we wish the water level to be).
Consider a situation where the steam demand from the boiler is very low. If there isn’t much steam
being drawn off the boiler, this means there will be little water boiled into steam and therefore little
need for additional feedwater to be pumped into the boiler. Therefore, in this situation, one would
expect the control valve to hover near the fully-closed position, allowing just enough water into the
boiler to keep the steam drum water level at setpoint. If, however, there is a high demand for steam
from this boiler, the rate of evaporation will be much greater. This means the control system must
add feedwater to the boiler at a much greater flow rate in order to maintain the steam drum water
level at setpoint. In this situation we would expect to see the control valve much closer to being
fully-open as the control system “works harder” to maintain a constant water level in the steam
drum. Thus, we see how the controller automatically positions the control valve to react to different
boiler operating conditions even when the setpoint is fixed.

A human operator supervising this boiler has the option of placing the controller into “manual”
mode. In this mode the control valve position is under direct control of the human operator, with the
controller essentially ignoring the signal sent from the water level transmitter. Being an indicating
controller, the controller faceplate will still show how much water is in the steam drum, but it is
now the human operator’s sole responsibility to move the control valve to the appropriate position
to hold water level at setpoint – in manual mode the controller takes no corrective action of its
own. Manual mode is useful to human operators during start-up and shut-down conditions. It is
also useful to instrument technicians for troubleshooting misbehaving control systems. Placing a
controller into manual mode is akin to disengaging the cruise control in an automobile, transferring
control of engine power from the car’s computer back to the human driver. One can easily imagine
an automobile mechanic needing to throttle a car’s engine “manually” (i.e. with the cruise control
turned off) in order to properly diagnose an engine or drivetrain problem. This is true for industrial
processes as well, where instrument technicians may need to place a controller into manual mode in
order to properly diagnose transmitter or control valve problems.
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As was mentioned before, this is an example of a pneumatic (compressed air) control system,
where all the instruments operate on compressed air, and use compressed air as the signaling medium.
Pneumatic instrumentation is an old technology, dating back to the early twentieth century. While
most modern instruments are electronic in nature, pneumatic instruments still find application within
industry. The most common industry standard for pneumatic pressure signals is 3 to 15 PSI, with
3 PSI representing low end-of-scale and 15 PSI representing high end-of-scale. Alternative pressure
ranges for pneumatic signals sometimes encountered in industry include 3 to 27 PSI, and 6 to 30
PSI. The following table shows the relationship between air signal pressure and steam drum level
for this boiler’s 3-15 PSI level transmitter:

Transmitter air signal pressure Steam drum water level

3 PSI 0% (Empty)
6 PSI 25%
9 PSI 50%
12 PSI 75%
15 PSI 100% (Full)

It should be noted this table assumes the transmitter measures the full range of water level
possible in the drum. Usually, this is not the case. Instead, the transmitter will be calibrated
so it only senses a narrow range of water level near the middle of the drum. Thus, 3 PSI (0%)
will not represent an empty drum, and neither will 15 PSI (100%) represent a completely full
drum. Calibrating the transmitter like this helps avoid the possibility of actually running the drum
completely empty or completely full in the case of an operator incorrectly setting the setpoint value
near either extreme end of the measurement scale.

An example table showing this kind of realistic transmitter calibration appears here:

Transmitter air signal pressure Actual steam drum water level

3 PSI 40%
6 PSI 45%
9 PSI 50%
12 PSI 55%
15 PSI 60%
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The boiler’s steam drum level controller outputs a pneumatic output signal to the control valve,
using the same 3 to 15 PSI standard to command different valve positions:

Controller output signal pressure Control valve position

3 PSI 0% open (Fully shut)
6 PSI 25% open
9 PSI 50% open
12 PSI 75% open
15 PSI 100% (Fully open)

Even though the same range of air pressure (3 to 15 PSI) is used to represent water level in the
steam drum and the position of the control valve, there is no simple correspondence between the
two signals. A common misconception for students new to this topic is to assume the transmitter
signal (PV) and controller output signal must be identical. This is not true. Typically the 3-15 PSI
signal representing level will be at some value different from the 3-15 PSI signal driving the valve,
because those two signals represent two entirely different variables in the boiler system. As we have
seen previously, the output signal from a controller in automatic mode is just as much a function
of process conditions as it is a function of the measured variable. This error is akin to thinking the
road speed signal in an automobile cruise control system (the “process variable” or PV) must be
the same value as the signal sent by the cruise control computer to the engine’s accelerator control
(the controller’s “output” signal). Granted, these two signals are related to one another, but since
they represent two different parameters in the controlled system we have no reason to expect their
values will be equal except by chance.
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2.2.2 Example: wastewater disinfection

The final step in treating wastewater before releasing it into the natural environment is to kill any
harmful microorganisms (e.g. viruses, bacteria) in it. This is called disinfection, and chlorine gas is
a very effective disinfecting agent. However, just as it is not good to mix too little chlorine in the
outgoing water (effluent) because we might not disinfect the water thoroughly enough, there is also
danger of injecting too much chlorine in the effluent because then we might begin poisoning animals
and beneficial microorganisms in the natural environment.

To ensure the right amount of chlorine injection, we must use a dissolved chlorine analyzer to
measure the chlorine concentration in the effluent, and use a controller to automatically adjust
the chlorine control valve to inject the right amount of chlorine at all times. The following P&ID
(Process and Instrument Diagram) shows how such a control system might look:

Mixer

Influent

Chlorine supply

Contact
chamber

AT

AIC

Effluent

Cl2

M
SP

Analytical
transmitter

Analytical
indicating
controller

Motor-operated
control valve

4-20 mA

signal

4-20 mA

signal

measurement

control

Pipe Pipe Pipe

Pipe

Pipe

Chlorine gas coming through the control valve mixes with the incoming water (influent), then
has time to disinfect in the contact chamber before exiting out to the environment.

The transmitter is labeled “AT” (Analytical Transmitter) because its function is to analyze the
concentration of chlorine dissolved in the water and transmit this information to the control system.
The “Cl2” (chemical notation for a chlorine molecule) written near the transmitter bubble declares
this to be a chlorine analyzer. The dashed line coming out of the transmitter tells us the signal is
electric in nature, not pneumatic as was the case in the previous (boiler control system) example.
The most common and likely standard for electronic signaling in industry is 4 to 20 milliamps DC,
which represents chlorine concentration in much the same way as the 3 to 15 PSI pneumatic signal
standard represented steam drum water level in the boiler:

Transmitter signal current Chlorine concentration

4 mA 0% (no chlorine)
8 mA 25%
12 mA 50%
16 mA 75%
20 mA 100% (Full concentration)
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The controller is labeled “AIC” because it is an Analytical Indicating Controller. Controllers are
always designated by the process variable they are charged with controlling, in this case the chlorine
analysis of the effluent. “Indicating” means there is some form of display that a human operator or
technician can read showing the chlorine concentration. “SP” refers to the setpoint value entered by
the operator, which the controller tries to maintain by adjusting the position of the chlorine injection
valve.

A dashed line going from the controller to the valve indicates another electronic signal: a 4 to
20 mA direct current signal again. Just as with the 3 to 15 PSI pneumatic signal standard in the
pneumatic boiler control system, the amount of electric current in this signal path directly relates
to a certain valve position:

Controller output signal current Control valve position

4 mA 0% open (Fully shut)
8 mA 25% open
12 mA 50% open
16 mA 75% open
20 mA 100% (Fully open)

Note: it is possible, and in some cases even preferable, to have either a transmitter or a control
valve that responds in reverse fashion to an instrument signal such as 3 to 15 PSI or 4 to 20 milliamps.
For example, this valve could have been set up to be wide open at 4 mA and fully shut at 20 mA.
The main point to recognize here is that both the process variable sensed by the transmitter and
the position of the control valve are proportionately represented by analog signals.

Just as with the 3 to 15 PSI pneumatic signals used to represent water level and control valve
position in the boiler seen previously, the two 4 to 20 milliamp current signals in this system
represent two different variables in the system and therefore will not be equal to each other except
by coincidence. A common misconception for people first learning about analog instrumentation
signals is to assume the transmitter’s signal (“Process Variable”) must be identical in value to the
control valve’s signal (“Manipulated Variable” or “Output”), but this is not true.

The letter “M” inside the control valve bubble tells us this is a motor-actuated valve. Instead
of using compressed air pushing against a spring-loaded diaphragm as was the case in the boiler
control system, this valve is actuated by an electric motor turning a gear-reduction mechanism. The
gear reduction mechanism allows slow motion of the control valve stem even though the motor spins
at a fast rate. A special electronic control circuit inside the valve actuator modulates electric power
to the electric motor in order to ensure the valve position accurately matches the signal sent by the
controller. In effect, this is another control system in itself, controlling valve position according to a
“setpoint” signal sent by another device (in this case, the AIT controller which is telling the valve
what position to go to).
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2.2.3 Example: chemical reactor temperature control

Sometimes we encounter a diversity of instrument signal standards in one control system. Such is
the case with the following chemical reactor temperature control system, where three different signal
standards convey information between the instruments. A P&ID (Process and Instrument Diagram)
shows the inter-relationships of the process piping, vessels, and instruments:
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Pipe
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The purpose of this control system is to ensure the chemical solution inside the reactor vessel
is maintained at a constant temperature. A steam-heated “jacket” envelops the reactor vessel,
transferring heat from the steam into the chemical solution inside. The control system maintains
a constant temperature by measuring the temperature of the reactor vessel, and throttling steam
from a boiler to the steam jacket to add more or less heat as needed.

We begin as usual with the temperature transmitter, located near the bottom of the vessel. Note
the different line type used to connect the temperature transmitter (TT) with the temperature-
indicating controller (TIC): hollow diamonds with lines in between. This signifies a digital electronic
instrument signal – sometimes referred to as a fieldbus – rather than an analog type (such as 4 to
20 mA or 3 to 15 PSI). The transmitter in this system is actually a digital computer, and so is the
controller. The transmitter reports the process variable (reactor temperature) to the controller using
digital bits of information. Here there is no analog scale of 4 to 20 milliamps, but rather electric
voltage/current pulses representing the 0 and 1 states of binary data.

Digital instrument signals are capable of transferring multiple data points rather than single
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data points as is the case with analog instrument signals. This means digital instrument signals
may convey device status information (such as self-diagnostic test results) as well as the basic
measurement value. In other words, the digital signal coming from this transmitter not only tells
the controller how hot the reactor is, but it may also communicate to the controller how well the
transmitter is functioning.

The dashed line exiting the controller shows it to be analog electronic: most likely 4 to 20
milliamps DC. This electronic signal does not go directly to the control valve, however. It passes
through a device labeled “TY”, which is a transducer to convert the 4 to 20 mA electronic signal
into a 3 to 15 PSI pneumatic signal which then actuates the valve. In essence, this signal transducer
acts as an electrically-controlled air pressure regulator, taking the supply air pressure (usually 20 to
25 PSI) and regulating it down to a level commanded by the controller’s electronic output signal.

At the temperature control valve (TV) the 3 to 15 PSI pneumatic pressure signal applies a force
on a diaphragm to move the valve mechanism against the restraining force of a large spring. The
construction and operation of this valve is the same as for the feedwater valve in the pneumatic
boiler water control system. The letters “ATO” immediately below the valve symbol mean “Air-
To-Open,” referring to the direction this valve mechanism will move (wider open) as more air signal
pressure is applied to its actuator.

A detail not shown on this diagram, yet critically important to the operation of the temperature
control system, is the direction of action for the controller while in automatic mode. It is possible
to configure general-purpose controllers to act either in a direct fashion where an increasing process
variable signal automatically results in an increasing output signal, or in a reverse fashion where an
increasing process variable signal automatically results in a decreasing output signal. An effective
way to identify the proper direction of action for any process controller is to perform a “thought
experiment” whereby we imagine the process variable increasing over time, and then determine
which way the controller’s output needs to change in order to bring the process variable value back
to setpoint based on the final control element’s influence within the process.

In this process, let us imagine the reactor temperature increasing for some reason, perhaps an
increase in the temperature of the feed entering the reactor. With an increasing temperature, the
controller must reduce the amount of steam applied to the heating jacket surrounding the reactor in
order to correct for this temperature change. With an air-to-open (ATO) steam valve, this requires
a decreased air pressure signal to the valve in order to close it further and reduce heat input to the
reactor. Thus, if an increasing process variable signal requires a decreasing controller output signal,
the controller in this case needs to be configured for reverse action.

We could easily imagine reasons why the temperature controller in this process might have to be
configured for direct action instead of reverse action. If the piping were altered such that the control
valve throttled the flow of coolant to the reactor rather than steam, an increasing temperature would
require a further-open valve, which would only happen if the controller were configured for direct
action. Alternatively, if the steam valve were air-to-close (ATC) rather than air-to-open (ATO), an
increasing reactor temperature (requiring less steam be sent to the reactor) would necessitate the
controller outputting an increased signal to the valve, so that more air signal pressure pushed the
valve further closed.
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An example of a chemical reaction temperature control system requiring direct controller action
is shown in the following photograph. Here, we see a jacketed stainless-steel vessel used to ferment
beer at cold temperatures. The jacket surrounding this vessel is pumped full of chilled glycol solution
(similar to automotive antifreeze), to draw heat away from the fermenting beer and maintain its
temperature well below ambient:

If the beer becomes too warm, the controller sends an increased signal to the glycol valve sending
more chilled glycol through the vessel’s jacket to remove heat from the beer. Since the relationship
between the controller’s process variable and its output is direct (i.e. rising PV results in rising
Output), the controller needs to be configured for direct action.

This is why general-purpose process controllers always provide a user-selectable option for either
direct or reverse action: it makes them adaptable to the needs of any process, no matter the physics
of the process or the behavior of the other loop instruments (e.g. transmitter and final control
element).
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An additional instrument connected to our hypothetical chemical reactor is a pressure transmitter
(PT) on the feed line. While not a part of the temperature control loop, it is shown here to illustrate
yet another type of instrumentation signaling: digital wireless. Here, the transmitter reports its
measurement data to an indicator at the control room via radio signals, using digital codes much
like fieldbus to communicate not only the basic process data but also transmitter diagnostic and
radio network management data.

At the time of this writing (2011), wireless instrumentation is not recommended for mission-
critical control applications, and finds its greatest use in low-priority monitoring instrumentation.
The most obvious advantage of wireless instruments is that they do not require wires of any
kind. Since wiring is a major capital cost when installing instruments, this fact makes wireless
instrumentation relatively inexpensive to install. Freedom from wires also allows these instruments
to be used in applications that would be impossible for wired instruments, such as communicating
data from sensors installed in moving vehicles to stationary monitoring or control equipment.
However, the elimination of wires means wireless instruments must provide for their own power
requirements, usually with long-life batteries. Reliance on battery power alone places restrictions on
how frequently these instrument perform their functions: less frequent data transmission results in
longer battery life, but correspondingly reduces the instrument’s practicality for real-time control.
Potential blockage of the radio signals from moving objects such as large vehicles (cranes, lifts, etc.)
also poses challenges to signal reliability. Despite these limitations, the total absence of signal or
power wiring for a wireless instrument is an essential feature for certain applications. Wireless is
just another tool to help us automate processes, and like any other tool it has its advantages and
disadvantages.

2.3 Other types of instruments

So far we have just looked at instruments that sense, control, and influence process variables.
Transmitters, controllers, and control valves are respective examples of each instrument type.
However, other instruments exist to perform useful functions for us.
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2.3.1 Indicators

One common “auxiliary” instrument is the indicator, the purpose of which is to provide a human-
readable indication of an instrument signal. Quite often process transmitters are not equipped with
readouts for whatever variable they measure: they just transmit a standard instrument signal (3 to
15 PSI, 4 to 20 mA, etc.) to another device. An indicator gives a human operator a convenient
way of seeing what the output of the transmitter is without having to connect test equipment
(pressure gauge for 3-15 PSI, ammeter for 4-20 mA) and perform conversion calculations. Moreover,
indicators may be located far from their respective transmitters, providing readouts in locations
more convenient than the location of the transmitter itself. An example where remote indication
would be practical is shown here, in a nuclear reactor temperature measurement system:
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It would be unsafe for human beings to approach the nuclear reactor when it is in full-power
operation, due to the strong radiation flux it emits. The temperature transmitter is built to
withstand the radiation, though, and it transmits a 4 to 20 milliamp electronic signal to an indicating
recorder located on the other side of a thick concrete wall blocking the reactor’s radiation, where it
is safe for human occupancy. There is nothing preventing us from connecting multiple indicators,
at multiple locations, to the same 4 to 20 milliamp signal wires coming from the temperature
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transmitter. This allows us to display the reactor temperature in as many locations as we desire,
since there is no absolute limit on how far we may conduct a DC milliamp signal along copper wires.

A numerical-plus-bargraph indicator appears in this next photograph, mounted in the face of a
metal panel inside of a control room:

This particular indicator shows the position of a flow-control gate in a wastewater treatment
facility, both by numerical value (98.06%) and by the height of a bargraph (very near full open –
100%). It is directly wired in series with the same 4-20 milliamp current signal sent to the gate
actuator.
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A less sophisticated style of panel-mounted indicator shows only a numeric display, such as this
unit shown here:

Indicators may also be used in “field” (process) areas to provide direct indication of measured
variables if the transmitter device lacks a human-readable indicator of its own. The following
photograph shows a field-mounted indicator, operating directly from the electrical power available
in the 4-20 mA loop. The numerical display of this indicator uses LCD technology rather than
red-glowing LEDs, in order to use less electrical power:
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2.3.2 Recorders

Another common “auxiliary” instrument is the recorder (sometimes specifically referred to as a chart
recorder or a trend recorder), the purpose of which is to draw a graph of process variable(s) over
time. Recorders usually have indications built into them for showing the instantaneous value of
the instrument signal(s) simultaneously with the historical values, and for this reason are usually
designated as indicating recorders. A temperature indicating recorder for the nuclear reactor system
shown previously would be designated as a “TIR” accordingly.

Paper chart recorders are a form of instrumentation with a long history. The following image
shows an illustration of a Bristol brand recording pressure gauge found on page 562 of Cassier’s
Magazine volume 8, published in 1895. Note the circular form of the paper chart, allowing the
pen to draw a trace as the circular chart slowly spins. A padlock on the front glass cover prevents
tampering with the chart recording:



24 CHAPTER 2. TUTORIAL

A typical chart from one of these recording devices is shown in this illustration, taken from page
563 of the same engineering periodical:

This particular recording is of a steam boiler’s pressure over a 24-hour period, showing pressure
build-up beginning at 4:00 AM and boiler shut-down at 9:30 PM. This steam boiler’s pressure
appears to have been operated at approximately 70 PSI. Dips and peaks in the trace reflect changes
in steam demand as well as irregularities in the firing of the boiler’s coal furnace.
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Another design of paper chart recorder is the strip style, using a long strip of paper between two
spools (one to play out the paper and another to take it up). Like the circular chart recorder design,
the strip chart recorder also has a long history. The following illustration from page 560 of the same
Cassier’s Magazine volume:

This next image shows a practical example of a strip chart’s record for a city water supply
company, taken from page 566 of the same periodical:

Several interesting details1 may be seen on this particular recording, including pressure
fluctuations caused by periodic draws of water from a fire hydrant to fill street carts used to spray

1Many interesting points may be drawn from these two illustrations. Regarding the strip chart recording instrument
itself, it is worth noting the ornate design of the metal frame (quite typical of machinery design from that era), the
attractive glass dome used to shield the chart and mechanism from the environment, and the intricate mechanism
used to drive the strip chart and move the pen. Unlike a circular chart, the length of a strip chart is limited only by
the diameter of the paper roll, and may be made long enough to record many days’ worth of pressure measurements.
The label seen on the front of this instrument (“Edson’s Recording and Alarm Gauge”) tells us this instrument has
the ability to alert a human operator of abnormal conditions, and a close inspection of the mechanism reveals a bell
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the city’s dirt roads with water to minimize dust. Pressure drop caused by a burst 4-inch water pipe
is also seen on this recording, between 5:00 PM and 6:15 PM.

Both circular and strip chart recorder designs survive to this day. Two circular chart recorders
are shown in the following photograph, used to record temperatures at a powdered milk processing
facility:

Two more chart recorders appear in the next photograph, a strip chart recorder on the right and
a paperless chart recorder on the left. The strip chart recorder uses a scroll of paper drawn slowly
past one or more lateral-moving pens, while the paperless recorder does away with paper entirely
by plotting graphic trend lines on a computer screen:

on the top which presumably rings under alarm conditions. Regarding the strip chart record, note the “compressed”
scale, whereby successive divisions of the vertical scale become closer in spacing, reflecting some inherent nonlinearity
of the pressure-sensing mechanism.
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Recorders are extremely helpful for troubleshooting process control problems. This is especially
true when the recorder is configured to record not just the process variable, but also the controller’s
setpoint and output variables as well. Here is an example of a typical “trend” showing the
relationship between process variable, setpoint, and controller output in automatic mode, as graphed
by a recorder:
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Here, the setpoint (SP) appears as a perfectly straight red line, the process variable as a slightly
erratic blue line, and the controller output as a moderately erratic purple line. We can see from this
trend that the controller is doing exactly what it should: holding the process variable value close to
setpoint, manipulating the final control element as far as necessary to do so. The chaotic appearance
of the output signal is not really a problem, contrary to most peoples’ first impression. The fact
that the process variable never deviates significantly from the setpoint tells us the control system
is operating quite well. What accounts for the erratic controller output, then? The answer to this
question is any factor requiring the controller to change its output in order to maintain the process
variable at setpoint. Variations in process load would account for this: as other variables in the
process change over time, the controller is forced to compensate for these variations in order to ensure
the process variable does not drift from setpoint. Referencing our previous example of a steam boiler
water level control system, one of these influencing variables is steam demand. If this trend shows the
steam drum water level (PV) and feedwater valve position (Output), variations in the controller’s
output signal could be indicative of steam demand rising and falling, the controller modulating
water flow into the boiler to properly compensate for this load and maintain a fairly constant steam
drum water level. A wildly-fluctuating output signal may indicate a problem somewhere else in the
process (placing undue demands on the control system), but there is certainly no problem with the
control system itself: it is doing its job perfectly well.

Recorders become powerful diagnostic tools when coupled with the controller’s manual control
mode. By placing a controller in “manual” mode and allowing direct human control over the final
control element (valve, motor, heater), we can tell a lot about a process. Here is an example of a
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trend recording for a process in manual mode, where the process variable response is seen graphed
in relation to the controller output as that output is increased and decreased in steps:
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Notice the time delay between when the output signal is “stepped” to a new value and when the
process variable responds to the change. This delay is called dead time, and it is generally detrimental
to control system performance. Imagine trying to steer an automobile whose front wheels respond
to your input at the steering wheel only after a 5-second delay! This would be a very challenging car
to drive. The same problem plagues any industrial control system with a time lag between the final
control element and the transmitter. Typical causes of this problem include transport delay (where
there is a physical delay resulting from transit time of a process medium from the point of control
to the point of measurement) and mechanical problems in the final control element.



2.3. OTHER TYPES OF INSTRUMENTS 29

This next example shows another type of problem revealed by a trend recording during manual-
mode testing:
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Here, we see the process quickly responding to all step-changes in controller output except for
those involving a change in direction. This problem is usually caused by mechanical friction in the
final control element (e.g. “sticky” valve stem packing in a pneumatically-actuated control valve),
and is analogous to “loose” steering in an automobile, where the driver must turn the steering wheel
a little bit extra after reversing steering direction. Anyone who has ever driven an old farm tractor
knows what this phenomenon is like, and how it detrimentally affects one’s ability to steer the tractor
in a straight line.

Sometimes it becomes useful to temporarily place a recorder into an instrumentation system
for diagnostic purposes. On the simplest level, this might consist of a digital multimeter (DMM)
connected to measure signal voltage or current, with its “minimum/maximum” capture mode
engaged. On a more complex level, this might be a personal computer running data graphing
software, connected to the instrumentation circuit through a data acquisition (DAQ) module
converting the circuit’s analog voltage or current signals into digital values readable by the computer.

2.3.3 Process switches and alarms

Another type of instrument commonly seen in measurement and control systems is the process switch.
The purpose of a switch is to turn on and off with varying process conditions. Usually, switches are
used to activate alarms to alert human operators to take special action. In other situations, switches
are directly used as control devices.
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The following P&ID of a compressed air control system shows both uses of process switches:
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The “PSH” (pressure switch, high) activates when the air pressure inside the vessel reaches its
high control point. The “PSL” (pressure switch, low) activates when the air pressure inside the
vessel drops down to its low control point. Both switches feed discrete (on/off) electrical signals to
a logic control device (symbolized by the diamond) which then controls the starting and stopping
of the electric motor-driven air compressor.

Another switch in this system labeled “PSHH” (pressure switch, high-high) activates only if
the air pressure inside the vessel exceeds a level beyond the high shut-off point of the high pressure
control switch (PSH). If this switch activates, something has gone wrong with the compressor control
system, and the high pressure alarm (PAH, or pressure alarm, high) activates to notify a human
operator.

All three switches in this air compressor control system are directly actuated by the air pressure in
the vessel: in other words, these are direct process-sensing switches. It is possible, however, to build
switch devices that interpret standardized instrumentation signals such as 3 to 15 PSI (pneumatic)
or 4 to 20 milliamps (analog electronic), allowing us to build on/off control systems and alarms for
any type of process variable measurable with a transmitter.
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For example, the chlorine wastewater disinfection system shown earlier may be equipped with a
couple of electronic alarm switches to alert an operator if the chlorine concentration ever exceeds
pre-determined high or low limits:
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The labels “AAL” and “AAH” refer to analytical alarm low and analytical alarm high,
respectively. Note how the diagram shows these two alarm units connected to the electronic (4-
20 mA) signal output by the chlorine analyzer (AT). This tells us the AAL and AAH alarm units
are really just electronic circuits, alarming if the analytical transmitter’s 4-20 mA analog signal falls
below (AAL) or exceeds (AAH) certain pre-set limits. As such, the AAL and AAH alarms do not
directly sense the chlorine concentration in the water, but rather indirectly sense it by monitoring
the chlorine analyzer’s 4-20 milliamp output signal.

Since both alarms work off the 4 to 20 milliamp electronic signal output by the chlorine analytical
transmitter (AT) rather than directly sensing the process, their construction is greatly simplified.
If these were process-sensing switches, each one would have to be equipped with the analytical
capability of directly sensing chlorine concentration in water. In other words, each switch would
have to be its own self-contained chlorine concentration analyzer, with all the attendant complexity.
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An example of an electronic alarm module (triggered by a 4-20 mA current signal coming from
a transmitter) is the Moore Industries model SPA (“Site Programmable Alarm”), shown here:

In addition to providing alarm capability, this SPA module also provides a digital display (a
small LCD screen) to show the analog signal value for operational or diagnostic purposes.

Like all current-operated alarm modules, the Moore Industries SPA may be configured to “trip”
electrical contacts when the current signal reaches a variety of different programmed thresholds.
Some of the alarm types provided by this unit include high process, low process, out-of-range, and
high rate-of-change.
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In a similar manner, we may add pressure-actuated process alarm switches to pneumatic (3-15
PSI) signal lines coming from pneumatic transmitters to add alarm capability to a system designed
for continuous measurement. For example, if high- and low-alarm capability were desired for the
steam drum water level process described earlier in this chapter, one could add a pair of pressure-
actuated switches to the pneumatic level transmitter’s 3-15 PSI output signal line:
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These two pressure-actuated switches serve as water level alarms, because the air pressure signal
actuating them comes from the pneumatic level transmitter, which outputs an air pressure signal
in direct proportion to water level in the boiler’s steam drum. Even though the physical stimulus
actuating each switch is an air pressure, the switches still serve the purpose of liquid level alarm
signaling because that air pressure is an analogue (representation) of water level in the steam drum.
In other words, these two alarm switches (LSL and LSH) indirectly sense water level by monitoring
the pneumatic signal pressure output by the level transmitter (LT).
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The alternative to pressure-actuated water level alarm switches would be independent level-
sensing switches attached directly to the steam drum, each switch equipped with its own means2 of
directly sensing water level:
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It should be mentioned that the choice between using process alarm switches directly actuated
by the process versus alarm switches actuated by a transmitter’s analog signal is not arbitrary. In
the system where the two alarm switches actuate from the transmitter’s 3-15 PSI output signal,
the integrity of the water level control and that of the high- and low-level alarms all depend on the
proper function of one transmitter. If that one transmitter were to fail, all three system functions
would be compromised. This elevates the importance of a single instrument, which is generally not
desirable from the perspective of reliability and process safety. In the system where each level alarm
switch independently senses steam drum water level, one device may fail without compromising
either of the other two functions. This independence is desirable because it greatly reduces the
probability of “common-cause” failures, where a single fault disables multiple system functions. The
final determination should be based on a rigorous analysis of device versus system reliability, which
is typically the task of a process engineer.

2These might be float-driven switches, where each switch is mechanically actuated by the buoyancy of a hollow
metal float resting on the surface of the water. Another technology uses metal electrodes inserted into the water from
above, sensing water level by electrical conductivity: when the water level reaches the probe’s tip, an electrical circuit
is closed. For more information on liquid level switches, refer to section ?? beginning on page ??.



2.3. OTHER TYPES OF INSTRUMENTS 35

2.3.4 Annunciators

Process alarm switches may be used to trigger a special type of indicator device known as an
annunciator. An annunciator is an array of indicator lights and associated circuitry designed to
secure a human operator’s attention3 by blinking and sounding an audible buzzer when a process
switch actuates into an abnormal state. The alarm state may be then “acknowledged” by an operator
pushing a button, causing the alarm light to remain on (solid) rather than blink, and silencing the
buzzer. The indicator light does not turn off until the actual alarm condition (the process switch)
has returned to its regular state.

This photograph shows an annunciator located on a control panel for a large engine-driven pump.
Each white plastic square with writing on it is a translucent pane covering a small light bulb. When
an alarm condition occurs, the respective light bulb flashes, causing the translucent white plastic to
glow, highlighting to the operator which alarm is active:

Note the two pushbutton switches below labeled “Test” and “Acknowledge.” Pressing the
“Acknowledge” button will silence the audible buzzer and also turn any blinking alarm light into a
steady (solid) alarm light until the alarm condition clears, at which time the light turns off completely.
Pressing the “Test” button turns all alarm lights on, to ensure all light bulbs are still functional.

3D.A. Strobhar, writing in The Instrument Engineers’ Handbook on the subject of alarm management, keenly
observes that alarms are the only form of instrument “whose sole purpose is to alter the operator’s behavior.” Other
instrument devices work to control the process, but only alarms work to control the human operator.
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Opening the front panel of this annunciator reveals modular relay units controlling the blinking
and acknowledgment latch functions, one for each alarm light:

This modular design allows each alarm channel to be serviced without necessarily interrupting
the function of the other channels in the annunciator panel.
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A simple logic gate circuit illustrates the acknowledgment latching feature (here implemented by
an S-R latch circuit) common to all process alarm annunciators:
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Panel-mounted annunciators are becoming a thing of the past, as computer-based alarm
displays replace them with advanced capabilities such as time logging, first-event4 recording, and
multiple layers of acknowledgment/access. Time logging is of particular importance in the process
industries, as the sequence of events is often extremely important in investigations following an
abnormal operating condition. Knowing what happened, and exactly when it happened is much more
informative than simply knowing which alarms have tripped.

4When a complex machine or process with many shutdown sensors automatically shuts down, it may be difficult
to discern after the fact which shutdown device was responsible. For instance, imagine an engine-powered generator
automatically shutting down because one of the generator’s “trip” sensors detected an under-voltage condition. Once
the engine shuts down, though, multiple trip sensors will show abnormal conditions simply because the engine is not
running anymore. The oil pressure sensor is one example of this: once the engine shuts down, there will no longer
be any oil pressure, thus causing that alarm to activate. The under-voltage alarm falls into this category as well:
once the engine shuts down, the generator will no longer be turning and therefore its output voltage must be zero.
The problem for any human operator encountering the shut-down engine is that he or she cannot tell which of these
alarms was the initiating cause of the shutdown versus which of these alarms simply activated after the fact once the
engine shut off. An annunciator panel showing both an under-voltage and a low oil pressure light does not tell us
which event happened first to shut down the generator. A “first-event” (sometimes called a “first-out”) annunciator,
however, shows which trip sensor was the first to activate, thus revealing the initiating cause of the event.
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Chapter 3

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

39
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?



3.1. CONCEPTUAL REASONING 43

3.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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3.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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3.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results
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Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???
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3.1.3 Manual water reservoir control

A water reservoir located high on a hill stores fresh water for a town’s drinking needs. A float
connected to a lever provides visual indication of the water level inside the reservoir. Nearby this
reservoir, a person has the most boring job in the world: to turn the pump on when the water level
gets too low, and to turn the pump off when the water level gets too high. Note that the float
mechanism showing water level in the reservoir cannot show the entire capacity of the reservoir, but
only the top ten feet (from 20 feet to 30 feet of level):

float

stationary
pivot, or fulcrum

scale

cable
lever

pointer

Water
30 ft

30 ft

Water to town

Well

Pump

Bored
person

Reservoir

20 ft

25 ft

As crude as it is, this system contains instrumentation, and we may apply standard
instrumentation terms to its components. Apply the following terms to this water-supply system,
as best as you can:

• Process

• Primary sensing element

• Final control element

• Measurement range

• Lower-Range Value (LRV)

• Upper-Range Value (URV)
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• Measurement span

• Indicator

• Transmitter

• Controller

• Measured Variable (or Process Variable)

• Controlled Variable (or Manipulated Variable)

Challenges

• Identify ways to alleviate the person’s boredom by automating this process and giving that
person a more interesting job to do.
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3.1.4 Annunciator circuit

Explain how the following annunciator circuit works:

VDD

AckVDD

Process
switch

Pulse from
555 timer

Lamp

Buzzer

Process
switch

(NC)

(NO)
10 kΩ

10 kΩ

10 kΩ

1 kΩ

1 kΩ
1/2 PVT322

1/2 PVT322

Alarm annunciator circuit
with "acknowledge"

(all NAND gates are 74HC00 quad DIP units)

relay

relay

Note the jumper options shown in the diagram: one set of jumper positions configures the alarm
for a process switch that alarms when its contacts open, and the other positions configures the alarm
for a process switch that alarms when its contacts close. In either case, the circuit is designed to
indicate an alarm status when the line going in to the lower-left NAND gate goes high.

Challenges

• What is the purpose of such an annunciator circuit, when we could simply wire an indicating
lamp to the process switch to obtain visual indication of its status?
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3.1.5 Choosing proper controller action

In each of these process control examples, the transmitter produces an increasing signal for an
increase in process measurement (level, pressure, temperature, etc.), and the I/P transducer produces
an increasing air pressure signal out for an increasing current signal in.

Your task is to determine the proper action for the process controller, either direct-acting or
reverse-acting. Remember, a direct-acting controller produces an increasing output signal with an
increasing process variable input. A reverse-acting controller produces a decreasing output signal for
an increasing process variable input. It is essential for stability that the controller have the correct
direction of action!

Example 1:

Liquid

PV SP

Out

I/P

Air supply

Air-to-close
valve

Controller

Level
transmitter

Transducer

H L

LT
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Example 2:

H L

PV SP

Out

I/P

Air supply

valve

Controller

transmitter

Transducer
Flow

Air-to-open

FT
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Example 3:

PV SP

Out

I/P

Air supply

valve

Controller

Transducer

Steam in

Steam out

Heat exchanger

Cold fluid
in

Warm fluid
out

TT

Thermocouple

transmitter
Temperature

Air-to-open



3.1. CONCEPTUAL REASONING 53

Example 4:

PV SP

Out

I/P

Air supply

valve

Controller

Transducer

in

transmitter

Steam

Steam
out

ST Speed

Steam turbine Generator

Air-to-open
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A concept familiar to students of electronics is the differential amplifier, a device built to compare
two input signals and generate an output signal proportional to that comparison. The most common
form of differential amplifier is the so-called operational amplifier or “opamp”, drawn as a triangle
with two inputs labeled “+” and “−” to show the relative influence of each input signal on the
output. A process controller may be thought of as a kind of differential amplifier, sensing the
difference between two input signals (the process variable and the setpoint) and generating an
output signal proportional to the difference between PV and SP to drive a final control element.

The following process control examples replace the controller symbol with an amplifier symbol.
Your task is to figure out appropriate labels for the amplifier’s input terminals (e.g. “+” and “−”).
Remember that a controller is defined as being “direct-acting” if an increase in PV causes an increase
in output and “reverse-acting” if an increase in PV causes a decrease in output. Following opamp
labeling, this means the PV input of a direct-acting controller should bear a “+” mark while the
PV input of a reverse-acting controller should bear a “−” mark.

−

+
Output

PV

SP

Direct-acting controller

−

+

Output

PV

SP

Reverse-acting controller

Output ∝  (PV-SP) Output ∝  (SP-PV)
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Example 5: Label the PV & SP amplifier inputs for the correct controller action

I/P

Air supply

valve

Controller
Transducer

transmitter

Air-to-open

Water in
(from pump)

Water out
(to points of use)

Filter

Water out
(back to sump)

HL

PT

Pressure

PV

SP
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Example 6: Label the PV & SP amplifier inputs for the correct controller action

Liquid

I/P

Air supply

valve

Controller

Level
transmitter

Transducer

Air-to-openH L

LT

SP

PV
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Example 7: Label the PV & SP amplifier inputs for the correct controller action

I/P

Air supply

valve

Controller

Transducer

Steam in

Steam out

Heat exchanger

Cold fluid
in

Warm fluid
out

TT

Thermocouple

transmitter
Temperature

Air-to-open

SP

PV

Challenges

• As always, what is more important than arriving at the correct answer(s) is to develop a clear
and logical reason for your correct answers. Explain the problem-solving technique(s) you used
to determine correct controller action in each of these process control examples.

• A powerful problem-solving technique is performing a thought experiment where you mentally
simulate the response of a system to some imagined set of conditions. Describe a useful
“thought experiment” for any of these process control loops, and how the results of that
thought experiment are helpful to answering the question.

• Explain how to reliably identify the process variable (PV) in any controlled process presented
to you.

• Explain how to reliably identify the manipulated variable (MV) in any controlled process
presented to you.
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• Identify and explain the deleterious effect(s) caused by a process controller configured with
the wrong action.

• Identify an instrument mis-calibration or mis-configuration that could cause the process
variable to settle at a greater value than it should be, assuming all other components in
the system are functioning properly.

• Once you have identified the proper controller action for any given process example, identify
something that could be altered about the process to require the other control action.

3.1.6 Explaining the meaning of calculations

Challenges

• ???.

• ???.

• ???.
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3.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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3.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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3.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x

2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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3.2.3 Diesel engine speed monitor

A tachogenerator is a small DC generator designed to output a voltage directly proportional to
the speed of a rotating shaft. These instruments are used to generate an analog electrical signal
representing the rotary speed of a mechanism. An indicator is an instrument used to display a
measured variable to a human. A recorder is a similar instrument used to display a measured
variable as a “trend” graph over time. A Data Acquisition Unit (abbreviated DAQ) inputs one or
more analog electrical signal and outputs a digital number representing those signals, essentially a set
of analog-to-digital converters combined with digital networking circuitry. DAQ units are often used
in telemetry systems where various measurements must be taken and reported over long distances
via a digital network such as Ethernet or radio.

With these definitions in mind, examine the following pictorial diagram and explain the purpose
of each component within the system:

Tachogenerator
(coupled to the shaft

of a diesel engine)

0 to 2000 RPM
0 to 10 VDC

Terminal
block Ch1

Ch3

Ch4

Com

DAQ

range

- +

Indicator

±2 VDCCh210 kΩ
10 kΩ
5 kΩ

0-10 VDC
range

RPM

0 2000
1000

21

22

23

24

Ethernet
network
cable

Computer monitor

Engine speed

Suppose the diesel engine happens to be running at full speed (2000 revolutions per minute, or
2000 RPM ). Identify the amount of voltage we would expect to measure between the following pairs
of points in the circuit at this engine speed:

• V21−24 =

• V22−COM =

• V24−COM =
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Challenges

• More important than obtaining the correct solution to a problem is to devise an effective
problem-solving strategy. Describe at least one strategy useful in this problem.

3.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.
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3.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

3.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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3.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.



Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).



73

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.



83

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.



88 APPENDIX D. CREATIVE COMMONS LICENSE



Appendix E

References

89



90 APPENDIX E. REFERENCES



Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

1 May 2023 – edited Tutorial and added questions.

29 April 2023 – document first created from content in the Lessons In Industrial Instrumentation
textbook.
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Open-source, 77
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Problem-solving: graph values, 70
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Problem-solving: thought experiment, 69
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69
Problem-solving: work in reverse, 70
Process, 7
Process switch, 30
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problem, 70

Reading Apprenticeship, 39
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Red Lion Controls panel-mounted indicator, 22
Reductio ad absurdum, 70–72
Relay, 7
Reverse-acting controller, 17
Rosemount field-mounted indicator, 22

Schoenbach, Ruth, 39
Scientific method, 44
Setpoint, 7
Simplifying a system, 69
Socrates, 71
Socratic dialogue, 72
Span, 7
SPICE, 39
Stallman, Richard, 77
Steam jacket, 16
Strip chart recorder, 25
Switch, process, 30

Thought experiment, 17, 69
Torvalds, Linus, 77
Transducer, 7

Transmitter, 7
Transport delay, 28
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Units of measurement, 69
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Visualizing a system, 69
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