
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Internet-based Systems

© 2020-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 17 September 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3
1.2 Challenging concepts related to internet-based systems 4
1.3 Recommendations for instructors . 5

2 Tutorial 7

2.1 Connecting to the Internet . 7
2.2 Data transfer protocols . 8
2.3 File transfer . 9
2.4 Remote session . 11
2.5 The World-Wide Web . 13
2.6 HyperText Markup Language . 14

3 Derivations and Technical References 17

3.1 The OSI Reference Model . 18

4 Programming References 19

4.1 Programming in C++ . 20
4.2 Programming in Python . 24
4.3 Generating a simple web page using C++ . 29

5 Questions 35

5.1 Conceptual reasoning . 39
5.1.1 Reading outline and reflections . 40
5.1.2 Foundational concepts . 41
5.1.3 Writing a simple HTML file . 42

5.2 Quantitative reasoning . 43
5.2.1 Miscellaneous physical constants . 44
5.2.2 Introduction to spreadsheets . 45
5.2.3 HTML color codes . 48

5.3 Diagnostic reasoning . 49
5.3.1 Faulty C++ program . 50

A Problem-Solving Strategies 51

iii

CONTENTS 1

B Instructional philosophy 53

C Tools used 59

D Creative Commons License 63

E References 71

F Version history 73

Index 73

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

A general trend in consumer and industrial electronic devices is for them to automatically
communicate data to a larger network, ultimately the world-wide internet. This is commonly referred
to as the Internet of Things. This module explores some of the technical details associated with
data communication from electronic devices to the internet.

Important concepts related to the Internet of Things include digital protocols, the OSI

Reference Model, client-server data transfer, encryption, remote sessions, theWorld-Wide

Web (WWW), markup languages, HTML, and file transfer protocols.

A useful reading strategy is to write your own summary page of important principles. This is
useful with a topic such as network protocols and internet communications, where you are faced
with an array of different standards and technologies necessary to form a complete communications
link over long distances. Your own summary describing what each of these standards represent and
what they do will help consolidate all the information you will read in the Tutorial.

Here are some good questions to ask of yourself while studying this subject:

• How do standardized protocols make the Internet possible?

• How do the IP and TCP protocols function to exchange data over wide-area networks?

• What is a client-server data connection and how does it work?

• Where is encryption applied in internet communications?

• What is a remote session between computers connected to one another over a network?

• What is hypertext?

• How is the text on an internet website encoded?

• What is a markup language, and how does it work to make data more presentable to human
users?

3

4 CHAPTER 1. INTRODUCTION

1.2 Challenging concepts related to internet-based systems

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Markup language – a “markup” language is a convention by which plain-ASCII characters
describe to a computer how text and images should visually appear in finished format to
a human reader of a document. It is coding for written documents, as opposed to coding
for algorithms. Many markup languages exist, including SGML, XML, HTML, Markdown,
LaTeX, TeX, groff, DocBook, etc. Some of these, such as SGML and XML, are generalized
languages which may be used for more than just human-readable documents.

1.3. RECOMMENDATIONS FOR INSTRUCTORS 5

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Write simple HTML code

Assessment – Write and/or edit a short HTML file to create the desired presentation when
that file is viewed on a web browser.

• Outcome – Use remote-access tools for computers

Assessment – Access a computer remotely using ssh.

Assessment – Transfer files to a computer remotely using sftp.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Tutorial

2.1 Connecting to the Internet

The internet is a world-wide network for digital communication accessible by most private parties in
most countries, and its existence has truly revolutionized commerce, social interactions, education,
and many other aspects of modern life. In order to connect any device to the internet, one
must typically pay for the connection service offered by an Internet Service Provider or ISP.
Telecommunications companies offer ISP service via such media as traditional telephone lines, cable
television lines, satellite radio, cellular telephone radio, and/or fiber optic lines run directly to the
point of use.

Standing between your device and the ISP’s cabling (or radio access) is a device called a modem,
which stands for modulator/demodulator. In truth, an internet modem usually does far more than
just modulate electrical or optical signals to convey digital data1, but nevertheless this term is often
used to describe the device.

1Internet modems also typically serve as routers to dynamically assign IP addresses to connected devices, radio
transceivers to provide short-range internet connectivity to non-wired devices, Point-to-Point Protocol (PPP) hosts
for managing communications over the ISP’s media, encryption engines to provide security of data exchange, and
Ethernet hubs allowing connection of multiple Ethernet-equipped devices to the same modem.

7

8 CHAPTER 2. TUTORIAL

2.2 Data transfer protocols

While the internet’s existence owes itself largely to protocols such as IP (Internet Protocol) and TCP
(Transmission Control Protocol) which make possible the division of large data sets into manageably-
sized pieces for routing and transmission over redundant pathways, a host of other protocols existing
at higher layers of the OSI model, particularly layer 7 (Application) regarding the final application
of the data.

A common example of such a protocol is HTTP (HyperText Transfer Protocol) which is at the
root of how internet web browsers function, a protocol designed to connect web browser software
with data resident in other computers and allow non-technical users to make practical use of that
data. TCP and IP may be responsible for the disassembly, routing, and reassembly of all that data,
but it is HTTP that performs all the other work necessary to make that data accessible and usable
to the average person. Another example is any form of data encryption at the application level used
to secure the privacy of certain data transactions such as online banking and purchasing, without
which the internet would be an even more risky environment to conduct business and private affairs
than it currently is.

An important concept common to these data-transfer protocols is the client-server model. In
order to transfer data between two computers that is meaningful to the non-technical user, software
applications must run on both of those machines to execute the particular protocol2.

To use web browsing again as an example, the web-browsing software you would use to access a
website is an example of a client application. At the other end of that communication channel is the
computer hosting the information you intend to browse, and to make that information available to
your browser application there must be a web server running on that computer. The server software
interacts with queries and requests from your browser software to both receive and transmit data
necessary for the transaction. You could say that the web server software serves up that computer’s
data to your web browser client, just as a server in a restaurant provides meal service to any paying
client wishing to dine there.

2This is true even for lower-level protocols such as IP and TCP: the computer on each end must run IP and TCP
services (usually as a task of the operating system software) in order to properly package and unpackage data according
to the dictates of those protocols. For layer-7 protocols, however, the functions at each end of the communication
channel differ enough to warrant specialized software for each, one called the client and the other called the server.

2.3. FILE TRANSFER 9

2.3 File transfer

Exchanging data files across the internet (e.g. text documents, executable software, graphic images,
audio files, video files, etc.) requires a file-transfer protocol to manage the exchange between those
computers. One of the early and popular protocols for this purpose was simply called File Transfer
Protocol or FTP.

FTP uses client-server architecture, which means any computer hosting the desired file must be
running an FTP server application, and the computer at the receiving end must run an FTP client
to receive and process that data. Modern web browsers actually have FTP client ability built-in,
and so you have no doubt used an FTP client without even knowing it. However, dedicated FTP
clients do exist which fulfill no purpose whatsoever but to facilitate file transfer across the internet.

FTP clients exist in both graphical and command-line varieties. Graphical FTP clients resemble
web browsers in their point-and-click intefaces, while command-line FTP clients function by typing
commands at a console prompt as shown in the example below:

[tony@home ~]$ ftp

ftp> ?

Commands may be abbreviated. Commands are:

! debug mdir sendport site

$ dir mget put size

account disconnect mkdir pwd status

append exit mls quit struct

ascii form mode quote system

bell get modtime recv sunique

binary glob mput reget tenex

bye hash newer rstatus tick

case help nmap rhelp trace

cd idle nlist rename type

cdup image ntrans reset user

chmod lcd open restart umask

close ls prompt rmdir verbose

cr macdef passive runique ?

delete mdelete proxy send

ftp>

This client session of FTP was started in interactive mode by typing ftp at the command line.
Once the prompt changes to ftp> it is ready to receive specific commands to connect with remote
computers and to exchange files. The command I entered in this example was a single question-mark
(?) triggering a display of available commands for this FTP client program.

10 CHAPTER 2. TUTORIAL

FTP has no internal provision for data encryption, making it vulnerable to surveillance and
interception. A more modern version of the protocol called Secure File Transfer Protocol (SFTP)3

has all but replaced FTP, and uses RSA public/private key encryption for security.

Not only are file-transfer protocols such as FTP and SFTP directly useful to the end-user running
appropriate client software, but client functions are also available as code libraries for common
programming languages such as C++. This makes it possible for you to write your own programs
to function as an file-transfer client for applications where the computer you program must initiate
file-transfer operations on its own without human oversight or prompting. When compiled, your
source code becomes “linked” to the file-transfer libraries which gives it access to those complex
functions necessary to interact with the FTP or SFTP server software on the remote computer(s).

For example, you could write software in C++ for a computer to function as a weather
station, reading data from weather sensors, collating that data into archived files, and periodically
“uploading” those files to one or more remote computers using FTP or SFTP client functions.
Alternatively, your weather station software could simply write files with weather data stored in
them and also run FTP or SFTP server software, allowing remote computers to log in using FTP
or SFTP client functions.

3SFTP is actually a subset of another protocol called Secure SHell, or SSH. This protocol is described in the next
section of this Tutorial.

2.4. REMOTE SESSION 11

2.4 Remote session

Another class of client-server based protocols permits a user of one computer to “log in” to a remote
computer and issue commands to that remote computer as though they had direct access to its
peripherals (e.g. keyboard, mouse). The person desiring to log in remotely to another computer
must run a remote-session client application, and the remote computer being logged into must be
running a remote-session server application. This goes beyond mere file exchange, allowing the
remote user as much access and privilege as their login credentials permit in the remote computer’s
operating system.

An early remote-session protocol was telnet, but like FTP telnet lacked encryption which made
telnet sessions vulnerable to hacking. A modern replacement for telnet is Secure SHell (SSH)
which uses RSA public/private key encryption to render the exchanged data nearly impossible to
comprehend to unauthorized interceptors.

Command-line clients for telnet and SSH work much like command-line FTP clients. First, you
enter the name of the client software (usually called telnet or ssh for simplicity) and then interact
with that software by typing specialized commands at the new console prompt. Below is an example
showing telnet’s available commands:

[tony@home ~]$ telnet

telnet> ?

Commands may be abbreviated. Commands are:

close close current connection

logout forcibly logout remote user and close the connection

display display operating parameters

mode try to enter line or character mode (’mode ?’ for more)

open connect to a site

quit exit telnet

send transmit special characters (’send ?’ for more)

set set operating parameters (’set ?’ for more)

unset unset operating parameters (’unset ?’ for more)

status print status information

toggle toggle operating parameters (’toggle ?’ for more)

slc change state of special charaters (’slc ?’ for more)

z suspend telnet

! invoke a subshell

environ change environment variables (’environ ?’ for more)

? print help information

telnet>

12 CHAPTER 2. TUTORIAL

SSH requires more command-line arguments at its invocation. Simply typing ssh and pressing
the Enter key generates a message showing some of those options:

[tony@home ~]$ ssh

usage: ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec]

[-D [bind_address:]port] [-e escape_char] [-F configfile]

[-I pkcs11] [-i identity_file]

[-L [bind_address:]port:host:hostport]

[-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port]

[-R [bind_address:]port:host:hostport] [-S ctl_path]

[-W host:port] [-w local_tun[:remote_tun]]

[user@]hostname [command]

[tony@home ~]$

Once logged in to a remote computer using either telnet or SSH, the user is able to enter operating
system commands at the prompt as though they were sitting before that remote computer’s keyboard
and monitor.

Alternatively, remote-session client and server functionality are also available as code libraries
for programming languages such as C, C++, and Python. The availability of these pre-written
libraries of code makes it much simpler to write software applications utilizing SSH: the libraries
provide a set of pre-designed functions that you may call within the code you write, those functions
performing all the same tasks available to ordinary users of SSH clients, just available for automatic
execution by your program. Thus, the computer you program will be able to “log in” to another
computer (that other computer running an SSH server, of course) all on its own without need for
human supervision or assistance.

A strictly graphical remote-session protocol called Remote Framebuffer Protocol (RFP) is popular
because it functions at the level of graphical images on the computer’s monitor rather than the level
of direct access to the operating system console. This means RFP may be used on any window-based
operating system. RFP is the protocol used by the popular RealVNC client/server software suite,
and is exceptionally useful for performing remote diagnostic work on unattended computers.

2.5. THE WORLD-WIDE WEB 13

2.5 The World-Wide Web

Perhaps the most widely-recognized aspect of the internet is web browsing, where ordinary users
with minimal specialized training in computers are able to run “browser” software to view data
stored on computers across the globe. A special protocol exists for this type of data transfer
called HyperText Transport Protocol (HTTP). Prior to the existence of HTTP and the client/server
software supporting it, the internet was usable only by those possessing the necessary knowledge and
specialized software to transfer files and gain remote access of systems. You could say that HTTP
and its associated applications democratized the internet, turning it into the “world-wide web” that
it is today.

Credit goes largely to Tim Berners-Lee for developing HTTP, as well as the first web browser
client software application and the first web server software application. This protocol gets its name
from the fact that it supports the convenient and rapid navigation to different files and data sources
by selecting “hypertext” links displayed on the screen of the browser client software. Prior to this
innovation one was forced to type a new network address into the client application every time you
wanted to access a different piece of data.

HTTP has now been superceded by HTTPS, a secure version using cryptographic algorithms
to encrypt and decrypt messages for data privacy. This is obviously important for web-based
applications such as online banking and online purchasing.

When a person starts a web browser application on a computer and provides it with a starting
address – called a Uniform Resource Locator (URL) or Uniform Resource Identifier (URI) – that
browser client initiates a session with the specified server application, which serves up data contained
in a file stored on that computer. The default name for this file is index.html, but other filenames are
possible as well. The browser interprets the contents of that file and displays it as some combination
of text, interactive “buttons”, video, graphic images, sound, etc. A website is nothing more than
a set of such files stored on a computer that is also running an HTTP or HTTPS server. Creating
a website with active data is as simple as running software on that same computer to continually
update the contents of those files.

Most website files consist of plain-text (ASCII) characters, organized according to a specific
language definition that the web browser software is programmed to understand. This language is
called HyperText Markup Language (HTML).

14 CHAPTER 2. TUTORIAL

2.6 HyperText Markup Language

A markup language is a text-based language intended to organize and usually display information
on a graphical display for human beings to view. Unlike a programming language which gives
generalized instructions to a computer, a markup language merely describes how the information
should appear.

Many such markup languages exist4, but the one used predominantly for internet websites is
another invention of Tim Berners-Lee called HyperText Markup Language (HTML). The general
format of an HTML file is a series of “tags” consisting of alphabetical instructions enclosed in <

and > symbols.

4An interesting note is that this document is actually created using a markup language called LATEX which was
designed to typeset professional-quality books. The author of a LATEX document types plain-ASCII characters into
a file, and then uses LATEX software to “compile” that source file into another file suitable for reading as a graphical
object, for example an Adobe PDF file.

2.6. HYPERTEXT MARKUP LANGUAGE 15

The following text may be copied and pasted into a file, named index.html, and immediately
viewed using a web browser application5.

<!DOCTYPE html>

<html lang="en">

<head>

<title>This is my web page</title>

</head>

<body>

<p>This is a paragraph. It may contain many sentences. Special fonts

such as <i>italic</i> and bold-face and <tt>typewriter</tt>

are easy to describe in HTML.</p>

<table>

<tr>

<th>Heading A</th>

<th>Heading B</th>

<th>Heading C</th>

</tr>

<tr>

<td>Entry 1</td>

<td>Entry 2</td>

<td>Entry 3</td>

</tr>

<tr>

<td>Entry 4</td>

<td>Entry 5</td>

<td>Entry 6</td>

</tr>

</table>

<p>Clicking on this link will

bring you to the World Wide Web Foundation’s website</p>

<p>Below is a CPU timing diagram:</p>

</body>

</html>

5Web browser clients are capable of reading HTML files resident on the same computer – they are not limited to
accessing files stored on remote computers!

16 CHAPTER 2. TUTORIAL

The result of processing this HTML file with a web browser is shown below:

If you try this on your own computer, you will see everything here except for the timing diagram
graphic, because the “image” tag () will not have access to the source file for this graphic
image (image 3849.png) that exists on my computer.

Note how most HTML tags come in pairs, and how those pairs always follow the same pattern:
<p> and </p>, <table> and </table>, <td> and </td>, etc. These function not unlike the curly-
brace symbols ({ and }) used in general-purpose computer programming languages such as Java, C,
and C++ to “enclose” blocks of code belonging together.

While it certainly is possible to hand-code HTML files for use as website pages, this is rarely
done in practice. Modern web pages are extremely complex, and the coding would be too tedious
for most people to reliably write. Graphical-based WYSIWYG6 software exists for creating HTML
code in a manner similar to word processor applications. However, for simple web-based applications
it is quite easy to write a computer program that will output HTML-compliant text to a file which
a web server application may then “serve up” for any available web clients to access. An example
of such a program (written in C++) is shown in section 4.3 beginning on page 29.

6“What You See Is What You Get”

Chapter 3

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

17

18 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1 The OSI Reference Model

Layer 7

Application

Layer 6
Presentation

Layer 5

Session

Layer 4

Transport

Layer 3

Network

Layer 2

Data link

Layer 1

Physical

This is where digital data takes on practical meaning in the
context of some human or overall system function.

This is where data gets converted between different formats.

closed, and otherwise managed for reliable data flow.

This is where complete data transfer is handled, ensuring all data
gets put together and error-checked before use.

This is where the system determines network-wide addresses,
ensuring a means for data to get from one node to another.

This is where data bits are equated to electrical, optical, or other
signals. Other physical details such as cable and connector types

This is where "conversations" between digital devices are opened,

Examples: IP, ARP

Examples: CSMA/CD, Token passing, Master/Slave

Examples: ASCII, EBCDIC, MPEG, JPG, MP3

Examples: TCP, UDP

Examples: Sockets, NetBIOS

Examples: EIA/TIA-232, 422, 485, Bell 202
are also specified here.

This is where basic data transfer methods and sequences (frames)
are defined within the smallest segment(s) of a network.

Examples: HTTP, FTP, HART, Modbus

Chapter 4

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

19

20 CHAPTER 4. PROGRAMMING REFERENCES

4.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.

4.1. PROGRAMMING IN C++ 21

Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.

22 CHAPTER 4. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.

4.1. PROGRAMMING IN C++ 23

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.

24 CHAPTER 4. PROGRAMMING REFERENCES

4.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.

4.2. PROGRAMMING IN PYTHON 25

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.

26 CHAPTER 4. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC

6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.

4.2. PROGRAMMING IN PYTHON 27

assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.

28 CHAPTER 4. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.

4.3. GENERATING A SIMPLE WEB PAGE USING C++ 29

4.3 Generating a simple web page using C++

This program written in the C++ language outputs text to a file named index.html which may
then be read by a web browser application, either locally on the same computer or remotely if that
computer is running an http server:

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

float temp = 19.3;

ofstream testfile;

testfile.open ("index.html");

testfile << "<!DOCTYPE html>" << endl;

testfile << "<html lang=\"en\">" << endl;

testfile << endl;

testfile << " <head>" << endl;

testfile << " <title>This is my web page</title>" << endl;

testfile << " </head>" << endl;

testfile << endl;

testfile << " <body>" << endl;

testfile << " <p>This is how you make a paragraph</p>" << endl;

testfile << "
" << endl;

testfile << " <p>The temperature is " << temp << " degrees</p>" << endl;

testfile << " </body>" << endl;

testfile << endl;

testfile << "</html>" << endl;

testfile.close();

return 0;

}

30 CHAPTER 4. PROGRAMMING REFERENCES

When run, a file named index.html is created with the following content:

<!DOCTYPE html>

<html lang="en">

<head>

<title>This is my web page</title>

</head>

<body>

<p>This is how you make a paragraph</p>

<p>The temperature is 19.3 degrees</p>

</body>

</html>

Viewed with a web browser, the result is as follows:

4.3. GENERATING A SIMPLE WEB PAGE USING C++ 31

Let’s explore the design of this program in detail, during which we will elaborate on the following
programming principles:

• Reading/execution order

• Preprocessor directives (#include)

• The main function

• Arguments

• Delimiter characters (e.g. { } ;)

• Variable declarations

• float and int data types

• Variable names

• Variable initialization

• File stream instructions

• Return

Generally speaking text-based computer programming languages are read and executed in the
same order as English documents: character by character left-to-right, and line by line top-to-bottom.

The #include statements are called preprocessor directives, and simply tell the compiler software
to read the contents of certain standardized files included as part of the C++ compiler installation
on your computer, in this case the iostream, fstream, class templates and code libraries. Without
these in place, your code would have to be much longer and much more complicated because you
would have to define for the compiler what certain functions like testfile.open() are supposed to
do.

Following the #include statements is a line declaring which namespace this program will use.
Namespaces are one of those concepts distinguishing C++ from its predecessor language C, and for
the scope of this discussion all you need to know is that this line instructs the compiler to use the
standard (std) definitions of C++ functions.

Our HTML-writing code must be encapsulated inside the main function. Every C and C++
program has a main function where execution begins. In simple programs such as this, there is only
one function, and that is the main function. In more complicated programs there will be one main

function as well as other functions of different names.
The “int” preceding main tells the computer to expect an integer number value produced by

the function upon completion. This is not strictly necessary, but it is considered good programming
practice to have every function “return” some value such as this, which might be read by other
portions of the program as a positive indication of that function’s completion.

The parentheses “()” immediately following main exist to contain arguments to the function,
i.e. data “passed” to the function for it to process. In this case there are no arguments at all to be
passed to main and so the parentheses contain the word void.

32 CHAPTER 4. PROGRAMMING REFERENCES

Boundaries for the main function are defined by the placement of {} characters, called braces or
sometimes curly braces. Indentation of code lines helps the reader see where each pair of braces is
located in the page(s) of code, but this indentation is not strictly necessary in C or C++. It is the
braces, akin to parentheses for mathematical functions, which define how much code is contained
within any function.

Immediately following the opening brace { of the main function we find our first custom lines of
code. The first line begins with float and ends with a semicolon (;), declaring a variable named
temp we will use in our program, analogous to a variable we might used in a mathematical formula
(x, y, z). Many programming languages require you to “declare” each of the variables you intend
to use before you actually use them. This gives the computer opportunity to reserve right-sized
locations in its memory to store the variable data. The term float is short for floating-point which
is a form of binary notation useful for expressing numerical values in scientific notation. Floating-
point variables are good for expressing numbers ranging from very small to very large, and they are
necessary for expressing fractional (i.e. between integer) values. Integer data types are also offered
within C and C++, the most common being called int.

Unlike mathematics where variables are customarily denoted by single characters, in computer
programming variable names are spelled out as words. We are allowed to make up any variable
names we wish using English alphanumeric characters, with no spaces between the characters. In
this case, we are pretending that the variable temp will store a floating-point temperature value.

This particular variable declaration line happens to initialize the variable with a numerical value
immediately after declaring it. In a practical version of this program there would be additional lines
of code assigning values to temp based on a real temperature, but in this simple example all we’re
demonstrating is how to embed numerical values in an HTML file to be displayed in a web browser.

You will notice multiple lines in this program starting with testfile, containing double-less-than
symbols (<<), and of course ending with semicolons (;). These instruct the computer to send text
characters to a file stream to be written to a file named index.html. For those familiar with the cout
instruction in C++, it works similarly. Anything enclosed in quotation marks (" ") will be printed
to the screen verbatim, while any other “arguments” are interpreted as variables, the result being
the values of those variables being written to the file rather than their literal names. For example,
testfile << "x"; will write the ASCII character x to the index.html file, while testfile <<

x; will write the ASCII characters corresponding to the numerical value of the variable x to the
index.html file.

In addition to literal text (enclosed in quotes) and variables, other arguments may be passed on
to the file stream. An important one is endl (end-line), which tells the computer to end that line of
text when printing to the file. Without these endl inclusions, the text written to the index.html

file by our program would be a messy run-on statement with no breaks between lines.

Perhaps the best way to understand what how this file stream writing works is to compare the
code with the output generated by the program as it executes. Both have been included in this
example for your edification.

Finally, the last line of code within the main function returns an integer number value. This is
in agreement with the int predecing main near the top of the code listing: we told the compiler
that the main function would generate an integer-number value upon completion, and the return

4.3. GENERATING A SIMPLE WEB PAGE USING C++ 33

line is where this happens. As mentioned earlier, this is not strictly necessary, but it is considered
good programming practice to have every function, main included, return some sort of data upon
completion.

34 CHAPTER 4. PROGRAMMING REFERENCES

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

35

36 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

37

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

38 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 39

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

40 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 41

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Client

Server

Internet Protocol (IP)

Transmission Control Protocol (TCP)

Hypertext

Markup language

Encryption

42 CHAPTER 5. QUESTIONS

5.1.3 Writing a simple HTML file

Write a simple HTML file (saved to your computer’s drive with an .html extension to its filename)
and then view with a web browser to see the effects.

• Try different font types

• Create a table with words and numbers in it

• Research how to alter colors

• Determine what is necessary for the browser to “update” so that it reflects edits made to the
HTML code

Challenges

• Tim Berners-Lee could have designed web files in such a way that they were not readable as
ASCII text. Why do you suppose he chose a format based on ASCII characters?

5.2. QUANTITATIVE REASONING 43

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

44 CHAPTER 5. QUESTIONS

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

5.2. QUANTITATIVE REASONING 45

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

46 CHAPTER 5. QUESTIONS

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

5.2. QUANTITATIVE REASONING 47

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

48 CHAPTER 5. QUESTIONS

5.2.3 HTML color codes

Colors may be specified in several different ways within HTML code. One popular way is by using a
six-character hexadecimal number value, where every pair of characters represents an intensity value
for red, green, and blue light, respectively:

#rrggbb

For example, the hexadecimal color value #08C21A represents the blend of 0x08 (8

255
= 3.137%)

red, 0xC2 (194
255

= 76.08%) green, and 0x1A (26

255
= 10.20%) blue. The physical principle at work

is that any color may be created by mixing these three primary-color lights together in the proper
proportions.

Identify the color code for black.

Identify the color code for white.

Identify the color code for pure green.

Identify the color code for grey at 50% intensity.

Challenges

• Explain how a program could be written to vary the color of something on a webpage in
response to changes in measured (or simulated) temperature.

• Identify some alternative means of specifying colors in HTML.

5.3. DIAGNOSTIC REASONING 49

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

50 CHAPTER 5. QUESTIONS

5.3.1 Faulty C++ program

This C++ file is supposed to generate an HTML file to display room temperature (here, just a
constant value of 22.5 degrees Celsius) that a web browser can display. However, instead of displaying
“22.5 degrees” on the screen it says “temp degrees”.

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

float temp = 22.5; // Initializing room temperature value

ofstream testfile;

testfile.open ("index.html");

testfile << "<!DOCTYPE html>" << endl;

testfile << "<html lang=\"en\">" << endl;

testfile << endl;

testfile << " <head>" << endl;

testfile << " <title>Room Temperature Monitor</title>" << endl;

testfile << " </head>" << endl;

testfile << endl;

testfile << " <body>" << endl;

testfile << " <p>The temperature is temp degrees</p>" << endl;

testfile << " </body>" << endl;

testfile << endl;

testfile << "</html>" << endl;

testfile.close();

return 0;

}

What is wrong with this program, and how would we fix the error?

Challenges

• Modify this program so that it repeatedly increases the value of temp by some small amount,
and continually re-writes to the HTML file.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

51

52 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

53

54 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

55

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

56 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

57

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

58 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

59

60 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

61

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

62 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

63

64 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

65

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

66 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

67

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

68 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

69

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

70 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Berners-Lee, T.; Connolly, D., “Hypertext Markup Language – 2.0”, RFC 1866, Network Working
Group, May 1996.

Berners-Lee, T.; Fielding, R.; Frystyk, H., “Hypertext Transport Protocol – HTTP/1.0”, RFC 1945,
Network Working Group, May 1996.

Carr, C. Stephen, “Network Subsystem for Time Sharing Hosts”, RFC 15, Network Working Group,
25 September 1969.

Galbraith, J.; Van Dyke, J.; Bright, J.; “Secure Shell Public Key Subsystem”, RFC 4819, Network
Working Group, March 2007.

Richardson, T., “The Remote Framebuffer Protocol,” RFC 6143, Internet Engineering Task Force
(IETF), March 2011.

Simpson, W., “The Point-to-Point Protocol (PPP),” RFC 1661, Network Working Group, July 1994.

71

72 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

17 September 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

10 May 2021 – commented out or deleted empty chapters.

5 October 2020 – added to the Introduction chapter.

24 September 2020 – added more instructor notes to questions.

6 September 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

25-27 June 2020 – added content to Tutorial, introduction.

24 June 2020 – document first created.

73

Index

Adding quantities to a qualitative problem, 52
Annotating diagrams, 51

Berners-Lee, Tim, 13, 14

C programming language, 12
C++, 20
C++ programming language, 10, 12
Checking for exceptions, 52
Checking your work, 52
Client, 8
Code, computer, 59
Code, library, 10, 12
Compiler, C++, 20
Computer programming, 19

Dimensional analysis, 51

Edwards, Tim, 60
Encryption, 8

File Transfer Protocol, 9
FTP, 9

Graph values to solve a problem, 52
Greenleaf, Cynthia, 35

How to teach with these modules, 54
HTML, 13, 14
HTTP, 8
HTTPS, 13
Hwang, Andrew D., 61
HyperText Markup Language, 13, 14
HyperText Transfer Protocol, 8

Identify given data, 51
Identify relevant principles, 51
Instructions for projects and experiments, 55

Intermediate results, 51
Internet, 7
Internet Service Provider, 7
Interpreter, Python, 24
Inverted instruction, 54
ISP, 7

Java, 21

Key, encryption, 10, 11
Knuth, Donald, 60

Lamport, Leslie, 60
Library, code, 10, 12
Limiting cases, 52

Markup language, 14
Metacognition, 40
Modem, 7
Moolenaar, Bram, 59
Murphy, Lynn, 35

Open-source, 59

Point-to-Point protocol, 7
PPP, 7
Private key, 10, 11
Problem-solving: annotate diagrams, 51
Problem-solving: check for exceptions, 52
Problem-solving: checking work, 52
Problem-solving: dimensional analysis, 51
Problem-solving: graph values, 52
Problem-solving: identify given data, 51
Problem-solving: identify relevant principles, 51
Problem-solving: interpret intermediate results,

51
Problem-solving: limiting cases, 52
Problem-solving: qualitative to quantitative, 52

74

INDEX 75

Problem-solving: quantitative to qualitative, 52
Problem-solving: reductio ad absurdum, 52
Problem-solving: simplify the system, 51
Problem-solving: thought experiment, 51
Problem-solving: track units of measurement, 51
Problem-solving: visually represent the system,

51
Problem-solving: work in reverse, 52
Programming language, 14
Programming, computer, 19
Public key, 10, 11
Python, 24
Python programming language, 12

Qualitatively approaching a quantitative
problem, 52

Reading Apprenticeship, 35
RealVNC, 12
Reductio ad absurdum, 52–54
Remote Framebuffer Protocol, 12
RFP, 12
RSA encryption, 10, 11

Schoenbach, Ruth, 35
Scientific method, 40
Secure File Transfer Protocol, 10
Secure SHell protocol, 11
Server, 8
SFTP, 10
Simplifying a system, 51
Socrates, 53
Socratic dialogue, 54
Source code, 20
SPICE, 35
SSH, 11
Stallman, Richard, 59

Telnet, 11
Thought experiment, 51
Torvalds, Linus, 59

Units of measurement, 51

Visualizing a system, 51

Website, 13

Whitespace, C++, 20, 21
Whitespace, Python, 27
Work in reverse to solve a problem, 52
WYSIWYG, 16, 59, 60

	Introduction
	Recommendations for students
	Challenging concepts related to internet-based systems
	Recommendations for instructors

	Tutorial
	Connecting to the Internet
	Data transfer protocols
	File transfer
	Remote session
	The World-Wide Web
	HyperText Markup Language

	Derivations and Technical References
	The OSI Reference Model

	Programming References
	Programming in C++
	Programming in Python
	Generating a simple web page using C++

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Writing a simple HTML file

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	HTML color codes

	Diagnostic reasoning
	Faulty C++ program

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

