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Chapter 1

Introduction

1.1 Recommendations for students

One of the principal advantages of digital data is its relative ease of storage. Unlike analog data
which must find expression in some physical form capable of the same infinitesimal resolution, digital
data may be stored in any medium capable of retaining discrete states. The storage of digital data
allows for the existence of computer files, digital audio recordings, digital movie recordings, with
all the intrinsic advantages (and disadvantages!) of digital. The advantages of digital data storage
vastly outweigh the advantages of analog for most applications. The general term we use for any
form of digital data storage is memory, although this term is most often applied to integrated circuits
intended to store digital data.

Important concepts related to digital memory include the representation of data in discrete

form, digital codes, binary counting, data volatility, modes of data access (e.g. sequential),
latch and multivibrator circuits, addressing, tri-state logic, timing diagrams, propagation
delay, set-up and hold times, decoding, memory expansion, different memory technologies,
and electroscopes.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to demontrate how to read and write
solid-state RAM memory? What hypotheses (i.e. predictions) might you pose for that
experiment, and what result(s) would either support or disprove those hypotheses?

• How might an experiment be designed and conducted to measure the minimum necessary set-
up time for a flip-flop? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to measure the minimum necessary hold
time for a flip-flop? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• What property(ies) of a device or system is/are necessary for it to function as a memory
element?

3



4 CHAPTER 1. INTRODUCTION

• What is the distinction between reading from memory versus writing to it?

• What is the distinction between address versus data for any particular memory device?

• How may we tell if a memory device is volatile or non-volatile?

• How may we tell if a memory device is sequential- or random-access?

• Why are tri-state logic gates necessary within certain types of memory circuits?

• What timing requirements may be necessary for reliably reading and writing memory data?

• Why do memory timing diagrams sometimes show data states that are both high and low at
the same time?

• Why is the duration of the address enable (AE) line for a memory circuit different from the
duration of the stable data on the I/O line(s)?

• How do we “expand” a memory array from smaller memory elements?

• What is the purpose of the various “enable” lines on a memory IC?

• What are some of the various sub-types of “read-only” (ROM) memory technologies?

• Where might we use specific types of digital memory technologies (e.g. PROM versus
EEPROM, RAM versus magnetic disk, etc.)?



1.2. CHALLENGING CONCEPTS RELATED TO DIGITAL MEMORY 5

1.2 Challenging concepts related to digital memory

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Reading hex dumps – arrays of hexadecimal values showing the contents of a memory
module are often referred to as hex dumps, and properly interpreting their contents is a skill in
itself. Just know that the addresses go in incrementing order as the hex dump is read from left
to right, top to bottom, just like reading an English-written document. The “offset” address
given in the left-most column simply shows the beginning address value for that row of hex
data, each successive column in the hex dump array moving toward the right reflecting an
increment in address value from that starting “offset value”.

• Set-up and Hold times – any digital circuit using timing pulses will have set-up and hold-
time requirements, which are minimum-time specifications that all input pulse signals must
meet in order for the circuit to reliably work. Always remember that these specified times are
minimum, which means it’s perfectly okay to exceed them but not safe to time the signals for
less.

• Memory expansion – combining multiple memory ICs together to form larger, more practical
memory arrays is an important concept in digital systems. Data-word expansion is easy enough
to grasp, but address expansion requires more components to implement and tends to cause
confusion for students new to the topic.

• Tri-state gate outputs – logic gates with tri-state output capability are commonly used to
allow multiple digital devices to output data to common “bus” lines, only one of those devices
being enabled at any given time. Tri-state outputs essentially disconnect the output of the
logic gate from its external output terminal when in “Hi-Z” or high-impedance mode. When
enabled, a tri-state output acts like the output of any regular logic gate, able to sink or source
current.

The Historical References chapter contains multiple sections describing memory technologies,
some legacy and some still popular. These are useful for applying concepts taught in the Tutorial,
as well as for historical context. The Case Tutorial chapter also contains sections showing realistic
examples of how multiple memory ICs may be interconnected to form memory arrays with wider
data words, or with larger address spaces.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Apply the concept of memory expansion to practical memory circuits

Assessment – Predict logical states on address lines necessary to select a given address in
an expanded memory array; e.g. pose problems in the form of the “Addressing an expanded
memory module” Quantitative Reasoning question.

• Outcome – Design an expanded memory array circuit

Assessment – Sketch a schematic diagram of a circuit employing multiple static RAM or
ROM ICs to form a memory array with more data bits; e.g. pose problems in the form of the
“Doubling data width” Quantitative Reasoning question.

Assessment – Sketch a schematic diagram of a circuit employing multiple static RAM or
ROM ICs to form a memory array with more addresses; e.g. pose problems in the form of the
“Doubling address width” Quantitative Reasoning question.

• Outcome – Apply the concept of checksums to digital data

Assessment – Use hash algorithms to validate the integrity of data files provided by the
instructor or by other students, comparing hashes from files claimed to be identical.

• Outcome – Program an EPROM or NVRAM memory device with a specified data set

Assessment – Use a PROM programming tool to load a hex dump style table into the
memory IC.

Assessment – Connect switches to the address and data inputs of a static memory IC to
program its contents manually.

Assessment – Locate static RAM datasheets and properly interpret some of the
information contained in those documents including bus width, number of addresses, total
memory capacity, timing diagrams showing set-up and hold time minimums, etc.

Assessment – Locate dynamic RAM datasheets and properly interpret some of the
information contained in those documents including bus width, number of addresses, total
memory capacity, timing diagrams showing set-up and hold time minimums, etc.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7
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2.1 Example: 16x8 array from 16x4 memory ICs
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• Each memory ICs contains sixteen addressable memory cells, each cell storing a four-bit word

• The entire array contains sixteen addressable memory cells, each cell storing an eight-bit word

• Both memory ICs access their respective memory cells simultaneously

• Both memory ICs enable and disable simultaneously by command of the CE input signal

• Both memory ICs write or read simultaneously by command of the WR input signal
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2.2 Example: 16x16 array from 16x4 memory ICs
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• Each memory ICs contains sixteen addressable memory cells, each cell storing a four-bit word

• The entire array contains sixteen addressable memory cells, each cell storing a sixteen-bit word

• Both memory ICs access their respective memory cells simultaneously

• Both memory ICs enable and disable simultaneously by command of the CE input signal

• Both memory ICs write or read simultaneously by command of the WR input signal
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2.3 Example: 32x4 array from 16x4 memory ICs
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• Each memory ICs contains sixteen addressable memory cells, each cell storing a four-bit word

• The entire array contains thirty-two addressable memory cells, each cell storing a four-bit word

• The upper IC accesses its memory cells for the first 16 addresses 0b00000 through 0b01111

• The lower IC accesses its memory cells for the second 16 addresses 0b10000 through 0b11111

• Both memory ICs enable and disable simultaneously by command of the CE input signal

• Both memory ICs write or read simultaneously by command of the W/R input signal
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2.4 Example: 64x4 array from 16x4 memory ICs
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• Each memory ICs contains sixteen addressable memory cells, each cell storing a four-bit word

• The entire array contains sixty-four addressable memory cells, each cell storing a four-bit word

• Each IC accesses its memory cells for one-quarter of the address space, i.e.:

One IC for the first 16 addresses 0b000000 through 0b001111

Another for the next 16 addresses 0b010000 through 0b011111

Another for the next 16 addresses 0b100000 through 0b101111

The last for last 16 addresses 0b110000 through 0b111111

• Both memory ICs enable and disable simultaneously by command of the CE input signal

• Both memory ICs write or read simultaneously by command of the W/R input signal
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2.5 Example: AWG circuit using nonvolatile memory IC

A very useful piece of test equipment for electronics work is an arbitrary waveform generator, or
AWG, designed to produce an AC or pulsing DC voltage signal with adjustable frequency. A parallel
memory IC may be used as the basis for such a circuit, by programming the memory with numerical
values corresponding to different levels of voltage in the desired waveform over time, and then using
a clock-driven counter circuit to address the memory IC. The memory IC’s output data then drives
a digital-to-analog converter:

A0

A1

A2

A3

D0

D1

D3

D2

memory

CE

W/R

D4

D5

D6

D7

A4

A5

A6

A7
A8

A9

A10

A11

4096 × 8

CTR

Clock

DAC

In the example shown here where we use a 12-bit counter to drive a 4096 × 8 memory IC, the
arbitrary waveform is stored as a series of 4096 (212) numerical values in the memory IC which means
the output waveform will have a frequency that is 1

4096
that of the clock signal. The clock may be

as simple as a 555 timer circuit, and should be adjustable-frequency. With 8 bits of data driving
the DAC, the waveform’s amplitude may be divided up into 256 (28) increments which establishes
its voltage resolution. The result is a waveform that actually has a stair-step profile, but may be
easily “smoothed” with some low-pass filtering.

If we do not require a very “smooth” wave-shape, we may use fewer address lines and therefore
fewer addresses within the memory (this makes fewer horizontal steps in the stair-step output
waveform, and also makes the output waveform’s frequency greater for the same clock pulse
frequency) and/or use fewer data lines (this makes fewer vertical steps in the stair-step output
waveform).

Configuring the wave-shape for this AWG is simply a matter of programming different numerical
values into the memory IC. A sawtooth waveform, for example, consists simply of steadily-
incrementing data values written to consecutive addresses, so the 8-bit output begins at 0x00 and
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proceeds linearly to 0xFF over as many time-steps as there are addresses. Such a sawtooth wave
example would be a great application for truncating the memory space to the same number of bits
as the data, so that each consecutive address will contain the identical value as data (e.g. address
0x00 is data 0x00, address 0x01 is data 0x02, etc. A sine wave would require the data values to be
scaled linearly from the minimum and maximum values of a sine wave (e.g. the data values span 0
through 255 for an 8-bit DAC, corresponding to a sine wave oscillating between −1 and +1).

High-frequency AWG applications may require the addition of a data latch between the memory
IC and the DAC, to avoid spurious results if the memory IC’s data lines do not all settle at their
next values simultaneously:

A0

A1

A2

A3

D0

D1

D3

D2

memory

CE

W/R

D4

D5

D6

D7

A4
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4096 × 8

CTR

Clock

DACLatch

The latch’s function is to “hold” the data value constant to the input of the DAC while the
memory IC’s data lines are transitioning states, and “pass” that new data to the DAC during a
period when the counter’s output is not changing and therefore not driving any new address values
to the memory.
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A photograph of a complete AWG built using a 27C256 UVEPROM appears below:

This particular printed circuit board (PCB) has etched traces for all the EPROM terminals, 555
timer circuit, 74HCT377 data latch, and R/2R “ladder” network as the digital-to-analog converter,
but a generic “prototyping” area where a student could design and build their own digital counter
and analog amplifier circuits.



Chapter 3

Tutorial

The most elementary form of signal is called discrete: a signal with only two possible states: true

and false, or 1 and 0, respectively. Such signals may be expressed as electrical voltage levels, optical
light intensities, magnetic polarities, physical component positions, subatomic particle “spin” states,
and/or any other medium capable of two definite states. Alone, a discrete signal cannot represent
anything but a single bit of information, but when grouped together a collection of bits may represent
many things, for example binary numbers or alphanumeric characters. This is what we mean by the
word digital : information represented by means of discrete bit states in any medium1.

Furthermore, any medium capable of retaining a discrete status over some length of time may
be employed as a means for the storage of digital information. So long as those discrete states are
not easily disturbed, the medium will be able to “remember” the digital data even in the face of
corrupting influences such as external noise.

Digital data storage is incredibly useful, and has revolutionized our modern world. We have
the ability today to archive and retrieve information in digital form that were unthinkable just a
few decades ago, with the most evident form of progress being the ever-shrinking physical volume
occupied by this storage.

A general term we use to describe any circuit, mechanism, or other device designed to “remember”
information in digital form is memory. Many different types of memory technologies exist, and the
purpose of this Simplified Tutorial is to introduce you to common principles as some of the more
popular forms. We will begin with a form of memory that is considered obsolete but is very easy to
understand: punched paper tape.

1In fact, DNA with its chemical bonds formed between adenine and thymine molecules, and also between guanine
and cytosine molecules, is itself a form of digital information storage. These four types of molecules comprise four
possible states for each “bit” of a DNA data “word”, making DNA coding quaternary rather than binary.

19
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3.1 Punched paper tape

The earliest digital electrical computers stored data both electrically and mechanically, electrical
memory consisting of relay-based latching circuits and mechanical memory consisting of paper tape
with small holes punched through. A hole (versus an un-punched area of tape) constituted the
discrete states of each section of tape. A photograph of a mechanism designed to translate these
holes and non-holes into discrete electrical states appears in the following photograph taken of the
Automatic Sequence Controlled Calculator built by IBM in the 1940’s. The tape with its patterns
of punched holes is clearly visible, threaded through the mechanism:

As this tape passed through the mechanism, metal contacts placed on either side of the paper
tape would make contact through a hole in the tape and be insulated from each other in the absence
of a hole, thus translating the paper’s discrete states (hole versus non-hole) into discrete electrical
states (continuity versus non-continuity).

A mechanism such as the one pictured is said to read the tape: translating the paper holes/non-
holes into electrical bits, akin to a human being translating ink markings on paper into word-based
thoughts when reading a text. The complement to reading is writing, which took the form of a
special hole-punching machine in the case of paper tape.

Reading and writing are fundamental concepts applicable to any form of memory or data storage
system, and are easy to understand in the context of paper tape.

Another general concept associated with digital memory is access : the ability to locate data on
the medium. In the case of tape, the access is sequential in nature because the tape can only move
longitudinally. If the computer needed to read (or write) data at some location on the tape far
from its present location, its only recourse was to fast-forward or rewind the tape until that location
reached the mechanism, meanwhile passing over all the other locations on the tape in sequence.
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Some digital memory technologies, by contrast, offer random access which means the ability to
“jump” to any arbitrary data location on demand without having to pass through all the other data
locations in sequential fashion.

An illustration of a punched tape section for the Automatic Sequence Controlled Calculator shows
a set of “drive holes” at either edge designed to engage with sprocket pegs within the mechanisms.
The smaller holes in the middle section of the tape encode the digital data. Text written beside the
tape illustration comment on the meaning of the hole patterns. Thin horizontal lines drawn on the
tape serve only as marks to help human readers separate sets of holes from each other, dividing the
tape’s data into distinct sections2, each representing a single numerical quantity:

2The computer itself had no need for these lines, and in fact was blind to all but the holes. A careful examination
of this illustration reveals a consistent placement of the drive holes with each section of tape, so that the computer
needed only to align the drive sprocket to these intervals in order to properly orient the rows of holes for reading.
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3.2 Digital memory principles

Punched paper tape, of course, is an obsolete technology. However, it serves as a simple example
of concepts common to most memory technologies, as we saw with reading versus writing and
sequential- versus random-access.

Another important concept of digital memory evident in punched paper tape is the distinction
between address and data3. “Data” is the information encoded at any particular location in the
memory, in the case of this paper tape from the 1940’s data being the numerical value represented
by any four-row pattern of punched holes. “Address” is the particular location of data along the
length of the tape. We could imagine the first set of four data rows at one end of a tape being
address number zero, with each successive data group having sequentially-numbered addresses.

Every digital memory is limited by addresses and also by the amount of data resident at each
address. In the case of the paper tape example previously shown, the number of addresses is limited
only by the length of the tape, while the amount of data per address is fixed at 96 bits4, equivalent
to (a maximum of) 24 decimal digits by the encoding scheme used within the Automatic Sequence
Controlled Calculator. A magnetic hard disk (another form of digital memory) is limited in addresses
by the maximum number of areas on the disk surface which may be magnetized to represent binary
1 and 0 states.

When we examine semiconductor memory ICs we generally find some pins5 dedicated as address
lines and other pins dedicated as data lines. The legacy model 7489 memory IC pin assignments are
as follows, with four address lines labeled A0 through A3 and four data lines labeled D1 through
D4:
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7489 TTL random-access memory IC

The model 7489 memory IC thus had a total capacity of 64 bits, organized as 16 × 4 bits –
sixteen addresses containing four bits of data each. To select the address of interest we set the logic
states of the address lines to the binary number desired (e.g. address number five would be selected
by making A3 = 0 and A2 = 1 and A1 = 0 and A0 = 1) while the four-bit data word could either be
applied to the data pins (with pin 3 set low to enable the IC’s write mode) or measured on those
same pins (with pin 3 set high to disable write mode and enter read mode, making the data pins
outputs rather than inputs).

3Non-computer analogies exist to help understand these two terms. In a postal service, the address for any
particular mailbox is usually a combination of numbers and words (e.g. 1234 Main Street) while the data is the
information contained within each mailbox in the forms of letters, photographs, and other items residing inside.

4A close examination of the tape reveals that each row contains 24 places for holes, and there are four of these
rows per section. 24× 4 = 96.

5This is true of so-called parallel-addressed memory ICs.
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A helpful analogy for digital memory addresses versus data is to consider the function of a postal
service mailbox, where the box bears a label called the address and is ready to contain letters inside
of it (data). Here we see a row of mailboxes with sequential address labels, one of those mailboxes
opened up to reveal data inside of it:
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Modern digital memory devices have enormous capacity compared to the legacy 7489 IC. Consider
the following IC with an organization of 32k × 8:
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IS61C256AL CMOS random-access memory IC
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Despite its much larger capacity, this IC functions much the same as the legacy model 7489 with
its lowly 16 × 4 organization. We still select the intended address within the IC by asserting “high”
and “low” logical states on the address pins (A0 through A14) while either reading data from or
writing data to the data pins (D0 through D7). Fifteen address lines represents 215 = 32768 unique
addresses, each of those addresses storing one byte of data accessible via the eight data lines.

The fact that any address within this IC may be accessed simply and immediately by applying
the desired “high” and “low” logical states to its address pins makes this device an example of
random-access memory, because different addresses may be accessed in any (random) order. Nearly
all solid-state memory devices are random-access in nature.
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A common form of visual map for addresses and the data stored within a memory device is
something called a hex dump. This is a listing of digital word values (in hexadecimal) printed left-
to-right and top-to-bottom, with a listing of starting addresses on the left-hand side. For example,
here is a hex dump shown on the software screen for a memory IC programming device, for a string
of text written by the American author Jack London:

The proper function of man is to live, not to exist. I shall not waste my days in trying

to prolong them. I shall use my time.

The column of numbers on the left-hand edge of the display labeled “OFFSET” (00000000
through 00000240) are the starting addresse values for each row. Each row contains sixteen bytes of
data (each byte shown as a two-character hex value), which is why the starting addresses increment
by “1” in the sixteen’s place6. In this example, the data value 0x54 resides in memory address
0x00000000, the data value 0x68 in address 0x00000001, the data value 0x65 in address 0x00000002,
the data value 0x74 in address 0x0000000F, etc. On the far-right side of this display we see the
ASCII interpretation of these byte values, which for the digitization of the Jack London quote is
perfectly appropriate. Often you will find hex dumps where the ASCII characters are gibberish
because the data stored in the device’s memory is intended for some purpose other than text.

6Remember that the address labels themselves are in hexadecimal as well! Thus, 0x00000000 is zero, 0x00000010
is sixteen, 0x00000020 is thirty-two, etc.
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Yet another general concept associated with memory is volatility : the degree to which the bits
are able to retain their proper states in the absence of any supporting energy or manipulation.
Punched paper tape is considered nonvolatile memory because it “remembers” its data indefinitely
without any external assistance. By contrast, many of the electrical relays used within the IBM
Automatic Sequence Controlled Calculator for temporarily storing data would “forget” that data if
de-energized, and would therefore be categorized as volatile memory.

For example, the model IS61C256AL memory IC shown previously happens to be volatile.
However, the model 27C256 memory IC has the same organization (32k × 8) and nearly the same
pin assignments but is nonvolatile7:
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Let us recap these general concepts before continuing:

• Reading versus Writing – retrieving data from versus placing data to memory

• Random-access versus Sequential-access – being able to arbitrarily jump to a location
in memory versus being forced to pass through all locations in sequence

• Address versus Data – the location at which information is stored versus the information
being stored at a given location in memory

• Volatile versus Nonvolatile – requiring power to retain data versus not

7The 27C256 IC may be electrically written, but erased only by exposing the silicon die to ultraviolet light.
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3.3 Electronic memory

A primitive example of volatile electronic memory is the D latch logic circuit, capable of storing a
single bit of information so long as DC power is maintained to the D-type latch:

Q

QD

E

Data write Data read

Write/Read

A single bit may be written to the latch through the D input terminal, as a discrete ground-
referenced voltage signal8. The stored data may be read at the Q terminal at all times. The “Enable”
(E) terminal serves to control when external data is written to the latch or ignored: when high the
latch is in write mode with any data presented to the latch at terminal D transparently passed on
to terminal Q; when low the latch is in read mode and it ignores any data input to its D terminal,
simply “holding” (i.e. remembering) the previously-written data at its Q output terminal.

Most semiconductor-based memory circuits re-use the same terminals for alternately reading and
writing data. In other words, a single-bit memory circuit will have a solitary “data in/out” terminal
serving as an input during write mode and an output during read mode. This functionality is easy
to add to our D-type latch using tri-state buffer and inverter gates:
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Memory cell circuit

Data
in/out

(I/O)

This simple memory circuit has a storage capacity of one bit, and a single address for that bit.

8As usual, power supply terminals are omitted from this diagram for simplicity, but are absolutely essential to the
proper operation of the circuit.
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While this simple circuit works well as a one-bit “memory cell”, we will need to find a way to link
many of these “cells” together to form memory arrays if we are to ever have memory with significant
data-storage capacity. In order to provide multiple addresses for single bits of data, we will need
to have multiple memory cells and be able to selectively access one at a time. To do this, we must
augment our memory cell design with a master enable/disable input useful for selecting which cell
will be read from or written to. Since the purpose of this additional input is for addressing, we will
call it the address enable line:

Q

QD

E

Write/Read

Memory cell circuit

Enable
Address

Data
in/out

(I/O)

When high, the address enable line allows data to be read from or written to the memory cell.
When low, the address enable line forces the outputs of both AND gates to go low, placing the
tri-state buffer into its high-impedance modes to effectively “disconnect” the Q terminal from the
data I/O line, so that the D-type latch cannot assert a logical state onto the I/O line.

Not only does the tri-state buffer allow this memory cell to take data in through the I/O line
from some other source when in the Read mode (also with the address enabled, of course) while not
sensing its own last-stored state from the latch’s Q output, but it also prevents multiple memory
cells sharing a common I/O line from accidently asserting opposing logic states on that same line
when only one of those memory cells is being addressed.
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3.4 Signal timing

Timing diagrams help illustrate the proper use of memory circuits, showing all the set-up and hold
times necessary for reliable operation. Below we see a timing diagram for a read cycle where we
give the memory cell circuit the read command (by making the Write/Read input line low) and
“address” the memory cell (by making the Address Enable input high):

Data validI/O

W/R

AE

High-Z High-Z

(Disabled) (Enabled)

(Write) (Read)

(Disabled)

t1 t2

So long as the Address Enable line is disabled (i.e. low) the memory cell’s data I/O line will be
in its high-impedance mode, as shown in the timing diagram by the line being in the middle rather
than firmly high or low9. Once the memory cell is enabled by the high Address Enable signal and
the buffer’s propagation delay time elapses, the D latch’s Q output state appears on the I/O line
ready to be “read” by any other digital device. Propagation delays (t1 and t2) associated with the
AND gate and the tri-state buffers make the data’s appearance “lag” the Address Enable signal.

The read data’s appearance on this timing diagram may look very strange to anyone familiar
with combinational logic circuits, as the “Data valid” time period appears to show this signal as
being simultaneously high and low. This, of course, is an impossibility, and so the timing diagram
must be communicating some other idea to us. Indeed it is, as this “high-and-low” notation simply
means the memory cell will output whatever state is held in the D latch, be it high or low. Since this
depends on data previously “written” to the D latch, and we have not been informed of this circuit’s
history prior to this read cycle, we have no way of knowing whether the I/O line will assume a high
or a low state, and so we draw both states.

An important lesson we need to draw from this timing diagram about memory circuits in general
is that certain input states are necessary to permit us to read their contents, and also that certain
time delays must be anticipated between the assertion of those necessary states and the presentation
of the stored data.

9This is not to imply that the actual voltage will be mid-way between the +V power supply rail and ground, but
rather this is just a way to distinguish the high-impedance mode from a definite low or high state. In reality the data
I/O signal’s voltage level could be any value during that time. All we can say during the “disabled” time is that the
memory cell circuit will not assert any logic state to its I/O line, either high or low.
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Likewise, when writing data to a memory cell circuit we must be sure to abide by the sequence
and timing requirements of the circuit as shown by a timing diagram. Below we see such a diagram
showing a write cycle where we give the memory cell circuit the write command (by making the
Write/Read input line high) and “address” the memory cell (by making the Address Enable input
high):
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W/R

AE

High-Z High-Z

(Disabled) (Enabled)

(Read)

(Disabled)

t1 t2

(Write)

Since this is a write cycle and not a read cycle, data on the I/O line comes from some other
digital device sending a signal to the memory cell. Note how this data must be stable (“valid”) prior
to the enabling of the circuit and remain stable after we disable the circuit for certain amounts of
time (t1 set-up time and t2 hold time, respectively).

An important lesson we need to draw from this timing diagram about memory circuits in general
is that data sent to a memory circuit must be stabilized at the I/O pin(s) both before and after
the circuit is enabled for a write cycle. Failure to heed these set-up and hold times will result in
unreliable operation.

These basic timing principles are true for multi-bit memory arrays as they are for single-bit
memory cell circuits. Next, we will explore just how we may combine multiple memory cells together
to form these larger arrays.
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3.5 Combining memory elements

The following schematic diagram shows how sixteen such memory cells may be interconnected along
with a 4-line to 16-line decoder to form a 16 × 1 bit memory array (i.e. sixteen addresses, each one
storing one bit of data):
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Four address lines (A0 through A3) accept a binary-numbered value into the decoder, which in
turn selects (enables) which of the sixteen memory cells connects to the data bus for either reading
or writing. Note how every one of the memory cells’ W/R lines connect in common to a single W/R
line for the 16 × 1 memory array, but with the individually-activated Address Enable (AE) lines
only one memory cell may input or output its data at any given moment.

Expanding this memory array to possess a greater number of addresses simply consists of adding
address lines and using a larger decoder to select a larger number of memory cells. For example, five
address lines would yield 25 (thirty-two) memory addresses; eight address lines would yield 28 (two
hundred and fifty-six) memory addresses; sixteen address lines would give us 216 (65536) addresses.

In order to avoid the complexity of extremely large decoders (e.g. a 16-line to 65536-line decoder!)
it is more practical to use pairs of smaller decoders to select memory cells arranged in a two-
dimensional grid. For our hypothetical 65536 × 1 memory array, imagine an 8-line to 256-line
decoder connected to the first eight address lines (A0 through A7) selecting which row of memory
cells, plus another 8-line to 256-line decoder connected to the last eight address lines (A8 through
A15) selecting which column of memory cells to access. Thus, we would have a “grid” of memory
cells with 256 rows and 256 columns and a total of 65535 memory cells, each memory cell located at
an intersection of one row and one column line. The address enable (AE) input of each memory cell
would connect to the output of an AND gate, the AND gate’s inputs connecting to the respective
row and column lines such that only the cell located at the active row line and the active column
line would become connected to the data bus for reading or writing.
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A simplified schematic diagram showing a 16 × 16 “grid” addressing just 256 memory cells
appears below10. Each memory cell has an AND gate driving its AE input, with the two inputs of
each AND gate connected to a unique combination of row and column lines:
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Thus, the “grid” circuit design allows relatively large memory arrays to be constructed using
decoders of modest line count.

10Many wires and memory cells have been omitted from this diagram to avoid clutter, and unconnected wires
crossing paths are simply overlaid on top of one another rather than shown with the semi-circular “jump” symbols
as I typically use, simply because the schematic would become overwhelmingly complicated if shown in full detail. In
fact, the number of memory cells shown here is only one-quarter of the 256 you would find in a real 16 × 16 grid
memory!



32 CHAPTER 3. TUTORIAL

However, no amount of address expansion will make this array store more than one bit per
address. In order to expand the number of data bits stored within each address of the array, we
must combine the circuits in a different manner. Examine the following 16 × 4 memory array,
constructed from four 16 × 1 arrays:
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As you can see here, each of the 16 × 1 arrays shares the same address and R/W lines, but their
respective data lines separately form a 4-bit data I/O bus. Thus, each array stores just one bit of
the four-bit data word for the larger memory array.
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The legacy model 7489 memory IC used a very similar form of 16 × 4 organization scheme:

1 2 3 4 5 6 7 8
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7489 TTL random-access memory IC

Notable differences between the 7489 and our 16 × 4 memory circuit design include separate
input and output data busses (D0 through D4 are inputs accepting data to be written, while Q0

through Q3 are outputs where data could be read from the memory) as well as a master memory

enable (ME, alternatively known as a chip enable, or CE) line designed to enable or disable the
entire integrated circuit by placing the data pins in high-impedance (tri-state) mode.

The “master enable” line is especially useful for combining multiple memory ICs to form even
larger memory arrays. Consider the following example, where two 7489 ICs are combined to form a
single 32 × 4 memory (showing only the address line connections for simplicity – the other terminals
are all respectively paralleled):
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A fifth address bit (A4) selects which of the two 7489 memory ICs to enable: when low, the
left-hand 7489 enables for reading and writing; when high, the right-hand 7489 enables. Thus, one
memory IC handles the first sixteen addresses (00000 through 01111) while the second IC handles
the next sixteen addresses (10000 through 11111).

This same strategy could be expanded as far as one likes, combining memory arrays to form even
larger arrays, with each new address line doubling the number of memory addresses. We may even
incorporate decoder ICs to simplify this expansion: all additional address lines become inputs to the
decoder, while the decoder’s output lines selectively enable one memory IC at a time. A 3-line to
8-line decoder, for example, would permit us to combine eight memory ICs together for an eight-fold
expansion of the address space.
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Before proceeding further, let us review our list of general memory concepts and see how they
apply to these latch-based forms of digital memory:

• Reading versus Writing – controlled by the discrete state of a single R/W input terminal,
which in turn controls which of the internal tri-state buffers pass data and which are in high-
impedance mode

• Address versus Data – addressing is controlled by the digital states of a four-bit bus, while
data is read and written by a separate four-bit bus

• Random-access versus Sequential-access – since addressing is entirely controlled by the
binary value represented by the four-bit address bus, it is possible to “jump” to any arbitrary
address desired without having to pass sequentially through all the others lying in between

• Volatile versus Nonvolatile – since latch circuits are based on interconnected semiconductor
logic gates, and logic gates require the DC power to function, this memory is entirely volatile
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3.6 Types of memory elements

Many digital applications require electronic forms of memory that are nonvolatile. An example of
this is the BIOS of a personal computer, retaining important information the microprocessor needs
to know immediately upon start-up in order to properly utilize the resources available to it (e.g.
magnetic hard drives, communication ports, etc.). Microcontrollers, which are essentially single-chip
computers, need some on-board nonvolatile memory in order to retain the programming which will
instruct them what to do upon power-up as well.

If we were to replace the latch circuit at the heart of every memory cell of the previous examples
with a hard-wired connection to +V or to Ground (a logical 1 or 0, respectively), maintaining most
of the other circuitry required for addressing and multiplexing those hard-written cells, we would
have a read-only memory useful for the aforementioned purposes. If the memory IC is designed in
such a way that it may only be written (programmed) at the place of manufacture, we simply refer to
it as a ROM (Read-Only Memory). If it is manufactured as a “blank slate” ready to be indelibly11

programmed once by the end-user, it is known as a PROM (Programmable Read-Only Memory).
Some PROMs may be bulk-erased, either by an electrical signal or by exposure to ultraviolet light,
in which case they are called EEPROM (Electrically Erasable) or UVPROM (UltraViolet erasable)
memories, respectively. Such EPROM (Erasable Programmable Read-Only) memories are the basis
of digital system firmware, where instructions for some digital device may be deliberately altered by
the user, but are otherwise only read by that device and not written to.

Unfortunately, read-write electronic memory systems such as those based on latch circuits are
typically called RAM which of course stands for Random-Access Memory. While this type of memory
is certainly random-access, so is every semiconductor-based read-only memory (ROM). So, the label
of “RAM” in fact has more to do with the circuits being volatile than with being randomly-accessible.

Multiple technologies exist for RAM. Latch-based memory cells such as those we previously
explored create what is known as static RAM. One disadvantage of static RAM is the number of
transistors necessary to implement each cell. Since most practical RAM ICs contain thousands of
these memory cells, even modest reductions in transistor count for each cell yield substantial savings
in silicon overall. Fewer transistors per cell mean more cells that may be placed on the same area of
silicon. Another disadvantage of static RAM, especially when based on TTL logic circuitry, is high
power dissipation: thousands of latch circuits drawing current from the power source will dissipate
significant quantities of heat and pose an operating limit on battery-powered digital circuits.

An alternative to a transistor-based latch-type memory cells is RAM memory using capacitively-
triggered transistors, the logical memory state maintained as an electric charge (or lack of charge)
on each capacitor. With a microscopic capacitance serving as the memory element instead of a latch
circuit, the number of transistors per cell may be dramatically reduced, and the amount of memory
available on a given chip dramatically increased. Also, power dissipation is less than a static RAM
memory cell. However, a disadvantage of this form of memory is that the microscopic capacitors
dissipate their stored energy rather rapidly due to parasitic loading, and must be periodically
“refreshed” to retain their data. It is this transitory nature which earns them the label of dynamic

11Some PROMs use fusible links in the integrated circuit which may be intentionally “blown” by careful connections
to an external power source. When one of these microscopic fuses blows, the memory cell assumes the complement of
its factory-default state. Of course, this procedure is non-reversible: once blown, a fuse cannot be “healed” to restore
the original logic state.
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RAM. Modern dynamic RAM chips have on-board refresh circuitry to handle this for the user,
while older dynamic RAMs required the user’s application to periodically address certain regions of
memory space in order to keep those cells’ states refreshed12.

A more modern semiconductor memory technology blurring the distinction between RAM and
ROM is flash memory. It is similar in principle to dynamic RAM – storing single bit-states as
electrostatic charges – but the physical construction and operating behavior is different. Flash
memory cells utilize a special type of MOSFET transistor with a metal “floating gate” electrode
suspended within layers of electrically-insulating material adjacent to the channel of the transistor.
This floating electrode becomes electrostatically charged or discharged by means of quantum

tunneling, a process whereby electrons “leap” from one nearby conductive surface to another without
ever passing through the insulating material separating those conductive surfaces. This tunneling
behavior is possible only under certain energy-level conditions, and if those conditions are not met
the electrical charges remain isolated on either side of the insulating barrier as one would expect
in “classical” physics. Thus, quantum tunneling becomes the sole method of writing data to a cell,
which means the stored data is nonvolatile. Reading the stored charge (or lack of charge) on the
floating gate is as simple as testing the conductivity of the MOSFET’s channel, that channel acting
as an electroscope (i.e. electric-charge detector) for the floating gate.

Flash memory cells basically consist of single MOSFETs which makes them extremely compact,
and due to the strict conditions necessary for quantum tunneling the stored electrostatic charges do
not bleed off in the same manner as conventional dynamic RAM. This gives flash memory reliable
retention times in the span of decades as opposed to milliseconds for dynamic RAM cells.

The speed at which flash memory cells may be written and read exceeds current state-of-the-art
mechanical memory technologies (e.g. magnetic disks) which is why this technology finds use in
solid-state hard drives for computers. It is still not as fast as either dynamic or static RAM, though,
which is why these latter technologies are still popular.

Another modern nonvolatile memory technology is ferroelectric13, based on substances exhibiting
a natural electric polarization (i.e. a permanent electric field), the polarity of that field being
reversible by the application of sufficient external voltage. Like flash memory, ferroelectric memory
elements are based on MOSFETs activated by this stored electric field. However, ferroelectric
memory offers faster data access times and greater durability (more read/write cycles before failure)
at the expense of lower physical density (fewer bits stored in a given volume).

12A datasheet for the Texas Instruments model TMS 4062 JL/NL 1024 × 1 dynamic RAM says the following
about refreshing the cells: “Each cell must be refreshed at least once in every 2-millisecond period by cycling through
the lower order row addresses (A0-A4) or by addressing each row at least once in that period. Addressing any row
refreshes all 32 cells in that row. The chip-select clock need not be activated during refresh; however, the clock input
must be cycled from high to low to high.”

13Interestingly, the “ferro” root refers to the hysteretic behavior of these substances (i.e. they may be electrically
polarized in a manner similar to how ferromagnetic substances may be magnetically polarized), not their chemical
composition. That is to say, a “ferroelectric” need not contain any iron.
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Reviewing the many (and confusing) labels used to describe semiconductor memory, all of which
happen to be randomly-accessible:

• RAM – Random-Access Memory, technically a misnomer because all semiconductor memory
is random-access. What this acronym really distinguishes is the memory’s volatility, as data
is lost or corrupted when de-energized. Typically very fast read/write times.

• ROM – Read-Only Memory. In its purest form, this is a mask ROM (MROM) where the data
must be programmed into the IC at the time of manufacture, that data completely unalterable
by the user.

• PROM – Programmable Read-Only Memory. Literally interpreted, this is an oxymoron (a
contradiction in terms). It refers to a memory IC that may be programmed by the user,
but afterwards either cannot be altered or requires substantial effort to alter. One-Time-
Programmable (OTP) PROM ICs often use “fuse” or “anti-fuse”14 elements to store the data,
where blowing the fuse (or alternatively, shorting the anti-fuse) constitutes writing one of the
two states. Such writing cannot be un-done, hence the term “one-time programmable”.

• EPROM – Erasable Programmable Read-Only Memory. Literally interpreted, this is another
oxymoron, referring to a PROM that may be erased by the user. EPROM re-writing times
are much longer than RAM writing times, which is the major distinguishing feature.

• UVEPROM – Electrically Erasable Programmable Read-Only Memory. An EPROM that
may be programmed multiple times via electrical signals.

• EEPROM – Electrically Erasable Programmable Read-Only Memory. An EPROM that may
be erased by exposure to ultraviolet light.

• NVRAM – Non-Volatile RAM. A RAM IC with a built-in means to retain information when
powered down. Some NVRAMs use an internal long-life battery to maintain energization when
external power is lost. Others use a slower EPROM technology to copy the RAM’s contents at
power-down15, and restore the RAM’s contents at power-up. NVRAm provides all the benefits
of non-volatility while enjoying the fast access times of standard RAM.

14Zener diodes may function as anti-fuses, because overpowering a Zener diode’s PN junction will cause it to fail in
a shorted state.

15An external capacitor is often required for this type of NVRAM, providing just enough energy for the internal
data-archiving action in the absence of regular external power.
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Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism

written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.
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4.1 Magnetic core memory

One of the earliest forms of solid-state memory for digital computers was magnetic core memory,
often referred to simply as core. The fundamental principle of operation is the hysteresis curve for
ferrite, a compound of iron and oxygen. Unlike most ferromagnetic materials, ferrite exhibits an
extremely pronounced hysteresis curve which means once magnetized in a particular direction it
tends very strongly to retain that magnetic flux. This property of ferrite makes it well-suited for all
kinds of magnetic-based digital storage technologies including magnetic disks, magnetic tape, etc.

Field intensity (H)

Flux density
(B)

Hysteresis curve for ferrite

The field intensity (H) is the “magneto-motive force” (MMF) applied to the ferrite by an external
magnetic source such as a current-carrying wire. Flux density (B) represents the number of magnetic
domains within the ferrite that have aligned themselves in a common direction with the externally-
applied field (H).

When ferrite magnetizes, it tends to do so until saturation which makes it ideal for storing discrete
(1 versus 0) states – magnetization in one polarity represents a 1 state, and in the other polarity a
0 state. This single datum bit may be written to the ferrite specimen by a suitably strong H from
a nearby current-carrying wire, with the direction of current determining the magnetic polarity and
therefore the logical state written to the ferrite.
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Core memory differs from disks and tape principally in the fact that the magnetic material does
not need to physically move. Instead, tiny rings (“cores”) of ferrite are arranged in grids with wires
threaded through their centers as shown in the following illustration:

. . . . . . . . . . . .

...

...

...

...

Column wire drivers

Row
wire

drivers

8 x 8
magnetic

core memory
array

Each core has a “row” wire passing through its center, and also a “column” wire doing the same.
Each wire’s energized-state current is less than what would be required to saturate the ferrite, and
so any ferrite current experiencing the magnetic field intensity (H) from just one wire’s current will
remain in its present magnetic flux condition (B). However, each wire’s current is also regulated
to be greater than one-half of the saturation threshold for ferrite, which means if one column wire
and one row wire are simultaneously energized with current, the ferrite ring at the intersection of
those two wires will experience saturation. Thus, we are able to address individual ferrite cores by
column and row coordinates, just like individual RAM or ROM memory cells within large memory
arrays are selectively enabled by row/column intersections.

Writing to individual cores is simple, but reading from them is not. The solution developed for
reading core states consisted of a single “read” wire threaded through every core in the grid. Unlike
the row and column wires, the read wire was not energized by any source, but instead connected to
the input of an amplifier built to sense a voltage pulse resulting from the sudden change1 in magnetic
flux at a core. So, to read a core, what we do is try writing to it and monitor the sense wire to
see if anything changed. If we try to write a 1 state and nothing changed, then that bit must have
already been a 1; if we try to write a 1 state and sense a change-of-state by means of a voltage pulse
across the length of the read wire, then that bit must have been a 0. The memory array’s peripheral

1This is an application of Faraday’s Law of Electromagnetic Induction, V = N dΦ

dt
, where φ is magnetic flux, related

to flux density (B) by cross-sectional area.
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circuitry would then have to go back and re-write the original state following a change-of-state, lest
the data become corrupted. This process is known as a destructive read, and it was an interesting
idiosyncrasy of magnetic core memory.

Despite this unique behavior, core memory was once extremely popular for computers. It had
no moving parts, it was much faster than any tape or disk-based memory, and most favorably was
non-volatile2.

The following photograph shows a core memory board taken from a 1970’s era Data General
“Nova” minicomputer. A white ball-point pen with a black cap is placed near the top of the board
for size reference. The magnetic cores themselves comprise the rust-colored rectangular areas on the
board, with column and row drive circuitry as well as sense circuitry occupying the periphery of the
board:

This large printed circuit board represented only 4 kilobytes of memory, a paltry amount of
digital storage by modern standards.

2This meant that any computer using core memory in lieu of static or dynamic RAM would enjoy the power of
resuming exactly where it left off following a momentary interruption in power!
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In this next photograph we see a close-up photograph of the same core memory board. The same
ball-point pen remains in the photograph as a size reference. If you look closely, you can see the
individual magnetic cores with fine-gauge wires threaded through their centers, the cores themselves
tilted diagonally to the vertical column wires and horizontal row wires:

A more “modern” version of core memory appears in this next photograph, using much smaller
ferrite rings to achieve greater packaging density and therefore greater memory capacity per unit
board area:

This board sports double the memory of the previous core memory board: 8 kilobytes instead of
4 kbytes, and it does so using a smaller board size as evidenced by the same ball-point pen.
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Next we have a close-up photograph of this denser core memory array. My camera’s resolution
is insufficient to show a single core’s shape or orientation as a result of their much smaller size:
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4.2 Early magnetic hard disk drives

Any flat surface consisting of ferrite pieces has the ability to be selectively magnetized (i.e. some areas
magnetized in one polarity and other areas in the opposite polarity), and such a magnetized surface
when passed by a wire coil will induce voltage pulses in that coil with the passing of alternately-
polarized areas. This is the basis of both magnetic tape and magnetic disk storage.

Modern magnetic disks use such fine-grained ferrite on their surface, that the wire coils reading
and writing data must hover extremely close to the spinning disk’s surface, usually closer than the
diameter of a grain of dust! For this reason, modern magnetic disk drives are completely sealed

units assembled in clean-room manufacturing facilities to prevent the inclusion of dust within the
housing containing these moving parts. However, legacy hard disk drives were crude by comparison,
and their disks could be removed for service or even archival in any reasonably clean room.

The following photograph shows such a magnetic disk removed from its drive mechanism, a ball-
point pen situated at one edge for size reference. The rust-colored disk is the magnetic surface, while
the blue plastic around the periphery is the rim of the protective cover permitting the disk to be
taken out of the mechanical drive unit and held in safe keeping:

A complementary blue plastic cover (not shown) fit over the disk, enclosing the entire assembly.
This allowed the disk to be safely placed on a shelf, as one might shelve a book, for later re-use.

A common storage capacity for a hard disk of this size was 30 megabytes per side, since the
disk had two sides which could be used as media. Some referred to these disks as Winchester hard
disks, since their 30/30 capacity ratings (30 Mbytes on one side and 30 Mbytes on the other) was
reminiscent of the legendary 30/30 Winchester-brand rifle cartridge.
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By contrast, a more modern hard disk drive (340 megabytes, still small by modern standards) is
shown in this next photograph:

The read/write coil is located at the tip of the lever projecting out over the disk’s surface, and
is moved in an arc across that spinning surface by means of a small servo motor. In the legacy
“Winchester” disk shown previously, the read/write coil and servomechanism was part of a separate
unit from the movable disk. Here, the disk is not removable, and all appear as part of a single unit.

Incidentally, the removal of the cover from this hard disk unit necessary for photographing the
disk ruined it. Unlike the “Winchester” disk shown earlier, modern hard drives must remain sealed
throughout their operating lives due to the necessity of a dust-free environment.
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4.3 Floating-gate FET transistor patent

A Korean-born researcher working for Bell Laboratories named Dawon Kahng applied for a patent in
June of 1967 entitled “Field Effect Semiconductor Apparatus With Memory Involving Entrapment
Of Charge Carriers”, the patent (number 3,500,142) being granted in March three years later. In
Kahng’s patent we find a clear description of a special type of MOSFET intended as a digital
memory cell. This special MOSFET revolutionized digital memory storage technology, paving the
way for “flash” memory, microcontrollers with extensive nonvolatile memory banks, FPGAs, and
other modern digital devices.

Figure 1A in Kahng’s patent shows a cross-section of the FET:

What makes this MOSFET unique is a “floating” gate consisting of an electrically isolated metal
layer (17) sandwiched in between two layers of insulating oxide (16 and 18). Kahng’s invention
became the foundation of EPROM memory technology, including later “flash” memory technologies.
The first paragraph of Kahng’s patent tersely describes his invention:

ABSTRACT OF THE DISCLOSURE – A field effect transistor is provided with a gate
electrode assembly comprising a sandwich of a metallic layer between two insulating films
of appropriate characteristics for the entrapment of charge carriers in the metallic layer.
Such entrapment provides memory whereby an induced electric field can be maintained
in the semiconductive element even after the field inducing force is removed. [page 3]

Kahng begins with a brief explanation of digital memory technology including a review of a
magnetic-based memory element which his invention supersedes:

This invention relates to semiconductive apparatus which is characterized by relatively
long memory, i.e., apparatus which will persist in a certain induced state for a useful
period of time even after the inducing force is removed whereby there is provided for
such period a record of the characteristics of the inducing force.

In computers and related apparatus there exists a need for memory elements in which
information can be stored temporarily, while remaining accessible for reading, and then
readily erased or modified.

Hitherto there have been suggested semiconductive devices having memory in which
the memory was achieved by the provision of a ferroelectric element in contact with
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the semiconductive wafer such that the direction of the remanent polarization of the
ferroelectric element controlled the state of the device. Typical of such devices are those
described in U.S. Patent 2,791,760. An advantage of these devices is that the memory is
independent of any sustaining currents so that even if there is a temporary loss of power
the stored information is not lost. A serious difficulty that has hampered the exploitation
of devices of this kind is that presently available ferroelectrics tend to suffer mechanical
damage with use and after suffering such damage are of limited reliability. Also, the
inherent speed capability is limited by the domain motion which is relatively slow, and
so it is difficult to realize very fast switching.

To this end, the invention provides a semiconductive device with memory, in which the
need for a ferroelectric element is obviated by a novel gate assembly which makes use
of trapped charge carriers. In particular, viewed from one aspect, the gate assembly
typically will comprise a pair of insulating layers sandwiching a metallic layer in which
the charges are trapped. Viewed from another aspect, the gate assembly will include
a tunnel sandwich diode formed by two conductive element sandwiching an insulating
layer sufficiently thin that electron transport or tunneling therethrough is realized under
control of applied signal information. [page 3]

Here Kahng first mentions the principle by which his memory cell functions: tunneling of electric
charge carriers through a thin region of insulating material. This is a quantum effect, inexplicable
from the perspective of classical physics.

Next, Kahng describes the construction of this special transistor:

In a typical insulated gate field effect transistor embodiment of the invention, the
semiconductive element is a silicon wafer the bulk of which is weakly n-type and which
includes a pair of spaced p-type surface zones to which are connected the source and
drain electrodes, respectively. The surface portion of the element intermediate such p-
type zones is covered with a relatively thin layer of silicon oxide which together with
a relatively thick outer layer of zirconium oxide sandwiches a layer of zirconium there
between which serves as a floating gate.

A metallic layer covers the zirconium oxide to serve as the outer gate electrode. In
operation, a positive voltage pulse applied to the outer gate electrode causes the
entrapment of electrons in the zirconium layer for a relatively long time, which results in
a p-type skin persisting underneath the silicon oxide and a low resistance path between
the source and drain electrodes. The application of a negative pulse instead results
in leaving the portion of the element underlying the silicon oxide n-type whereby the
resistance between the source and drain electrodes is high.

A variety of embodiments will be described hereinafter including ones in which light may
be employed for releasing charges trapped in the floating gate and thereby affecting the
resistance between the source and drain electrodes. [page 3]
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Features evident in Figure 1 (shown at the beginning of this section) are explained in the following
paragraphs:

With reference now to the drawing, in the memory cell shown in Fig. 1, a monocrystalline
semiconductive element, the bulk 11 of which is weakly n-type, also includes spaced,
localized, p-type surface zones, 12, 13. Electrodes 14 and 15 make low resistance
connections to zones 12 and 13 and serve as the source and drain electrodes, respectively.
Overlying the surface between zones 12 and 13 is the gate assembly comprising a relatively
thin insulating layer 16 contiguous to the surface, an inner metallic layer 17, a relatively
thick outer insulating layer 18, and an outer metallic layer 19. Layer 18 is also chosen
to have a higher dielectric constant than layer 16. As seen, the metallic layer 17 is
sandwiched between layers 16 and 18, and is insulated from the outer layer 19 and the
semiconductive element. It will be convenient to refer to inner layer 17 as the floating
gate and outer layer 19 as the terminal gate. It will also be apparent that insulating
layer 16 is sandwiched between the semiconductive element 11 and the metal layer 17 to
form a “tunnel sandwich diode” because as will be explained hereinafter the operation
depends on electron tunneling through layer 16 under control of signal information.

In one embodiment constructed, the element 11 was primarily n-type silicon with a
resistivity of about 1 ohm-centimeter. The layer 16 was about 50 angstroms thick and of
silicon dioxide thermally grown, the layer 17 was of zirconium and about 1000 angstroms
thick, the layer 18 was of zirconium oxide about 1000 angstroms thick, and the layer 19
and the electrodes 14 and 15 were of aluminum. The p-type zones 12 and 13 were spaced
apart about 0.5 mil.

A voltage source 20 and load 21 are connected serially between source and drain
electrodes 14 and 15. The control voltage source 22 is connected between the source
electrode 14 and the terminal gate electrode 19.

For the specific design previously described, a voltage pulse of about fifty volts with a
width of 0.5 microsecond was used to store 5 × 1012 electrons per square centimeter on
the floating gate, which was adequate to cause the desired silicon surface layer inversion.

In operation, depending on the polarity of the most [page 3]

recent control voltage pulse provided by source 22, the surface portion 23 of the element
extending between zones 12 and 13 and underlying the insulating layer 16 is either
effectively n- or p-type. In the former case, a high resistance is presented, due to the
presence of the reverse-biased p-n junction, to the flow of current in the load and little
current flows. In the latter case, a low resistance is presented and a relatively large
current flows. Accordingly, bistable operation is permitted. [page 4]
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Following this physical description of the transistor, Kahng proceeds to describe its operation
from a more theoretical perspective. For this he makes use of energy diagrams, also provided in the
patent as figures 2A, 2B, and 2C.

Fig. 2A shows the energy level diagram of the system in the initial quiescent state before
any voltage pulse has been applied to electrode 19. In particular, solid line 25 shows
the bottom of the conduction band and solid line 26 the top of the valence band as one
passes from the n-type bulk of the semiconductive element through surface layer 23 and
layers 16, 17, 18 and 19 of the gate assembly. In the insulating layers 16 and 18, lines 25
and 26 are widely spaced, corresponding to the large forbidden energy gap in insulators.
In the semiconductor, lines 25 and 26 are relatively closer, corresponding to the narrower
band energy gap. The Fermi level is depicted by the broken line 27, which coincides with
solid lines 31 and 32 for the metal layers. Thermal equilibrium requires that the Fermi
level be at the same energy throughout the system. [page 4]



4.3. FLOATING-GATE FET TRANSISTOR PATENT 51

The presence of a positive voltage Va on electrode 19 results in the energy level
diagram shown in Fig. 2B. The thickness of the insulating layers 16 and 18 and the
magnitude of the applied voltage Va are so chosen that there is a transport of electrons
from the semiconductor through layer 16 into metallic layer 17 by a field controlled
electron transport mechanism, such as tunneling or internal tunnel-hopping, but there is
insignificant exodus of such electrons which are trapped in layer 17. The excess electrons
in layer 17 are shown depicted in the usual fashion as negative charges. This condition is
met by choosing insulating layers 16 and 18 such that the ratio of dielectric constant ǫ1
/ ǫ2 (where ǫ1 and ǫ2 are the dielectric constants of the two layers, respectively) is small
and/or the barrier height into layer 16 is smaller than into layer 18. Additionally, to
insure trapping it is important that the thickness of the floating gate layer 17 is thicker
than the hot electron range so that the transported electrons are substantially at the
Fermi-level 31 of the layer before reaching insulating layer 18. [page 4]
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With the removal of the applied bias, the energy level of the system is as depicted in
Fig. 2C. The electric fields in the insulating layers 16 and 18 are now too low to permit
carrier transport across them; consequently the electrons remain trapped in floating gate
17. In particular, the trapped electrons, which tend to distribute themselves uniformly
throughout the layer 17 will result in the layer effectively being at a negative potential.
This is depicted in Fig. 2C by the elevation of line 31 relative to that of lines 27 and 32
whose level remains fixed. Accordingly, there will be drawn into underlying surface layer
23 of the semiconductive element positive charges to compensate for the excess electrons
in the contiguous metal as shown, and such positive charges will effectively make surface
layer 23 p-type. As a consequence, a barrier-free low-resistance path is provided between
sources 12 and 13 and significant current flow therebetween and through the load 21
under the influence of source 20 is facilitated. So long as excess electrons are trapped in
layer 17, this condition persists. Accordingly, the device remembers the application of a
positive pulse to electrode 19 even after the termination of the pulse. [page 4]

After this brief discussion of energy band diagrams and electron tunneling, Kahng returns to
a more operational description of the process where he elaborates on stored charge quantity and
erasure methods:

To store a given amount of charge, one can either increase the applied voltage or increase
the charging time by increasing the pulse width, or both, for a given gate structure.
Moreover, the lower the barrier height associated with insulating layer 16 the lower the
applied voltage needed to achieve a given trapped charge. For example by use of silicon
nitride instead of silicon dioxide for layer 16 one can operate with significantly lower
applied voltages.

There is a charge loss which is controlled by the dielectric relaxation time of the sandwich
structure, and this loss readily can be made quite low. If very long dielectric relaxation
times are desired, it will be advantageous to employ organic insulators which typically
have longer relaxation times than inorganic insulators.

The trapped electrons can be quickly removed from the metallic layer by the reverse
process of applying an appropriate negative pulse to electrode 19. The argument
employed above can be used in analogous fashion to establish that such action can
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reduce the number of electrons in the layer 17, whereby there is restored to n-type the
underlying surface portion 23. As a consequence, the resistance between zones 12 and 13
becomes high because of the reverse-biased p-n junction in this path and, accordingly,
the current in the load is low.

To discharge completely the floating gate, the voltage applied to the terminal gate should
be about equal in magnitude and duration although opposite in polarity to the voltage
applied for charging.

It should also be apparent that a net positive charge (loss of electrons) can be stored
in the floating gate if the discharging voltage applied to the outer gate is appropriately
chosen in polarity, magnitude and duration, whereby surface portion 23 is made more
strongly n-type.

It should also be apparent that the transport of electrons through the thin insulating layer
16 may be facilitated by irradiation of the thin layer and the contiguous semiconductor
with light or other radiant energy coincident with the application of the biasing pulse
to increase the temperature or energy of the electrons in the semiconductor surface,
effectively lowering the barrier for transport into the floating gate. [page 4]

Toward the end of the patent’s text, Kahng explains how these memory cells would likely be
organized into memory arrays of useful size:

It should also be apparent that the invention will find principal utility in arrangement
which incorporates a plurality of elements in large matrix arrays to provide increased
memory. Typically in such arrays to facilitate accessing, the individual elements are
disposed in two dimensional arrays in a coordinate fashion so that by selection of X and
Y coordinates an individual element can be selected. One accessing technique feasible
would involve: for writing pulsing and appropriate X gate line simultaneously with the
appropriate Y source line to energize the element at the corresponding XY coordinate;
for reading pulsing the appropriate X source line simultaneously with the appropriate Y
drain line to detect the state of the element at the XY coordinate. [page 6]
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Chapter 5

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 Tri-state logic gate outputs

When multiple logic devices must assert high or low logic states to a commonly-shared line, it
becomes necessary to “disconnect” all but one of those device outputs from that line at any given
time, or else multiple devices may attempt to sink and source current simultaneously. A practical
method to arbitrate access to a common line is to equip those logic devices’ outputs with a feature
called tri-state capability. A logic gate with a tri-state output has an additional input line controlling
a transistor “disconnect” between the internal totem-pole transistor stage and the output terminal.
When disabled, the gate assumes a high-impedance or high-Z mode whereby the output terminal
“floats” and can no longer source or sink current. When enabled, a tri-state gate behaves like any
other logic gate of its functional type.

An inverted triangle symbol denotes a logic gate capable of tri-state operation. An additional
“enable” line on the gate is another indication:

VDD

VSS

. . .

. . .

Enable

A

B

Output
"Disconnecting"

transistor

Simplified internal diagram
of an AND gate with tri-
state output capability

In the following example, an AND gate and an OR gate both drive signals to a common line
called a bus. Their respective enable lines are controlled by a digital signal and its complement, to
ensure only one of the two gates will ever be permitted to drive a high or low signal to the bus:

. . .

. . .

. . .

. . .

. . .. . . EN

EN

Bus

Digital electronic computer designs are largely bus-oriented, which means they contain many
such “bus” lines shared one at a time by various logic gate outputs, much as a radio channel may be
used by one person (talking) at any given time. This is why the potential problem of multiple logic
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gates “fighting” one another with opposing logic states is often referred to as bus contention: in a
poorly-designed system the gates will literally contend with one another for control of the common
bus. In complex digital systems where several or more gates connect to a common bus, the strategy
employed to select just one of those gates at a time is called bus arbitration.

This is the same fundamental problem (and solution!) for having multiple digital memory
elements output data to shared lines, as well as having a single memory element selectively write to
or read from a common “I/O” line.
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5.2 Digital pulse criteria

Ideal “pulse” signals have infinitely-steep rise and fall times, level “high” and “low” states well within
the specified voltage ranges, and no other imperfections or artifacts. Real pulses always deviate from
ideal, often in multiple ways:

Ideal pulse
Overshoot

Undershoot
(backswing)

Ringing

Ringing
Rise time

Fall time

Tilt

Tilt

(Droop)

(Rise)

Settling
time

Settling
time

Imperfect pulse

Rise and fall times are strongly influenced by parasitic capacitance existing on the signal line
with reference to ground, as well as the current-sourcing and current-sinking capability of the logic
gate or other device generating the pulse signal. The capacitive “Ohm’s Law” formula I = C dV

dt

predicts how much current will be necessary to create a linear rate-of-rise or rate-of-fall of voltage
for a given capacitance. Note that to achieve infinitely steep rise or fall times an infinite amount
of current would be necessary to charge/discharge whatever capacitance happens to exist on that
signal line!

Ringing is caused by resonance occurring between parasitic capacitance and parasitic inductance,
those two phenomena naturally exchanging energy back and forth with each other to produce the
oscillatory waves we call “ringing”. Overshoot and undershoot are also the result stored energy
within these parasitic L and C circuit properties, and since parasitic capacitance and parasitic
inductance can never be fully eliminated from any real circuit it means the effects of over/undershoot
and ringing is likewise unavoidable. If you don’t see these effects in your pulses, you just aren’t
viewing them at a fast enough time scale!
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Clock-synchronized digital logic circuits such as counters, shift registers, and microprocessors
require their input signals to be at stable states immediately before and immediately after the clock
pulse arrives. For example, the following timing diagram shows input and output states for a D-type
flip-flop circuit (positive-edge triggered), showing the effects of some signal timing violations:

Clk

Q

D Adequate set-up time

Inadequate set-up time

Low state "clocked in"
one cycle too late due
to set-up time violation

High state "clocked in"
on time

Inadequate hold time

High state "clocked in"
on time

High state not "clocked
in" at all due to hold

time violation

Datasheets for digital circuits often provide timing diagrams showing criteria related to pulse
signal timing and logic states. These diagrams don’t typically show ideal square-edged pulses, but
rather trapezoidal pulse profiles intended to exaggerate realistic features such as rise and fall times,
propagation delays, and minimum set-up/hold times. Such diagrams usually confuse students who
are accustomed to seeing square-edged pulses in their textbook timing diagrams. This technical
reference will show some typical timing diagrams and explain what they represent.
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For example, consider this timing diagram for a positive-edge-triggered JK flip-flop having both
its J and K inputs tied high so as to maintain the circuit in its “toggle” mode. As such we would
expect its output (Q) to change state with every rising edge of the clock pulse:

Clk

Q

trise tfall

90%

10%

VS

VS

tPLH

VS

VS

tPHL

10%

90%

tTLH tTHL

Each of the labels found in this diagram is defined as follows:

• trise = Rise time of input signal, typically measured from 10% of signal amplitude to 90% of
signal amplitude

• tfall = Fall time of input signal, typically measured from 90% of signal amplitude to 10% of
signal amplitude

• tTLH = Low-to-High transition time of output signal, typically measured from 10% of signal
amplitude to 90% of signal amplitude (the same concept as rise time, but applied to the output
signal instead of the input signal)

• tTHL = High-to-Low transition time of output signal, typically measured from 90% of signal
amplitude to 10% of signal amplitude (the same concept as fall time, but applied to the output
signal instead of the input signal)

• tPLH = Propagation delay time of output signal when switching from low to high

• tPHL = Propagation delay time of output signal when switching from high to low

• VS = Switching threshold voltage, typically defined as 50% of signal amplitude

This timing diagram shows how a digital logic circuit reacts to a single input signal, in this case
the clock pulse. Although this example happens to be for a JK flip-flop in toggle mode, the same
type of timing diagram with its exaggerated rise/fall times and propagation delays could be applied
to any digital logic gate whose output state depended solely on the state of a single input.
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For synchronous digital logic circuits where input signals must coordinate with the clock pulse
signal in order to be properly accepted by the circuit, we typically find timing diagrams comparing
these input states to each other, often without showing the output(s) at all. Instead of showing us
how the digital logic circuit will react to an input signal, this sort of timing diagram shows what the
digital logic circuit expects of its multiple input signals.

The example is shown here for a positive-edge-triggered D register1 having multiple data lines
(D0 through Dn), one asynchronous2 reset line (RST ), and one clock input. The arbitrary logic
levels of the multiple data lines are shown as a pair of complementary-state pulse waveforms, the
only relevant features being the timing of the data and not the particular voltage levels of the data
signals:

VS

VS

VS

RST VS VS

VS

tW
Data valid

Clk

D0 - Dn

tSU
tH

tREM

Labels shown in this diagram refer to minimum time durations the logic circuit requires for
reliable operation:

• tSU = Minimum set-up time before the arrival of the next clock pulse

• tH = Minimum hold time following the last clock pulse

• tW = Minimum width (duration) of the asynchronous reset pulse

• tREM = Minimum removal time before the arrival of the next clock pulse

Violations of any of these minimum times may result in unexpected behavior from the logic
circuit, and is an all-too-common cause of spurious errors in high-speed digital circuit designs. The
assessment of digital pulse signals with regard to reliable circuit operation is generally known as
digital signal integrity.

1In this case, a “D register” is synonymous with multiple D-type flip-flops sharing a common clock input, passing
data through from each D input to each corresponding Q output synchronously with each clock pulse.

2To review, a synchronous input depends on a clock pulse while an asynchronous input is able to affect the circuit
independent of the clock pulse.
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Chapter 6

Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.
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6.1 Animation of 16 × 8 ROM

The following animation shows a 16 × 8 ROM1 integrated circuit used to store ASCII-encoded data.
The four address lines are sequenced in binary order, and with each new address sent to the ROM
chip it outputs the eight-bit data word stored in that memory cell. The resulting English sentence
is spelled out with each new letter read from the ROM chip.

A memory map for this ROM is shown here in standard “hex dump” format:

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 4D 65 6D 6F 72 79 20 49 73 20 55 73 65 66 75 6C

116 × 8 refers to sixteen addresses, each one storing an eight-bit word.
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VDD

A0

A1

A2

A3

D0

D1

D2

D3

D4

D5

D6

D7

1

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4D 65 6D 6F

72 79 20 49

73 55 73

65

20

66 75 6C 0

1

1

1

0

1

0
01

1

Memory



6.1. ANIMATION OF 16 × 8 ROM 71

VDD ROM memory IC

VDD

A0

A1

A2

A3

D0

D1

D2

D3

D4

D5

D6

D7

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4D 65 6D 6F

72 79 20 49

73 55 73

65

20

66 75 6C 0

1

1

0

0
0

1

Memory

0

0

0

0



72 CHAPTER 6. ANIMATIONS

VDD ROM memory IC
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Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.



86 CHAPTER 7. QUESTIONS

7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Discrete signal

Bit

Digital signal

Read versus Write

Sequential versus Random access

Memory address

Memory data

Volatility

Latch behavior

Tri-state logic

Enable

Static versus Dynamic memory
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Quantum tunneling

7.1.3 Digital Audio Tape

When Digital Audio Tape (DAT) was first introduced to the American public, it was touted as
delivering superior sound quality. Most importantly, this high quality of sound was not supposed to
degrade over time like standard (analog) audio cassette tape recordings.

The magnetic media from which DAT was manufactured was basically the same stuff used to
make analog audio tape. Explain why the encoding of audio data digitally on the same media would
provide superior resistance to degradation over analog recordings even though the recording media
was the same. Also, explain how this is significant to modern digital data storage technologies such
as those used to store photographic images and numerical data.

Challenges

• Identify some disadvantages of digitally-recorded audio.

• Identify similarities and differences between DAT and Compact Disk (CD) audio formats.
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7.1.4 Random versus sequential access

Determine whether the following recording devices are random access or sequential access, and
discuss the advantage(s) of one type of access over the other:

• DVD (disk) –

• Audio tape cassette –

• CD-ROM (disk) –

• ROM memory chip –

• EPROM memory chip –

• Vinyl phonograph record –

• Video tape cassette –

• Magnetic “hard” drive –

• Paper tape (a long strip of tape with holes punched in it) –

• RAM memory chip –

• Magnetic bubble memory –

• Flash memory –

Challenges

• Which of these technologies rely on moving components?

7.1.5 Static versus dynamic RAM

Explain the difference between static RAM (“SRAM”) and dynamic RAM (“DRAM”) memory
technologies. Which type of memory technology provides faster access of data, and why? Which
type of memory technology provides the greatest storage density, and why?

Challenges

• How is refreshing provided for dynamic RAM chips? Is this something taken care of internal to
the chip, or must the circuit designer provide external circuitry to refresh the dynamic RAM
chip’s memory cells?
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7.1.6 Flash versus RAM

Flash memory is a nonvolatile memory technology, offering greater density than either SRAM
or DRAM, and faster erasure than standard EPROMs. At first, it would seem Flash memory
outperforms all other memory types, but it doesn’t. What are some of the disadvantages of Flash
memory, and what kind of applications is it best suited for?

Challenges

• Explain the operating principle of Flash memory cells.

7.1.7 Binary-BCD conversion by memory

Research datasheets for the 74LS184 and 74LS185 integrated circuits, and then explain how read-
only memory technology is used to perform the BCD/binary conversion functions.

Challenges

• In the 1990’s Intel produced a microprocessor IC called the Pentium which contained a “bug”
causing occasional incorrect quotients when dividing floating-point numbers. Research the
so-called Pentium FDIV bug and explain what this has to do with look-up tables.
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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7.2.3 4k × 8 ROM

Suppose a particular ROM memory chip is rated at 4k × 8 bits. What, exactly, does this designation
mean? How many addresses are there inside this memory chip? How many bits of storage are there,
total, in this memory chip? How many address bits are there, and how many data bits are there?

Challenges

• Why are there not exactly 4000 addresses in a “4k” memory chip?

7.2.4 Memory organization

Determine the organization of this RAM IC’s memory (i.e. how many addresses, how many bits in
the data word) based on an examination of its pin diagram:

1 2 3 4 5 6 7 8

VCC

GndA0

WE

D1 D2

D3D4

A3 A2 A1

9 10 11 12 13 14 15 16

CY62128EV30 CMOS random-access memory IC

17181920212223242526272829303132

A4A5 D0

D5D6D7CE1

A6A7A12A14A16(NC)

A10OEA11A9A8A13CE2A15

Challenges

• Identify how to enable this IC for reading or writing.

• How do we control whether this IC is in “read” mode or in “write” mode?
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7.2.5 Storing ASCII text characters

Suppose you need to store a text message in digital memory, consisting of 7500 ASCII characters.
What is the most logical memory organization (addresses × data lines) to do this? How many
address bits would be needed to store these 7500 characters?

Challenges

• If we needed to store the same number of EBCDIC characters, would it change the memory
requirement?
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7.2.6 Addressing an expanded memory module

Examine the following schematic diagram for a 32 × 4 memory array built out of two 16 × 4 memory
ICs:

A0

A1

A2

A3

D0

D1

D3

D2

16 × 4
memory

CE

W/R

A0

A1

A2

A3

D0

D1

D3

D2

16 × 4
memory

CE

W/R

CE

W/R

A0
A1
A2
A3

D0
D1

D3

D2

A4

Now, determine the following:

• Bit states for lines A4 through A0 to select address 5 within the upper memory IC

• Bit states for lines A4 through A0 to select address 10 within the upper memory IC

• Bit states for lines A4 through A0 to select address 2 within the upper memory IC

• Bit states for lines A4 through A0 to select address 12 within the lower memory IC

• Bit states for lines A4 through A0 to select address 3 within the lower memory IC

• Bit states for lines A4 through A0 to select address 11 within the lower memory IC

Challenges

• Explain why the OR gates are necessary in this circuit.
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7.2.7 Doubling data width

Suppose you need a memory array with 1k × 8 organization, but all you have on hand are 1k × 4
memory chips. Show how you could connect two of them to form the desired array:

1k × 4 RAM
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

D0

D1

D2

D3

CS

R/W

1k × 4 RAM
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

D0

D1

D2

D3

CS

R/W

Challenges

• A common mistake made by students when they “expand” the data bus width of a memory
array is to parallel the output lines (in the same way that the address lines are shown paralleled
here). Why would this be wrong to do? What might happen to the memory chip(s) if their
data lines were paralleled.
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7.2.8 Doubling address width

Suppose you need a memory array with 2k × 4 organization, but all you have on hand are 1k × 4
memory chips. Show how you could connect two of them to form the desired array:

1k × 4 RAM
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

D0

D1

D2

D3

CS

R/W

1k × 4 RAM
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

D0

D1

D2

D3

CS

R/W

Challenges

• In your solution, identify which of the two memory chips stores the first 1024 addresses, and
which stores the next 1024 addresses.



7.2. QUANTITATIVE REASONING 101

7.2.9 Quadrupling address width

Suppose you need a memory array with 4k × 4 organization, but all you have on hand are 1k ×
4 memory chips. Explain how you could build a memory array of this size using multiple 1k × 4
chips.

Challenges

• Devise a solution using only discrete logic gates.

7.2.10 Quadrupling data width

Suppose you need a memory array with 1k × 16 organization, but all you have on hand are 1k ×
4 memory chips. Explain how you could build a memory array of this size using multiple 1k × 4
chips.

Challenges

• Explain why this solution requires no additional logic.
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

7.3.1 Checksums

After a ROM memory has been programmed with data, it is good to verify that the data now stored
is okay, and not corrupted with any errors. A popular method of doing this is to calculate a checksum

on the stored data, and compare that against the checksum for the original data. If the checksum
numbers are identical, chances are there are no corruptions in the stored data.

Explain exactly what checksum is, and how it works as an error-detection strategy.

Challenges

• Checksums are also used to check for errors of digital data transmitted over long cables.
Explain how this would be done.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy
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B.1 First principles of learning

• Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

• Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

• Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

• Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

• Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

• Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

• People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

• What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

• Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.
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B.2 Proven strategies for instructors

• Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

• Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

• Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

• Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

• Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for AI to critique students’ clarity of thought and of
expression, for example by employing AI as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, AI has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

• Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

• Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

• Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

• Have students build as much of their lab equipment as possible: building power sources,
building test assemblies1, and building complete working systems (no kits!). In order to provide

1In the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.
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this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

• Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

• Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

• Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

• Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

• Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

• Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

• Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.
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B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

• Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

• Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

• Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

• Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

• Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding2.

• Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

• Above all, recognize that learning is hard work, and that a certain level of

frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied3 effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

2On a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.
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B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment4 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic5 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity6 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt
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Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

113
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

20 January 2025 – corrected a typographical error in the Tutorial where I incorrectly wrote one
of the address values for the USBPrg software display.

16 January 2025 – minor edits to the Tutorial and also to image 4361 used in one of the Case
Tutorial sections.

18-25 August 2024 – divided the Introduction chapter into three sections, one with
recommendations for students, one showing challenging concepts related to the module’s topics,
and one with recommendations for instructors with sample learning outcomes and measures. Also
added a Technical Reference section on tri-state logic outputs, and correct some schematic errors in
the “Electronic memory” section of the Tutorial chapter.

22 January 2024 – minor corrections to two images (image 3800 and image 3801). Also made
minor edits to the wording of the two address-expansion Case Tutoral examples.

29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

19 January 2022 – added photograph of EPROM-based arbitrary waveform generator to that Case
Tutorial section.

28 November 2021 – added more explanation to the Tutorial on address versus data, and also
expanded descriptions of different types of memory elements.

30 August 2021 – added a “hex dump” memory map to the introduction of the Animation of a
16 × 8 ROM being used to store ASCII characters.
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26 August 2021 – fixed typographical error in image 3801 where the “Read” and “Write” text
labels were reversed. Also divided Tutorial up into individual sections, and elaborated upon
row/column addressing with a new illustration.

9 July 2021 – replaced some TeX-style italicizing markup with LaTeX-style, and also added a Case
Tutorial section on using nonvolatile memory to form an AWG (arbitrary waveform generator).

10 May 2021 – commented out or deleted empty chapters.

18 April 2021 – changed all lower-case Greek letter “phi” symbols (φ) to upper-case (Φ).

25 January 2021 – minor edits to the Introduction chapter.

27 August 2020 – added Case Tutorial chapter with examples showing memory expansion. Also,
corrected a typographical error pointed out by Ty Weich.

25 August 2020 – added a quantitative question on quadrupling the data width of a memory array,
and made minor edits to the tutorial to better explain the function of the “master enable” pin on a
RAM chip.

23 August 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

5 June 2020 – added timing diagram to Tutorial.

31 May 2020 – added timing diagram to Tutorial.

7 March 2020 – added Technical Reference section on digital pulse criteria.

29 January 2020 – added Foundational Concepts to the list in the Conceptual Reasoning section.

20 January 2020 – added Historical Reference on floating-gate MOSFET memory cells.

19 January 2020 – wrote Tutorial chapter.

16 January 2020 – document first created.
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