
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Introduction to Microprocessors

© 2020-2025 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 23 January 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3

1.2 Challenging concepts related to microprocessors . 5

1.3 Recommendations for instructors . 6

2 Tutorial 7

2.1 Digital building-blocks . 7

2.1.1 Logic functions and Boolean algebra . 8

2.1.2 Binary numeration . 10

2.1.3 Counters . 11

2.1.4 Codes . 12

2.1.5 Decoders . 12

2.1.6 Multiplexers and Demultiplexers . 13

2.1.7 Latches and shift registers . 15

2.1.8 Arithmetic logic units . 18

2.1.9 Memory . 19

2.1.10 Finite state machines . 20

2.2 Putting it all together – the processor . 21

2.3 A simple computer example . 38

2.4 Machine code and assembly language . 51

2.5 Interrupts . 55

3 Derivations and Technical References 57

3.1 Introduction to assembly language programming . 58

3.1.1 Machine code to blink an LED . 59

3.1.2 Assembly code to blink an LED . 61

3.1.3 Slowing down the blinking . 63

3.1.4 Simplifying with symbols . 66

3.1.5 Using the stack . 67

3.2 Intel 8080 microprocessor . 71

3.3 Zilog Z80 microprocessor . 74

iii

CONTENTS 1

4 Questions 83
4.1 Conceptual reasoning . 87

4.1.1 Reading outline and reflections . 88
4.1.2 Foundational concepts . 89
4.1.3 Intel 8080 architecture . 94
4.1.4 Intel 8080 processor cycles . 95
4.1.5 Early microprocessor timing diagram . 96
4.1.6 Minimal Z80 computer . 98

4.2 Quantitative reasoning . 99
4.2.1 Miscellaneous physical constants . 100
4.2.2 Introduction to spreadsheets . 101
4.2.3 Memory map determination . 104
4.2.4 6502 turning on LEDs . 105
4.2.5 PIC 16F18346 subroutines . 106
4.2.6 Bitwise logical operations . 107

4.3 Diagnostic reasoning . 108
4.3.1 Random input states . 109

A Problem-Solving Strategies 111

B Instructional philosophy 113

C Tools used 119

D Creative Commons License 123

E References 131

F Version history 133

Index 134

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

One of the most revolutionary inventions in the history of humanity is the microprocessor: the
central processing unit (CPU) of a computer manufactured small enough to be contained within
a single integrated circuit. This miniaturization of digital computer technology paved the way for
computers to become part of everyday life, and to be accessible to far more people. Prior to the
advent of the microprocessor, computers were necessarily bulky devices, too cumbersome and too
expensive to ever be practical for personal use. Now, most people living in industrialized nations
carry at least one computer with them wherever they go, and this same technology continues to
revolutionize life in pre-industrial regions of the world as well.

Important concepts related to microprocessors include logic functions, numeration systems,
counters, codes, decoders, multiplexing, latches, shift registers, binary arithmetic,
bitwise operations, solid-state memory, finite-state machines, functional composition, hex
dump displays of memory, the fetch/execute cycle, digital busses, bus contention, stacks,
memory maps, assembly language, machine language, masks, vectors, and interrupts.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to test the sequence of a microcontroller’s
execution cycle? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis? Which signals would you
need to measure in such a circuit to collect the necessary data?

• What distinguishes microprocessor-based circuits from traditional “hard-wired” logic circuits?

• Why is it important for a microprocessor to be able to “loop” in executing a program?

• What is the function of a microprocessor’s program counter?

• What are registers useful for within a microprocessor?

• What role does multiplexing fulfill within a microprocessor?

3

4 CHAPTER 1. INTRODUCTION

• How is the memory map for a digital computer determined in hardware?

• What is a bus in a digital circuit?

• What does it mean for a digital bus to be directional, and which bus(es) in a digital computer
are typically directional?

• What does it mean for there to be contention over a digital bus?

• What functions are necessary for an electronic circuit to be a universal computing device?

• How does a microprocessor coordinate data transfer between external devices such as RAM
and ROM?

• What is the function of a “stack” in a microprocessor?

• By what means may a microprocessor perform advanced arithmetic and logic functions that
it is not directly designed to execute?

• What are some of the different ways in which programs may be written for a microprocessor?

• How does an 8-bit microprocessor manage memory address values larger than eight bits?

• What does it mean for a microprocessor to be “little-endian” or “big-endian”?

• Why are all microprocessors equipped with interrupt capability?

• How does an interrupt function?

• What is an ISR, and what is an interrupt vector?

• Why is a microprocessor equipped with only RAM memory impractical?

• Why is a microprocessor equipped with only ROM memory impractical?

• What does it mean if the I/O for a microprocessor is “memory-mapped”?

• How does bus notation help de-clutter schematic diagrams?

• How does assembly language differ from machine language?

• What does a “monitor” program do?

A prominent feature of the Tutorial is the inclusion of step-by-step graphical examples showing
the operation of microprocessor systems, some of these examples showing internal register states and
others showing digital logic states (high and low). A recommended strategy for maximizing your
understanding of these presentations is to read them actively : examine each diagram closely to trace
where the data originates, where it goes, and what purpose(s) it serves. Don’t just read what the
text says and trust the diagram is correct; instead, take the necessary time to analyze each diagram
thoroughly until you are able to express what it is showing you in your own words.

1.2. CHALLENGING CONCEPTS RELATED TO MICROPROCESSORS 5

1.2 Challenging concepts related to microprocessors

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Reading hex dumps – arrays of hexadecimal values showing the contents of a memory
module are often referred to as hex dumps, and properly interpreting their contents is a skill in
itself. Just know that the addresses go in incrementing order as the hex dump is read from left
to right, top to bottom, just like reading an English-written document. The “offset” address
given in the left-most column simply shows the beginning address value for that row of hex
data, each successive column in the hex dump array moving toward the right reflecting an
increment in address value from that starting “offset value”.

• Microprocessor fetch/execute cycle – the sheer number of steps required for a
microprocessor to perform even the simplest of tasks is sufficiently daunting to prompt some
new students to surrender on first sight. Rest assured, though, that close analysis of a practical
example completely illustrated will yield understanding. To this end, the step-by-step example
shown in the “Putting it all together – the processor” section of the Tutorial has been given for
the reader’s understanding. Follow each of these steps and read the given explanations, and
the understanding will come! In this example the microprocessor reads instructions and data
stored in memory to add two numbers together and place the sum in memory, the internal
microprocessor diagram annotated to show the flow of data between logical elements at each
step.

• Memory maps – microprocessors typically access different types of storage memory and I/O
lines via specific addresses and address ranges. A memory map is a block-shaped illustration
dividing the address ranges according to which device is being accessed. Again, the Tutorial
goes into painstaking detail showing how this works for a simple computer (in the “A simple
computer example” section), where close and patient reading will yield understanding. Follow
along with the annotated schematic diagram to see how each set of address values enables one
device at a time while disabling the others from access to the data bus.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students add their own explanations to the annotated step-by-step examples
shown in the Tutorial chapter.

• Outcome – Apply the concept of memory maps to simple computer circuits

Assessment – sketch the memory map for a given schematic diagram based on address line
connections; e.g. pose problems in the form of the “Memory map determination” Quantitative
Reasoning question.

• Outcome – Write a simple assembly language program

Assessment – Use a microprocessor simulator (application or interactive website) to write
and test simple assembly-language programs. the legacy Motorola 6502 microprocessor is well-
respected for its simple instruction set, so any simulator designed to emulate a 6502 is a good
starting point.

• Outcome – Independent research

Assessment – Read and summarize in your own words reliable source documents on the
subject of microprocessors. Recommended readings include legacy microprocessor datasheets
and patents, as the earliest examples of these device tend to be much less complex (and
therefore easier to understand) than modern microprocessors with all their advanced features
and architecture.

Chapter 2

Tutorial

2.1 Digital building-blocks

This section will review some of the conceptual and physical elements of digital systems, all of which
are necessary to the function of electronic computers and specifically to the “central processing unit”
constituting the heart of any computer. A “microprocessor” is simply a central processing unit
(CPU) built on a single wafer of silicon and packaged as an integrated circuit. It is the fundamental
task of any microprocessor to read and follow pre-written instructions, to implement logical and
arithmetic functions, and to direct the flow of digital information between different sources and
destinations. This Tutorial will explain how this works.

Each subsection briefly reviews the digital concept or component, and describes how it plays a role
in digital computing. Since microprocessors utilize several different concepts and circuit functions
within their internal design, it is imperative you understand how each of these works in order to
comprehend the over-all function of a microprocessor.

7

8 CHAPTER 2. TUTORIAL

2.1.1 Logic functions and Boolean algebra

A logic function is to discrete (on/off) digital signals as a mathematical function (e.g. addition,
subtraction, multiplication, division) is to numbers: a relationship between one or more inputs to a
output.

Basic logic functions and their respective symbols are shown below, in each case A and B

representing inputs to the function and Out representing its output:

1

0

0

0

0

1

1 1

1

1

1

A B Out

1

0

0

0

0

1

1 1 1

A B Out

0

0

0

Out
A

B B

A
Out

OR function AND function

0

1

0

0

0

0

1

1 1

1

A B Out

1

0

0

0

0

1

1 1

A B Out

0

Out
A

B B

A
Out

NOR function

0

0

0

NAND function

1

1

1

0 1

A Out

01

A Out

NOT function

1

0

0

0

0

1

1 1

A B Out

0

B

A

1

1

Out

Exclusive-OR function

0

While logic functions are abstract just like arithmetic operations, they find physical application
in both relay logic and semiconductor “gate” logic circuits. They are the fundamental “building-
blocks” of all digital functions.

2.1. DIGITAL BUILDING-BLOCKS 9

A special notation and mathematical system called Boolean algebra allows us to represent logical
functions as mathematical equations terms. Here we see examples of several types of logic functions
notated with Boolean variables at their inputs and Boolean expressions at their outputs:

B

A

2-input AND function

AB B

A
3-input AND function

C

ABC B
A

C

4-input AND function

D

ABCD

B

A
B

A

C

B
A

C
D

2-input OR function 3-input OR function 4-input OR function

A+B+C+DA+B+CA+B

1

0

0

0

0

1

1 1

1

A B

1

0

0

0

0

1

1 1

A B

0

A

B B

A

NOR function

0

0

0

NAND function

1

1

1

0 1

A

01

A

NOT function

A

A

A+B

A+B

AB

AB

Combinations of logic functions (called combinational logic) are easily expressed using Boolean
notation, as we see in the following example:

A

B

C
C

AB

B+C
AB(B+C)

10 CHAPTER 2. TUTORIAL

2.1.2 Binary numeration

Each discrete signal processed by a logic circuit may have its own meaning (e.g. door open/closed,
switch pressed/unpressed, etc.), or it may be part of a larger multi-signal aggregate. When we
combine multiple on/off signals into a larger “word” we have opportunity to represent more complex
concepts than just true/false conditions. For example, we may regard a collection of discrete states
as being individual bits within a binary number, as illustrated below:

5 3 1 1 0 1 0 1

O
nes place

T
ens place

O
nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

T
hirty-tw

os place

(10
1)

(10
0)

(2
0)

(2
1)

(2
2)

(2
3)

(2
4)

(2
5)

Fifty-three = (5 × 101) + (3 × 100) = 50 + 3

Fifty-three = (1 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20)

Fifty-three in decimal Fifty-three in binary

Fifty-three = (1 × 32) + (1 × 16) + (0 × 8) + (1 × 4) + (0 × 2) + (1 × 1)

The ability to represent numerical quantities using nothing more than discrete (on/off) circuits
is what makes mathematical calculations possible within a digital computer comprised of two-state
(bistable) transistor circuits.

For any binary word, the number of unique combinations of 1 and 0 states is equal to two to the
power of the number of bits (2b). For example, an 8-bit binary word has a range from 00000000

to 11111111 with 256 possible combinations (28 = 256). This is important in digital computer
design because the number of bits within a word are generally limited by physical counts of wires,
gates, and ultimately individual transistors. This means the numerical range of any computer, the
amount of data it can store and retrieve, etc. will be a function of how many bits it processes. Early
digital computers had fairly short word widths, with 8-bit words common among the first personal
computers. At the time of this writing (2020) most personal computers handle digital data in 64-bit
words.

Representing large binary words can be problematic for human beings. For example, it is often
difficult to even tell the difference between two large binary words (e.g. can you tell what’s different
between 11001010001101001101010001100101 and 11001010001101101101010001100101?). For
this reason we commonly denote binary words using hexadecimal notation, where every four bits
condenses into a single character (0 through F). For example, the two 32-bit binary numbers
previously in this paragraph could be written as CA34D465 and CA36D465 in hexadecimal,
respectively.

2.1. DIGITAL BUILDING-BLOCKS 11

2.1.3 Counters

A counter is a digital logic circuit comprised of bistable latching circuits called flip-flops, the
purpose of which being to generate sequential binary number outputs at the command of a
periodically pulsing signal called a clock. The simplest types of counters merely count in an upward
(incrementing) direction, while others are capable of incrementing and decrementing (i.e. counting
up and down). Most counters also provide a means to reset the count value to zero, and many also
provide a means to preset or load the counter with some non-zero starting value.

The model 74HC193 up/down counter is a typical integrated-circuit (IC) unit, exhibiting all of
these functions:

UP

DOWN

CLR

LD

A B C D

QA QB QC QD

CO

BO

74HC193

Direction of count is controlled by applying the clock pulse to either the “UP” or “DOWN”
input. To pre-load this counter with a starting value, you would apply the desired binary states
to upper inputs and then activate the “load” input (LD) by making it low. That data would then
appear at the Q outputs.

As with any binary count sequence, the maximum number of unique “count” values representable
by any counter circuit is 2n, where n is the number of bits. For the model 74HC193 counter, sixteen
different count states are possible, numbered zero (0000) through fifteen (1111).

Counters serve a very important purpose within microprocessors, and that is to index
sequentially-stored instructions in the computer’s memory. This program counter (often abbreviated
PC) internal to the microprocessor instructs the memory device(s) which memory cell(s) to read
and write, usually in incrementing order. On occasion the program may call for the PC to “jump”
or “branch” to a non-sequential memory address, which is an example of the program counter being
“loaded” with a new starting number value.

12 CHAPTER 2. TUTORIAL

2.1.4 Codes

Multi-bit words are useful for representing more than just numbers. A 7-bit digital word, for
example, has 128 unique combinations (0000000 through 1111111), which is more than enough to
represent the entire English alphabet (upper- and lower-case) plus Arabic numerals (0 through 9)
plus all the standard symbols and punctuation marks found on a typewriter or computer keyboard.
A standardized code called ASCII does just this: assigning a unique 7-bit code to each of these
printable characters as well as to some commands useful to printing machines.

Many other such codes exist, and may be invented, by assigning unique digital word combinations
to specific things. Unicode is a different digital code intended to represent written language
characters. Gray code is a code used to represent discrete positions within the range of some
object’s motion. Complex standards such as bitmap or bmp encode graphical images in the form
of long “files” consisting of discrete (on/off) states, as does the wav format for encoding audio
information. All that is required to form a digital code is an agreement between parties (and/or
between computers) as to the meaning and format of all the on/off states.

Codes are particularly important in digital computer circuits, not just for representing external
information such as language characters, color, or sound, but also for representing individual
instructions the computer must follow. Every microprocessor has an instruction set consisting of a
set of codes (called “operation codes” or opcodes) where each one represents a particular action the
circuit is supposed to take. These instruction sets are entirely the invention of the microprocessor
designer(s), and vary widely from one model to another.

2.1.5 Decoders

Any digital circuit that takes a 1-of-n input and converts that into a multi-bit word is called an
encoder. A decoder does just the opposite, taking a digital word and activating one output or one
function for each of the unique combinations of that word:

+
− +

−

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Encoder

1
0
1
1A

B
C
D

eleven

Decoder

A

B

C

D

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 eleven

0
0
0
0
0
0
0
0

0
0
0
0

0
0

0

Decoders find widespread use in digital computer circuits for translating encoded instructions
(called “opcodes”) into definite actions. For example, a microprocessor using four bits to represent
each opcode is capable of taking sixteen (24) different actions based on that code.

2.1. DIGITAL BUILDING-BLOCKS 13

2.1.6 Multiplexers and Demultiplexers

Multiplexers and demultiplexers (“muxes” and “demuxes”) function as steering networks for digital
signals. Take for example the following mux/demux pair used to funnel one of eight discrete signals
along a single line:

S0S1S2"Select"
inputs

Data in Data out

0

1

2

3

4

5

6

7

S0S1S2"Select"
inputs

Data in Data out

0

1

2

3

4

5

6

7

Counter

Clock
signal

Data concentrator

Both types of devices are critically important to computer circuits, including the internal circuitry
of microprocessors, for their ability to direct digital words from different sources and to different
destinations. If a computer needs to receive data from one device at one time, and from a different
device at some other time, but using the same data pathway for both sources, the solution would
be to multiplex those data sources. The computer would control which source was selected by the
digital word sent to the mux’s “select” input lines.

14 CHAPTER 2. TUTORIAL

Note that both multiplexers and demultiplexers are often represented by trapezoidal symbols
rather than rectangular box symbols, as shown below. Selector values may be written in decimal or
in binary:

0

1

2

3

4

5

6

7

S0S1S2

Out

Mux

Inputs

0

1

2

3

4

5

6

7

S0S1S2

In Outputs

Demux

S0S1S2

Out

Mux

Inputs

S0S1S2

In Outputs

Demux
000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

2.1. DIGITAL BUILDING-BLOCKS 15

2.1.7 Latches and shift registers

A latch is a digital circuit that samples data and passes it through during some conditions, but
blocks new input and holds old data for other conditions. These are useful as “gateways” for digital
data into and/or out of digital circuits, permitting data to pass through at some moments but not
at others. Microprocessors use many latches internally for such purposes, with the actions of the
latches controlled by a clock pulse. The illustration below shows a pair of edge-triggered latch circuits
controlling the flow of digital information into and out of some digital system:

D1

D2

D3

CP

D4

D0

D5

D6

D7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Input data
bus

Clock-synchronized
digital system

D1

D2

D3

CP

D4

D0

D5

D6

D7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Clock pulse
signal

Output data
bus

When latches or flip-flops are used to sequence the flow of digital data into or out of logic, that
logic is often referred to as registered. Each of the eight-channel D-type flip-flops shown in the prior
illustration may be thought of as a parallel-in, parallel-out shift register clocking the data into and
out of the clock-synchronized logic block.

Non-registered logic functions produce new output states at whatever speed their logic gates will
muster, limited chiefly by propagation time delays within each gate. However, with complex systems
having many output lines and many gates, it is often the case that those different output lines do
not update synchronously with each other1, so the use of parallel shift registers to delay the input
and output of digital data gives complex logic networks time for all their outputs to settle into stable
states before sending that data on to another part of the digital system.

1A binary ripple counter circuit is an excellent example of this type of circuit.

16 CHAPTER 2. TUTORIAL

Shift registers take digital information and move the bits from one latch to another at the control
of a clock pulse. A common application of this is in serial communication systems, where a digital
word must be communicated one bit at a time over some channel and then reassembled back into
its original form:

1 0 0 0 0 1 1

MSB LSB

1

Transmitting device

MSB LSB

Receiving device

Communication
channel

1 0 0 0 0 1 1 1

Time

Shift direction Shift direction

0 0 1 1

MSB LSB

1

MSB LSB
Communication

channelShift direction Shift direction

1 0 0

MSB LSB MSB LSB
Communication

channelShift direction Shift direction

1 0 0 0 0 1 11

Start

After three
clock pulses

Finished

Serial data

Not only does this find widespread use in digital communications, but also within the internal
workings of digital computers. Shifting the bits of a binary number from one place to the next has
the effect of either multiplying or dividing that number by two. For example, taking the binary
value of six (00110) and shifting the bits to the left turns it into twelve (01100); shifting once to
the right turns six into three (00011). Serial-type shift registers, therefore, provide a simple means
of doubling or halving binary quantities.

2.1. DIGITAL BUILDING-BLOCKS 17

A special type of shift register important to microprocessor operation is called a stack. This is a
set of registers connected in such a way that a digital word applied to the input terminals will be
received at the next clock pulse, and with successive clock pulses that word will be either shifted to
a deeper level within the array or be shifted in reverse order where it will return to the beginning.

The following diagram shows a four-bit stack with eight levels. With each applied clock pulse,
the data given to this stack (data bits D0 through D3) become shifted further down the stack until
eventually they appear at the Q outputs:

Clock

S
hift register

S
hift register

S
hift register

S
hift register

D0 D1 D2 D3

Q0 Q1 Q2 Q3

If we make these shift registers bidirectional, we will have a means of controlling which direction
data moves on the stack. Taking in new data through the D lines and shifting all other data toward
Q is called pushing data onto the stack. Reversing the shift direction to bring data words back
toward the top is called popping data off of the stack.

Stack registers are extremely important to the operation of a microprocessor because they allow
the microprocessor to take on new tasks while “remembering” the incomplete status of older tasks.
Stacks are analogous to a pile (stack) of paper notes. If a person is reading a book and they
suddenly get told to turn to a different chapter to read a passage there, they may write the current
page number on a note and “push” that note to the top of the stack so they won’t forget it while
turning to the new passage. After reading the new passage, the person retrieves their note from the
top of the stack (i.e. “popping” it off the stack) and references it to return to the page where they
left off. This may occur more than once, and the stack will “remember” not only the page numbers
but also keep everything in the right order as the person eventually returns to their original place
in the book.

The deeper a microprocessor’s stack capacity, the more capacity the computer will have for
interruptions and the better it will be able to divert computational resources toward time-sensitive
tasks. Some small-scale and special-purpose microprocessors use internal stacks comprised of
dedicated shift registers, while others reserve special regions of main memory (RAM) for use as
a stack2. The latter strategy is most common, because with this the size of the stack is limited only
by the amount of RAM available and the microprocessor’s ability to address that RAM. Stacks built
from dedicated shift registers inside the microprocessor are necessarily limited in size.

2In such designs, the microprocessor contains a binary counter circuit called the stack pointer which holds the
address of the memory cell deemed to be at the top of the stack.

18 CHAPTER 2. TUTORIAL

2.1.8 Arithmetic logic units

Arithmetic Logic Units, or ALUs, are complex digital circuits designed to perform certain
mathematical and logical operations on digital words. They have their own symbols and
nomenclature as shown here:

A B

F
ALUOpcode Status

Result

Operand Operand

n n

n

m p

The operands are multi-bit digital words that the ALU acts upon. The opcode is also a digital
word, instructing the ALU which logical or math function to apply to the operand(s). An ALU
outputs the result of its operation, as well as bits representing the status of that operation (e.g.
whether or not the result was zero, whether or not the result was negative, etc.).

An illustration of a very simple four-bit ALU appears below with an eight-opcode instruction
set:

A B

F
ALU

A0A3 B0B3

F0F3

4 4

4

Zero

Carry

A>B

3

Opcode list

0 0 1
0 1 0
0 1 1
1 00
1
1
1

0 1
1 0
1 1

=
=
=
=
=
=
=
=

3

O0

O3
Add (A+B)

AND (A • B)
XOR (A ⊕ B)
Rotate right A
Rotate left A
Set (F=1111)

Clear (F=0000)

Increment A

0 00

Every microprocessor contains at least one ALU. If the microprocessor is considered the
center of a digital computer, then the ALU is the center of the microprocessor. Much of a
microprocessor’s internal circuitry exists simply to route information to and from the ALU. For
example, a microprocessor uses shift registers to hold each operand prior to processing by the ALU;
a microprocessor uses mux and demux circuits to steer different sources of data to the ALU’s operand
inputs as well as direct the ALU’s output to different destinations.

2.1. DIGITAL BUILDING-BLOCKS 19

2.1.9 Memory

Memory arrays built from semiconductor logic typically store digital words called data inside of latch
circuits, with each latch accessed by another digital word called the address. To use an analogy, the
address word sent to a memory device is equivalent to the address given to a postal worker who
must find the appropriate mailbox, while the data word is information either placed in the mailbox
(written) or retrieved from it (read). An example of a legacy TTL memory IC is shown below:

1 2 3 4 5 6 7 8

910111213141516

VCC

GndA0 ME WE D1 Q1 D2 Q2

Q3D3Q4D4A3A2A1

7489 TTL random-access memory IC

On this particular IC the memory lines are labeled A while the data input lines (for writing)
are labeled D. Separate data output lines labeled Q provide a means to read the memory. Most
modern memory ICs have bidirectional data lines able to both read and write data depending on
the circuit’s mode, like the following example of a model CY62128EV30 memory:

1 2 3 4 5 6 7 8

VCC

GndA0

WE

D1 D2

D3D4

A3 A2 A1

9 10 11 12 13 14 15 16

CY62128EV30 CMOS random-access memory IC

17181920212223242526272829303132

A4A5 D0

D5D6D7CE1

A6A7A12A14A16(NC)

A10OEA11A9A8A13CE2A15

Most modern digital memory technologies are “random access” which means addresses may be
selected in arbitrary order3. However, the term RAM (Random Access Memory) has come to define
memory that is both random-access and volatile. Memory that is able to retain its data after losing
electrical power is called nonvolatile and is generally known by the term ROM (Read-Only Memory)
although this is often a misnomer as well. Some ROM memory types may be written to as well as
being read.

3By contrast, a sequential access memory can only read or write information in one order. Tape is a good example
of a sequential access technology because one cannot “jump” arbitrarily to any point along the tape, but instead must
wait for the tape to come to the correct location for reading or writing.

20 CHAPTER 2. TUTORIAL

2.1.10 Finite state machines

A finite state machine is a digital circuit using combinational logic and/or a memory array combined
with signal feedback to create a system with a certain number of states, the transitions between states
determined by clock pulses and input conditions:

D0

D1

D2

D3

D4

D5

D6

Q7D7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

Clock

Inputs

Logic and/or
memory

Outputs

Finite State Machine

Feedback

Unlike a combinational logic circuit where all outputs are strictly a function of input conditions
at any given time, for a finite state machine the outputs depend on both input conditions and the
internal state of the circuit. That internal state is defined by the “feedback” bits of the circuit. For
the finite state machine shown above, there are sixteen possible states based on the four feedback
lines (24 = 16).

These circuits are useful for generating specific sequences which may be used to coordinate
different events in a digital system over time. An application for finite state machines is inside
microprocessors, for sequencing such events as the enabling of latches, the selection control of
multiplexers and demultiplexers, and other internal actions which must transpire in particular orders.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 21

2.2 Putting it all together – the processor

What defines a computer as such? What capabilities, at minimum, must a system possess in order
to be deemed a computer? This is a difficult question to answer in definitive terms4, but perhaps
a more practical approach for our purposes would be to ask the question, What capabilities have
proven useful for a computer to possess? The following list shows some of these capabilities:

• A computer should be able to execute tasks in an order prescribed by instructions – i.e. it
needs to be able to follow directions

• A computer should be able to repeat sequences on demand – i.e. it needs to be able to loop

• A computer should be able to execute different sequences of tasks based on changing conditions
– i.e. it needs to be able to conditionally jump or branch

• A computer should be able to direct information to and from different sources and destinations
– i.e. it needs to be able to direct the flow of data

• A computer should be able to store and recall information – i.e. it needs to be able to remember
data

• A computer should be able to implement basic mathematical and logical instructions – i.e. it
needs to be able to apply arithmetic and logic to data

Most of these capabilities reside within the processor section of a digital computer. Early
digital computers used processors made from discrete components (first relays and vacuum tubes,
later transistors), but as semiconductor manufacturing techniques advanced it became possible to
construct an entire processor on a single wafer of silicon, and thus the microprocessor was born.

An interesting and counter-intuitive fact of digital computing is that the bare-minimum
functionality of a microprocessor need not be sophisticated to form a computer capable of amazing
feats. For example, the arithmetical capability of the earliest microprocessors and many of their
successor designs was limited to elementary addition and subtraction. This does not mean, however,
that a computer built around such a microprocessor could only add and subtract! We may program
simple microprocessors to perform advanced operations by compounding the functions they do offer.

Consider multiplication which is really just compounded addition, or division which is really
just compounded subtraction. In other words, it is possible to synthesize5 complex mathematical
functions from more elementary functions if we have the ability to loop and branch and remember
intermediate results. In computer science this is known as function composition: composing
advanced functions by combining primitive functions.

4For those interested in a more complete exploration of this concept, research the definition of a Turing machine,
Turing completeness, and the Church-Turing Thesis. Alan Turing was a British mathematician who developed
the concept of a Turing machine based on readable and writable tape memory. Alonzo Church was an American
mathematician who developed a mathematical system called lambda calculus (λ calculus) to describe computable
functions. The Church-Turing Thesis and its related concepts revolve around the question of what is necessary to
compute algorithmic functions – essentially, what is necessary to make a universal computing machine.

5This is not unlike the universality of NAND and NOR logic functions: with enough NAND gates or NOR gates
we may construct any logical function at all!

22 CHAPTER 2. TUTORIAL

This is relatively easily demonstrated in the case of multiplication as an example of compounded
addition. Suppose we wished to have a computer multiply any two whole numbers A and B

together to compute their product C using a microprocessor limited to addition, subtraction, looping,
branching, and memory read/write capabilities. A simple set of instructions for multiplication is
shown here in pseudocode6:

Store first number into memory location A

Store second number into memory location B

Clear memory location C

Loop:

Add B to C and store result in C

Decrement A

Check to see if A > 0

If so, go to Loop and repeat

If not, present product in memory location C

(End)

Likewise, consider a pseudocode program that divides any two whole numbers A by B to compute
quotient C:

Store first number into memory location A

Store second number into memory location B

Clear memory location C

Loop:

Subtract B from A and store result in A

Increment C

Check to see if A > B

If so, go to Loop and repeat

If not, present quotient in memory location C and remainder in A

(End)

These are elementary examples, of course, but they prove the point: by combining primitive
functions with the ability to conditionally loop and the ability to store results in memory, we see
that a microprocessor may be used to perform functions beyond its immediate capabilities.

6Pseudocode is not a formal computer programming language, but merely a set of brief statements written in
regular words describing to any human reader what a real program should do.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 23

Every microprocessor uses a unique arrangement of digital “building-blocks” such as counters,
latches, multiplexers, etc. to form a functional processing unit, and these are typically so complex
that we rarely if ever see a schematic diagram showing all the components and all the logic lines.
Instead, it is customary to show the “architecture” of a microprocessor as a block diagram. Below
is such an example:

A0 A15

Address lines
D0 D7

Data lines

Control lines

A simple microprocessor

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

Shift register

Solid lines indicate individual conductors or collections called busses. In this case, we see three
such busses for this microprocessor: address, data, and control. These busses connect to external
devices such as memory banks and input/output (I/O) devices. Much of a microprocessor’s tasks
end up being memory read and write operations, where the microprocessor outputs digital logic
states on its address lines and either sends or receives digital logic states on its data lines. The
number of data lines typically defines the “width” of the microprocessor, and so in this case it is an
8-bit microprocessor. The microprocessor’s “control” bus consists of lines for the clock signal, reset
input, interrupt input(s), read/write and select outputs to control memory devices and I/O devices
connected to the address and data busses, etc.

24 CHAPTER 2. TUTORIAL

Note how the Finite State Machine (FSM) block of the microprocessor has dashed lines outputting
to nearly every other block, for the purpose of coordinating the timing and/or functions of each. A
single instruction read from memory and input to the microprocessor usually triggers a sequence of
events inside of it – latches receiving and holding data, multiplexer/demultiplexer channels changing,
and so forth – which must occur in the proper order for everything to work. Multiple cycles of the
clock pulse signal must occur for most if not all of these events.

Even with the simplification of a block diagram, the internal workings of a microprocessor can
be daunting to behold. A practical example will serve to illustrate how these components work
together to execute a simple program. For our example we will consider a program that reads two
numbers from addresses in an external RAM memory and adds them together. The pseudocode for
this program is as follows:

(Program begins at RAM address 0x0200)

Read number stored at RAM address 0x0210 into the Accumulator

Add to that the number read from RAM address 0x0211

Write the result to RAM address 0x0212

This program consists of three instructions for the processor to follow: a read instruction, an add
instruction, and a write instruction. Each of these instructions will consist of sub-steps, as we will see.
The microprocessor, being nothing more than a collection of digital circuits, only understands digital
words, not English words. In order to give it these instructions, we must encode each instruction
type as a binary number. This is not unlike the ASCII code used to represent English characters: an
arbitrary set of 7-bit binary words, each one representing a unique printed character. The designers
of the microprocessor get to assign numerical codes to each of the microprocessor’s instructions,
and they publish a list of these instructions and their corresponding codes in the microprocessor’s
datasheet or manual. For our hypothetical processor, we will arbitrarily assign the code 7C to the
“read” instruction, the code 29 to the “add” instruction, and the code B5 to the “write” instruction.

The reader is urged to closely examine the step-by-step analysis of the microprocessor’s actions
unfolding over the next several pages. There is a lot happening here, and it is easy to overlook small
but important details. At each step the microprocessor block diagram will be annotated with red
lines denoting the path of data movement between blocks. The RAM memory unit’s hex dump will
also be illuminated in red at each step showing the address and data values being either read from
or written to that memory unit. Make your own annotations if necessary, and if you are keeping a
journal7 of your learning, articulate each of the microprocessor’s steps in your own words.

7Journaling is a powerful tool for active learning, as it affords the learner the opportunity to express their learning
in their own words, to pose questions and points of confusion along the way, and to more easily connect concepts that
at first encounter may seem unrelated.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 25

Each of these instructions will function as follows:

• Read (7C) is followed by two more bytes in memory declaring the 16-bit address where the
numerical value is stored, in “little-endian” order (lowest-order byte first, highest-order byte
next), and store this value in the Accumulator register.

• Add (29) is followed by two more bytes in memory declaring the 16-bit address where the next
numerical value is stored, also in “little-endian” order (lowest-order byte first, highest-order
byte next). This number will be added to what is already stored in the Accumulator, and the
result will be placed in the Accumulator.

• Write (B5) is followed by two more bytes in memory declaring the 16-bit address where the
sum will be written, also in “little-endian” order.

For the purposes of this illustration we will assume the number stored at address 0x0210 will
be three and that the number stored at address 0x0211 will be eight. At the conclusion of the last
instruction we should find a sum of eleven written to address 0x0212 in RAM. A “hex dump” of the
RAM starting at 0x0200 will initially look like this (assuming all other addresses have been cleared
and contain zeros):

0 1 2 3 4 5 6 7 8 9 A B C D E F

0200 7C 10 02 29 11 02 B5 12 02 00 00 00 00 00 00 00

0210 03 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The microprocessor’s task will be to fetch each instruction from RAM and execute it. This basic
fetch/execute cycle repeats as long as the program allows.

To the microprocessor, these digital words stored in RAM constitute what is called machine
code: information written in the microprocessor’s native language, ready to be decoded and
sequenced. There is no standardization of machine code for different microprocessors, unlike
higher-level programming languages: machine-code programming is always specific to that model
of microprocessor. In the earliest days of microprocessors this was the only available form of
programming, and it was very tedious. As we shall see later, there are ways to write microprocessor
programs using symbols easier to interpret by human beings.

26 CHAPTER 2. TUTORIAL

Fetching instruction 7C from memory and decoding to initiate the FSM’s sequence:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

0x0200 7C

0x0200

7C

Shift register

0210
Read/write line

Recall that for this microprocessor the 7C instruction commands it to read a value stored in
memory, at an address which itself is stored in the next two addresses in memory. The first action
taken by the FSM is therefore to increment the program counter (PC) to read the low-order byte of
the address for the number which will be sent to the Accumulator register.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 27

Reading 10 from memory as the first byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

0x0201

0x0201 10

10

Shift register

0210
Read/write line

This first byte is routed to the shift register by the FSM. Next, the FSM increments the program
counter again to read the next byte, in fulfillment of the 7C instruction.

28 CHAPTER 2. TUTORIAL

Reading 02 from memory as the second byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

10

Shift register

0210

0x0202

0x0202 02

02

Read/write line

Now that both bytes of the 16-bit address are in the shift register, the FSM will direct this to
be the next address (instead of the program counter) and read the data stored there in fulfillment
of the 7C instruction.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 29

Reading from memory address 0x0210 the first number to be added (three):

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

10

Shift register

0210

0x0202

02

0x0210 03

03

Read/write line

This completes the execution of the first instruction (7C). Now, the FSM will increment the
program counter again and return control of the address to it once more.

30 CHAPTER 2. TUTORIAL

Fetching instruction 29 from memory and decoding to initiate the FSM’s sequence:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03

0x0203

0x0203 29

29

Read/write line

Recall that for this microprocessor the 29 instruction commands it to read a value stored in
memory, at an address which itself is stored in the next two addresses in memory, and then add that
value to whatever is already stored in the Accumulator. The first action taken by the FSM for the
“read” instruction therefore is to increment the program counter (PC) to read the low-order byte
of the address for the number which will be added to the one already stored in the Accumulator
register.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 31

Reading 11 from memory as the first byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03

0x0204

0x0204 11

11

Read/write line

This first byte is routed to the shift register by the FSM. Next, the FSM increments the program
counter again to read the next byte, in fulfillment of the 29 instruction.

32 CHAPTER 2. TUTORIAL

Reading 02 from memory as the second byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03

11

0x0205

0x0205 02

02

Read/write line

Now that both bytes of the 16-bit address are in the shift register, the FSM will use it as the
next address (instead of the program counter) and read the data stored there in fulfillment of the
29 instruction.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 33

Reading from memory address 0x0211 the second number to be added (eight):

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

02

03

0x0205

11

0x0211 08

08

0B

Read/write line

The ALU outputs a value of eleven (0x0B), thus completing the execution of the second
instruction (29). Now, the FSM will increment the program counter again and return control of the
address to it once more.

34 CHAPTER 2. TUTORIAL

Fetching instruction B5 from memory and decoding to initiate the FSM’s sequence:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03 08

0B

0x0206

0x0206 B5

B5

Read/write line

As with the 7C “read” and 29 “add” instructions, the B5 “write” instruction must also seek
another address stored in RAM. The first action taken by the FSM for the “read” instruction
therefore is to increment the program counter (PC) to read the low-order byte of the address where
the sum will be written.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 35

Reading 12 from memory as the first byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03 08

0B

0x0207

0x0207 12

12

Read/write line

This first byte is routed to the shift register by the FSM. Next, the FSM increments the program
counter again to read the next byte.

36 CHAPTER 2. TUTORIAL

Reading 02 from memory as the second byte of a 16-bit address:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03 08

0B

12

0x0208

0x0208 02

02

Read/write line

Now that both bytes of the 16-bit address are in the shift register, the FSM will use it as the
next address (instead of the program counter) and write the ALU’s sum there.

2.2. PUTTING IT ALL TOGETHER – THE PROCESSOR 37

Writing the sum 0B from the ALU’s output to the RAM:

A0 A15
Address lines D0 D7

Data lines

Control lines

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

RAM

Microprocessor

0200

1 2 3 4 5 6 7 8 9 A B C D E F

7C 10 02 29 11 02 B5 12 02

03 08 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

Shift register

0210

03 08

0B

12

0x0208

02

0x0212 0B

0B
Read/write line

With this last cycle, both the B5 instruction and the entire program’s execution is complete. The
sum of our two numbers three and eight has been stored in its own memory location.

38 CHAPTER 2. TUTORIAL

2.3 A simple computer example

Perhaps the simplest possible implementation of a microprocessor is shown in the following schematic
diagram, consisting solely of the microprocessor IC plus a RAM memory IC plus a single AND gate:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus
RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

CE

WE

65536 x 8

Note that these pin designations do not correspond to any particular microprocessor, but
represent functions common to all of them. With the memory IC and microprocessor both having
16 address lines, this corresponds to 216 = 65536 unique addresses, each one storing an 8-bit value.
The microprocessor has separate “read” (RD) and “write” (WR) control lines, and so the AND
gate is necessary to activate the RAM memory IC’s single “chip enable” (CE) input from those two
output control lines8.

We commonly refer to any collection of wires used to convey related electrical signals as a bus.
In this schematic we can see two busses in the computer circuit, one for the address and one for
the data. Often you will see busses represented as single lines in a diagram (often thick lines) to
distinguish them as such, but here we will begin our exploration of this simple computer by showing
all the individual conductors connecting the microprocessor to the memory circuit.

8We need the RAM to be enabled for every “read” as well as every “write” operation, and so the “chip enable”
line needs to activate if either “read” or “write” lines activate. Although it may seem as though an OR gate would be
best-suited for this task, since all the outputs and inputs are active-low the AND gate is actually best (i.e. an AND
gate’s output is guaranteed to be low if either one or the other input is low).

2.3. A SIMPLE COMPUTER EXAMPLE 39

When the microprocessor executes an instruction requiring data to be read from memory, it
activates9 the Read (RD) output line and keeps the Write (WR) inactive. The RAM responds by
outputting data stored at that address on the data lines to be received by the microprocessor:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus
RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

CE

WE

Specifies address
to read from

Reads the data

(Low)

(High) (Low)

Sends "read"
command

65536 x 8

A microprocessor’s address bus is always unidirectional, with the microprocessor setting and
clearing the address line states while the memory receives the specified address. The data bus is
bidirectional, and so when the microprocessor commands the RAM to go into its “read” mode the
microprocessor’s own data lines act as inputs to receive that data. This received data is then held
in a register internal to the microprocessor for use over future clock cycles.

9Note how the Read and Write control lines are both active-low, as are the Chip Enable (CE) and Write Enable
(WE) inputs of the RAM memory IC.

40 CHAPTER 2. TUTORIAL

When the microprocessor executes an instruction requiring data to be written to memory, it
activates the Write (WR) output line and keeps the Read (RD) inactive. The RAM responds by
receiving data output on the data bus by the microprocessor and stores it at the specified address:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus
RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

CE

WE

Specifies address

(Low) (Low)
command

Writes the data

Sends "write"
(High)

65536 x 8

to write to

The microprocessor still outputs address line states to the memory, but during this “write” cycle
the microprocessor’s data lines now function as outputs to send that data to memory. This data
then becomes stored in the memory IC’s cells selected by the specified address.

All input and output lines on the microprocessor involved with selecting external devices,
synchronizing communications, and such are often considered to form another bus called the control
bus. Thus, in any microprocessor-based system you will find an address bus, a data bus, and a
control bus10. This particular microprocessor IC has an extremely minimal control bus, consisting
of just Read (RD) and Write (WR) output lines. Practical microprocessors have many more control
bus lines, but we are eliminating those just to show what is absolutely necessary to access memory.

10In simple systems you find one of each bus type. Complex computer systems may have others as well!

2.3. A SIMPLE COMPUTER EXAMPLE 41

As helpful as this simple schematic may be to demonstrate read and write cycles between a
memory IC and a microprocessor, it does not constitute a useful computer. The first major limitation
is that it has no provision to accept data from any external devices (e.g. keyboard switches, sensors,
data storage drives, networks). All it can do is read data from RAM and write data to RAM. The
second major limitation is that it would be terribly inconvenient to program. Traditional “RAM”
memory is volatile, and so it loses all its data when de-energized. This means every time we turn
this circuit on the memory would contain random and useless information. Using nonvolatile RAM
or NVRAM would solve the power-on problem, but we would still have to unplug this NVRAM
memory IC from its socket on our computer’s PCB and use some other circuitry to write a program
into it, then plug it back into its socket on our computer PCB to re-connect it to the microprocessor
after programming.

It makes more sense to use a ROM11 – which may be pre-programmed and will retain its data
indefinitely – to store the microprocessor’s program while using traditional (volatile) RAM to store
and retrieve data generated by the running program. Our next step in the evolution of this computer
circuit’s design is to add ROM in addition to the RAM it already has. After that, we will consider
how to add external input and output capability to this circuit so our computer will be able to
interface with sensors, lamps, and other devices other than memory arrays.

However, these expansions pose another challenge. If the microprocessor needs to communicate
with two different memory devices as well as (eventually) input and output interfaces, we must
somehow equip the microprocessor to select which device to communicate with. Somehow, we must
find a way to allow the microprocessor to specify which device (memory IC or external interface) it
will communicate with, while permitting all these devices to share the one and only 8-bit data bus
our microprocessor possesses.

This problem is related to the concept of multiplexing, where multiple devices must alternately
share the same communication channel with one another. When multiple devices exchange data over
a common “bus” we refer to this general problem as bus contention. In order to prevent multiple
devices from “contending” or “colliding” with one another over the bus (i.e. attempting to output
contradicting logic states to one or more of the lines within that bus) we must have some means to
selectively enable devices so only one of them will ever be able to output to the bus at any given
time.

11Any suitable ROM-type memory will suffice. Mask-programmed ROMs of course would work if we didn’t care
about being able to ever edit the program. One-time programmable PROM memory ICs could also be used. In most
cases it makes sense to apply some form of EPROM technology for this purpose, giving us the option of modifying
the microprocessor’s program to fix mistakes (“bugs”) or to add features.

42 CHAPTER 2. TUTORIAL

A more practical computer circuit incorporating both ROM and RAM is found in the following
schematic:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8

Close inspection of this diagram reveals all eight data lines on each IC (D0 throughD7) are simply
paralleled together to form an 8-bit data bus. However, only the first fifteen address lines are shared
in common: A0 through A14. The sixteenth address line is used as a chip-selecting bit, ensuring
both RAM and ROM cannot be simultaneously enabled (i.e. ensuring they can never simultaneously
output data to the 8-bit data bus). The RAM is enabled only if both its Chip Enable inputs (CE1
and CE2) are active (low), and the CE1 input connects to the microprocessor’s sixteenth address
line (A15). In contrast, the ROM is enabled only if its single Chip Enable (CE) input is active,
and its state is the complement of A15. Thus, the RAM serves the lower half of the addresses space
(0x0000 through 0x7FFF, when A15 is low) while the ROM serves the upper half of the address
space (0x8000 through 0xFFFF, when A15 is high). The AND gate ensures the RAM cannot enable
unless either a Read (RD) or12 Write (WR) control signal activates; the OR gate ensures the ROM
cannot enable unless the Read (RD) signal activates. Note the use of 32768 x 8 memory ICs instead
of the single 65536 x 8 RAM – this is a necessary compromise because the microprocessor only has
sixteen address lines which limits its total memory space to 65536 addresses.

12An AND gate provides an “OR” function if the logic is negative (i.e. active-low): all it takes is one or the other
input of the AND to be low to guarantee a low output state.

2.3. A SIMPLE COMPUTER EXAMPLE 43

The following illustration shows this two-memory microprocessor system reading13 from RAM
versus reading from ROM, along with a “memory map” showing the two memory types dividing the
shared 65536-address space:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8

(Low)

(Low)

(Low)

(High)

(Reading)

(Low)

(High)

(Reading) Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

(Low)

(Low)

ROM is where we would store the microprocessor’s program since this data would be nonvolatile
and therefore always be ready to read at power-up. RAM is where we could program the
microprocessor to store and retrieve any new data generated by the program’s instructions.

13The write cycle would look similar, the only difference being activation of the Write Enable (WE) input on the
RAM memory IC. There is, of course, no write cycle for the ROM since it is read-only memory.

44 CHAPTER 2. TUTORIAL

Before we proceed any further with the development of this computer’s circuitry, let’s unclutter
the schematic diagram by using bus notation instead of individual wires for the address and data
lines connecting these ICs. We will use thicks line to represent sets of individual wires, the number
of wires in that set represented by a numeral next to a diagonal slash mark:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8

Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

RAM enable

ROM enable

A notable limitation of this simple computer system is that it lacks provision for input or output
to anything but its own memory banks. This means it cannot interface at all with the external
world. Practical computing systems, by contrast, possess input-output (I/O) capability to interface
with such devices as keyboards, monitors, lamps, switches, communications networks, external data-
storage devices, etc.

We may augment this computer’s design with I/O capability by utilizing the Read (RD) and
Write (WR) control lines intended to control the functions of interface circuits in addition to the
RAM and ROM memory ICs. If we just build some additional circuitry that is addressable just like
cells within the RAM or ROM chips, and connect that circuitry to the address and data busses just
like the RAM and ROM ICs, then the microprocessor will be able to read data from and write data
to this circuitry as though it existed within a specific segment within the memory space.

2.3. A SIMPLE COMPUTER EXAMPLE 45

Consider the following solution providing two 8-bit I/O ports for this system, each port’s interface
circuitry consisting of a single 8-bit D-type parallel-in, parallel-out register (latch):

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

As complicated as this may appear, the purpose for each additional line and gate is remarkably
simple. We want the output port to be enabled whenever the microprocessor writes to address
0x0000, and we want the input port to be enabled when the microprocessor reads from address
0x0001. To do this, we must first extend the 8-bit data bus to connect to both port latches, and
then we must extend the address bus to bring all 16 address lines down to some new decoding
logic. The two new 16-input NAND gates perform the address decoding (i.e. identifying 0x0000

and 0x0001 respectively) while the two new OR gates driving the latch enable inputs ensure proper
read/write direction (e.g. so it will be impossible for the microprocessor to write to the input port
or read from the output port). The last new gates we added – a two-input NAND gate and a
two-input OR gate – add one more condition necessary to enable the RAM memory IC: the RAM
can enable for reading or writing only if both I/O ports are unselected. This prevents a potential
collision between the I/O latches and the RAM for addresses 0x0000 and 0x000114.

To summarize, the new logic simply prevents more than one device from being enabled by the
microprocessor at any given time: either RAM or ROM or the Input port or the Output port, but
no simultaneous combination.

14This “memory-mapped I/O” design also wastes two otherwise usable memory spaces in the RAM memory IC. If
we are using 0x0000 as the address for the Output port and 0x0001 as the address for the Input port, then we cannot
use those same addresses within RAM. Considering our RAM has an address space of 32768, though, it will not make
much of an impact to sacrifice two of them in order to have I/O ports for our computer system.

46 CHAPTER 2. TUTORIAL

To show how this selection logic works, we will once again use red coloring to denote activated
states and enabled devices, for each of the following conditions: writing to the Output port, reading
from the Input port, reading from RAM, writing to RAM, and reading from ROM.

First, writing to the Output port at address 0x0000:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(Low)

(High)

(Low)

(Low)

Write

(High)

(High)

(High)

(High)

(High)

(Low)

Address
0x0000

• The Output port is enabled to take data from the data bus because its 16-input NAND
gate is enabled (all 16 address bits are low, which when run through the 16 inverted input
lines of the NAND gate force that gate’s output to go low) and because the microprocessor’s
Write output (WR) is active (low).

• The Input port is disabled because it lacks the correct address states to enable its 16-input
NAND gate and also because the microprocessor’s Read (RD) output is inactive (high).

• The RAM is disabled because is second Chip Enable input (CE2) is inactive (high), forced so
by the “I/O unselected” line being inactive (high).

• The ROM is disabled because its Chip Enable input (CE) is inactive (high), due to address
bit A15 being low.

2.3. A SIMPLE COMPUTER EXAMPLE 47

Next, we show the microprocessor reading from the Input port at address 0x0001:

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

(Low)

(High)

(Low)

(Low)

1

(High)

(High)

(High)

(High)

(High)

(Low)

Address
0x0001

Read

• The Output port is disabled because it lacks the correct address states to enable its 16-input
NAND gate and also because the microprocessor’s Write output (WR) is inactive (high).

• The Input port is enabled because its 16-input NAND gate is enabled (address bits 0000
0000 0000 0001, which makes that 16-input NAND gate output go low because 15 of the 16
inputs are inverted, that LSB input being non-inverted which detects the “1” bit in address
0x0001) and because the microprocessor’s Read output (RD) is active (low).

• The RAM is disabled because is second Chip Enable input (CE2) is inactive (high), forced so
by the “I/O unselected” line being inactive (high).

• The ROM is disabled because its Chip Enable input (CE) is inactive (high), due to address
bit A15 being low.

48 CHAPTER 2. TUTORIAL

Next, we show the microprocessor reading from RAM at any address between 0x0002 and 7FFF

(inclusive):

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

0

(Low)

(High)

(High)

(High)

(High)

(Low)

Address

Read

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

between

and
0x0002

0x7FFF

(High)

(High)

(Low)

(Low)

• The Output port is disabled because it lacks the correct address states to enable its 16-input
NAND gate and also because the microprocessor’s Write output (WR) is inactive (high).

• The Input port is disabled because it also lacks the correct address states to enable its 16-input
NAND gate.

• The RAM is enabled because both its Chip Enable inputs (CE1 and CE2) are active (low).

• The ROM is disabled because its Chip Enable input (CE) is inactive (high), due to address
bit A15 being low.

2.3. A SIMPLE COMPUTER EXAMPLE 49

Next, we show the microprocessor writing to RAM at any address between 0x0002 and 7FFF

(inclusive):

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

0

(Low)

(High)

(High)

(High)

(High)

(Low)

Address

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

between

and
0x0002

0x7FFF

(High)

(High)

(Low)

(Low)

Write

• The Output port is disabled because it lacks the correct address states to enable its 16-input
NAND gate.

• The Input port is disabled because it also lacks the correct address states to enable its 16-input
NAND gate and also because the microprocessor’s Read output (RD) is inactive (high).

• The RAM is enabled because both its Chip Enable inputs (CE1 and CE2) are active (low).
It now accepts data from the data bus because its Write Enable input (WE) is active (low).

• The ROM is disabled because its Chip Enable input (CE) is inactive (high), due to address
bit A15 being low.

50 CHAPTER 2. TUTORIAL

Lastly, we show the microprocessor reading from ROM at any address between 0x8000 and FFFF

(inclusive):

Clk

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

RD
WR

Microprocessor RAM

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

WE

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

CE

ROM

CE1

CE2

32768 x 8 32768 x 8
Memory map

RAM

ROM

0x0000

0x7FFF
0x8000

0xFFFF

15

8

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1

Q3
Q4
Q5
Q6
Q7

Q2

EN

Input port

Output port
8

15

15

15

A15

0x0001

0x0002

Input port

Output port

0x0000 select

0x0001 select

I/O unselected

Memory-mapped I/O ports

(Low)

(High)

(High)

(High)

(Low)

Address

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

between

and

(High)

(High)

(Low)

(Low)

1
(Low)

0x8000

0xFFFF

Read

• The Output port is disabled because it lacks the correct address states to enable its 16-input
NAND gate and also because the microprocessor’s Write output (WR) is inactive (high).

• The Input port is disabled because it also lacks the correct address states to enable its 16-input
NAND gate.

• The RAM is disabled because its first Chip Enable input (CE1) is inactive (high), due to
address bit A15 being high.

• The ROM is enabled because its Chip Enable input (CE) is active (low).

This is how memory-mapped I/O works in a computer system: the I/O ports are wired such
that they are enabled only when specific address values are asserted on the address bus. As far
as the microprocessor “knows”, the input port is nothing more than one address in memory where
real-world input data somehow lands, and the output port is nothing more than a different address
in memory where data written somehow goes out to the real world.

2.4. MACHINE CODE AND ASSEMBLY LANGUAGE 51

2.4 Machine code and assembly language

In order for a microprocessor to be useful it must have instructions in memory ready to fetch and
execute. A natural question to ask at this point is, “How do we get information placed in the
computer’s memory for the microprocessor to act upon?” The answer to this question is multi-
layered, so we will begin with the extremely simple and progress to the more complicated.

Early personal computers such as the Altair 8800 (which happened to use the 8-bit Intel model
8080 microprocessor) provided the user with a set of toggle switches and indicating LEDs as the
primary interface. A photo of an Altair 8800 powered up at a conference appears below15:

Eight LEDs show the states of the microprocessor’s data bus (D7 through D0) while sixteen
LEDs below that show the state of the address bus (A15 through A0). The remaining LEDs show
the 8080 microprocessor’s control bus line states. Sixteen toggle switches located immediately below
the address LEDs provide a means for manual user input, which was the primary method for entering
machine code into this computer’s RAM memory. The user would set the address toggle switches
for the desired memory address (up = high and down = low) and then momentarily toggle the
“Examine” switch upwards to enter that address into the 16-bit address latch, followed by setting
the eight lower-order switches for the desired data word and then momentarily toggling the “Deposit”
switch upwards to write to the RAM memory. After entering all the machine codes for a program,
the user could then reset the microprocessor to start at address 0x0000 and set the Stop/Run switch
to the “Run” position to begin clocking the microprocessor to make it fetch the first instruction from
that address and subsequently run the program.

If this sounds tedious to you, know that it absolutely is (or was). Thankfully, we don’t have
to do this sort of thing anymore to operate a computer. Even those pioneering users who were
forced to toggle in their machine-language programs bit-by-bit invented methods to make life easier
for themselves. This included toggling in a simple “bootloader” program that would then instruct
the computer to receive information from a punched paper-tape, magnetic tape, or other durable
medium for storing digital data. Bootloaders minimized the amount of “toggling” that one had to
do and therefore expedited the process of loading large programs into the computer’s RAM. The

15Credit goes to Fernando Sáenz for taking this photograph at the RetroMadrid conference on 29 April 2018, and
for placing it into the public domain.

52 CHAPTER 2. TUTORIAL

concept of bootloading is still alive and well today, with modern personal computers first accessing
a small non-volatile memory bank16 upon power-up in order to receive instructions on how to load
the next phase of the software into RAM memory.

A welcome alternative to manually toggling in bootloader code into a freshly-powered computer
is the use of nonvolatile (ROM) semiconductor memory to store some initial machine-language code
instructing the microprocessor to be more useful to a human programmer. During the early days of
personal computing this concept became quite refined to include monitor programs as well as entire
language interpreters written to ROM ICs. A “monitor” program instructs the microprocessor to
receive information from a keyboard and output to either a teletype machine or a video console,
allowing the user to type and review machine-language code in the computer’s memory upon power-
up.

One of the more popular monitor programs was called BUFFALO (“Bit User Fast Friendly Aid
to Logical Operation”), shown below displaying a portion of the RAM memory’s contents for a
Motorola model 68HC11 microcontroller17:

>md 0020

0020 B6 C1 00 BB C1 01 B7 C1 10 7E E0 00 FF FF FF FF

0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0040 FF FF FF FF FF FF FF FF FF FF E4 E4 E4 E4 64 E3 d

0050 F3 00 E4 64 E3 F3 00 57 00 20 E4 B6 E7 BA E1 FA d d X

0060 FF FF FF FF FF FF FF FF D0 00 41 6D 64 20 30 30 Amd 00

0070 32 30 0D 20 63 31 30 30 0D FF FF FF FF FF FF FF 20 c100

0080 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 4D 44 MD

0090 20 1B 5B 42 4D 4D 00 20 B6 00 B7 FF 00 00 00 00 [BMM

00A0 00 00 00 00 01 01 01 00 04 21 00 20 00 00 00 72 @ r

Here, the BUFFALO monitor allows the user to communicate with the microprocessor via either
a teletype machine (with keyboard and paper-printer mechanism) or another computer’s keyboard
and video monitor through a serial data connection18. The monitor program accepts certain typed
commands and replies with text responses to those commands. In the example shown above, the
command md 0020 instructs the BUFFALO monitor to print a “hex dump” of the memory’s contents
beginning with address 0x0020.

Being able to type data into the computer’s RAM using a keyboard and view it on a screen is
far more convenient than entering machine-language code using toggle switches and reading it using
LEDs!

16For example, the BIOS memory in an IBM-compatible personal computer.
17A microcontroller is a microprocessor combined with on-board semiconductor memory and I/O interfacing

circuitry to make it a functioning computer within a single integrated circuit.
18This md 0020 command and response was captured from a serial terminal display I used on a personal desktop

computer to communicate with the Motorola 68HC11 single-board computer. If this had been done in the mid 1980’s
I would have used a teletype machine instead, and the output being typed on a sheet of paper.

2.4. MACHINE CODE AND ASSEMBLY LANGUAGE 53

Despite the convenience afforded by a monitor program such as BUFFALO, programming
a microprocessor in machine code – whether in binary form or in hexadecimal “shorthand”
representation – is still tedious and error-prone. Codes such as B6 and BB may make sense to
the microprocessor, but they do not make natural sense to any human being. In order to write
programs in this manner, one must either memorize the instruction set of the microprocessor and/or
continually reference a book describing the machine codes for each instruction offered by the IC.

A solution to this problem is the use of software called assemblers. An “assembler” is a computer
program written for the purpose of translating mnemonic codes into machine code the microprocessor
can directly understand. The mnemonic codes resemble abbreviated English words or phrases, and
are therefore easier to remember and easier to interpret when viewed on a sheet of paper or on a
video display. For example, let us look again at the first line of the hex dump shown earlier for a
Motorola model 68HC11’s memory:

0020 B6 C1 00 BB C1 01 B7 C1 10 7E E0 00 FF FF FF FF

Each of these bytes (except for the FF’s toward the end) represents code for a simple program
instructing the computer to add two numbers together. If we re-write this as separate lines, one per
instruction, and add some comments for each, the program becomes easier for us to interpret:

0020 -- Starting memory address for the program

B6 C1 00 -- Load Accumulator A with number stored in address C100

BB C1 01 -- Add to value in Accumulator A with number stored in address C101

B7 C1 10 -- Store value in Accumulator A to address C110

7E E0 00 -- Jump to address E000 (the start of the BUFFALO monitor)

From these comments we can tell instruction B6 means to “Load Accumulator A”, instruction BB

means “Add to Accumulator A”, instruction B7 means “Store from Accumulator A”, and instruction
7E means “Jump”19. However, an assembler is an improvement upon this. In the next code listing
we see the assembly language source code for this exact same program:

org $0020

ldaa $C100

adda $C101

staa $C110

jmp $E000

19Astute readers will notice that the specified memory addresses in these instructions are in big-endian order, while
the addresses specified for the instructions in the simple microprocessor example used in the “Putting it all together”
section were in little-endian order. It just so happens that the Motorola model 68HC11 is a big-endian processor.
Many other processors (including all Intel-brand processors) are little-endian.

54 CHAPTER 2. TUTORIAL

The three- and four-letter mnemonics make far more sense to any human reader than hexadecimal
codes. By comparison with the earlier commented machine code we can tell org directs the assembler
to make the origin for this program at memory address 0x0020; next, ldaa loads Accumulator A
with the number stored at address 0xC100; after that, adda adds to Accumulator A the value stored
at address 0xC101; then staa stores Accumulator A’s result to address 0xC110; finally, jmp tells the
microprocessor to jump to address 0xE000.

As with other programming languages, assembly language permits the use of comments to
annotate the code for even better readability. Here is the same program with comments included,
using the semicolon symbol (;)20 preceding each comment:

; ============================

; Two-number adder

; Assembler used: AS11

; ============================

org $0020 ; Starting address

ldaa $C100 ; Load A with value stored at C100

adda $C101 ; Add to A the value stored at C101

staa $C110 ; Store A to C110

jmp $E000 ; Jump to E000

Either this or the previous assembly code listing may be processed by an assembler and converted
in executable machine code that the processor is able to directly understand, although the latter
example is much easier for any human reader to understand thanks to all the comments. Some
monitor programs (such as BUFFALO) had an assembler function built-in which meant you could
directly enter the assembly codes using the keyboard and “assemble” that finished source code
into machine code for the same microprocessor to run. A more modern approach to assembly-
language programming is to type the assembly source code into an entirely different computer, and
have that computer translate it into machine code for downloading to the target microprocessor’s
memory21. Once assembled into machine code, the program may be written to a PROM memory IC
to be installed in the target computer, or sent to the target computer via a communications cable
assuming the target has a monitor program to instruct it how to receive the communicated data.

Just as machine language is specific to the model of microprocessor being programmed, assembly
language likewise is specific to both the microprocessor model and the assembler software used to
translate assembly “source code” into machine language.

20Those familiar with higher-level programming languages such as C, C++, Java, and Python will recognize the
semicolon symbol as having a very different meaning in those languages than a comment marker!

21This is called cross-assembly (using one computer to assemble code for a different type of computer to execute),
and it is precisely what I did to create the machine-language executable code from the assembly source code in this
example. I typed the assembly source code into a plain-text file (myprogram.asm) on my desktop computer and then
used the assembler as11 to translate this source code into an “object code” file (myprogram.s19) which was then
downloaded to the Motorola 68HC11 computer through a serial data cable. Once loaded into the RAM of the target
microprocessor, I could display the memory contents and run my program using commands available to me through
the BUFFALO monitor.

2.5. INTERRUPTS 55

2.5 Interrupts

An important concept in microprocessor and microcontroller operation is the notion of an interrupt.
This is a signal, either received from some external source or generated internally, that causes the
processor to halt its regular execution of the program and “jump” to a new location in program
memory where other instructions exist to tell it how to service (i.e. deal with) this interrupting
event.

Interrupts are often classified as being either maskable or non-maskable22. This simply refers to
whether the user is able to disable the interrupt or not. A “maskable” interrupt is one that can be
disabled by setting certain bits in a register of the processor, and a “non-maskable” is one that is
always alert and cannot be disabled. The reset function on a microprocessor or microcontroller is a
typical example of a non-maskable interrupt.

The ability to arbitrarily “interrupt” the normal execution of a program in order to perform a
different task is important when the microprocessor must interface with external devices in a time-
sensitive manner. For example, in order to handle incoming data transmissions from an external
device, the microprocessor must be able to stop whatever else it might be doing at that time in
order to avoid missing some or all of that incoming data. Interrupts are also important for “real-
time” control applications where the microprocessor is tasked with receiving information and sending
information regarding high-speed physical processes (e.g. fuel injection controls on an engine), where
delays of even a few milliseconds could result in poor control or even in dangerous conditions going
unchecked.

The way this usually works is that an interrupt event causes the Program Counter23 to go to
a pre-designated address in memory called a vector, which contains the memory address where the
first instruction of the service routine (typically called an “Interrupt Service Routine” or ISR) exists.
These interrupt vectors are often hard-coded into the processor at the time of manufacture, but the
user (programmer) is free to place their ISR code wherever they wish in memory and to write the
appropriate starting addresses for those routines into the appropriate interrupt vector location(s).

It should be noted, however, that interrupt handling varies significantly between different
microprocessor designs, and that there is no “standard” method. Be sure to reference the
manufacturer’s literature on the particular microprocessor you are using in order that you use their
interrupts correctly!

22In programming, a mask is a set of bits intended to apply a bit-wise logical operation to bits within a larger
word of data. An “interrupt mask” would be a word whose bits acted as individual enable/disable instructions for
different types (or sources) of maskable interrupt signals. A microprocessor’s non-maskable interrupts would have no
such mask word because those interrupts are very high-priority and should never be disabled.

23Recall that the Program Counter is a special register inside the microprocessor used to keep track of which memory
address the next instruction or operand is located at. It is literally a counter in the sense that it typically increments
from one memory location to the next in sequence, but it may also jump to other addresses as commanded by certain
instructions.

56 CHAPTER 2. TUTORIAL

The following table shows a list of interrupts and corresponding vectors for the Texas Instruments
MSP430G2553 microcontroller:

Interrupt source Vector address Assembly section C/C++ name

Reset 0xFFFE .reset RESET VECTOR

Non-maskable 0xFFFC .int14 NMI VECTOR

TIMER1 A0 0xFFFA .int13 TIMER1 A0 VECTOR

TIMER1 A1 0xFFF8 .int12 TIMER1 A1 VECTOR

Comparator A 0xFFF6 .int11 COMPARATORA VECTOR

Watchdog timer 0xFFF4 .int10 WDT VECTOR

TIMER0 A0 0xFFF2 .int09 TIMER0 A0 VECTOR

TIMER0 A1 0xFFF0 .int08 TIMER0 A1 VECTOR

USCIAB0RX 0xFFEE .int07 USCIAB0RX VECTOR

USCIAB0TX 0xFFEC .int06 USCIAB0TX VECTOR

ADC10 0xFFEA .int05 ADC10 VECTOR

Port 2 I/O 0xFFE6 .int03 PORT2 VECTOR

Port 1 I/O 0xFFE4 .int02 PORT1 VECTOR

Each interrupt is listed by type (left-hand column), the memory address of its vector (next
column) where the corresponding ISR service instructions begin, the assembly-language label
(“section”) for the ISR code, and lastly (right column) the pre-designated name of the function
for the ISR code if programmed using the C or C++ languages. This list is ordered from top to
bottom in descending priority, the Reset interrupt being the highest priority and the Port 1 I/O
interrupts being the lowest priority.

Chapter 3

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

57

58 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1 Introduction to assembly language programming

Microprocessors only understand machine code – instructions and data encoded as binary values,
often written in hexadecimal “shorthand” form for better human-readability – but even in
hexadecimal these codes are non-intuitive and confusing for human programmers to manage.
Assembly code improves upon this situation by representing each machine-code instruction as an
word-abbreviation called a mnemonic. The convenience of mnemonics, though, comes at price: since
the mnemonics themselves are nonsense to the microprocessor, a special software package called an
assembler must be used to translate these mnemonics into machine code that the microprocessor
can understand. Just as microprocessors each have their own unique instruction set defining which
codes perform which functions, assembler software has its own unique “vocabulary” and “grammar”
one must abide by in order to write functioning programs. Assembly programming, therefore, is its
own language and like all languages has specific rules.

Furthermore, assembly-language lacks the strict standardization found in higher-level
programming languages such as C, C++, Java, and Python. Just as machine-code programming is
specific to the model of microprocessor, assembly-language programming rules are often specific to
the assembler software version, which in turn is often closely coupled to the microprocessor model.
It is thus impossible to write a generic tutorial on assembly programming, just as it is impossible to
write a generic tutorial on machine-code programming. What we will explore here are features of
assembly code common to most assemblers.

We will use a specific hardware application as the foundation for this lesson on assembly language
programming, in order to have a practical context for understanding what the program does and
how it works. This means the examples given here will not work with any microprocessor other
than the system described here, but that is okay. Many of the principles learned here find general
application to other systems.

Our hypothetical computer is shown below, based on a Motorola model 6502 8-bit microprocessor.
A single output port mapped to memory address 0x4000 provides the means for our program to
turn LEDs on and off, by writing bit-states to that byte located at 0x4000. Another port at address
0x0401 provides inputs, where our program may read bit-states of the byte stored there to detect
logic signals applied to those pins by external circuitry (not shown). ROM begins at address 0x8000
and extends through address 0xFFFF. RAM begins at address 0x0000 and extends through address
0x3FFF:

6502-based computer

CPU
RAM

+V

Gnd

Gnd

P0

I/O

P1
P2
P3
P4
P5
P6
P7

LEDs

Memory Map

0x0000

ROM

RAM

OUTPUT PORT

RAM

I/O

P0P1P2P3P4P5P6P7Gnd

INPUT PORT

Outputs

Inputs

0x3FFF
0x4000
0x4001

0x8000

0xFFFF
(0x4000)

(0x4001)

RAM RAM

ROM ROM

ROMROM

The 6502 provides an Accumulator register plus two general-purpose registers (named X and Y)
for temporary data storage, each one eight bits wide.

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 59

3.1.1 Machine code to blink an LED

Suppose we wish to make the LED connected to output pin P0 on the computer blink on and off.
This means writing a 1 and then a 0 to bit 0 of the byte located at 0x4000 while clearing (making
zero) all the other bits at that address. Our program will execute the following steps:

1. Write the binary value 0b00000001 to address 0x4000

2. Toggle the least-significant bit of that byte in address 0x4000

3. Go back to second instruction and repeat indefinitely

The same steps, using instructions available in the 6502’s instruction set:

1. Load the binary value 0b00000001 into the Accumulator register

2. Store the Accumulator’s value to address 0x4000

3. Apply the Exclusive-OR function to the LSB in the Accumulator using the mask1

0b00000001.

4. Jump to the second instruction and repeat indefinitely

Researching opcodes and operand formats for the model 6502 microprocessor, we find the
following:

• The opcode for “Load Accumulator with immediate value” is 0xA9 followed by the desired
value to load (0x01)

• The opcode for “Store Accumulator value to absolute memory address” is 0x8D followed by
two bytes specifying the destination address in little-endian order (low byte first, high byte
last: 00 40 for address 0x4000)

• The opcode for “Exclusive-OR with immediate value” is 0x49 followed by the mask value
(0x01)

• The opcode for “Unconditional Jump to absolute memory address” is 0x4C followed by the
target address in little-endian order

1In programming, a mask is a set of bits intended to apply a bit-wise logical operation to bits within a larger word
of data. Here, our mask of 0b00000001 means the LSB will be XOR’d with 1 (i.e. toggled, to make it switch states
from whatever it was before to the opposite of that) while all other bits within the Accumulator’s 8-bit word will be
XOR’d with 0 (i.e. left alone).

60 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

If we write all these opcodes and operands in order, one line per complete instruction, we get
the following hand-assembled machine code:

A9 01

8D 00 40

49 01

4C ?? ??

The question-marks are there in our code because we need to determine where our program will
begin in the computer’s ROM memory space in order to know which address we need to “jump” to
in the last instruction. Let’s assume our program starts at the very first address in ROM (0x8000)
and re-write the program showing the starting address of each line2:

8000 A9 01

8002 8D 00 40

8005 49 01

8007 4C ?? ??

Recall that the purpose of our “Jump” instruction (last line, 0x4C) was to go back to the “Store
Accumulator” instruction (0x8D) so that our recently XOR’d data will be re-written to the output
port at address 0x4000. Therefore, the address we need to jump to is 0x8002. Knowing this, we
may edit our machine code listing to include this address in the last instruction, in “little-endian”
byte order because the model 6502 microprocessor happens to be a little-endian machine:

8000 A9 01

8002 8D 00 40

8005 49 01

8007 4C 02 80

If we were to write this program to the computer’s ROM and then read it back to display in
conventional “hex dump” format, it would look like this:

8000 A9 01 8D 00 40 49 01 4C 02 80

If the ROM IC(s) in our computer are socketed and therefore easily removed for programming
by an external device, we could use a PROM programmer3 to write this short program into a
programmable ROM memory chip and then re-insert it into our computer’s board to run.

2This is beginning to resemble the common “hex dump” memory display format, except that each line of text is
limited to just one instruction

3Commercially-available PROM programming tools consist of a unit connected to a personal computer with a

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 61

3.1.2 Assembly code to blink an LED

Now that we have seen the “hand-assembly” method of creating a simple LED-blinking program
for our 6502-based computer, let us explore how we could do the same using assembly language.
Starting with the original program specification telling us what we need the computer to do:

1. Write the binary value 0b00000001 to address 0x4000

2. Toggle the least-significant bit of that byte in address 0x4000

3. Go back to second instruction and repeat indefinitely

Next, we refer to instructions available in the 6502’s instruction set, but this time we write the
mnemonic abbreviations given in that instruction set instead of opcodes:

1. LDA value 0b00000001

2. STA to 0x4000

3. EOR mask 0b00000001

4. JMP to second instruction

We are almost done with our assembly-language program! All we need to do now is write it
using the proper syntax4 expected by our assembler software, being sure to include a directive5 to
the assembler to begin at address 0x8000.

.ORG $8000

LDA #$01

LOOP

STA $4000

EOR #$01

JMP LOOP

This program you see above is completely functioning, ready to be assembled into machine code
and written to the computer’s ROM.

zero-insertion-force (ZIF) IC socket to facilitate easy plugging and unplugging of memory ICs. Software provided
with the programmer allow you to type the hex dump data into an editor window (or into a plain-ASCII text file)
and then have that data written to the memory IC with the click of a button or a command-line instruction typed
into the personal computer. If you really desire a low-level learning experience, you can program the PROM chip by
connecting address, data, and write-enable lines to toggle switches, then toggling those switches to specify addresses,
data to be written to those addresses, and pressing the write-enable switch to “burn” that data into the chip when
you are ready. Needless to say, the latter option is the most tedious.

4We are assuming here that our assembler does not understand binary notation and expects all numerical values
to be expressed in hexadecimal instead.

5A “directive” is an instruction given not to the microprocessor, but rather to the assembler software. It tells the
assembler to translate the assembly “source” code into machine code in some particular manner.

62 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

Optional comments help make our code easier to read:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

JMP LOOP ; Jump to the beginning of the loop

Take note of some important details of this assembly-language program:

• Order of execution is left-to-right, top-to-bottom in the same order as reading English-language
text.

• Any left-justified text (e.g. LOOP) is considered a label rather than an instruction, whether on
its own line or preceding an instruction.

• Instructions (e.g. LDA, STA, etc.) must be preceded by whitespace. The number of space or
tab characters doesn’t matter.

• Operands to those instructions (e.g. $4000, etc.) must be separated to the right of those
instructions by some whitespace as well. The number of space or tab characters doesn’t
matter. In this listing I’ve adjusted the number of spaces to make the columns neatly align.

• Any text to the right of a semicolon (;) character is considered a comment, ignored by the
assembler and not included in the machine code at all.

• Any instruction preceded by a dot (e.g. .ORG) is a directive to the assembler, telling how to
do some aspect of the translation into machine code, but not appearing in the final machine
code itself.

• Note how the Jump instruction’s target address was resolved by the assembler, with no need
for us to count address numbers to figure out where it should jump to. We simply place a
label and let the assembler figure out those details for us.

• This assembler uses a dollar-symbol ($) to denote any hexadecimal value.

• The pound symbol (#) denotes an immediate value, meaning the literal number value specified.
Otherwise, the operand value is considered to be a memory address location.

It should be noted that some of these conventions vary from assembler to assembler. For
example, some assemblers require all labels to contain a colon at the end (e.g. LOOP: rather than
LOOP). Some assemblers allow C-style hexadecimal notation (e.g. 0x4000) while others insist on
the $ character. Some assemblers allow binary notation (e.g. 0b00000001 or %00000001) while
others don’t. Some assemblers require directives be preceded by a dot (e.g. .ORG) while others
insist directives not be preceded by any character. As always when using software, refer to the
manufacturer’s documentation for details!

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 63

3.1.3 Slowing down the blinking

If we were to actually assemble and write this program to ROM, then start the computer to initiate
program execution, we would likely find the LED blinking on and off so fast that it appeared to be
steadily lit (albeit dimmer than usual). The reason for this is the fast fetch/execute cycle time of a
typical microprocessor. A model 6502 running at a clock speed of 1 MHz would blink the LED on
and off at a rate far too quick for the human eye to see6.

In order to make the blinking rate slow enough to see, we must somehow delay the loop’s
repetition. One easy way to do this is to insert a “counting” loop inside of our program’s blinking
loop. This counting loop keeps the microprocessor occupied by doing nothing but sequentially
counting, in order to purposely waste time and thereby delay its toggling of the LED output bit.

Here is a section of assembly code using common 6502 instructions to perform this delay task by
forcing the microprocessor to count backwards from 255 (0xFF) until it reaches zero, complete with
explanatory comments:

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP to repeat

One way to incorporate this delay code into our program is to simply insert it “in-line” with the
original code between the EOR and JMP instructions, like this:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP to repeat

JMP LOOP ; Jump to the beginning of the loop

6According the the model 6502 manual,, the STA instruction requires 4 clock cycles, the EOR instruction 2 clock
cycles, and the JMP instruction 3 clock cycles. This means 9 clock cycles would be required for every pass through
the program, with two passes required for a full cycle of the LED’s blink (i.e. on and off). Dividing 1 MHz by the 18
clock cycles necessary to fully cycle the LED gives an LED blinking frequency of 55.556 kHz!

64 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

While this solution works quite well, there is a more sophisticated way to achieve the same “loop
within a loop” structure, and that is to place the delay-time code within its own subroutine. A
“subroutine” is a section of code that stands apart from the rest, ready to be called by the main
portion of the program whenever needed.

Subroutines are particularly useful when that code must be invoked at multiple points within
the main program. Instead of copying-and-pasting the necessary code repeatedly in-line where
needed, we simply insert a “call” or “jump to subroutine” instruction where it’s needed and the
microprocessor will jump to that new address (its Program Counter being preset as needed). Then,
at the end of the subroutine we place a “return” instruction that tells the microprocessor to resume
where it left off in the main program.

The following shows a listing of the assembly code for the slow-blinking program using a
subroutine called DELAY7:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

EOR #$01 ; XOR the least-significant bit

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #$FF ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

Admittedly the use of subroutines doesn’t appear to be any better than simply inserting the
DELAY code in-line with the original program. However, if we had a need to call this subroutine
multiple times within our program, all we would need to add is another JSR DELAY instruction.
Thus, the subroutine strategy becomes more efficient than the in-line strategy proportional to how
many times that routine must execute.

7The blank line between JMP LOOP and DELAY is there for esthetic purposes only, to help our eyes see the distinction
between the main program and the subroutine. We could eliminate this blank line (or add more!) and the program
would execute just as well.

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 65

An useful tool provided by most assemblers is a disassembly option. This takes the assembled
machine code and translates it “backwards” into assembly code, displaying the memory addresses,
machine code hex dump, and equivalent assembly side-by-side for comparison:

Address Hexdump Disassembly

$8000 A9 01 LDA #$01

$8002 8D 00 40 STA $4000

$8005 49 01 EOR #$01

$8007 20 0D 00 JSR $000D

$800A 4C 02 80 JMP $8002

$800D A2 FF LDX #$FF

$800F CA DEX

$8010 E0 00 CPX #$00

$8012 D0 FB BNE $800F

$8014 60 RTS

Note how the “jump” and “branch” instructions all specify address locations in one way or
another, but not the “return instruction” at the end of the subroutine. How does the microprocessor
know which memory address to return to after completing the subroutine? The answer lies in a
feature of the microprocessor called the stack : a section of volatile memory used by the processor
to remember such things as previous Program Counter values. A jump-to-subroutine instruction
causes the current memory address value held in the Program Counter to be “pushed” onto the
stack before jumping to the subroutine’s starting memory address. A “return” instruction causes
the microprocessor to “pop” the former address value off the stack and into the Program Counter
again, so that execution resumes right where it left off8. The model 6502 processor uses a portion
of its RAM memory space for its stack (0x0100 through 0x01FF).

If you examine this disassembled code closely, you will notice something strange with the “branch-
if-not-equal” instruction: the disassembled code says BNE $800F but the machine code does not
actually contain the 0x800F address. Instead, it only contains the opcode for BNE (D0) and a byte
with a value of 0xFB. This is an example of relative addressing, where the operand to the instruction
declares not the address itself, but rather how many addresses to skip, either forward or backward.
As an eight-bit signed number, 0xFB is equal to negative five. This tells the microprocessor to
decrement its Program Counter by five to repeat the DELAY LOOP. If you count from address 0x8013
where the 0xFB operand was resides to 0x800F where the delay loop begins, you count five addresses
(inclusive). Relative addressing is more efficient than absolute addressing because we only need
one byte telling the instruction how far to jump instead of two bytes to specify a 16-bit address.
Interestingly, the disassembler opted to show us an absolute address even though that’s not really
how the 6502’s BNE instruction works.

8Stacks are analogous to a pile (stack) of paper notes. If a person is reading a book and they suddenly get told to
turn to a different chapter to read a passage there, they may write the current page number on a note and “push”
that note to the top of the stack so they won’t forget it while turning to the new passage. After reading the new
passage, the person retrieves their note from the top of the stack (i.e. “popping” it off the stack) and references it to
return to the page where they left off. This may occur more than once, and the stack will “remember” not only the
page numbers but also keep everything in the right order as the person eventually returns to their original place in
the book.

66 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.4 Simplifying with symbols

Another technique useful for making our assembly-language programs easier to read and to maintain
is the use of symbols to represent numerical values. Consider the last version of our LED-blinking
program re-written to incorporate three symbols, defined at the very beginning of the code listing:

DTIME .EQU $FF ; Create a symbol "DTIME" for the delay time parameter

OUTPT .EQU $4000 ; Create a symbol "OUTPT" for the Output port address

LED .EQU $01 ; Create a symbol "LED" for the LED’s bit number

.ORG $8000 ; Begin at address 0x8000

LDA #LED ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA OUTPT ; Store Accumulator value to Output port

EOR #LED ; XOR the least-significant bit

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

The .EQU directive tells the assembler to treat the symbol (on the left) as an alias of the value
(on the right). This lets us use lettered symbols within our code rather than numerical values for
important parameters such as I/O addresses, delay time, etc. These symbols may be used as many
times as desired, and they will always mean the same thing (e.g. the LED symbol is used twice in
this program, and it means $01 both times).

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 67

3.1.5 Using the stack

Previously we mentioned the microprocessor’s stack, a section of RAM used to hold data in sequential
order. Stacks may be thought of as a Last-In First-Out shift register, where data retrieved from the
stack is in reverse order of how data is placed onto the stack. The analogy of a microprocessor’s
stack being a literal stack of paper sheets is helpful here: if we pull papers from the top of the stack,
we will find their sequence is in reverse order of how we placed those sheets on the stack.

Microprocessors use their stack to manage subroutine calls, “pushing” the last Program Counter
memory address to the stack prior to jumping to the subroutine’s address, then “popping” that old
address off the stack when the subroutine completes so it knows where to resume its previous place in
the main program. This form of stack usage is automatic, being built-in to the finite state machine
sequence as part of each subroutine “call” instruction and each subroutine “return” instruction.
Interrupts also use a stack to remember where to jump back in the main program after completing
the interrupt service routine (ISR).

Certain instructions exist to make use of the stack in ways that are not necessarily related to
subroutines or interrupts, and these can be very useful. Here we will explore one such practical
use of the stack. Consider this simple “chasing LED” program using the 6502’s “Rotate Right”
instruction to shift the place of a single “1” bit in the Accumulator byte, the goal being to create a
“chasing” LED display on our computer where the light appears to repeatedly sweep along the row
of LEDs:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

JMP LOOP ; Jump to the beginning of the loop

This code is every bit as simple as our original LED-blinking program. When run, it produces
the following pattern of light (sequence shown chronologically from top to bottom):

P0P1P2P3P4P5P6P7 Accumulator value

0x01

0x00

0x80

0x40

0x20

0x10

0x08

0x04

0x02

0x01

T
im

e

68 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

During the step where no LEDs are lit, the “1” bit resides in the Carry bit of the microprocessor’s
Status register, a special register used to store the results of certain mathematical and logical
operations.

This pattern of light is what we expect the ROR instruction to produce after the Accumulator
is initially loaded with 0x01. All is well, except for the same problem we had with our original
“blinking LED” program: the sequence runs too fast for our eyes to discern. It just looks like a blur
of eight LEDs all (dimly) lit!

We already know how to slow programs down, by inserting a counting loop that “wastes” the
microprocessor’s time, so let’s modify this program accordingly:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

JSR DELAY ; Call the DELAY subroutine

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

However, when we run this program we get a different light sequence:

P0P1P2P3P4P5P6P7 Accumulator value

0x01

0x00

0x80

T
im

e

0xC0

0xE0

0xF0

0xF8

0xFC

0xFE

0xFF

For some reason, the “0” states rotated off the LSB-end of the byte are becoming “1” states to
fill the MSB. Recall that the ROR instruction draws from the Carry bit of the Status register to fill

3.1. INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 69

the MSB at each iteration. A reasonable hypothesis is that something other than the ROR is setting
the Carry bit.

Indeed something does act to set the Carry bit when we don’t want it to: the “compare X”
CPX instruction inside our DELAY subroutine. According to the 6502 instruction set manual, the
CPX sets the Carry bit if ever the X register’s value is equal to or greater than the value it’s being
compared against. In fact, this is how the BNE instruction knows when to branch: it checks the
Status register which is updated by all mathematical, logical, and comparison instructions. Given
the design of our time-delay subroutine where the X register begins at a large value and counts
down toward the comparison value of zero, we are guaranteed to return from that subroutine with
the Carry bit set.

This causes problems for our ROR instruction, which takes the “1” value left in the Carry bit from
the subroutine’s CPX instruction and adds it to our chasing light sequence, which we do not want.
Somehow we need the ROR to act on the Carry bit it generated, not the new Carry bit generated by
the subroutine’s CPX instruction.

Our stack ends up being a simple solution to this problem. All we need to do is “push” the
Status register’s state to the stack prior to calling the subroutine, then “pop” that old data back off
the stack and into the Status register again before the ROR instruction reads the Carry bit. In other
words, we can use the stack as temporary storage for the Status bits, and recall those bits after the
subroutine is done using the Status register for its own purposes.

All this requires is the addition of two new instructions surrounding the “jump to subroutine”:
a PHP instruction (“push processor status on stack”) prior to the jump, and PLP instruction (“pull
processor status from stack”) after the jump:

.ORG $8000 ; Begin at address 0x8000

LDA #$01 ; Load 0x01 into Accumulator

LOOP ; Mark the beginning of the loop

STA $4000 ; Store Accumulator value to Output port

ROR ; Rotate Accumulator bits one place right

PHP ; Push Status register to stack

JSR DELAY ; Call the DELAY subroutine

PLP ; Pop Status register off stack

JMP LOOP ; Jump to the beginning of the loop

DELAY

LDX #DTIME ; Load value 0xFF into register X

DELAY_LOOP

DEX ; Decrement (subtract 1 from) value stored in X

CPX #$00 ; Compare that value to zero

BNE DELAY_LOOP ; If unequal, "branch" to DELAY_LOOP and repeat

RTS ; Return to the main program

The stack is a very useful feature of any microprocessor, but it does have its limitations. If we
push far more data onto the stack than we pop off, we can get a stack overflow where the oldest

70 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

data gets overwritten and is lost. Also, we need to be very careful that we push from the correct
sources and pop to the correct destinations. For example, in the above program we pushed the
Status register to the stack, then immediately after that the JSR instruction pushed the Program
Counter value to the stack before going to the subroutine. When the subroutine completed, it
popped the old Program Counter value off the stack, and then immediately after that we popped
the old Status register off the stack. This works because those sources and destinations came in the
correct sequence, and so the data going on and off the stack went where it should.

3.2. INTEL 8080 MICROPROCESSOR 71

3.2 Intel 8080 microprocessor

+5V A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus

WR

WAIT
INT

RESET Control bus

8080

+12 V

HOLD

Clk 1

Clk 2

Gnd

HLDA

-5V

READY
DBIN

SYNC

INTE

Control bus pin functions are as follows:

• WAIT = this output acknowledges that the processor is in its “wait” state

• INT (Interrupt Request input) = receives an external signal to trigger an interrupt event

• INTE (Interrupt Enable output) = shows the state of the processor’s internal interrupt flip-
flop

• HOLD (Hold input) = an active signal applied here requests that the processor enter its
“hold” state so that external devices may gain control of the address and data busses

• HLDA (Hold Acknowledge output) = indicates that the processor’s address and bus lines are
in the high-impedance state, allowing external devices to drive those busses

• RESET = this input forces the Program Counter to go to address 0x0000

72 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

• SYNC (Synchronizing signal output) = activates at the beginning of each machine cycle

• WR (Write/Read output) = controls memory and I/O read/write operations

• READY = this input tells the processor when valid states exist on the data bus

• DBIN (Data Bus In output) = indicates when the processor is ready to receive data from
memory or I/O

The 8080’s control bus is actually more complicated than these ten pins would suggest. During
the period of time when the SYNC output activates, the data bus lines output a status word. This
is meant to be latched and decoded by a special-purpose IC called the Intel model 8228 “system
controller”. The function of each data bit in that status word is as follows:

• D0 = INTA = acknowledges that a request for an interrupt has been made

• D1 = WO = indicates a Write or an Output function, as opposed to a Read or Input function

• D2 = STACK = indicates the address bus represents the stack address from the stack pointer

• D3 = HLTA = acknowledges the HALT instruction

• D4 = OUT = indicates the address bus is addressing an output device

• D5 = M1 = indicates the processor is fetching a new instruction

• D6 = INP = indicates the address bus is addressing an input device

• D7 = MEMR = indicates the data bus will be used to read data from memory

Outputs from the 8228 system controller included the following:

• MEMR (Memory Read output) = activates ROM/RAM memory ICs for a read cycle

• MEMW (Memory Write output) = activates RAM memory ICs for a write cycle

• IOR (I/O read output) = activates input port latches to read data

• IOW (I/O write output) = activates output port latches to write data

• BUSEN (Bus Enable input) = when disabled this forces data and control line buffers into
high-impedance mode

• INTA (Interrupt acknowledge output) = acknowledges that a request for an interrupt has
been made

3.2. INTEL 8080 MICROPROCESSOR 73

The 8228 connects to the 8080 as shown below:

+5V A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus

WR

WAIT

INT

RESET

8080

+12 V

HOLD

Clk 1

Clk 2

Gnd

HLDA

-5V

READY

DBIN

SYNC

INTE

8228

BUSEN

MEMR
MEMW

IOR
IOW

INTA

Control bus

To 8224 clock generator IC

74 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.3 Zilog Z80 microprocessor

Z80

Clk

+5V

Gnd

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

D0
D1
D2
D3
D4
D5
D6
D7

Address bus

Data bus

M1
MREQ
IORQ

RD
WR

RFSH

System control

WAIT
HALT

INT
NMI

RESET

CPU control

BUSRQ
BUSACK CPU bus control

Control bus

Compared to the Intel 8080, the Zilog Z80 has much more modest requirements for power supply
and clock signal inputs. This frees up more pins in the 40-pin package for control bus lines, and
makes it possible for the Z80 to directly drive a control bus with no need for a latch/decoder like
the Intel 8228.

3.3. ZILOG Z80 MICROPROCESSOR 75

The following descriptive text comes from the 1984 US Patent 4,486,827 (“Microprocessor
Apparatus”) in which the authors give a rather complete description of the Z80’s functionality.
Although self-promoting in style (one of the patent’s authors is Frederico Faggin, the primary
inventor of the Z80 microprocessor), it is nevertheless educational for microprocessors in general.

Microcomputer systems are extremely simple to construct using Z-80 components. Any
such system consists of three parts:

1. CPU (Central Processing Unit)

2. Memory

3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the
memory and perform the desired operations. The memory is used to contain instructions
and in most cases data that is to be processed. For example, a typical instruction
sequence may be to read data from a specific peripheral device, store it in a location in
memory, check the parity and write it out to another peripheral device. Note that the
Zilog component set includes the CPU and various general purpose I/O device controllers,
while a wide range of memory devices may be used from any source. Thus, all required
components can be connected together in a very simple manner with virtually no other
external logic. The user’s effort then becomes primarily one of software development.
That is, the user can concentrate on describing his problem and translating it into a series
of instructions that can be loaded into the microcomputer memory. Zilog is dedicated to
making this step of software generation as simple as possible. A good example of this is
our assembly language in which a simple mnemonic is used to represent every instruction
that the CPU can perform. This language is self documenting in such a way that from
the mnemonic the user can understand exactly what the instruction is doing without
constantly checking back to a complex cross listing.

FIG. 1 shows a block diagram of the CPU, showing all of its major elements (digital
devices).

76 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer.
FIG. 2 illustrates how this memory is configured into eighteen 8-bit registers and four 16-
bit registers. All Z-80registers are implemented using static RAM. The registers include
two sets of six general purpose registers that may be used individually as 8-bit registers
or in pairs as 16-bit registers. These are also two sets of accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the l6-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after its
contents have been transferred to the address lines. When a program jump occurs the
new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of
a stack located anywhere in external system RAM memory. The external stack memory
is organized as a last-in first-out (LIFO) file. Data can be pushed onto the stack from
specific CPU registers or popped off of the stack into specific CPU registers through
the execution of PUSH and POP instructions. The data popped from the stack is
always the last data pushed onto it. The stack allows simple implementation of multiple
level interrupts, unlimited subroutine nesting and simplification of many types of data
manipulation.

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit
base address that is used in indexed addressing modes. In this mode, an index registers is
used as a base to point to a region in memory from which data is to be stored or retrieved.
An additional byte is included in indexed instructions to specify a displacement from this

3.3. ZILOG Z80 MICROPROCESSOR 77

base. This displacement is specified as a two’s complement signed integer. This mode
of addressing greatly simplifies many types of programs, especially where tables of data
are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where
an indirect call to any memory location can be achieved in response to an interrupt. The
I Register is used for this purpose to store the high order 8-bits of the indirect address
while the interrupting device provides the lower 8-bits of the address. This feature allows
interrupt routines to be dynamically located anywhere in memory with absolute minimal
access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter
to enable dynamic memories to be used with the same ease as static memories. This
7-bit register is automatically incremented after each instruction fetch. The data in the
refresh counter is sent out on the lower portion of the address bus along with a refresh
control signal while the CPU is decoding and executing the fetched instruction. This
mode of refresh is totally transparent to the programmer and does not slow down the
CPU operation. The programmer can load the R register for testing purposes, but this
register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers.
The accumulator holds the results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations, such as indicating whether
or not the result of an operation is equal to zero. The programmer selects the accumulator
and flag pair that he wishes to work with with a single exchange instruction so that he
may easily work with either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit
registers that may be used individually as 8-bit registers or as 16-bit register pairs by
the programmer. One set is called BC, DE and III while the complementary set is called
BC’, DE’ and III’. At any one time the programmer can select either set of registers to
work with through a single exchange command for the entire set. In systems where last
inter- [page 16]

rupt response is required, one set of general purpose registers and an accumulator/flag
register may be reserved for handling this very last routine. Only a simple exchange
commands need be executed to go between the routines. This greatly reduces interrupt
service time by eliminating the requirement for saving and retrieving register contents
in the external stack during interrupt or subroutine processing. These general purpose
registers are used for a wide range of applications by the programmer. They also simplify
programming, especially in ROM based systems where little external read/write memory
is available.

ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU.
Internally the ALU communicates with the registers and the external data bus on the
internal data bus. The type of functions performed by the ALU include:

78 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and
decoded. The control sections performs this function and then generates and supplies
all of the control signals necessary to read or write data from or to the registers, control
the ALU and provide all required external control signals.

3.3. ZILOG Z80 MICROPROCESSOR 79

FIG. 3 shows a block diagram of a very simple digital processor system using the CPU.
In a practical system the following five elements are required: power supply, oscillator
(a source of clock signals), memory devices, I/O circuits, and the CPU.

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be
implemented using only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt
square wave. For systems not running at full speed, a simple RC oscillator can be
used. When the CPU is operated near the highest possible frequency, a crystal oscillator
is generally required because the system timing will not tolerate the drift or jitter that
an RC network will generate. A crystal oscillator can be made from inverters and a few
discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this
simple example we have shown a single 8K bit ROM (1K bytes) being utilized as the
entire memory system. For this example we have assumed that the Z-80 internal register
configuration contains sufficient Read/Write storage so that external RAM memory is
not required.

80 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

Every computer system requires I/O circuits to allow it to interface to the “read world.”
In this simple example it is assumed that the output is an 8 bit control vector and the
input is an 8 bit status word. The input data could be gated onto the data bus using
any standard tri-state driver while the output data could be latched with any type of
standard TTL latch. For this example we have used a Z80-PIO for the I/O circuit. This
single circuit attaches to the data bus as shown and provides the required 16 bits of
TTL compatible I/O. (Refer to the Z80-PIO manual for details on the operation of this
circuit.) Notice in this example that with only three LSI circuits, a simple oscillator and
a single 5 volt power supply, a powerful computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data
storage and to implement a “stack.” FIG. 4 illustrates how 256 bytes of static memory
can be added to the previous example. In this example the memory space is assumed to
be organized as follows:

In this diagram the address space is described in hexadecimal notation. For this example,
address bit A10 separates the ROM space from the RAM space so that it can be used for
the chip select function. For larger amounts of external ROM or RAM, a simple TTL
decoder will be required to form the chip selects.

CPU TIMING

3.3. ZILOG Z80 MICROPROCESSOR 81

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write

I/O device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic
operations can take from three to six clock periods to complete or they can be lengthened
to synchronize the CPU to the speed of external devices. The basic clock periods are
referred to as T cycles and the basic operations are referred to as M (for machine) cycles.
FIG. 5 illustrates how a typical instruction will be merely a series of specific M and T
cycles.

Notice that this instruction consists of three machine cycles (M1, M2 and M3). The first
machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long
(unless lengthened by the wait signal which will be fully described in the next section).
The fetch cycle (M1) is used to fetch the OP code of the next instruction to be executed.
Subsequent machine cycles move data between the CPU and memory or I/O devices and
they may have anywhere from three to five T cycles (again they may be lengthened by
wait states to synchronize the external devices to the CPU). The following paragraphs
describe the timing which occurs within any of the basic machine cycles. In section 10,
the exact timing for each instruction is specified.

The CPU of the present invention is particularly useful in a hardware/software
development system. Such systems, typically employing microprocessors, have heretofore
required two or more CPU’s thus requiring additional logic and memory space at greatly
added cost. [page 17]

82 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 4

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

83

84 CHAPTER 4. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

85

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

86 CHAPTER 4. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

4.1. CONCEPTUAL REASONING 87

4.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

88 CHAPTER 4. QUESTIONS

4.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

4.1. CONCEPTUAL REASONING 89

4.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Logic function

OR function

AND function

Truth table

NOT function

NOR function

NAND function

XOR function

Binary

Word width

Hexadecimal

ASCII

90 CHAPTER 4. QUESTIONS

Hex dump

Unicode

Encoding

Decoding

Multiplexing

Demultiplexing

Latch

Bistable

Flip-flop

Register

Active-low versus Active-high

Clocking

Bus

Bit-shifting

4.1. CONCEPTUAL REASONING 91

Serial versus Parallel data

Stack

Arithmetic Logic Unit (ALU)

Opcode

Operand

Assembly language

Microprocessor

Program counter

Functional composition

Read versus Write

Memory address

Memory data

Volatility

RAM versus ROM

92 CHAPTER 4. QUESTIONS

Enable

Pseudocode

Instruction

Fetch/Execute cycle

Bus contention

Memory map

Bus notation

Machine code

Assembly code

Assembler

Interpreter

Symbolic name

Address resolution

Microcontroller

4.1. CONCEPTUAL REASONING 93

Interrupt

Mask

Collision

94 CHAPTER 4. QUESTIONS

4.1.3 Intel 8080 architecture

Locate a datasheet or user manual for the legacy Intel model 8080 or Intel model 8080A
microprocessor, and within that document locate a block diagram showing the internal architecture
of the device.

Compare this block diagram against the simple microprocessor architecture shown here, and
answer the following questions:

A0 A15

Address lines
D0 D7

Data lines

Control lines

A simple microprocessor

Program Counter (PC)

Stack Pointer (SP)

Register X

Register Y

Status

Registers

Latch

Mux/Demux

ALU

Accumulator

Latch

Instruction decoder

Latch

Finite State
Machine

Internal data bus

Latch

Latch

(FSM)

Latch

Shift register

• Where is the Finite State Machine module represented within the 8080?

• How many registers are there inside the 8080?

• Identify what is unique about the W and Z register pair.

Challenges

• Would we classify the Intel 8080 as a 4-bit, 8-bit, 16-bit, 32-bit, or 64-bit microprocessor?

• Identify the power supply requirements for this microprocessor.

4.1. CONCEPTUAL REASONING 95

4.1.4 Intel 8080 processor cycles

Locate a user manual for the legacy Intel model 8080 or Intel model 8080A microprocessor, and
within that document locate the section discussing the processor cycle.

Define and differentiate the following terms, which are common to all microprocessors (not just
the 8080):

• Instruction cycle

• Machine cycle (M-cycle)

• States (T-states)

Explain how these terms relate to the Tutorial’s presentation of a simple microprocessor executing
a three-instruction Read-Add-Write program.

Challenges

• The Intel 8080 microprocessor outputs status information on its data bus at the beginning of
every machine cycle (during the time the SY NC output line is high). Identify some of the
D0-D7 states expected for different types of machine cycles.

• The very first machine cycle (M1) always represents the same operation – what is this
operation, and why is it always the first one in an instruction cycle?

96 CHAPTER 4. QUESTIONS

4.1.5 Early microprocessor timing diagram

US Patent number 3,821,715 (“Memory System for a Multi-Chip Digital Computer”) granted in
June 1974 describes a method for interfacing memory and I/O devices to a simple microprocessor.
A simplified diagram of the circuit appears in Figure 1 of the patent:

Also included in this patent is Figure 2 showing signal timing for a single instruction cycle of
this computer:

Identify the M-cycles and T-states in this timing diagram.

Where in this timing diagram is the instruction being fetched?

4.1. CONCEPTUAL REASONING 97

Where in this timing diagram is the instruction being executed?

Note that this early computer design did not have separate address and data busses. How was
this microprocessor able to properly read and write from memory using just one bus?

Challenges

• Why do you suppose modern microprocessors provide separate address and data bus lines?

98 CHAPTER 4. QUESTIONS

4.1.6 Minimal Z80 computer

US Patent number 4,486,827 (“Microprocessor Apparatus”) granted in December 1984 describes a
development system based on Zilog’s model Z80 microprocessor, a rival4 to the Intel model 8080
microprocessor. In this patent the authors provide a diagram of a “minimal” computer for the Z80:

Identify directions of information “flow” on both the address and data busses.

Explain how you would enter a program for this simple computer to execute.

How can a computer such as this function with no RAM memory?

Challenges

• Explain how the RC network acts to reset the computer upon power-up.

• Explain why the M1 output line from the microprocessor connects to the Z80-PIO chip.

4The Z80 was largely developed by a former Intel employee (Frederico Faggin) and designed to be backward-
compatible with the 8080. It offered a simpler interface design for external ICs (e.g. ROM, RAM), simpler power
supply requirements, and also simpler clock requirements than the Intel 8080.

4.2. QUANTITATIVE REASONING 99

4.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases5” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely6 on an answer key!

5In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

6This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

100 CHAPTER 4. QUESTIONS

4.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

4.2. QUANTITATIVE REASONING 101

4.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables7 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

7Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

102 CHAPTER 4. QUESTIONS

Common8 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure9 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots10 of the polynomial 9x2+5x−2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

8Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

9Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

10Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

4.2. QUANTITATIVE REASONING 103

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary11 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

11My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

104 CHAPTER 4. QUESTIONS

4.2.3 Memory map determination

US Patent number 4,486,827 (“Microprocessor Apparatus”) granted in December 1984 describes a
development system based on Zilog’s model Z80 microprocessor, a rival12 to the Intel model 8080
microprocessor. In this patent the authors provide a diagram showing some RAM and ROM memory
ICs connected to the address and data busses of the Z80:

Based on the connections you see in this diagram, sketch a memory map for this computer
showing the locations of the addressable ROM and RAM space and explain how you were able to
determine the address ranges for the ROM and RAM.

Challenges

• Why are there two RAM chips but just one ROM chip?

• Modify this circuit to give the RAM just as much total storage as the ROM.

• Modify the circuit to swap the locations of RAM and ROM in the memory space.

12The Z80 was developed largely by a former Intel employee (Frederico Faggin) and designed to be backward-
compatible with the 8080. It offered a simpler interface design for external ICs (e.g. ROM, RAM), simpler power
supply requirements, and also simpler clock requirements than the Intel 8080.

4.2. QUANTITATIVE REASONING 105

4.2.4 6502 turning on LEDs

Suppose you are working with a computer using the MOS model 6502 microprocessor, and it happens
to have a memory-mapped 8-bit output port located at address 0x8000:

6502-based computer

CPU

RAM RAM

RAM

RAMRAM

RAM

ROM ROM

+V

Gnd

Gnd

P0

I/O

P1
P2
P3
P4
P5
P6
P7

LEDs

Explain how the following assembly-language program, once assembled and loaded into the
computer’s memory, causes the LEDs connected to pins P3 and P5 and P6 to energize:

OutPort .equ $8000

.org $0200

Main:

lda #$68 ; Loads value into Accumulator

sta OutPort ; Stores (copies) Accumulator’s value to OutPort

.end

Now, modify this program to turn on LEDs P0 through P5, leaving the last two LEDs off.

Challenges

• What would happen if OutPort .equ $8000 were altered to read OutPort .equ $8001?

• If the lda #$68 line were modified to read lda $68 the result would be very different. Instead
of loading the hexadecimal value 68 into the Accumulator register, the instruction instead
would refer to address 68 and load into the Accumulator whatever data value it found there.
The # symbol generally means immediate in assembly-language programming. Explain why
this is.

106 CHAPTER 4. QUESTIONS

4.2.5 PIC 16F18346 subroutines

The following assembly-language program13 instructs a Microchip model 16F18346 microcontroller
to turn an LED on and off at a slow rate:

; Blinking LED program with nested delays

LOOP

CALL DELAY1

BSF PORTA,2 ; Set bit 2 on Port A

CALL DELAY1

BCF PORTA,2 ; Clear bit 2 on Port A

GOTO LOOP

DELAY1

MOVLW 0x0A ; Delay time loaded into register W

MOVWF 0x20 ; Move from register W to address 0x20 of RAM

INNERLOOP

CALL DELAY2

DECFSZ 0x20, 1 ; Decrement, skip next instruction if zero

GOTO INNERLOOP

RETURN

DELAY2

MOVLW 0xFF ; Delay time loaded into register W

MOVWF 0x21 ; Move from register W to address 0x21 of RAM

INNERLOOP2

DECFSZ 0x21, 1 ; Decrement, skip next instruction if zero

GOTO INNERLOOP2

RETURN

END

This program uses subroutines to break the normal flow of execution. When a CALL instruction
is executed, the microprocessor’s Program Counter gets loaded with the address of the instruction
located at the corresponding label. A RETURN instruction tells the Program Counter to go back to
the next address after the CALL (i.e. to return where it left off).

Trace the order in which these instructions are executed as the program runs, and explain how
it achieves a slow blinking rate.

13Note that this is a partial program listing. To make this program complete would require an “include” directive
to inform the assembler as to the definitions of certain labels such as PORTA, as well as “configure” directives setting
some of the important configuration bits for this particular microcontroller. Also, we would need several lines of code
setting and clearing various bits to configure port A to be an output port to drive the LED.

4.2. QUANTITATIVE REASONING 107

Challenges

• Identify an edit to this program to make it blink exactly twice as fast as it blinks now.

4.2.6 Bitwise logical operations

Determine the results of the following bitwise logical operations:

• 0xBE bitwise-OR 0x13 =

• 0x4A bitwise-AND 0xFC =

• 0x27 bitwise-XOR 0x5F =

If an 8-bit register in a microprocessor happened to contain the value 0x6D and we wished to
invert the value of the most-significant bit while leaving the other seven bits unaltered, which bitwise
operation would be best for this task and what would the necessary mask value be? Also, what
would the result of this single-bit inversion be?

If an 8-bit register in a microprocessor happened to contain the value 0x97 and we wished to
force the value of the least-significant bit to zero (low, 0) while leaving the other seven bits unaltered,
which bitwise operation would be best for this task and what would the necessary mask value be?
Also, what would the result of this single-bit force be?

If an 8-bit register in a microprocessor happened to contain the value 0xC3 and we wished to
force the value of the 5th-most significant bit to one (high, 1) while leaving the other seven bits
unaltered, which bitwise operation would be best for this task and what would the necessary mask
value be? Also, what would the result of this single-bit force be?

Challenges

• Identify the symbols used for bitwise operations in either C or C++ programming.

108 CHAPTER 4. QUESTIONS

4.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

4.3. DIAGNOSTIC REASONING 109

4.3.1 Random input states

A student connects a toggle switch to one of the input port terminals on this single-board computer,
hoping to use the status of that switch as an input to their program:

6502-based computer

CPU
RAM

+V

Gnd

Gnd

P0

I/O

P1
P2
P3
P4
P5
P6
P7

LEDs

Memory Map

0x0000

ROM

RAM

OUTPUT PORT

RAM

I/O

P0P1P2P3P4P5P6P7Gnd

INPUT PORT

Outputs

Inputs

0x3FFF
0x4000
0x4001

0x8000

0xFFFF
(0x4000)

(0x4001)

RAM RAM

ROM ROM

ROMROM

Unfortunately, this results in unexpected behavior. When the toggle switch is closed the computer
properly registers the “high” state at the input port. However, when the toggle switch is open the
computer sometimes registers a “low” state but other times a “high” state. Interestingly, the student
notices all the unused port states acting “random” as well.

Identify the problem here, and propose a solution for it.

Write the hexadecimal equivalent of the input port memory data as well as its memory address
when the switch is turned on and all the other input pins on that port are low.

Challenges

• Write a program segment that takes the input port’s bit states and copies them over to the
output port.

110 CHAPTER 4. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

111

112 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

113

114 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

115

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

116 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

117

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

118 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

119

120 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

121

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

122 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

123

124 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

125

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

126 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

127

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

128 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

129

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

130 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Coll, John and Allen, David, BBC Microcomputer System User Guide, part number 0433 000, Issue
1, British Broadcasting Corporation (1982) and Acorn Computers Limited (October 1984).

“CY62128EV30 MoBL Automotive 1-Mbit (128 K × 8) Static RAM”, document 001-65528, Revision
E, Cypress Semiconductor Corporation, San Jose, CA, 15 April 2015.

Greenfield, Joseph D., The 68HC11 Microcontroller, Saunders College Publishing, Fort Worth, TX,
1992.

Hoff, Marcian Edward Jr.; Mazor, Stanley; Faggin, Frederico, US Patent 3,821,715, “Memory
System for a Multi-Chip Digital Computer”, application 22 January 1973, patent granted 28 June
1974.

Intel 8080 Microcomputer Systems User’s Manual, document MCS-662-0975/40K, Intel Corporation,
Santa Clara, CA, September 1975.

MacKenzie, I. Scott, The 8051 Microcontroller, MacMillan Publishing Company, New York, NY,
1992.

Olley, Allan, Existence Precedes Essence – Meaning of the Stored-Program Concept, University of
Toronto, Toronto, CA, 2010.

Shima, Masatoshi; Faggin, Frederico; Ungermann, Ralph K. US Patent 4,486,827, “Microprocessor
Apparatus”, application 18 January 1982, patent granted 4 December 1984.

Uffenbeck, John, Microcomputers and Microprocessors, Prentice-Hall Incorporated, 1985.

Valvano, Jonathan W., Embedded Microcomputer Systems: Real Time Interfacing, second edition,
Thomson Canada Limited, 2007.

Z80 PIO User’s Manual, Zilog.

Z80 CPU User Manual, document UM008011-0816, Zilog, Incorporated, 2016.

131

132 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

23 January 2025 – minor edits to the Tutorial.

25-29 August 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.
Also made some minor edits to the Tutorial and to some of the instructor notes.

24-29 January 2024 – added some images from the “Basic Principles of Digital” module showing
fundamental logic functions associated with Boolean expressions to the “Logic functions and Boolean
algebra” of this Tutorial. Also corrected a minor coloring error in image 3813, included a list of
interrupts for the MSP430G2553 microcontroller (to the “Interrupts” section of the Tutorial), and
made other minor edits to the Tutorial wording.

26 November 2023 – included trapezoidal symbols for mux and demux devices in that section of
the Tutorial.

29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

31 August 2021 – added more explanatory text to the “Putting it all together – the processor”
section of the Tutorial.

10 May 2021 – commented out or deleted empty chapters.

1 February 2021 – minor additions to the Introduction chapter, Tutorial, and Technical References
(intro to assembly language).

27-28 January 2021 – minor additions to the Introduction chapter, as well as minor edits to

133

134 APPENDIX F. VERSION HISTORY

images in the “Putting it all together” section of the Tutorial. Also, minor edits to questions.

4 September 2020 – added Quantitative Reasoning question on bitwise operations.

3 September 2020 – corrected some typographical errors found by Ty Weich.

2 September 2020 – added more helpful tips to the Introduction chapter. Also corrected an error
in one of the diagrams within the “A simple computer example” section of the Tutorial.

26 August 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

22 June 2020 – added some Foundational Concepts.

5-16 June 2020 – added content to the Tutorial, as well as questions.

4 June 2020 – document first created.

Index

74HC193, 11

Accumulator, 24, 58
Adding quantities to a qualitative problem, 112
Address bus, 40
Address resolution, 62
Addressing, relative, 65
Annotating diagrams, 111
ASCII, 12
Assembler, 53
Assembly code, 58
Assembly-language programming, 53

BASIC-in-ROM, 52
Big-endian, 53
Binary, 10
Bit, 10
Bitmap image, 12
Boolean algebra, 9
Bootloader, 52
BUFFALO monitor, 52
Bus, 23, 38
Bus contention, 41
Bus, address, 40
Bus, control, 40
Bus, data, 40

Calling a subroutine, 64
Central Processing Unit, 7
Checking for exceptions, 112
Checking your work, 112
Church, Alonzo, 21
Church-Turing thesis, 21
Clock, 63
Clock pulse, 15
Code, computer, 119
Collision, bus, 41

Collision, data, 45
Combinational logic, 9
Comment, 62
Contention, bus, 41
Control bus, 40
CPU, 7

Data bus, 40
Data collision, 45
Decoder, 12
Delay, 63
Demultiplexer, 13
Demux, 13
Dimensional analysis, 111
Directive, 61
Disassembler, 65

Edwards, Tim, 120
Encoder, 12
Endianness, 25, 53, 59
Executable code, 54

Fetch/execute cycle, 63
Function composition, 21

Graph values to solve a problem, 112
Gray code, 12
Greenleaf, Cynthia, 83

Hex dump, 24, 25, 52, 53, 60
Hexadecimal, 10
How to teach with these modules, 114
Hwang, Andrew D., 121

I/O, 23, 44
I/O, memory-mapped, 45
Identify given data, 111
Identify relevant principles, 111

135

136 INDEX

Instruction set, microprocessor, 12, 18
Instructions for projects and experiments, 115
Intel 8228 system controller, 72
Intermediate results, 111
Interpreter, 52
Interrupt, 55, 67
Interrupt service routine, 55, 67
Inverted instruction, 114
ISR, 55, 67

Jump instruction, 59

Knuth, Donald, 120

Label, 62
Lambda calculus, 21
Lamport, Leslie, 120
Language interpreter, 52
Latch, 15
Limiting cases, 112
Little-endian, 25, 59
Logic function, 8

Machine code, 25, 51, 52, 58
Mask, 55
Maskable interrupt, 55
Memory-mapped I/O, 45
Metacognition, 88
Microcontroller, 52
Microprocessor, 21
Monitor program, 52
Moolenaar, Bram, 119
MOS 6502 microprocessor, 58
Multiplexer, 13
Multiplexing, 41
Murphy, Lynn, 83
Mux, 13

NAND universality, 21
Non-maskable interrupt, 55
Nonvolatile RAM, 41
NOR universality, 21
NVRAM, 41

Opcode, 12, 59
Open-source, 119
Operand, 18, 59

Popping from the stack, 65, 67
Problem-solving: annotate diagrams, 111
Problem-solving: check for exceptions, 112
Problem-solving: checking work, 112
Problem-solving: dimensional analysis, 111
Problem-solving: graph values, 112
Problem-solving: identify given data, 111
Problem-solving: identify relevant principles, 111
Problem-solving: interpret intermediate results,

111
Problem-solving: limiting cases, 112
Problem-solving: qualitative to quantitative, 112
Problem-solving: quantitative to qualitative, 112
Problem-solving: reductio ad absurdum, 112
Problem-solving: simplify the system, 111
Problem-solving: thought experiment, 111
Problem-solving: track units of measurement,

111
Problem-solving: visually represent the system,

111
Problem-solving: work in reverse, 112
Processor, 21
Program counter, 64
Pseudocode, 22
Pushing to the stack, 65, 67

Qualitatively approaching a quantitative
problem, 112

RAM, 19, 41
Random access, 19
Read, memory, 19
Reading Apprenticeship, 83
Reductio ad absurdum, 112–114
Register, 58
Relative addressing, 65
Return from subroutine, 64
ROM, 19, 41

Schoenbach, Ruth, 83
Scientific method, 88
Shift register, 16, 67
Simplifying a system, 111
Socrates, 113
Socratic dialogue, 114
SPICE, 83

INDEX 137

Stack, 17, 65, 67
Stack, popping data, 17
Stack, pushing data, 17
Stallman, Richard, 119
Status bits, ALU, 18
Status register, 68, 69
Subroutine, 64

Teletype machine, 52
Thought experiment, 111
Time delay, 63
Torvalds, Linus, 119
Turing completeness, 21
Turing machine, 21
Turing, Alan, 21

Unconditional jump, 59
Unicode, 12
Units of measurement, 111
Universality, 21

Visualizing a system, 111

WAV audio file, 12
Word, 10
Work in reverse to solve a problem, 112
Write, memory, 19
WYSIWYG, 119, 120

	Introduction
	Recommendations for students
	Challenging concepts related to microprocessors
	Recommendations for instructors

	Tutorial
	Digital building-blocks
	Logic functions and Boolean algebra
	Binary numeration
	Counters
	Codes
	Decoders
	Multiplexers and Demultiplexers
	Latches and shift registers
	Arithmetic logic units
	Memory
	Finite state machines

	Putting it all together – the processor
	A simple computer example
	Machine code and assembly language
	Interrupts

	Derivations and Technical References
	Introduction to assembly language programming
	Machine code to blink an LED
	Assembly code to blink an LED
	Slowing down the blinking
	Simplifying with symbols
	Using the stack

	Intel 8080 microprocessor
	Zilog Z80 microprocessor

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Intel 8080 architecture
	Intel 8080 processor cycles
	Early microprocessor timing diagram
	Minimal Z80 computer

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Memory map determination
	6502 turning on LEDs
	PIC 16F18346 subroutines
	Bitwise logical operations

	Diagnostic reasoning
	Random input states

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

